Science.gov

Sample records for adenosine stress myocardial

  1. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping.

    PubMed

    Kuijpers, Dirkjan; Prakken, Niek H; Vliegenthart, Rozemarijn; van Dijkman, Paul R M; van der Harst, Pim; Oudkerk, Matthijs

    2016-10-01

    Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are sensitive to changes in myocardial blood volume. We prospectively analyzed 105 consecutive patients with adenosine stress perfusion CMR on a 1.5-T MRI system. Rest and stress T1 mapping was performed using Modified Look-Locker Inversion recovery. T1 reactivity was defined as difference in T1rest and T1stress (∆T1). Fifteen patients drank coffee within 4 h of CMR (<4H caffeine group), and 10 patients had coffee the day before (>8H caffeine group). Comparison was made to patients without self-reported coffee intake: 50 with normal CMR (control group), 18 with myocardial ischemia, and 12 with myocardial infarction. The national review board approved the study; all patients gave written informed consent. The <4H caffeine group showed inverted ∆T1 of -7.8 % (T1rest 975 ± 42 ms, T1stress 898 ± 51 ms, p < 0.0005). The >8H caffeine group showed reduced T1 reactivity (1.8 %; T1rest 979 ms, T1stress 997 ms) compared to the controls (4.3 %; T1rest 977 ± 40 ms, T1stress 1018 ± 40 ms), p < 0.0005. Ischemic and infarcted myocardium showed minimal T1 reactivity (0.2 and 0.3 %, respectively). Caffeine intake inverts the adenosine effect during stress perfusion CMR as measured by T1 mapping. T1 reactivity can assess the adequacy of adenosine-induced stress in perfusion CMR. PMID:27473274

  2. Clinical characteristics of silent myocardial ischemia diagnosed with adenosine stress 99mTc-tetrofosmin myocardial scintigraphy in Japanese patients with acute cerebral infarction.

    PubMed

    Nomura, Tetsuya; Kusaba, Tetsuro; Kodama, Naotoshi; Terada, Kensuke; Urakabe, Yota; Nishikawa, Susumu; Keira, Natsuya; Matsubara, Hiroaki; Tatsumi, Tetsuya

    2013-01-01

    It is well known that silent myocardial ischemia (SMI) often complicates patients with cerebral infarction and that stroke patients often die of ischemic heart disease. Therefore, it is considered important to treat myocardial ischemia in stroke patients. This study investigated SMI complicating Japanese patients with fresh stroke, using (99m)Tc-tetrofosmin myocardial scintigraphy with pharmacologic stress testing to elucidate their clinical manifestations. This study included 41 patients (26 men, mean age 76.0 ± 10.7 years) with acute cerebral infarction and no history of coronary artery disease. All patients underwent (99m)Tc-tetrofosmin myocardial scintigraphy with intravenous administration of adenosine to diagnose SMI. Of the 41 patients, myocardial ischemia was confirmed in 17 patients (41.5%). Atherosclerotic etiology was the major cause of stroke in the ischemia(+) group and embolic origin was the major cause in the ischemia(-) group. Patients with myocardial ischemia had a higher incidence of diabetes mellitus (52.9 vs 20.8%; P = 0.0323) and more than two conventional cardiovascular risk factors (64.7 vs 25.0%; P = 0.0110) compared with the nonischemic patients. Infarction subtype of atherosclerotic origin was an independent positive predictor of asymptomatic myocardial ischemia in patients with stroke. These findings indicate that the prevalence of asymptomatic myocardial ischemia is relatively high, especially in patients with stroke of atherosclerotic origin. Therefore, it is beneficial for us to narrow the target population who are at the highest risk when screening for SMI in Japanese patients with acute cerebral infarction. PMID:22124530

  3. Myocardial uptake and clearance of T1-201 in healthy subjects: Comparison of adenosine-induced hyperemia and exercise stress

    SciTech Connect

    Siffring, P.A.; Gupta, N.C.; Mohiuddin, S.M.; Esterbrooks, D.J.; Hilleman, D.E.; Cheng, S.C.; Sketch, M.H. Sr.; Frick, M.P. )

    1989-12-01

    Pharmacologic stress testing with dipyridamole is useful in patients undergoing thallium-201 myocardial perfusion scintigraphy who cannot adequately exercise. Because dipyridamole increases coronary blood flow by reducing the metabolism of adenosine, the authors compared the uptake and clearance of T1-201 following exercise stress testing (EST) and resting intravenous infusion of adenosine (AI) in crossover fashion in 20 healthy men. No perfusion defects or areas of redistribution were noted in any of the scans. Mean absolute myocardial T1-201 uptake was 1.3 times greater with AI than with EST. Mean absolute extracardiac uptake was 2.0 times greater with AI. Mean T1-201 myocardial clearance was virtually the same in all AI and EST views. During AI, 70% of the subjects experienced subjective side effects, mean arterial blood pressure decreased by 15%, and heart rate increased by 48%. The effects of adenosine on T1-201 kinetics in the myocardium are similar to those of EST. Adenosine may be useful as a pharmacologic stress agent in patients undergoing T1-201 myocardial perfusion scintigraphy.

  4. Myocardial perfusion scintigraphy during maximal coronary artery vasodilation with adenosine

    SciTech Connect

    Verani, M.S.; Mahmarian, J.J. )

    1991-05-21

    Pharmacologic coronary vasodilation as an adjunct to thallium-201 myocardial perfusion scintigraphy provides an important alternative form of stress that has been increasingly used in patients unable to perform an exercise stress test. Although dipyridamole has traditionally been used for this purpose, there are several compelling reasons why adenosine may be a preferable agent. First, dipyridamole acts by blocking the reuptake and transport of adenosine, which is the effective substance responsible for coronary vasodilation. Second, exogenous adenosine has a very short half-life (less than 2 seconds), which explains its very short duration of action as well as the brief, self-limiting duration of its side effects. Third, the adenosine infusion is controllable and may be increased or decreased as desired. Fourth, the coronary vasodilation induced by the doses of adenosine we recommend (140 micrograms/kg/min) may be more profound than that induced by the standard dipyridamole dose. Our experience to date, with nearly 1,000 patients studied, shows the adenosine thallium-201 test to be practical and well tolerated, with high sensitivity (87%) and specificity (94%) for detecting coronary artery disease.

  5. Adenosine thallium 201 myocardial perfusion scintigraphy

    SciTech Connect

    Verani, M.S. )

    1991-07-01

    Pharmacologic coronary vasodilation as an adjunct to myocardial perfusion imaging has become increasingly important in the evaluation of patients with coronary artery disease, in view of the large number of patients who cannot perform an adequate exercise test or in whom contraindications render exercise inappropriate. Adenosine is a very potent coronary vasodilator and when combined with thallium 201 scintigraphy produces images of high quality, with the added advantages of a very short half-life (less than 10 seconds) and the ability to adjust the dose during the infusion, which may enhance safety and curtail the duration of side effects. The reported sensitivity and specificity of adenosine thallium 201 scintigraphy for the detection of coronary artery disease are high and at least comparable with imaging after exercise or dipyridamole administration. 23 refs.

  6. Amelioration of adriamycin and daunorubicin myocardial toxicity by adenosine.

    PubMed

    Newman, R A; Hacker, M P; Krakoff, I H

    1981-09-01

    Primary cultures of rat myocardial cells were used to investigate the dose and time-dependent cellular enzyme release induced by either Adriamycin or daunorubicin, Concentrations of either anthracycline (1.8 or 18 microM) produced significant release of creatine phosphokinase and lactic dehydrogenase from myocardial cells within 24 hr of exposure without a detectable decrease in cell viability. Preincubation of the myocardial cells with varying concentrations of adenosine (10 microM to 1 mM) for 24 hr prior to the addition of anthracycline decreased or prevented drug-induced enzyme release. Other putative myocardial protectants, i.e., N-acetyl-L-cysteine, alpha-tocopherol, or carnitine, were ineffective in preventing anthracycline-induced enzyme release. Although adenosine was an effective myocardial protectant, it had no significant effect on cellular uptake of daunorubicin, nor did adenosine adversely affect the oncolytic activity of daunorubicin against L1210 leukemia cells in vitro. Anthramycin, another oncolytic agent having reported cardiotoxic effects, was also tested in the in vitro system. With this drug, however, no enzyme release was detected at less than lethal doses nor did adenosine have any protective potential against the toxicity of anthramycin. Finally, Adriamycin caused no significant lactic dehydrogenase release when incubated at 1.8 or 18 microM with H9c2 cells, a cell line having primarily skeletal muscle characteristics. This result suggests a specific toxicity of anthracyclines for myocardial but not skeletal muscle cells. PMID:7260911

  7. Safety of adenosine pharmacologic stress myocardial perfusion imaging in orthotopic cardiac transplant recipients: a single center experience of 102 transplant patients.

    PubMed

    Al-Mallah, Mouaz H; Arida, Muhammad; Garcia-Sayan, Enrique; Assal, Chafik; Zegarra, Gino Tapia; Czerska, Barbara; Ananthasubramaniam, Karthik

    2011-10-01

    Denervation super-sensitivity to adenosine is well described in cardiac transplant (CT) patients particularly early after transplant. The safety and hemodynamic effects of adenosine SPECT (A-SPECT) has not been described in a large series of CT patients. Single center retrospective study of 102 CT patients undergoing A-SPECT were compared to an age-gender matched patients in a 2:1 fashion who underwent A-SPECT in the same time period. Multivariate logistic regression model were used to identify independent predictors of advanced AV block. The average time from CT to A-SPECT was 8.5 ± 4.5 years. Average age was 57 years with 80% males. In comparison to the control group, adenosine infusion was associated with a higher incidence of sinus pause (4.9% vs. 0%), 2nd (11.8% vs. 4.9%) and 3rd degree AVB (2.9% vs. 0%) in CT patients (all P < 0.05). Prior use of aspirin and baseline 1st degree AVB were significant independent predictors of adenosine induced AVB. Baseline right or left bundle branch block, beta-blockers, calcium blockers or digoxin were not associated with occurrence of AVB. Only 1.9% of A-SPECT studies were terminated due to bradyarrythmia with 1 patient requiring aminophylline. There were no significant immediate or long term adverse events in these patients. Adenosine pharmacologic stress is associated with a higher incidence of AVB and sinus pause in CT patients reflecting persistence of super sensitivity late after CT. Nevertheless these bradyarrythmias are transient without any sequelae suggesting that A-SPECT can be performed safely in CT patients. PMID:21088992

  8. Adenosine as an Adjunct Therapy in ST Elevation Myocardial Infarction Patients: Myth or Truth?

    PubMed

    Kassimis, George; Davlouros, Periklis; Patel, Niket; De Maria, Gianluigi; Kallistratos, Manolis S; Kharbanda, Rajesh K; Manolis, Athanasios J; Alexopoulos, Dimitrios; Banning, Adrian P

    2015-10-01

    Early reperfusion represents the key strategy in ST elevation myocardial infarction. However, reperfusion may induce myocardial damage due to the reperfusion myocardial injury, compromising the full potential of reperfusion therapy and accounting for unfavourable results in high risk patients. Adenosine seems to attenuate ischemia reperfusion injury, and thus represents a promising therapeutic option for treating such patients. However, previous randomized clinical trials have collectively failed to demonstrate whether adenosine can effectively reduce measures of myocardial injury and improve clinical outcome, despite its good basic evidence. The failure of such trials to show a real beneficial action may be in part related to specific factors other than adenosine's clinical efficacy. The purpose of this review is to explain the rationale for the use of adenosine as an adjunctive pharmacological cardio-protective agent following reperfusion of the ischemic myocardium, to address the weakness of previous trials and to summarize the current state of knowledge regarding the effect of adenosine administration on reperfusion myocardial injury in patients with myocardial infarction. Although some preclinical and clinical studies point towards the beneficial role of adenosine in the prevention and treatment of no-reflow phenomenon in myocardial infarction, many unanswered questions still remain, including the optimal clinical indication, mode, dosage, duration and timing of application, and the exact mechanisms leading to potential benefits. Clarifying these issues will depend on further properly designed, adequately powered and well conducted clinical trials, which will probably provide us with the definite answers. PMID:26150100

  9. High Concordance Between Mental Stress–Induced and Adenosine-Induced Myocardial Ischemia Assessed Using SPECT in Heart Failure Patients: Hemodynamic and Biomarker Correlates

    PubMed Central

    Wawrzyniak, Andrew J.; Dilsizian, Vasken; Krantz, David S.; Harris, Kristie M.; Smith, Mark F.; Shankovich, Anthony; Whittaker, Kerry S.; Rodriguez, Gabriel A.; Gottdiener, John; Li, Shuying; Kop, Willem; Gottlieb, Stephen S.

    2016-01-01

    Mental stress can trigger myocardial ischemia, but the prevalence of mental stress–induced ischemia in congestive heart failure (CHF) patients is unknown. We characterized mental stress–induced and adenosine-induced changes in myocardial perfusion and neurohormonal activation in CHF patients with reduced left-ventricular function using SPECT to precisely quantify segment-level myocardial perfusion. Methods Thirty-four coronary artery disease patients (mean age ± SD, 62 ± 10 y) with CHF longer than 3 mo and ejection fraction less than 40% underwent both adenosine and mental stress myocardial perfusion SPECT on consecutive days. Mental stress consisted of anger recall (anger-provoking speech) followed by subtraction of serial sevens. The presence and extent of myocardial ischemia was quantified using the conventional 17-segment model. Results Sixty-eight percent of patients had 1 ischemic segment or more during mental stress and 81% during adenosine. On segment-by-segment analysis, perfusion with mental stress and adenosine were highly correlated. No significant differences were found between any 2 time points for B-type natriuretic peptide, tumor necrosis factor-α, IL-1b, troponin, vascular endothelin growth factor, IL-17a, matrix metallopeptidase-9, or C-reactive protein. However, endothelin-1 and IL-6 increased, and IL-10 decreased, between the stressor and 30 min after stress. Left-ventricular end diastolic dimension was 179 ± 65 mL at rest and increased to 217 ± 71 after mental stress and 229 ± 86 after adenosine (P < 0.01 for both). Resting end systolic volume was 129 ± 60 mL at rest and increased to 158 ± 66 after mental stress (P < 0.05) and 171 ± 87 after adenosine (P < 0.07), with no significant differences between adenosine and mental stress. Ejection fraction was 30 ± 12 at baseline, 29 ± 11 with mental stress, and 28 ± 10 with adenosine (P = not significant). Conclusion There was high concordance between ischemic perfusion defects induced

  10. Adenosine enhances myocardial glucose uptake only in the presence of insulin.

    PubMed

    Law, W R; McLane, M P

    1991-09-01

    Better understood in other tissues, the effects of adenosine on insulin-stimulated glucose uptake in the heart are poorly understood. Under pentobarbital anesthesia, we instrumented mongrel dogs to obtain general hemodynamics (blood pressure and heart rate), and arterial and coronary sinus blood samples for measuring oxygen and glucose concentrations. An electromagnetic blood flow probe around the circumflex coronary artery allowed determinations of blood flow, and calculation of substrate uptake by the heart (Fick principle). Somatostatin (SRIF) was infused intravenously (0.8 micrograms/kg/min) along with 0, 0.5, 1.0, 5.0, or 10 mU/kg/min regular insulin, and variable quantities of glucose to maintain euglycemia. Concomitant with the SRIF, insulin, and glucose infusions, adenosine was infused in logarithmically increasing rates (0, 0.01, 0.1, 1.0, 10 or 100 mumol/min) for 30 minutes each into the main left coronary arteries. Insulin infusions increased myocardial glucose uptake in a dose-dependent manner. The heart displayed exquisite sensitivity to insulin, with an ED50 of approximately 14 microU/mL (serum insulin). Adenosine infusions in the absence of insulin (SRIF infusion) increased coronary blood flow, but did not alter myocardial glucose uptake. In the presence of insulin, adenosine increased the maximal value for glucose uptake without changing sensitivity to insulin. These results indicate that adenosine enhances myocardial responsiveness to insulin, with respect to glucose uptake, independent of changes in blood flow. Since glucose can be used for anaerobic metabolism, and adenosine levels are known to increase under situations in which myocardial oxygenation is inadequate, these data have serious implications for conditions such as myocardial ischemia or hypoxia, when glycolytic substrate availability is vital. PMID:1680214

  11. Patients with reduced heart rate response to adenosine infusion have low myocardial flow reserve in (13)N-ammonia PET studies.

    PubMed

    Tomiyama, Takeshi; Kumita, Shin-ichiro; Ishihara, Keiichi; Suda, Masaya; Sakurai, Minoru; Hakozaki, Kenta; Hashimoto, Hidenobu; Takahashi, Naoto; Takano, Hitoshi; Kobayashi, Yasuhiro; Kiriyama, Tomonari; Fukushima, Yoshimitsu; Shimizu, Wataru

    2015-06-01

    To assess the effect of adenosine infusion by evaluating the relationship between heart rate (HR) response to adenosine and myocardial flow reserve (MFR) of remote regions supplied by normal coronary arteries in (13)N-ammonia PET. Thirty-one consecutive subjects (20 known coronary artery disease patients, 4 chronic heart failure patients, and 7 normal volunteers) except cases having 3-vessel disease underwent rest and adenosine stress (13)N-ammonia myocardial perfusion PET. Semi-quantitative, quantitative, and gated analyses were performed. Subjects were divided into two groups with regard to HR response to adenosine. Twenty-two subjects had normal HR response (peak/rest HR > 1.20), while reduced HR response (≤ 1.20) was observed in nine subjects. There were no differences in rest myocardial blood flow (MBF) of remote regions between the groups. Subjects with reduced HR response had significantly lower stress MBF and MFR of remote regions than those with normal HR response (stress MBF: 1.559 ± 0.517 vs. 2.279 ± 0.530, p = 0.004, MFR: 1.59 ± 0.36 vs. 2.35 ± 0.53, p = 0.001). There were no significant differences between the groups by means of semi-quantitative scoring. Rest and stress ejection fraction (EF) in the reduced HR response group was lower than that in the normal HR response group. In a multiple stepwise regression analysis, HR ratio, dyslipidemia, and Brinkman index were identified as predictors of the change in MFR of remote regions. Subjects with reduced HR response to adenosine had lower stress MBF and MFR of remote regions and lower EF. Moreover, HR response was one of the predictors of the change in MFR of remote regions. PMID:25846547

  12. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  13. [Occupational stress and myocardial infarction].

    PubMed

    Consoli, Silla M

    2015-01-01

    Besides the best-known role of depressed mood, occupational stress deserves to be taken as a coronary risk factor. There are two basic models to define occupational stress: Karasek's model (high job psychological demands associated with low decision latitude, or even low social support at work) and Siegrist's model (imbalance between efforts and rewards received). The combination of the two models better reflects the coronary risk than each model alone. Occupational stress appears both as a risk factor and a prognostic factor after the occurrence of myocardial infarction. The relevance of the models is best in men or in younger age subjects. In women, role conflicts (occupational/domestic), the existence of excessive "intrinsic" efforts (job over investment) and association with marital stress provide more specific information. Burnout, particularly among health professionals, and bullying at work are also linked to cardiovascular risk. Occupational stress is a collective indicator of health at work, valuable to the employer. At an individual level, it can lead to therapeutic preventive approaches. PMID:26150284

  14. [Thallium-201 myocardial perfusion imaging during adenosine-induced coronary vasodilation in patients with ischemic heart disease].

    PubMed

    Takeishi, Y; Chiba, J; Abe, S; Ikeda, K; Tonooka, I; Komatani, A; Takahashi, K; Nakagawa, Y; Shiraishi, T; Tomoike, H

    1992-09-01

    201Tl myocardial perfusion imaging during adenosine infusion was performed in consecutive 55 patients with suspected coronary artery disease. Adenosine was infused intravenously at a rate of 0.14 mg/kg/min for 6 minutes and a dose of 111 MBq of 201Tl was administered in a separate vein at the end of third minute of infusion. Myocardial SPECT imaging was begun 5 minutes and 3 hours after the end of adenosine infusion. For evaluating the presence of perfusion defects, 2 short axis images at the basal and apical levels and a vertical long axis image at the mid left ventricle were used. The regions with decreased 201Tl uptake were assessed semi-quantitatively. Adenosine infusion caused a slight reduction in systolic blood pressure and an increase in heart rate. The rate pressure products increased slightly (9314 +/- 2377 vs. 10360 +/- 2148, p < 0.001). Chest pain (24%) and headache (13%) were the frequent side effects. The second-degree atrioventricular block was developed in 11 of 55 (20%) patients. All symptoms and hemodynamic changes were well tolerated and disappeared within 1 or 2 minutes after discontinuing adenosine infusion. The sensitivity and specificity for the detection of patients with coronary artery disease were 100% (31/31) and 88% (7/8), respectively. 201Tl myocardial imaging during adenosine infusion was considered to be safe and useful for evaluating the patients with ischemic heart disease. PMID:1453559

  15. Nuclear Scan Strategy and Outcomes in Chest Pain Patients Value of Stress Testing with Dipyridamole or Adenosine

    PubMed Central

    Conti, Alberto; Mariannini, Yuri; Canuti, Erica; Petrova, Tetyana; Innocenti, Francesca; Zanobetti, Maurizio; Gallini, Chiara; Costanzo, Egidio

    2014-01-01

    Objective: To update the prognostic value of scan strategy with pharmacological stress agent in chest pain (CP) patients presenting with normal electrocardiography (ECG) and troponin. Methods: Two consecutive nonrandomized series of patients with CP and negative first-line workup inclusive of serial ECG, serial troponin, and echocardiography underwent myocardial perfusion imaging single photon emission computed tomography (SPECT) in the emergency department. Of 170 patients enrolled, 52 patients underwent dipyridamole-SPECT and 118 adenosine-SPECT. Patients with perfusion defects underwent angiography, whereas the remaining patients were discharged and followed-up. Primary endpoint was the composite of nonfatal myocardial infarction, unstable angina, revascularization, and cardiovascular death at follow-up or the presence of coronary stenosis > 50% at angiography. Results: At multivariate analysis, the presence of perfusion defects or hypertension was independent predictor of the primary endpoint. Sensitivity and negative predictive value were higher in patients subjected to adenosine-SPECT (95% and 99%, respectively) versus dipyridamole-SPECT (56% and 89%; yield 70% and 11%, respectively; P < 0.03). Of note, sensitivity, negative, and positive predictive values were high in patients with hypertension (100%, 93%, and 60%, respectively) or nonischemic echocardiography alterations (100%, 100%, and 100%, respectively). Conclusions: In CP patients, presenting with normal ECG and troponin, adenosine-SPECT adds incremental prognostic values to dipyridamole-SPECT. Costly scan strategy is more appropriate and avoids unnecessary angiograms in patients with hypertension or nonischemic echocardiography alterations. PMID:25191123

  16. High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle

    2007-01-01

    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.

  17. Activation of β1-adrenoceptor triggers oxidative stress mediated myocardial membrane destabilization in isoproterenol induced myocardial infarcted rats: 7-hydroxycoumarin and its counter action.

    PubMed

    Jagadeesh, Govindan Sangaran; Nagoor Meeran, Mohamed Fizur; Selvaraj, Palanisamy

    2016-04-15

    Activation of β1-adrenoceptor stimulates myocardial membrane destabilization in isoproterenol induced rats. Male albino Wistar rats were pre and co-treated with 7-hydroxycoumarin (16mg/kg body weight) daily for 8 days. Myocardial infarction was induced into rats by the subcutaneous administration of isoproterenol (100mg/kg body weight) at an interval of 24h daily for a period of two days (7th and 8th day). The levels/activities of serum cardiac troponin-T, lactate dehydrogenase and the concentrations of heart lipid peroxidation products were significantly increased and the antioxidant status was significantly decreased in isoproterenol induced rats. Furthermore, the activity of sodium/potassium-dependent adenosine triphosphatase was significantly decreased and the activities of calcium and magnesium-dependent adenosine triphosphatases were significantly increased in the heart of isoproterenol induced myocardial infarcted rats. Isoproterenol induced rats also revealed increased concentrations of sodium and calcium and decreased concentrations of potassium in the heart. 7-hydroxycoumarin pre- and co-treatment showed considerable impact on all biochemical parameters assessed. Also, 7-HC greatly reduced the infarct size of the myocardium. The in vitro study confirmed its potent free radical scavenging activity. Thus, the present study revealed that 7-HC attenuates myocardial membrane destabilization by reinstating the activities/levels of adenosine triphosphatases and minerals in isoproterenol induced rats by inhibiting oxidative stress. These effects are attributed to the membrane stabilizing and free radical scavenging properties of 7-hydroxycoumarin. PMID:26930228

  18. Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging

    PubMed Central

    Pilz, Guenter; Klos, Markus; Ali, Eman; Hoefling, Berthold; Scheck, Roland; Bernhardt, Peter

    2008-01-01

    Cardiac magnetic resonance imaging (CMR) with adenosine-stress myocardial perfusion is gaining importance for the detection and quantification of coronary artery disease (CAD). However, there is little knowledge about patients with CMR-detected ischemia, but having no relevant stenosis as seen on coronary angiography (CA). The aims of our study were to characterize these patients by CMR and CA and evaluate correlations and potential reasons for the ischemic findings. 73 patients with an indication for CA were first scanned on a 1.5T whole-body CMR-scanner including adenosine-stress first-pass perfusion. The images were analyzed by two independent investigators for myocardial perfusion which was classified as subendocardial ischemia (n = 22), no perfusion deficit (n = 27, control 1), or more than subendocardial ischemia (n = 24, control 2). All patients underwent CA, and a highly significant correlation between the classification of CMR perfusion deficit and the degree of coronary luminal narrowing was found. For quantification of coronary blood flow, corrected Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) was evaluated for the left anterior descending (LAD), circumflex (LCX) and right coronary artery (RCA). The main result was that corrected TFC in all coronaries was significantly increased in study patients compared to both control 1 and to control 2 patients. Study patients had hypertension or diabetes more often than control 1 patients. In conclusion, patients with CMR detected subendocardial ischemia have prolonged coronary blood flow. In connection with normal resting flow values in CAD, this supports the hypothesis of underlying coronary microvascular impairment. CMR stress perfusion differentiates non-invasively between this entity and relevant CAD. PMID:18275591

  19. Adenosine Stress and Rest T1 Mapping Can Differentiate Between Ischemic, Infarcted, Remote, and Normal Myocardium Without the Need for Gadolinium Contrast Agents

    PubMed Central

    Liu, Alexander; Wijesurendra, Rohan S.; Francis, Jane M.; Robson, Matthew D.; Neubauer, Stefan; Piechnik, Stefan K.; Ferreira, Vanessa M.

    2016-01-01

    Objectives The aim of this study was to evaluate the potential of T1 mapping at rest and during adenosine stress as a novel method for ischemia detection without the use of gadolinium contrast. Background In chronic coronary artery disease (CAD), accurate detection of ischemia is important because targeted revascularization improves clinical outcomes. Myocardial blood volume (MBV) may be a more comprehensive marker of ischemia than myocardial blood flow. T1 mapping using cardiac magnetic resonance (CMR) is highly sensitive to changes in myocardial water content, including MBV. We propose that T1 mapping at rest and during adenosine vasodilatory stress can detect MBV changes in normal and diseased myocardium in CAD. Methods Twenty normal controls (10 at 1.5-T; 10 at 3.0-T) and 10 CAD patients (1.5-T) underwent conventional CMR to assess for left ventricular function (cine), infarction (late gadolinium enhancement [LGE]) and ischemia (myocardial perfusion reserve index [MPRI] on first-pass perfusion imaging during adenosine stress). These were compared to novel pre-contrast stress/rest T1 mapping using the Shortened Modified Look-Locker Inversion recovery technique, which is heart rate independent. T1 values were derived for normal myocardium in controls and for infarcted, ischemic, and remote myocardium in CAD patients. Results Normal myocardium in controls (normal wall motion, MPRI, no LGE) showed normal resting T1 (954 ± 19 ms at 1.5-T; 1,189 ± 34 ms at 3.0-T) and significant positive T1 reactivity during adenosine stress compared to baseline (6.2 ± 0.5% at 1.5-T; 6.3 ± 1.1% at 3.0-T; all p < 0.0001). Infarcted myocardium showed the highest resting T1 of all tissue classes (1,442 ± 84 ms), without significant T1 reactivity (0.2 ± 1.5%). Ischemic myocardium showed elevated resting T1 compared to normal (987 ± 17 ms; p < 0.001) without significant T1 reactivity (0.2 ± 0.8%). Remote myocardium, although having comparable resting T1 to normal (955 ± 17 ms

  20. Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: An updated meta-analysis of randomized controlled trials

    PubMed Central

    Bulluck, Heerajnarain; Sirker, Alex; Loke, Yoon K.; Garcia-Dorado, David; Hausenloy, Derek J.

    2016-01-01

    Background Adenosine administered as an adjunct to reperfusion can reduce coronary no-reflow and limit myocardial infarct (MI) size in ST-segment elevation myocardial infarction (STEMI) patients. Whether adjunctive adenosine therapy can improve clinical outcomes in reperfused STEMI patients is not clear and is investigated in this meta-analysis of 13 randomized controlled trials (RCTs). Methods We performed an up-to-date search for all RCTs investigating adenosine as an adjunct to reperfusion in STEMI patients. We calculated pooled relative risks using a fixed-effect meta-analysis assessing the impact of adjunctive adenosine therapy on major clinical endpoint including all-cause mortality, non-fatal myocardial infarction, and heart failure. Surrogate markers of reperfusion were also analyzed. Results 13 RCTs (4273 STEMI patients) were identified and divided into 2 subgroups: intracoronary adenosine versus control (8 RCTs) and intravenous adenosine versus control (5 RCTs). In patients administered intracoronary adenosine, the incidence of heart failure was significantly lower (risk ratio [RR] 0.44 [95% CI 0.25–0.78], P = 0.005) and the incidence of coronary no-reflow was reduced (RR for TIMI flow<3 postreperfusion 0.68 [95% CI 0.47–0.99], P = 0.04). There was no difference in heart failure incidence in the intravenous adenosine group but most RCTs in this subgroup were from the thrombolysis era. There was no difference in non-fatal MI or all-cause mortality in both subgroups. Conclusion We find evidence of improved clinical outcome in terms of less heart failure in STEMI patients administered intracoronary adenosine as an adjunct to reperfusion. This finding will need to be confirmed in a large adequately powered prospective RCT. PMID:26402450

  1. Central effects of adenosine analogs on stress-induced gastric ulcer formation.

    PubMed

    Westerberg, V S; Geiger, J D

    1987-11-01

    Rats subjected to restraint stress developed gastric lesions that could be reduced by R-phenylisopropyladenosine (R-PIA) administered intracerebroventricularly. This protective effect was reversed by 8-sulfophenyltheophylline given centrally, and by peripherally administered 8-phenyltheophylline. These results suggest that central adenosine receptors mediate the effect. In subsequent studies it was found that if the absolute level of ulcer formation in control rats was low, R-PIA had no ulcer protective effect. Thus, although it appears that adenosine receptors are important in attenuating pathological gastric responses to stress, this attenuation seems to be dependent on the level of ulcer formation in control animals. PMID:2890075

  2. Impaired Myocardial Oxygenation Response to Stress in Patients With Chronic Kidney Disease

    PubMed Central

    Parnham, Susie; Gleadle, Jonathan M; Bangalore, Sripal; Grover, Suchi; Perry, Rebecca; Woodman, Richard J; De Pasquale, Carmine G; Selvanayagam, Joseph B

    2015-01-01

    Background Coronary artery disease and left ventricular hypertrophy are prevalent in the chronic kidney disease (CKD) and renal transplant (RT) population. Advances in cardiovascular magnetic resonance (CMR) with blood oxygen level–dependent (BOLD) technique provides capability to assess myocardial oxygenation as a measure of ischemia. We hypothesized that the myocardial oxygenation response to stress would be impaired in CKD and RT patients. Methods and Results Fifty-three subjects (23 subjects with CKD, 10 RT recipients, 10 hypertensive (HT) controls, and 10 normal controls without known coronary artery disease) underwent CMR scanning. All groups had cine and BOLD CMR at 3 T. The RT and HT groups also had late gadolinium CMR to assess infarction/replacement fibrosis. The CKD group underwent 2-dimensional echocardiography strain to assess fibrosis. Myocardial oxygenation was measured at rest and under stress with adenosine (140 μg/kg per minute) using BOLD signal intensity. A total of 2898 myocardial segments (1200 segments in CKD patients, 552 segments in RT, 480 segments in HT, and 666 segments in normal controls) were compared using linear mixed modeling. Diabetes mellitus (P=0.47) and hypertension (P=0.57) were similar between CKD, RT, and HT groups. The mean BOLD signal intensity change was significantly lower in the CKD and RT groups compared to HT controls and normal controls (−0.89±10.63% in CKD versus 5.66±7.87% in RT versus 15.54±9.58% in HT controls versus 16.19±11.11% in normal controls, P<0.0001). BOLD signal intensity change was associated with estimated glomerular filtration rate (β=0.16, 95% CI=0.10 to 0.22, P<0.0001). Left ventricular mass index and left ventricular septal wall diameter were similar between the CKD predialysis, RT, and HT groups. None of the CKD patients had impaired global longitudinal strain and none of the RT group had late gadolinium hyperenhancement. Conclusions Myocardial oxygenation response to stress is

  3. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  4. Adenosine-induced coronary vasospasm following drug-eluting stent implantation

    PubMed Central

    Matsumoto, Naoya; Nagao, Ken; Hirayama, Atsushi; Kasama, Shu

    2014-01-01

    We present the case of coronary vasospasm during adenosine stress in a patient with a prior drug-eluting stent implantation. The patient had a stent implantation in the left anterior descending coronary artery 3 years ago. Recently, he developed a chest pain and underwent adenosine stress myocardial perfusion single photon emission CT (SPECT). During the adenosine stress, he felt severe chest pain and ST elevation on electrocardiogram. An invasive coronary angiography showed no in-stent restenosis. This phenomenon deemed to be adenosine-induced coronary vasospasm after stent implantation. PMID:24518394

  5. Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat

    PubMed Central

    2014-01-01

    Background Reperfusion after resuscitation from cardiac arrest (CA) is an event that increases reactive oxygen species production leading to oxidative stress. More specifically, myocardial oxidative stress may play a role in the severity of post-CA myocardial dysfunction. This study investigated the relationship between myocardial oxidative stress and post-CA myocardial injury and dysfunction in a rat model of CA and cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced in 26 rats and was untreated for 6 min. CPR, including mechanical chest compression, ventilation, and epinephrine, was then initiated and continued for additional 6 min prior to defibrillations. Resuscitated animals were sacrificed at two h (n = 9), 4 h (n = 6) and 72 h (n = 8) following resuscitation, and plasma collected for assessment of: high sensitivity cardiac troponin T (hs-cTnT), as marker of myocardial injury; isoprostanes (IsoP), as marker of lipid peroxidation; and 8-hydroxyguanosine (8-OHG), as marker of DNA oxidative damage. Hearts were also harvested for measurement of tissue IsoP and 8-OHG. Myocardial function was assessed by echocardiography at the corresponding time points. Additional 8 rats were not subjected to CA and served as baseline controls. Results Compared to baseline, left ventricular ejection fraction (LVEF) was reduced at 2 and 4 h following resuscitation (p < 0.01), while it was similar at 72 h. Inversely, plasma hs-cTnT increased, compared to baseline, at 2 and 4 h post-CA (p < 0.01), and then recovered at 72 h. Similarly, plasma and myocardial tissue IsoP and 8-OHG levels increased at 2 and 4 h post-resuscitation (p < 0.01 vs. baseline), while returned to baseline 72 h later. Myocardial IsoP were directly related to hs-cTnT levels (r = 0.760, p < 0.01) and inversely related to LVEF (r = -0.770, p < 0.01). Myocardial 8-OHG were also directly related to hs-cTnT levels (r = 0.409, p < 0.05) and

  6. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.

    PubMed

    Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo

    2016-02-01

    Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. PMID:26774540

  7. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    PubMed

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. PMID:27374982

  8. Angina and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Raggi, Paolo; Vaccarino, Viola

    2015-01-01

    Objective Mental stress-induced myocardial ischemia is a common phenomenon in patients with coronary artery disease (CAD) and an emerging prognostic factor. Mental stress ischemia is correlated with ambulatory ischemia. However, whether it is related to angina symptoms during daily life has not been examined. Methods We assessed angina-frequency (past month) in 98 post-myocardial infarction (MI) subjects (age 18-60 years) using the Seattle Angina Questionnaire. Patients underwent [99mTc]sestamibi SPECT perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed-difference score (SDS), the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjustment for age, sex, smoking, CAD-severity, depressive, anger and anxiety symptoms, each 1-point increase in mental-stress SDS was associated with 1.73-unit increase in the angina-frequency score (95% CI: 0.09-3.37) and 17% higher odds of being in a higher angina-frequency category (OR: 1.17, 95% CI: 1.00-1.38). Depressive symptoms were associated with 12% higher odds of being in a higher angina-frequency category (OR: 1.12, 95% CI: 1.03-1.21). In contrast, exercise/pharmacological stress-induced SDS was not associated with angina-frequency. Conclusion Among young and middle-aged post-MI patients, myocardial ischemia induced by mental stress in the lab, but not by exercise/pharmacological stress, is associated with higher frequency of retrospectively reported angina during the day. Psychosocial stressors related to mental stress ischemia may be important contributory factor to daily angina. PMID:25727240

  9. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  10. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  11. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  12. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction.

    PubMed

    Wenk, Jonathan F; Sun, Kay; Zhang, Zhihong; Soleimani, Mehrdad; Ge, Liang; Saloner, David; Wallace, Arthur W; Ratcliffe, Mark B; Guccione, Julius M

    2011-04-01

    Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure. PMID:21428685

  13. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test

    PubMed Central

    Al-Alawi, Abdullah M.; Janardan, Jyotsna; Peck, Kah Y.; Soward, Alan

    2016-01-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health. PMID:27226918

  14. Association between Anger and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Kelley, Mary; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Background Mental stress-induced myocardial ischemia is associated with adverse prognosis in coronary artery disease patients. Anger is thought to be a trigger of acute coronary syndromes and is associated with increased cardiovascular risk; however, little direct evidence exists for a link between anger and myocardial ischemia. Methods [99mTc]sestamibi single-photon emission tomography was performed at rest, after mental stress (a social stressor with a speech task), and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed difference score, the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. The Spielberger's State-Trait Anger Expression Inventory was used to assess different anger dimensions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjusting for demographic factors, smoking, coronary artery disease severity, depressive and anxiety symptoms, each interquartile range increment in state-anger score was associated with 0.36 units adjusted increase in ischemia as measured by the summed difference score (95% CI: 0.14-0.59); the corresponding association for trait-anger was 0.95 (95% CI: 0.21-1.69). Anger expression scales were not associated ischemia. None of the anger dimensions were related to ischemia during exercise/pharmacological stress. Conclusion Anger, both as an emotional state and as a personality trait, is significantly associated with propensity to develop myocardial ischemia during mental stress, but not during exercise/pharmacological stress. Patients with this psychological profile may be at increased risk for silent ischemia induced by emotional stress and this may translate into worse prognosis. PMID:25497256

  15. Myocardial Oxidative Stress in Infants Undergoing Cardiac Surgery.

    PubMed

    Sznycer-Taub, Nathaniel; Mackie, Stewart; Peng, Yun-Wen; Donohue, Janet; Yu, Sunkyung; Aiyagari, Ranjit; Charpie, John

    2016-04-01

    Cardiac surgery for congenital heart disease often necessitates a period of myocardial ischemia during cardiopulmonary bypass and cardioplegic arrest, followed by reperfusion after aortic cross-clamp removal. In experimental models, myocardial ischemia-reperfusion is associated with significant oxidative stress and ventricular dysfunction. A prospective observational study was conducted in infants (<1 year) who underwent elective surgical repair of a ventricular septal defect (VSD) or tetralogy of Fallot (TOF). Blood samples were drawn following anesthetic induction (baseline) and directly from the coronary sinus at 1, 3, 5, and 10 min following aortic cross-clamp removal. Samples were analyzed for oxidant stress using assays for thiobarbituric acid-reactive substances, protein carbonyl, 8-isoprostane, and total antioxidant capacity. For each subject, raw assay data were normalized to individual baseline samples and expressed as fold-change from baseline. Results were compared using a one-sample t test with Bonferroni correction for multiple comparisons. Sixteen patients (ten with TOF and six with VSD) were enrolled in the study, and there were no major postoperative complications observed. For the entire cohort, there was an immediate, rapid increase in myocardial oxidative stress that was sustained for 10 min following aortic cross-clamp removal in all biomarker assays (all P < 0.01), except total antioxidant capacity. Infant cardiac surgery is associated with a rapid, robust, and time-dependent increase in myocardial oxidant stress as measured from the coronary sinus in vivo. Future studies with larger enrollment are necessary to assess any association between myocardial oxidative stress and early postoperative outcomes. PMID:26843460

  16. Oxidative Stress Biomarkers and Adenosine Deaminase over the Alopecic Area of the Patients with Alopecia Areata

    PubMed Central

    Öztürk, Perihan; Arıcan, Özer; Kurutaş, Ergül Belge; Mülayim, Kamil

    2016-01-01

    Background: Alopecia areata (AA) is an autoimmune, T-cell mediated, and chronic inflammatory disorder. The pathological mechanisms of disease are unclear, but oxidative stress may be involved. To our knowledge, no studies have examined the oxidative stress levels or biomarkers within the lesional area and skin surface in patients with AA. Similarly, adenosine deaminase (ADA) has not been characterized in AA. Aims: Therefore, we aimed to define ADA levels and the factors involved in oxidative stress from scalp-scrapes of patients with AA. Study Design: Case-control study. Method: A total of 60 patients (30 diagnosed AA patients and 30 healthy controls) were included in the study. ADA as well as oxidative stress factors, including malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analyzed from scalp-scrapes in both groups and quantified by spectrophotometry. Results: Activities of SOD (p=0.000), CAT (p=0.033), and ADA (p=0.004) as well as levels of GSH (p=0.000) and MDA (p=0.032) in patients with AA were higher than the controls statistically significant. Conclusion: Based on these results, factors associated with oxidative stress were elevated in AA patient scalp-scrapes compared to controls and may have a defined role the disease pathogenesis. Alterations in the activities of antioxidant enzymes from AA patient scraping samples may be a local effect of elevated oxidative stress levels. In this disease, oxidative stress may affect not only hair follicle but also any layers of the skin. PMID:27403388

  17. PGC-1α Regulates Expression of Myocardial Mitochondrial Antioxidants and Myocardial Oxidative Stress After Chronic Systolic Overload

    PubMed Central

    Lu, Zhongbing; Xu, Xin; Hu, Xinli; Fassett, John; Zhu, Guangshuo; Tao, Yi; Li, Jingxin; Huang, Yimin; Zhang, Ping; Zhao, Baolu

    2010-01-01

    Abstract Mitochondria are a principal site for generation of reactive oxygen species (ROS) in the heart. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) plays an important role in regulating mitochondrial biogenesis and myocardial metabolism, but whether PGC-1α can simultaneously upregulate myocardial mitochondrial antioxidants has not been studied. In the present study, we examined the effect of PGC-1α deficiency (PGC-1α−/−) on oxidative stress and expression of a group of mitochondrial antioxidants in normal hearts and in hearts exposed to chronic systolic pressure overload produced by transverse aortic constriction (TAC). We found that PGC-1α−/− caused moderate but significant decreases of myocardial mitochondrial antioxidant enzymes such as SOD2, and thioredoxin (Trx2), but had no effect on expression of myocardial oxidative stress markers and left ventricular (LV) function under basal conditions. However, in response to TAC for 6 weeks, PGC-1α−/− mice showed greater increases of myocardial oxidative stress markers 3’-nitrotyrosine and 4-hydroxynonenal, more severe LV hypertrophy and dilatation, pulmonary congestion, and a greater reduction of LV fractional shortening and dP/dtmax than did wild-type hearts. SOD mimetic MnTMPyP treatment (6 mg/kg/day) significantly attenuated TAC-induced LV hypertrophy and dysfunction in PGC-1α−/− mice. These data indicate that PGC-1α plays an important role in regulating expression of myocardial mitochondrial antioxidants SOD2 and Trx2 and in protecting hearts against TAC-induced myocardial oxidative stress, hypertrophy, and dysfunction. Antioxid. Redox Signal. 13, 1011–1022. PMID:20406135

  18. Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-α Signaling

    PubMed Central

    Pung, Yuh Fen; Sam, Wai Johnn; Stevanov, Kelly; Enrick, Molly; Chen, Chwen-Lih; Kolz, Christopher; Thakker, Prashanth; Hardwick, James P.; Chen, Yeong-Renn; Dyck, Jason R.B.; Yin, Liya; Chilian, William M.

    2015-01-01

    Objective Our goal was to determine the mechanism by which mitochondrial oxidative stress impairs collateral growth in the heart. Approach and Results Rats were treated with rotenone (mitochondrial complex I inhibitor that increases reactive oxygen species production) or sham-treated with vehicle and subjected to repetitive ischemia protocol for 10 days to induce coronary collateral growth. In control rats, repetitive ischemia increased flow to the collateral-dependent zone; however, rotenone treatment prevented this increase suggesting that mitochondrial oxidative stress compromises coronary collateral growth. In addition, rotenone also attenuated mitochondrial complex I activity and led to excessive mitochondrial aggregation. To further understand the mechanistic pathway(s) involved, human coronary artery endothelial cells were treated with 50 ng/ mL vascular endothelial growth factor, 1 µmol/L rotenone, and rotenone/vascular endothelial growth factor for 48 hours. Vascular endothelial growth factor induced robust tube formation; however, rotenone completely inhibited this effect (P<0.05 rotenone versus vascular endothelial growth factor treatment). Inhibition of tube formation by rotenone was also associated with significant increase in mitochondrial superoxide generation. Immunoblot analyses of human coronary artery endothelial cells with rotenone treatment showed significant activation of adenosine monophosphate activated kinase (AMPK)-α and inhibition of mammalian target of rapamycin and p70 ribosomal S6 kinase. Activation of AMPK-α suggested impairments in energy production, which was reflected by decrease in O2 consumption and bioenergetic reserve capacity of cultured cells. Knockdown of AMPK-α (siRNA) also preserved tube formation during rotenone, suggesting the negative effects were mediated by the activation of AMPK-α. Conversely, expression of a constitutively active AMPK-α blocked tube formation. Conclusions We conclude that activation of AMPK

  19. Etanercept Attenuates Myocardial Ischemia/Reperfusion Injury by Decreasing Inflammation and Oxidative Stress

    PubMed Central

    Yang, Mei; Chen, Jianchang; Zhao, Jing; Meng, Mei

    2014-01-01

    The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress. PMID:25260027

  20. Improved myocardial ischemia detection by combined physical and mental stress testing.

    PubMed

    Hunziker, P R; Gradel, C; Müller-Brand, J; Buser, P; Pfisterer, M

    1998-07-01

    The hypothesis that addition of mental stress to physical exercise would modify the circulation response to stress and improve noninvasive detection of myocardial ischemia was tested in a randomized, crossover radionuclide angiocardiographic study. Compared with physical exercise or mental stress alone, combined stress led to higher heart rates and rate-pressure products in early stress stages, to more pronounced symptoms, and to a better discrimination of subjects with and without coronary artery disease by radionuclide angiography. PMID:9671017

  1. Prognostic Utility of Calcium Scoring as an Adjunct to Stress Myocardial Perfusion Scintigraphy in End-Stage Renal Disease

    PubMed Central

    Moody, William E.; Lin, Erica L.S.; Stoodley, Matthew; McNulty, David; Thomson, Louise E.; Berman, Daniel S.; Edwards, Nicola C.; Holloway, Benjamin; Ferro, Charles J.; Townend, Jonathan N.; Steeds, Richard P.

    2016-01-01

    Coronary artery calcium score (CACS) is a strong predictor of adverse cardiovascular events in the general population. Recent data confirm the prognostic utility of single-photon emission computed tomographic (SPECT) imaging in end-stage renal disease, but whether performing CACS as part of hybrid imaging improves risk prediction in this population is unclear. Consecutive patients (n = 284) were identified after referral to a university hospital for cardiovascular risk stratification in assessment for renal transplantation. Participants underwent technetium-99m SPECT imaging after exercise or standard adenosine stress in those unable to achieve 85% maximal heart rate; multislice CACS was also performed (Siemens Symbia T16, Siemens, Erlangen, Germany). Subjects with known coronary artery disease (n = 88) and those who underwent early revascularization (n = 2) were excluded. The primary outcome was a composite of death or first myocardial infarction. An abnormal SPECT perfusion result was seen in 22% (43 of 194) of subjects, whereas 45% (87 of 194) had at least moderate CACS (>100 U). The frequency of abnormal perfusion (summed stress score ≥4) increased with increasing CACS severity (p = 0.049). There were a total of 15 events (8 deaths, and 7 myocardial infarctions) after a median duration of 18 months (maximum follow-up 3.4 years). Univariate analysis showed diabetes mellitus (Hazard ratio [HR] 3.30, 95% CI 1.14 to 9.54; p = 0.028), abnormal perfusion on SPECT (HR 5.32, 95% CI 1.84 to 15.35; p = 0.002), and moderate-to-severe CACS (HR 3.55, 95% CI 1.11 to 11.35; p = 0.032) were all associated with the primary outcome. In a multivariate model, abnormal perfusion on SPECT (HR 4.18, 95% CI 1.43 to 12.27; p = 0.009), but not moderate-to-severe CACS (HR 2.50, 95% CI 0.76 to 8.20; p = 0.130), independently predicted all-cause death or myocardial infarction. The prognostic value of CACS was not incremental to clinical and SPECT perfusion data (global chi

  2. Prognostic Utility of Calcium Scoring as an Adjunct to Stress Myocardial Perfusion Scintigraphy in End-Stage Renal Disease.

    PubMed

    Moody, William E; Lin, Erica L S; Stoodley, Matthew; McNulty, David; Thomson, Louise E; Berman, Daniel S; Edwards, Nicola C; Holloway, Benjamin; Ferro, Charles J; Townend, Jonathan N; Steeds, Richard P

    2016-05-01

    Coronary artery calcium score (CACS) is a strong predictor of adverse cardiovascular events in the general population. Recent data confirm the prognostic utility of single-photon emission computed tomographic (SPECT) imaging in end-stage renal disease, but whether performing CACS as part of hybrid imaging improves risk prediction in this population is unclear. Consecutive patients (n = 284) were identified after referral to a university hospital for cardiovascular risk stratification in assessment for renal transplantation. Participants underwent technetium-99m SPECT imaging after exercise or standard adenosine stress in those unable to achieve 85% maximal heart rate; multislice CACS was also performed (Siemens Symbia T16, Siemens, Erlangen, Germany). Subjects with known coronary artery disease (n = 88) and those who underwent early revascularization (n = 2) were excluded. The primary outcome was a composite of death or first myocardial infarction. An abnormal SPECT perfusion result was seen in 22% (43 of 194) of subjects, whereas 45% (87 of 194) had at least moderate CACS (>100 U). The frequency of abnormal perfusion (summed stress score ≥4) increased with increasing CACS severity (p = 0.049). There were a total of 15 events (8 deaths, and 7 myocardial infarctions) after a median duration of 18 months (maximum follow-up 3.4 years). Univariate analysis showed diabetes mellitus (Hazard ratio [HR] 3.30, 95% CI 1.14 to 9.54; p = 0.028), abnormal perfusion on SPECT (HR 5.32, 95% CI 1.84 to 15.35; p = 0.002), and moderate-to-severe CACS (HR 3.55, 95% CI 1.11 to 11.35; p = 0.032) were all associated with the primary outcome. In a multivariate model, abnormal perfusion on SPECT (HR 4.18, 95% CI 1.43 to 12.27; p = 0.009), but not moderate-to-severe CACS (HR 2.50, 95% CI 0.76 to 8.20; p = 0.130), independently predicted all-cause death or myocardial infarction. The prognostic value of CACS was not incremental to clinical and SPECT perfusion data (global chi-square change

  3. Myocardial Protection in Beating Heart Cardiac Surgery: I: Pre- or Post-Conditioning with Inhibition of the es-ENT1 Nucleoside Transporter and Adenosine Deaminase Attenuates Post-MI Reperfusion-Mediated Ventricular Fibrillation and Regional Contractile Dysfunction

    PubMed Central

    Abd-Elfattah, Anwar S. A.; Aly, Hamdy; Hanan, Scott; Wechsler, Andrew S.

    2012-01-01

    Objectives To determine the role of the es-ENT1 nucleoside transporter in post-MI reperfusion injury-mediated ventricular fibrillation (VFib) and regional dysfunction. We used erythro-9 (2-hydroxy-3-nonyl)-adenine (EHNA) and p-nitrobenzylthioinosine (NBMPR) to inhibit both adenosine deamination and transport in a canine model of off pump acute MI. Methods Anesthetized adult dogs (n= 37), instrumented to monitor systolic segmental shortening (SS %) and wall thickening (WT %) using sonomicrometry, underwent 90 minutes of LAD coronary artery occlusion and 120 minutes reperfusion. Myocardial coronary blood flow, ATP pool, infarct size and the incidents of ventricular fibrillation and cardioversions were also measured. Animals received an intravenous infusion of the vehicle (Control) or 100μM of EHNA and 25 μM NBMPR before ischemia (preconditioning, PreC group) or just before reperfusion (postconditioning, PostC group). Results In the control group, ATP depletion was associated with accumulation of more inosine than adenosine during ischemia and washed out during reperfusion. Myocardial adenosine and inosine were the major nucleosides in the PreC- and Post-C groups during ischemia and remained detectable during reperfusion, respectively. In both groups, recovery of systolic SS% and WT%, and reduction in the incidence of VFib (p<0.05 vs. Control group) coincided with retention of myocardial nucleosides. Infarct sizes in the three groups were not significantly different, independent of myocardial blood flow during ischemia. Conclusion PreC-or PostC with EHNA/NBMPR significantly reduced the incidence of ventricular fibrillation and cardioversions and attenuated regional contractile dysfunction mediated by post-MI reperfusion injury and that es-ENT1 plays a major role in these events. PMID:22329983

  4. Metallothionein Alleviates Oxidative Stress-Induced Endoplasmic Reticulum Stress and Myocardial Dysfunction

    PubMed Central

    Guo, Rui; Ma, Heng; Gao, Feng; Zhong, Li; Ren, Jun

    2009-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been implicated in cardiovascular diseases although the interplay between the two is not clear. This study was designed to examine the influence of oxidative stress through glutathione depletion on myocardial ER stress and contractile function in the absence or presence of the heavy metal scavenger antioxidant metallothionein (MT). FVB and MT overexpression transgenic mice received the GSH synthase inhibitor buthionine sulfoximine (BSO, 30 mM) in drinking water for 2 weeks. Oxidative stress, ER stress, apoptosis, cardiac function and ultrastructure were assessed using GSH/GSSG assay, reactive oxygen species (ROS), immunoblotting, caspase-3 activity, Langendorff perfused heart function (LVDP and ± dP/dt), and transmission electron microscopy. BSO led to a robust decrease in the GSH/GSSG ratio and increased ROS production, consolidating oxidative stress. Cardiac function and ultrastructure were compromised following BSO treatment, the effect of which was obliterated by MT. BSO promoted overt ER stress as evidenced by upregulated BiP, calregulin, phospho-IRE1α and phospho-eIF2α without affecting total IRE1α and eIF2α. BSO treatment led to apoptosis manifested as elevated expression of CHOP/GADD153, caspase-12 and Bax as well as caspase-3 activity, reduced Bcl-2 expression and JNK phosphorylation, all of which was ablated by MT. Moreover, both antioxidant N-acetylcysteine and the ER stress inhibitor tauroursodeoxycholic acid reversed the oxidative stress inducer menadione-elicited depression in cardiomyocyte contractile function. Taken together, these data suggested that ER stress occurs likely downstream of oxidative stress en route to cardiac dysfunction. PMID:19344729

  5. Relation between ST segment elevation during dobutamine stress test and myocardial viability after a recent myocardial infarction.

    PubMed Central

    Elhendy, A.; Cornel, J. H.; Roelandt, J. R.; van Domburg, R. T.; Geleijnse, M. I.; Nierop, P. R.; Bax, J. J.; Sciarra, A.; Ibrahim, M. M.; el-Refaee, M.; el-Said, G. M.; Fioretti, P. M.

    1997-01-01

    OBJECTIVE: To assess the relation between ST segment elevation during the dobutamine stress test and late improvement of function after acute Q wave myocardial infarction. PATIENTS AND DESIGN: 70 patients were studied a mean (SD) 8 (3) days after acute myocardial infarction with high dose dobutamine-atropine stress echocardiography and a follow up echocardiogram at 85 (10) days. A score model based on 16 segments and four grades was used to assess left ventricular function. Functional improvement was defined as a reduction of wall motion score > or = 1 in > or = 1 segments at follow up. INTERVENTION: Myocardial revascularisation was performed in 23 patients (33%) before follow up studies. RESULTS: ST segment elevation occurred in 40 patients (57%). Late functional improvement occurred in 35 patients (50%). Functional improvement was more common in patients with ST segment elevation (68% v 30%, P < 0.005) and they had a higher mean (SD) number of improved segments at follow up (1.9 (2.2) v 0.5 (1.1), P < 0.005). The wall motion score index decreased between baseline and follow up in patients with ST segment elevation (1.54 (0.50) v 1.48 (0.43), P < 0.05) but not in patients without ST segment elevation (1.39 (0.60) v 1.45 (0.47)). The accuracy of ST segment elevation for the prediction of functional improvement was similar to that of low dose dobutamine echocardiography in patients with anterior infarction (80% v 83%) and in patients who underwent revascularisation (78% v 83% respectively). CONCLUSION: In patients with a recent Q wave myocardial infarction, dobutamine-induced ST segment elevation is a valuable marker of myocardial viability particularly when the test is performed without or with suboptimal echocardiographic imaging. PMID:9068392

  6. Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction

    PubMed Central

    2014-01-01

    Background Left ventricular (LV) hypertrophy in aortic stenosis (AS) is characterized by reduced myocardial perfusion reserve due to coronary microvascular dysfunction. However, whether this hypoperfusion leads to tissue deoxygenation is unknown. We aimed to assess myocardial oxygenation in severe AS without obstructive coronary artery disease, and to investigate its association with myocardial energetics and function. Methods Twenty-eight patients with isolated severe AS and 15 controls underwent cardiovascular magnetic resonance (CMR) for assessment of perfusion (myocardial perfusion reserve index-MPRI) and oxygenation (blood-oxygen level dependent-BOLD signal intensity-SI change) during adenosine stress. LV circumferential strain and phosphocreatine/adenosine triphosphate (PCr/ATP) ratios were assessed using tagging CMR and 31P MR spectroscopy, respectively. Results AS patients had reduced MPRI (1.1 ± 0.3 vs. controls 1.7 ± 0.3, p < 0.001) and BOLD SI change during stress (5.1 ± 8.9% vs. controls 18.2 ± 10.1%, p = 0.001), as well as reduced PCr/ATP (1.45 ± 0.21 vs. 2.00 ± 0.25, p < 0.001) and LV strain (−16.4 ± 2.7% vs. controls −21.3 ± 1.9%, p < 0.001). Both perfusion reserve and oxygenation showed positive correlations with energetics and LV strain. Furthermore, impaired energetics correlated with reduced strain. Eight months post aortic valve replacement (AVR) (n = 14), perfusion (MPRI 1.6 ± 0.5), oxygenation (BOLD SI change 15.6 ± 7.0%), energetics (PCr/ATP 1.86 ± 0.48) and circumferential strain (−19.4 ± 2.5%) improved significantly. Conclusions Severe AS is characterized by impaired perfusion reserve and oxygenation which are related to the degree of derangement in energetics and associated LV dysfunction. These changes are reversible on relief of pressure overload and hypertrophy regression. Strategies aimed at improving oxygen demand–supply balance to preserve myocardial

  7. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. PMID:27114365

  8. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  9. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress

    PubMed Central

    Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.

    2015-01-01

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  10. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. PMID:26721194

  11. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-01-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. PMID:25388908

  12. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging.

    PubMed

    Ko, Sung Min; Hwang, Hweung Kon; Kim, Sung Mok; Cho, Ihn Ho

    2015-06-01

    High-quality and non-invasive diagnostic tools for assessing myocardial ischemia are necessary for therapeutic decisions regarding coronary artery disease. Myocardial perfusion has been studied using myocardial contrast echo perfusion, single-photon emission computed tomography, positron emission tomography, cardiovascular magnetic resonance, and, more recently, computed tomography. The addition of coronary computed tomography angiography to myocardial perfusion imaging improves the specificity and overall diagnostic accuracy of detecting the hemodynamic significance of coronary artery stenosis. This study reviews the benefits, limitations, and imaging findings of various imaging modalities for assessing myocardial perfusion, with particular emphasis on stress perfusion computed tomography and cardiovascular magnetic resonance imaging. PMID:25809387

  13. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  14. Adenosine protects Sprague Dawley rats from high-fat diet and repeated acute restraint stress-induced intestinal inflammation and altered expression of nutrient transporters.

    PubMed

    Lee, C Y

    2015-04-01

    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. PMID:25196093

  15. Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice.

    PubMed

    Roth, Lynn; Rombouts, Miche; Schrijvers, Dorien M; Lemmens, Katrien; De Keulenaer, Gilles W; Martinet, Wim; De Meyer, Guido R Y

    2015-09-01

    Vulnerable atherosclerotic plaques are prone to plaque rupture leading to acute cardiovascular syndromes and death. Elucidating the risk of plaque rupture is important to define better therapeutic or preventive strategies. In the present study, we investigated the effect of chronic intermittent mental stress on atherosclerotic plaque stability and cardiovascular mortality in apolipoprotein E-deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/)(-)). This mouse model displays exacerbated atherosclerosis with spontaneous plaque ruptures, myocardial infarction and sudden death, when fed a Western-type diet (WD). Female ApoE(-/-)Fbn1(C1039G+/-) mice were fed a WD for up to 25 weeks. After 10 weeks WD, mice were divided in a control (n = 27) and mental stress (n = 29) group. The chronic intermittent mental stress protocol consisted of 3 triggers: water avoidance, damp bedding and restraint stress, in a randomly assigned order lasting 6 h every weekday for 15 weeks. Chronic intermittent mental stress resulted in a significant increase in the amount of macrophages in atherosclerotic plaques of the proximal ascending aorta, whereas type I collagen and fibrous cap thickness were decreased. The coronary arteries of mental stress-treated mice showed larger plaques, more stenosis, and an increased degree of perivascular fibrosis. Moreover, myocardial infarctions occurred more frequently in the mental stress group. As compared to the control group, the survival of stressed ApoE(-/-)Fbn1(C1039G+/-) mice decreased from 67% to 52% at 25 weeks WD, presumably due to myocardial infarctions. In conclusion, chronic intermittent mental stress promotes plaque instability, myocardial infarctions, and mortality of ApoE(-/-)Fbn1(C1039G+/-) mice. PMID:26233915

  16. Incremental prognostic value of stress echocardiography as an adjunct to exercise electrocardiography after uncomplicated myocardial infarction

    PubMed Central

    Bigi, R; Desideri, A; Galati, A; Bax, J; Coletta, C; Fiorentini, C; Fioretti, P

    2001-01-01

    OBJECTIVE—To assess the prognostic value of stress echocardiography as an adjunct to exercise electrocardiography in patients with uncomplicated acute myocardial infarction.
DESIGN—496 patients underwent a maximum exercise ECG and pharmacological stress echocardiography (406 dobutamine and 90 dipyridamole) within 15 days of uncomplicated acute myocardial infarction and were followed for a mean of 25 months (range 1-74 months) for reinfarction, unstable angina, and cardiac death. Patients undergoing revascularisation were omitted.
RESULTS—Exercise ECG was positive in 162 patients (32.6%) and low threshold positive (< 100 W) in 91 (18%). Stress echocardiography was positive in 239 patients (48%) (194 with dobutamine and 45 with dipyridamole stress). The agreement between the two tests was 63% (κ = 0.24, 95% confidence interval 0.15 to 0.33). Sixty nine spontaneous events occurred (14 cardiac deaths, 26 reinfarctions, and 29 with unstable angina requiring hospital admission), and 126 patients underwent revascularisation (39 coronary angioplasty and 87 bypass surgery). By receiver operating characteristic curve analysis, stress echocardiography provided incremental prognostic information compared with clinical data. A low threshold positive exercise ECG was associated with a worse outcome, but there was a fivefold increase in risk in patients with positive stress echocardiography who also had a high threshold (> 100 W) positive exercise ECG. Event-free survival of patients with both tests positive was significantly less than in patients with only one positive test or with both tests negative.
CONCLUSIONS—Stress echocardiography provides additional prognostic information after uncomplicated acute myocardial infarction, but the greatest gain is found in patients with a high threshold positive exercise ECG.


Keywords: risk stratification; myocardial infarction; stress echocardiography; exercise stress testing PMID:11250968

  17. Family Stress Management Following Acute Myocardial Infarction: An Educational and Skills Training Intervention Program.

    ERIC Educational Resources Information Center

    Nelson, David V.; Cleveland, Sidney E.; Baer, Paul E.

    1998-01-01

    Provides a conceptual background for specific behavioral-therapy approach to family stress management in dealing with the sequelae of acute myocardial infarction for all family members with the goal of reducing morbidity for all family members as they cope with ongoing survivorship issues. Describes the program and discusses its pilot…

  18. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited

    PubMed Central

    Kurian, Gino A.; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  19. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited.

    PubMed

    Kurian, Gino A; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  20. Selective Attenuation of Norepinephrine Release and Stress-Induced Heart Rate Increase by Partial Adenosine A1 Agonism

    PubMed Central

    Bott-Flügel, Lorenz; Bernshausen, Alexandra; Schneider, Heike; Luppa, Peter; Zimmermann, Katja; Albrecht-Küpper, Barbara; Kast, Raimund; Laugwitz, Karl-Ludwig; Ehmke, Heimo; Knorr, Andreas; Seyfarth, Melchior

    2011-01-01

    The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10−8 M (30 µg/l), 6 · 10−7 M (300 µg/l) or 2-chloro-N6-cyclopentyladenosine (CCPA) 10−6 M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/−87 pmol/g vs. 173+/−18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation–induced NE release in SHR (S2/S1 = 0.90±0.08 with capadenoson 6 · 10−8 M, 0.54±0.02 with 6 · 10−7 M), but not in Wistar hearts (S2/S1 = 1.05±0.12 with 6 · 10−8 M, 1.03±0.09 with 6 · 10−7 M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/−2% A1-receptor stimulation). These results suggest that partial adenosine A1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release. PMID:21464936

  1. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block

    PubMed Central

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares Jr., José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-01-01

    Background Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). Objective To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Methods Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution’s ethics committee. Results The patients’ mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). Conclusion The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB. PMID:26421532

  2. Hydrogen sulfide modulates sub-cellular susceptibility to oxidative stress induced by myocardial ischemic reperfusion injury.

    PubMed

    Ansari, Shakila Banu; Kurian, Gino A

    2016-05-25

    In this study, we compared the impact of H2S pre (HIPC) and post-conditioning (HPOC) on oxidative stress, the prime reason for myocardial ischemia reperfusion injury (I/R), in different compartments of the myocardium, such as the mitochondria beside its subpopulations (interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria) and microsomal fractions in I/R injured rat heart. The results demonstrated that compared to I/R rat heart, HIPC and HPOC treated hearts shows reduced myocardial injury, enhanced antioxidant enzyme activities and reduced the level of TBARS in different cellular compartments. The extent of recovery (measured by TBARS and GSH levels) in subcellular fractions, were in the following descending order: microsome > SSM > IFM in both HIPC and HPOC. In summary, oxidative stress mediated mitochondrial dysfunction, one of the primary causes for I/R injury, was partly recovered by HIPC and HPOC treatment, with significant improvement in SSM fraction compared to the IFM. PMID:27041072

  3. Safety of guidewire-based measurement of fractional flow reserve and the index of microvascular resistance using intravenous adenosine in patients with acute or recent myocardial infarction

    PubMed Central

    Ahmed, Nadeem; Layland, Jamie; Carrick, David; Petrie, Mark C.; McEntegart, Margaret; Eteiba, Hany; Hood, Stuart; Lindsay, Mitchell; Watkins, Stuart; Davie, Andrew; Mahrous, Ahmed; Carberry, Jaclyn; Teng, Vannesa; McConnachie, Alex; Curzen, Nick; Oldroyd, Keith G.; Berry, Colin

    2016-01-01

    Aims Coronary guidewire-based diagnostic assessments with hyperemia may cause iatrogenic complications. We assessed the safety of guidewire-based measurement of coronary physiology, using intravenous adenosine, in patients with an acute coronary syndrome. Methods We prospectively enrolled invasively managed STEMI and NSTEMI patients in two simultaneously conducted studies in 6 centers (NCT01764334; NCT02072850). All of the participants underwent a diagnostic coronary guidewire study using intravenous adenosine (140 μg/kg/min) infusion for 1–2 min. The patients were prospectively assessed for the occurrence of serious adverse events (SAEs) and symptoms and invasively measured hemodynamics were also recorded. Results 648 patients (n = 298 STEMI patients in 1 hospital; mean time to reperfusion 253 min; n = 350 NSTEMI in 6 hospitals; median time to angiography from index chest pain episode 3 (2, 5) days) were included between March 2011 and May 2013. Two NSTEMI patients (0.3% overall) experienced a coronary dissection related to the guidewire. No guidewire dissections occurred in the STEMI patients. Chest symptoms were reported in the majority (86%) of patient's symptoms during the adenosine infusion. No serious adverse events occurred during infusion of adenosine and all of the symptoms resolved after the infusion ceased. Conclusions In this multicenter analysis, guidewire-based measurement of FFR and IMR using intravenous adenosine was safe in patients following STEMI or NSTEMI. Self-limiting symptoms were common but not associated with serious adverse events. Finally, coronary dissection in STEMI and NSTEMI patients was noted to be a rare phenomenon. PMID:26418191

  4. Doppler tissue energy and stress echocardiography in the diagnosis of myocardial contusion in canines.

    PubMed

    Wenhua, Du; Xiuqin, Xiong; Weimin, Zhang

    2012-03-01

    We sought to evaluate the significance of Doppler tissue energy (DTE) and stressed echocardiography for diagnosing myocardial contusion (MC) in canines. Ten adult healthy dogs were anesthetized (3% pentobarbital sodium/i.v.) and impacted by BIM-II biological impact machine to induce MC. Conventional and stressed echocardiographies were used for segmental abnormal ventricular wall motions; DTE was also used to detect the abnormal ventricular wall motions and areas of injured myocardial fibers after MC, and the results were compared with those of triphenyl tetrazolium chloride (TTC) staining. The data show that both conventional and stressed echocardiographies identified ventricular wall segmental abnormal motions or even aneurysms. These segments were mainly distributed over the front and middle interventricular walls and anterolateral ventricular wall. The ventricular wall motion scoring and wall motion segment index (WMSI) increased remarkably after MC induction. Compared with TTC staining, the conventional echocardiography showed 100% sensitivity and 66.67% specificity, whereas the stressed echocardiography displayed 100% sensitivity and 88.89% specificity. DTE showed both the sensitivity and specificity of 100% for MC diagnosis. Thus, DTE has higher specificity than conventional and stressed echocardiographies. In conclusion, both DTE and stress echocardiography have higher clinical value for MC diagnosis in canines. PMID:22065256

  5. Comparison of adenosine and treadmill exercise thallium-201 stress tests for the detection of coronary artery disease.

    PubMed

    Abe, S; Takeishi, Y; Chiba, J; Ikeda, K; Tomoike, H

    1993-12-01

    To determine the clinical usefulness of adenosine Tl-201 imaging for the evaluation of coronary artery disease, 22 patients with suspected coronary artery disease who underwent adenosine and exercise Tl-201 single photon emission computed tomography (SPECT) were studied. The peak levels of heart rate (83 vs 123 bpm, p < 0.001), systolic blood pressure (124 vs 164 mmHg, p < 0.001), diastolic blood pressure (70 vs 86 mmHg, p < 0.01) and rate pressure products (10220 vs 20410 bpm x mmHg, p < 0.001) were markedly smaller during adenosine infusion than during exercise. Segmental agreements between adenosine and exercise tests were 90% (218 of 242 segments) regarding the presence of perfusion defects and 89% (215 of 242 segments) regarding the presence of redistribution. Regional Tl-201 uptake (r = 0.85, p < 0.001) and the extent (r = 0.75, p < 0.001) and intensity (r = 0.83, p < 0.001) of Tl-201 defects during adenosine testing were closely correlated with those of exercise testing. Adenosine and exercise tests showed similar sensitivities for the identification of individual coronary stenosis (85% vs 78%). However, in patients who were unable to perform adequate exercise (maximal heart rate < 120 bpm), the sensitivity of adenosine imaging tended to be higher than that of exercise imaging (92% vs 69%, p = 0.07). Adenosine Tl-201 imaging is an alternative to the exercise test for assessing the severity and loci of coronary artery disease, especially in patients who are unable to perform adequate physical exercise. PMID:8283603

  6. Comparative ability of dobutamine and exercise stress in inducing myocardial ischaemia in active patients.

    PubMed Central

    Marwick, T H; D'Hondt, A M; Mairesse, G H; Baudhuin, T; Wijns, W; Detry, J M; Melin, J A

    1994-01-01

    OBJECTIVE--To compare the ability of dobutamine and exercise stress to induce myocardial ischaemia and perfusion heterogeneity under routine clinical circumstances. DESIGN--86 active patients without previous myocardial infarction were studied by dobutamine and exercise stress protocols and coronary angiography. During both tests patients underwent electrocardiography, digitised echocardiography, and perfusion scintigraphy using Tc-99m methoxybutylisonitrile (MIBI) single photon emission computed tomography. MAIN OUTCOME MEASURE--Coronary disease defined as an ST segment depression of > or = 0.1 mV, a resting or stress induced perfusion defect, or a resting or stress induced wall motion abnormality on exercise and dobutamine stress testing. RESULTS--Dobutamine stress was submaximal in 51 patients because of ingestion of beta adrenoceptor blocking agents on the day of the test (n = 25) or failure to attain the peak dose owing to side effects (n = 28). Exercise was limited in 23 patients by non-cardiac symptoms. The peak heart rate with dobutamine was less than that attained with exercise (105 (25) v 132 (24) beats/min, P < 0.0001); the response to maximal dobutamine stress significantly exceeded that to submaximal stress. Peak blood pressure was greatest with exercise (206 (27) v 173 (25) mm Hg, P < 0.001), values at maximal and submaximal dobutamine stress being comparable. Electrocardiographic evidence of ischaemia was induced less frequently by dobutamine than exercise (32% v 77% of the 56 patients with significant coronary disease, P < 0.01), as was abnormal wall motion (54% v 88%, P < 0.001). Ischaemia was induced more readily with maximal stress of either type; thus the sensitivities of dobutamine and exercise echocardiography were comparable only in patients undergoing a maximal dobutamine testing (73% v 77%, NS). Perfusion heterogeneity was induced in 58% of patients with coronary disease at submaximal dobutamine stress, 73% at maximal dobutamine stress, and

  7. Respiratory arrest during dipyridamole stress testing.

    PubMed Central

    Hillis, G. S.; al-Mohammad, A.; Jennings, K. P.

    1997-01-01

    There is an increasing usage of radionuclide scanning to assess myocardial perfusion, with dipyridamole, the most commonly used stress agent. Although this is an effective, and usually very safe, means by which to assess myocardial blood supply, there have been several incidents of acute bronchospasm in asthmatic patients. There have, however, been no previous reports of respiratory arrest occurring in patients with emphysema. This case illustrates the dangers of administering intravenous dipyridamole, or even adenosine, to patients with chronic lung disease. PMID:9196707

  8. Platelet Aggregation and Mental Stress Induced Myocardial Ischemia: Results from the REMIT Study

    PubMed Central

    Jiang, Wei; Boyle, Stephen H.; Ortel, Thomas L.; Samad, Zainab; Velazquez, Eric J.; Harrison, Robert W.; Wilson, Jennifer; Kuhn, Cynthia; Williams, Redford B.; O’Connor, Christopher M.; Becker, Richard C.

    2015-01-01

    BACKGROUND Mental stress-induced myocardial ischemia (MSIMI) is common in patients with ischemic heart disease (IHD) and associated with a poorer cardiovascular prognosis. Platelet hyperactivity is an important factor in acute coronary syndrome. This study examined associations between MSIMI and resting and mental stress-induced platelet activity. METHODS Eligible patients with clinically stable IHD underwent a battery of 3 mental stress tests during the recruitment phase of REMIT (Responses of Myocardial Ischemia to Escitalopram Treatment) study. MSIMI was assessed by echocardiography and electrocardiography. Ex vivo platelet aggregation in response to ADP, epinephrine, collagen, serotonin, and combinations of serotonin plus ADP, epinephrine, and collagen were evaluated as was platelet serotonin transporter expression. RESULTS Of the 270 participants who completed mental stress testing, and had both resting and post-stress platelet aggregation evaluation, 43.33% (N=117) met criteria for MSIMI and 18.15% (N=49) had normal left ventricular response to stress (NLVR). The MSIMI group, relative to the NLVR groups, demonstrated heightened mental stress-induced aggregation responses, as measured by area under the curve, to collagen 10 μM (6.95[5.54] vs. −14.23[8.75].; p=0.045), epinephrine 10 μM (12.84[4.84] vs. −6.40[7.61].; p=0.037) and to serotonin 10 μM plus ADP 1 μM (6.64[5.29] vs. −27.34[8.34]; p < .001). The resting platelet aggregation and serotonin transporter expression, however, were not different between the two groups. CONCLUSIONS These findings suggest that the dynamic change of platelet aggregation caused by mental stress may underlie MSIMI. While the importance of these findings requires additional investigation, they raise concern given the recognized relationship between mental stress-induced platelet hyperactivity and cardiovascular events in patients with IHD. PMID:25819856

  9. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  10. Oxidative stress and myocardial dysfunction in young rabbits after short term anabolic steroids administration.

    PubMed

    Germanakis, Ioannis; Tsarouhas, Konstantinos; Fragkiadaki, Persefoni; Tsitsimpikou, Christina; Goutzourelas, Nikolaos; Champsas, Maria Christakis; Stagos, Demetrios; Rentoukas, Elias; Tsatsakis, Aristidis M

    2013-11-01

    The present study focuses on the short term effects of repeated low level administration of turinabol and methanabol on cardiac function in young rabbits (4 months-old). The experimental scheme consisted of two oral administration periods, lasting 1 month each, interrupted by 1-month wash-out period. Serial echocardiographic evaluation at the end of all three experimental periods was performed in all animals. Oxidative stress markers have also been monitored at the end of each administration period. Treated animals originally showed significantly increased myocardial mass and systolic cardiac output, which normalized at the end of the wash out period. Re-administration led to increased cardiac output, at the cost though of a progressive myocardial mass reduction. A dose-dependent trend towards impaired longitudinal systolic, diastolic and global myocardial function was also observed. The adverse effects were more pronounced in the methanabol group. For both anabolic steroids studied, the low dose had no significant effects on oxidative stress markers monitored, while the high dose created a hostile oxidative environment. In conclusion, anabolic administration has been found to create a possible deleterious long term effect on the growth of the immature heart and should be strongly discouraged especially in young human subjects. PMID:23537599

  11. The prognostic value of non-perfusion variables obtained during vasodilator stress myocardial perfusion imaging.

    PubMed

    Bajaj, Navkaranbir S; Singh, Siddharth; Farag, Ayman; El-Hajj, Stephanie; Heo, Jack; Iskandrian, Ami E; Hage, Fadi G

    2016-06-01

    Myocardial perfusion imaging (MPI) is an established diagnostic test that provides useful prognostic data in patients with known or suspected coronary artery disease. In more than half of the patients referred for stress testing, vasodilator stress is used in lieu of exercise. Unlike exercise, vasodilator stress does not provide information on exercise and functional capacity, heart rate recovery, and chronotropy, and ECG changes are less frequent. These non-perfusion data provide important prognostic and patient management information. Further, event rates in patients undergoing vasodilator MPI are higher than in those undergoing exercise MPI and even in those with normal images probably due to higher pretest risk. However, there are a number of non-perfusion variables that are obtained during vasodilator stress testing, which have prognostic relevance but their use has not been well emphasized. The purpose of this review is to summarize the prognostic values of these non-perfusion data obtained during vasodilator MPI. PMID:26940574

  12. Mechanisms of oxidative stress and myocardial protection during open-heart surgery

    PubMed Central

    Baikoussis, Nikolaos G.; Papakonstantinou, Nikolaos A.; Verra, Chrysoula; Kakouris, Georgios; Chounti, Maria; Hountis, Panagiotis; Dedeilias, Panagiotis; Argiriou, Michalis

    2015-01-01

    Cold heart protection via cardioplegia administration, limits the amount of oxygen demand. Systemic normothermia with warm cardioplegia was introduced due to the abundance of detrimental effects of hypothermia. A temperature of 32–33°C in combination with tepid blood cardioplegia of the same temperature appears to be protective enough for both; heart and brain. Reduction of nitric oxide (NO) concentration is in part responsible for myocardial injury after the cardioplegic cardiac arrest. Restoration of NO balance with exogenous NO supplementation has been shown useful to prevent inflammation and apoptosis. In this article, we discuss the “deleterious” effects of the oxidative stress of the extracorporeal circulation and the up-to-date theories of “ideal” myocardial protection. PMID:26440242

  13. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response. PMID:26458179

  14. Myocardial kinetics of thallium-201 after stress in normal and perfusion-reduced canine myocardium

    SciTech Connect

    Okada, R.D.

    1985-12-01

    Despite the emerging use of quantitative computer programs for assessing myocardial thallium uptake and clearance after exercise, little is known about the kinetics of thallium after exercise stress. Accordingly, 11 mongrel dogs with experimental left anterior descending coronary stenoses were given thallium during norepinephrine infusion to simulate exercise. The infusion was discontinued and thallium activity was monitored regionally using miniature radiation detectors for 3 hours. Heart rate, arterial pressure and double product all increased significantly during norepinephrine infusion. The mean fractional myocardial thallium clearance was lower (0.47 +/- 0.03 (+/- standard error of the mean)) for the stenosis zone than for the no-stenosis zone (0.57 +/- 0.03) (p less than 0.0001). The stress blood flow ratio (stenosis/no-stenosis zone = 0.27 +/- 0.06) was significantly lower than the final thallium activity ratio (0.68 +/- 0.07) (p less than 0.001), consistent with thallium redistribution occurring over the 3-hour period. Myocardial thallium activity in the stenosis zone peaked in a mean of 2.2 minutes, then washed out biexponentially with a final decay constant of 0.0035 +/- 0.0005 min-1. Myocardial thallium activity in the no-stenosis zone peaked within 1 minute in all dogs, then washed out biexponentially, with a final decay constant of 0.0043 +/- 0.0003 (p less than 0.001 compared with stenosis zone). In conclusion, fractional clearance of thallium can differentiate myocardium distal to a coronary artery stenosis from that supplied by a normal coronary vessel.

  15. Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations

    PubMed Central

    Neri, M.; Riezzo, I.; Pomara, C.; Schiavone, S.; Turillazzi, E.

    2016-01-01

    Background. Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients. Aim. In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis. Conclusions. Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents. PMID:27274621

  16. Adenosine transporters.

    PubMed

    Thorn, J A; Jarvis, S M

    1996-06-01

    1. In mammals, nucleoside transport is an important determinant of the pharmacokinetics, plasma and tissue concentration, disposition and in vivo biological activity of adenosine as well as nucleoside analogues used in antiviral and anticancer therapies. 2. Two broad types of adenosine transporter exist, facilitated-diffusion carriers and active processes driven by the transmembrane sodium gradient. 3. Facilitated-diffusion adenosine carriers may be sensitive (es) or insensitive (ei) to nanomolar concentrations of the transport inhibitor nitrobenzylthioinosine (NBMPR). Dipyridamole, dilazep and lidoflazine analogues are also more potent inhibitors of the es carrier than the ei transporter in cells other than those derived from rat tissues. 4. The es transporter has a broad substrate specificity (apparent Km for adenosine approximately 25 microM in many cells at 25 degrees C), is a glycoprotein with an average apparent Mr of 57,000 in human erythrocytes that has been purified to near homogeneity and may exist in situ as a dimer. However, there is increasing evidence to suggest the presence of isoforms of the es transporter in different cells and species, based on kinetic and molecular properties. 5. The ei transporter also has a broad substrate specificity with a lower affinity for some nucleoside permeants than the es carrier, is genetically distinct from es but little information exists as to the molecular properties of the protein. 6. Sodium-dependent adenosine transport is present in many cell types and catalysed by four distinct systems, N1-N4, distinguished by substrate specificity, sodium coupling and tissue distribution. 7. Two genes have been identified which encode sodium-dependent adenosine transport proteins, SNST1 from the sodium/glucose cotransporter (SGLT1) gene family and the rat intestinal N2 transporter (cNT1) from a novel gene family including a bacterial nucleoside carrier (NupC). Transcripts of cNT1, which encodes a 648-residue protein, are

  17. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size.

    PubMed

    Bourdier, Guillaume; Flore, Patrice; Sanchez, Hervé; Pepin, Jean-Louis; Belaidi, Elise; Arnaud, Claire

    2016-01-15

    Chronic intermittent hypoxia (IH) is described as the major detrimental factor leading to cardiovascular morbimortality in obstructive sleep apnea (OSA) patients. OSA patients exhibit increased infarct size after a myocardial event, and previous animal studies have shown that chronic IH could be the main mechanism. Endoplasmic reticulum (ER) stress plays a major role in the pathophysiology of cardiovascular disease. High-intensity training (HIT) exerts beneficial effects on the cardiovascular system. Thus, we hypothesized that HIT could prevent IH-induced ER stress and the increase in infarct size. Male Wistar rats were exposed to 21 days of IH (21-5% fraction of inspired O2, 60-s cycle, 8 h/day) or normoxia. After 1 wk of IH alone, rats were submitted daily to both IH and HIT (2 × 24 min, 15-30m/min). Rat hearts were either rapidly frozen to evaluate ER stress by Western blot analysis or submitted to an ischemia-reperfusion protocol ex vivo (30 min of global ischemia/120 min of reperfusion). IH induced cardiac proapoptotic ER stress, characterized by increased expression of glucose-regulated protein kinase 78, phosphorylated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein. IH-induced myocardial apoptosis was confirmed by increased expression of cleaved caspase-3. These IH-associated proapoptotic alterations were associated with a significant increase in infarct size (35.4 ± 3.2% vs. 22.7 ± 1.7% of ventricles in IH + sedenary and normoxia + sedentary groups, respectively, P < 0.05). HIT prevented both the IH-induced proapoptotic ER stress and increased myocardial infarct size (28.8 ± 3.9% and 21.0 ± 5.1% in IH + HIT and normoxia + HIT groups, respectively, P = 0.28). In conclusion, these findings suggest that HIT could represent a preventive strategy to limit IH-induced myocardial ischemia-reperfusion damages in OSA patients. PMID:26566725

  18. Myocardial Function Improved by Electromagnetic Field Induction of Stress Protein hsp70

    PubMed Central

    George, Isaac; Geddis, Matthew S.; Lill, Zachary; Lin, Hana; Gomez, Teodoro; Blank, Martin; Oz, Mehmet C.; Goodman, Reba

    2011-01-01

    Studies on myocardial function have shown that hsp70, stimulated by an increase in temperature, leads to improved survival following ischemia reperfusion (I-R). Low frequency electromagnetic fields (EMF) also induce the stress protein hsp70, but without elevating temperature. We have examined the hemodynamic changes in concert with EMF preconditioning and the induction of hsp70 to determine whether improved myocardial function occurs following I-R injury in Sprague-Dawley rats. Animals were exposed to EMF (60Hz, 8µT) for 30 minutes prior to I-R. Ischemia was then induced by ligation of left anterior descending coronary artery (LAD) for 30 minutes, followed by 30 minutes of reperfusion. Blood and heart tissue levels for hsp70 taken at 10 minute intervals were determined by Western blot and RNA transcription by rtPCR. Significant upregulation of the HSP70 gene and increased hsp70 levels were measured in response to EMF pre-exposures. Invasive hemodynamics, as measured using a volume conductance catheter, demonstrated significant recovery of systolic contractile function after 30 minutes of reperfusion following EMF exposure. Additionally, isovolemic relaxation, a measure of ventricular diastolic function, was markedly improved in EMF-treated animals. In conclusion, noninvasive EMF induction of hsp70 preserved myocardial function and has the potential to improve tolerance to ischemic injury. PMID:18446816

  19. Thymoquinone Protects against Myocardial Ischemic Injury by Mitigating Oxidative Stress and Inflammation

    PubMed Central

    Ojha, Shreesh; Azimullah, Sheikh; Mohanraj, Rajesh; Sharma, Charu; Yasin, Javed; Arya, Dharamvir S.; Adem, Abdu

    2015-01-01

    The present study was aimed at investigating the cardioprotective activity of thymoquinone (TMQ), an active principle of the herb, Nigella sativa, which is used for the management of various diseases. The present study examined the cardioprotective effect of TMQ in isoproterenol- (ISP-) induced myocardial infarction in rats. Myocardial infarction was induced by two subcutaneous injections of ISP (85 mg/kg) at an interval of 24 hr. TMQ (20 mg/kg) was administered orally for 21 days. ISP-treated rats showed depletion of antioxidants and marker enzymes from myocardium along with lipid peroxidation and enhanced levels of proinflammatory cytokines. ISP also induced histopathological alterations in myocardium. Treatment with TMQ prevented the depletion of endogenous antioxidants and myocyte injury marker enzymes and inhibited lipid peroxidation as well as reducing the levels of proinflammatory cytokines. TMQ pretreatment also reduced myonecrosis, edema, and infiltration of inflammatory cells and showed preservation of cardiomyocytes histoarchitecture. The present study results demonstrate that TMQ exerts cardioprotective effect by mitigating oxidative stress, augmenting endogenous antioxidants, and maintaining structural integrity. The results of the present study indicate that TMQ may serve as an excellent agent alone or as adjuvant to prevent the onset and progression of myocardial injury. PMID:26101531

  20. Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute Myocardial Infarction.

    PubMed

    Freitas, Fernando; Brucker, Natália; Durgante, Juliano; Bubols, Guilherme; Bulcão, Rachel; Moro, Angela; Charão, Mariele; Baierle, Marília; Nascimento, Sabrina; Gauer, Bruna; Sauer, Elisa; Zimmer, Marcelo; Thiesen, Flávia; Castro, Iran; Saldiva, Paulo; Garcia, Solange C

    2014-09-01

    Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = -0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction. PMID:25257356

  1. Urinary 1-Hydroxypyrene is Associated with Oxidative Stress and Inflammatory Biomarkers in Acute Myocardial Infarction

    PubMed Central

    Freitas, Fernando; Brucker, Natália; Durgante, Juliano; Bubols, Guilherme; Bulcão, Rachel; Moro, Angela; Charão, Mariele; Baierle, Marília; Nascimento, Sabrina; Gauer, Bruna; Sauer, Elisa; Zimmer, Marcelo; Thiesen, Flávia; Castro, Iran; Saldiva, Paulo; Garcia, Solange C.

    2014-01-01

    Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = −0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction. PMID:25257356

  2. The triterpenoids of Ganoderma tsugae prevent stress-induced myocardial injury in mice.

    PubMed

    Kuok, Qian-Yu; Yeh, Chen-Yu; Su, Bor-Chyuan; Hsu, Pei-Ling; Ni, Hao; Liu, Ming-Yie; Mo, Fan-E

    2013-10-01

    Ganoderma mushrooms (Lingzhi in Chinese) have well-documented health benefits. Ganoderma tsugae (G. tsugae), one of the ganoderma species, has been commercially cultivated as a dietary supplement. Because G. tsugae has high antioxidant activity and because oxidative stress is often associated with cardiac injury, we hypothesized that G. tsugae protects against cardiac injury by alleviating oxidative stress. We tested the hypothesis using a work-overload-induced myocardial injury model created by challenging mice with isoproterenol (ISO). Remarkably, oral G. tsugae protected the mice from ISO-induced myocardial injury. Moreover, the triterpenoid fraction of G. tsugae, composed of a mixture of nine structurally related ganoderic acids (GAs), provided cardioprotection by inhibiting the ISO-induced expression of Fas/Fas ligand, oxidative stress, and apoptosis. The antioxidant activity of GAs was tested in cultured cardio-myoblast H9c2 cells against the insult of H₂O₂. GAs dissipated the cellular reactive oxygen species imposed by H₂O₂ and prevented cell death. Our findings uncovered the cardioprotective activity of G. tsugae and identified GAs as the bioactive components against cardiac insults. PMID:23610080

  3. Dobutamine stress magnetic resonance imaging suffices for the demonstration of myocardial ischaemia and viability

    PubMed Central

    Lamers, F.P.L.; van Dijkman, P.R.M.; Kuijpers, Th.J.A.; van Herpen, G.

    2003-01-01

    We report three patients in whom dobutamine stress magnetic imaging (DS-MRI) was essential in assessing myocardial ischaemia. Two patients were referred to the cardiologist because of chest pain. Patient A had typical exertional angina and a normal resting electrocardiogram (ECG). Patient B had typical exercise-induced angina and had recently experienced an attack of severe chest pain at rest for 15 minutes. The ECG showed a complete left bundle branch block (LBBB). Patient C was referred for heart failure of unknown origin. There were no symptoms of chest pain during rest or exercise. Echocardiography in this patient demonstrated global left ventricular (LV) dilatation, systolic dysfunction and a small dyskinetic segment in the inferior wall. In all these patients exercise stress testing had failed to demonstrate myocardial ischaemia. Patients A and C produced normal findings whereas in patient B the abnormal repolarisation due to pre-existent LBBB precluded a diagnosis of ischaemia. Breath-hold DS-MRI was performed to study LV wall motion and wall thickening at rest through increasing doses of dobutamine. A test was considered positive for myocardial ischaemia if wall motion abnormalities developed at high-dose levels of the drug (20 μg/kg/min or more with a maximum of 40 μg/kg/min) in previously normal vascular territories or worsened in a segment that was normal at baseline. Recovery of wall thickening in a previously hypokinetic or akinetic segment at a low dose of dobutamine (5-10 μg/kg/min) was taken as proof of viability. Patients A and B developed hypokinesia progressing into akinesia at high-dose dobutamine in the anteroseptal area of the LV indicative of ischaemia. These findings were corroborated by coronary angiography demonstrating severe coronary artery disease which led to coronary artery bypass grafting (CABG) in patient A and balloon angioplasty in patient B. In patient C global recovery of LV contractions during low-dose dobutamine was

  4. Psychosocial Stress and Risk of Myocardial Infarction: A Case-Control Study in Belgrade (Serbia)

    PubMed Central

    Vujcic, Isidora; Vlajinac, Hristina; Dubljanin, Eleonora; Vasiljevic, Zorana; Matanovic, Dragana; Maksimovic, Jadranka; Sipetic, Sandra

    2016-01-01

    Background The purpose of this study was to investigate which psychosocial risk factors show the strongest association with occurrence of myocardial infarction (MI) in the population of Belgrade in peacetime, after the big political changes in Serbia. Methods A case-control study was conducted involving 154 consecutive newly diagnosed patients with MI, and 308 controls matched by gender, age, and place of residence. Results According to conditional logistic regression analysis, after adjustment for conventional coronary risk factors, the odds ratios (95% confidence intervals) for work-related stressful events, financial stress, deaths and diseases, and general stress were 3.78 (1.83-7.81), 3.80 (1.96-7.38), 1.69 (1.03-2.78), and 3.54 (2.01-6.22), respectively. Among individual stressful life events, the following were independently related to MI: death of a close family member, 2.21 (1.01-4.84); death of a close friend, 42.20 (3.70-481.29); major financial problems, 8.94 (1.83-43.63); minor financial problems, 4.74 (2.02-11.14); changes in working hours, 4.99 (1.64-15.22); and changes in working conditions, 30.94 (5.43-176.31). Conclusions During this political transition period , stress at work, financial stress, and stress in general as they impacted the population of Belgrade, Serbia were strongly associated with occurence of MI. PMID:27274168

  5. Detection of myocardial viability by dobutamine stress echocardiography: incremental value of diastolic wall thickness measurement

    PubMed Central

    Zaglavara, T; Pillay, T; Karvounis, H; Haaverstad, R; Parharidis, G; Louridas, G; Kenny, A

    2005-01-01

    Objective: To assess the diagnostic accuracy of baseline diastolic wall thickness (DWT) alone and as an adjunct to dobutamine stress echocardiography (DSE) for prediction of myocardial viability in patients with ischaemic left ventricular (LV) dysfunction, with the recovery of resting function after revascularisation as the yardstick. Patients: 24 patients with ischaemic LV dysfunction (ejection fraction < 40%) scheduled for surgical revascularisation. Setting: Regional cardiothoracic centre. Methods: All patients underwent DSE before and resting echocardiography six months after revascularisation. DWT was measured in each of the 16 LV segments. A receiver operating characteristic (ROC) and a multi-ROC curve were generated to assess the ability of DWT alone and in combination with DSE to predict myocardial viability. Results: DWT > 0.6 cm provided a sensitivity of 80%, a specificity of 51%, and a negative predictive value of 80% for the prediction of viability in akinetic segments. DSE had an excellent specificity (92%) but a modest sensitivity (60%) in akinetic segments. A combination of improvement at DSE or DWT > 0.8 cm improved sensitivity (90% v 60%, p < 0.001) and negative predictive value (92% v 78%, p  =  0.03) in akinetic segments compared with DSE alone. This was achieved with some loss in specificity (75% v 92%, p  =  0.01) and positive predictive value (71% v 82%, p  =  0.79). Conclusions: DWT measurement may improve the sensitivity of DSE for the detection of myocardial viability. Akinetic segments with DWT > 0.8 cm have a good chance of recovery despite the absence of contractile reserve during DSE. Further testing may be required before excluding myocardial viability in these cases. PMID:15831644

  6. Nuclear stress test

    MedlinePlus

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  7. Hydrogen sulfide preconditioning protects against myocardial ischemia/reperfusion injury in rats through inhibition of endo/sarcoplasmic reticulum stress

    PubMed Central

    Li, Changyong; Hu, Min; Wang, Yuan; Lu, Huan; Deng, Jing; Yan, Xiaohong

    2015-01-01

    Ischemia reperfusion (I/R) injury is a major cause of myocardial damage. Hydrogen sulfide (H2S), a gaseous signal molecule, has drawn considerable attention for its role in various pathophysiological processes. Multiple lines of evidence reveal the protective effects of H2S in various models of cardiac injury, however, the exact mechanism underlying this protective effect of H2S against myocardial I/R injury is not fully understood. The present study was designed to investigate whether H2S preconditioning attenuates myocardial I/R injury in rats and whether the observed protection is associated with reduced endo/sarcoplasmic reticulum (ER/SR) stress. We found that H2S preconditioning significantly reduced myocardial infarct size, preserved left ventricular function, and inhibited I/R-induced cardiomyocyte apoptosis in vivo. Furthermore, H2S preconditioning significantly attenuated I/R-induced ER/SR stress responses, including the increased expression of glucose-regulated protein 78, C/EBP homologous protein, and activate transcription factor in myocardium. Additionally, we demonstrate that H2S preconditioning attenuates ER/SR stress and inhibits cardiomyocyte apoptosis in an in vitro model of hypoxia/reoxygenation in rat H9c2 cardiac myocytes. In conclusion, these results suggest that H2S-attenuated ER/SR stress plays an important role in its protective effects against I/R-induced myocardial injury. PMID:26339339

  8. Protein kinase C is involved in resistance to myocardial infarction induced by heat stress.

    PubMed

    Joyeux, M; Baxter, G F; Thomas, D L; Ribuot, C; Yellon, D M

    1997-12-01

    Heat stress (HS) is known to protect against mechanical dysfunction and myocardial necrosis in myocardial ischemia-reperfusion models both in vivo and in vitro. However, the mechanisms involved in this form of cardioprotection remain unclear. Protein kinase C (PKC) and tyrosine kinase activation have both been shown to be involved in the delayed phase of protection following ischemic preconditioning, a phenomenon which appears to be analogous to HS-induced protection. Therefore, we investigated the role of PKC and tyrosine kinase in HS-induced resistance to myocardial infarction, in the isolated rat heart. The selective inhibitors chelerythrine (Che) and genistein (Gen) were used to inhibit PKC and tyrosine kinase, respectively. Rats were treated with Che (5 mg/kg, i.p.) or Gen (5 mg/kg, i.p.) or vehicle before they were either heat stressed (42 degrees C for 15 min) or sham anesthetized. Twenty-four h later their hearts were isolated, retrogradely perfused, and subjected to 35-min occlusion of the left coronary artery followed by 120-min of reperfusion. Infarct-to-risk ratio was significantly reduced in HS (19.9+/-1.1%) compared to sham (43.1+/-1.1%) hearts. This reduction in infarct size was abolished in chelerythrine-treated groups (43.8+/-1.9% in HS+Che v 44.9+/-2.0% in sham+Che), but was conserved in genistein-treated groups (17.7+/-0.9% in HS+Gen v 36.4+/-2.8% in sham+Gen). In order to confirm that genistein at this dose was effectively inhibiting tyrosine kinase activity, we observed the ability of the agent to prevent the hypoglycemic responses to insulin in a separate group of anesthetised rats receiving an i.v. insulin infusion. Western blot analysis of the myocardial hsp72 showed a HS-induced increase of this protein, which was modified by neither the PKC inhibitor, chelerythrine, nor the tyrosine kinase inhibitor, genistein. We conclude that the activation of PKC, but not of tyrosine kinase, appears to play a role in the functional cardioprotection

  9. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  10. Pathophysiology and time course of silent myocardial ischaemia during mental stress: clinical, anatomical, and physiological correlates.

    PubMed Central

    Legault, S. E.; Freeman, M. R.; Langer, A.; Armstrong, P. W.

    1995-01-01

    OBJECTIVE--To define the prevalence and pathophysiology of myocardial ischaemia induced by mental stress in patients with coronary artery disease and exercise inducible ischaemia, and to determine the correlation between the severity of coronary artery disease and ischaemia induced by speech. DESIGN--Prospective cohort study. SETTING--Tertiary care academic institution. PATIENTS AND PROTOCOL--47 patients with coronary artery disease and 20 normal controls were studied using standardised exercise and mental stress. The ambulatory nuclear vest provided continuous measures of left ventricular ejection fraction and relative volume changes: an ischaemic response to mental stress was defined as a decrease in ejection fraction of > or = 5% for > or = 60 s. Severity of coronary artery disease was assessed by the extent of thallium reversibility on exercise testing and the severity of angiographic disease. RESULTS--23 (49%) of 47 patients with coronary artery disease had an ischaemic response to mental stress which occurred early, was sustained throughout the task and associated with an increase in end systolic volume. In contrast, the pattern of left ventricular response in the remaining 24 patients (51%) resembled that in the normal controls. Patients with mental stress induced ischaemia tended to have greater severity of coronary disease (mean (SD) total number of diseased vessels 1.9 (0.8) v 1.4 (0.9), P = 0.07), more frequent exercise induced angina (17/23 v 7/24, P = 0.003) and lower increases in heart rate (36 (11) v 49 (23) beats per min, P = 0.023) and systolic blood pressure (32 (19) v 45 (18) mm Hg, P = 0.03) during exercise. Left ventricular responses to speech and exercise were compared in the 23 patients with mental stress induced ischaemia: mental stress was associated with a greater decrease in ejection fraction at comparable increases in rate pressure product (-6.5 (6.3)% v 4.7 (11.2)%, P = 0.0001). CONCLUSIONS--These findings suggest that mental stress

  11. Effects of modified pharmacologic stress approaches on hyperemic myocardial blood flow

    SciTech Connect

    Czernin, J.; Auerbach, M.; Sun, K.T.

    1995-04-01

    Pharmacologic stress testing with 0.56 mg/kg of intravenous dipyridamole is frequently used to noninvasively detect coronary artery disease (CAD). However, high-dose dipyridamole (0.80 mg/kg) or the combination of standard-dose dipyridamole (0.56 mg/kg) with the isometric handgrip maneuver might evoke a greater coronary hyperemic response. To evaluate the effect of modified pharmacologic stress tests, myocardial blood flow was quantified in 11 male subjects (mean age: 27 {plus_minus} 7 yr) during standard-dose dipyridamole (0.56 mg/kg), high-dose dipyridamole (0.80 mg/kg) and standard-dose dipyridamole combined with the isometric handgrip exercise using dynamic PET and a two-compartment model for {sup 13}N-ammonia. Systolic blood pressure, heart rate and rate pressure product remained unchanged from standard to high-dose dipyridamole but increased with the addition of the isometric handgrip. Myocardial blood flow was unchanged from standard to high-dose dipyridamole but was lower with the addition of the isometric handgrip. The hyperemic response induced by standard-dose dipyridamole cannot be further enhanced by high-dose dipyridamole. The addition of the isometric handgrip exercise results in a modest, but significant decline in hyperemic blood flow possibly due to increased extravascular resistive forces or an increase in a mediated coronary vasoconstriction associated with exercise. 31 refs., 2 figs., 1 tab.

  12. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    PubMed Central

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  13. Association of statin use and stress-induced hyperglycemia in patients with acute ST-elevation myocardial infarction

    PubMed Central

    Yan, Chen; Qin, Ma; Juan, Yang S; Tao, Li Y; dong, Gao M; Zechun, Zeng; Chun, Yang X; Liang, Cong H; Yin, Liu

    2016-01-01

    Background Only a few information is available on the risk of stress hyperglycemia following acute myocardial infarction after statin use. We investigate the association of stress-induced hyperglycemia following statin use in patients with acute myocardial infarction. Methods An observational analysis of 476 consecutive patients who suffered acute myocardial infarction was carried out. All selected patients were divided into diabetes mellitus and non-diabetes based on the presence or absence of diabetes. The cardiac incidence of in-hospital and stress-induced hyperglycemia was recorded. Results Among patients with stress hyperglycemia in non-diabetes mellitus subgroups, the average fasting plasma glucose values in statin users were higher than in non-statin users (P < 0.05). But in diabetes mellitus subgroups, the average fasting plasma glucose did not have a significant difference between statin users and non-statin users (P > 0.05). In non-diabetes mellitus patients, the incidence of stress hyperglycemia with statin therapy was significantly higher than with non-statin therapy (P = 0.003). But in diabetes mellitus patients group, there is no significant difference in incidence of stress hyperglycemia between patients with statin therapy and patients without statin therapy (P = 0.902).The incidence of heart failure and in-hospital mortality of acute myocardial infarction in patients with stress-induced hyperglycemia was significantly higher than in non-hyperglycemia patients (P < 0.05). Conclusion Statins are related to higher stress hyperglycemia and cardiac incidences after acute myocardial infarction. PMID:27158481

  14. Evaluation of the prevalence of stress and its phases in acute myocardial infarction in patients active in the labor market

    PubMed Central

    Lucinda, Luciane Boreki; Prosdócimo, Ana Claudia Merchan Giaxa; de Carvalho, Katherine Athayde Teixeira; Francisco, Julio Cesar; Baena, Cristina Pellegrino; Olandoski, Marcia; do Amaral, Vivian Ferreira; Faria, José Rocha; Guarita-Souza, Luiz César

    2015-01-01

    Introduction Acute myocardial infarction is a social health problem of epidemiological relevance, with high levels of morbidity and mortality. Stress is one of the modifiable risk factors that triggers acute myocardial infarction. Stress is a result of a set of physiological reactions, which when exaggerated in intensity or duration can lead to imbalances in one's organism, resulting in vulnerability to diseases. Objective To identify the presence of stress and its phases in hospitalized and active labor market patients with unstable myocardial infarction and observe its correlation with the life of this population with stress. Methods The methodology used was a quantitative, descriptive and transversal research approach conducted with a total of 43 patients, who were still active in the labor market, presenting or not morbidities. Data collection occurred on the fourth day of their hospitalization and patients responded to Lipp's Stress Symptom Inventory for adults. Results Thirty-one patients (72.1%) presented stress and twelve (27.8%) did not. In patients with stress, the identified phases were: alert - one patient (3.2%); resistance -twenty-two patients (71.0%); quasi-exhaustion - six patients (19.4%) and exhaustion - two patients (6.5%). All women researched presented stress. Conclusion The results suggest a high level of stress, especially in the resistance phase, in the male infarcted population, hospitalized and active in the labor market. PMID:25859863

  15. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat

    PubMed Central

    Chen, Huaguo; Xu, Yongfu; Wang, Jianzhong; Zhao, Wei; Ruan, Huihui

    2015-01-01

    Baicalin belongs to glucuronic acid glycosides and after hydrolysisbaicalein and glucuronic acid come into being. It has such effects as clearing heat and removing toxicity, anti-inflammation, choleresis, bringing high blood pressure down, diuresis, anti-allergic reaction and so on. In this study, we investigated whether baicalin ameliorates isoproterenol-induced acute myocardial infarction and its mechanism. Rat model of acute myocardial infarction was induced by isoproterenol. Casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH), cardiac troponin T (cTnT) and infarct size measurement were used to measure the protective effect of baicalin on isoproterenol-induced acute myocardial infarction. iNOS protein expression in rat was analyzed using western blot analysis. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) and superoxide dismutase (SOD) and caspase-3 activation levels were explored using commercial ELISA kits. In the acute myocardial infarction experiment, baicalin effectively ameliorates the level of CK, CK-MB, LDH and cTnT, reduced infarct size in acute myocardial infarction rat model. Meanwhile, treatment with baicalin effectively decreased the iNOS protein expression, inflammatory factors and oxidative stresses in a rat model of acute myocardial infarction. However, baicalin emerged that anti-apoptosis activity and suppressed the activation of caspase-3 in a rat model of acute myocardial infarction. The data suggest that the protective effect of baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. PMID:26617721

  16. Myocardial perfusion SPECT in a case of retropulmonary looping of left coronary artery in a baby after arterial switch surgery.

    PubMed

    Padma, Subramanyam; Sundaram, Palaniswamy Shanmuga

    2014-04-01

    Pediatric myocardial perfusion imaging (MPI) is not a routine investigation in an Indian setting due to under referrals and logistic problems. However, MPI is a frequently performed and established modality of investigation in adults for the identification of myocardial ischemia and viability. We report myocardial perfusion scintigraphy in a case of retropulmonary looping of left coronary artery in a baby after arterial switch surgery. Adenosine stress MPI revealed a large infarct involving anterior segment with moderate reversible ischemia of the lateral left ventricular segment. Coronary angiogram later confirmed left main coronary artery ostial occlusion with retrograde collateral supply from dilated right coronary artery. PMID:24761067

  17. Myocardial contractility in the stress echo lab: from pathophysiological toy to clinical tool.

    PubMed

    Bombardini, Tonino; Zoppè, Monica; Ciampi, Quirino; Cortigiani, Lauro; Agricola, Eustachio; Salvadori, Stefano; Loni, Tiziana; Pratali, Lorenza; Picano, Eugenio

    2013-01-01

    Up-regulation of Ca2+ entry through Ca2+ channels by high rates of beating is involved in the frequency-dependent regulation of contractility: this process is crucial in adaptation to exercise and stress and is universally known as force-frequency relation (FFR). Disturbances in calcium handling play a central role in the disturbed contractile function in myocardial failure. Measurements of twitch tension in isolated left-ventricular strips from explanted cardiomyopathic hearts compared with non-failing hearts show flat or biphasic FFR, while it is up-sloping in normal hearts. Starting in 2003 we introduced the FFR measurement in the stress echo lab using the end-systolic pressure (ESP)/End-systolic volume index (ESVi) ratio (the Suga index) at increasing heart rates. We studied a total of 2,031 patients reported in peer-reviewed journals: 483 during exercise, 34 with pacing, 850 with dobutamine and 664 during dipyridamole stress echo. We demonstrated the feasibility of FFR in the stress echo lab, the clinical usefulness of FFR for diagnosing latent contractile dysfunction in apparently normal hearts, and residual contractile reserve in dilated idiopathic and ischemic cardiomyopathy. In 400 patients with left ventricular dysfunction (ejection fraction 30 ± 9%) with negative stress echocardiography results, event-free survival was higher (p < 0.001) in patients with ΔESPVR (the difference between peak and rest end-systolic pressure-volume ratio, ESPVR) ≥ 0.4 mmHg/mL/m2. The prognostic stratification of patients was better with FFR, beyond the standard LV ejection fraction evaluation, also in the particular settings of severe mitral regurgitation or diabetics without stress-induced ischemia. In the particular setting of selection of heart transplant donors, the stress echo FFR was able to correctly select 34 marginal donor hearts efficiently transplanted in emergency recipients. Starting in 2007, we introduced an operator-independent cutaneous sensor

  18. Stress echocardiography: what is new and how does it compare with myocardial perfusion imaging and other modalities?

    PubMed

    Tweet, Marysia S; Arruda-Olson, Adelaide M; Anavekar, Nandan S; Pellikka, Patricia A

    2015-06-01

    Cardiovascular disease is a leading cause of morbidity and mortality, and noninvasive strategies to diagnose and risk stratify patients remain paramount in the evaluative process. Stress echocardiography is a well-established, versatile, real-time imaging modality with advantages including lack of radiation exposure, portability, and affordability. Innovative techniques in stress echocardiography include myocardial contrast echocardiography, deformation imaging, three-dimensional (3D) echocardiography, and assessment of coronary flow reserve. Myocardial perfusion imaging with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) are imaging alternatives, and stress cardiac magnetic resonance imaging and coronary computed tomography (CT) angiography, including CT perfusion imaging, are emerging as newer approaches. This review will discuss recent and upcoming developments in the field of stress testing, with an emphasis on stress echocardiography while highlighting comparisons with other modalities. PMID:25911442

  19. Myocardial perfusion of infarcted and normal myocardium in propofol-anesthetized minipigs using (82)Rubidium PET.

    PubMed

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens; Christensen, Thomas Emil; Hammelev, Karsten Pharao; Kjær, Andreas; Hasbak, Philip

    2016-06-01

    Cardiac Rubidium-82 ((82)Rb) positron-emission-tomography (PET) is a good method for quantification of myocardial blood flow in man. Quantification of myocardial blood flow in animals to evaluate new treatment strategies or to understand underlying disease is also of great interest but raises some challenges. Animals, which have been anesthetized during PET acquisition, might react differently to used stress medications, and therefore difficulties might exist while evaluating the resulting PET images using standard software packages from commercial vendors optimized for human hearts. Furthermore propofol, used for anesthesia, can influence myocardial perfusion and coronary flow reserve due to its vasorelaxant effect, and interactions might exist between propofol and used stress agents, potentially affecting the result of the examination. We present cardiac (82)Rb-PET studies performed in propofol-anesthetized minipigs with normal and infarcted myocardium stressed with both adenosine and dipyridamole. Despite the mentioned challenges, we were able to trace the small minipig heart with software designed for human cardiac PET and to achieve blood flow measurements comparable with results in humans with both adenosine and dipyridamole. We found dipyridamole to be a superior stress agent for this experimental setup. Finally, we were able to clearly identify the myocardial perfusion defect after an induced myocardial infarction. PMID:26931633

  20. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    PubMed

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative

  1. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis.

    PubMed

    Zhang, Ting; Zhang, Yan; Cui, Mingyao; Jin, Li; Wang, Yimei; Lv, Fengxiang; Liu, Yuli; Zheng, Wen; Shang, Haibao; Zhang, Jun; Zhang, Mao; Wu, Hongkun; Guo, Jiaojiao; Zhang, Xiuqin; Hu, Xinli; Cao, Chun-Mei; Xiao, Rui-Ping

    2016-02-01

    Regulated necrosis (necroptosis) and apoptosis are crucially involved in severe cardiac pathological conditions, including myocardial infarction, ischemia-reperfusion injury and heart failure. Whereas apoptotic signaling is well defined, the mechanisms that underlie cardiomyocyte necroptosis remain elusive. Here we show that receptor-interacting protein 3 (RIP3) triggers myocardial necroptosis, in addition to apoptosis and inflammation, through activation of Ca(2+)-calmodulin-dependent protein kinase (CaMKII) rather than through the well-established RIP3 partners RIP1 and MLKL. In mice, RIP3 deficiency or CaMKII inhibition ameliorates myocardial necroptosis and heart failure induced by ischemia-reperfusion or by doxorubicin treatment. RIP3-induced activation of CaMKII, via phosphorylation or oxidation or both, triggers opening of the mitochondrial permeability transition pore and myocardial necroptosis. These findings identify CaMKII as a new RIP3 substrate and delineate a RIP3-CaMKII-mPTP myocardial necroptosis pathway, a promising target for the treatment of ischemia- and oxidative stress-induced myocardial damage and heart failure. PMID:26726877

  2. 4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress.

    PubMed

    Luo, Tao; Chen, Baihe; Wang, Xianbao

    2015-12-01

    Our previous study indicated that attenuation of endoplasmic reticulum (ER) stress by administration of 4-phenylbutyric acid (4-PBA) could prevent cardiac rupture and remodeling in a mouse model of myocardial infarction (MI). However, whether 4-PBA is protective in hypertrophic heart disease is unclear. Thus, we tested the therapeutic effect of 4-PBA on pressure-overload induced myocardial hypertrophy. Transverse aortic constriction (TAC) was used to create myocardial hypertrophy in C57BL/6 male mice for 4 weeks. Immediately after surgery, the mice were administrated either 4-PBA (20 mg/kg/day) or 0.9% NaCl by intraperitoneal injection. At the end of 4 weeks, the mice underwent high-resolution echocardiographic imaging. Our results showed that both the left ventricular posterior wall thickness at end systole (LVPWs) and diastole (LVPWd) were increased in the TAC group, compared to control. 4-PBA administration attenuated hypertrophy and decreased the heart weight over body weight ratio. Masson's trichrome staining showed that myocardial interstitial fibrosis and collagen deposition were also decreased by 4-PBA. We next detected the ER stress response in the heart tissues of TAC mice in different time points. Western blotting showed that the expression of ER stress marker, GRP78, CHOP and phosphor-PERK, were persistently increased 4 weeks after TAC. The treatment of 4-PBA inhibited the expression of ER stress markers. We also demonstrated that the 4-PBA at 20 mg/kg/day had no effect on histone 3 deacetylation inhibition, while attenuating ER stress and TAC-induced hypertrophy. These findings suggest that 4-PBA may be a therapeutic strategy to consider in preventing pressure-overload induced myocardial hypertrophy and interstitial fibrosis by selectively attenuating ER stress. PMID:26428355

  3. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression.

    PubMed

    Wu, Di; Xu, Jiao; Song, Erbao; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2015-07-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function. Pathological changes, damage-related enzyme levels, and Hsp27 expression were studied in chickens following heat stress (40 ± 1 °C for 0, 1, 2, 3, 5, 7, 10, 15, or 24 h, respectively) with or without ASA administration (1 mg/kg BW, 2 h prior). Appearance of pathological lesions such as degenerations and karyopyknosis as well as the myocardial damage-related enzyme activation indicated that heat stress causes considerable injury to the myocardial cells in vivo. Myocardial cell injury was most serious in chickens exposed to heat stress without prior ASA administration; meanwhile, ASA pretreatment acted protective function against high temperature-induced injury. Hsp27 expression was induced under all experimental conditions but was one-fold higher in the ASA-pretreated animals (0.3138 ± 0.0340 ng/mL) than in untreated animals (0.1437 ± 0.0476 ng/mL) 1 h after heat stress exposure, and such an increase was sustained over the length of the experiment. Our findings indicate that pretreatment with ASA protects chicken myocardial cells from acute heat stress in vivo with almost no obvious side effects, and this protection may involve an enhancement of Hsp27 expression. However, the detailed mechanisms underlying this effect require further investigation. PMID:25956131

  4. Oxidative stress and redox regulation of phospholipase D in myocardial disease.

    PubMed

    Tappia, Paramjit S; Dent, Melissa R; Dhalla, Naranjan S

    2006-08-01

    Oxidative stress may be viewed as an imbalance between reactive oxygen species (ROS) and oxidant production and the state of glutathione redox buffer and antioxidant defense system. Recently, a new paradigm of redox signaling has emerged whereby ROS and oxidants can function as intracellular signaling molecules, where ROS- and oxidant-induced death signal is converted into a survival signal. It is now known that oxidative stress is involved in cardiac hypertrophy and in the pathogenesis of cardiomyopathies, ischemic heart disease and congestive heart failure. Phospholipase D (PLD) is an important signaling enzyme in mammalian cells, including cardiomyocytes. PLD catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA). Two mammalian PLD isozymes, PLD1 and PLD2 have been identified, characterized and cloned. The importance of PA in heart function is evident from its ability to stimulate cardiac sarcolemmal membrane and sarcoplasmic reticular Ca2+-related transport systems and to increase the intracellular concentration of free Ca2+ in adult cardiomyocytes and augment cardiac contractile activity of the normal heart. In addition, PA is also considered an important signal transducer in cardiac hypertrophy. Accordingly, this review discusses a role for redox signaling mediated via PLD in ischemic preconditioning and examines how oxidative stress affects PLD in normal hearts and during different myocardial diseases. In addition, the review provides a comparative account on the regulation of PLD activities in vascular smooth muscle cells under conditions of oxidative stress. PMID:16843818

  5. Stress Myocardial Perfusion Imaging in the Emergency Department - New Techniques for Speed and Diagnostic Accuracy

    PubMed Central

    Harrison, Sheri D; Harrison, Mark A; Duvall, W Lane

    2012-01-01

    Emergency room evaluations of patients presenting with chest pain continue to rise, and these evaluations which often include cardiac imaging, are an increasing area of resource utilization in the current health system. Myocardial perfusion imaging from the emergency department remains a vital component of the diagnosis or exclusion of coronary artery disease as the etiology of chest pain. Recent advances in camera technology, and changes to the imaging protocols have allowed MPI to become a more efficient way of providing this diagnostic information. Compared with conventional SPECT, new high-efficiency CZT cameras provide a 3-5 fold increase in photon sensitivity, 1.65-fold improvement in energy resolution and a 1.7-2.5-fold increase in spatial resolution. With stress-only imaging, rest images are eliminated if stress images are normal, as they provide no additional prognostic or diagnostic value and cancelling the rest images would shorten the length of the test which is of particular importance to the ED population. The rapid but accurate triage of patients in an ED CPU is essential to their care, and stress-only imaging and new CZT cameras allow for shorter test time, lower radiation doses and lower costs while demonstrating good clinical outcomes. These changes to nuclear stress testing can allow for faster throughput of patients through the emergency department while providing a safe and efficient evaluation of chest pain. PMID:22708910

  6. Stress myocardial perfusion imaging in the emergency department--new techniques for speed and diagnostic accuracy.

    PubMed

    Harrison, Sheri D; Harrison, Mark A; Duvall, W Lane

    2012-05-01

    Emergency room evaluations of patients presenting with chest pain continue to rise, and these evaluations which often include cardiac imaging, are an increasing area of resource utilization in the current health system. Myocardial perfusion imaging from the emergency department remains a vital component of the diagnosis or exclusion of coronary artery disease as the etiology of chest pain. Recent advances in camera technology, and changes to the imaging protocols have allowed MPI to become a more efficient way of providing this diagnostic information. Compared with conventional SPECT, new high-efficiency CZT cameras provide a 3-5 fold increase in photon sensitivity, 1.65-fold improvement in energy resolution and a 1.7-2.5-fold increase in spatial resolution. With stress-only imaging, rest images are eliminated if stress images are normal, as they provide no additional prognostic or diagnostic value and cancelling the rest images would shorten the length of the test which is of particular importance to the ED population. The rapid but accurate triage of patients in an ED CPU is essential to their care, and stress-only imaging and new CZT cameras allow for shorter test time, lower radiation doses and lower costs while demonstrating good clinical outcomes. These changes to nuclear stress testing can allow for faster throughput of patients through the emergency department while providing a safe and efficient evaluation of chest pain. PMID:22708910

  7. Impaired resting myocardial annular velocities are independently associated with mental-stress induced ischemia in patients with coronary heart disease

    PubMed Central

    Ersboll, Mads; Enezi, Fawaz Al; Samad, Zainab; Sedberry, Brenda; Boyle, Stephen H.; O’Connor, Christopher; Jiang, Wei; Velazquez, Eric J.

    2014-01-01

    Structured Abstract Objectives To investigate the association between resting myocardial function as assessed by tissue Doppler myocardial velocities (TDI) and the propensity for developing mental stress induced ischemia (MSIMI). Background Tissue Doppler myocardial velocities detect preclinical cardiac dysfunction and clinical outcome in a range of conditions. However, little is known about the interrelationship between myocardial velocities and the propensity for developing MSIMI versus exercise stress induced myocardial ischemia (ESIMI). Methods Resting annular myocardial TDI velocities were obtained in 225 patients with known coronary heart disease who were subjected to both conventional exercise stress test as well as a battery of 3 mental stress tests. Diastolic early (e′) and late (a′) as well as systolic (s′) velocities were obtained and eas-index, an integrated measure of myocardial velocities, was calculated as e′/(a′ x s′). MSIMI was defined as 1) development or worsening of regional wall motion abnormality, 2) reduction in left ventricular ejection fraction ≥ 8%, and/or 3) ischemic ST-segment changes during one or more of the three mental stress tests. Results A total of 98 (43.7%) out of 225 patients exhibited MSIMI. Patients developing MSIMI had significantly lower s′ (7.0±1.7 vs 7.5±1.2, p=0.016) and a′ (8.9±1.8 vs 10.0±1.9, p<0.001) at baseline whereas e′ did not differ (6.5±1.7 vs. 6.5±1.8, p=0.85). Furthermore, the eas-index was significantly higher (0.11±0.04 vs. 0.09±0.03, p<0.0001).The eas-index remained significantly associated with the propensity for developing MSIMI (Odds ratio per 0.05 unit increase: 1.85; 95%CI: 1.21–2.82, p=0.004) after adjustment of resting LVEF, resting wall motion index score, gender and social circumstances of living. There was no association between resting eas-index and ESIMI. Conclusion MSIMI but not ESIMI is independently associated with resting abnormalities in myocardial systolic

  8. Reversible T-wave inversions and neurogenic myocardial stunning in a patient with recurrent stress-induced cardiomyopathy.

    PubMed

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Suyama, Jumpei; Toshida, Tsutomu; Kayano, Hiroyuki; Shinozuka, Akira; Gokan, Takehiko; Kobayashi, Youichi

    2014-05-01

    A 72-year-old female was diagnosed as a stress-induced cardiomyopathy from apical ballooning pattern of left ventricular dysfunction without coronary artery stenosis after the mental stress. ECG showed the transient T-wave inversions after the ST-segment elevations. By the mental stress after 1 year, she showed a transient dysfunction with similar ECG changes again. T-wave inversions recovered earlier, and cardiac sympathetic dysfunction showed a lighter response corresponding to the less severe dysfunction than those after the first onset. Wellens' ECG pattern was associated with the degree of neurogenic myocardial stunning with sympathetic hyperinnervation caused by mental stress. PMID:24147830

  9. Prediction of single versus multivessel disease following myocardial infarction using 201-thallium scintigraphy and electrocardiographic stress testing

    SciTech Connect

    Weiss, R.J.; Morise, A.P.; Raabe, D.S. Jr.; Sbarbaro, J.A.

    1983-11-01

    Fifty patients were evaluated who suffered a single myocardial infarction with graded electrocardiographic stress testing, 201-thallium myocardial perfusion imaging and coronary angiography to assess the role of noninvasive indices as predictors of single versus multivessel coronary artery disease. Multivessel involvement was defined angiographically as the presence of two or more major coronary arteries with at least a 70% intraluminal diameter narrowing. Multivessel disease was defined scintigraphically as the presence of stress and/or redistribution perfusion defects in the distribution of more than one coronary artery. The results of stress electrocardiography were not useful in differentiating patients with single (9/16 positive) versus multivessel (22/34 positive) disease. The degree of exercise-induced ST-segment depression was also not helpful. Stress 201-thallium imaging did offer limited additional information with correct predictions of multivessel disease in 21 of 26 patients. Predictions of single-vessel disease were accurate in 11 of 24 patients. Eleven of these 13 incorrect predictions of single-vessel disease were due to the relative insensitivity of the thallium stress image to perceive defect in the anterior wall when the left anterior descending artery had significant obstruction at catheterization. Further refinements of stress perfusion imaging are needed before this method can be used to reliably separate patients with single and multivessel disease after myocardial infarction.

  10. Myocardial Feature Tracking Reduces Observer-Dependence in Low-Dose Dobutamine Stress Cardiovascular Magnetic Resonance

    PubMed Central

    Schuster, Andreas; Paul, Matthias; Bettencourt, Nuno; Hussain, Shazia T.; Morton, Geraint; Kutty, Shelby; Bigalke, Boris; Chiribiri, Amedeo; Perera, Divaka

    2015-01-01

    Objectives To determine whether quantitative wall motion assessment by CMR myocardial feature tracking (CMR-FT) would reduce the impact of observer experience as compared to visual analysis in patients with ischemic cardiomyopathy (ICM). Methods 15 consecutive patients with ICM referred for assessment of hibernating myocardium were studied at 3 Tesla using SSFP cine images at rest and during low dose dobutamine stress (5 and 10 μg/kg/min of dobutamine). Conventional visual, qualitative analysis was performed independently and blinded by an experienced and an inexperienced reader, followed by post-processing of the same images by CMR-FT to quantify subendocardial and subepicardial circumferential (Eccendo and Eccepi) and radial (Err) strain. Receiver operator characteristics (ROC) were assessed for each strain parameter and operator to detect the presence of inotropic reserve as visually defined by the experienced observer. Results 141 segments with wall motion abnormalities at rest were eligible for the analysis. Visual scoring of wall motion at rest and during dobutamine was significantly different between the experienced and the inexperienced observer (p<0.001). All strain values (Eccendo, Eccepi and Err) derived during dobutamine stress (5 and 10 μg/kg/min) showed similar diagnostic accuracy for the detection of contractile reserve for both operators with no differences in ROC (p>0.05). Eccendo was the most accurate (AUC of 0.76, 10 μg/kg/min of dobutamine) parameter. Diagnostic accuracy was worse for resting strain with differences between operators for Eccendo and Eccepi (p<0.05) but not Err (p>0.05). Conclusion Whilst visual analysis remains highly dependent on operator experience, quantitative CMR-FT analysis of myocardial wall mechanics during DS-CMR provides diagnostic accuracy for the detection of inotropic reserve regardless of operator experience and hence may improve diagnostic robustness of low-dose DS-CMR in clinical practice. PMID:25848764

  11. Comparison of visual and semiquantitative analysis of stress thallium-201 myocardial images in patients with suspected ischemic heart disease

    SciTech Connect

    McKillop, J.H.; Murray, R.G.; Turner, J.G.; Bessent, R.G.

    1980-07-01

    Three methods of analyzing stress thallium-201 myocardial images were performed on 79 patients with suspected coronary artery disease. The results of visual analysis of unprocessed Polaroid images, background subtracted and contrast enhanced computer generated color television images, and a semiquantitative regions-of-interest method were each compared to the coronary arteriographic findings in all patients. Analysis by the semiquantitative method achieved the highest accuracy for the classification of patients as either having or not having coronary artery disease. This method of interpreting myocardial images appears worthy of further study.

  12. Stress thallium-201 myocardial scintigraphy for the detection of individual coronary arterial lesions in patients with and without previous myocardial infarction

    SciTech Connect

    Rigo, P.; Bailey, I.K.; Griffith, L.S.; Pitt, B.; Wagner, H.N. Jr.; Becker, L.C.

    1981-08-01

    The value of stress thallium-201 scintigraphy for detecting individual coronary arterial stenoses was analyzed in 141 patients with angiographically proved coronary artery disease, 101 with and 40 without a previous myocardial infarction. In patients without infarction, the sensitivity for detecting greater than 50 percent narrowing in the left anterior descending, the right and the left circumflex coronary artery was 66, 53 and 24 percent, respectively. In those with a previous infarction, the sensitivity for demonstrating disease in the artery corresponding to the site of infarction was 100 percent for the left anterior descending, 79 percent for the right and 63 percent for the left circumflex coronary artery. In patients with a prior anterior infarction, concomitant right or left circumflex coronary arterial lesions were detected in only 1 of 12 cases, whereas in those with previous inferior or inferolateral infarction, the sensitivity for left anterior descending coronary artery disease was 69 percent. Because of the reasonably high sensitivity for detecting left anterior descending arterial disease, irrespective of the presence and location of previous infarction, myocardial scintigraphy was useful in identifying multivessel disease in patients with a previous inferior infarction. However, because of its relative insensitivity for right or left circumflex coronary artery disease, scintigraphy proved to be a poor predictor of multivessel disease in patients with a prior anterior infarction and in patients without previous myocardial infarction.

  13. Intravenous myocardial contrast echocardiography predicts regional and global left ventricular remodelling after acute myocardial infarction: comparison with low dose dobutamine stress echocardiography

    PubMed Central

    Abe, Y; Muro, T; Sakanoue, Y; Komatsu, R; Otsuka, M; Naruko, T; Itoh, A; Yoshiyama, M; Haze, K; Yoshikawa, J

    2005-01-01

    Objective: To assess the role of intravenous myocardial contrast echocardiography (MCE) in predicting functional recovery and regional or global left ventricular (LV) remodelling after acute myocardial infarction (AMI) compared with low dose dobutamine stress echocardiography (LDSE). Methods: 21 patients with anterior AMI and successful primary angioplasty underwent MCE and LDSE during the subacute stage (2–4 weeks after AMI). Myocardial perfusion and contractile reserve were assessed in each segment (12 segment model) with MCE and LDSE. The 118 dyssynergic segments in the subacute stage were classified as recovered, unchanged, or remodelled according to wall motion at six months’ follow up. Percentage increase in LV end diastolic volume (%ΔEDV) was also calculated. Results: The presence of perfusion was less accurate than the presence of contractile reserve in predicting regional recovery (55% v 81%, p < 0.0001). However, the absence of perfusion was more accurate than the absence of contractile reserve in predicting regional remodelling (83% v 48%, p < 0.0001). The number of segments without perfusion was an independent predictor of %ΔEDV, whereas the number of segments without contractile reserve was not. The area under the receiver operating characteristic curve showed that the number of segments without perfusion predicted substantial LV dilatation (%ΔEDV > 20%) more accurately than did the number of segments without contractile reserve (0.88 v 0.72). Conclusion: In successfully revascularised patients with AMI, myocardial perfusion assessed by MCE is predictive of regional and global LV remodelling rather than of functional recovery, whereas contractile reserve assessed by LDSE is predictive of functional recovery rather than of LV remodelling. PMID:15797931

  14. The A3 adenosine receptor agonist CP-532,903 protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP sensitive potassium channel

    PubMed Central

    Wan, Tina C.; Ge, Zhi-Dong; Tampo, Akihito; Mio, Yasushi; Bienengraeber, Martin W.; Tracey, W. Ross; Gross, Garrett J.; Kwok, Wai-Meng; Auchampach, John A.

    2008-01-01

    We examined the cardioprotective profile of the new A3 adenosine receptor (AR) agonist CP-532,903 in an in vivo mouse model of infarction and an isolated heart model of global ischemia/reperfusion injury. In radioligand binding and cAMP accumulation assays using HEK 293 cells expressing recombinant mouse ARs, CP-532,903 was found to bind with high affinity to mouse A3ARs (ki = 9.0±2.5 nM) and with high selectivity versus mouse A1AR (100-fold) and A2AARs (1,000-fold). In in vivo ischemia/reperfusion experiments, pretreating mice with 30 or 100 µg/kg of CP-532,903 reduced infarct size from 59.2 ± 2.1% of the risk region in vehicle-treated mice to 42.5 ± 2.3% and 39.0 ± 2.9%, respectively. Similarly, treating isolated mouse hearts with CP-532,903 (10, 30, or 100 nM) concentration-dependently improved recovery of contractile function following 20 min of global ischemia and 45 min of reperfusion, including developed pressure and ±dP/dt. In both models of ischemia/reperfusion injury, CP-532,903 provided no benefit in studies using mice with genetic disruption of the A3AR gene (A3KO mice). In isolated heart studies, protection provided by CP-532,903 and ischemic preconditioning induced by 3 brief ischemia/reperfusion cycles were lost in Kir6.2 KO mice lacking expression of the pore-forming subunit of the sarcolemmal ATP-sensitive potassium (KATP) channel. Whole-cell patch clamp recordings provided evidence that the A3AR is functionally coupled to the sarcolemmal KATP channel in murine cardiomyocytes. We conclude that CP-532,903 is a highly selective agonist of the mouse A3AR that protects against ischemia/reperfusion injury by activating sarcolemmal KATP channels. PMID:17906066

  15. Sequential changes of endoplasmic reticulum stress and apoptosis in myocardial fibrosis of diabetes mellitus-induced rats

    PubMed Central

    YANG, QIONG; GAO, HUIKUAN; DONG, RUIQING; WU, YONG-QUAN

    2016-01-01

    The endoplasmic reticulum (ER) is an organelle in which proteins form their appropriate structures. However, several of these proteins become unfolded or misfolded when exposed to stimuli, including hyperglycemia, oxidative stress, ischemia, disturbance of calcium homeostasis and overexpression of abnormal proteins, which activates ER stress and the unfolded protein response (UPR). To date, investigations have demonstrated that ER stress is important in diabetic myocardial fibrosis by inducing cardiac cell apoptosis. Therefore, in the present study, the polymerase chain reaction, western blotting analysis and tissue staining were performed to identify the changes in UPR signaling proteins and apoptotic proteins in diabetic rats at different time points, and to determine whether the myocardial fibrosis is associated with ER-stress-mediated apoptosis using a diabetes mellitus (DM) rat model. It was found that the upregulation of ER stress markers and apoptotic molecules developed over time. It was also demonstrated that anti-apoptotic markers and proapoptotic markers were activated early following model establishment, and then decreased in months 4 and 5. The changes in myocardial fibrosis were found to accelerate in a time-dependent manner with apoptosis in the DM rats. PMID:27121167

  16. Sequential changes of endoplasmic reticulum stress and apoptosis in myocardial fibrosis of diabetes mellitus-induced rats.

    PubMed

    Yang, Qiong; Gao, Huikuan; Dong, Ruiqing; Wu, Yong-Quan

    2016-06-01

    The endoplasmic reticulum (ER) is an organelle in which proteins form their appropriate structures. However, several of these proteins become unfolded or misfolded when exposed to stimuli, including hyperglycemia, oxidative stress, ischemia, disturbance of calcium homeostasis and overexpression of abnormal proteins, which activates ER stress and the unfolded protein response (UPR). To date, investigations have demonstrated that ER stress is important in diabetic myocardial fibrosis by inducing cardiac cell apoptosis. Therefore, in the present study, the polymerase chain reaction, western blotting analysis and tissue staining were performed to identify the changes in UPR signaling proteins and apoptotic proteins in diabetic rats at different time points, and to determine whether the myocardial fibrosis is associated with ER-stress-mediated apoptosis using a diabetes mellitus (DM) rat model. It was found that the upregulation of ER stress markers and apoptotic molecules developed over time. It was also demonstrated that anti‑apoptotic markers and proapoptotic markers were activated early following model establishment, and then decreased in months 4 and 5. The changes in myocardial fibrosis were found to accelerate in a time-dependent manner with apoptosis in the DM rats. PMID:27121167

  17. The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells

    PubMed Central

    Zhang, Xiao-hui; Zhu, Huai-sen; Qian, Zhuang; Tang, Shu; Wu, Di; Kemper, Nicole; Hartung, Joerg

    2016-01-01

    The protective effect of aspirin during exposure to heat stress in broiler chickens was investigated. We assayed pathological damage, expression and distribution of Hsp90 protein and hsp90 mRNA expression in chicken heart tissues after oral administration of aspirin following exposure to high temperature for varying times. Heat stress induced increases in plasma aspartate aminotransferase, creatine kinase and lactate dehydrogenase activities while causing severe heart damage, which was characterized by granular and vacuolar degeneration, nuclear shrinkage and even myocardium fragmentation in cardiac muscle fibers. After aspirin administration, myocardial cells showed fewer pathological lesions than broilers treated with heat alone. A high positive Hsp90 signal was always detected in the nuclei of myocardial cells from broilers treated with aspirin, while in myocardial cells treated with heat alone, Hsp90 in the nuclei decreased, as did that in the cytoplasm. Aspirin induced rapid and significant synthesis of Hsp90 before and at the initial phase of heat stress, and significant expression of hsp90 mRNA was stimulated throughout the experiment when compared with cells exposed to heat stress alone. Thus, specific pre-induction of Hsp90 in cardiovascular tissue was useful for resisting heat stress damage because it produced stable damage-related enzymes and fewer pathologic changes. PMID:27051338

  18. The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells.

    PubMed

    Zhang, Xiao-Hui; Zhu, Huai-Sen; Qian, Zhuang; Tang, Shu; Wu, Di; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong

    2016-03-01

    The protective effect of aspirin during exposure to heat stress in broiler chickens was investigated. We assayed pathological damage, expression and distribution of Hsp90 protein and hsp90 mRNA expression in chicken heart tissues after oral administration of aspirin following exposure to high temperature for varying times. Heat stress induced increases in plasma aspartate aminotransferase, creatine kinase and lactate dehydrogenase activities while causing severe heart damage, which was characterized by granular and vacuolar degeneration, nuclear shrinkage and even myocardium fragmentation in cardiac muscle fibers. After aspirin administration, myocardial cells showed fewer pathological lesions than broilers treated with heat alone. A high positive Hsp90 signal was always detected in the nuclei of myocardial cells from broilers treated with aspirin, while in myocardial cells treated with heat alone, Hsp90 in the nuclei decreased, as did that in the cytoplasm. Aspirin induced rapid and significant synthesis of Hsp90 before and at the initial phase of heat stress, and significant expression of hsp90 mRNA was stimulated throughout the experiment when compared with cells exposed to heat stress alone. Thus, specific pre-induction of Hsp90 in cardiovascular tissue was useful for resisting heat stress damage because it produced stable damage-related enzymes and fewer pathologic changes. PMID:27051338

  19. Reduction of oxidative stress does not affect recovery of myocardial function: warm continuous versus cold intermittent blood cardioplegia.

    PubMed Central

    Biagioli, B.; Borrelli, E.; Maccherini, M.; Bellomo, G.; Lisi, G.; Giomarelli, P.; Sani, G.; Toscano, M.

    1997-01-01

    OBJECTIVE: To compare oxidative stress after cardiac surgery in patients treated with two different methods of myocardial protection: warm continuous versus cold intermittent blood cardioplegia. To correlate oxidative stress with postoperative myocardial dysfunction. DESIGN: Prospective, randomised, double blind, trial. SETTING: Institutional centre of cardiovascular surgery. PATIENTS: 20 patients were selected for coronary artery bypass surgery (CABG) on the following basis: stable angina, ejection fraction > 50%, double or triple vessel disease, no previous CABG or associated disease. Patients were randomised to two groups of 10 patients each. INTERVENTIONS: Patients underwent CABG with one of two different methods of myocardial protection and cardiopulmonary bypass. CBC group: intermittent cold blood antegrade-retrograde cardioplegia with moderate hypothermic cardiopulmonary bypass; WBC group: continuous warm blood antegrade-retrograde cardioplegia with mild hypothermic cardiopulmonary bypass. MAIN OUTCOME MEASURE: The index of oxidative stress used was the alteration of whole blood and plasma glutathione redox status. Samples were collected from the coronary sinus and peripheral vein before anaesthesia (T1), before aortic unclamping (T2), 15 minutes (T3), and 30 minutes (T4) after unclamping. Haemodynamic parameters were measured with thermodilution techniques. RESULTS: Oxidised glutathione and glutathione-cysteine mixed disulphide significantly increased in the coronary sinus plasma in the CBC group, and the overall redox balance of glutathione was decreased (P < 0.01) at T2-T4 versus T1, and compared with the WBC group. Comparable results were obtained for coronary sinus blood. There was no correlation between postoperative haemodynamic measurements and oxidative stress markers. CONCLUSIONS: Oxidative stress was significant in patients undergoing CABG using cold blood cardioplegia, while the warm technique minimised the effects of ischaemia. However

  20. Aspirin-induced heat stress resistance in chicken myocardial cells can be suppressed by BAPTA-AM in vitro.

    PubMed

    Wu, Di; Zhang, Miao; Lu, Yinjun; Tang, Shu; Kemper, N; Hartung, J; Bao, Endong

    2016-09-01

    Our recent studies have displayed the protective functions of aspirin against heat stress (HS) in chicken myocardial cells, and it may be associated with heat shock proteins (HSPs). In this study, we further investigated the potential role of HSPs in the aspirin-induced heat stress resistance. Four of the most important HSPs including HspB1 (Hsp27), Hsp60, Hsp70, and Hsp90 were induced by aspirin pretreatment and were suppressed by BAPTA-AM. When HSPs were induced by aspirin, much slighter HS injury was detected. But more serious damages were observed when HSPs were suppressed by BAPTA-AM than those cells exposed to HS without BAPTA-AM, even the myocardial cells have been treated with aspirin in prior. Comparing to other HSPs, HspB1 presented the largest increase after aspirin treatments, 86-fold higher than the baseline (the level before HS). These findings suggested that multiple HSPs participated in aspirin's anti-heat stress function but HspB1 may contribute the most. Interestingly, during the experiments, we also found that apoptosis rate as well as the oxidative stress indicators (T-SOD and MDA) was not consistently responding to heat stress injury as expected. By selecting from a series of candidates, myocardial cell damage-related enzymes (CK-MB and LDH), cytopathological tests, and necrosis rate (measured by flow cytometry assays) are believed to be reliable indicators to evaluate heat stress injury in chicken's myocardial cells and they will be used in our further investigations. PMID:27262845

  1. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  2. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    Rahman, Atiar

    2006-01-01

    Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  3. Resilience as a correlate of acute stress disorder symptoms in patients with acute myocardial infarction

    PubMed Central

    Meister, Rebecca E; Weber, Tania; Princip, Mary; Schnyder, Ulrich; Barth, Jürgen; Znoj, Hansjörg; Schmid, Jean-Paul; von Känel, Roland

    2015-01-01

    Objectives Myocardial infarction (MI) may be experienced as a traumatic event causing acute stress disorder (ASD). This mental disorder has an impact on the daily life of patients and is associated with the development of post-traumatic stress disorder. Trait resilience has been shown to be a protective factor for post-traumatic stress disorder, but its association with ASD in patients with MI is elusive and was examined in this study. Methods We investigated 71 consecutive patients with acute MI within 48 h of having stable haemodynamic conditions established and for 3 months thereafter. All patients completed the Acute Stress Disorder Scale and the Resilience Scale to self-rate the severity of ASD symptoms and trait resilience, respectively. Results Hierarchical regression analysis showed that greater resilience was associated with lower symptoms of ASD independent of covariates (b=−0.22, p<0.05). Post hoc analysis revealed resilience level to be inversely associated with the ASD symptom clusters of re-experiencing (b=−0.05, p<0.05) and arousal (b=−0.09, p<0.05), but not with dissociation and avoidance. Conclusions The findings suggest that patients with acute MI with higher trait resilience experience relatively fewer symptoms of ASD during MI. Resilience was particularly associated with re-experiencing and arousal symptoms. Our findings contribute to a better understanding of resilience as a potentially important correlate of ASD in the context of traumatic situations such as acute MI. These results emphasise the importance of identifying patients with low resilience in medical settings and to offer them adequate support. PMID:26568834

  4. Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization

    PubMed Central

    Martindale, Joshua J.; Metzger, Joseph M.

    2014-01-01

    Myocardial ischemia/reperfusion (I/R) injury is a major clinical problem leading to cardiac dysfunction and myocyte death. It is widely held that I/R causes damage to membrane phospholipids, and is a significant mechanism of cardiac I/R injury. Molecular dissection of sarcolemmal damage in I/R, however, has been difficult to address experimentally. We studied here cardiac I/R injury under conditions targeting gain- or loss-of sarcolemma integrity. To implement gain-in-sarcolemma integrity during I/R, synthetic copolymer-based sarcolemmal stabilizers (CSS), including Poloxamer 188 (P188), were used as a tool to directly stabilize the sarcolemma. Consistent with the hypothesis of sarcolemmal stabilization, cellular markers of necrosis and apoptosis evident in untreated myocytes were fully blocked in sarcolemma stabilized myocytes. Unexpectedly, sarcolemmal stabilization of adult cardiac myocytes did not affect the status of myocyte-generated oxidants or lipid peroxidation in two independent assays. We also investigated the loss of sarcolemmal integrity using two independent genetic mouse models, dystrophin-deficient mdx or dysferlin knockout (Dysf KO) mice. Both models of sarcolemmal loss-of-function were severely affected by I/R injury ex vivo, and this was lessened by CSS. In vivo studies also showed that infarct size was significantly reduced in CSS-treated hearts. Mechanistically, these findings support a model whereby I/R-mediated increased myocyte oxidative stress is uncoupled from myocyte injury. Because the sarcolemma stabilizers used here do not transit across the myocyte membrane this is evidence that intracellular targets of oxidants are not sufficiently altered to affect cell death when sarcolemma integrity is preserved by synthetic stabilizers. These findings, in turn, suggest that sarcolemma destabilization, and consequent Ca2+ mishandling, as a focal initiating mechanism underlying myocardial I/R injury. PMID:24362314

  5. Regadenoson and adenosine are equivalent vasodilators and are superior than dipyridamole- a study of first pass quantitative perfusion cardiovascular magnetic resonance

    PubMed Central

    2013-01-01

    Background Regadenoson, dipyridamole and adenosine are commonly used vasodilators in myocardial perfusion imaging for the detection of obstructive coronary artery disease. There are few comparative studies of the vasodilator properties of regadenoson, adenosine and dipyridamole in humans. The specific aim of this study was to determine the relative potency of these three vasodilators by quantifying stress and rest myocardial perfusion in humans using cardiovascular magnetic resonance (CMR). Methods Fifteen healthy normal volunteers, with Framingham score less than 1% underwent vasodilator stress testing with regadenoson (400 μg bolus), dipyridamole (0.56 mg/kg) and adenosine (140 μg /kg/min) on separate days. Rest perfusion imaging was performed initially. Twenty minutes later, stress imaging was performed at peak vasodilation, i.e. 70 seconds after regadenoson, 4 minutes after dipyridamole infusion and between 3–4 minutes of the adenosine infusion. Myocardial blood flow (MBF) in ml/min/g and myocardial perfusion reserve (MPR) were quantified using a fully quantitative model constrained deconvolution. Results Regadenoson produced higher stress MBF than dipyridamole and adenosine (3.58 ± 0.58 vs. 2.81 ± 0.67 vs. 2.78 ± 0.61 ml/min/g, p = 0.0009 and p = 0.0008 respectively). Regadenoson had a much higher heart rate response than adenosine and dipyridamole respectively (95 ± 11 vs. 76 ± 13 vs. 86 ± 12 beats/ minute) When stress MBF was adjusted for heart rate, there were no differences between regadenoson and adenosine (37.8 ± 6 vs. 36.6 ± 4 μl/sec/g, p = NS), but differences between regadenoson and dipyridamole persisted (37.8 ± 6 vs. 32.6 ± 5 μl/sec/g, p = 0.03). The unadjusted MPR was higher with regadenoson (3.11 ± 0.63) when compared with adenosine (2.7 ± 0.61, p = 0.02) and when compared with dipyridamole (2.61 ± 0.57, p = 0.04). Similar to stress MBF, these differences in MPR between regadenoson and adenosine were abolished when adjusted

  6. Association of Vitamin D Status With Mental Stress Induced Myocardial Ischemia in Patients With Coronary Artery Disease

    PubMed Central

    Ramadan, Ronnie; Vaccarino, Viola; Esteves, Fabio; Sheps, David S.; Bremner, James Douglas; Raggi, Paolo; Quyyumi, Arshed A.

    2014-01-01

    Background Mental stress-induced (MSIMI) or physical stress-induced (PSIMI) myocardial ischemia portends a worse prognosis in CAD patients. Vitamin D insufficiency is associated with adverse cardiovascular outcomes, but its relationship to myocardial ischemia remains unclear. We hypothesized that vitamin D insufficiency will be associated with a higher prevalence of myocardial ischemia in CAD patients. Methods In 255 patients with stable CAD, myocardial perfusion imaging was performed to assess ischemia in response to mental and physical stress protocols. Vitamin D insufficiency was defined as serum 25-hydroxyvitamin-D [25(OH)D] levels below 30 ng/ml, collected on the day of stress testing. Results Mean 25(OH)D level was 30.8±12.8 ng/ml, and 139 (55%) patients had vitamin D insufficiency. MSIMI occurred in 30 (12%) patients and PSIMI in 67 (27%). Individuals with MSIMI had significantly lower levels of 25(OH)D as compared to those without MSIMI (24.0±8.6 vs. 31.7±12.9, p=0.002). The prevalence of MSIMI was higher in those with as compared to those without vitamin D insufficiency (17% vs. 6%, p=0.009). Moreover, low 25(OH)D levels remained independently associated with MSIMI after adjusting for potential confounders. Conversely, 25(OH)D levels were similar between those with or without PSIMI (29.8±13.0 vs. 31.4±12.7; p=0.37), as was the prevalence of PSIMI in those with or without vitamin D insufficiency (29% vs. 24%, p=0.42). Conclusions Vitamin D insufficiency is associated with a higher prevalence of MSIMI, but not PSIMI among stable CAD patients. Whether this association serves as a potential mechanism linking low vitamin D status to adverse cardiovascular outcomes warrants further investigation. PMID:25222601

  7. Impact of hypertension on the accuracy of exercise stress myocardial perfusion imaging for the diagnosis of coronary artery disease

    PubMed Central

    Elhendy, A; van Domburg, R T; Sozzi, F; Poldermans, D; Bax, J; Roelandt, J

    2001-01-01

    AIM—To compare the accuracy of exercise stress myocardial perfusion single photon emission computed tomography (SPECT) imaging for the diagnosis of coronary artery disease in patients with and without hypertension.
METHODS—A symptom limited bicycle exercise stress test in conjunction with 99m technetium sestamibi or tetrofosmin SPECT imaging was performed in 332 patients (mean (SD) age, 57 (10) years; 257 men, 75 women) without previous myocardial infarction who underwent coronary angiography. Of these, 137 (41%) had hypertension. Rest SPECT images were acquired 24 hours after the stress test. An abnormal scan was defined as one with reversible or fixed perfusion defects.
RESULTS—In hypertensive patients, myocardial perfusion abnormalities were detected in 79 of 102 patients with significant coronary artery disease and in nine of 35 patients without. In normotensive patients, myocardial perfusion abnormalities were detected in 104 of 138 patients with significant coronary artery disease and in 16 of 57 patients without. There were no differences between normotensive and hypertensive patients in sensitivity (77% (95% confidence interval (CI) 69% to 86%) v 75% (95% CI 68% to 83%)), specificity (74% (95% CI 60% to 89%) v 72% (95% CI 60% to 84%)), and accuracy (77% (95% CI 70% to 84%) v 74% (95% CI 68% to 80%)) of exercise SPECT for diagnosing coronary artery disease. The accuracy of SPECT was greater than electrocardiography, both in hypertensive patients (p = 0.005) and in normotensive patients (p = 0.0001). For the detection of coronary artery disease in individual vessels, sensitivity was 58% (95% CI 51% to 65%) v 57% (95% CI 51% to 64%), specificity was 86% (95% CI 82% to 90%) v 85% (95% CI 81% to 89%), and accuracy was 74% (95% CI 70% to 78%) v 74% (95% CI 70% to 78%) in patients with and without hypertension (NS).
CONCLUSIONS—In the usual clinical setting, the value of exercise myocardial perfusion scintigraphy for diagnosing

  8. Posttraumatic Stress and Myocardial Infarction Risk Perceptions in Hospitalized Acute Coronary Syndrome Patients

    PubMed Central

    Edmondson, Donald; Shaffer, Jonathan A.; Denton, Ellen-Ge; Shimbo, Daichi; Clemow, Lynn

    2012-01-01

    Posttraumatic stress disorder (PTSD) is related to acute coronary syndrome (ACS; i.e., myocardial infarction or unstable angina) recurrence and poor post-ACS adherence to medical advice. Since risk perceptions are a primary motivator of adherence behaviors, we assessed the relationship of probable PTSD to ACS risk perceptions in hospitalized ACS patients (n = 420). Participants completed a brief PTSD screen 3–7 days post-ACS, and rated their 1-year ACS recurrence risk relative to other men or women their age. Most participants exhibited optimistic bias (mean recurrence risk estimate between “average” and “below average”). Further, participants who screened positive for current PTSD (n = 15) showed significantly greater optimistic bias than those who screened negative (p < 0.05), after adjustment for demographics, ACS severity, medical comorbidities, depression, and self-confidence in their ability to control their heart disease. Clinicians should be aware that psychosocial factors, and PTSD in particular, may be associated with poor adherence to medical advice due to exaggerated optimistic bias in recurrence risk perceptions. PMID:22593749

  9. Effects of a New Glutamic Acid Derivative on Myocardial Contractility of Stressed Animals under Conditions of Nitric Oxide Synthesis Blockade.

    PubMed

    Tyurenkov, I N; Perfilova, V N; Sadikova, N V; Berestovitskaya, V M; Vasil'eva, O S

    2015-07-01

    Glufimet (glutamic acid derivative) in a dose of 28.7 mg/kg limited the reduction of the cardiac functional reserve in animals subjected to 24-h stress under conditions of nonselective NO synthase blockade with L-NAME (10 mg/kg). Adrenoreactivity and increased afterload tests showed that the increment of myocardial contraction/relaxation rates, left-ventricular pressure, and HR were significantly higher in glufimet-treated stressed animals with NO synthesis blockade than in animals which received no glufimet. The efficiency of glufimet was higher than that of phenibut (the reference drug). PMID:26205724

  10. Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress

    PubMed Central

    Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith

    2014-01-01

    Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by

  11. Effects of microRNA-139 on myocardial cell injury induced by oxidative stress

    PubMed Central

    Li, Tao; Liang, Sumei; Zhang, Yuxiu; Chen, Yongqing

    2015-01-01

    Objective: This study aims to explore the effects of miR-139 on myocardial cell injury induced by oxidative stress and its mechanisms. Methods: H9c2 cells were used in this study. They were divided into control group, H2O2 group, H2O2+miR-139-5-p NC group and H2O2+miR-139-5-p mimics group. Cell activity was detected by MTT method. ROS level was detected by DCFH-DA probe method. MDA and SOD levels and Caspase 3 activity were detected by spectrophotometry. The cell apoptosis was detected by Hoechst 33342 and Annexin V-FITC/PI staining methods. The expression levels of AKT, GSK-3β, Bax and Bcl-2 were determined by Western blotting methods. Results: It showed that the activity of H9c2 cells decreased with the increase of the dose of H2O2. The activity of miR-139-5-p in H9c2 cells decreased after treatment of H2O2 for 6 h (P<0.01). Compared with control group, cell activity in H2O2 group and H2O2+miR-139-5-p NC group decreased (P<0.01), ROS fluorescence intensity increased (P<0.01), MDA content increased (P<0.01), SOD content decreased (P<0.01), apoptosis degree, Caspase 3 activity and Bax levels increased (P<0.01), Bcl-2, AKT and GSK-3β decreased (P<0.01). However, they were opposite in H2O2+miR-139-5-p mimics compared with H2O2 group and H2O2+miR-139-5-p NC group. Conclusions: miR-139-5-p expressed low in oxidative stress of H9c2 cells induced by H2O2 and the oxidative stress injury could be inhibited after increasing the expression of miR-139-5-p, which could be related with the elimination of intracellular oxidative stress products and the resistance to apoptosis through AKT/GSK-3β signaling pathway. PMID:26884911

  12. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  13. Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice

    PubMed Central

    JIN, PENG; LI, TAO; LI, XUEQI; SHEN, XINGHUA; ZHAO, YANRU

    2016-01-01

    Myocardial infarction is a major contributor to morbidity and mortality in diabetes, which is characterized by inadequate angiogenesis and consequent poor blood reperfusion in the diabetic ischemic heart. The aim of the present study was to investigate the effect that oxidative stress in endothelial progenitor cells (EPCs) has on cardiac angiogenesis in diabetic mice. EPCs derived from diabetic mice revealed reductions in superoxide dismutase (SOD) expression levels and activity compared with those from normal mice. An endothelial tube formation assay showed that angiogenesis was markedly delayed for diabetic EPCs, compared with normal controls. EPCs subjected to various pretreatments were tested as a cell therapy in a diabetic mouse model of myocardial infarction. Induction of oxidative stress in normal EPCs by H2O2 or small interfering RNA-mediated knockdown of SOD reduced their angiogenic activity in the ischemic myocardium of the diabetic mice. Conversely, cell therapy using EPCs from diabetic mice following SOD gene overexpression or treatment with the antioxidant Tempol normalized their ability to promote angiogenesis. These results indicate that decreased expression levels of SOD in EPCs contribute to impaired angiogenesis. In addition, normalization of diabetic EPCs by ex vivo SOD gene therapy accelerates the ability of the EPCs to promote angiogenesis and improve cardiac function when used as a cell therapy following myocardial infarction in diabetic mice. PMID:27284297

  14. Eplerenone attenuates cardiac dysfunction and oxidative stress in β-receptor stimulated myocardial infarcted rats

    PubMed Central

    Reddy, Navya M; Mahajan, Umesh B; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2015-01-01

    Eplerenone is a competitive antagonist of the aldosterone receptor with an additional PI3K-Akt activity. The existing cram has been intended to explore, whether eplerenone treatment attenuates the expansion of myocardial infarction in isoproterenol treated rats by restoring hemodynamic, biochemical, and histopathological changes. Isoproterenol induced cardiotoxicity was evidenced by marked ST elevation, decrease in systolic, diastolic, mean arterial pressures. Maximal positive rate of developed left ventricular pressure (+LVdP/dt max, a indicator of myocardial contraction), maximal negative rate of developed left ventricular pressure (-LVdP/dt max, a meter of myocardial relaxation) and an increase in left ventricular end-diastolic pressure (LVEDP, a marker of pre-load) were also shown. In addition, a significant reduction in activities of myocardial creatine kinase-MB isoenzyme, lactate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione level along with increase in malondialdehyde content were observed. Oral pre-treatment with eplerenone (50, 100 and 150 mg/kg) daily for a period of 14 days, constructively modulated the studied parameters in isoproterenol-induced myocardial injury. The protective role of eplerenone on isoproterenolinduced myocardial damage was further confirmed by histopathological examinations. Eplerenone at doses of 100 mg/kg and 150 mg/kg produced more pronounced protective effects than 50 mg/kg body weight. Together, our study provides evidence for protective effects of eplerenone on myocardium in experimentally induced myocardial infarction. PMID:26550459

  15. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension

    PubMed Central

    WU, HAN; CHEN, LIANG; XIE, JUN; LI, RAN; LI, GUAN-NAN; CHEN, QIN-HUA; ZHANG, XIN-LIN; KANG, LI-NA; XU, BIAO

    2016-01-01

    Periostin is an extracellular matrix protein involved in fibrosis. The present study investigated the importance of periostin in hypertension-induced myocardial fibrosis. Rats were randomly divided into either the normal group (0.4% NaCl diet; n=8) or hypertension group (8% NaCl diet; n=8). For 36 weeks, the blood pressure and heart rate of the rats were monitored. At week 36, the hearts were extracted for further analysis. Masson's staining and western blotting were performed to determine the levels of periostin protein expression, oxidative stress and fibrosis. In addition, fibroblasts were isolated from adult rats and cultured in vitro, and following treatment with angiotensin II (Ang II) and N-acetyl-L-cysteine (NAC), western blotting, immunofluorescence and 2′,7′ dichlorodihydrofluorescin staining were performed to examine reactive oxygen species production, and periostin and α-smooth muscle actin (α-SMA) expression levels. The results demonstrated that periostin expression and oxidative stress were increased in hypertensive hearts compared with normal hearts. The in vitro experiments demonstrated that Ang II upregulated the expression levels of periostin and α-SMA compared with the control, whereas, pretreatment with NAC inhibited oxidative stress, periostin and α-SMA expression in fibroblasts. In conclusion, the results of the current study suggested that oxidative stress-induced periostin is involved in myocardial fibrosis and hypertension. The present study demonstrated that periostin inhibition may be a promising approach for the inhibition of hypertension-induced cardiac remodeling. PMID:27220372

  16. Myeloperoxidase Is Not Useful for Detecting Stress Inducible Myocardial Ischemia but May Be Indicative of the Severity of Coronary Artery Disease

    PubMed Central

    Schuhmann, Christoph G.; Hacker, Marcus; Jung, Philip; Krötz, Florian

    2014-01-01

    Background and Objectives Elevated levels of myeloperoxidase (MPO) have been found in patients in different stages of coronary artery disease (CAD). The aim of this study was to assess whether the MPO liberation is increased by stress inducible myocardial ischemia and could be used to improve the diagnostic accuracy of non-invasive evaluation for myocardial ischemia. Subjects and Methods Seventy-six patients with suspected myocardial ischemia who underwent stress myocardial perfusion scintigraphy (MPS) were enrolled. 59 patients with an acute coronary syndrome (ACS) who received a percutaneous coronary intervention along with 12 healthy volunteers were also included in the study. In every subject the MPO plasma levels were assessed by enzyme linked immunosorbent assay. In patients undergoing MPS, the MPO levels were measured serially before and after the stress testing. Results Of the 76 patients undergoing MPS, 38 were diagnosed with a stress inducible myocardial ischemia. The patients with a stress induced ischemia had significantly higher basal MPO levels than those without it (32±3 ng/mL vs. 24±4 ng/mL, p=0.03). However, there was no relevant change in the MPO levels after the stress test compared to the baseline. The patients with ACS showed significantly higher MPO levels than the patients undergoing MPS (131±14 ng/mL vs. 28±2 ng/mL, p<0.01) and the healthy subjects (131±14 ng/mL vs. 26±2 ng/mL, p<0.01). Conclusion Since the MPO plasma levels did not increase after the stress MPS, MPO appears not to be a useful biomarker for detecting a stress inducible myocardial ischemia. Yet, the MPO levels correlate with the different stages of CAD and may hold significance as an indicator for its clinical severity. PMID:24497884

  17. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    PubMed

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and

  18. Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance.

    PubMed

    Patel, Mita B; Mor-Avi, Victor; Kawaji, Keigo; Nathan, Sandeep; Kramer, Christopher M; Lang, Roberto M; Patel, Amit R

    2016-04-01

    In clinical practice, perfusion at rest in vasodilator stress single-photon emission computed tomography is commonly used to confirm myocardial infarction (MI) and ischemia and to rule out artifacts. It is unclear whether perfusion at rest carries similar information in cardiovascular magnetic resonance (CMR). We sought to determine whether chronic MI is associated with abnormal perfusion at rest on CMR. We compared areas of infarct and remote myocardium in 31 patients who underwent vasodilator stress CMR (1.5 T), had MI confirmed by late gadolinium enhancement (LGE scar), and coronary angiography within 6 months. Stress perfusion imaging during gadolinium first pass was followed by reversal with aminophylline (75 to 125 mg), rest perfusion, and LGE imaging. Resting and peak-stress time-intensity curves were used to obtain maximal upslopes (normalized by blood pool upslopes), which were compared between infarcted and remote myocardial regions of interest. At rest, there was no significant difference between the slopes in the regions of interest supplied by arteries with and without stenosis >70% (0.31 ± 0.16 vs 0.26 ± 0.15 1/s), irrespective of LGE scar. However, at peak stress, we found significant differences (0.20 ± 0.11 vs 0.30 ± 0.22 1/s; p <0.05), reflecting the expected stress-induced ischemia. Similarly, at rest, there was no difference between infarcted and remote myocardium (0.27 ± 0.14 vs 0.30 ± 0.17 1/s), irrespective of stenosis, but significant differences were seen during stress (0.21 ± 0.16 vs 0.28 ± 0.18 1/s; p <0.001), reflecting inducible ischemia. In conclusion, abnormalities in myocardial perfusion at rest associated with chronic MI are not reliably detectable on CMR images. Accordingly, unlike single-photon emission computed tomography, normal CMR perfusion at rest should not be used to rule out chronic MI. PMID:26830261

  19. Significance of T-wave changes during early dobutamine stress echocardiography in patients with Q-wave acute myocardial infarction.

    PubMed

    De Felice, F; Gostoli, E; Russo, M; Bonzano, A; Recanzone, P; Moretti, C; Pinneri, F; Borello, G

    1999-09-01

    The relation between T-wave changes and regional contraction during dobutamine stress echocardiography at low (5 to 10 microg/kg/min) and high (20 to 40 microg/kg/min) doses in 43 consecutive patients, early (7+/-2 days) after first recent Q-wave acute myocardial infarction has been evaluated. T-wave changes detected in > or =2 infarct-related electrocardiographic leads during dobutamine infusion were defined as follow: (1) negative T waves becoming positive, (2) positive T waves becoming upright > or =2 mm, and (3) negative T waves becoming upright > or =2 mm from baseline. Wall motion score index (WMSI) was defined as the sum of the echocardiographic scores of 16 segments divided by total segments considered at baseline, and at low and peak doses of dobutamine. Patients were classified according to the absence or presence of dobutamine T-wave changes. Those without T-wave changes had a significantly higher WMSI at rest (1.68+/-0.23 vs 1.50+/-0.21; p <0.05) and at peak (1.77+/-0.34 vs 1.51+/-.30 p <0.05) of dobutamine stress testing, without higher incidence of viability, homozonal, and heterozonal ischemia and chest pain. The angiographic patterns were similar between groups. Regression analysis showed a significant correlation between WMSI and T-wave amplitude at baseline (R = 0.38, p = 0.01) and at peak dobutamine stress testing (R = 0.50, p = 0.0006). The sensitivity sensitivity, specificity, and accuracy of T-wave changes to detect myocardial viability were 0.27, 0.84, and 0.70, respectively. The sensitivity, specificity, and accuracy of T-wave changes to detect homozonal ischemia were 0.76, 0.27, and 0.46, respectively. In conclusion, dobutamine-induced T-wave changes are associated with a greater extent of wall motion abnormalities both at rest and at peak stress echocardiography, but they are of little value in predicting myocardial viability when analyzed early after myocardial infarction. PMID:10482151

  20. The prevalence of a false-positive myocardial perfusion stress SPET test in a skinny patient, induced by projection truncation.

    PubMed

    Tsougos, Ioannis; Alexiou, Sotiria; Theodorou, Kiki; Valotassiou, Varvara; Georgoulias, Panagiotis

    2015-01-01

    During the last decade, technical developments in myocardial perfusion single photon emission tomography (SPET) imaging systems have significantly improved the accuracy of diagnosing coronary artery disease. Nevertheless, the patient's position and/or the acquisition protocol can affect the studies' quality, possibly leading to misdiagnoses. In HJNM and in other journals the importance of proper positioning of the heart of the patient to be examined by myocardial perfusion SPET stress/rest testing, has been emphasized. According to our knowledge, only three cases of truncation artifact during SPET myocardial perfusion imaging acquired with original SPET cameras, related to improper positioning in very thin patients, have been reported. In all cases, patients were examined according to a single day stress/rest technetium-99m-sestamibi protocol, using a dual 90 degree detector system, equipped with high resolution, parallel-hole collimators. However, several published manuscripts have underlined the significance of appropriate patients' positioning in myocardial perfusion scintigraphy using dedicated, cadmium-zinc-telluride (CZT) or small field-of-view cardiac SPET systems. A typical case is that of a 47 years old man (height 187cm, weight 67kg), heavy smoker, with atypical chest pain. He exercised very well according to the Bruce protocol, achieving 95% of maximal age-predicted heart-rate and a technetium-99m-tetrofosmin ((99m)Tc-TF) myocardial perfusion imaging with 370MBq of (99m)Tc-TF followed with a dual head camera (Infinia GE, USA), equipped with low-energy, high-resolution, parallel-hole collimators at 90° (L-mode configuration). Projection images were obtained from 45° RAO to 45° LPO position, in step and shoot mode (60 projections, 30sec per projection; matrix 64×64 and zoom 1.3). Auto body contour was not used. Unprocessed raw data, showed neither patient motion nor significant extracardiac activity that could result in false positive defects on

  1. Targeting of Adenosine Receptors in Ischemia-Reperfusion Injury

    PubMed Central

    Laubach, Victor E.; French, Brent A.; Okusa, Mark D.

    2010-01-01

    Importance of the field Ischemia-reperfusion (IR) injury is a common clinical problem after transplantation as well as myocardial infarction and stroke. IR initiates an inflammatory response leading to rapid tissue damage. Adenosine, produced in response to IR, is generally considered as a protective signaling molecule and elicits its physiological responses through four distinct adenosine receptors. The short half-life, lack of specificity, and rapid metabolism limits the use of adenosine as a therapeutic agent. Thus intense research efforts have focused on the synthesis and implementation of specific adenosine receptor agonists and antagonists as potential therapeutic agents for a variety of inflammatory conditions including IR injury. Areas covered by this review This review summarizes current knowledge on IR injury with a focus on lung, heart, and kidney, and examines studies that have advanced our understanding of the role of adenosine receptors and the therapeutic potential of adenosine receptor agonists and antagonists for the prevention of IR injury. What the reader will gain The reader will gain insight into the role of adenosine receptor signaling in IR injury. Take home message No clinical therapies are currently available that specifically target IR injury; however, targeting of specific adenosine receptors may offer therapeutic strategies in this regard. PMID:21110787

  2. Low-fat diet and regular, supervised physical exercise in patients with symptomatic coronary artery disease: reduction of stress-induced myocardial ischemia

    SciTech Connect

    Schuler, G.; Schlierf, G.; Wirth, A.; Mautner, H.P.; Scheurlen, H.; Thumm, M.; Roth, H.; Schwarz, F.; Kohlmeier, M.; Mehmel, H.C.

    1988-01-01

    The effects of physical exercise and normalization of serum lipoproteins on stress-induced myocardial ischemia were studied in 18 patients with coronary artery disease, stable angina pectoris, and mild hypercholesterolemia (total serum cholesterol 242 +/- 32 mg/dl). These patients underwent a combined regimen of low-fat/low-cholesterol diet and regular, supervised physical exercise at high intensity for 12 months. At 1 year serum lipoproteins has been lowered to ideal levels (serum cholesterol 202 +/- 31 mg/dl, low-density lipoproteins 130 +/- 30 mg/dl, very low-density lipoproteins 22 +/- 15 mg/dl, serum triglycerides 105 (69 to 304) mg/dl) and physical work capacity was improved by 21% (p less than .01). No significant effect was noted on high-density lipoproteins, probably as a result of the low-fat/high-carbohydrate diet. Stress-induced myocardial ischemia, as assessed by thallium-201 scintigraphy, was decreased by 54% (p less than .05) despite higher myocardial oxygen consumption. Eighteen patients matched for age and severity of coronary artery disease served as a control group and ''usual medical care'' was rendered by their private physicians. No significant changes with respect to serum lipoproteins, physical work capacity, maximal rate-pressure product, or stress-induced myocardial ischemia were observed in this group. These data indicate that regular physical exercise at high intensity, lowered body weight, and normalization of serum lipoproteins may alleviate compromised myocardial perfusion during stress.

  3. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors.

    PubMed

    Yan, Xiao-Feng; Zhang, Zhong-Miao; Yao, Hong-Yi; Guan, Yan; Zhu, Jian-Ping; Zhang, Lin-Hui; Jia, Yong-Liang; Wang, Ru-Wei

    2013-11-01

    Mycelia of cultured Cordyceps sinensis (CS) is one of the most common substitutes for natural CS and was approved for arrhythmia in China. However, the role of CS in ameliorating injury during ischemia-reperfusion (I/R) is still unclear. We examined effects of extracts from CS on I/R and investigated the possible mechanisms. Post-ischemic coronary perfusion pressure, ventricular function, and coronary flow were measured using the Langendorff mouse heart model. Oxidative stress of cardiac homogenates was performed using an ELISA. Our results indicate that CS affords cardioprotection possibly through enhanced adenosine receptor activation. Cardioprotection was demonstrated by reduced post-ischemic diastolic dysfunction and improved recovery of pressure development and coronary flow. Treatment with CS largely abrogates oxidative stress and damage in glucose- or pyruvate-perfused hearts. Importantly, observed reductions in oxidative stress [glutathione disulfide (GSSG)]/[GSSG + glutathione] and [malondialdehyde (MDA)]/[superoxide dismutase + MDA] ratios as well as the resultant damage upon CS treatment correlate with functional markers of post-ischemic myocardial outcome. These effects of CS were partially blocked by 8-ρ-sulfophenyltheophylline, an adenosine receptor antagonist. Our results demonstrate a suppressive role of CS in ischemic contracture. Meanwhile, the results also suggest pre-ischemic adenosine receptor activation may be involved in reducing contracture in hearts pretreated with CS. PMID:23192916

  4. Deficiency of Rac1 Blocks NADPH Oxidase Activation, Inhibits Endoplasmic Reticulum Stress, and Reduces Myocardial Remodeling in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Li, Jianmin; Zhu, Huaqing; Shen, E; Wan, Li; Arnold, J. Malcolm O.; Peng, Tianqing

    2010-01-01

    OBJECTIVE Our recent study demonstrated that Rac1 and NADPH oxidase activation contributes to cardiomyocyte apoptosis in short-term diabetes. This study was undertaken to investigate if disruption of Rac1 and inhibition of NADPH oxidase would prevent myocardial remodeling in chronic diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced by injection of streptozotocin in mice with cardiomyocyte-specific Rac1 knockout and their wild-type littermates. In a separate experiment, wild-type diabetic mice were treated with vehicle or apocynin in drinking water. Myocardial hypertrophy, fibrosis, endoplasmic reticulum (ER) stress, inflammatory response, and myocardial function were investigated after 2 months of diabetes. Isolated adult rat cardiomyocytes were cultured and stimulated with high glucose. RESULTS In diabetic hearts, NADPH oxidase activation, its subunits' expression, and reactive oxygen species production were inhibited by Rac1 knockout or apocynin treatment. Myocardial collagen deposition and cardiomyocyte cross-sectional areas were significantly increased in diabetic mice, which were accompanied by elevated expression of pro-fibrotic genes and hypertrophic genes. Deficiency of Rac1 or apocynin administration reduced myocardial fibrosis and hypertrophy, resulting in improved myocardial function. These effects were associated with a normalization of ER stress markers' expression and inflammatory response in diabetic hearts. In cultured cardiomyocytes, high glucose–induced ER stress was inhibited by blocking Rac1 or NADPH oxidase. CONCLUSIONS Rac1 via NADPH oxidase activation induces myocardial remodeling and dysfunction in diabetic mice. The role of Rac1 signaling may be associated with ER stress and inflammation. Thus, targeting inhibition of Rac1 and NADPH oxidase may be a therapeutic approach for diabetic cardiomyopathy. PMID:20522592

  5. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    SciTech Connect

    Gharanei, M.; Hussain, A.; Janneh, O.; Maddock, H.L.

    2013-04-15

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolated rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening in laser

  6. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling

    PubMed Central

    Pang, Jiaojiao; Fuller, Nathan D.; Hu, Nan; Barton, Linzi A.; Henion, Jeremy M.; Guo, Rui; Chen, Yuguo; Ren, Jun

    2016-01-01

    Background The endoplasmic reticulum (ER) plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs). Myocardial mechanical and intracellular Ca2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated. Results ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca2+ homeostasis), oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62), along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene. Conclusions Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy. PMID:26807981

  7. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves

    PubMed Central

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O.

    2016-01-01

    Background: Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. Objective: To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Materials and Methods: Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. Results: We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg2+ ATPase activity and a nonsignificant increase in Na+/K+ ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. Conclusion: The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose

  8. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress, and AMPK signaling in the liver

    PubMed Central

    Peleli, Maria; Hezel, Michael; Zollbrecht, Christa; Persson, A. Erik G.; Lundberg, Jon O.; Weitzberg, Eddie; Fredholm, Bertil B.; Carlström, Mattias

    2015-01-01

    Rationale: Accumulating studies suggest that nitric oxide (NO) deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes (T2D). Recent findings demonstrate therapeutic effects by boosting the nitrate-nitrite-NO pathway, which is an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A−/−2B), a genetic mouse model of impaired metabolic regulation. Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT) and A−/−2B mice. One hour after injection with nitrate (0.1 mmol/kg, i.p.) or placebo, metabolic regulation was evaluated by intraperitoneal glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR) and NO signaling. Results: A−/−2B displayed increased body weight, reduced glucose clearance, and attenuated overall insulin responses compared with age-matched WT mice. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in the A−/−2B, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in the A−/−2B, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A−/−2B, but not WT mice, was reduced by nitrate treatment. Livers from A−/−2B displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Finally, injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A−/−2B as observed with nitrate. Conclusion: The A−/−2B mouse is a genetic mouse model of metabolic syndrome. Acute treatment

  9. Impaired Transcriptional Activity of Nrf2 in Age-Related Myocardial Oxidative Stress Is Reversible by Moderate Exercise Training

    PubMed Central

    Gounder, Sellamuthu S.; Kannan, Sankaranarayanan; Devadoss, Dinesh; Miller, Corey J.; Whitehead, Kevin S.; Odelberg, Shannon J.; Firpo, Matthew A.; Paine, Robert; Hoidal, John R.; Abel, E. Dale; Rajasekaran, Namakkal S.

    2012-01-01

    Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS) in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2) through antioxidant response cis-elements (AREs) and are impaired in the aging heart. Whereas acute exercise stress (AES) activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (∼2 months), aging mouse (>23 months) hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES), but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day) for ∼6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases. PMID:23029187

  10. Use of adenosine echocardiography for diagnosis of coronary artery disease

    SciTech Connect

    Zoghbi, W.A. )

    1991-07-01

    Two-dimensional echocardiography combined with exercise is sensitive and specific in the detection of coronary artery disease (CAD) by demonstrating transient abnormalities in wall motion. Frequently, however, patients cannot achieve maximal exercise because of various factors. Pharmacologic stress testing with intravenous adenosine was evaluated as a means of detecting CAD in a noninvasive manner. Patients with suspected CAD underwent echocardiographic imaging and simultaneous thallium 201 single-photon emission computed tomography during the intravenous administration of 140 micrograms/kg/min of adenosine. An increase in heart rate, decrease in blood pressure, and increase in double product were observed during adenosine administration. Initial observations revealed that wall motion abnormalities were induced by adenosine in areas of perfusion defects. The adenosine infusion was well tolerated, and symptoms disappeared within 1 to 2 minutes after termination of the infusion. Therefore preliminary observations suggest that adenosine echocardiography appears to be useful in the assessment of CAD.

  11. Localization and Expression of Hsp27 and αB-Crystallin in Rat Primary Myocardial Cells during Heat Stress In Vitro

    PubMed Central

    Tang, Shu; Buriro, Rehana; Liu, Zhijun; Zhang, Miao; Ali, Islam; Adam, Abdelnasir; Hartung, Jörg; Bao, Endong

    2013-01-01

    Neonatal rat primary myocardial cells were subjected to heat stress in vitro, as a model for investigating the distribution and expression of Hsp27 and αB-crystallin. After exposure to heat stress at 42°C for different durations, the activities of enzymes expressed during cell damage increased in the supernatant of the heat-stressed myocardial cells from 10 min, and the pathological lesions were characterized by karyopyknosis and acute degeneration. Thus, cell damage was induced at the onset of heat stress. Immunofluorescence analysis showed stronger positive signals for both Hsp27 and αB-crystallin from 10 min to 240 min of exposure compared to the control cells. According to the Western blotting results, during the 480 min of heat stress, no significant variation was found in Hsp27 and αB-crystallin expression; however, significant differences were found in the induction of their corresponding mRNAs. The expression of these small heat shock proteins (sHsps) was probably delayed or overtaxed due to the rapid consumption of sHsps in myocardial cells at the onset of heat stress. Our findings indicate that Hsp27 and αB-crystallin do play a role in the response of cardiac cells to heat stress, but the details of their function remain to be investigated. PMID:23894407

  12. F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction

    SciTech Connect

    Fudo, T.; Kambara, H.; Hashimoto, T.; Hayashi, M.; Nohara, R.; Tamaki, N.; Yonekura, Y.; Senda, M.; Konishi, J.; Kawai, C.

    1988-06-01

    To evaluate myocardial blood flow and glucose utilization, N-13 ammonia (NH3) and F-18 deoxyglucose positron emission tomography scanning was performed in 22 patients with previous anterior wall myocardial infarction, using a high-resolution, multi-slice, whole-body scanner. The N-13 ammonia study was performed at rest and after exercise. The F-18 deoxyglucose study was performed at rest after fasting greater than 5 hours. The N-13 ammonia study revealed a hypoperfused area in 19 of the 22 patients (86%), that corresponded to the infarcted regions as diagnosed by electrocardiography, coronary arteriography and left ventriculography (21 patients). The hypoperfused areas expanded after exercise in 16 of 22 patients (73%). F-18 deoxyglucose uptake was observed in these hypoperfused areas, especially in patients with hypokinetic wall motion on left ventriculography and in exercise-induced hypoperfused areas. However, positron emission tomography demonstrated diffuse uptake of F-18 deoxyglucose in 3 of 8 patients with dyskinetic wall motion. Thus, metabolically active myocardium in infarcted areas or periinfarct ischemia can be visualized with F-18 deoxyglucose and stress N-13 ammonia studies.

  13. Adenosine induces G2/M cell-cycle arrest by inhibiting cell mitosis progression.

    PubMed

    Jia, Kun-Zhi; Tang, Bo; Yu, Lu; Cheng, Wei; Zhang, Rong; Zhang, Jian-Fa; Hua, Zi-Chun

    2010-01-01

    Cellular adenosine accumulates under stress conditions. Few papers on adenosine are concerned with its function in the cell cycle. The cell cycle is the essential mechanism by which all living things reproduce and the target machinery when cells encounter stresses, so it is necessary to examine the relationship between adenosine and the cell cycle. In the present study, adenosine was found to induce G-2/M cell-cycle arrest. Furthermore, adenosine was found to modulate the expression of some important proteins in the cell cycle, such as cyclin B and p21, and to inhibit the transition of metaphase to anaphase in mitosis. PMID:19947935

  14. A relative quantitative assessment of myocardial perfusion by first-pass technique: animal study

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Zhang, Zhang; Yu, Xuefang; Zhou, Kenneth J.

    2015-03-01

    The purpose of this study is to quantitatively assess the myocardial perfusion by first-pass technique in swine model. Numerous techniques based on the analysis of Computed Tomography (CT) Hounsfield Unit (HU) density have emerged. Although these methods proposed to be able to assess haemodynamically significant coronary artery stenosis, their limitations are noticed. There are still needs to develop some new techniques. Experiments were performed upon five (5) closed-chest swine. Balloon catheters were placed into the coronary artery to simulate different degrees of luminal stenosis. Myocardial Blood Flow (MBF) was measured using color microsphere technique. Fractional Flow Reserve (FFR) was measured using pressure wire. CT examinations were performed twice during First-pass phase under adenosine-stress condition. CT HU Density (HUDCT) and CT HU Density Ratio (HUDRCT) were calculated using the acquired CT images. Our study presents that HUDRCT shows a good (y=0.07245+0.09963x, r2=0.898) correlation with MBF and FFR. In receiver operating characteristic (ROC) curve analyses, HUDRCT provides excellent diagnostic performance for the detection of significant ischemia during adenosine-stress as defined by FFR indicated by the value of Area Under the Curve (AUC) of 0.927. HUDRCT has the potential to be developed as a useful indicator of quantitative assessment of myocardial perfusion.

  15. Gypenosides alleviate myocardial ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function in rat heart.

    PubMed

    Yu, Haijie; Guan, Qigang; Guo, Liang; Zhang, Haishan; Pang, Xuefeng; Cheng, Ying; Zhang, Xingang; Sun, Yingxian

    2016-05-01

    Gypenosides (GP) are the predominant components of Gynostemma pentaphyllum, a Chinese herb medicine that has been widely used for the treatment of chronic inflammation, hyperlipidemia, and cardiovascular disease. GP has been demonstrated to exert protective effects on the liver and brain against ischemia-reperfusion (I/R) injury, yet whether it is beneficial to the heart during myocardial I/R is unclear. In this study, we demonstrate that pre-treatment with GP dose-dependently limits infarct size, alleviates I/R-induced pathological changes in the myocardium, and preserves left ventricular function in a rat model of cardiac I/R injury. In addition, GP pre-treatment reduces oxidative stress and protects the intracellular antioxidant machinery in the myocardium. Further, we show that the cardioprotective effect of GP is associated with the preservation of mitochondrial function in the cardiomyocytes, as indicated by ATP level, enzymatic activities of complex I, II, and IV on the mitochondrial respiration chain, and the activity of citrate synthase in the citric acid cycle for energy generation. Moreover, GP maintains mitochondrial membrane integrity and inhibits the release of cytochrome c from the mitochondria to the cytosol. The cytoprotective effect of GP is further confirmed in vitro in H9c2 cardiomyoblast cell line with oxygen-glucose deprivation and reperfusion (OGD/R), and the results indicate that GP protects cell viability, reduces oxidative stress, and preserves mitochondrial function. In conclusion, our study suggests that GP may be of clinical value in cytoprotection during acute myocardial infarction and reperfusion. PMID:26800973

  16. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT

    PubMed Central

    2010-01-01

    Background To date, stress cardiovascular magnetic resonance (CMR) has relied on pharmacologic agents, and therefore lacked the physiologic information available only with exercise stress. Methods 43 patients age 25 to 81 years underwent a treadmill stress test incorporating both Tc99m SPECT and CMR. After rest Tc99m SPECT imaging, patients underwent resting cine CMR. Patients then underwent in-room exercise stress using a partially modified treadmill. 12-lead ECG monitoring was performed throughout. At peak stress, Tc99m was injected and patients rapidly returned to their prior position in the magnet for post-exercise cine and perfusion imaging. The patient table was pulled out of the magnet for recovery monitoring. The patient was sent back into the magnet for recovery cine and resting perfusion followed by delayed post-gadolinium imaging. Post-CMR, patients went to the adjacent SPECT lab to complete stress nuclear imaging. Each modality's images were reviewed blinded to the other's results. Results Patients completed on average 9.3 ± 2.4 min of the Bruce protocol. Stress cine CMR was completed in 68 ± 14 sec following termination of exercise, and stress perfusion CMR was completed in 88 ± 8 sec. Agreement between SPECT and CMR was moderate (κ = 0.58). Accuracy in eight patients who underwent coronary angiography was 7/8 for CMR and 5/8 for SPECT (p = 0.625). Follow-up at 6 months indicated freedom from cardiovascular events in 29/29 CMR-negative and 33/34 SPECT-negative patients. Conclusions Exercise stress CMR including wall motion and perfusion is feasible in patients with suspected ischemic heart disease. Larger clinical trials are warranted based on the promising results of this pilot study to allow comparative effectiveness studies of this stress imaging system vs. other stress imaging modalities. PMID:20624294

  17. Comparison of myocardial ischemia during intense mental stress using flight simulation in airline pilots with coronary artery disease to that produced with conventional mental and treadmill exercise stress testing.

    PubMed

    Doorey, Andrew; Denenberg, Barry; Sagar, Vidya; Hanna, Tracy; Newman, Jack; Stone, Peter H

    2011-09-01

    Mental stress increases cardiovascular morbidity and mortality. Although laboratory mental stress often causes less myocardial ischemia than exercise stress (ES), it is unclear whether mental stress is intrinsically different or differences are due to less hemodynamic stress with mental stress. We sought to evaluate the hemodynamic and ischemic response to intense realistic mental stress created by modern flight simulators and compare this response to that of exercise treadmill testing and conventional laboratory mental stress (CMS) testing in pilots with coronary disease. Sixteen airline pilots with angiographically documented coronary disease and documented myocardial ischemia during ES were studied using maximal treadmill ES, CMS, and aviation mental stress (AMS) testing. AMS testing was done in a sophisticated simulator using multiple system failures as stressors. Treadmill ES testing resulted in the highest heart rate, but AMS caused a higher blood pressure response than CMS. Maximal rate-pressure product was not significantly different between ES and AMS (25,646 vs 23,347, p = 0.08), although these were higher than CMS (16,336, p <0.0001). Despite similar hemodynamic stress induced by ES and AMS, AMS resulted in significantly less ST-segment depression and nuclear ischemia than ES. Differences in induction of ischemia by mental stress compared to ES do not appear to be due to the creation of less hemodynamic stress. In conclusion, even with equivalent hemodynamic stress, intense realistic mental stress induced by flight simulators results in significantly less myocardial ischemia than ES as measured by ST-segment depression and nuclear ischemia. PMID:21723529

  18. Caffeine reduces the sensitivity of vasodilator MPI for the detection of myocardial ischaemia: Pro.

    PubMed

    Reyes, Eliana

    2016-06-01

    Caffeine is a non-selective antagonist at the adenosine receptors, which is expected to reverse both the intended (coronary vasodilation) and unintended (hypotension, flushing) effects of exogenously administered adenosine and adenosine-related compounds. In the past, several studies were conducted to characterize the effect of caffeine on vasodilator myocardial perfusion imaging (MPI) with conflicting results. However, new evidence supports earlier observations and shows that recent caffeine intake attenuates vasodilator-induced myocardial hyperaemia and may therefore reduce the sensitivity of radionuclide MPI for the detection of inducible perfusion abnormality in patients with coronary artery disease. Although the magnitude of this effect and hence its clinical significance are dose dependent, the acute response to equivalent doses of caffeine varies largely among individuals, and this might be explained by differences in caffeine exposure and genetically determined variations in caffeine metabolism. Abstinence from caffeinated foods and beverages for a minimum of 12 hours before vasodilator stress is therefore recommended although longer abstention might be required in order to prevent the potentially blocking effect of residual caffeine on vasodilator-mediated actions. PMID:26883776

  19. Selection of patients for preoperative coronary angiography: use of dipyridamole-stress--thallium myocardial imaging

    SciTech Connect

    Brewster, D.C.; Okada, R.D.; Strauss, H.W.; Abbott, W.M.; Darling, R.C.; Boucher, C.A.

    1985-05-01

    To identify patients likely to benefit from preoperative coronary angiography, a method utilizing pharmacologically induced coronary vasodilatation in conjunction with serial thallium 201 myocardial perfusion imaging was investigated. Fifty-four patients admitted for elective aortic or femoropopliteal procedures were studied. There were no cardiac ischemic complications in 32 patients with normal scans or persistent defects (scar). In contrast, 7 of 15 patients with thallium redistribution (ischemia) on pre-operative scanning had perioperative ischemic events, including one death and two acute infarcts. An additional seven patients with positive scans (redistribution) underwent coronary angiography prior to vascular surgery; surgically important two- or three-vessel disease was confirmed in all. Dipyridamole-thallium imaging facilitates selection of the subset of truly high-risk patients in whom preoperative coronary angiography may be warranted.

  20. Prevalence of and variables associated with silent myocardial ischemia on exercise thallium-201 stress testing

    SciTech Connect

    Gasperetti, C.M.; Burwell, L.R.; Beller, G.A. )

    1990-07-01

    The prevalence of silent myocardial ischemia was prospectively assessed in a group of 103 consecutive patients (mean age 59 +/- 10 years, 79% male) undergoing symptom-limited exercise thallium-201 scintigraphy. Variables that best correlated with the occurrence of painless ischemia by quantitative scintigraphic criteria were examined. Fifty-nine patients (57%) had no angina on exercise testing. A significantly greater percent of patients with silent ischemia than of patients with angina had a recent myocardial infarction (31% versus 7%, p less than 0.01), had no prior angina (91% versus 64%, p less than 0.01), had dyspnea as an exercise test end point (56% versus 35%, p less than 0.05) and exhibited redistribution defects in the supply regions of the right and circumflex coronary arteries (50% versus 35%, p less than 0.05). The group with exercise angina had more ST depression (64% versus 41%, p less than 0.05) and more patients with four or more redistribution defects. However, there was no difference between the two groups with respect to mean total thallium-201 perfusion score, number of redistribution defects per patient, multi-vessel thallium redistribution pattern or extent of angiographic coronary artery disease. There was also no difference between the silent ischemia and angina groups with respect to antianginal drug usage, prevalence of diabetes mellitus, exercise duration, peak exercise heart rate, peak work load, peak double (rate-pressure) product and percent of patients achieving greater than or equal to 85% of maximal predicted heart rate for age. Thus, in this study group, there was a rather high prevalence rate of silent ischemia (57%) by exercise thallium-201 criteria.

  1. Value and limitations of segmental analysis of stress thallium myocardial imaging for localization of coronary artery disease

    SciTech Connect

    Rigo, P.; Bailey, I.K.; Griffith, L.S.C.; Pitt, B.; Borow, R.D.; Wagner, H.N.; Becker, L.C.

    1980-05-01

    This study was done to determine the value of thallium-201 myocardial scintigraphic imaging (MSI) for identifying disease in the individual coronary arteries. Segmental analysis of rest and stress MSI was performed in 133 patients with ateriographically proved coronary artery disease (CAD). Certain scintigraphic segments were highly specific (97 to 100%) for the three major coronary arteries: anterior wall and septum for the left anterior descending (LAD) coronary artery; the inferior wall for the right coronary artery (RCA); and the proximal lateral wall for the circumflex (LCX) artery. Perfusion defects located in the anterolateral wall in the anterior view were highly specific for proximal disease in the LAD involving the major diagonal branches, but this was not true for septal defects. The apical segments were not specific for any of the three major vessels. Although MSI was abnormal in 89% of these patients with CAD, it was less sensitive for identifying individual vessel disease: 63% for LAD, 50% for RCA, and 21% for LCX disease (narrowings > = 50%). Sensitivity increased with the severity of stenosis, but even for 100% occlusions was only 87% for LAD, 58% for RCA and 38% for LCX. Sensitivity diminished as the number of vessels involved increased: with single-vessel disease, 80% of LAD, 54% of RAC and 33% of LCX lesions were detected, but in patients with triple-vessel disease, only 50% of LAD, 50% of RCA and 16% of LCX lesions were identified. Thus, although segmented analysis of MSI can identify disease in the individual coronary arteries with high specificity, only moderate sensitivity is achieved, reflecting the tendency of MSI to identify only the most severely ischemic area among several that may be present in a heart. Perfusion scintigrams display relative distributions rather than absolute values for myocardial blood flow.

  2. Ventricular Ectopy: Impact of Self-reported Stress following Myocardial Infarction

    PubMed Central

    Smith, Patrick J.; Blumenthal, James A.; Babyak, Michael A.; Georgiades, Anastasia; Sherwood, Andrew; Sketch, Michael H.; Watkins, Lana L.

    2007-01-01

    Background Although psychological stress has been implicated in the pathogenesis of ventricular arrhythmias, the relationship between self-reported stress and ventricular ectopy has not been evaluated under naturalistic conditions in acute post-MI patients, a group at elevated risk for arrhythmias. Methods Diary-reported stress was measured during 24-hour Holter monitoring in 80 patients (52 men, 28 women) approximately 12 weeks following MI. In addition, state and trait anxiety were measured using the Spielberger State and Trait anxiety inventory (STAI), administered at the beginning of the 24-hour holter monitoring session. The relationship between diary reported stress, anxiety, and ventricular ectopy was evaluated. Results Mean diary-reported stress (β= .29, p = .01) was associated with total ventricular ectopy. State anxiety was also associated with 24-hour ectopy (β= .24, p = .04); however, trait anxiety was not significantly associated with ectopy. Temporal analyses of the relationship between stress and ectopy showed that diary-reported stress was associated with an increase in the number of VPBs occurring in the following hour (B = 0.74, p < .0001). Conclusions These findings extend existing evidence linking psychological factors to ventricular arrhythmias by demonstrating that psychological stress predicts increased arrhythmic activity during routine daily activities in post-MI patients. PMID:17174651

  3. Absolute Quantitation of Myocardial Blood Flow in Human Subjects with or without Myocardial Ischemia using Dynamic Flurpiridaz F 18 Positron Emission Tomography

    PubMed Central

    Packard, René R. S.; Huang, Sung-Cheng; Dahlbom, Magnus; Czernin, Johannes; Maddahi, Jamshid

    2015-01-01

    Absolute quantitation of myocardial blood flow (MBF) by positron emission tomography (PET) is an established method of analyzing coronary artery disease (CAD) but subject to the various shortcomings of available radiotracers. Flurpiridaz F 18 is a novel PET radiotracer which exhibits properties of an ideal tracer. Methods A new absolute perfusion quantitation method with Flurpiridaz was developed, taking advantage of the early kinetics and high first-pass extraction by the myocardium of this radiotracer, and the first in human measurements of MBF performed in 7 normal subjects and 8 patients with documented CAD. PET images with time-activity curves were acquired at rest and during adenosine stress. Results In normal subjects, regional MBF between coronary artery territories did not differ significantly, leading to a mean global MBF of 0.73 mL/min/g at rest and 2.53 mL/min/g during stress, with a mean global myocardial flow reserve (MFR) of 3.70. CAD vascular territories with <50% stenosis demonstrated a mean MBF of 0.73 at rest and 2.02 during stress, leading to a mean MFR of 2.97. CAD vascular territories with ≥50% stenosis exhibited a mean MBF of 0.86 at rest and 1.43 during stress, leading to a mean MFR of 1.86. Differences in stress MBF and MFR between normal and CAD territories, as well as between <50% and ≥50% stenosis vascular territories, were significant (P<0.01). Conclusion Absolute quantitation of MBF in humans with the novel PET radiotracer Flurpiridaz is feasible over a wide range of cardiac flow in the presence or absence of stress-inducible myocardial ischemia. The significant decrease in stress MBF and ensuing MFR in CAD territories allows a clear distinction between vascular territories exhibiting stress-inducible myocardial ischemia and those with normal perfusion. PMID:25071096

  4. Technetium-99m sestamibi myocardial imaging: same-day rest-stress studies and dipyridamole.

    PubMed

    Taillefer, R

    1990-10-16

    Unlike thallium-201, technetium-99m (Tc-99m) sestamibi does not redistribute in the myocardium after injection. Thus, 2 separate injections, 1 at rest and the other at stress (or after dipyridamole), are required to differentiate ischemia from scar. From a physical viewpoint, a 24-hour interval between the 2 injections is preferable for detection of coronary artery disease (CAD) with Tc-99m sestamibi imaging. However, same-day studies are more convenient in clinical practice. Results of studies using different Tc-99m sestamibi injection protocols are presented with emphasis on the advantages of a rest-stress injection sequence with a low dose at rest (7 mCi) followed 2 hours later by a higher dose at stress (25 mCi). A prospective study was conducted in a patient population with proven CAD using same-day studies to compare a rest-stress (7 and 25 mCi, respectively) to a stress-rest (7 and 25 mCi) Tc-99m sestamibi injection sequence. There was an agreement in 87.3% of the analyzed segments between the 2 protocols. However, the largest discordance for type of defect applied to 7.4% of the segments judged ischemic in the rest-stress protocol, which were called scars on stress-rest. This study showed that a rest-stress sequence is preferable when using a same-day protocol with a short time interval (less than 2 hours) between the 2 Tc-99m sestamibi injections because the rest image performed initially represents a "true" rest study, which is not necessarily the case with the stress-rest sequence. Preliminary studies were performed to evaluate dipyridamole with Tc-99m sestamibi imaging in normal subjects and in patients with CAD. These studies showed that treadmill and dipyridamole Tc-99m sestamibi imaging are comparable and the results are similar to those obtained with thallium-201. PMID:2145751

  5. Adenosine and Bone Metabolism

    PubMed Central

    Mediero, Aránzazu; Cronstein, Bruce N.

    2013-01-01

    Bone is a dynamic organ that undergoes continuous remodeling whilst maintaining a balance between bone formation and resorption. Osteoblasts, which synthesize and mineralize new bone, and osteoclasts, the cells that resorb bone, act in concert to maintain bone homeostasis. In recent years, there has been increasing appreciation of purinergic regulation of bone metabolism. Adenosine, released locally, mediates its physiologic and pharmacologic actions via interactions with G-protein coupled receptors and recent work has indicated that these receptors are involved in the regulation of osteoclast differentiation and function, as well as osteoblast differentiation and bone formation. Moreover, adenosine receptors also regulate chondrocyte and cartilage homeostasis. These recent findings underscore the potential therapeutic importance of adenosine receptors in regulating bone physiology and pathology. PMID:23499155

  6. Adenosine receptor interactions and anxiolytics.

    PubMed

    Bruns, R F; Katims, J J; Annau, Z; Snyder, S H; Daly, J W

    1983-12-01

    [3H]-N6-cyclohexyladenosine and [3H]-1,3-diethyl-8-phenylxanthine label the A1 subtype of adenosine receptor in brain membranes. The affinities of methylxanthines in competing for A1 adenosine receptors parallel their potencies as locomotor stimulants. The adenosine agonist N6-(phenylisopropyl) adenosine is a potent locomotor depressant. Both diazepam and N6-(L-phenylisopropyl)adenosine cause locomotor stimulation in a narrow range of subdepressant doses. Combined stimulant doses of the two agents depress motor activity, as do larger doses of either one, given separately. Evidence supporting and against the hypothesis that some of the actions of benzodiazepines are mediated via the adenosine system is reviewed. A number of compounds interact with both systems, probably because of physico-chemical similarities between adenosine and diazepam. It is concluded that of the four classic actions of benzodiazepines, the sedative and muscle relaxant (but not anxiolytic or anticonvulsant) actions could possibly be mediated by adenosine. PMID:6199685

  7. The adenosine system modulates Toll-like receptor function: basic mechanisms, clinical correlates and translational opportunities

    PubMed Central

    Coombs, Melanie R. Power; Belderbos, Mirjam E.; Gallington, Leighanne C.; Bont, Louis; Levy, Ofer

    2014-01-01

    Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar during stress or hypoxia. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate (cAMP). Adenosine congeners are used clinically to treat arrhythmias and apnea of prematurity. Herein we consider the potential of adenosine congeners as innate immune response modifiers to prevent and/or treat infection. PMID:21342073

  8. Adenosine in fibrosis

    PubMed Central

    Chan, Edwin S. L.

    2011-01-01

    Adenosine is an endogenous autocoid that regulates a multitude of bodily functions. Its anti-inflammatory actions are well known to rheumatologists since it mediates many of the anti-inflammatory effects of a number of antirheumatic drugs such as methotrexate. However, inflammatory and tissue regenerative responses are intricately linked, with wound healing being a prime example. It has only recently been appreciated that adenosine has a key role in tissue regenerative and fibrotic processes. An understanding of these processes may shed new light on potential therapeutic options in diseases such as scleroderma where tissue fibrosis features prominently. PMID:19949965

  9. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    SciTech Connect

    El-Mas, Mahmoud M. Abdel-Rahman, Abdel A.

    2015-09-15

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E{sub 2} modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E{sub 2} (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt{sub max}) and systolic (SBP) and diastolic (DBP) blood pressures in E{sub 2}-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E{sub 2} promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E{sub 2} for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E{sub 2}-treated rats. • E{sub 2}/ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E{sub 2}/ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E{sub 2}.

  10. Changes in endothelium-derived vascular regulatory factors during dobutamine-stress-induced silent myocardial ischemia in patients with Kawasaki disease.

    PubMed

    Hino, Y; Ohkubo, T; Katsube, Y; Ogawa, S

    1999-07-01

    The changes in endothelium-derived vascular regulatory factors during dobutamine (DOB)-induced myocardial ischemia (MI) were investigated in 21 patients with Kawasaki disease aged from 11 months to 18 years. They were classified into an ischemia group (8 patients) and a non-ischemia group (13 patients) based on the results of 99mTc myocardial scintigraphy and DOB stress 99mTc myocardial scintigraphy. In the ischemia group, MI was relatively mild, because there were ischemic changes on the electrocardiogram and no significant symptoms during DOB stress. Catheters were positioned near the orifice of the coronary artery (Ao) and at the coronary sinus (CS). Hemodynamics and the blood concentrations of lactic acid and endothelin-1, as well as NO3-, 6-keto-prostaglandin F1alpha, and thromboxane B2, (which are inactive metabolites of nitric oxide, prostaglandin I2 and thromboxane A2, respectively), were measured at rest and after DOB stress (maximum dose: 30 microg x kg(-1) x min(-1)). The CS/Ao ratio was determined for all parameters. The rate-pressure product, an index of work load, and the cardiac index were significantly increased by DOB stress in both groups. Coronary angiography showed no vasospasm of the epicardial coronary arteries before or after DOB stress in either group. The plasma concentrations of endothelin-1 and 6-keto-prostaglandin F1alpha were significantly increased after DOB stress in the ischemia group, but the serum concentration of NO did not increase. The lack of an increase in NO production during DOB stress may have contributed to the worsening of MI in patients with Kawasaki disease. PMID:10462014

  11. Dipyridamole thallium-201 myocardial scintigraphy

    SciTech Connect

    Not Available

    1988-09-01

    Thallium-201 (/sup 201/Tl) myocardial scintigraphy is a sensitive technique for detecting coronary artery disease. Standardized exercise testing is the most common method for inducing myocardial stress for /sup 201/Tl imaging. Unfortunately, a significant number of patients are unable to undergo adequate treadmill or bicycle exercise. In these patients, pharmacologic stress with dipyridamole provides a safe, efficacious, and reliable alternative.

  12. Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium.

    PubMed

    Kemeny-Beke, Adam; Jakab, Anita; Zsuga, Judit; Vecsernyes, Miklos; Karsai, Denes; Pasztor, Fanni; Grenczer, Maria; Szentmiklosi, Andras Jozsef; Berta, Andras; Gesztelyi, Rudolf

    2007-08-01

    The aim of the present study was to test the hypothesis that inhibition of adenosine deaminase (ADA) enhances the efficiency of signal-transduction of myocardial A1 adenosine receptors in hyperthyroidism. The inotropic response to N6-cyclopentyladenosine (CPA), a selective A1 adenosine receptor agonist resistant to ADA, was investigated in the absence or presence of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an ADA and cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) inhibitor, or of pentostatin (2'-deoxycoformycin; DCF), an exclusive ADA inhibitor, in left atria isolated from eu- or hyperthyroid guinea pigs. Both ADA inhibitors enhanced the effect of CPA only in hyperthyroid atria. EHNA significantly increased the Emax (mean+/-S.E.M.) from 83.8+/-1.2% to 93.4+/-1.2%, while DCF significantly decreased the logEC50 from -7.5+/-0.07 to -7.83+/-0.07 in hyperthyroid samples. Conversely, EHNA also diminished the logEC50 (from -7.5+/-0.07 to -7.65+/-0.07) and DCF also raised the Emax (from 83.8+/-1.2% to 85.7+/-2%) in hyperthyroidism, but these changes were not significant. In conclusion, ADA inhibition moderately but significantly enhanced the efficiency of A(1) adenosine receptor signaling pathway in the hyperthyroid guinea pig atrium. This suggests that elevated intracellular adenosine level caused by ADA inhibition may improve the suppressed responsiveness to A1 adenosine receptor agonists associated with the hyperthyroid state. Alternatively or in addition, the role of decreased concentration of adenosine degradation products cannot be excluded. Furthermore, in the case of EHNA, inhibition of PDE2 also appears to contribute to the enhanced A1 adenosine receptor signaling in the hyperthyroid guinea pig atrium. PMID:17574432

  13. Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice

    PubMed Central

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Hao, Enkui

    2016-01-01

    Elderly patients are susceptible to sepsis. LPS induced myocardial injury is a widely used animal model to assess sepsis induced cardiac dysfunction. The age dependent mechanisms behind sepsis susceptibility were not studied. We analyzed age associated changes to cardiac function, cell death, inflammation, oxidative stress, and autophagy in LPS induced myocardial injury. Both young and aged C57BL/6 mice were used for LPS administration. The results demonstrated that LPS induced more cardiac injury (creatine kinase, lactate dehydrogenase, troponin I, and cardiac myosin-light chains 1), cardiac dysfunction (left ventricular inner dimension, LVID, and ejection fraction (EF)), cell death, inflammation, and oxidative stress in aged mice compared to young mice. However, a significant age dependent decline in autophagy was observed. Translocation of Transcription Factor EB (TFEB) to nucleus and formation of LC3-II were significantly reduced in LPS administered aged mice compared to young ones. In addition to that, downstream effector of TFEB, LAMP-1, was induced in response to LPS challenge in young mice. The present study newly demonstrates that TFEB mediated autophagy is crucial for protection against LPS induced myocardial injury particularly in aging senescent heart. Targeting this autophagy-oxidative stress-inflammation-cell death axis may provide a novel therapeutic strategy for cardioprotection in the elderly. PMID:27200146

  14. Oxidative Stress-Related Biomarkers in Essential Hypertension and Ischemia-Reperfusion Myocardial Damage

    PubMed Central

    Rodrigo, Ramón; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Cardiovascular diseases are a leading cause of mortality and morbidity worldwide, with hypertension being a major risk factor. Numerous studies support the contribution of reactive oxygen and nitrogen species in the pathogenesis of hypertension, as well as other pathologies associated with ischemia/reperfusion. However, the validation of oxidative stress-related biomarkers in these settings is still lacking and novel association of these biomarkers and other biomarkers such as endothelial progenitor cells, endothelial microparticles, and ischemia modified albumin, is just emerging. Oxidative stress has been suggested as a pathogenic factor and therapeutic target in early stages of essential hypertension. Systolic and diastolic blood pressure correlated positively with plasma F2-isoprostane levels and negatively with total antioxidant capacity of plasma in hypertensive and normotensive patients. Cardiac surgery with extracorporeal circulation causes an ischemia/reperfusion event associated with increased lipid peroxidation and protein carbonylation, two biomarkers associated with oxidative damage of cardiac tissue. An enhancement of the antioxidant defense system should contribute to ameliorating functional and structural abnormalities derived from this metabolic impairment. However, data have to be validated with the analysis of the appropriate oxidative stress and/or nitrosative stress biomarkers. PMID:24347798

  15. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway

    PubMed Central

    Li, Hua; Song, Fan; Duan, Lin-Rui; Sheng, Juan-Juan; Xie, Yan-Hua; Yang, Qian; Chen, Ying; Dong, Qian-Qian; Zhang, Bang-Le; Wang, Si-Wang

    2016-01-01

    Paeonol and danshensu is the representative active ingredient of traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizae, respectively. Paeonol and danshensu combination (PDSS) has putative cardioprotective effects in treating ischemic heart disease (IHD). However, the evidence for the protective effect is scarce and the pharmacological mechanisms of the combination remain unclear. The present study was designed to investigate the protective effect of PDSS on isoproterenol (ISO)-induced myocardial infarction in rats and to elucidate the potential mechanism. Assays of creatine kinase-MB, cardiac troponin I and T and histopathological analysis revealed PDSS significantly prevented myocardial injury induced by ISO. The ISO-induced profound elevation of oxidative stress was also suppressed by PDSS. TUNEL and caspase-3 activity assay showed that PDSS significantly inhibited apoptosis in myocardia. In exploring the underlying mechanisms of PDSS, we found PDSS enhanced the nuclear translocation of Nrf2 in myocardial injured rats. Furthermore, PDSS increased phosphorylated PI3K and Akt, which may in turn activate antioxidative and antiapoptotic signaling events in rat. These present findings demonstrated that PDSS exerts significant cardioprotective effects against ISO-induced myocardial infarction in rats. The protective effect is, at least partly, via activation of Nrf2/HO-1 signaling and involvement of the PI3K/Akt cell survival signaling pathway. PMID:27021411

  16. Middle age aggravates myocardial ischemia through surprising upholding of complex II activity, oxidative stress, and reduced coronary perfusion.

    PubMed

    Mourmoura, Evangelia; Leguen, Marie; Dubouchaud, Hervé; Couturier, Karine; Vitiello, Damien; Lafond, Jean-Luc; Richardson, Melanie; Leverve, Xavier; Demaison, Luc

    2011-09-01

    Aging compromises restoration of the cardiac mechanical function during reperfusion. We hypothesized that this was due to an ampler release of mitochondrial reactive oxygen species (ROS). This study aimed at characterising ex vivo the mitochondrial ROS release during reperfusion in isolated perfused hearts of middle-aged rats. Causes and consequences on myocardial function of the observed changes were then evaluated. The hearts of rats aged 10- or 52-week old were subjected to global ischemia followed by reperfusion. Mechanical function was monitored throughout the entire procedure. Activities of the respiratory chain complexes and the ratio of aconitase to fumarase activities were determined before ischemia and at the end of reperfusion. H(2)O(2) release was also evaluated in isolated mitochondria. During ischemia, middle-aged hearts displayed a delayed contracture, suggesting a maintained ATP production but also an increased metabolic proton production. Restoration of the mechanical function during reperfusion was however reduced in the middle-aged hearts, due to lower recovery of the coronary flow associated with higher mitochondrial oxidative stress indicated by the aconitase to fumarase ratio in the cardiac tissues. Surprisingly, activity of the respiratory chain complex II was better maintained in the hearts of middle-aged animals, probably because of an enhanced preservation of its membrane lipid environment. This can explain the higher mitochondrial oxidative stress observed in these conditions, since cardiac mitochondria produce much more H(2)O(2) when they oxidize FADH(2)-linked substrates than when they use NADH-linked substrates. In conclusion, the lower restoration of the cardiac mechanical activity during reperfusion in the middle-aged hearts was due to an impaired recovery of the coronary flow and an insufficient oxygen supply. The deterioration of the coronary perfusion was explained by an increased mitochondrial ROS release related to the

  17. Assesment of Myocardial Ischemia by Combination of Tissue Synchronisation Imaging and Dobutamine Stress Echocardiography

    PubMed Central

    Aksakal, Enbiya; Gurlertop, Yekta; Simsek, Ziya; Gundogdu, Fuat; Sevimli, Serdar; Bakirci, Eftal Murat; Karakelleoglu, Sule

    2013-01-01

    Background and Objectives Dobutamine stress echocardiography (DSE) is an important non-invasive imaging method for evaluating ischemia. However, wall motion interpretation can be impaired by the experience level of the interpreter and the subjectivity of the visual assessment. In our study we aimed to combine DSE and tissue syncronisation imaging to increase sensitivity for detecting ischemia. Subjects and Methods 50 patients with indications for DSE were included in the study. In 25 patients we found DSE positive for ischemia and in the other 25 patients we found it to be negative. The negative group was accepted as the control group. There was no significant difference in terms of risk factors and echocardiographic parameters between the two groups, except for wall motion scores. In both groups, left ventricular dyssychrony was accepted as the difference between time to peak systolic velocity (Ts) in the reciprocal four couple of non-apical segments at rest and during peak stress. Timings were corrected for heart rate. We compared the differences of the dyssynchronisation value at rest and during peak stress to determine the distinctions within the groups and between the groups of DSE positive and negative patients. Results We found that stress and ischemia did not create any significant difference over the left intraventricular dyssynchrony with DSE, although at the segmenter level it prolonged the time to peak systolic velocity (p<0.05). These alterations did not show any significant difference between positive and negative DSE groups. Conclusion As a result, this segmenter dyssynchrony and the time to peak systolic velocity, which is corrected for heart rate, did not enhance any new value over DSE for detecting ischemia. PMID:23882287

  18. Soy Isoflavone Protects Myocardial Ischemia/Reperfusion Injury through Increasing Endothelial Nitric Oxide Synthase and Decreasing Oxidative Stress in Ovariectomized Rats

    PubMed Central

    Tang, Yan; Li, Shuangyue; Zhang, Ping; Zhu, Jinbiao; Meng, Guoliang; Xie, Liping; Yu, Ying; Ji, Yong; Han, Yi

    2016-01-01

    There is a special role for estrogens in preventing and curing cardiovascular disease in women. Soy isoflavone (SI), a soy-derived phytoestrogen, has similar chemical structure to endogenous estrogen-estradiol. We investigate to elucidate the protective mechanism of SI on myocardial ischemia/reperfusion (MI/R) injury. Female SD rats underwent bilateral ovariectomy. One week later, rats were randomly divided into several groups, sham ovariectomy (control group), ovariectomy with MI/R, or ovariectomy with sham MI/R. Other ovariectomy rats were given different doses of SI or 17β-estradiol (E2). Four weeks later, they were exposed to 30 minutes of left coronary artery occlusion followed by 6 or 24 hours of reperfusion. SI administration significantly reduced myocardial infarct size and improved left ventricle function and restored endothelium-dependent relaxation function of thoracic aortas after MI/R in ovariectomized rats. SI also decreased serum creatine kinase and lactate dehydrogenase activity, reduced plasma malonaldehyde, and attenuated oxidative stress in the myocardium. Meanwhile, SI increased phosphatidylinositol 3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) signal pathway. SI failed to decrease infarct size of hearts with I/R in ovariectomized rats if PI3K was inhibited. Overall, these results indicated that SI protects myocardial ischemia/reperfusion injury in ovariectomized rats through increasing PI3K/Akt/eNOS signal pathway and decreasing oxidative stress. PMID:27057277

  19. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress

    PubMed Central

    Prasad, Vikram; Lorenz, John N.; Miller, Marian L.; Vairamani, Kanimozhi; Nieman, Michelle L.; Wang, Yigang; Shull, Gary E.

    2013-01-01

    Acute inhibition of the NHE1 Na+/H+ exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1−/− mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1−/− hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1−/− hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1−/− hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat dietinduced stress was attenuated in Nhe1−/− hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1−/− mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. PMID:24080184

  20. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    PubMed

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. PMID:24080184

  1. Vitamin E attenuates myocardial oxidative stress induced by DHEA in rested and exercised rats.

    PubMed

    Goldfarb, A H; McIntosh, M K; Boyer, B T

    1996-02-01

    Sixty-four male Sprague-Dawley rats were randomly assigned to one of eight treatment groups to determine whether vitamin E (VitE) could help protect the heart from oxidative stress induced by either dehydroepiandrosterone (DHEA) or exercise. Oxidative stress was indicated by lipid peroxidation [i.e., thiobarbituric acid-reactive substances (TBARS)] and two scavenger enzymes. VitE supplementation (250 IU VitE/kg of diet) was given to one-half of the rats. DHEA acetate (0.35 mol/kg body wt) was injected intraperitoneally to one-half of the animals while the others were injected with corn oil vehicle. All treatments lasted for 5 wk. Next, 32 rats were randomly assigned to run for 1 h on a motorized rodent treadmill at 21 m/min up a 12% grade and then were killed. The remaining rats were killed at rest. Exercise increased TBARS in heart independent of treatment (1.94 +/- 0.12 vs. 2.43 +/- 0.11 nmol/mg protein). VitE attenuated the amount of TBARS in heart when DHEA was given. DHEA significantly increased TBARS in heart. Total and selenium-dependent glutathione peroxidase activities in heart were unaffected by any treatment. DHEA increased catalase activity at rest. Exercise increased catalase activity (71.5 +/- 7.9 vs. 97.4 +/- 9.5 mu mol x min-1 x mg protein-1); however, when VitE was given, the response to exercise was attenuated (74.1 +/- 8.4 vs. 80.9 +/- 9.9 mu mol center dot min-1 x mg protein-1). These results suggest that aerobic exercise and DHEA are mild oxidative stressors on the heart and that VitE supplementation can be beneficial in attenuating these combined stressors on the heart. PMID:8929588

  2. The response of the heart to stress: a biological view of myocardial adaptation and failure.

    PubMed

    Alpert, N R; Mulieri, L A

    1987-01-01

    The response of the myocardium to persistent stress involves an increase in mass and a restructuring of the cellular and subcellular elements. The experiments described in this article are designed to test the hypothesis that the restructuring of the various systems (contractile, excitation-contraction coupling, recovery, etc.) that occurs in adaptive hypertrophy is a coordinated (matched) process. When the restructuring of the systems in response to stress occurs in an uncoordinated fashion, congestive heart failure results. In addition to controls, three heart models with normal pump performance are used (control, C; pressure overload, P; thyrotoxic, T; and pressure overload plus thyrotoxic, PT4) and one with inadequate pump performance (pressure overload plus thyrotoxic, PT2). In this analysis the contractile and excitation-contraction coupling systems are evaluated. The former is assessed by sensitive myothermal measurement of tension dependent heat (TDH) normalized for the isometric tension time integral (integral of Pdt). The latter is assessed from measurement of the time to peak isometric tension (TPT). The TDH/integral of Pdt (mu cal/g.cm.s) and TPT (ms) for the C, P, T, PT4, and PT2 hearts are 2.4, 1.8, 5.2, 5.1, and 0.1, mu cal/g.cm.s and 627, 816, 352, 484, and 465 ms, respectively. According to the coordination or matching hypothesis, if TDH/integral of Pdt is low, then TPT should be increased, or if TDH/integral of Pdt is high, then TPT should be decreased. Relative to control hearts, matched restructuring of the contractile and excitation-contraction coupling systems occurred for the P, T, and PT4 preparations. In these animals the hypertrophy has been adaptive and the pump performance is adequate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2485028

  3. Adenosine decreases post-ischaemic cardiac TNF-alpha production: anti-inflammatory implications for preconditioning and transplantation.

    PubMed Central

    Meldrum, D R; Cain, B S; Cleveland, J C; Meng, X; Ayala, A; Banerjee, A; Harken, A H

    1997-01-01

    Tumour necrosis factor-alpha (TNF-alpha) is an autocrine contributor to myocardial dysfunction and cardiomyocyte death in ischaemia-reperfusion injury (I/R), sepsis, chronic heart failure and cardiac allograft rejection. Cardiac resident macrophages, infiltrating leucocytes, and cardiomyocytes themselves produce TNF-alpha. Although adenosine reduces macrophage TNF-alpha production and protects myocardium against I/R, it remains unknown whether I/R induces an increase in cardiac TNF-alpha in a crystalloid-perfused model (in the absence of blood), and, whether adenosine decreases cardiac TNF-alpha and protects function after I/R. To study this, isolated rat hearts were crystalloid-perfused using the Langendorff method and subjected to I/R, with or without adenosine pretreatment. Post-ischaemic cardiac TNF-alpha (enzyme-linked immunosorbent assay and bioassay) and function were determined (Langendorff). I/R increased cardiac TNF-alpha and impaired myocardial function. Adenosine decreased cardiac TNF-alpha and improved post-ischaemic functional recovery. This study demonstrates that: first, I/R induces an increase in cardiac tissue TNF-alpha in a crystalloid-perfused model: second, adenosine decreases cardiac TNF-alpha and improves post-ischaemic myocardial function; third, decreased cardiac TNF-alpha may represent a mechanism by which adenosine protects myocardium; and fourth, adenosine-induced suppression of cardiac TNF-alpha may provide an anti-inflammatory link to preconditioning and have implications for cardiac allograft preservation. PMID:9497488

  4. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  5. Rabbit chronic ileitis leads to up-regulation of adenosine A1/A3 gene products, oxidative stress, and immune modulation.

    PubMed

    Sundaram, Uma; Hassanain, Hamdy; Suntres, Zacharias; Yu, Jun Ge; Cooke, Helen J; Guzman, Jorge; Christofi, Fievos L

    2003-05-01

    A rabbit model of chronic ileitis has helped decipher the mechanism of alteration of multiple electrolyte and nutrient malabsorptions in inflammatory bowel disease (IBD). This study examined alterations in the adenosine A1/A3 receptor, oxidant, antioxidant, and immune-inflammatory pathways in chronic ileitis. Chronic ileal inflammation was induced 13-15 days after infection with 10,000 Eimeria magna oocytes. Quantitative analysis in 16 rabbits was done for oxidants, antioxidants, A1 and A3 transcripts, transport, injury, and inflammatory mediators. Inflamed gut had villus blunting, crypt hyperplasia and fusion, and immune cell infiltration. Alkaline phosphatase and Na-glucose co-transport were reduced by 78% (P=0.001) and 89% (P=0.001), respectively. Real-time fluorescence monitoring (TaqMan)-polymerase chain reaction revealed a transcriptional up-regulation of 1.34-fold for A1 and 5.40-fold for A3 receptors in inflamed gut. Lipid peroxidation increased in the mucosa (78%, P=0.012), longitudinal muscle-myenteric plexus (118%, P=0.042), and plasma (104%, P=0.001). Mucosal antioxidants were altered by inflammation: reductions occurred in superoxide dismutase (32%, P=0.001) and catalase (43%, P=0.001), whereas increases occurred in glutathione (75%, P=0.0271) and glutathione reductase (86%, P=0.0007). Oxidant enzyme activities were elevated by 21% for xanthine oxidase (P=0.004), 172% for chloramine (P=0.022), 47% for gelatinase (P=0.041), and 190% for myeloperoxidase (P=0.002). Mast cell tryptase increased by 79% (P=0.006). Increases occurred in the plasma concentration of leukotriene B(4) (13-fold, P=0.003), thromboxane B(2) (61-fold, P=0.018), and tumor necrosis factor-alpha (9-fold, P=0.002). In conclusion, chronic ileitis and tissue injury are associated with discrete alterations in complex multi-level oxidant, antioxidant, and immune inflammatory components. The rabbit ileitis model is a suitable model to gain further insight into chronic inflammation and IBD. We

  6. Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia-reperfusion injury: role of RISK and SAFE pathways interaction.

    PubMed

    Yu, Liming; Li, Buying; Zhang, Meng; Jin, Zhenxiao; Duan, Weixun; Zhao, Guolong; Yang, Yang; Liu, Zhenhua; Chen, Wensheng; Wang, Siwang; Yang, Jian; Yi, Dinghua; Liu, Jincheng; Yu, Shiqiang

    2016-07-01

    Recently, we demonstrated that melatonin reduced protein kinase RNA (PKR)-like ER kinase (PERK)-eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor-4 (ATF4)-mediated myocardial endoplasmic reticulum (ER) stress and apoptosis during myocardial ischemia-reperfusion (MI/R) injury. However, the underlying mechanisms are still not clear. Myocardial reperfusion injury salvage kinase (RISK) pathway as well as survivor activating factor enhancement (SAFE) pathway are two pivotal intrinsic pro-survival signaling cascades. In this study, we performed in vivo and in vitro experiment to investigate the ameliorative effect of melatonin on ER stress with a focus on RISK and SAFE pathways interaction. Male C57Bl/6 mice received melatonin (300 μg/25 g/day, 3 days before MI/R surgery; 300 μg/25 g, 25 min before the onset of ischemia) pre-treatment with or without the administration of LY294002 (a PI3K/Akt inhibitor), U0126 (an ERK1/2 inhibitor) or AG490 (a STAT3 pathway inhibitor). H9c2 cells were pre-treated with melatonin (100 μM, 8 h) in the presence or absence of LY294002, U0126 or AG490. Compared with the I/R-injured group, melatonin effectively reduced myocardial apoptosis, oxidative stress and improved cardiac function. In addition, melatonin pre-treatment also increased the phosphorylation of Akt, GSK-3β, ERK1/2 and STAT3 and reduced PERK-eIF2α-ATF4-mediated ER stress. However, these effects were blocked by LY294002, U0126 or AG490. Additionally, either LY294002 or U0126 treatment could inhibit STAT3 phosphorylation, whereas AG490 administration also reduced both Akt and ERK1/2 phosphorylation, indicating an interplay exists between RISK and SAFE pathways in melatonin's cardioprotective effect. In summary, our study demonstrates that RISK and SAFE pathways mediate the cardioprotective effect of melatonin against MI/R injury. Melatonin pre-treatment attenuates PERK-eIF2α-ATF4-mediated ER stress and apoptosis during MI/R injury via RISK

  7. Impact of Early Coronary Revascularization on Long-Term Outcomes in Patients With Myocardial Ischemia on Dobutamine Stress Echocardiography.

    PubMed

    Boiten, Hendrik J; Ekmen, Hande; Zijlstra, Felix; van Domburg, Ron T; Schinkel, Arend F L

    2016-09-01

    The role of early coronary revascularization in the management of stable coronary artery disease remains controversial. The aim of this study was to evaluate the impact of early coronary revascularization on long-term outcomes (>10 years) after an ischemic dobutamine stress echocardiography (DSE) in patients with known or suspected coronary artery disease. Patients without stress-induced ischemia on DSE and those who underwent late coronary revascularization (>90 days after DSE) were excluded. The final study cohort consisted of 905 patients. A DSE with a peak wall motion score index of 1.1 to 1.7 was considered mild to moderately abnormal (n = 460), and >1.7 was markedly abnormal (n = 445). End points were all-cause and cardiac mortality. The impact of early coronary revascularization on outcomes was assessed using Kaplan-Meier survival analysis and Cox's proportional hazard regression models. Early coronary revascularization was performed in 222 patients (percutaneous coronary intervention in 113 [51%] and coronary artery bypass grafting in 109 patients [49%]). During a median follow-up time of 10 years (range 8 to 15), 474 deaths (52%) occurred, of which were 241 (51%) due to cardiac causes. Kaplan-Meier survival curves showed that both in patients with a markedly abnormal DSE and a mild-to-moderately abnormal DSE, early revascularization was associated with better long-term outcomes. Multivariable analyses revealed that early revascularization had a beneficial effect on all-cause mortality (hazard ratio 0.60, 95% confidence interval 0.46 to 0.79) and cardiac mortality (hazard ratio 0.49, 95% confidence interval 0.34 to 0.72). In conclusion, early coronary revascularization has a beneficial impact on long-term outcomes in patients with myocardial ischemia on DSE. Early coronary revascularization was associated with better outcomes not only in patients with a markedly abnormal DSE but also in those with a mild to moderately abnormal DSE. PMID:27394410

  8. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo

    PubMed Central

    Rongen, G. A.; van den Broek, P. H. H.; Bilos, A.; Donders, A. R. T.; Gomes, M. E.; Riksen, N. P.

    2015-01-01

    Background and Purpose In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo. Experimental Approach In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg) affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation. Key Results Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations. Conclusion and Implications In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor. Trial Registration ClinicalTrials.gov NCT01996735 PMID:26509673

  9. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. PMID:20550943

  10. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... Health Conditions adenosine deaminase 2 deficiency adenosine deaminase 2 deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized by abnormal ...

  11. No Evidence of Myocardial Oxygen Deprivation in Nonischemic Heart Failure

    PubMed Central

    Dass, Sairia; Holloway, Cameron J.; Cochlin, Lowri E.; Rider, Oliver J.; Mahmod, Masliza; Robson, Matthew; Sever, Emily; Clarke, Kieran; Watkins, Hugh; Ashrafian, Houman; Karamitsos, Theodoros D.

    2015-01-01

    Background— Whether the myocardium in nonischemic heart failure experiences oxygen limitation remains a long-standing controversy. We addressed this question in patients with dilated cardiomyopathy (DCM) using a dual approach. First, we tested the changes in myocardial oxygenation between rest and stress states, using oxygenation-sensitive cardiovascular magnetic resonance. Second, we sought to assess the functional consequences of oxygen limitation at rest by measuring myocardial energetics before and after short-term oxygen supplementation. Methods and Results— Twenty-six subjects (14 DCM and 12 normal) underwent cardiac magnetic resonance imaging at 3 Tesla to assess cardiac volumes, function, oxygenation, and first-pass perfusion (0.03 mmol/kg Gd-DTPA bolus) at stress and rest (4–6 minutes IV adenosine, 140 μg/kg per minute). Signal intensity change (SIΔ) and myocardial perfusion reserve index (MPRI) were measured from oxygenation and perfusion images, respectively. Furthermore, the effect of oxygen supplementation on resting myocardial energy metabolism was tested using 31P MR spectroscopy, measuring PCr/ATP ratios in both groups at baseline and after 4 hours of oxygen via facemask in the DCM group. During stress, there were equivalent rises in rate pressure product in both groups (DCM, 76±15% and normal, 79±9%; P=0.84). MPRI was significantly reduced in DCM (1.51±0.11 versus normal 1.86±0.10; P=0.03). However, there was no difference in oxygenation between groups: SIΔ in DCM 17±3% versus normal 20±2% (P=0.38). Furthermore, at a left ventricular segmental level, there was no correlation between oxygenation-sensitive SIΔ and MPRI (R=0.06; P=0.43). Resting PCr/ATP was reduced in DCM (1.66±0.07 versus normal 2.12±0.06; P=0.002). With oxygen supplementation, there was no change in PCr/ATP (1.61±0.08; P=0.58; Δ=0.04±0.05). There was also no effect of oxygen on systolic function (ejection fraction pre oxygen, 34±1%; post oxygen, 36±2%; P=0

  12. Protective effect of Tribulus terrestris L. fruit aqueous extracton lipid profile and oxidative stress in isoproterenol induced myocardial necrosis in male albino Wistar rats.

    PubMed

    Sailaja, K V; Shivaranjani, V Leela; Poornima, H; Rahamathulla, S B Md; Devi, K Lakshmi

    2013-01-01

    The objective of the present study was to evaluate the possible protective effects of Tribulus terrestris fruit aqueous extract (TTFAEt) on lipid profile and oxidative stress in isoproterenol (ISO) induced myocardial necrosis in albino Wistar rats. Albino Wistar rats were divided into normal control, TTFAEt alone treated, ISO control and pretreated (TTFAEt+ISO) groups. The extract was administered at a dose of 50 mg/kg body weight for 40 days orally by gavage and ISO was administered at a dose of 85 mg/kg body weight for two consecutive days intraperitoneally at an interval of 24 h. ISO induced myocardial infarction (MI) was confirmed by disturbances in serum lipid profile, heart tissue lipid peroxidation and antioxidant enzyme levels. There was a significant increase in the levels of serum total cholesterol (32.60 %), triglycerides (41.30 %), very low density lipoproteins (81.81 %), low density lipoproteins (84%) and phospholipids (38.88 %) and a significant decrease in the levels of high density lipoproteins (33.33 %) in the ISO control group when compared to normal controls. Additionally, there is a significant decrease in the levels of heart tissue antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and depletion of reduced glutathione, which indicates enhanced lipid peroxidation(172 %). Pretreatment with extract significantly showed a protective effect against ISO altered lipid profile, lipid peroxidation and antioxidant enzyme levels. The present study showed therapeutic effect of TTFAEt on lipid profile and oxidative stress in isoproterenol (ISO) induced myocardial necrosis in experimental rats. PMID:26417233

  13. [Adenosine and its role in physiology].

    PubMed

    Novotný, J

    2015-01-01

    Adenosine is not just a major component of adenine nucleotides and ribonucleic acids, but also has its own signaling functions. ExtraceIlular level of adenosine in an organism is strictly maintained through the balance between its formation, degradation and transport. Adenosine is formed by enzymatic degradation of adenosine triphosphate and eliminated by phosphorylation to adenosine monophosphate or by deamination to inosine. Transport of adenosine across the cell membrane is ensured by equilibrative and concentrative nucleoside transporters. All these processes participate in maintenance of adenosine level under normal conditions, but a balanced equilibrium can be disrupted in some pathophysiological situations. Extracellular adenosine as a signaling molecule binds to adenosine receptors, which may trigger via their cognate trimeric G proteins different signaling pathways. In this way, adenosine regulates energy homeostasis and affects the function of various organs. Targeted pharmacological manipulations of specific adenosine receptor subtypes or enzymes involved in its metabolism can potentially be used for therapeutic purposes. PMID:26738245

  14. The predictive value of chronic kidney disease for assessing cardiovascular events under consideration of pretest probability for coronary artery disease in patients who underwent stress myocardial perfusion imaging.

    PubMed

    Furuhashi, Tatsuhiko; Moroi, Masao; Joki, Nobuhiko; Hase, Hiroki; Masai, Hirofumi; Kunimasa, Taeko; Fukuda, Hiroshi; Sugi, Kaoru

    2013-02-01

    Pretest probability of coronary artery disease (CAD) facilitates diagnosis and risk stratification of CAD. Stress myocardial perfusion imaging (MPI) and chronic kidney disease (CKD) are established major predictors of cardiovascular events. However, the role of CKD to assess pretest probability of CAD has been unclear. This study evaluates the role of CKD to assess the predictive value of cardiovascular events under consideration of pretest probability in patients who underwent stress MPI. Patients with no history of CAD underwent stress MPI (n = 310; male = 166; age = 70; CKD = 111; low/intermediate/high pretest probability = 17/194/99) and were followed for 24 months. Cardiovascular events included cardiac death and nonfatal acute coronary syndrome. Cardiovascular events occurred in 15 of the 310 patients (4.8 %), but not in those with low pretest probability which included 2 CKD patients. In patients with intermediate to high pretest probability (n = 293), multivariate Cox regression analysis identified only CKD [hazard ratio (HR) = 4.88; P = 0.022) and summed stress score of stress MPI (HR = 1.50; P < 0.001) as independent and significant predictors of cardiovascular events. Cardiovascular events were not observed in patients with low pretest probability. In patients with intermediate to high pretest probability, CKD and stress MPI are independent predictors of cardiovascular events considering the pretest probability of CAD in patients with no history of CAD. In assessing pretest probability of CAD, CKD might be an important factor for assessing future cardiovascular prognosis. PMID:22806318

  15. Expression profiles of heat shock protein 27 and αB-crystallin and their effects on heat-stressed rat myocardial cells in vitro and in vivo.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-02-01

    The present study established a heat-stressed rat heart model, and used an H9c2 myocardial cell line to investigate the expression profiles of heat shock protein (Hsp)27 and αB-crystallin, both in vivo and in vitro. Rats and myocardial cells were subjected to 42 ˚C for 0, 20, 40, 60, 80 or 100 min, following which the mRNA and protein expression levels of Hsp27 and αB-crystallin were measured. Following heat shock, the protein expression levels of Hsp27 and αB-crystallin were significantly decreased in the rat heart cells in vivo, whereas their mRNA levels were significantly increased. The opposing association between the protein and mRNA expression levels of Hsp27 and αB-crystallin suggests that the progression from mRNA into proteins via translation may delayed, or proteins may exist as either oligomers or in the phosphorylated form under heat stress. In vitro, Hsp27 and αB-crystallin exhibited similar reductions in the protein levels at 40 and 60 min, then increased to normal values following 80 min of heat stress. However, the mRNA levels were not consistent with the protein levels. The mRNA levels of Hsp27 and αB-crystallin did however exhibit similar tendencies following 60 min of heat stress. The present study investigated these apparently conflicting results between the in vitro cell line and the in vivo body system. The results demonstrated that the protein and mRNA expression levels of Hsp27 and αB-crystallin exhibited similar trends in vivo and in vitro, respectively. These results were confirmed by analysis with STRING 9.1 software, which indicated that Hsp27 and αB-crystallin are co-expressed in rat myocardial cells. However, the individual cell lines and whole body system exhibited different trends in Hsp27 and αB-crystallin levels prior to and following heat stress, thus require further investigation. PMID:26708692

  16. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation.

    PubMed

    Rani, Neha; Bharti, Saurabh; Bhatia, Jagriti; Nag, T C; Ray, Ruma; Arya, Dharamvir Singh

    2016-04-25

    AGE-RAGE interaction mediated oxidative stress and inflammation is the key mechanism involved in the pathogenesis of cardiovascular disease in diabetes. Inhibition of AGE-RAGE axis by several PPAR-γ agonists has shown positive results in ameliorating cardio-metabolic disease conditions. Chrysin, a natural flavonoid has shown to possess PPAR-γ agonist activity along with antioxidant and anti-inflammatory effect. Therefore, the present study was designed to evaluate the effect of chrysin in isoproterenol-induced myocardial injury in diabetic rats. In male albino Wistar rats, diabetes was induced by single injection of streptozotocin (70 mg/kg, i.p.). After confirmation of the diabetes, rats were treated with vehicle (1.5 mL/kg, p.o.), chrysin (60 mg/kg, p.o.) or PPAR-γ antagonist GW9662 (1 mg/kg, i.p.) for 28 days. Simultaneously, on 27th and 28th day myocardial injury was induced by isoproterenol (85 mg/kg, s.c.). Chrysin significantly ameliorated cardiac dysfunction as reflected by improved MAP, ±LVdP/dtmax and LVEDP in diabetic rats. This improvement was associated with increased PPAR-γ expression and reduced RAGE expression in diabetic rats. Chrysin significantly decreased inflammation through inhibiting NF-κBp65/IKK-β expression and TNF-α level. Additionally, chrysin significantly reduced apoptosis as indicated by augmented Bcl-2 expression and decreased Bax and caspase-3 expressions. Furthermore, chrysin inhibited nitro-oxidative stress by normalizing the alteration in 8-OHdG, GSH, TBARS, NO and CAT levels and Nox4, MnSOD, eNOS and NT expressions. Co-administration of GW9662 significantly blunted the chrysin mediated cardioprotective effect as there was increase in oxidative stress, inflammation and apoptosis markers. Chrysin significantly ameliorated isoproterenol-induced myocardial injury in diabetic rats via PPAR-γ activation and inhibition of AGE-RAGE mediated oxidative stress and inflammation. PMID:26972669

  17. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  18. Immediate response of Ca2+ concentration in myocardial cells against oxidation stress by extracellular photosensitization reaction using Talaporfin sodium for the arrhythmia treatment application

    NASA Astrophysics Data System (ADS)

    Ogawa, Emiyu; Takahashi, Mei; Ito, Arisa; Arai, Tsunenori

    2014-02-01

    We studied the immediate response of myocardial cells by continuous observation using confocal microscope against oxidation stress by extracellular photosensitization reaction using Talaporfin sodium for tachyarrhythmia treatment application. Immediate response in order from several seconds to several minutes is required for the arrhythmia treatment since operators should judge the therapeutic effect during the tachyarrhythmia ablation procedure. To understand the immediate response of myocardial cells, we measured the intracellular Ca2+ concentration using fluo-4 AM during and after the extracellular photosensitization reaction. Talaporfin sodium concentration was varied 10-30 μg/ml. A red diode laser of 663 nm in wavelength was irradiated under the microscope with the radiant exposure of 40 J/cm2 and irradiance of 0.29 W/cm2. We observed the fluorescence image of fluo-4 AM each 400 ms during until 10 min after the photosensitization reaction. The myocardial cell beatings were stopped about 2 s after the beginning of the laser irradiation. The blebs were formed with the Ca2+ inflow. The intracellular Ca2+ was re-decreased after the bleb formation and then the cell necrosis was induced. The cell lethality 10 min after the laser irradiation was less than bleb formation ratio. The time response of the cell necrosis was shortened with the photosensitizer concentration increasing and the minimum average value was 209 s in the case of the 30 μg/ml in photosensitizer concentration and 40 J/cm2 in the radiant exposure. We think this extracellular photosensitization reaction may be applicable to tachyarrhythmia treatment in terms of its immediate response.

  19. Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.

    2013-01-01

    Acute ethanol lowers blood pressure (BP) and cardiac output in proestrus and after chronic estrogen (E2) replacement in ovariectomized (OVX) female rats. However, whether rapid nongenomic effects of estrogen mediate these hemodynamic effects of ethanol remains unanswered. To test this hypothesis, we investigated the effect of ethanol (0.5 or 1.5 g/kg iv) on left ventricular (LV) function and oxidative markers in OVX rats pretreated 30 min earlier with 1 μg/kg E2 (OVXE2) or vehicle (OVX) and in proestrus sham-operated (SO) rats. In SO rats, ethanol caused significant and dose-related reductions in BP, rate of rise in LV pressure (LV dP/dtmax), and LV developed pressure (LVDP). These effects of ethanol disappeared in OVX rats and were restored in OVXE2 rats, suggesting rapid estrogen receptor signaling mediates the detrimental effects of ethanol on LV function. Ex vivo studies revealed that the estrogen-dependent myocardial dysfunction caused by ethanol was coupled with higher LV 1) generation of reactive oxygen species (ROS), 2) expression of malondialdehyde and 4-hydroxynonenal protein adducts, 3) phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2), and 4) catalase activity. ERK1/2 inhibition by PD-98059 (1 mg/kg iv) abrogated the myocardial dysfunction, hypotension, and the elevation in myocardial ROS generation caused by ethanol. We conclude that rapid estrogen receptor signaling is implicated in cellular events that lead to the generation of aldehyde protein adducts and Akt/ERK1/2 phosphorylation, which ultimately mediate the estrogen-dependent LV oxidative stress and dysfunction caused by ethanol in female rats. PMID:24368668

  20. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  1. Coconut Haustorium Maintains Cardiac Integrity and Alleviates Oxidative Stress in Rats Subjected to Isoproterenol-induced Myocardial Infarction

    PubMed Central

    Chikku, A. M.; Rajamohan, T.

    2012-01-01

    The present study evaluates the effect of aqueous extract of coconut haustorium on isoproterenol-induced myocardial infarction in Sprague Dawley rats. Rats were pretreated with aqueous extract of coconut haustorium (40 mg/100 g) orally for 45 days. After pretreatment, myocardial infarction was induced by injecting isoproterenol subcutaneously (20 mg/100 g body weight) twice at an interval of 24 h. Activity of marker enzymes like lactate dehydrogenase, creatinine kinase-MB, aspartate transaminase and alanine transaminase were increased in the serum and decreased in the heart of isoproterenol treated rats indicating cardiac damage. These changes were significantly reduced in haustorium pretreated rats. Moreover, an increase in the activities of antioxidant enzymes and decrease in the levels of peroxidation products were observed in the myocardium of coconut haustorium pretreated rats. Histopathology of the heart of these rats showed almost normal tissue morphology. From these results, it is clear that aqueous extract of coconut haustorium possess significant cardioprotective and antioxidant properties during isoproterenol-induced myocardial infarction in rats. PMID:23716867

  2. Endoplasmic Reticulum Is Involved in Myocardial Injury in a Miniature Swine Model of Coronary Artery Stenosis Exposed to Acceleration-Associated Stress

    PubMed Central

    Zhang, Haitao; Chai, Meng; Liu, Chaozhong; Sun, Jinjin; Huang, Congchun; Yu, Xinya; Tian, Yi; Luo, Huilan

    2015-01-01

    This study aimed to investigate the effects of myocardial injury in a minimally-invasive miniature swine model with different levels of coronary artery stenosis (CAS) and exposed to maximal tolerated +Gz. Proximal left anterior descending branch was ligated in 20 swine. Five swine underwent a sham operation. A trapezoid acceleration curve was used for +Gz stress. Pathological changes of myocardial tissue were detected by H&E staining. Apoptotic cardiomyocytes were detected by TUNEL. GRP78 and CHOP were investigated by immunohistochemistry and western blot. CAS models were successful in 18 animals.Compared with the sham-operated group (+8.00±0.71 Gz), the maximal tolerated +Gz values of the moderate stenosis (+6.00±0.89 Gz, P<0.05) and severe stenosis groups (+5.20±0.84 Gz, P<0.05) were decreased.Compared with sham animals (12.16±1.25%), after exposure to maximum +Gz, apoptotic cells of the moderate (43.53±8.42%, P<0.05) and severe stenosis group (60.50±9.35%, P<0.05) were increased, MDA content was increased (1.89 and 4.91 folds, respectively, P<0.05), and SOD activity was reduced (-13.66% and -21.71%, respectively). After exposure to maximum +Gz, GRP78 protein expression was low in the sham-operated (0.29±0.05) and mild stenosis groups (0.35±0.04), while expression was high in the moderate (0.72±0.04, P<0.05) and severe stenosis groups (0.65±0.07, P<0.05). CHOP protein expression was not observed in the sham-operated group, while expression was high in the moderate and severe stenosis groups. These results indicated that Under maximum exposure to +Gz stress, different levels of CAS led to different levels of myocardial injury. Endoplasmic reticulum response is involved in the apoptosis of cardiomyocytes after +Gz stress. PMID:26167928

  3. Current status of A1 adenosine receptor allosteric enhancers.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-01-01

    Adenosine is an ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1, A2A, A2B and A3 adenosine receptors (ARs). Allosteric enhancers to A1ARs may represent novel therapeutic agents because they increase the activity of these receptors by mediating a shift to their active form in the A1AR-G protein ternary complex. In this manner, they are able to amplify the action of endogenous adenosine, which is produced in high concentrations under conditions of metabolic stress. A1AR allosteric enhancers could be used as a justifiable alternative to the exogenous agonists that are characterized by receptor desensitization and downregulation. In this review, an analysis of some of the most interesting allosteric modulators of A1ARs has been reported. PMID:26144263

  4. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR

    PubMed Central

    Scheerer, Ursula; Haensch, Robert; Mendel, Ralf R.; Kopriva, Stanislav; Rennenberg, Heinz; Herschbach, Cornelia

    2010-01-01

    Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5′-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [35S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the γ-glutamylcysteine synthetase (γ-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when γ-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when γ-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in γ-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor

  5. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.

    PubMed

    Scheerer, Ursula; Haensch, Robert; Mendel, Ralf R; Kopriva, Stanislav; Rennenberg, Heinz; Herschbach, Cornelia

    2010-01-01

    Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment

  6. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  7. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-06-15

    Remote ischemic preconditioning (RIPC) induced by alternate cycles of preconditioning ischemia and reperfusion protects the heart against sustained ischemia-reperfusion-induced injury. This technique has been translated to clinical levels in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention and heart valve surgery. Adenosine is a master regulator of energy metabolism and reduces myocardial ischemia-reperfusion-induced injury. Furthermore, adenosine is a critical trigger as well as a mediator in RIPC-induced cardioprotection and scientists have demonstrated the role of adenosine by showing an increase in its levels in the systemic circulation during RIPC delivery. Furthermore, the blockade of cardioprotective effects of RIPC in the presence of specific adenosine receptor blockers and transgenic animals with targeted ablation of A1 receptors has also demonstrated its critical role in RIPC. The studies have shown that adenosine may elicit cardioprotection via activation of neurogenic pathway. The present review describes the possible role and mechanism of adenosine in mediating RIPC-induced cardioprotection. PMID:27157518

  8. Detection of coronary artery stenosis in children with Kawasaki disease. Usefulness of pharmacologic stress sup 201 Tl myocardial tomography

    SciTech Connect

    Kondo, C.; Hiroe, M.; Nakanishi, T.; Takao, A. )

    1989-09-01

    This study determined the feasibility and accuracy of quantitative 201Tl myocardial single-photon emission computed tomography (SPECT) after dipyridamole infusion to detect coronary obstructive lesions in children with Kawasaki disease. 201Tl distribution after dipyridamole infusion was measured in 23 normal children, and with these normal values, quantitative analysis of SPECT was performed in 49 patients. Thirty-four patients had coronary stenosis 90% or greater on angiograms. Side effects resulting from systemic vasodilation were observed in about 70%. Angina pectoris and ischemic ST changes were observed only in patients with coronary stenosis. These symptoms disappeared after aminophylline infusion. Results of visual and quantitative analysis of SPECT were compared. SPECT data were shown on two-dimensional polar maps, and the extent and severity scores were calculated. The sensitivity of SPECT for detection of overall coronary stenosis was 91% (visual analysis) and 88% (quantitative analysis). The specificity of SPECT was 60% visually and 93% quantitatively. The sensitivity of quantitative analysis to detect individual coronary stenosis was similar to that of visual analysis. However, the specificity of visual analysis to detect individual coronary artery stenosis was significantly less than that of quantitative analysis. From these data, we conclude that quantitative analysis of myocardial SPECT after dipyridamole infusion is a safe and accurate diagnostic method for identifying coronary stenosis in children with Kawasaki disease.

  9. Cellular mechanisms for the treatment of chronic heart failure: the nitric oxide- and adenosine-dependent pathways.

    PubMed

    Minamino, Tetsuo; Kitakaze, Masafumi

    2002-05-01

    Accumulated evidence suggests that several drugs proven to improve survival in patients with chronic heart failure (CHF) enhance endogenous nitric oxide (NO)- and/or adenosine-dependent pathways. Indeed, we and others have demonstrated that: i) antagonists of either renin-angiotensin-aldosterone or beta-adrenergic systems enhance NO-dependent pathways; ii) although carvedilol and amlodipine belong to different drug classes, both of them can increase cardiac adenosine levels; iii) increased adenosine levels by dipyridamole are associated with the improvement of CHF. Interestingly, both NO and adenosine have multifactorial beneficial actions in cardiovascular systems. First of all, both of them induce vasodilation and decrease myocardial hypercontractility, which may contribute to a reduction in the severity of myocardial ischaemia. Both adenosine and NO are also involved in cardioprotection attributable to acute and late phases of ischaemic preconditioning, respectively. Secondly, they can modulate the neurohormonal systems that contribute to the progression of CHF. Thus, we propose that enhancement of endogenous NO and/or adenosine as potential therapeutic targets in a new strategy for the treatment for CHF. PMID:15989539

  10. Extracellular guanosine regulates extracellular adenosine levels

    PubMed Central

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  11. Prognostic value of quantitative high-speed myocardial perfusion imaging

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S.; Gransar, Heidi; Hyun, Mark; Miranda-Peats, Romalisa; Kite, Faith C.; Hayes, Sean W.; Thomson, Louise E.J.; Friedman, John D.; Rozanski, Alan; Slomka, Piotr J.

    2012-01-01

    Background Most studies have reported using semi-quantitative analysis to assess the prognostic utility of SPECT myocardial perfusion imaging (MPI). Thus we studied the prognostic value of fully automated quantitative analysis software applied to new solid-state, high-speed (HS) SPECT-MPI. Methods 1613 consecutive patients undergoing exercise or adenosine HS-MPI were followed for 2.6±0.5 years for all-cause mortality (ACM). Automated quantitative software was used for assessing stress total perfusion deficit (sTPD) and was compared to semi-quantitative visual analysis. MPI was characterized as 0% (normal); 1–4% (minimal perfusion defect); 5–10% (mildly abnormal); and >10% (moderately/severely abnormal). Results During follow-up, 79 patients died (4.9%). Annualized ACM increased with progressively increasing sTPD; 0% (0.87%), 1–4% (1.94%), 5–10% (3.10%) and >10% (5.33%) (log-rank p<0.0001). While similar overall findings were observed with visual analysis, only sTPD demonstrated increased risk in patients with minimal perfusion defects. In multivariable analysis, sTPD >10% was a mortality predictor (HR 3.03, 95% CI 1.30–7.09, p=0.01). Adjusted mortality rate was substantial in adenosine MPI, but low in exercise MPI (9.0% versus 1.0%, p<0.0001). Conclusions By quantitative analysis, ACM increases with increasing perfusion abnormality among patients undergoing stress HS-MPI. These findings confirm previous results obtained with visual analysis using conventional Anger camera imaging systems. PMID:23065414

  12. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions adenosine monophosphate deaminase deficiency adenosine ...

  13. Myocardial Bridge

    MedlinePlus

    ... artery. See also on this site: Ask a Texas Heart Institute Doctor: Search "myocardial bridge" Updated August ... comments. Terms of Use and Privacy Policy © Copyright Texas Heart Institute All rights reserved.

  14. Normal Myocardial Flow Reserve in HIV-Infected Patients on Stable Antiretroviral Therapy

    PubMed Central

    Knudsen, Andreas; Christensen, Thomas E.; Ghotbi, Adam Ali; Hasbak, Philip; Lebech, Anne-Mette; Kjær, Andreas; Ripa, Rasmus Sejersten

    2015-01-01

    Abstract Studies have found HIV-infected patients to be at increased risk of myocardial infarction, which may be caused by coronary microvascular dysfunction. For the first time among HIV-infected patients, we assessed the myocardial flow reserve (MFR) by Rubidium-82 (82Rb) positron emission tomography (PET), which can quantify the coronary microvascular function. MFR has proved highly predictive of future coronary artery disease and cardiovascular events in the general population. In a prospective cross-sectional study, HIV-infected patients all receiving antiretroviral therapy (ART) with full viral suppression and HIV-uninfected controls were scanned using 82Rb PET/computed tomography at rest and adenosine-induced stress, thereby obtaining the MFR (stress flow/rest flow), stratified into low ≤1.5, borderline >1.5 to 2.0, or normal >2.0. Fifty-six HIV-infected patients and 25 controls were included. The HIV-infected patients had a mean age of 53 years (range 37–68 years) with 23% active smokers. The controls had a mean age of 52 years (range 36–68 years) and 26% active smokers. In the HIV-infected group 73% had a normal MFR, 17% borderline, and 10% low values of MFR. Among controls these values were 71%, 19%, and 10%, respectively (P = 0.99). However, the HIV-infected group had lower values of stress myocardial blood flow (MBF) (2.63 ± 0.09 mL/g/min vs 2.99 ± 0.14 mL/g/min; P = 0.03). We found no evidence of decreased MFR as assessed by 82Rb PET among HIV-infected patients on stable ART with full viral suppression compared with HIV-uninfected controls. We did notice a decreased MBF during stress. PMID:26512605

  15. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  16. Adenosine Receptors and Membrane Microdomains

    PubMed Central

    Lasley, Robert D.

    2010-01-01

    Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors (GPCR). The four adenosine receptor subtypes – A1, A2a, A2b, A3 – exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of GPCR signaling at the level of protein-protein interactions as well as through signaling crosstalk. With respect to adenosine receptors the activation of one receptor subtype can have profound direct effects in one cell type, but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of GPCR signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling. PMID:20888790

  17. Xanthines as Adenosine Receptor Antagonists

    PubMed Central

    Jacobson, Kenneth A.

    2013-01-01

    The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogs have subsequently been synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes. PMID:20859796

  18. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess. PMID:27063086

  19. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation, oxidative stress and P38MAPK pathway in rat

    PubMed Central

    Sun, Shen-Jie; Wu, Xiao-Peng; Song, Heng-Liang; Li, Gui-Qi

    2015-01-01

    Baicalin is one of the active ingredients in the skullcap, with a variety of pharmacological effects, such as blood pressure reduction, sedation, liver-protection, gallbladder-protection, anti-bacteria, anti-inflammation, etc. The aim of this study was to investigate the potential cardioprotective effects of baicalin ameliorates isoproterenol-induced acute myocardial infarction (AMI) through inducible nitric oxide synthase (iNOS), inflammation, oxidative stress and P38MAPK passageway in rat. Rat model of AMI was induced by isoproterenol (100 mg/kg) and then treated baicalin (various does of baicalin: 1 mg/kg, 10 mg/kg and 100 mg/kg, respectively) for 24 h. Infarct size, the heart weight to body weight ratio and creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) of rats with AMI induced by isoproterenol were used to evaluate curative effect of baicalin on AMI. Meanwhile, iNOS and phosphorylation-p38 MAPK (p-p38) protein expressions, inflammatory factor and oxidative stress were inspected using western blot and commercial kits, respectively. In the present study, pre-treatment with baicalin (10 or 100 mg/kg) significantly ameliorated infarct size, the heart weight to body weight ratio and CK, CK-MB, LDH and cTnT levels in rats with AMI induced by isoproterenol. iNOS protein expression, the serum TNF-α, IL-6, MDA and SOD levels and p-38 protein expressions were significantly suppressed by treatment with baicalin (10 or 100 mg/kg). These results suggest that acute treatment with baicalin ameliorates AMI, iNOS, inflammation, oxidative stress and P38MAPK pathway in rat with AMI induced by isoproterenol. PMID:26885181

  20. Regulation of adenosine levels during cerebral ischemia

    PubMed Central

    Chu, Stephanie; Xiong, Wei; Zhang, Dali; Soylu, Hanifi; Sun, Chao; Albensi, Benedict C; Parkinson, Fiona E

    2013-01-01

    Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events, and attenuates the excitotoxic neuronal injury. Adenosine is produced both intracellularly and extracellularly, and nucleoside transport proteins transfer adenosine across plasma membranes. Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption, cellular release of ATP, metabolism of extracellular ATP (and other adenine nucleotides), adenosine influx, adenosine efflux and adenosine metabolism. Recent studies have used genetically modified mice to investigate the relative contributions of intra- and extracellular pathways for adenosine formation. The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase. From these studies, we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures, but not in hippocampal slices or in vivo mice exposed to ischemic conditions. PMID:23064722

  1. Risk stratification using gated stress myocardial perfusion imaging: comparison between patients with and without sexual dysfunction

    PubMed Central

    Tan, Yusuf Ziya; Ozdemir, Semra; Bekler, Adem; Akbas, Alpaslan; Gencer, Meryem; Celik, Fatmanur

    2016-01-01

    Sexuality is an indispensable part of life. When a problem is encountered related to this topic, the quality of life is negatively affected. Therefore, every problem related to sexuality is extremely private and important to an individual. This study aims to investigate the use of myocardial perfusion scintigraphy (MPS) for advanced assessment of patients with known or suspected coronary artery disease, cardiovascular disease, and in the intermediate risk group for SD. The study included 250 patients (150 male, 100 female, mean age 54±12.10) sent by the Cardiology Clinic to the Nuclear Medicine Clinic for MPS due to suspected cardiovascular disease (CVD). The questionnaire study was applied by two methods as face-to-face interviews or online. Data on sociodemographic characteristics and cardiovascular diseases together with risk factors for sexual activity were collected using a general information form. Patients were divided into three categories of risk depending on major risk factors for cardiovascular diseases: low, intermediate, and high risk. On comparing the risk scores between the groups, it was seen that there was a statistically clear reduction in the intermediate risk group of patients with SD according to MPS scoring. MPS is a cost-effective, reliable, and accurate non-invasive diagnostic method necessary for routine use to assess cardiovascular disease and in the intermediate risk group for SD. PMID:26755812

  2. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

    PubMed Central

    Yu, Liming; Li, Qing; Yu, Bo; Yang, Yang; Jin, Zhenxiao; Duan, Weixun; Zhao, Guolong; Zhai, Mengen; Liu, Lijun; Yi, Dinghua; Chen, Min; Yu, Shiqiang

    2016-01-01

    Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process. PMID:26788242

  3. Omega-3-fatty acid adds to the protective effect of flax lignan concentrate in pressure overload-induced myocardial hypertrophy in rats via modulation of oxidative stress and apoptosis.

    PubMed

    Ghule, Arvindkumar E; Kandhare, Amit D; Jadhav, Suresh S; Zanwar, Anand A; Bodhankar, Subhash L

    2015-09-01

    Objective of the present investigation was to study the effect of the flax lignan concentrate (FLC) and Omega-3-fatty acid (O-3-FA) on myocardial apoptosis, left ventricular (LV) contractile dysfunction and electrocardiographic abnormalities in pressure overload-induced cardiac hypertrophy. The rats were divided into five groups such as sham, aortic stenosis (AS), AS+FLC, AS+O-3-FA and AS+FLC+O-3-FA. Cardiac hypertrophy was produced in rats by abdominal aortic constriction. The rats were treated with FLC (400mg/kg, p.o.), O-3-FA (400mg/kg, p.o.) and FLC+O-3-FA orally per day for four weeks. The LV function, myocardial apoptosis, and oxidative stress were quantified. FLC+O-3-FA treatment significantly reduced hemodynamic changes, improved LV contractile dysfunction, reduced cardiomyocyte apoptosis and cellular oxidative stress. Moreover, it significantly up-regulated the VEGF expression and decreased TNF-alpha level in serum. The histological analysis also revealed that FLC+O-3-FA treatment markedly preserved the cardiac structure and inhibited interstitial fibrosis. In conclusion, FLC+O-3-FA treatment improved LV dysfunction, inhibited cardiomyocyte apoptosis, improved myocardial angiogenesis, conserved activities of membrane-bound phosphatase enzymes and suppressed inflammation through reduced oxidative stress in an additive manner than FLC alone and O-3-FA alone treatment in pressure overload-induced cardiac hypertrophy. PMID:26277701

  4. Incidence of acute myocardial infarction in patients with exercise-induced silent myocardial ischemia

    SciTech Connect

    Assey, M.E.; Walters, G.L.; Hendrix, G.H.; Carabello, B.A.; Usher, B.W.; Spann, J.F. Jr.

    1987-03-01

    Fifty-five patients with angiographically proved coronary artery disease (CAD) underwent Bruce protocol exercise stress testing with thallium-201 imaging. Twenty-seven patients (group I) showed myocardial hypoperfusion without angina pectoris during stress, which normalized at rest, and 28 patients (group II) had a similar pattern of reversible myocardial hypoperfusion but also had angina during stress. Patients were followed for at least 30 months. Six patients in group I had an acute myocardial infarction (AMI), 3 of whom died, and only 1 patient in group II had an AMI (p = 0.05), and did not die. Silent myocardial ischemia uncovered during exercise stress thallium testing may predispose to subsequent AMI. The presence of silent myocardial ischemia identified in this manner is of prognostic value, independent of angiographic variables such as extent of CAD and left ventricular ejection fraction.

  5. Smoking is associated with reduced serum paraoxonase, antioxidants and increased oxidative stress in normolipidaemic acute myocardial infarct patients

    PubMed Central

    Kumar, Arun; Biswas, Utpal Kumar

    2011-01-01

    Background Paraoxonase is a high-density lipoprotein (HDL)-associated enzyme that protects lipoproteins from oxidative modifications and from becoming atherogenic in nature. Smoking is a well-known major cardiovascular risk factor that promotes lipid peroxidation (LP). The present study examined the hypothesis that smoking modulates the activity of paraoxonase and depletes antioxidants. Aim The present study evaluated paraoxonase activity, antioxidant status and LP in smoking and non-smoking normolipidaemic acute myocardial infarct (AMI) patients, and results were compared with controls. Settings and design The serum paraoxonase activities, antioxidants and LP were determined in 86 normolipidaemic patients diagnosed of AMI, and 86 age–sex-matched healthy volunteers served as control. Material and methods Serum paraoxonase activities were measured by enzymatic kit. The glutathione peroxidase, superoxide dismutase and catalase activity was determined by standard methods. Malondialdehyde was measured by the thiobarbituric acid reaction, and conjugated diene levels by the Recknagel and Glende method. Serum uric acid, total bilirubin, serum albumin and lipid profiles were analysed by standard methods. Statistics The values were expressed as mean±SD, and data from the patients and control were compared using the Student t test. Results and conclusion The total cholesterol/HDL cholesterol ratio, triglycerides, low-density lipoprotein cholesterol, low-density lipoprotein/HDL cholesterol ratio and triglyceride/HDL cholesterol ratio were significantly higher, and HDL cholesterol significantly lower in smokers compared with non-smoking AMI patients. Superoxide dismutase, glutathione peroxidase and catalase were significantly higher in non-smokers compared with smokers. Serum albumin, uric acid and bilirubin were higher in the control compared with smoking AMI patients. The malondialdehyde and conjugated dienes were significantly higher, and paraoxonase activities were

  6. Noninvasive identification of left main and triple vessel coronary artery disease: improved accuracy using quantitative analysis of regional myocardial stress distribution and washout of thallium-201

    SciTech Connect

    Maddahi, J.; Abdulla, A.; Garcia, E.V.; Swan, H.J.; Berman, D.S.

    1986-01-01

    The capabilities of visual and quantitative analysis of stress redistribution thallium-201 scintigrams, exercise electrocardiography and exercise blood pressure response were compared for correct identification of extensive coronary disease, defined as left main or triple vessel coronary artery disease, or both (50% or more luminal diameter coronary narrowing), in 105 consecutive patients with suspected coronary artery disease. Extensive disease was present in 56 patients and the remaining 49 had either less extensive coronary artery disease (n = 34) or normal coronary arteriograms (n = 15). Although exercise blood pressure response, exercise electrocardiography and visual thallium-201 analysis were highly specific (98, 88 and 96%, respectively), they were insensitive for identification of patients with extensive disease (14, 45 and 16%, respectively). Quantitative thallium-201 analysis significantly improved the sensitivity of visual thallium-201 analysis for identification of patients with extensive disease (from 16 to 63%, p less than 0.001) without a significant loss of specificity (96 versus 86%, p = NS). Eighteen (64%) of the 28 patients who were misclassified by visual analysis as having less extensive disease were correctly classified as having extensive disease by virtue of quantitative analysis of regional myocardial thallium-201 washout. When the results of quantitative thallium-201 analysis were combined with those of blood pressure and electrocardiographic response to exercise, the sensitivity and specificity for identification of patients with extensive disease was 86 and 76%, respectively, and the highest overall accuracy (0.82) was obtained.

  7. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  8. Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital, and sedimentary microbial biomass and physiological status.

    PubMed

    Davis, W M; White, D C

    1980-09-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  9. Fluorescent Ligands for Adenosine Receptors

    PubMed Central

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A.

    2012-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field. PMID:23200243

  10. Adenosine-induced activation of esophageal nociceptors.

    PubMed

    Ru, F; Surdenikova, L; Brozmanova, M; Kollarik, M

    2011-03-01

    Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes

  11. Caffeine reduces dipyridamole-induced myocardial ischemia

    SciTech Connect

    Smits, P.; Aengevaeren, W.R.; Corstens, F.H.; Thien, T. )

    1989-10-01

    The mechanism of action of coronary vasodilation after dipyridamole may be based on inhibition of cellular uptake of circulating endogenous adenosine. Since caffeine has been reported to be a competitive antagonist of adenosine we studied the effect of caffeine on the outcome of dipiridamole-{sup 201}Tl cardiac imaging in one patient. During caffeine abstinence dipyridamole induced myocardial ischemia with down-slope ST depressions on the ECG, and reversible perfusion defects on the scintigrams. When the test was repeated 1 wk later on similar conditions, but now shortly after infusion of caffeine (4 mg/kg), the ECG showed nodepressions, and the scintigrams only slight signs of ischemia. We conclude that when caffeine abstinence is not sufficient, the widespread use of coffee and related products may be responsible for false-negative findings in dipyridamole-201Tl cardiac imaging.

  12. Wave Propagation of Myocardial Stretch: Correlation with Myocardial Stiffness

    PubMed Central

    Pislaru, Cristina; Pellikka, Patricia A.; Pislaru, Sorin V.

    2015-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart wall s. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Methods Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in sixteen pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (EVP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end -diastolic stress-strain relation (ESS). Myocardial distensibility and α-and β-coefficients of stress-strain relations were calculated. Results Vp was higher at reperfusion compared to baseline (2.6±1.3 m/s vs. 1.3±0.4 m/s; p=0.005) and best correlated with ESS (r 2=0.80, p<0.0001), β-coefficient (r2=0.78, p<0.0001), distensibility (r2=0.47, p=0.005), and wall thickness/diameter ratio (r2=0.42, p=0.009). Elastic moduli (EVP and ESS) were strongly correlated (r2=0.83, p<0.0001). Increasing preload increased Vp and EVP and decreased distensibility. At multivariate analysis, ESS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2model=0.83, p<0.0001). Conclusions The main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography. PMID:25193091

  13. Oral sucrose for heel lance enhances adenosine triphosphate use in preterm neonates with respiratory distress

    PubMed Central

    Angeles, Danilyn M; Asmerom, Yayesh; Boskovic, Danilo S; Slater, Laurel; Bacot-Carter, Sharon; Bahjri, Khaled; Mukasa, Joseph; Holden, Megan; Fayard, Elba

    2015-01-01

    Objective: To examine the effects of oral sucrose on procedural pain, and on biochemical markers of adenosine triphosphate utilization and oxidative stress in preterm neonates with mild to moderate respiratory distress. Study design: Preterm neonates with a clinically required heel lance that met study criteria (n = 49) were randomized into three groups: (1) control (n = 24), (2) heel lance treated with placebo and non-nutritive sucking (n = 15) and (3) heel lance treated with sucrose and non-nutritive sucking (n = 10). Plasma markers of adenosine triphosphate degradation (hypoxanthine, xanthine and uric acid) and oxidative stress (allantoin) were measured before and after the heel lance. Pain was measured using the Premature Infant Pain Profile. Data were analyzed using repeated measures analysis of variance, chi-square and one-way analysis of variance. Results: We found that in preterm neonates who were intubated and/or were receiving ⩾30% FiO2, a single dose of oral sucrose given before a heel lance significantly increased markers of adenosine triphosphate use. Conclusion: We found that oral sucrose enhanced adenosine triphosphate use in neonates who were intubated and/or were receiving ⩾30% FiO2. Although oral sucrose decreased pain scores, our data suggest that it also increased energy use as evidenced by increased plasma markers of adenosine triphosphate utilization. These effects of sucrose, specifically the fructose component, on adenosine triphosphate metabolism warrant further investigation. PMID:26770807

  14. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  15. Aprotinin Exerts Differential and Dose Dependent Effects on Myocardial Contractility, Oxidative Stress and Cytokine Release Following Ischemia-Reperfusion

    PubMed Central

    McEvoy, Matthew D.; Taylor, Anna-Greta; Zavadzkas, Juozas A.; Mains, Ira M.; Ford, Rachael A.; Stroud, Robert E.; Jeffords, Laura B.; Beck, Christy U.; Reeves, Scott T.; Spinale, Francis G.

    2009-01-01

    Background Cardiac surgery can result in LV ischemia and reperfusion (I/R), the release of cytokines such as tumor necrosis factor, and oxidative-stress with release of myeloperoxidase. While aprotinin has been used in cardiac surgery, the likely multiple effects of this serine protease inhibitor limits clinical utility. This study tested the hypothesis that different APRO doses cause divergent effects on LV contractility, cytokine release and oxidative stress in the context of I/R. Methods/Results LV I/R (30 min I/60 min R) was induced in mice and LV contractility (maximal end-systolic elastance; Emax) determined. Mice were randomized to 2×104 KIU/kg aprotinin (n=11), 4 × 104 KIU/kg aprotinin (n=10), and Vehicle (saline, n=10). Based upon a fluorogenic assay, aprotinin doses of 2 and 4×104 KIU/kg resulted in plasma concentrations similar to those of the half and full Hammersmith doses, respectively. Following I/R, Emax fell by over 40% from baseline (p<0.05), and this effect was attenuated with 2 ×104 KIU/kg but not 4 ×104 KIU/kg aprotinin. Tumor necrosis factor increased by over 60% from control (p<0.05) with I/R, bit was reduced with 4 ×104 KIU/kg aprotinin. Myeloperoxidase increased with I/R, and was reduced to the greatest degree by 2 ×104 KIU/kg aprotinin. Conclusions Aprotinin influences LV contractility, cytokine release and oxidative stress which are dose dependent. These results provide mechanistic evidence that multiple pathways are differentially affected by aprotinin in a context relevant to cardiac surgery. PMID:18640335

  16. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase.

    PubMed

    Green, H; Chan, T

    1973-11-23

    In the presence of 10(-4) to 10(-5) molar adenosine, established cell lines of fibroblastic or lymphoid origin die of pyrimidine starvation. Less than lethal concentrations inhibit cell growth. Over a broad concentration range, the effects of adenosine are prevented by providing a suitable pyrimidine source. We suggest that the recently described immune deficiency disease associated with absence of adenosine deaminase may be the result of pyrimidine starvation induced by adenosine nucleotides in cells of the lymphoid system. PMID:4795749

  17. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  18. Mass spectrometry-based quantification of myocardial protein adducts with acrolein in an in vivo model of oxidative stress

    PubMed Central

    Wu, Jianyong; Stevens, Jan F.; Maier, Claudia S.

    2012-01-01

    Acrolein exposure leads to the formation of protein-acrolein adducts. Protein modification by acrolein has been associated with various chronic diseases including cardiovascular and neurodegenerative diseases. Here we report an analytical strategy that enables the quantification of Michael-type protein adducts of acrolein in mitochondrial proteome samples using liquid chromatography in combination with tandem mass spectrometry and selected ion monitoring (LC-MS/MS SRM) analysis. Our approach combines site-specific identification and relative quantification at the peptide level of protein–acrolein adducts in relation to the unmodified protein thiol pool. Treatment of 3-month old rats with CCl4, an established in vivo model of acute oxidative stress, resulted in significant increases in the ratios of distinct acrolein-adducted peptides to the corresponding unmodified thiol-peptides obtained from proteins that were isolated from cardiac mitochondria. The mitochondrial proteins that were found adducted by acrolein were malate dehydrogenase, NADH dehydrogenase [ubiquinone] flavoprotein 1, cytochrome c oxidase subunit VIb isoform 1, ATP synthase d chain, and ADP/ATP translocase 1. The findings indicate that protein modification by acrolein has potential value as an index of mitochondrial oxidative stress. PMID:21809440

  19. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction

    PubMed Central

    DESSÌ, MARIELE; PIRAS, ALESSANDRA; MADEDDU, CLELIA; CADEDDU, CHRISTIAN; DEIDDA, MARTINO; MASSA, ELENA; ANTONI, GIORGIA; MANTOVANI, GIOVANNI; MERCURO, GIUSEPPE

    2011-01-01

    trend toward a decrease in ROS and IL-6 from t2 in the PLA arm. Our results suggest that TEL is able to reverse acute (early) EPI-induced myocardial dysfunction and to maintain later a normal systolic function up to the 12-month FU. These effects are likely to be due to different mechanisms, RAS blockade and prevention of chronic inflammation/oxidative stress. PMID:22977612

  20. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  1. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    PubMed

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions. PMID:26053731

  2. Increase of adenosine plasma levels after oral trimetazidine: a pharmacological preconditioning?

    PubMed

    Blardi, Patrizia; de Lalla, Arianna; Volpi, Luciana; Auteri, Alberto; Di Perri, Tullio

    2002-01-01

    Trimetazidine (1-[2,3,4-trimethoxybenzyl] piperazine) (TMZ) is a cellular anti-ischemic agent able to prevent intracellular ATP decrease, limit intracellular acidosis, protect against oxygen-free radical-induced toxicity and inhibit neutrophil infiltration. However, its definitive mechanism of action had not been identified. Recent studies showed the existence of an endogenous mechanism of cellular protection against ischemia, defined as 'ischemic preconditioning'. This mechanism was related mainly to cellular liberation of adenosine, a nucleoside with protective effects in myocardial ischemia. Since TMZ acts by increasing cell tolerance to ischemia and adenosine is the mediator of ischemic preconditioning, in this study we investigated a possible interaction between TMZ and adenosine. Two groups of patients affected by angina pectoris, were admitted to the study. They received a single oral dose of TMZ. One group was treated, during different sessions, with TMZ 10 and 20 mg, the other group with TMZ 40 and 80 mg. After a 3 day wash-out from drug administration, each group received a placebo. Blood samples were collected at baseline (time 0) and 1, 2, 3, 4, 6, 8 h after drug administration, in order to detect plasma levels of adenosine by a high-performance liquid chromatography method. We observed that the administration of TMZ at doses of 10, 20, 40 and 80 mg induced an increase of adenosine plasma levels of 19, 50, 62 and 62%, respectively. We hypothesized that the activity of TMZ could depend, at least in part, on adenosine mediation and this interaction opens a new interpretation of the drug antischemic effect. PMID:11820865

  3. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  4. Effects of adenosine on intrarenal oxygenation.

    PubMed

    Dinour, D; Brezis, M

    1991-11-01

    Although generally a vasodilator, adenosine vasoconstricts cortical vessels in the kidney, reduces glomerular filtration rate (GFR), and increases medullary blood flow, effects likely to improve the medullary O2 deficiency characteristic of mammalian kidneys. To evaluate a possible role of adenosine in medullary O2 balance, we investigated the effect of adenosine upon cortical and medullary tissue PO2. Adenosine was infused into renal interstitium through chronically implanted capsules. Cortical and medullary PO2 were measured using sensitive Clark-type O2 microelectrodes inserted into kidneys of anesthetized rats at the respective depths of 1.8 and 3.7 mm. Infusion of adenosine (0.1-0.5 mumol/min) increased medullary PO2 from 17 +/- 3 (SE) to 40 +/- 5 mmHG (P less than 0.001) and decreased cortical PO2 from 64 +/- 4 to 47 +/- 3 mmHg (P less than 0.001). After the infusion was stopped, PO2 returned to baseline at both sites. Coadministration of adenosine receptor antagonist 8-phenyltheophylline (0.01 mumol/min) prevented both cortical and medullary effects of adenosine. We concluded that adenosine could play an important protective and regulatory role in renal medullary O2 balance. PMID:1951710

  5. Adenosine Neuromodulation and Traumatic Brain Injury

    PubMed Central

    Lusardi, T.A

    2009-01-01

    Adenosine is a ubiquitous signaling molecule, with widespread activity across all organ systems. There is evidence that adenosine regulation is a significant factor in traumatic brain injury (TBI) onset, recovery, and outcome, and a growing body of experimental work examining the therapeutic potential of adenosine neuromodulation in the treatment of TBI. In the central nervous system (CNS), adenosine (dys)regulation has been demonstrated following TBI, and correlated to several TBI pathologies, including impaired cerebral hemodynamics, anaerobic metabolism, and inflammation. In addition to acute pathologies, adenosine function has been implicated in TBI comorbidities, such as cognitive deficits, psychiatric function, and post-traumatic epilepsy. This review presents studies in TBI as well as adenosine-related mechanisms in co-morbidities of and unfavorable outcomes resulting from TBI. While the exact role of the adenosine system following TBI remains unclear, there is increasing evidence that a thorough understanding of adenosine signaling will be critical to the development of diagnostic and therapeutic tools for the treatment of TBI. PMID:20190964

  6. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  7. Right and Left Ventricular Myocardial Perfusion Reserves Correlate with Right Ventricular Function and Pulmonary Hemodynamics in Patients with Pulmonary Arterial Hypertension1

    PubMed Central

    Skrok, Jan; Shehata, Monda L.; Singh, Sukhminder; Sibley, Christopher T.; Boyce, Danielle M.; Lechtzin, Noah; Girgis, Reda E.; Mathai, Steven C.; Goldstein, Thomas A.; Zheng, Jie; Lima, João A. C.; Bluemke, David A.; Hassoun, Paul M.

    2011-01-01

    Purpose: To evaluate the relationships of right ventricular (RV) and left ventricular (LV) myocardial perfusion reserves with ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension (PAH) by using adenosine stress perfusion cardiac magnetic resonance (MR) imaging. Materials and Methods: This HIPAA-compliant study was institutional review board approved. Twenty-five patients known or suspected to have PAH underwent right heart catheterization and adenosine stress MR imaging on the same day. Sixteen matched healthy control subjects underwent cardiac MR imaging only. RV and LV perfusion values at rest and at adenosine-induced stress were calculated by using the Fermi function model. The MR imaging–derived RV and LV functional data were calculated by using dedicated software. Statistical testing included Kruskal-Wallis tests for continuous data, Spearman rank correlation tests, and multiple linear regression analyses. Results: Seventeen of the 25 patients had PAH: 11 with scleroderma-associated PAH, and six with idiopathic PAH. The remaining eight patients had scleroderma without PAH. The myocardial perfusion reserve indexes (MPRIs) in the PAH group (median RV MPRI, 1.7 [25th–75th percentile range, 1.3–2.0]; median LV MPRI, 1.8 [25th–75th percentile range, 1.6–2.1]) were significantly lower than those in the scleroderma non-PAH (median RV MPRI, 2.5 [25th–75th percentile range, 1.8–3.9] [P = .03]; median LV MPRI, 4.1 [25th–75th percentile range, 2.6–4.8] [P = .0003]) and control (median RV MPRI, 2.9 [25th–75th percentile range, 2.6–3.6] [P < .01]; median LV MPRI, 3.6 [25th–75th percentile range, 2.7–4.1] [P < .01]) groups. There were significant correlations between biventricular MPRI and both mean pulmonary arterial pressure (mPAP) (RV MPRI: ρ = −0.59, Bonferroni P = .036; LV MPRI: ρ = −0.79, Bonferroni P < .002) and RV stroke work index (RV MPRI: ρ = −0.63, Bonferroni P = .01; LV MPRI: ρ =

  8. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    SciTech Connect

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. )

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  9. Assessment of myocardial viability.

    PubMed

    Travin, Mark I; Bergmann, Steven R

    2005-01-01

    The prevalence of left ventricular (LV) dysfunction and resultant congestive heart failure is increasing. Patients with this condition are at high risk for cardiac death and usually have significant limitations in their lifestyles. Although there have been advances in medical therapy resulting in improved survival and well being, the best and most definitive therapy, when appropriate, is revascularization. In the setting of coronary artery disease, accounting for approximately two thirds of cases of congestive heart failure, LV dysfunction often is not the result of irreversible scar but rather caused by impairment in function and energy use of still viable-myocytes, with the opportunity for improved function if coronary blood flow is restored. Patients with LV dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischemia but at the same time benefit most from revascularization. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy, whether using thallium-201, Tc-99m sestamibi, or Tc-99m tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularization, including some patients referred instead for cardiac transplantation. Other noninvasive modalities, such as stress echocardiography, also facilitate the assessment of myocardial viability, but there are advantages and disadvantages compared with the nuclear techniques. Nuclear imaging appears to require fewer viable cells for detection, resulting in a higher sensitivity but a lower specificity than stress

  10. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  11. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  12. Salutary effect of adjunctive intracoronary nicorandil administration on restoration of myocardial blood flow and functional improvement in patients with acute myocardial infarction.

    PubMed

    Sakata, Y; Kodama, K; Komamura, K; Lim, Y J; Ishikura, F; Hirayama, A; Kitakaze, M; Masuyama, T; Hori, M

    1997-06-01

    Salutary effect of nicorandil, a K+ adenosine triphosphate channel opener, on restoration of myocardial blood flow and functional improvement after coronary revascularization was investigated in 20 patients with first anterior acute myocardial infarction. Ten patients received intracoronary administration of nicorandil (2 mg) after coronary revascularization; the other 10 patients received coronary revascularization only and served as control subjects. Myocardial contrast echocardiography and two-dimensional echocardiography were performed to assess microvascular integrity and regional function in the infarcted area. Nicorandil improved peak contrast intensity ratio (p < 0.001), calculated as the ratio of peak contrast intensity in the infarcted and noninfarcted areas, indicating the restoration of myocardial blood flow to the infarcted myocardium. Regional wall motion improved more significantly in 1 month in patients who received nicorandil (p < 0.01). Thus our results suggested the usefulness of intracoronary nicorandil administration after coronary revascularization for restoring blood flow and functional improvement in patients with acute myocardial infarction. PMID:9200388

  13. Tumour necrosis factor-α and adenosine in endotoxin shockleading related cardiovascular symptoms

    PubMed Central

    Seres, T.; Dinya, Z.; Szekanecz, Z.; Szentmiklósi, J.; Bodolay, E.; Szegedi, G.

    1995-01-01

    We have observed uncontrollable cardiogenic shock as a cardiovascular manifestation of systemic inflammatory response syndrome (SIRS) leading to death in a 62-year-old woman. The diagnosis of SIRS was based on the demonstration of endotoxinaemia, and highly elevated plasma levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-10. We suggest that these cytokines may contribute to the terminal SIRS-related arrythmias, impaired myocardial contractility, as well as increased vascular permeability. In addition, the increased production of adenosine, a counter-regulatory mediator of inflammation, may also play a role in cardiodepression. We suggest a relationship between the action of TNF-α , IL-10 and adenosine in the pathogenesis of circulatory symptoms described above. PMID:18475680

  14. Regional myocardial nitrogen-13 glutamate uptake in patients with coronary artery disease: inverse post-stress relation to thallium-201 uptake in ischemia

    SciTech Connect

    Zimmermann, R.; Tillmanns, H.; Knapp, W.H.; Helus, F.; Georgi, P.; Rauch, B.; Neumann, F.J.; Girgensohn, S.; Maier-Borst, W.; Kuebler, W.

    1988-03-01

    The purpose of the present study was to evaluate the clinical significance of myocardial scintigraphy with nitrogen-13 (N-13) glutamate as a marker of myocardial metabolism. Within 2 weeks after cardiac catheterization, 25 patients with single vessel left anterior descending coronary artery disease underwent thallium-201 imaging (5 min and 3 h after injection) and N-13 glutamate scintigraphy (10 min after injection). Radionuclide studies were performed in the 30 degrees left anterior oblique projection after symptom-limited bicycle exercise, and regional tracer uptake was quantified by computer-assisted placement of regions of interest within the regions of myocardial activity. Poststenotic tracer uptake in the perfusion bed of the left anterior descending coronary artery (septum) was then normalized to the tracer uptake in the nondiseased left circumflex territory (posterolateral segments = 100%). In 14 patients with a history of previous myocardial infarction (Subgroup A), deficient poststenotic N-13 uptake correlated closely with thallium-201 uptake in both initial (r = 0.82, p less than 0.001) and redistribution (r = 0.74, p less than 0.01) scintigrams. By contrast, in 11 patients with no previous myocardial infarction and normal left ventricular function at rest (Subgroup B), initial uptake of both tracers was inverse: poststenotic N-13 glutamate uptake increased with decreasing thallium-201 uptake during exercise-induced ischemia (r = -0.64, p less than 0.05) and was closely correlated with the percent thallium-201 redistribution (r = 0.74, p less than 0.01). Thus, augmented accumulation of N-13 glutamate in reversibly ischemic (that is, viable) myocardium, and decreased uptake in myocardial scar tissue suggest the clinical usefulness of this metabolic tracer in the differentiation between viable (metabolically active) and irreversibly damaged myocardium.

  15. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  16. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  17. Gas-phase protonation thermochemistry of adenosine.

    PubMed

    Touboul, David; Bouchoux, Guy; Zenobi, Renato

    2008-09-18

    The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH +) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine. PMID:18720985

  18. Dichloroacetate attenuates myocardial acidosis and metabolic changes induced by partial occlusion of the coronary artery in dogs.

    PubMed

    Sakai, K; Ichihara, K; Nasa, Y; Kamigaki, M; Abiko, Y

    1990-01-01

    The present study was undertaken to examine whether dichloroacetate, which inhibits pyruvate dehydrogenase kinase and, therefore, increases the activity of pyruvate dehydrogenase, attenuates myocardial acidosis and metabolic changes induced by coronary occlusion. In dogs anesthetized with pentobarbital, the left anterior descending coronary artery was incompletely occluded to reduce the left anterior descending flow to a half to one third of the original flow (partial occlusion) to produce myocardial (regional) ischemia. Partial occlusion was continued for 90 min, and a bolus injection of saline or dichloroacetate was made intravenously 30 min after the onset of occlusion. Partial occlusion decreased myocardial pH significantly. An injection of dichloroacetate (150 mg/kg) increased myocardial pH that had been lowered by partial occlusion. Myocardial metabolites were measured in other dogs. Partial occlusion decreased the myocardial levels of adenosine triphosphate, creatine phosphate and energy charge potential, and increased that of lactate significantly, without affecting the myocardial levels of pyruvate and nonesterified fatty acids. Dichloroacetate attenuated the ischemia-induced changes in the myocardial levels of adenosine triphosphate, creatine phosphate, energy charge potential and lactate. These results indicate that dichloroacetate attenuates the myocardial acidosis and metabolic changes during coronary partial occlusion. PMID:2095718

  19. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  20. The role of adenosine in functional hyperaemia in the coronary circulation of anaesthetized dogs.

    PubMed Central

    Karim, F; Goonewardene, I P

    1996-01-01

    1. The aim of this investigation was to determine the contribution of adenosine to coronary active hyperaemia in the dog denervated heart by using adenosine deaminase. 2. Beagles were anaesthetized with thiopentone sodium (500 mg, I.V.) and chloralose (100 mg kg-1, LV.) and artificially ventilated. The hearts were denervate by bilateral cervical vagotomy and cardiac sympathectomy. Blood samples were collected from the coronary sinus via a cannula passed through the right external jugular vein. The anterior descending or circumflex branch of the left coronary artery was cannulated and perfused with blood from the left subclavian artery under systemic blood pressure through an electromagnetic flow probe and a perfusion circuit. The heart was paced (3 V, 0.2 ms and a suitable frequency) via two electrodes attached to the right atrium from 109 +/- 7.3 to 170 +/- 9.8 beats min-4 (means +/- S.E.M.) for 3-4 min, first during an infusion of the solvent, and then during an infusion of a solution of adenosine deaminase (5 U kg-1 min-1) into the circuit. 3. In seventeen tests in eight dogs, infusion of adenosine deaminase did not cause a significant change in the basal coronary blood flow nor in the immediate increase (within 10s) in blood flow induced by pacing the heart from its basal rate to 170 beats min-1. However, adenosine deaminase did cause a significant attenuation by 58 +/- 5.2% (P < 0.05) of the increase in coronary blood flow induced at 3-4 min of pacing from 31 +/- 4.6 to 43 +/- 5.8 ml min-1 (100 g cardiac tissue)-1. Concomitantly, the pacing-induced increase in coronary vascular conductance (from 0.41 +/- 0.08 to 0.54 +/- 0.12 ml min-1 (100 g)-1 mmHg-1) was reduced by 75 +/- 6.6% (P < 0.02) and the increase in myocardial O2 consumption (from 13 +/- 3.5 to 21 +/- 4.2 ml min-1 (100 g)-1) was reduced by 50 +/- 12% (P < 0.05) but without significant changes in oxygen extraction or myocardial contractility. 4. The results show that although adenosine is unlikely to

  1. Spontaneous changes in /sup 201/Tl myocardial perfusion imaging after myocardial infarction

    SciTech Connect

    Buda, A.J.; Dubbin, J.D.; MacDonald, I.L.; Strauss, H.D.; Orr, S.A.; Meindok, H.

    1982-12-01

    To examine regional myocardial perfusion after myocardial infarction, 26 patients underwent exercise electrocardiographic testing with /sup 201/Tl myocardial perfusion imaging 3 weeks and 3 months after infarction. At 3 weeks, 9 of 26 patients (35%) had myocardial ischemia by exercise electrocardiographic testing, whereas 18 of 26 (69%) had ischemia by /sup 201/Tl imaging. The /sup 201/Tl scintigrams were scored by dividing each image, in 3 views, into 5 segments, using a 5-point scoring scheme. The exercise /sup 201/Tl score was 44.3 +/- 1.2 and increased to 47.3 +/- 1.2 in the redistribution study (p less than 0.001). Three months after infarction, although there was a significantly greater rate-pressure product which would predict a larger ischemic defect and a decrease in the stress /sup 201/Tl score, the stress score was improved (48.3 +/- 1.1, p less than 0.001). The redistribution score was similar, that is, 48.9 +/- 1.0. The improvement in /sup 201/Tl myocardial perfusion was associated with a loss of stress-induced ischemia in 8 patients (30%). These results indicate that spontaneous improvements in /sup 201/Tl myocardial perfusion imaging may occur after myocardial infarction.

  2. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  3. Normal Myocardial Flow Reserve in HIV-Infected Patients on Stable Antiretroviral Therapy: A Cross-Sectional Study Using Rubidium-82 PET/CT.

    PubMed

    Knudsen, Andreas; Christensen, Thomas E; Ghotbi, Adam Ali; Hasbak, Philip; Lebech, Anne-Mette; Kjær, Andreas; Ripa, Rasmus Sejersten

    2015-10-01

    Studies have found HIV-infected patients to be at increased risk of myocardial infarction, which may be caused by coronary microvascular dysfunction. For the first time among HIV-infected patients, we assessed the myocardial flow reserve (MFR) by Rubidium-82 (82Rb) positron emission tomography (PET), which can quantify the coronary microvascular function. MFR has proved highly predictive of future coronary artery disease and cardiovascular events in the general population.In a prospective cross-sectional study, HIV-infected patients all receiving antiretroviral therapy (ART) with full viral suppression and HIV-uninfected controls were scanned using 82Rb PET/computed tomography at rest and adenosine-induced stress, thereby obtaining the MFR (stress flow/rest flow), stratified into low ≤1.5, borderline >1.5 to 2.0, or normal >2.0.Fifty-six HIV-infected patients and 25 controls were included. The HIV-infected patients had a mean age of 53 years (range 37-68 years) with 23% active smokers. The controls had a mean age of 52 years (range 36-68 years) and 26% active smokers. In the HIV-infected group 73% had a normal MFR, 17% borderline, and 10% low values of MFR. Among controls these values were 71%, 19%, and 10%, respectively (P = 0.99). However, the HIV-infected group had lower values of stress myocardial blood flow (MBF) (2.63 ± 0.09 mL/g/min vs 2.99 ± 0.14 mL/g/min; P = 0.03). We found no evidence of decreased MFR as assessed by 82Rb PET among HIV-infected patients on stable ART with full viral suppression compared with HIV-uninfected controls. We did notice a decreased MBF during stress. PMID:26512605

  4. Adenosine triphosphate inhibition of yeast trehalase.

    PubMed

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  5. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  6. Regulation of Lymphocyte Function by Adenosine

    PubMed Central

    Linden, Joel; Cekic, Caglar

    2014-01-01

    Adenosine regulates the interaction between lymphocytes and the vasculature and is important for controlling lymphocyte trafficking in response to tissue injury or infection. Adenosine can blunt the effects of T cell receptor (TCR) activation primarily by activating adenosine A2A receptors (A2AR) and signaling via cyclic AMP and protein kinase A (PKA). PKA reduces proximal TCR signaling by phosphorylation of C-terminal Src kinase (Csk), nuclear factor of activated T cells (NF-AT) and cyclic AMP response element binding protein (CREB). PKA activation can either enhance or inhibit the survival of T cells depending on the strength and duration of signaling. Inducible enzymes such as CD73 and CD39 regulate adenosine formation and degradation in vivo. The extravasation of lymphocytes through blood vessels is influenced by A2AR-mediated suppression of Intercellular Adhesion Molecule 1 (ICAM) expression on lymphocytes and diminished production of IFNγ and IFNγ-inducible chemokines that are chemotactic to activated lymphocytes. Adenosine also decreases the barrier function of vascular endothelium by activating A2BRs. In sum, adenosine signaling is influenced by tissue inflammation and injury through induction of receptors and enzymes and has generally inhibitory effects on lymphocyte migration into inflamed tissues due to PKA-mediated effects on adhesion molecules, IFNγ production and endothelial barrier function. PMID:22772752

  7. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs.

    PubMed

    Kaplan, G B; Sears, M T

    1996-01-01

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. Adenosine receptors and their functions have been shown to be regulated by chronic opiate treatment. This study examines the role of adenosine receptors in the expression of opiate withdrawal behaviors. The effects of single doses of parenterally administered adenosine receptor subtype-selective agonists and antagonists on opiate withdrawal signs in morphine-dependent mice were measured. Mice received subcutaneous morphine pellet treatment for 72 h and then underwent naloxone-precipitated withdrawal after pretreatment with adenosinergic agents. Adenosine agonists attenuated different opiate withdrawal signs. The A1 agonist R-N6(phenylisopropyl)adenosine (0, 0.01, 0.02 mg/kg, IP) significantly reduced wet dog shakes and withdrawal diarrhea, while the A2a-selective agonist 2-p-(2-carboxethyl)phenylethylamino-5'-N-ethylcarboxamido adenosine or CGS 21680 (0, 0.01, 0.05 mg/kg, IP) significantly inhibited teeth chattering and forepaw treads. Adenosine receptor antagonists enhanced different opiate withdrawal signs. The adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (0, 1, 10 mg/kg, IP) significantly increased weight loss and the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (0, 1 and 10 mg/kg, IP) enhanced wet dog shakes and withdrawal diarrhea. Treatment effects of adenosinergic agents were not due to nonspecific motor effects, as demonstrated by activity monitoring studies. These results support a role for adenosine receptors in the expression of opiate withdrawal and suggest the potential utility of adenosine agonists in its treatment. PMID:8741956

  8. Cardioprotection against experimental myocardial ischemic injury using cornin.

    PubMed

    Xu, Y; Xu, Y; Luan, H; Jiang, Y; Tian, X; Zhang, S

    2016-02-01

    Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt. PMID:26871971

  9. Cardioprotection against experimental myocardial ischemic injury using cornin

    PubMed Central

    Xu, Y.; Xu, Y.; Luan, H.; Jiang, Y.; Tian, X.; Zhang, S.

    2016-01-01

    Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt. PMID:26871971

  10. Diastolic Dysfunction Induced by a High-Fat Diet Is Associated with Mitochondrial Abnormality and Adenosine Triphosphate Levels in Rats

    PubMed Central

    Kang, Ki-Woon; Kim, Ok-Soon; Chin, Jung Yeon; Kim, Won Ho; Park, Sang Hyun; Choi, Yu Jeong; Shin, Jong Ho; Jung, Kyung Tae; Lim, Do-Seon

    2015-01-01

    Background Obesity is well-known as a risk factor for heart failure, including diastolic dysfunction. However, this mechanism in high-fat diet (HFD)-induced obese rats remain controversial. The purpose of this study was to investigate whether cardiac dysfunction develops when rats are fed with a HFD for 10 weeks; additionally, we sought to investigate the association between mitochondrial abnormalities, adenosine triphosphate (ATP) levels and cardiac dysfunction. Methods We examined myocardia in Wistar rats after 10 weeks of HFD (45 kcal% fat, n=6) or standard diet (SD, n=6). Echocardiography, histomorphologic analysis, and electron microscopy were performed. The expression levels of mitochondrial oxidative phosphorylation (OXPHOS) subunit genes, peroxisome-proliferator-activated receptor γ co-activator-1α (PGC1α) and anti-oxidant enzymes were assessed. Markers of oxidative stress damage, mitochondrial DNA copy number and myocardial ATP level were also examined. Results After 10 weeks, the body weight of the HFD group (349.6±22.7 g) was significantly higher than that of the SD group (286.8±14.9 g), and the perigonadal and epicardial fat weights of the HFD group were significantly higher than that of the SD group. Histomorphologic and electron microscopic images were similar between the two groups. However, in the myocardium of the HFD group, the expression levels of OXPHOS subunit NDUFB5 in complex I and PGC1α, and the mitochondrial DNA copy number were decreased and the oxidative stress damage marker 8-hydroxydeoxyguanosine was increased, accompanied by reduced ATP levels. Conclusion Diastolic dysfunction was accompanied by the mitochondrial abnormality and reduced ATP levels in the myocardium of 10 weeks-HFD-induced rats. PMID:26790384

  11. Pharmacological Preconditioning of Mesenchymal Stem Cells with Trimetazidine (1-[2,3,4-Trimethoxybenzyl]piperazine) Protects Hypoxic Cells against Oxidative Stress and Enhances Recovery of Myocardial Function in Infarcted Heart through Bcl-2 Expression

    PubMed Central

    Wisel, Sheik; Khan, Mahmood; Kuppusamy, M. Lakshmi; Mohan, I. Krishna; Chacko, Simi M.; Rivera, Brian K.; Sun, Benjamin C.; Hideg, Kálmán; Kuppusamy, Periannan

    2009-01-01

    Stem cell transplantation is a possible therapeutic option to repair ischemic damage to the heart. However, it is faced with a number of challenges including the survival of the transplanted cells in the ischemic region. The present study was designed to use stem cells preconditioned with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine; TMZ), a widely used anti-ischemic drug for treating angina in cardiac patients, to increase the rate of their survival after transplantation. Bone marrow-derived rat mesenchymal stem cells (MSCs) were subjected to a simulated host tissue environment by culturing them under hypoxia (2% O2) and using hydrogen peroxide (H2O2) to induce oxidative stress. MSCs were preconditioned with 10 μM TMZ for 6 h followed by treatment with 100 μM H2O2 for 1 h and characterized for their cellular viability and metabolic activity. The preconditioned cells showed a significant protection against H2O2-induced loss of cellular viability, membrane damage, and oxygen metabolism accompanied by a significant increase in HIF-1α, survivin, phosphorylated Akt (pAkt), and Bcl-2 protein levels and Bcl-2 gene expression. The therapeutic efficacy of the TMZ-preconditioned MSCs was evaluated in an in vivo rat model of myocardial infarction induced by permanent ligation of left anterior descending coronary artery. A significant increase in the recovery of myocardial function and up-regulation of pAkt and Bcl-2 levels were observed in hearts transplanted with TMZ-preconditioned cells. This study clearly demonstrated the potential benefits of pharmacological preconditioning of MSCs with TMZ for stem cell therapy for repairing myocardial ischemic damage. PMID:19218529

  12. Cardiac magnetic resonance imaging for myocardial perfusion and diastolic function—reference control values for women

    PubMed Central

    Bakir, May; Wei, Janet; Nelson, Michael D.; Mehta, Puja K.; Haftbaradaran, Afsaneh; Jones, Erika; Gill, Edward; Sharif, Behzad; Slomka, Piotr J.; Li, Debiao; Shufelt, Chrisandra L.; Minissian, Margo; Berman, Daniel S.; Bairey Merz, C. Noel

    2016-01-01

    Angina, heart failure with preserved ejection fraction (HFpEF) and coronary microvascular dysfunction (CMD) in the absence of obstructive coronary artery disease (CAD) are more common in women and are associated with adverse cardiovascular prognosis. Cardiac magnetic resonance imaging (CMRI) is established for assessment of left ventricular (LV) morphology and systolic function and is increasingly used to assess myocardial perfusion and diastolic function. Indeed, stress CMRI allows measurement of myocardial perfusion reserve index (MPRI) using semi-quantitative techniques, and quantification of LV volumetric filling patterns provides valuable insight into LV diastolic function. The utility of these two techniques remains limited, because reference control values for MPRI and LV diastolic function in asymptomatic middle-aged, women have not previously been established. To address this limitation, we recruited twenty women, without clinical cardiovascular disease or cardiovascular risk factors, with normal maximal Bruce protocol exercise treadmill testing. Subjects underwent CMRI (1.5 tesla) using a standardized protocol of adenosine stress and rest perfusion and LV cinematic imaging. Commercially available with automated CMRI segmentation was used for calculation of MPRI, LV filling profiles, and ejection fraction. Mean age was 54±9 years and mean body mass index was 25±4 kg/m3. The exercise treadmill testing results demonstrated a normotensive group with normal functional capacity and hemodynamic response. We report reference control values for semi-quantitative MPRI as well as measures of LV systolic and diastolic function including ejection fraction, stroke volume, peak filling rate (PFR), PFR adjusted for end-diastolic volume (EDV) and stroke volume, time to PFR, and EDV index. The data herein provide reference values for MPRI and diastolic function in a cohort of healthy, middle-aged of women. These reference values may be used for comparison with a variety

  13. Photoaffinity labeling of A1-adenosine receptors

    SciTech Connect

    Klotz, K.N.; Cristalli, G.; Grifantini, M.; Vittori, S.; Lohse, M.J.

    1985-11-25

    The ligand-binding subunit of the A1-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R-N6-phenylisopropyladenosine, R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific ligand for A1-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R-AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A1-subtype. It competes for (TH)N6-phenylisopropyladenosine binding to A1-receptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of (TH)N6-phenylisopropyladenosine binding after extensive washing; the Ki value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity label of high specific radioactivity ( SVI-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for SVI-AHPIA binding to rat brain membranes with an order of potency characteristic for A1-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of Mr = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A1-subtype. The results indicate that SVI-AHPIA identifies the ligand-binding subunit of the A1-adenosine receptor, which is a peptide with Mr = 35,000.

  14. Repetitive Myocardial Infarctions Secondary to Delirium Tremens

    PubMed Central

    Schwartzberg, David; Shiroff, Adam

    2014-01-01

    Delirium tremens develops in a minority of patients undergoing acute alcohol withdrawal; however, that minority is vulnerable to significant morbidity and mortality. Historically, benzodiazepines are given intravenously to control withdrawal symptoms, although occasionally a more substantial medication is needed to prevent the devastating effects of delirium tremens, that is, propofol. We report a trauma patient who required propofol sedation for delirium tremens that was refractory to benzodiazepine treatment. Extubed prematurely, he suffered a non-ST segment myocardial infarction followed by an ST segment myocardial infarction requiring multiple interventions by cardiology. We hypothesize that his myocardial ischemia was secondary to an increased myocardial oxygen demand that occurred during his stress-induced catecholamine surge during the time he was undertreated for delirium tremens. This advocates for the use of propofol for refractory benzodiazepine treatment of delirium tremens and adds to the literature on the instability patients experience during withdrawal. PMID:25197580

  15. Repetitive myocardial infarctions secondary to delirium tremens.

    PubMed

    Schwartzberg, David; Shiroff, Adam

    2014-01-01

    Delirium tremens develops in a minority of patients undergoing acute alcohol withdrawal; however, that minority is vulnerable to significant morbidity and mortality. Historically, benzodiazepines are given intravenously to control withdrawal symptoms, although occasionally a more substantial medication is needed to prevent the devastating effects of delirium tremens, that is, propofol. We report a trauma patient who required propofol sedation for delirium tremens that was refractory to benzodiazepine treatment. Extubed prematurely, he suffered a non-ST segment myocardial infarction followed by an ST segment myocardial infarction requiring multiple interventions by cardiology. We hypothesize that his myocardial ischemia was secondary to an increased myocardial oxygen demand that occurred during his stress-induced catecholamine surge during the time he was undertreated for delirium tremens. This advocates for the use of propofol for refractory benzodiazepine treatment of delirium tremens and adds to the literature on the instability patients experience during withdrawal. PMID:25197580

  16. Recent developments in adenosine receptor ligands and their potential as novel drugs☆

    PubMed Central

    Müller, Christa E.; Jacobson, Kenneth A.

    2012-01-01

    Medicinal chemical approaches have been applied to all four of the adenosine receptor (AR) subtypes (A1, A2A, A2B, and A3) to create selective agonists and antagonists for each. The most recent class of selective AR ligands to be reported is the class of A2BAR agonists. The availability of these selective ligands has facilitated research on therapeutic applications of modulating the ARs and in some cases has provided clinical candidates. Prodrug approaches have been developed which improve the bioavailability of the drugs, reduce side-effects, and/or may lead to site-selective effects. The A2A agonist regadenoson (Lexiscan®), a diagnostic drug for myocardial perfusion imaging, is the first selective AR agonist to be approved. Other selective agonists and antagonists are or were undergoing clinical trials for a broad range of indications, including capadenoson and tecadenoson (A1 agonists) for atrial fibrillation, or paroxysmal supraventricular tachycardia, respectively, apadenoson and binodenoson (A2A agonists) for myocardial perfusion imaging, preladenant (A2A antagonist) for the treatment of Parkinson’s disease, and CF101 and CF102 (A3 agonists) for inflammatory diseases and cancer, respectively. This article is part of a Special Issue entitled: “Adenosine Receptors”. PMID:21185259

  17. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    PubMed Central

    Roque, Fernanda R.; Soci, Ursula Paula Renó; De Angelis, Katia; Coelho, Marcele A.; Furstenau, Cristina R.; Vassallo, Dalton V.; Irigoyen, Maria Claudia; Oliveira, Edilamar M.

    2011-01-01

    OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C) and trained (T). An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05). RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 5′-nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion. PMID:22189737

  18. Hemodynamic response, arrhythmic risk, and overall safety of regadenoson as a pharmacologic stress agent for myocardial perfusion imaging in chronic obstructive pulmonary disease and bronchial asthma patients.

    PubMed

    Husain, Zehra; Palani, Gurunanthan; Cabrera, Rafael; Karthikeyan, Aarthee S; Dhanalakota, Sunitha; Pathmanathan, Suba; Jacobsen, Gordon; Ananthasubramaniam, Karthik

    2012-10-01

    Regadenoson (REG) is a A2a receptor selective pharmacologic SPECT imaging agent. Its safety in unselected chronic obstructive pulmonary disease (COPD) or asthma (AM) undergoing SPECT imaging has not been well evaluated. We retrospectively identified 228 patients (COPD n = 126 and AM n = 102, Grp 1) undergoing REG SPECT from Jan to Nov 2009 and compared to 1,142 patients without COPD and AM (control, Grp 2). A standard 400 μg REG bolus was used and gated Tc-99 m tetrofosmin SPECT done. Patient demographics, REG SPECT data, side effects, arrhythmia occurrences, and any exacerbation of COPD or AM leading to treatment, hospitalization or death were evaluated. The side effect profile of Grp 1 was also compared to a historical cohort who underwent intravenous dipyridamole thallium-201 imaging and adenosine SPECT. Both groups were comparable with regards to baseline characteristics. There was 0% incidence of clinical exacerbation of COPD or AM after REG. COPD patients had more non-significant arrhythmias (58.3% vs. Grp 2, 43%, P = 0.004). There was 0% incidence of any atrio-ventricular block and only 2 instances of brief supraventricular tachycardia. When compared to the historical cohort of COPD who underwent IV dipyridamole thallium imaging, COPD in Grp 1, had more dyspnea and flushing and when compared to COPD/AM patients who underwent adenosine SPECT, Grp 1 pts had more of flushing and headache (24.9% vs. 2.8%, P = <0.001) but less of bronchospasm (1.3% vs. 6.9%, P = 0.022) and AV block (0% vs. 4.2%, P = 0.014). REG SPECT can be safely performed in COPD and AM population. PMID:22200931

  19. Inhibition of adenosine kinase by phosphonate and bisphosphonate derivatives.

    PubMed

    Park, Jae; Singh, Bhag; Gupta, Radhey S

    2006-02-01

    The enzyme adenosine kinase (AK) plays a central role in regulating the intracellular and interstitial concentration of the purine nucleoside adenosine (Ado). In view of the beneficial effects of Ado in protecting tissues from ischemia and other stresses, there is much interest in developing AK inhibitors, which can regulate Ado concentration in a site- and event-specific manner. The catalytic activity of AK from different sources is dependent upon the presence of activators such as phosphate (Pi). In this work we describe several new phosphorylated compounds which either activate or inhibit AK. The compounds acetyl phosphate, carbamoyl phosphate, dihydroxyacetone phosphate and imidodiphosphate were found to stimulate AK activity in a dose-dependent manner comparable to that seen with Pi. In contrast, a number of phosphonate and bisphosphonate derivatives, which included clodronate and etidronate, were found to inhibit the activity of purified AK in the presence of Pi. These AK inhibitors (viz. clodronate, etidronate, phosphonoacetic acid, 2-carboxyethylphosphonic acid, N-(phosphonomethyl)-glycine and N-(phosphonomethyl)iminodiacetic acid), at concentrations at which they inhibited AK, were also shown to inhibit the uptake of (3)H-adenosine and its incorporation into macromolecules in cultured mammalian cells, indicating that they were also inhibiting AK in intact cells. The drug concentrations at which these effects were observed showed limited toxicity to the cultured cells, indicating that these effects are not caused by cellular toxicity. These results indicate that the enzyme AK provides an additional cellular target for the clinically widely used bisphosphonates and related compounds, which could possibly be exploited for a new therapeutic application. Our structure-activity studies on different AK activators and inhibitors also indicate that all of the AK activating compounds have a higher partial positive charge (delta(+)) on the central phosphorous atom in

  20. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  1. Nucleoside transporter expression and adenosine uptake in the rat cochlea.

    PubMed

    Khan, Abdul F; Thorne, Peter R; Muñoz, David J B; Wang, Carol J H; Housley, Gary D; Vlajkovic, Srdjan M

    2007-02-12

    Even though extracellular adenosine plays multiple roles in the cochlea, the mechanisms that control extracellular adenosine concentrations in this organ are unclear. This study investigated the expression of nucleoside transporters and adenosine uptake in the rat cochlea. Reverse transcription-polymerase chain reaction revealed the expression of mRNA transcripts for two equilibrative (ENT1 and ENT2) and two concentrative (CNT1 and CNT2) nucleoside transporters. Exogenous adenosine perfused through the cochlear perilymphatic compartment was taken up by cells lining the compartment. Adenosine uptake was sensitive to changes in extracellular Na concentrations and inhibited by nitrobenzylthioinosine (an adenosine uptake blocker). The study suggests that the bi-directional nucleoside transport supports the uptake and recycling of purines and regulates the activation of adenosine receptors by altering adenosine concentrations in cochlear fluid spaces. PMID:17314663

  2. Novel adenosine receptors in rat hippocampus identification and characterization

    SciTech Connect

    Chin, J.H.; Mashman, W.E.; DeLorenzo, R.J.

    1985-05-06

    2-chloro(/sup 3/H)adenosine, a stable analog of adenosine, was used to investigate the presence of adenosine receptors in rat hippocampal membranes that may mediate the depressant effects of adenosine on synaptic transmission in this tissue. Equilibrium binding studies reveal the presence of a previously undescribed class of receptors with a K/sub D/ of 4.7 ..mu..M and a Bmax of 130 pmol/mg of protein. Binding is sensitive to alkylxanthines and to a number of adenosine-related compounds. The pharmacological properties of this binding site are distinct from those of the A1 and A2 adenosine receptors associated with adenylate cyclase. The results suggest that this adenosine binding site is a novel central purinergic receptor through which adenosine may regulate hippocampal excitability. 50 references, 2 figures, 1 table.

  3. Tolerance and safety of pharmacologic coronary vasodilation with adenosine in association with thallium-201 scintigraphy in patients with suspected coronary artery disease

    SciTech Connect

    Abreu, A.; Mahmarian, J.J.; Nishimura, S.; Boyce, T.M.; Verani, M.S. )

    1991-09-01

    Adenosine thallium-201 myocardial scintigraphy is a promising test for coronary artery disease detection, but its safety has not been reported in large patient cohorts. Accordingly, the tolerance and safety profile of adenosine infusion were analyzed in 607 patients (351 men, 256 women, mean age 63 {plus minus} 11 years) undergoing this test either because of suspected coronary artery disease (Group I, n = 482) or for risk stratification early (5.2 {plus minus} 2.8 days) after myocardial infarction (Group II, n = 125). Adenosine increased the heart rate from 74.5 {plus minus} 14.0 to 91.8 {plus minus} 15.9 beats/min (p less than 0.001) and decreased systolic blood pressure from 137.8 {plus minus} 26.8 to 120.7 {plus minus} 26.1 mm Hg (p less than 0.001). Side effects were frequent and similar in both groups. Flushing occurred in 35%, chest pain in 34%, headache in 21% and dyspnea in 19% of patients. Only 35.6% of Group I patients with chest pain during adenosine infusion had concomitant transient perfusion abnormalities, compared with 60.7% of Group II patients (p less than 0.05). First- and second-degree AV block occurred in 9.6% and 3.6% of patients, respectively, and ischemic ST changes in 12.5% of cases. Concomitance of chest pain and ischemic ST depression was uncommon (6%) but, when present, predicted perfusion abnormalities in 73% of patients. Most side effects ceased rapidly after stopping the adenosine infusion. The side effects were severe in only 1.6% of patients and in only six patients (1%) was it necessary to discontinue the infusion. No serious adverse reactions such as acute myocardial infarction or death occurred.

  4. Non-Ischemic Perfusion Defects due to Delayed Arrival of Contrast Material on Stress Perfusion Cardiac Magnetic Resonance Imaging after Coronary Artery Bypass Graft Surgery

    PubMed Central

    Kim, Yeo Koon; Park, Sang Joon; Cheon, Gi Jeong; Lee, Whal; Chung, Jin Wook; Park, Jae Hyung

    2014-01-01

    Herein we report about the adenosine stress perfusion MR imaging findings of a 50-year-old man who exhibited two different perfusion defects resulting from two different mechanisms after a coronary artery bypass surgery. An invasive coronary angiography confirmed that one perfusion defect at the mid-anterior wall resulted from an ischemia due to graft stenosis. However, no stenosis was detected on the graft responsible for the mid-inferior wall showing the other perfusion defect. It was assumed that the perfusion defect at the mid-inferior wall resulted from delayed perfusion owing to the long pathway of the bypass graft. The semiquantitative analysis of corrected signal-time curves supported our speculation, demonstrating that the rest-to-stress ratio index of the maximal slope of the myocardial territory in question was similar to those of normal myocardium, whereas that of myocardium with the stenotic graft showed a typical ischemic pattern. A delayed perfusion during long graft pathway in a post-bypass graft patient can mimick a true perfusion defect on myocardial stress MR imaging. Radiologists should be aware of this knowledge to avoid misinterpretation of graft and myocardial status in post bypass surgery patients. PMID:24644408

  5. Diagnostic Performance of First-Pass Myocardial Perfusion Imaging without Stress with Computed Tomography (CT) Compared with Coronary CT Angiography Alone, with Fractional Flow Reserve as the Reference Standard

    PubMed Central

    Osawa, Kazuhiro; Miyoshi, Toru; Miki, Takashi; Koyama, Yasushi; Sato, Shuhei; Kanazawa, Susumu; Ito, Hiroshi

    2016-01-01

    Coronary computed tomography angiography (CCTA) in combination with first-pass CT myocardial perfusion imaging (MPI) has a better diagnostic performance than CCTA alone, compared with invasive coronary angiography as the reference standard. The aim of this study was to investigate the additional diagnostic value of first-pass CT-MPI without stress for detecting hemodynamic significance of coronary stenosis, compared with invasive fractional flow reserve (FFR). We recruited 53 patients with suspected coronary artery disease undergoing both CCTA and first-pass CT-MPI without stress and invasive FFR, and 75 vessels were analyzed. We used the same raw data for CCTA and CT-MPI. First-pass CT-MPI was reconstructed by examining the diastolic signal densities as a bull’s eye map. Invasive FFR <0.8 was considered as positive. On per-vessel analysis, the area under the receiver operating characteristic curve for CCTA plus first-pass CT-MPI and CCTA alone was 0.81 (0.73–0.90) and 0.70 (0.61–0.81), respectively (P = 0.036). CCTA plus first-pass CT-MPI without stress showed 0.73 sensitivity, 0.74 specificity, 0.53 positive predictive value, and 0.87 negative predictive value for detecting hemodynamically significant coronary stenosis. First-pass CT-MPI without stress correctly reclassified 38% of CCTA false-positive vessels as true negative. First-pass CT-MPI without stress combined with CCTA demonstrated excellent diagnostic accuracy, compared with invasive FFR as the reference standard. This technique could complement CCTA for diagnosis of coronary artery disease. PMID:26894686

  6. Diagnostic Performance of First-Pass Myocardial Perfusion Imaging without Stress with Computed Tomography (CT) Compared with Coronary CT Angiography Alone, with Fractional Flow Reserve as the Reference Standard.

    PubMed

    Osawa, Kazuhiro; Miyoshi, Toru; Miki, Takashi; Koyama, Yasushi; Sato, Shuhei; Kanazawa, Susumu; Ito, Hiroshi

    2016-01-01

    Coronary computed tomography angiography (CCTA) in combination with first-pass CT myocardial perfusion imaging (MPI) has a better diagnostic performance than CCTA alone, compared with invasive coronary angiography as the reference standard. The aim of this study was to investigate the additional diagnostic value of first-pass CT-MPI without stress for detecting hemodynamic significance of coronary stenosis, compared with invasive fractional flow reserve (FFR). We recruited 53 patients with suspected coronary artery disease undergoing both CCTA and first-pass CT-MPI without stress and invasive FFR, and 75 vessels were analyzed. We used the same raw data for CCTA and CT-MPI. First-pass CT-MPI was reconstructed by examining the diastolic signal densities as a bull's eye map. Invasive FFR <0.8 was considered as positive. On per-vessel analysis, the area under the receiver operating characteristic curve for CCTA plus first-pass CT-MPI and CCTA alone was 0.81 (0.73-0.90) and 0.70 (0.61-0.81), respectively (P = 0.036). CCTA plus first-pass CT-MPI without stress showed 0.73 sensitivity, 0.74 specificity, 0.53 positive predictive value, and 0.87 negative predictive value for detecting hemodynamically significant coronary stenosis. First-pass CT-MPI without stress correctly reclassified 38% of CCTA false-positive vessels as true negative. First-pass CT-MPI without stress combined with CCTA demonstrated excellent diagnostic accuracy, compared with invasive FFR as the reference standard. This technique could complement CCTA for diagnosis of coronary artery disease. PMID:26894686

  7. Myocardial Dysfunction and Shock after Cardiac Arrest

    PubMed Central

    Jentzer, Jacob C.; Chonde, Meshe D.; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies. PMID:26421284

  8. Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes.

    PubMed Central

    Snyder, F F; Mendelsohn, J; Seegmiller, J E

    1976-01-01

    The association of a human genetic deficiency of adenosine deaminase activity with combined immunodeficiency prompted a study of the effects of adenosine and of inhibition of adenosine deaminase activity on human lymphocyte transformation and a detailed study of adenosine metabolism throughout phytohemagglutinin-induced blastogenesis. The adenosine deaminase inhibitor, coformycin, at a concentration that inhibited adenosine deaminase activity more than 95%, or 50 muM adenosine, did not prevent blastogenesis by criteria of morphology or thymidine incorporation into acid-precipitable material. The combination of coformycin and adenosine, however, substantially reduced both the viable cell count and the incorporation of thymidine into DNA in phytohemagglutinin-stimulated lymphocytes. Incubation of lymphocytes with phytohemagglutinin for 72 h produced a 12-fold increase in the rate of deamination and a 6-fold increase in phosphorylation of adenosine by intact lymphocytes. There was no change in the apparent affinity for adenosine with either deamination or phosphorylation. The increased rates of metabolism, apparent as early as 3 h after addition of mitogen, may be due to increased entry of the nucleoside into stimulated lymphocytes. Increased adenosine metabolism was not due to changes in total enzyme activity; after 72 h in culture, the ratios of specific activities in extracts of stimulated to unstimulated lymphocytes were essentially unchanged for adenosine kinase, 0.92, and decreased for adenosine deaminase, 0.44. As much as 38% of the initial lymphocyte adenosine deaminase activity accumulated extracellularly after a 72-h culture with phytohemagglutinin. In phytohemagglutinin-stimulated lymphocytes, the principal route of adenosine metabolism was phosphorylation at less than 5 muM adenosine, and deamination at concentrations greater than 5 muM. In unstimulated lymphocytes, deamination was the principal route of adenosine metabolism over the range of adenosine

  9. Caffeine reduces myocardial blood flow during exercise.

    PubMed

    Higgins, John P; Babu, Kavita M

    2013-08-01

    Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes. PMID:23764265

  10. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters.

    PubMed

    Lynge, J; Juel, C; Hellsten, Y

    2001-12-01

    1. The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. 2. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km = 177 +/- 36 microM and Vmax = 1.9 +/- 0.2 nmol x ml(-1) x s(-1) (0.7 nmol (mg protein)(-1) x s(-1)). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72% inhibition) or dipyridamol (64% inhibition; P < 0.05). 3. In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57% larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. 4. Inhibition of ecto-5'-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70% lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. 5. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the

  11. ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart.

    PubMed

    Jameel, Mohammad N; Xiong, Qiang; Mansoor, Abdul; Bache, Robert J; Zhang, Jianyi

    2016-03-01

    Congestive heart failure (CHF) is associated with intrinsic alterations of mitochondrial oxidative phosphorylation which lead to increased myocardial cytosolic free ADP. ATP sensitive K(+) channels (KATP) act as metabolic sensors that are important for maintaining coronary blood flow (MBF) and in mediating the response of the myocardium to stress. Coronary adenosine receptors (AdR) are not normally active but cause vasodilation during myocardial ischemia. This study examined the myocardial energetic response to inhibition of KATP and AdR in CHF. CHF (as evidenced by LVEDP>20mmHg) was produced in adult mongrel dogs (n=12) by rapid ventricular pacing for 4weeks. MBF was measured with radiolabeled microspheres during baseline (BL), AdR blockade with 8-phenyltheophylline (8-PT; 5mg/kg iv), and KATP blockade with glibenclamide (GLB; 20μg/kg/min ic). High energy phosphates were examined with (31)P magnetic resonance spectroscopy (MRS) while myocardial oxygenation was assessed from the deoxymyoglobin signal (Mb-δ) using (1)H MRS. During basal conditions the phosphocreatine (PCr)/ATP ratio (1.73±0.15) was significantly lower than in previously studied normal dogs (2.42±0.11) although Mb-δ was undetectable. 8-PT caused ≈21% increase in MBF with no change in PCr/ATP. GLB caused a 33±0.1% decrease in MBF with a decrease in PCr/ATP from 1.65±0.17 to 1.11±0.11 (p<0.0001). GLB did not change the pseudo-first-order rate constant of ATP production via CK (kf), but the ATP production rate via CK was reduced by 35±0.08%; this was accompanied by an increase in Pi/PCr and appearance of a Mb-δ signal indicating tissue hypoxia. Thus, in the failing heart the balance between myocardial ATP demands and oxygen delivery is critically dependent on functioning KATP channels. PMID:26854629

  12. Adenosine reagent-free detection by co-immobilization of adenosine deaminase and phenol red on an optical biostrip.

    PubMed

    Bartzoka, Foteini; Venetsanou, Katerina; Clonis, Yannis

    2015-01-01

    Adenosine detection in human serum is important because this ribonucleoside has established clinical applications, modulating many physiological processes. Furthermore, a simple and cheap detection method is useful in adenosine production processes. Adenosine can be determined enzymatically using either S-adenosyl-homocysteine hydrolase and (3) [H]-adenosine, or adenosine kinase combined with GTP and luciferase, or an amperometric biosensor carrying adenosine deaminase (ADA), purine nucleoside phosphorylase, and xanthine oxidase. We developed a simple and cheap method relying on a transparent biostrip bearing ADA and the indicator phenol red (PR), co-immobilized to polyacrylamide, itself chemically adhered to a derivatized glass strip. The ADA-catalyzed conversion of adenosine to inosine and ammonia leads to a local pH alteration, changing the absorbance maximum of PR (from 425 to 567 nm), which is measured optically. The biostrip shows an analytical range 0.05-1.5 mM adenosine and is reusable when stored at 4 °C. When the biostrip was tested with serum, spiked with adenosine (70 and 100 μM), and filtered for protein and adenosine phosphates depletion, it showed good adenosine recovery. In summary, we show the proof-of-concept that adenosine can be determined reagent-free, at moderate sensitivity on an easy to construct, cheap, and reusable biostrip, based on commercially available molecular entities. PMID:25293641

  13. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET

    SciTech Connect

    Nagamachi, S.; Czernin, J.; Kim, A.S.

    1996-10-01

    PET with {sup 13}N-ammonia permits the noninvasive quantification of myocardial blood flow (MBF) in humans. The present study was done to assess the reproducibility of quantitative blood flow measurements at rest and during pharmacologically induced hyperemia in healthy individuals. Thirty healthy volunteers (26 men, 4 women) were studied. Paired measurements of MBF at rest (n = 21), during adenosine (n = 15) and during dipyridamole (n = 7) were performed using a two-compartment model for {sup 13}N-ammonia PET. The mean difference between baseline and follow-up blood flow (% difference) was calculated to assess reproducibility. No significant difference was observed between resting blood flow at baseline or follow-up (15.8% {plus_minus} 15.8%; p = ns). Baseline and follow-up resting blood flow were linearly correlated (r = 0.63, p < 0.005). Normalization of resting blood flow to the rate pressure product improved the reproducibility significantly (15.8% {plus_minus} 15.8% versus 10.1% {plus_minus} 10.5%, p < 0.05). Baseline and follow-up hyperemic myocardial blood flow did not differ (11.8% {plus_minus} 9.4%; p = ns) and were linearly correlated (r = 0.69, p < 0.0005). MBF at rest can be measured reproducibly with {sup 13}N-ammonia PET. The individual response to pharmacologic stress appears to be relatively consistent. Thus, serial blood flow measurements with {sup 13}N-ammonia PET can be used to quantify the effect of various interventions on MBF and vasodilatory reserve. 41 refs., 3 figs., 4 tabs.

  14. Internalization and desensitization of adenosine receptors

    PubMed Central

    Klaasse, Elisabeth C.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed. PMID:18368531

  15. Idiopathic calcified myocardial mass

    PubMed Central

    Patterson, David; Gibson, Derek; Gomes, Ricardo; McDonald, Lawson; Olsen, Eckhardt; Parker, John; Ross, Donald

    1974-01-01

    Patterson, D., Gibson, D., Gomes, R., McDonald, L., Olsen, E., Parker, J., and Ross, D. (1974).Thorax,29, 589-594. Idiopathic calcified myocardial mass. Myocardial calcification can be subdivided into three groups—metastatic, dystrophic or an extension inwards from the pericardium. This case in which the calcified myocardial mass was initially delineated by radiography and by echocardiography and subsequently removed does not fit into any subdivision and has been termed idiopathic. Images PMID:4279467

  16. Neuroprotective effects of adenosine deaminase in the striatum.

    PubMed

    Tamura, Risa; Ohta, Hiroyuki; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-04-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  17. [Myocardial responses to ischemia].

    PubMed

    Borisenko, V G; Gubareva, E A; Kade, A Kh

    2010-01-01

    The paper details the types of a myocardial response to impaired blood flow, such as myocardial stunning, hibernation, ischemic preconditioning, warm-up phenomenon, ischemic postconditioning, remodeling, and infarction. According to the pathogenesis, the authors identify several types of myocardial dysfunction in transient ischemic attack--uptake, delivery; and a mixed one. It is concluded the myocardial response to damage depends on a combination of influencing factors, a number of pathophysiological processes starting in the acute phase of ischemia achieve its peak in the late period. PMID:20564927

  18. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors.

    PubMed

    Gao, Zhan-Guo; Mamedova, Liaman K; Chen, Peiran; Jacobson, Kenneth A

    2004-11-15

    The affinity and efficacy at four subtypes (A(1), A(2A), A(2B) and A(3)) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N(6)-position, several 2-substituents were found to be critical structural determinants for the A(3)AR activation. The following adenosine 2-ethers were moderately potent partial agonists (K(i), nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A(3)AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)adenosine as an A(3)AR antagonist right-shifted the concentration-response curve for the inhibition by NECA of cyclic AMP accumulation with a K(B) value of 212 nM, which is similar to its binding affinity (K(i) = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A(1)AR in comparison to the A(3)AR, but fully efficacious, with binding K(i) values over 100 nM. The 2-phenylethyl moiety resulted in higher A(3)AR affinity (K(i) in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (K(i) = 3.8 nM) was found to be the most potent and selective (>50-fold) A(2A) agonist in this series. Mixed A(2A)/A(3)AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A(2B)AR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC(50) = 1.4 microM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC(50) = 1.8 microM) were found to be relatively potent A(2B) agonists, although less potent than NECA (EC(50) = 140 nM). PMID:15476669

  19. Stress

    MedlinePlus

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  20. Protective metabolic effects of propranolol during total myocardial ischemia.

    PubMed

    Veronee, C D; Lewis, W R; Takla, M W; Hull-Ryde, E A; Lowe, J E

    1986-09-01

    Clinical trials have shown an increase in survival in patients treated with beta blockers after infarction. In addition, the majority of patients undergoing myocardial revascularization are also treated preoperatively with beta blockers. It is commonly thought that beta blockers exert their protective effect primarily by decreasing heart rate and subsequent myocardial work. The present study was designed to determine whether beta blockade has any primary protective metabolic effects on globally ischemic myocardium. Thirty-four anesthetized dogs underwent total myocardial ischemia at 37 degrees C. High-energy nucleotide and lactate levels in left ventricular tissue samples were determined at control and at 15 minute intervals as well as at the onset of ischemic contracture in 24 dogs. Seventeen dogs were treated with propranolol before ischemia. The time to ischemic contracture in control dogs was 63.3 +/- 1.4 minutes compared with 75.9 +/- 2.2 minutes in the propranolol-treated group (p less than 0.01). In addition to significantly delaying the onset of ischemic contracture, propranolol also decreased the rate of anaerobic glycolysis during ischemia. Ischemic contracture occurred in the control group with an average adenosine triphosphate level of 1.26 +/- 0.08 mumol compared to 0.91 +/- 0.08 mumol/gm wet weight for the beta blocked group (p less than 0.0025). These are the first data suggesting that the protective effects of beta blockade may be related to a beneficial effect on ischemic myocardial metabolism allowing myocardium to survive with lower levels of adenosine triphosphate. PMID:3018382

  1. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman K.; Chen, Peiran; Jacobson, Kenneth A.

    2012-01-01

    The affinity and efficacy at four subtypes (A1, A2A, A2B and A3) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N6-position, several 2-substituents were found to be critical structural determinants for the A3AR activation. The following adenosine 2-ethers were moderately potent partial agonists (Ki, nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A3AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)a-denosine as an A3AR antagonist right-shifted the concentration–response curve for the inhibition by NECA of cyclic AMP accumulation with a KB value of 212 nM, which is similar to its binding affinity (Ki = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A1AR in comparison to the A3AR, but fully efficacious, with binding Ki values over 100 nM. The 2-phenylethyl moiety resulted in higher A3AR affinity (Ki in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (Ki = 3.8 nM) was found to be the most potent and selective (>50-fold) A2A agonist in this series. Mixed A2A/A3AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A2BAR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC50 = 1.4 µM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC50 = 1.8 (M) were found to be relatively potent A2B agonists, although less potent than NECA (EC50 = 140 nM). PMID:15476669

  2. Silk polymer-based adenosine release: therapeutic potential for epilepsy.

    PubMed

    Wilz, Andrew; Pritchard, Eleanor M; Li, Tianfu; Lan, Jing-Quan; Kaplan, David L; Boison, Detlev

    2008-09-01

    Adenosine augmentation therapies (AAT) make rational use of the brain's own adenosine-based seizure control system and hold promise for the therapy of refractory epilepsy. In an effort to develop an AAT compatible with future clinical application, we developed a novel silk protein-based release system for adenosine. Adenosine releasing brain implants with target release doses of 0, 40, 200, and 1000ng adenosine per day were prepared by embedding adenosine containing microspheres into nanofilm-coated silk fibroin scaffolds. In vitro, the respective polymers released 0, 33.4, 170.5, and 819.0ng adenosine per day over 14 days. The therapeutic potential of the implants was validated in a dose-response study in the rat model of kindling epileptogenesis. Four days prior to the onset of kindling, adenosine releasing polymers were implanted into the infrahippocampal cleft and progressive acquisition of kindled seizures was monitored over a total of 48 stimulations. We document a dose-dependent retardation of seizure acquisition. In recipients of polymers releasing 819ng adenosine per day, kindling epileptogenesis was delayed by one week corresponding to 18 kindling stimulations. Histological analysis of brain samples confirmed the correct location of implants and electrodes. We conclude that silk-based delivery of around 1000ng adenosine per day is a safe and efficient strategy to suppress seizures. PMID:18514814

  3. Adenosine Signaling During Acute and Chronic Disease States

    PubMed Central

    Karmouty-Quintana, Harry; Xia, Yang; Blackburn, Michael R.

    2013-01-01

    Adenosine is a signaling nucleoside that is produced following tissue injury, particularly injury involving ischemia and hypoxia. The production of extracellular adenosine and its subsequent signaling through adenosine receptors plays an important role in orchestrating injury responses in multiple organs. There are four adenosine receptors that are widely distributed on immune, epithelial, endothelial, neuronal and stromal cells throughout the body. Interestingly, these receptors are subject to altered regulation following injury. Studies in mouse models and human cells and tissues have identified that the production of adenosine and its subsequent signaling through its receptors plays largely beneficial roles in acute disease states, with the exception of brain injury. In contrast, if elevated adenosine levels are sustained beyond the acute injury phase, adenosine responses can become detrimental by activating pathways that promote tissue injury and fibrosis. Understanding when during the course of disease adenosine signaling is beneficial as opposed to detrimental and defining the mechanisms involved will be critical for the advancement of adenosine based therapies for acute and chronic diseases. The purpose of this review is to discuss key observations that define the beneficial and detrimental aspects of adenosine signaling during acute and chronic disease states with an emphasis on cellular processes such as inflammatory cell regulation, vascular barrier function and tissue fibrosis. PMID:23340998

  4. Adenosine diphosphate-degrading activity in placenta.

    PubMed

    Barradas, M; Khokher, M; Hutton, R; Craft, I L; Dandona, P

    1983-02-01

    1. The degradation of ADP by the placenta and umbilical artery was investigated. 2. Supernatants from incubations of finely chopped placental and umbilical arterial tissue were incubated with [14C]ADP for various durations from 0 to 30 min. 3. Products of ADP degradation were separated by thin-layer chromatography and radioactivity incorporated into each product was measured. 4. Placental supernatants induced a more rapid degradation of ADP than the umbilical artery supernatants. The main product of ADP degradation by placental supernatants at 30 min was adenosine, whereas that of umbilical artery was AMP. 5. This conversion by placenta of ADP, a potent platelet aggregator and vasoconstrictor, into adenosine, a potent platelet anti-aggregator and vasodilator, may be important in the maintenance of perfusion of the foetoplacental unit. PMID:6822058

  5. Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts

    PubMed Central

    Ilyas, Ermita I. Ibrahim; Nur, Busjra M.; Laksono, Sonny P.; Bahtiar, Anton; Estuningtyas, Ari; Vitasyana, Caecilia; Kusmana, Dede; Suyatna, Frans D.; Tadjudin, Muhammad Kamil; Freisleben, Hans-Joachim

    2016-01-01

    In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity. PMID:26904113

  6. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  7. Effect of astragaloside IV against rat myocardial cell apoptosis induced by oxidative stress via mitochondrial ATP-sensitive potassium channels.

    PubMed

    Guan, Feng-Ying; Yang, Shi-Jie; Liu, Jinxiang; Yang, Si-Rui

    2015-07-01

    Astragaloside is one of the most common traditional Chinese medicines and is derived from Astragalus membranaceus. Astragaloside IV (AsIV) is a monomer located in an extract of astragaloside. The current study investigated the protective effects of AsIV against hydrogen peroxide (H2O2)-induced injury in cardiocytes and elucidated the mechanisms responsible for this protective effect. Cultured neonatal rat cardiocytes were divided into five experimental groups as follows: i) Dimethyl sulfoxide; ii) H2O2; iii) AsIV+H2O2; iv) AsIV+H2O2+5-hydroxydecanoate (5-HD); and v) nicorandil+H2O2. Cardiocyte survival was analyzed using an MTT assay. Lactate dehydrogenase (LDH) release was also assessed to evaluate the viability of the cells. Intracellular reactive oxygen species (ROS) were measured by 2,7-dichlorodihydrofluorescein diacetate staining. The apoptotic rate was measured by flow cytometry. Mitochondrial membrane potential (ΔΨm) and intracellular calcium were observed using a laser confocal microscopy system. The results indicated that AsIV promoted the survival of cardiocytes (P<0.05), attenuated LDH release (P<0.05), ROS production (P<0.01) and apoptosis (P<0.01), stabilized the ΔΨm and reduced intracellular calcium overload (P<0.01) compared with the H2O2 group. The mitochondrial adenosine triphosphate-sensitive potassium channel (mitoKATP) inhibitor 5-HD was observed to partially reverse the protective effect of AsIV. Following treatment with 5-HD, the survival of cardiocytes was reduced (P<0.05), LDH release (P<0.01) and ROS production (P<0.05) were stimulated, ΔΨm and intracellular calcium change were increased (P<0.01) and apoptosis was increased (P<0.01) compared with the AsIV+H2O2 group. Thus, AsIV has potential for use in the suppression of apoptosis resulting from H2O2 exposure, and mitoKATP activation may underlie this protective mechanism. PMID:25739067

  8. Prevalence of unidirectional Na+-dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes.

    PubMed

    Podgorska, M; Kocbuch, K; Grden, M; Szutowicz, A; Pawelczyk, T

    2006-05-01

    Adenosine is an important physiological regulator of the cardiovascular system. The goal of our study was to assess the expression level of nucleoside transporters (NT) in diabetic rat cardiomyocytes and to examine the activities of adenosine metabolizing enzymes. Isolated rat cardiomyocytes displayed the presence of detectable amounts of mRNA for ENT1, ENT2, CNT1, and CNT2. Overall adenosine (10 microM) transport in cardiomyocytes isolated from normal rat was 36 pmol/mg/min. The expression level of equilibrative transporters (ENT1, ENT2) decreased and of concentrative transporters (CNT1, CNT2) increased in myocytes isolated from diabetic rat. Consequently, overall adenosine transport decreased by 30%, whereas Na(+)-dependent adenosine uptake increased 2-fold, and equilibrative transport decreased by 60%. The activity ratio of AMP deaminase/5'-nucleotidase in cytosol of normal cardiomyocytes was 11 and increased to 15 in diabetic cells. The activity of ecto-5'-nucleotidase increased 2-fold in diabetic cells resulting in a rise of the activity ratio of ecto-5'-nucleotidase/adenosine deaminase from 28 to 56.These results indicate that in rat cardiomyocytes diabetes alters activities of adenosine metabolizing enzymes in such a way that conversion of AMP to IMP is favored in the cytosolic compartment, whereas the capability to produce adenosine extracellularly is increased. This is accompanied by an increased unidirectional Na(+)-dependent uptake of adenosine and significantly reduced bidirectional adenosine transport. PMID:16369729

  9. Effect of Acute Xanthine Oxidase Inhibition on Myocardial Energetics During Basal and Very High Cardiac Workstates

    PubMed Central

    Lee, Joseph; Hu, Qingsong; Mansoor, Abdul; Kamdar, Forum

    2014-01-01

    Myocardial ischemia is associated with reduced myocardial adenosine triphosphate (ATP) and increased free adenosine diphosphate (ADP) similar to the normal heart at very high cardiac workstates (HCW). We examined whether acute xanthine oxidase inhibition (XOI) in vivo can decrease myocardial free ADP in normal hearts functioning at basal cardiac workstates (BCW) or very HCW (catecholamine-induced). Myocardial high-energy phosphate (31P magnetic resonance spectroscopy), blood flow (radioactive microspheres), and oxygen consumption (MVO2) were measured in an open-chest canine model before and after infusion of vehicle or an XO inhibitor (allopurinol or febuxostat; n= 10 in each group) during BCW and infusion of dobutamine + dopamine to induce a very HCW. During BCW, both allopurinol and febuxostat resulted in higher phosphocreatine (PCr)/ATP, corresponding to lower ADP levels. During vehicle infusion, HCW caused a decrease of PCr/ATP and an increase in myocardial free ADP. Although XOI did not prevent an increase in free ADP during catecholamine infusion, the values in the allopurinol or febuxostat groups (0.141±0.012 and 0.136±0.011 μmol/g dry wt, respectively) remained significantly less than in the vehicle group (0.180±0.017; P<0.05). Thus, at a given rate of ATP synthesis, XOI decreased the free ADP level needed to drive ATP synthesis, suggesting a more energy-efficient status. As contractile dysfunction in ischemia is characterized by increase of myocardial free ADP and energy deficiency, the data suggest that XOI might be a potential therapy for improving energy efficiency during myocardial ischemia. PMID:21584861

  10. ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors.

    PubMed

    Nishizaki, Tomoyuki

    2004-02-01

    Adenosine enhanced intracellular Ca(2+) concentrations in astrocytes via A(2a) adenosine receptors involving protein kinase A (PKA) activation. The Ca(2+) rise is inhibited by brefeldin A, an inhibitor of vesicular transport; but not by neomycin and U73122, phospholipase C inhibitors; xestospongin, an IP(3)-receptor inhibitor; ryanodine, a ryanodine-receptor inhibitor; TMB-8, an endoplasmic reticulum calcium-release blocker; octanol, a gap-junction inhibitor; or cadmium, a non-selective, calcium-channel blocker. Adenosine stimulates astrocytic glutamate release via an A(2a) adenosine receptors/PKA pathway, and the release is inhibited by the vesicular transport inhibitors brefeldin A and bafilomycin A1. A(2a) adenosine receptors and the ensuing PKA events, thus, are endowed with vesicular Ca(2+) release from an unknown intracellular calcium store and vesicular glutamate release from astrocytes. PMID:14978344

  11. Characterization of adenosine receptors involved in adenosine-induced bronchoconstriction in allergic rabbits.

    PubMed Central

    el-Hashim, A.; D'Agostino, B.; Matera, M. G.; Page, C.

    1996-01-01

    1. Recent work has suggested that adenosine may be involved in asthma via the activation of A1 receptors. However, the role of the recently cloned A3 receptor in airways is largely unknown. In the present study, we have investigated the role of the A3 receptor in adenosine-induced bronchoconstriction in allergic rabbits. 2. Aerosol challenge of antigen (Ag) immunized rabbits with the adenosine precursor, adenosine 5'-monophosphate (AMP), resulted in a dose-dependent fall in dynamic compliance (Cdyn). The maximum fall in Cdyn in these rabbits was significantly greater than that in litter matched, sham immunized animals (P < 0.05). However, there was no significant difference in the maximum increase in airways resistance (Rt) between Ag and sham immunized rabbits (P > 0.05). 3. Aerosol challenge of Ag immunized rabbits with cyclopentyl-adenosine (CPA) (A1-receptor agonist) elicited a dose-dependent fall in Cdyn in Ag immunized rabbits and the maximum fall in Cdyn in these rabbits was significantly greater than that observed in sham immunized rabbits (P < 0.05). Similarly, CPA induced dose-dependent increases in R1 in Ag immunized rabbits whereas sham immunized rabbits failed to respond to CPA within the same dose range. The maximum increase in RL in Ag immunized rabbits was significantly greater than that of sham immunized rabbits (P < 0.05). 4. Aerosol challenge of either Ag or sham immunized rabbits with the A3 agonist aminophenylethyladenosine (APNEA) did not elicit dose-dependent changes in either RL or Cdyn. Moreover, there was no significant difference in the maximum response, measured by either parameter, between the two animal groups (P > 0.05). 5. These data provide further evidence for a role of the A1 receptor in the airways, but do not support a role for the A3 receptor in adenosine-induced bronchoconstriction in the allergic rabbit. PMID:8937732

  12. Myocardial ischemia--association with perioperative cardiac morbidity.

    PubMed Central

    Cunningham, A. J.

    1993-01-01

    The development of ambulatory electrocardiographic recorders and analysers and the application of transesophageal echocardiography in the mid-1980's enabled investigators to quantify and describe the occurrence of silent as well as symptomatic ischemia in the perioperative period. Several technical advances which have recently occurred in ECG monitoring include the use of miniaturized digital computing equipment to store and analyze data. In addition, real time ST-segment analysis has become widely available on multicomponent monitors in both the operating room and intensive care units. The incidence of perioperative myocardial ischemia depends on the patient population, the surgical procedure, and the monitoring technique used. Several studies in the early 1990's have shown that cardiac morbidity in patients undergoing major, noncardiac surgery is best predicted by postoperative myocardial ischemia, rather than tradition preoperative clinical predictors. Long duration postoperative ischemia may be the factor most significantly associated with adverse cardiac outcome. Postoperative pain, physiological and emotional stress may all combine to cause tachycardia, hypertension, increase in cardiac output, and fluid shifts which, in high risk patients, might result in subendocardial ischemia and eventual myocardial infarction. If postoperative myocardial ischemia is the cause of late postoperative myocardial infarction in patients undergoing non-cardiac surgery, then treatment of postoperative myocardial ischemia should reduce morbidity. In addition, reducing pain and stress and avoiding postoperative hypoxemia might prevent postoperative myocardial ischemia and minimize the need for extensive preoperative cardiac evaluation. PMID:7825338

  13. Oxidative stress does not play a primary role in the toxicity induced with clinical doses of doxorubicin in myocardial H9c2 cells.

    PubMed

    Rharass, Tareck; Gbankoto, Adam; Canal, Christophe; Kurşunluoğlu, Gizem; Bijoux, Amandine; Panáková, Daniela; Ribou, Anne-Cécile

    2016-02-01

    The implication of oxidative stress as primary mechanism inducing doxorubicin (DOX) cardiotoxicity is still questionable as many in vitro studies implied supra-clinical drug doses or unreliable methodologies for reactive oxygen species (ROS) detection. The aim of this study was to clarify whether oxidative stress is involved in compliance with the conditions of clinical use of DOX, and using reliable tools for ROS detection. We examined the cytotoxic mechanisms of 2 μM DOX 1 day after the beginning of the treatment in differentiated H9c2 rat embryonic cardiac cells. Cells were exposed for 2 or 24 h with DOX to mimic a single chronic dosage or to favor accumulation, respectively. We found that apoptosis was prevalent in cells exposed for a short period with DOX: cells showed typical hallmarks as loss of anchorage ability, mitochondrial hyperpolarization followed by the collapse of mitochondrial activity, and nuclear condensation. Increasing the exposure period favored a shift to necrosis as the cells preferentially exhibited early DNA impairment and nuclear swelling. In either case, measuring the fluorescence lifetime of 1-pyrenebutyric acid or the intensities of dihydroethidium or amplex red showed a consistent pattern in ROS production which was a slight increased level far from representative of an oxidative stress. Moreover, pre-treatment with dexrazoxane provided a cytoprotective effect although it failed to detoxify ROS. Our data support that oxidative stress is unlikely to be the primary mechanism of DOX cardiac toxicity in vitro. PMID:26833193

  14. Myocardial ischemic protection in natural mammalian hibernation

    PubMed Central

    Yan, Lin; Kudej, Raymond K.; Vatner, Dorothy E.

    2015-01-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  15. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  16. Transient myocardial ischaemia after acute myocardial infarction.

    PubMed Central

    Currie, P; Saltissi, S

    1990-01-01

    The prevalence and characteristics of transient myocardial ischaemia were studied in 203 patients with recent acute myocardial infarction by both early (6.4 days) and late (38 days) ambulatory monitoring of the ST segment. Transient ST segment depression was much commoner during late (32% patients) than early (14%) monitoring. Most transient ischaemia (greater than 85% episodes) was silent and 80% of patients had only silent episodes. During late monitoring painful ST depression was accompanied by greater ST depression and tended to occur at a higher heart rate. Late transient ischaemia showed a diurnal distribution, occurred at a higher initial heart rate, and was more often accompanied by a further increase in heart rate than early ischaemia. Thus in the first 2 months after myocardial infarction transient ischaemia became increasingly common and more closely associated with increased myocardial oxygen demand. Because transient ischaemic episodes during early and late ambulatory monitoring have dissimilar characteristics they may also have different pathophysiologies and prognostic implications. PMID:2245108

  17. Myocardial Perfusion Imaging with a Solid State Camera: Simulation of a Very Low Dose Imaging Protocol

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S.; Hayes, Sean W.; Fish, Mathews; Padgett, Richard; Xu, Yuan; Lemley, Mark; Baavour, Rafael; Roth, Nathaniel; Slomka, Piotr J.

    2012-01-01

    High sensitivity dedicated cardiac systems cameras provide an opportunity to lower injected doses for SPECT myocardial perfusion imaging (MPI), but the exact limits for lowering doses have not been determined. List mode data acquisition allows for reconstruction of various fractions of acquired counts, allowing a simulation of gradually lower administered dose. We aimed to determine the feasibility of very low dose MPI by exploring the minimal count level in the myocardium for accurate MPI. Methods Seventy nine patients were studied (mean body mass index 30.0 ± 6.6, range 20.2–54.0 kg/m2) who underwent 1-day standard dose 99mTc-sestamibi exercise or adenosine rest/stress MPI for clinical indications employing a Cadmium Zinc Telluride dedicated cardiac camera. Imaging time was 14-min with 803 ± 200 MBq (21.7 ± 5.4mCi) of 99mTc injected at stress. To simulate clinical scans with lower dose at that imaging time, we reframed the list-mode raw data to have count fractions of the original scan. Accordingly, 6 stress equivalent datasets were reconstructed corresponding to each fraction of the original scan. Automated QPS/QGS software was used to quantify total perfusion deficit (TPD) and ejection fraction (EF) for all 553 datasets. Minimal acceptable count was determined based on previous report with repeatability of same-day same-injection Anger camera studies. Pearson correlation coefficients and SD of differences with TPD for all scans were calculated. Results The correlations of quantitative perfusion and function analysis were excellent for both global and regional analysis on all simulated low-counts scans (all r ≥0.95, p<0.0001). Minimal acceptable count was determined to be 1.0 million counts for the left ventricular region. At this count level, SD of differences was 1.7% for TPD and 4.2% for EF. This count level would correspond to a 92.5 MBq (2.5 mCi) injected dose for the 14 min acquisition. Conclusion 1.0 million myocardial count images appear to be

  18. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    PubMed Central

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  19. PARP inhibition and postinfarction myocardial remodeling.

    PubMed

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  20. Myocardial imaging artifacts caused by mitral valve annulus calcification

    SciTech Connect

    Wagoner, L.E.; Movahed, A.; Reeves, W.C. )

    1991-02-01

    Knowledge of imaging artifact of myocardial perfusion studies with thallium-201 is critical for improving the diagnostic accuracy of coronary artery disease. Three patients are described who underwent exercise or pharmacologic stress thallium-201 imaging studies and had a moderate, fixed myocardial perfusion defect (scar) involving the posterolateral and inferoposterior walls of the left ventricle. This was an imaging artifact caused by a heavily calcified mitral valve annulus.

  1. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway.

    PubMed

    Sun, Ning; Wang, Hui; Wang, Lin

    2016-09-01

    The present study aimed to investigate the protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase (iNOS) and inflammation in a mouse model of myocardial ischemia/reperfusion injury (MIRI). In addition, the study aimed to determine its underlying mechanisms. A mouse model of MIRI was used in vivo, in order to ascertain the protective effects of ghrelin on MIRI. Commercial kits were used to measure the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) in MIRI mice. Furthermore, Evan's Blue-triphenyltetrazolium chloride solution was used to analyze the protective effects of ghrelin against infarct size in MIRI mice. The underlying mechanisms were determined by measuring MIRI-induced tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, superoxide dismutase (SOD), glutathione (GSH), GSH-peroxidase (GSH‑PX), malondialdehyde (MDA) and caspase‑3/caspase‑9 activities, and iNOS, high mobility group box 1 (HMGB1), Toll‑like receptor 4 (TLR4) and nuclear factor (NF)‑κB protein expression in MIRI mice. The results demonstrated that MIRI led to an increase in infarct size; CK, LDH, TNF‑α, IL‑6, MDA, caspase‑3 and caspase-9 serum levels; and iNOS protein expression. MIRI resulted in inhibition of SOD, FSH and GSH‑PX levels. Conversely, these alterations were significantly inhibited following treatment with ghrelin. In addition, the protective effects of ghrelin against MIRI suppressed HMGB1, TLR4 and NF‑κB protein expression in MIRI mice. The present study revealed that ghrelin exerted protective effects against oxidative stress, iNOS and inflammation in MIRI mice via the HMGB1/TLR4/NF-κB pathway. PMID:27485280

  2. Effects of adenosine, adenosine triphosphate and structural analogues on glucagon secretion from the perfused pancreas of rat in vitro.

    PubMed Central

    Chapal, J.; Loubatières-Mariani, M. M.; Roye, M.; Zerbib, A.

    1984-01-01

    The effects of adenosine, adenosine triphosphate (ATP) and structural analogues have been studied on glucagon secretion from the isolated perfused pancreas of the rat in the presence of glucose (2.8 mM). Adenosine induced a transient increase of glucagon secretion. This effect was concentration-dependent in the range of 0.165 to 165 microM. ATP also induced an increase, but the effect was no greater at 165 microM than at 16.5 microM. 2-Chloroadenosine, an analogue more resistant to metabolism or uptake systems than adenosine, was more effective. Among the three structural analogues of ATP or ADP studied, beta, gamma-methylene ATP which can be hydrolyzed into AMP and adenosine had an effect similar to adenosine or ATP at the same concentrations (1.65 and 16.5 microM); in contrast alpha, beta-methylene ATP and alpha, beta-methylene ADP (resistant to hydrolysis into AMP and adenosine) were ineffective. Theophylline (50 microM) a specific blocker of the adenosine receptor, suppressed the glucagon peak induced by adenosine, 2-chloroadenosine, ATP and beta, gamma-methylene ATP (1.65 microM). An inhibitor of 5' nucleotidase, alpha, beta-methylene ADP (16.5 microM), reduced the glucagon increase induced by ATP and did not affect the response to adenosine (1.65 microM). These results support the hypothesis of adenosine receptors (P1-purinoceptors) on the pancreatic glucagon secretory cells and indicate that ATP acts after hydrolysis to adenosine. PMID:6097328

  3. Changes in the profile of NO synthases affect coronary blood flow autoregulation and myocardial contractile activity during restraint stress in rats.

    PubMed

    Solodkov, A P; Lazuko, S S; Knyazev, E N; Nechaev, I N; Krainova, N A

    2014-12-01

    The efficiency of autoregulation of the coronary blood flow and contractile activity of the myocardium in the presence of inhibitors of constitutive and inducible NO synthases was studied in rats exposed to 6-h restraint stress. Intracoronary administration of S-methylisothiourea (10 μmol/liter), but not L-NAME (60 μmol/liter) fully prevented post-stress increase in the volume coronary blood flow rate, intensity of heart perfusion, and reduction of ventricular developed pressure at all levels of perfusion pressure. Real-time PCR showed 6-fold increased expression of inducible NO-synthase mRNA in the heart tissue against the background of unchanged expression of neuronal and endothelial NO synthases and 2-3-fold elevated content of transcripts of stress-inducible genes Hspa1a and Hspbp1. It was shown that the hypotension of coronary vessels and reduced contractile function of the myocardium are related to NO production by inducible NO synthase in endotheliocytes of coronary vessels and cardiomyocytes. PMID:25430647

  4. Myocardial infarction and marijuana.

    PubMed

    Charles, R; Holt, S; Kirkham, N

    1979-04-01

    Myocardial infarction in the virtual absence of risk factors occurred in a 25-year old man shortly after smoking a cigarette containing marijuana. Subsequent coronary arteriography was normal. PMID:466984

  5. Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein.

    PubMed Central

    Marber, M S; Walker, J M; Latchman, D S; Yellon, D M

    1994-01-01

    The aims of this study were to examine the effects of whole body heat stress and subsequent stress protein induction on glycolytic metabolism, mitochondrial metabolism, and calcium handling within the heart. The effect of heat stress on glycolytic and mitochondrial pathways was examined by measuring contractile performance in the presence of glucose and pyruvate, respectively. Calcium handling was assessed using force-interval relationships. Right ventricular papillary muscles taken from heat-stressed and control rabbit hearts were superfused with Kreb's solution containing either glucose or pyruvate and rendered hypoxic for 30 min. After reoxygenation, the greatest recovery of contractile function occurred in the heat-stressed muscles with pyruvate as substrate; there was, however, no difference in the force-interval relationship between the groups. The degree of contractile recovery was related to the content of the inducible 70-kD but not the 65-kD, heat stress protein. This study suggests that heat stress enhances the ability of rabbit papillary muscle to use pyruvate, but not glucose, after reoxygenation, and that the differences seen in contractility may be secondary to induction of the 72-kD stress protein. Images PMID:8132747

  6. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  7. Experimental myocardial infarction

    PubMed Central

    Kumar, Raj; Joison, Julio; Gilmour, David P.; Molokhia, Farouk A.; Pegg, C. A. S.; Hood, William B.

    1971-01-01

    The hemodynamic effects of tachycardia induced by atrial pacing were investigated in left ventricular failure of acute and healing experimental myocardial infarction in 20 intact, conscious dogs. Myocardial infarction was produced by gradual inflation of a balloon cuff device implanted around the left anterior descending coronary artery 10-15 days prior to the study. 1 hr after acute myocardial infarction, atrial pacing at a rate of 180 beats/min decreased left ventricular end-diastolic pressure from 19 to 8 mm Hg and left atrial pressure from 17 to 12 mm Hg, without change in cardiac output. In the healing phase of myocardial infarction 1 wk later, atrial pacing decreased left ventricular end-diastolic pressure from 17 to 9 mm Hg and increased the cardiac output by 37%. This was accompanied by evidence of peripheral vasodilation. In two dogs with healing anterior wall myocardial infarction, left ventricular failure was enhanced by partial occlusion of the circumflex coronary artery. Both the dogs developed pulmonary edema. Pacing improved left ventricular performance and relieved pulmonary edema in both animals. In six animals propranolol was given after acute infarction, and left ventricular function deteriorated further. However the pacing-induced augmentation of cardiac function was unaltered and, hence, is not mediated by sympathetics. The results show that the spontaneous heart rate in left ventricular failure of experimental canine myocardial infarction may be less than optimal and that maximal cardiac function may be achieved at higher heart rates. Images PMID:4395910

  8. [Myocardial depression in the burn patient].

    PubMed

    Carrillo-Esper, Raúl; Sánchez-Zúñiga, Martín de Jesús

    2006-01-01

    Myocardial depression and heart failure are frequent complications in critically ill burn patients. The physiopathology is complex and involves the activation of inflammatory pathways, ischemia-reperfusion, oxidative stress and endothelial lesion. Diagnosis should be made early by means of hemodynamic monitoring. Treatment is accomplished by inotropics that act on different pathways of the contractile function and immune response associated with antioxidants and allopurinol. PMID:16887086

  9. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. PMID:26589329

  10. Acute myocardial infarction

    PubMed Central

    Domes, Trustin; Szafran, Olga; Bilous, Cheryl; Olson, Odell; Spooner, G. Richard

    2006-01-01

    OBJECTIVE To assess the quality of care of acute myocardial infarction (AMI) in a rural health region. DESIGN Clinical audit employing multiple explicit criteria of care elements for emergency department and in-hospital AMI management. The audit was conducted using retrospective chart review. SETTING Twelve acute care health centres and hospitals in the East Central Health Region, a rural health region in Alberta, where medical and surgical services are provided almost entirely by family physicians. PARTICIPANTS Hospital inpatients with a confirmed discharge diagnosis of AMI (ICD-9-CM codes 410.xx) during the period April 1, 2001, to March 31, 2002, were included (177 confirmed cases). MAIN OUTCOME MEASURES Quality of AMI care was assessed using guidelines from the American College of Cardiology and the American Heart Association and the Canadian Cardiovascular Outcomes Research Team and Canadian Cardiovascular Society. Quality of care indicators at three stages of patient care were assessed: at initial recognition and AMI management in the emergency department, during in-hospital AMI management, and at preparation for discharge from hospital. RESULTS In the emergency department, the quality of care was high for most procedural and therapeutic audit elements, with the exception of rapid electrocardiography, urinalysis, and provision of nitroglycerin and morphine. Average door-to-needle time for thrombolysis was 102.5 minutes. The quality of in-hospital care was high for most elements, but low for nitroglycerin and angiotensin-converting enzyme (ACE) inhibitors, daily electrocardiography, and counseling regarding smoking cessation and diet. Few patients received counseling for lifestyle changes at hospital discharge. Male and younger patients were treated more aggressively than female and older patients. Sites that used care protocols achieved better results in initial AMI management than sites that did not. Stress testing was not readily available in the rural

  11. Adenosine augments interleukin-10 production by microglial cells through an A2B adenosine receptor-mediated process

    PubMed Central

    Koscsó, Balázs; Csóka, Balázs; Selmeczy, Zsolt; Himer, Leonóra; Pacher, Pál; Virág, László; Haskó, György

    2011-01-01

    Microglia are activated by pathogen-associated molecular patterns and produce pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-12, and the anti-inflammatory cytokine IL-10. Adenosine is an endogenous purine nucleoside and is a ligand of four G protein-coupled adenosine receptors (ARs), which are the A1AR, A2AAR, A2BAR and A3AR. ARs have been shown to suppress TNF-α production by microglia, but their role in regulating IL-10 production has not been studied. Here, we demonstrate that adenosine augments IL-10 production by activated murine microglia while suppressing the production of pro-inflammatory cytokines. Since the order of potency of selective AR agonists in inducing IL-10 production was 5′-N-ethylcarboxamidoadenosine (NECA) > N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) > 2-chloro-N6-cyclopentyladenosine (CCPA) ≥ 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethyl-carboxamidoadenosine (CGS21680), and the A2BAR antagonist MRS-1754 prevented the effect of NECA, we conclude that the stimulatory effect of adenosine on IL-10 production is mediated by the A2BAR. Mechanistically, adenosine augmented IL-10 mRNA accumulation by a transcriptional process. Using mutant IL-10 promoter constructs we showed that a CREB-binding region in the promoter mediated the augmenting effect of adenosine on IL-10 transcription. Chromatin immunoprecipitation analysis demonstrated that adenosine induced CREB phosphorylation at the IL-10 promoter. Silencing CREB using lentivirally delivered shRNA blocked the enhancing effect of adenosine on IL-10 production confirming a role for CREB in mediating the stimulatory effect of adenosine on IL-10 production. In addition, adenosine augmented IL-10 production by stimulating p38 MAPK. Collectively, our results establish that A2BARs augment IL-10 production by activated murine microglia. PMID:22116830

  12. A(3) adenosine receptor ligands: history and perspectives.

    PubMed

    Baraldi, P G; Cacciari, B; Romagnoli, R; Merighi, S; Varani, K; Borea, P A; Spalluto, G

    2000-03-01

    Adenosine regulates many physiological functions through specific cell membrane receptors. On the basis of pharmacological studies and molecular cloning, four different adenosine receptors have been identified and classified as A(1), A(2A), A(2B), and A(3). These adenosine receptors are members of the G-protein-coupled receptor family. While adenosine A(1) and A(2A) receptor subtypes have been pharmacologically characterized through the use of selective ligands, the A(3) adenosine receptor subtype is presently under study in order to better understand its physio-pathological functions. Activation of adenosine A(3) receptors has been shown to stimulate phospholipase C and D and to inhibit adenylate cyclase. Activation of A(3) adenosine receptors also causes the release of inflammatory mediators such as histamine from mast cells. These mediators are responsible for processes such as inflammation and hypotension. It has also been suggested that the A(3) receptor plays an important role in brain ischemia, immunosuppression, and bronchospasm in several animal models. Based on these results, highly selective A(3) adenosine receptor agonists and/or antagonists have been indicated as potential drugs for the treatment of asthma and inflammation, while highly selective agonists have been shown to possess cardioprotective effects. The updated material related to this field of research has been rationalized and arranged in order to offer an overview of the topic. PMID:10723024

  13. Comorbidities in Neurology: Is adenosine the common link?

    PubMed

    Boison, Detlev; Aronica, Eleonora

    2015-10-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  14. Adenosine: Essential for life but licensed to kill

    PubMed Central

    Gama, Vivian; Deshmukh, Mohanish

    2016-01-01

    In this issue of Molecular Cell, Long et al. (Long et al., 2013) report a cell death priming mechanism activated by p53 that senses extracellular adenosine accumulated following chemotherapy or hypoxia, providing a novel connection between adenosine signaling and apoptosis. PMID:25884366

  15. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.

    PubMed

    Eguchi, Ryota; Akao, Sanae; Otsuguro, Ken-ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2015-05-01

    Extracellular adenosine is a neuromodulator in the central nervous system. Astrocytes mainly participate in adenosine production, and extracellular adenosine accumulates under physiological and pathophysiological conditions. Inhibition of intracellular adenosine metabolism and reduction of the external Ca(2+) concentration ([Ca(2+)]e) participate in adenosine accumulation, but the precise mechanisms remain unclear. This study investigated the mechanisms underlying extracellular adenosine accumulation in cultured rat spinal astrocytes. The combination of adenosine kinase and deaminase (ADK/ADA) inhibition and a reduced [Ca(2+)]e increased the extracellular adenosine level. ADK/ADA inhibitors increased the level of extracellular adenosine but not of adenine nucleotides, which was suppressed by inhibition of equilibrative nucleoside transporter (ENT) 2. Unlike ADK/ADA inhibition, a reduced [Ca(2+)]e increased the extracellular level not only of adenosine but also of ATP. This adenosine increase was enhanced by ENT2 inhibition, and suppressed by sodium polyoxotungstate (ecto-nucleoside triphosphate diphosphohydrolase inhibitor). Gap junction inhibitors suppressed the increases in adenosine and adenine nucleotide levels by reduction of [Ca(2+)]e. These results indicate that extracellular adenosine accumulation by ADK/ADA inhibition is due to the adenosine release via ENT2, while that by reduction of [Ca(2+)]e is due to breakdown of ATP released via gap junction hemichannels, after which ENT2 incorporates adenosine into the cells. PMID:26003082

  16. Compartmental analysis of technetium-99m-teboroxime kinetics employing fast dynamic SPECT at rest and stress

    SciTech Connect

    Chiao, P.C.; Ficaro, E.P.; Dayaniki, F.

    1994-08-01

    The authors have examined the feasibility of compartmental analysis of {sup 99m}Tc-teboroxime kinetics in measuring physiological changes in response to adenosine-induced coronary vasodilation. To evaluate the effect of tracer recirculation on {sup 99m}Tc-teboroxime kinetics in the myocardium, they also compared compartmental analysis with washout analysis (monoexponertial fitting), which does not account for this effect. Eight healthy male volunteers were imaged using fast dynamic SPECT protocols (5 sec per tomographic image) at rest and during adenosine infusion. A two-compartment model was used and compartmental parameters K1 and k2 (characterizing the diffusion of {sup 99m}Tc-teboroxime from the blood to the myocardium and from the myocardium to the blood, respectively) were fitted from myocardial time-activity curves and left ventricular input functions. Both K1 and washout estimates for the whole left ventricular myocardium changed significantly in response to coronary vasodilation. Mean stress-to-rest (S/R) ratios were almost two times higher for K1 (S/R = 2.7 {plus_minus} 1.1) than for washout estimates (S/R = 1.5 {plus_minus} 0.3). Estimation of K1 for all local regions, except the septal wall, is feasible because variations in K1 estimates for all local regions, except the septum during stress, are comparable with those for the global region. The authors conclude that quantitative compartmental analysis of {sup 99m}Tc-teboroxime kinetics provides a sensitive indicator for changes in response to adenosine-induced coronary vasodilation. 39 refs., 7 figs., 1 tab.

  17. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation

    PubMed Central

    Wen, Jiaming; Grenz, Almut; Zhang, Yujin; Dai, Yingbo; Kellems, Rodney E.; Blackburn, Michael R.; Eltzschig, Holger K.; Xia, Yang

    2011-01-01

    Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5′-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A2B receptor (A2BR) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A2BR signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A2BR in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A2BR activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.—Wen, J., Grenz, A., Zhang, Y., Dai, Y., Kellems, R. E., Blackburn, M. R., Eltzschig, H. K., Xia, Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. PMID

  18. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report

    SciTech Connect

    Rumberger, J.A.; Feiring, A.J.; Lipton, M.J.; Higgins, C.B.; Ell, S.R.; Marcus, M.L.

    1987-01-01

    The purpose of this study was to assess the potential for rapid acquisition computed axial tomography (Imatron C-100) to quantify regional myocardial perfusion. Myocardial and left ventricular cavity contrast clearance curves were constructed after injecting nonionic contrast (1 ml/kg over 2 to 3 seconds) into the inferior vena cava of six anesthetized, closed chest dogs (n = 14). Independent myocardial perfusion measurements were obtained by coincident injection of radiolabeled microspheres into the left atrium during control, intermediate and maximal myocardial vasodilation with adenosine (0.5 to 1.0 mg/kg per min, intravenously, respectively). At each flow state, 40 serial short-axis scans of the left ventricle were taken near end-diastole at the midpapillary muscle level. Contrast clearance curves were generated and analyzed from the left ventricular cavity and posterior papillary muscle regions after excluding contrast recirculation and minimizing partial volume effects. The area under the curve (gamma variate function) was determined for a region of interest placed within the left ventricular cavity. Characteristics of contrast clearance data from the posterior papillary muscle region that were evaluated included the peak myocardial opacification, area under the contrast clearance curve and a contrast clearance time defined by the full width/half maximal extent of the clearance curve. Myocardial perfusion (microspheres) ranged from 35 to 450 ml/100 g per min (mean 167 +/- 125).

  19. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined. PMID:18852693

  20. Myocardial Noncompaction Presenting With Myocardial Bridge

    PubMed Central

    Shen, Yuechun; Li, Xinchun; Lu, Dongfeng; Xiao, Aiyi; Li, Jun

    2015-01-01

    Abstract Myocardial noncompaction, namly isolated noncompaction of the left ventricular myocardium (NVM), is a rare congenital disease. It can be either seen in the absence of other cardiac anomalies, or associated with other congenital cardiac defects, mostly stenotic lesions of the left ventricular outflow tract. A myocardial bridge (MB) is thought being associated with coronary heart disease, such as coronary spasm, arrhythmia, and so on. The significance of MB in association with other congenital cardiac conditions is unknown. We report a novel case who was presented NVM and MB. A 34-year-old man complained of chest prickling-like pain and dizzy for 1 year. His blood pressure was 110/70 mm Hg. Echocardiograph revealed increased trabeculations below the level of papillary muscle of left ventricle (LV); deep intertrabecular recesses in the endocardial wall of LV particularly in apex free wall; and LV ejection fraction of 57%. A coronary computerized tomography scan showed that part, 38.9 cm, of left descending artery tunnel was surrounding by cardiac muscles rather than resting on top of the myocardium. The therapeutics interventions included lifestyle cares, agents of anti-ischemia and improvement myocardial cell metabolism. The patient was followed up for 2.6 years, and his general condition was stable. This case indicates that NVM can be developed with MB, and the complete diagnosis of NVM and MB should be made by different image studies. PMID:26356695

  1. The Role of Adenosine Signaling in Sickle Cell Therapeutics

    PubMed Central

    Field, Joshua J.; Nathan, David G.; Linden, Joel

    2014-01-01

    Recent data suggest a role for adenosine signaling in the pathogenesis of sickle cell disease (SCD). Signaling through the adenosine A2A receptor (A2AR) has demonstrated beneficial effects in SCD. Activation of A2ARs decreases inflammation in mice and patients with SCD largely by blocking activation of invariant NKT cells. Decreased inflammation may reduce the severity of vaso-occlusive crises. In contrast, adenosine signaling through the A2B receptor (A2BR) may be detrimental for patients with SCD. Priapism and the formation of sickle erythrocytes may be a consequence of A2BR activation on corpus cavernosal cells and erythrocytes, respectively. Whether adenosine signaling predominantly occurs through A2ARs or A2BRs may depend on differing levels of adenosine and disease state (steady state versus crisis). There may be opportunities to develop novel therapeutic approaches targeting A2ARs and/or A2BRs for patients with SCD. PMID:24589267

  2. Chronic benzodiazepine treatment and cortical responses to adenosine and GABA.

    PubMed

    Mally, J; Connick, J H; Stone, T W

    1990-10-22

    The effects of chronic treatment of mice with clonazepam have been examined on the responses of neocortical slices to adenosine, 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (GABA). Responses to these agonists were measured as changes in the depolarisation induced by N-methyl-D-aspartate (NMDA). Added to the superfusion medium diazepam blocked responses to adenosine but not 5-HT; this effect was not observed with 2-chloroadenosine or in the presence of 2-hydroxynitrobenzylthioguanosine. GABA was inactive in control slices but chronic treatment with clonazepam induced responses to GABA and enhanced responses to adenosine but not 5-HT. It is suggested that the induction of GABA responses may reflect the up-regulation of GABA receptors, but the increase of adenosine responses by clonazepam implies that there is no simple relationship between adenosine receptor binding and functional responses. PMID:1979931

  3. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.

    PubMed

    Tocchetti, Carlo G; Stanley, Brian A; Sivakumaran, Vidhya; Bedja, Djahida; O'Rourke, Brian; Paolocci, Nazareno; Cortassa, Sonia; Aon, Miguel A

    2015-10-01

    In Type I diabetic (T1DM) patients, both peaks of hyperglycaemia and increased sympathetic tone probably contribute to impair systolic and diastolic function. However, how these stressors eventually alter cardiac function during T1DM is not fully understood. In the present study, we hypothesized that impaired mitochondrial energy supply and excess reactive oxygen species (ROS) emission is centrally involved in T1DM cardiac dysfunction due to metabolic/redox stress and aimed to determine the mitochondrial sites implicated in these alterations. To this end, we used isolated myocytes and mitochondria from Sham and streptozotocin (STZ)-induced T1DM guinea pigs (GPs), untreated or treated with insulin. Relative to controls, T1DM myocytes exhibited higher oxidative stress when challenged with high glucose (HG) combined with β-adrenergic stimulation [via isoprenaline (isoproterenol) (ISO)], leading to contraction/relaxation deficits. T1DM mitochondria had decreased respiration with complex II and IV substrates and markedly lower ADP phosphorylation rates and higher H2O2 emission when challenged with oxidants to mimic the more oxidized redox milieu present in HG + ISO-treated cardiomyocytes. Since in T1DM hearts insulin-sensitivity is preserved and a glucose-to-fatty acid (FA) shift occurs, we next tested whether insulin therapy or acute palmitate (Palm) infusion prevents HG + ISO-induced cardiac dysfunction. We found that insulin rescued proper cardiac redox balance, but not mitochondrial respiration or contractile performance. Conversely, Palm restored redox balance and preserved myocyte function. Thus, stressors such as peaks of HG and adrenergic hyperactivity impair mitochondrial respiration, hampering energy supply while exacerbating ROS emission. Our study suggests that an ideal therapeutic measure to treat metabolically/redox-challenged T1DM hearts should concomitantly correct energetic and redox abnormalities to fully maintain cardiac function. PMID:26186741

  4. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  5. An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.

    PubMed

    Otsuguro, Ken-ichi; Tomonari, Yuki; Otsuka, Saori; Yamaguchi, Soichiro; Kon, Yasuhiro; Ito, Shigeo

    2015-10-01

    Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors. PMID:26066576

  6. Decreased selenium levels in acute myocardial infarction

    SciTech Connect

    Kok, F.J.; Hofman, A.; Witteman, J.C.M.; de Bruijn, A.M.; Kruyssen, D.H.C.M.; de Bruin, M.; Valkenburg, H.A. )

    1989-02-24

    To study the association between selenium status and the risk of myocardial infarction, the authors compared plasma, erythrocyte, and toenail selenium levels and the activity of erythrocyte glutathione peroxidase among 84 patients with acute myocardial infarction and 84 population controls. Mean concentrations of all selenium measurements were lower in cases than controls. The differences were statistically significant, except for the plasma selenium level. A positive trend in the risk of acute myocardial infarction from high to low toenail selenium levels was observed, which persisted after adjustment for other risk factors for myocardial infarction. In contrast, erythrocyte glutathione peroxidase activity was significantly higher in cases than controls. Because toenail selenium level reflects blood levels up to one year before sampling, these findings suggest that a low selenium status was present before the infarction and, thus, may be of etiologic relevance. The higher glutathione peroxidase activity in the cases may be interpreted as a defense against increased oxidant stress either preceding or following the acute event.

  7. [Effects of dichloroacetate in the ischemic heart. Analysis of hemodynamics, myocardial energy metabolism and myocardial pH].

    PubMed

    Mizushima, M

    1990-05-01

    The effects of dichloroacetate (DCA), which is known to have a beneficial effect on lactic acidosis, were examined on myocardial acidosis during coronary occlusion in dogs. Ischemia was induced by complete ligation of the left anterior descending coronary artery (LAD) of the open-chest dog heart. DCA 100 mg/kg or 200 mg/kg was administered intravenously 10 or 60 min prior to the occlusion of LAD. DCA did not change the LAD flow, decreased heart rate, increased both systolic and diastolic blood pressures transiently. LAD occlusion significantly increased the ST segment of the epicardial ECG in the saline-treated group. DCA administered prior to the LAD occlusion caused 50% decrease of the elevation in ST segment during ischemia. Ischemia accelerated anaerobic metabolism in the myocardium; the levels of glycogen, adenosine triphosphate (ATP) and creatine phosphate (CP) decreased, and lactate increased during ischemia. Calculated energy charge potential was decreased, and [( G6P] + [F6P])/[FDP] ratio was increased by ischemia. The decreased levels of glycogen, ATP, CP in DCA-treated group were similar to those in saline-treated group during 3 min ischemia. Pretreatment of DCA reduced the accumulation of myocardial lactate by ischemia. There were no differences in variables except myocardial lactate levels between DCA 100 mg/kg and 200 mg/kg. The myocardial lactate levels were lower in both nonischemic and ischemic dogs by DCA 200 mg/kg than DCA 100 mg/kg. DCA did not change either the ATP levels or energy charge potential during both ischemia and reperfusion. LAD occlusion caused a significant decrease of myocardial pH from 7.51 to 6.83 in saline-treated group, while it produced only a small decrease in DCA-treated group from 7.56 to 7.35.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379912

  8. 2-Deoxy adenosine triphosphate improves contraction in human end-stage heart failure

    PubMed Central

    Moussavi-Harami, Farid; Razumova, Maria V.; Racca, Alice W.; Cheng, Yuanhua; Stempien-Otero, April; Regnier, Michael

    2014-01-01

    We are developing a novel treatment for heart failure by increasing myocardial 2 deoxy-ATP (dATP). Our studies in rodent models have shown that substitution of dATP for adenosine triphosphate (ATP) as the energy substrate in vitro or elevation of dATP in vivo increases myocardial contraction and that small increases in the native dATP pool of heart muscle are sufficient to improve cardiac function. Here we report, for the first time, the effect of dATP on human adult cardiac muscle contraction. We measured the contractile properties of chemically-demembranated multicellular ventricular wall preparations and isolated myofibrils from human subjects with end-stage heart failure. Isometric force was increased at both saturating and physiologic Ca2+ concentrations with dATP compared to ATP. This resulted in an increase in the Ca2+ sensitivity of force (pCa50) by 0.06 pCa units. The rate of force redevelopment (kTR) in demembranated wall muscle was also increased, as was the rate of contractile activation (kACT) in isolated myofibrils, indicating increased cross-bridge binding and cycling compared with ATP in failing human myocardium. These data suggest dATP could increase dP/dT and end systolic pressure in failing human myocardium. Importantly, even though the magnitude and rate of force development was increased, there was no increase in the time to 50% and 90% myofibril relaxation. These data, along with our previous studies in rodent models shows the promise of elevating myocardial dATP to enhance contraction and restore cardiac pump function. These data also support further pre-clinical evaluation of this new approach for treating heart failure. PMID:25498214

  9. Chaperoning of the A1-adenosine receptor by endogenous adenosine - an extension of the retaliatory metabolite concept.

    PubMed

    Kusek, Justyna; Yang, Qiong; Witek, Martin; Gruber, Christian W; Nanoff, Christian; Freissmuth, Michael

    2015-01-01

    Cell-permeable orthosteric ligands can assist folding of G protein-coupled receptors in the endoplasmic reticulum (ER); this pharmacochaperoning translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A1-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A1-receptor-Y(288)A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A1 antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A1-selective antagonist with an affinity indistinguishable from the wild-type A1 receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V2-vasopressin receptor mutants, which were susceptible to pharmacochaperoning by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O2) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A1-receptor-Y(288)A within 1 hour. These findings were recapitulated for the wild-type A1 receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A1 receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A1 receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress. PMID:25354767

  10. Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy

    SciTech Connect

    Bottomley, P.A.; Herfkens, R.J.; Smith, L.S.; Bashore, T.M.

    1987-12-01

    The high-energy myocardial phosphate metabolism of four patients with acute anterior myocardial infarction after coronary angioplasty and drug therapy was evaluated with cardiac-gated phosphorus magnetic resonance (MR) depth-resolved surface coil spectroscopy (DRESS) 5-9 days after the onset of symptoms. Significant reductions (about threefold) in the phosphocreatine (PCr) to inorganic phosphate (Pi) ratio and elevations in the Pi to adenosine triphosphate (ATP) ratio were observed in endocardially or transmurally derived MR spectra when compared with values from epicardially displaced spectra and values from seven healthy volunteers (P less than .05). High-energy phosphate metabolites and Pi ratios did not vary significantly during the cardiac cycle in healthy volunteers. However, contamination of Pi resonances by phosphomonoester components, including blood 2,3-diphosphoglycerate, precluded accurate spectral quantification of Pi and pH. The results indicate that localized P-31 MR spectroscopy may be used to directly assess cellular energy reserve in clinical myocardial infarction and to evaluate metabolic response to interventions.

  11. Correlation between myocardial dysfunction and perfusion impairment in diabetic rats with velocity vector imaging and myocardial contrast echocardiography.

    PubMed

    Wei, Zhangrui; Zhang, Haibin; Su, Haili; Zhu, Ting; Zhu, Yongsheng; Zhang, Jun

    2012-11-01

    The purpose of this study was to investigate whether myocardial systolic dysfunction and perfusion impairment occur in diabetic rats, and to assess their relationship using velocity vector imaging (VVI) and myocardial contrast echocardiography (MCE). Forty-six rats were randomly divided into either control or the diabetes mellitus (DM) groups. DM was induced by intraperitoneal administration of streptozotocin. Twelve weeks later, 39 survival rats underwent VVI and MCE in short-axis view at the middle level of the left ventricle, both at rest and after dipyridamole stress. VVI-derived contractile parameters included peak systolic velocity (Vs ), circumferential strain (εc ), strain rate (SRc ), and their reserves. MCE-derived perfusion parameters consisted of myocardial blood flow (MBF) and myocardial flow reserve (MFR). At rest, SRc in the DM group was significantly lower than in the control group, Vs , εc , and MBF did not differ significantly between groups. After dipyridamole stress, all VVI parameters and their reserves in the DM group were significantly lower than those in the control group, MBF and MFR were substantially lower than those in the control group, too. Meanwhile, significant correlations between VVI parameter reserves and MFR were observed in the DM group. Both myocardial systolic function and perfusion were impaired in DM rats. Decreased MFR could be an important contributor to the reduction in myocardial contractile reserve. PMID:22931118

  12. Myocardial bioenergetic abnormalities in experimental uremia

    PubMed Central

    Chesser, Alistair MS; Harwood, Steven M; Raftery, Martin J; Yaqoob, Muhammad M

    2016-01-01

    Purpose Cardiac bioenergetics are known to be abnormal in experimental uremia as exemplified by a reduced phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. However, the progression of these bioenergetic changes during the development of uremia still requires further study and was therefore investigated at baseline, 4 weeks and 8 weeks after partial nephrectomy (PNx). Methods A two-stage PNx uremia model in male Wistar rats was used to explore in vivo cardiac and skeletal muscles’ bioenergetic changes over time. High-energy phosphate nucleotides were determined by phosphorus-31 nuclear magnetic resonance (31P-NMR) and capillary zone electrophoresis. Results 31P-NMR spectroscopy revealed lower PCr/ATP ratios in PNx hearts compared to sham (SH)-operated animals 4 weeks after PNx (median values given ± SD, 0.64±0.16 PNx, 1.13±0.31 SH, P<0.02). However, 8 weeks after PNx, the same ratio was more comparable between the two groups (0.84±0.15 PNx, 1.04±0.44 SH, P= not significant), suggestive of an adaptive mechanism. When 8-week hearts were prestressed with dobutamine, the PCr/ATP ratio was again lower in the PNx group (1.08±0.36 PNx, 1.55±0.38 SH, P<0.02), indicating a reduced energy reserve during the progression of uremic heart disease. 31P-NMR data were confirmed by capillary zone electrophoresis, and the changes in myocardial bioenergetics were replicated in the skeletal muscle. Conclusion This study provides evidence of the changes that occur in myocardial energetics in experimental uremia and highlights how skeletal muscle bioenergetics mirror those found in the cardiac tissue and so might potentially serve as a practical surrogate tissue during clinical cardiac NMR investigations. PMID:27307758

  13. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  14. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  15. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  16. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  17. Characteristic molecular vibrations of adenosine receptor ligands.

    PubMed

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. PMID:25622891

  18. Assessment of coronary artery disease using single-photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia

    SciTech Connect

    Iskandrian, A.S.; Heo, J.; Nguyen, T.; Beer, S.G.; Cave, V.; Ogilby, J.D.; Untereker, W.; Segal, B.L. )

    1991-06-01

    Thallium-201 myocardial imaging during dipyridamole-induced coronary hyperemia has been an accepted method for diagnosing coronary artery disease (CAD) and risk stratification. Adenosine is a powerful short-acting coronary vasodilator. Initial results of thallium imaging during adenosine infusion have been encouraging. In 132 patients with CAD and in 16 patients with normal coronary angiograms, adenosine was given intravenously at a dose of 0.14 mg/kg/min for 6 minutes and thallium-201 was injected at 3 minutes. The thallium images using single-photon emission computed tomography were abnormal in 47 of the 54 patients (87%) with 1-vessel, in 34 of 37 patients (92%) with 2-vessel and in 40 of 41 patients (98%) with 3-vessel CAD. The sensitivity was 92% in the 132 patients with CAD (95% confidence intervals, 86 to 96%). In patients with normal coronary angiograms, 14 of 16 patients had normal thallium images (specificity, 88%; 95% confidence intervals, 59 to 100%). The results were very similar when subgroups of patients were analyzed: those without prior myocardial infarction, elderly patients and women. The nature of the perfusion defects (fixed or reversible) was assessed in relation to whether the 4-hour delayed images were obtained with or without the reinjection technique. In patients who underwent conventional delayed imaging, there were more fixed perfusion defects than in patients with reinjection delayed imaging (16 vs 0%, p less than 0.0001). The adverse effects were mild, transient and well tolerated. Thus, adenosine thallium tomographic imaging provides a high degree of accuracy in the diagnosis of CAD. The use of the reinjection technique enhances the ability to detect reversible defects.

  19. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat.

    PubMed

    Cheuvront, Samuel N; Ely, Brett R; Kenefick, Robert W; Michniak-Kohn, Bozena B; Rood, Jennifer C; Sawka, Michael N

    2009-02-01

    Nutritional adenosine receptor antagonists can enhance endurance exercise performance in temperate environments, but their efficacy during heat stress is not well understood. This double-blinded, placebo-controlled study compared the effects of an acute dose of caffeine or quercetin on endurance exercise performance during compensable heat stress (40 degrees C, 20-30% rh). On each of three occasions, 10 healthy men each performed 30-min of cycle ergometry at 50% Vo2peak followed by a 15-min performance time trial after receiving either placebo (Group P), caffeine (Group C; 9 mg/kg), or quercetin (Group Q; 2,000 mg). Serial blood samples, physiological (heart rate, rectal, and mean skin body temperatures), perceptual (ratings of perceived exertion, pain, thermal comfort, motivation), and exercise performance measures (total work and pacing strategy) were made. Supplementation with caffeine and quercetin increased preexercise blood concentrations of caffeine (55.62 +/- 4.77 microM) and quercetin (4.76 +/- 2.56 microM) above their in vitro inhibition constants for adenosine receptors. No treatment effects were observed for any physiological or perceptual measures, with the exception of elevated rectal body temperatures (0.20-0.30 degrees C; P < 0.05) for Group C vs. Groups Q and P. Supplementation did not affect total work performed (Groups P: 153.5 +/- 28.3, C: 157.3 +/- 28.9, and Q: 151.1 +/- 31.6 kJ; P > 0.05) or the self-selected pacing strategy employed. These findings indicate that the nutritional adenosine receptor antagonists caffeine and quercetin do not enhance endurance exercise performance during compensable heat stress. PMID:19020291

  20. Increased Cortical Extracellular Adenosine Correlates with Seizure Termination

    PubMed Central

    Van Gompel, Jamie J.; Bower, Mark R.; Worrell, Gregory A.; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J.; Kim, Inyong; Bennet, Kevin E.; Meyer, Fredric B.; Marsh, W. Richard; Blaha, Charles D.; Lee, Kendall H.

    2014-01-01

    Objective Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent upon neurotransmitters of which little is known regarding their peri-ictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Further, microdialysis studies in humans suggest adenosine is elevated peri-ictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. Methods White farm swine (n=45) were used in an acute cortical model of epilepsy and 10 human epilepsy patients were studied during intraoperative electrocorticography (Ecog). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) based fast scan cyclic voltametry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine specific triangular waveform or biosensors respectively. Results Simultaneous Ecog and electrochemistry demonstrated an average adenosine rise of 260% compared to baseline at 7.5 ± 16.9 seconds with amperometry (n=75 events) and 2.6 ± 11.2 seconds with FSCV (n=15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Significance Simultaneous Ecog and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. PMID:24483230

  1. Why do asthmatic subjects respond so strongly to inhaled adenosine?

    PubMed

    Meade, C J; Dumont, I; Worrall, L

    2001-08-01

    Bronchospasm induced by adenosine is blocked by representatives of all the major classes of drugs used in the treatment of asthma. Understanding the mechanism of this bronchospasm may help understand the way these drugs work. Clinical studies have suggested involvement of neural pathways, mast-like cells and mediators such as histamine, serotonin and lipoxygenase products. There is a strong link between responsiveness to adenosine and eosinophilia. In different animal models A1, A2b and A3 adenosine receptor subclasses have all been implicated in inducing bronchospasm. whilst occupation of the A2a receptor generally has no, or the opposite effect. At least two different mechanisms, both involving neural pathways, exist. One, involving the adenosine A1 receptor, functions in mast cell depleted animals; the other requires interaction with a population of mast-like cells activated over A2b or A3 receptors. Not only histamine but also serotonin and lipoxygenase products released from the mast-like cells are potential mediators. In animal models good reactivity to adenosine receptor agonists is generally only found when the animals are first sensitized and exposed to allergen in ways likely to induce an allergic inflammation. An exception is the BDE rat, which reacts to adenosine receptor agonists such as APNEA or NECA even without allergen exposure. This rat strain does however show evidence of spontaneous eosinophilic inflammation in the lung even without immunization. As mast cells both release adenosine and respond to adenosine, adenosine provides a non-specific method of amplifying specific signals resulting from IgE/antigen interaction. This mechanism may not only have a pathological significance in asthma; it may be part of a normal bodily defense response that in asthmatic subjects is inappropriately activated. PMID:11521747

  2. Adenosine reversal of in vivo hepatic responsiveness to insulin.

    PubMed

    McLane, M P; Black, P R; Law, W R; Raymond, R M

    1990-01-01

    Modulation by adenosine of hepatic responsiveness to insulin was investigated in vivo in 10 healthy mongrel dogs of both sexes by determining net hepatic glucose output (NHGO) in response to insulin during the presence or absence of exogenous adenosine infusion. In addition, two separate series of experiments were performed to study the effect of adenosine (n = 7) or glucagon (n = 5) on NHGO. Basal NHGO, quantitated via the Fick principle, was significantly decreased by insulin infusion (4 U/min; 4.8 +/- 0.6 vs. -1.7 +/- 2.6 mg.kg-1.min-1, P less than 0.05). The addition of an intrahepatic arterial infusion of adenosine (10 mumol/min) during insulin infusion caused glucose output to return to basal levels (insulin, -1.7 +/- 2.6 mg.kg-1.min-1; insulin + adenosine, 3.8 +/- 1.6 mg.kg-1.min-1, P less than 0.05). The addition of intrahepatic arterial saline (control) during insulin infusion had no effect on insulin's action (insulin, -1.0 +/- 1.9 mg.kg-1.min-1; insulin + saline, -1.2 +/- 1.6 mg.kg-1.min-1, P greater than 0.05). Hepatic glucose, lactate, and oxygen deliveries were not affected during either insulin or insulin plus adenosine infusion. Intrahepatic arterial infusion of adenosine alone had no effect on NHGO, whereas intrahepatic arterial infusion of glucagon alone stimulated glucose output approximately fivefold (basal, 2.7 +/- 0.4 mg.kg-1.min-1; glucagon, 15.5 +/- 1.2 mg.kg-1.min-1, P less than 0.01). These results show that adenosine completely reversed the inhibition by insulin of NHGO. These data suggest that adenosine may act as a modulator of insulin action on the liver. PMID:2210062

  3. Prediction of Flow-Limiting Fractional Flow Reserve in Patients With Stable Coronary Artery Disease Based on Quantitative Myocardial Perfusion Imaging.

    PubMed

    Tanaka, Haruki; Takahashi, Teruyuki; Kozono, Nami; Tanakamaru, Yoshiki; Ohashi, Norihiko; Yasunobu, Yuji; Tanaka, Koichi; Okada, Takenori; Kaseda, Shunichi; Nakanishi, Toshio; Kihara, Yasuki

    2016-05-01

    Although fractional flow reserve (FFR) and myocardial perfusion imaging (MPI) findings fundamentally differ, several cohort studies have revealed that these findings correlate. Here, we investigated whether flow-limiting FFR could be predicted from adenosine stress thallium-201 MPI with single-photon emission computed tomography (SPECT) findings derived from 84 consecutive, prospectively identified patients with stable coronary artery disease and 212 diseased vessels. Among them, FFR was measured in 136 diseased vessels (64%). The findings were compared with regional perfusion abnormalities including stress total perfusion defect (TPD) - rest TPD determined using quantitative perfusion single-photon emission computed tomography software. The FFR inversely correlated the most accurately with stress TPD - rest TPD (r = -0.552, p <0.001). Predictors of major vessels of interest comprising FFR <0.80, included stress TPD - rest TPD, the transient ischemic dilation ratio, left ventricular ejection fraction at rest and beta blockers for left anterior descending artery (LAD) regions, and stress TPD - rest TPD, left ventricular mass, left ventricular ejection fraction at rest, right coronary artery lesions, the transient ischemic dilation ratio, and age for non-LAD regions. The diagnostic accuracy of formulas to predict major vessels of interest with FFR <0.80 was high (sensitivity, specificity and accuracy for LAD and non-LAD: 84%, 87% and 86%, and 75%, 93% and 87%, respectively). In conclusion, although somewhat limited by a sample size and a single-center design, flow-limiting FFR could be predicted from MPI findings with a defined probability. A cohort study might validate our results and provide a novel adjunctive tool with which to diagnose functionally significant coronary artery disease from MPI findings. PMID:26970815

  4. Adenosine deaminase in disorders of purine metabolism and in immune deficiency

    SciTech Connect

    Tritsch, G.L.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the selection titles are: Adenosine Deaminase Impairment and Ribonucleotide Reductase in Human Cells; Adenosine Deaminase and Malignant Cells; Inhibition of Adenosine Deaminase to Increase the Antitumor Activity of Adenine Nucleoside Analogues; and Molecular Biology of the Adenosine Deaminase Gene and Messenger RNA.

  5. Myocardial diseases of animals.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.

    1986-01-01

    In this review we have attempted a comprehensive compilation of the cardiac morphologic changes that occur in spontaneous and experimental myocardial diseases of animals. Our coverage addresses diseases of mammals and birds and includes these diseases found in both domesticated and wild animals. A similar review of the myocardial diseases in this broad range of animal species has not been attempted previously. We have summarized and illustrated the gross, microscopic, and ultrastructural alterations for these myocardial diseases; and, whenever possible, we have reviewed their biochemical pathogenesis. We have arranged the myocardial diseases for presentation and discussion according to an etiologic classification with seven categories. These include a group of idiopathic or primary cardiomyopathies recognized in man (hypertrophic, dilated, and restrictive types) and a large group of secondary cardiomyopathies with known causes, such as inherited tendency; nutritional deficiency; toxicity; physical injury and shock; endocrine disorders, and myocarditides of viral, bacterial, and protozoal causation. Considerable overlap exists between each of the etiologic groups in the spectrum of pathologic alterations seen in the myocardium. These include various degenerative changes, myocyte necrosis, and inflammatory lesions. However, some diseases show rather characteristic myocardial alterations such as vacuolar degeneration in anthracycline cardiotoxicity, myofibrillar lysis in furazolidone cardiotoxicity, calcification in calcinosis of mice, glycogen accumulation in the glycogenoses, lipofuscinosis in cattle, fatty degeneration in erucic acid cardiotoxicity, myofiber disarray in hypertrophic cardiomyopathy, and lymphocytic inflammation with inclusion bodies in canine parvoviral myocarditis. The myocardial diseases represent the largest group in the spectrum of spontaneous cardiac diseases of animals. Pericardial and endocardial diseases and congential cardiac diseases are

  6. Early experimental hypertension preserves the myocardial microvasculature but aggravates cardiac injury distal to chronic coronary artery obstruction.

    PubMed

    Urbieta Caceres, Victor Hugo; Lin, Jing; Zhu, Xiang-Yang; Favreau, Frederic D; Gibson, Matthew E; Crane, John A; Lerman, Amir; Lerman, Lilach O

    2011-02-01

    Coronary artery disease is a leading cause of death. Hypertension (HT) increases the incidence of cardiac events, but its effect on cardiac adaptation to coexisting coronary artery stenosis (CAS) is unclear. We hypothesized that concurrent HT modulates microvascular function in chronic CAS and aggravates microvascular remodeling and myocardial injury. Four groups of pigs (n=6 each) were studied: normal, CAS, HT, and CAS+HT. CAS and HT were induced by placing local irritant coils in the left circumflex coronary artery and renal artery, respectively. Six weeks later multidetector computerized tomography (CT) was used to assess systolic and diastolic function, microvascular permeability, myocardial perfusion, and responses to adenosine in the "area at risk." Microvascular architecture, inflammation, and fibrosis were then explored in cardiac tissue. Basal myocardial perfusion was similarly decreased in CAS and CAS+HT, but its response to adenosine was significantly more attenuated in CAS. Microvascular permeability in CAS+HT was greater than in CAS and was accompanied by amplified myocardial inflammation, fibrosis, and microvascular remodeling, as well as cardiac systolic and diastolic dysfunction. On the other hand, compared with normal, micro-CT-derived microvascular (20-200 μm) transmural density decreased in CAS but not in HT or CAS+HT. We conclude that the coexistence of early renovascular HT exacerbated myocardial fibrosis and vascular remodeling distal to CAS. These changes were not mediated by loss of myocardial microvessels, which were relatively preserved, but possibly by exacerbated myocardial inflammation and fibrosis. HT modulates cardiac adaptive responses to CAS and bears cardiac functional consequences. PMID:21131477

  7. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  8. [The diagnostic value of Tc-99m PYP, Tl-201 dual isotope SPECT to predict the viability of damaged myocardium in the acute phase of myocardial infarction--comparison with stress, delayed, and reinjected Tl-201 SPECT].

    PubMed

    Matsuo, H; Watanabe, S; Arai, M; Kotoo, Y; Oohashi, H; Oda, H; Ueno, K; Matsubara, T; Ohno, M; Mori, S

    1991-05-01

    To assess the diagnostic value of Tc-99m PYP, Tl-201 dual isotope SPECT for the evaluation of myocardial viability, segmental comparison between dual isotope SPECT and exercise, delayed, and reinjected Tl study were performed with 18 AMI patients. Among 72 damaged myocardial segments, 48 segments (67%) were judged as viable by chronic phase Tl studies. The segments with severely reduced Tl uptake by dual SPECT showed significantly lower prevalence of viable myocardium than the segments with reduced and normal Tl uptake (p less than 0.001). The segments with PYP accumulation localized to the subendocardium represented the favorable outcome compared with the transmural accumulation (p less than 0.001). And overlap segments show better prognosis than the segments without overlap (p less than 0.05). Most importantly, we can get better predictive accuracy of myocardial scar by dual isotope SPECT than the judgement by Tl or PYP SPECT alone (83.3% vs 77.8%, 68.1%). Thus, we conclude that Tc-99m PYP, Tl-201 dual isotope SPECT is useful to assess the severity of myocardial damage in the acute phase of myocardial infarction. PMID:1653372

  9. Nuclear cardiology: Myocardial perfusion and function

    SciTech Connect

    Seldin, D.W. )

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references.

  10. Ribose-enhanced myocardial recovery following ischemia in the isolated working rat heart.

    PubMed

    Pasque, M K; Spray, T L; Pellom, G L; Van Trigt, P; Peyton, R B; Currie, W D; Wechsler, A S

    1982-03-01

    Recovery for myocardial adenosine triphosphate (ATP) following moderate periods of ischemic is dependent upon the availability of adenosine monophosphate (AMP) and diphosphate (ADP) for rephosphorylation. Recovery of AMP and ADP levels following ischemia is, in turn, determined by the rates of salvage and de novo adenine nucleotide synthesis. Phosphoribosyl pyrophosphate (PRPP) availability is rate limiting in both salvage and de novo adenine nucleotide synthesis. Parenteral ribose infusions in rats have been documented to elevate myocardial PRPP levels with resultant enhancement of adenine nucleotide synthesis. In this study postischemic recovery of myocardial function and ATP levels in isolated, working rat hearts given ribose infusions before and after ischemia was compared with recovery in control hearts subjected to the same protocol without ribose administration. The mean percent of functional recovery in control hearts following 15 minutes of warm ischemia reached values of 56.7 +/- 4.1%, 63.5% +/- 4.3%, 65.9% +/- 4.6%, and 70.5% +/- 4.7% at 2, 5, 10, and 15 minutes of work following ischemia. Hearts perfused with ribose demonstrated improved mean percent return of function at similar intervals of postischemic work with values of 67.9% +/- 4.2%, 73.7% +/- 3.7%, 81.0% +/- 3.5% (* = p less than 0.02 versus control) *and 85.4% +/- 3.3%, *respectively. Determinations of myocardial ATP levels (mumoles/gm of dry weight) made at the end of 15 minutes of postischemic work were significantly higher (p less than 0.02) in the ribose-treated hearts (18.9 +/- 0.7) than in controls (16.3 +/- 0.6). Infusion of ribose before and after ischemia is a biochemically logical method of improving postischemic myocardial ATP and functional recovery by manipulation of adenine nucleotide synthetic pathways. PMID:6174831

  11. Stress.

    PubMed

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself. PMID:18846841

  12. The stressed heart

    SciTech Connect

    Legato, M.J. )

    1987-01-01

    This book contains 16 papers. Some of the titles are: Regulation of gene expression in the normal and overloaded heart; Cell stress and the initiation of growth; Subcellular growth of cardiocytes during hypertrophy; Microcirculation is the stressed heart; and The biochemistry of myocardial failure.

  13. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  14. Alterations of adenosine A1 receptors in morphine dependence.

    PubMed

    Kaplan, G B; Leite-Morris, K A; Sears, M T

    1994-09-19

    The possibility that central adenosine A1 and A2a receptors mediate opiate dependence was examined in morphine-treated mice using radioligand binding methods. Mice treated with morphine for 72 h demonstrated significant increases in naloxone precipitated abstinence behaviors of jumping, wet-dog shakes, teeth chattering, forepaw trends, forepaw tremors and diarrhea compared to vehicle-treated mice. Increased concentrations of cortical adenosine A1 receptor sites, but not striatal adenosine A2a sites, were found in saturation binding studies from morphine-dependent mice. Decreases in cortical A1 agonist binding affinity values along with increases in agonist binding sites were demonstrated in competition binding studies. These results suggest that adaptive changes of upregulation and sensitization of adenosine A1 receptors play a role in mediating the opiate abstinence syndrome. PMID:7820640

  15. Bovine myocardial epithelial inclusions.

    PubMed

    Baker, D C; Schmidt, S P; Langheinrich, K A; Cannon, L; Smart, R A

    1993-01-01

    Light microscopic, histochemical, immunohistochemical, and ultrastructural methods were used to examine myocardial epithelial masses in the hearts of ten cattle. The tissues consisted of paraffin-embedded or formalin-fixed samples from eight hearts that were being inspected in slaughter houses and from two hearts from calves that died of septicemia. The ages of the cattle ranged from 4 days to 12 years; the breeds were unspecified for all but one Hereford female and the two Holstein calves; and there were three males, four females, and three steers. The masses in these cases were compared with similar appearing lesions found in other animal species. The lesions in the bovine hearts were single to multiple, well circumscribed, found in the left ventricle wall, and composed of squamous to cuboidal epithelial cells that formed tubular, ductular, and acinar structures with lumens that were void or filled with amorphous protein globules. Electron microscopic examination revealed epithelial cells that had sparse apical microvilli, tight apical intercellular junctions, perinuclear bundles of filaments, and rare cilia. Almost half of the bovine epithelial masses (4/9) had occasional diastase-resistant periodic acid-Schiff-positive granules in their cytoplasm, and few had hyaluronidase-resistant alcian blue-positive granules (2/9) or colloidal iron-positive granules (1/9). All myocardial masses had abundant collagen surrounding the tubular and acinar structures, and 2/9 had elastin fibers as well. None of the myocardial masses had Churukian-Schenk or Fontana Masson's silver staining granules in epithelial cells. Immunohistochemically, all bovine myocardial tumors stained positively for cytokeratin (8/8), and occasional masses stained positively for vimentin (3/8) or carcinoembryonic antigen (3/8). None of the masses stained positively for desmin. The myocardial epithelial tumors most likely represent endodermal rests of tissue misplaced during organogenesis. PMID:7680178

  16. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise (see comments)

    SciTech Connect

    Verani, M.S.; Mahmarian, J.J.; Hixson, J.B.; Boyce, T.M.; Staudacher, R.A. )

    1990-07-01

    Pharmacological coronary vasodilation induced by dipyridamole is often used in association with thallium-201 myocardial scintigraphy to evaluate the presence and prognostic significance of coronary artery disease. Because dipyridamole acts by blocking the cellular uptake of adenosine, we investigated the usefulness of direct intravenous administration of adenosine, a physiological substance with an exceedingly short (less than 2 seconds) plasma half-life, to induce maximal controlled coronary vasodilation in conjunction with 201Tl scintigraphy. We studied 89 patients (44 men and 45 women; mean age, 64 +/- 10 years (SD)) who were unable to perform an exercise test and were referred for evaluation of suspected coronary artery disease. The intravenous infusion of adenosine began at an initial rate of 50 micrograms/kg/min and was increased by stepwise increments every minute to a maximal rate of 140 micrograms/kg/min. 201Tl was injected intravenously after 1 minute at the highest infusion rate, followed by immediate and delayed (4 hour) tomographic imaging. At the highest infusion rate, adenosine induced a significant (p less than 0.001) decrease in systolic (8.7 +/- 19.3 mm Hg) and diastolic (6.7 +/- 9.4 mm Hg) blood pressures as well as a significant (p = 0.0001) increase in heart rate (14.5 +/- 11.0 beats/min). Side effects occurred in 83% of the patients but resolved spontaneously within 1 or 2 minutes after discontinuing the adenosine infusion. Chest, throat, or jaw pain were the most frequent symptoms and occurred in 57% of the patients. Headache (35%) and flush (29%) were also common. Ischemic electrocardiographic changes occurred in 12% of the patients, and transient first-degree atrioventricular block occurred in 10%.

  17. Proton transfer in oxidized adenosine self-aggregates.

    PubMed

    Capobianco, Amedeo; Caruso, Tonino; Celentano, Maurizio; La Rocca, Mario Vincenzo; Peluso, Andrea

    2013-10-14

    The UV-vis and the IR spectra of derivativized adenosine in dichloromethane have been recorded during potentiostatic oxidation at an optically transparent thin layer electrode. Oxidized adenosine shows a broad Zundel like absorption extending from 2800 up to 3600 cm(-1), indicating that a proton transfer process is occurring. Theoretical computations predict that proton transfer is indeed favored in oxidized 1:1 self-association complexes and allow to assign all the observed transient spectroscopic signals. PMID:24116647

  18. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  19. The A3 adenosine receptor: history and perspectives.

    PubMed

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health. PMID:25387804

  20. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  1. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs.

    PubMed

    Sun, J Z; Tang, X L; Knowlton, A A; Park, S W; Qiu, Y; Bolli, R

    1995-01-01

    Conscious pigs underwent a sequence of 10 2-min coronary occlusions, each separated by 2 min of reperfusion, for three consecutive days (days 1, 2, and 3 of stage I). The recovery of systolic wall thickening (WTh) after the 10th reperfusion was markedly improved on days 2 and 3 compared with day 1, indicating that the myocardium had become preconditioned against "stunning." 10 d after stage I, pigs underwent again a sequence of 10 2-min coronary occlusions for two consecutive days (days 1 and 2 of stage II). On day 1 of stage II, the recovery of WTh after the 10th reperfusion was similar to that noted on day 1 of stage I; on day 2 of stage II, however, the recovery of WTh was again markedly improved compared with day 1. Blockade of adenosine receptors with 8-p-sulfophenyl theophylline failed to prevent the development of preconditioning against stunning. Northern blot analysis demonstrated an increase in heat stress protein (HSP) 70 mRNA 2 h after the preconditioning ischemia; at this same time point, immunohistochemical analysis revealed a concentration of HSP70 in the nucleus and an overall increase in staining for HSP70. 24 h after the preconditioning ischemia, Western dot blot analysis demonstrated an increase in HSP70. This study indicates the existence of a new, previously unrecognized cardioprotective phenomenon. The results demonstrate that a brief ischemic stress induces a powerful, long-lasting (at least 48 h) adaptive response that renders the myocardium relatively resistant to stunning 24 h later (late preconditioning against stunning). This adaptive response disappears within 10 d after the last ischemic stress but can be reinduced by another ischemic stress. Unlike early and late preconditioning against infarction, late preconditioning against stunning is not blocked by adenosine receptor antagonists, and therefore appears to involve a mechanism different from that of other forms of preconditioning currently known. The increase in myocardial HSP70 is

  2. Myocardial perfusion imaging study of CO(2)-induced panic attack.

    PubMed

    Soares-Filho, Gastão L F; Machado, Sergio; Arias-Carrión, Oscar; Santulli, Gaetano; Mesquita, Claudio T; Cosci, Fiammetta; Silva, Adriana C; Nardi, Antonio E

    2014-01-15

    Chest pain is often seen alongside with panic attacks. Moreover, panic disorder has been suggested as a risk factor for cardiovascular disease and even a trigger for acute coronary syndrome. Patients with coronary artery disease may have myocardial ischemia in response to mental stress, in which panic attack is a strong component, by an increase in coronary vasomotor tone or sympathetic hyperactivity setting off an increase in myocardial oxygen consumption. Indeed, coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. These findings correlating panic disorder with coronary artery disease lead us to raise questions about the favorable prognosis of chest pain in panic attack. To investigate whether myocardial ischemia is the genesis of chest pain in panic attacks, we developed a myocardial perfusion study through research by myocardial scintigraphy in patients with panic attacks induced in the laboratory by inhalation of 35% carbon dioxide. In conclusion, from the data obtained, some hypotheses are discussed from the viewpoint of endothelial dysfunction and microvascular disease present in mental stress response. PMID:24188891

  3. Interstitial adenosine concentration is increased by dipyridamole

    SciTech Connect

    Gorman, M.W.; Wangler, R.D.; DeWitt, D.F.; Wang, C.Y.; Bassingthwaighte, J.B.; Sparks, H.V.

    1986-03-01

    The authors used the multiple indicator dilution technique to observe the capillary transport of adenosine (ADO) in isolated guinea pig hearts. Radiolabelled albumin, sucrose and ADO were injected on the arterial side and measured in venous samples collected during the following 20 seconds. Transport parameters calculated from these data include permeability-surface area products (PS) for transendothelial diffusion, endothelial cell (EC) uptake at the lumenal and ablumenal membranes, and EC metabolism. With simultaneous measurements of arterial and venous ADO concentrations and flow, the authors calculated the steady-state interstitial fluid (ISF) ADO concentration. Under control conditions the venous ADO concentration was 7.1 +/- 2.8 nM. The calculated ISF concentration depends on whether they assume the venous ADO comes from the ISF, or directly from ECs. These ISF concentrations are 25 +/- 12 nM and 9.8 +/- 4.0 nM, respectively. During dipyridamole infusion (10 uM) the EC transport parameters became nearly zero. Venous and ISF ADO concentrations increased to 33 +/- 8.9 nM and 169 +/- 42 nM, respectively. The authors conclude that the ISF ADO concentration is 1.5-4 fold higher than the venous concentration at rest, and the ISF concentration increases greatly with dipyridamole.

  4. Severe coronary tortuosity or myocardial bridging in patients with chest pain, normal coronary arteries, and reversible myocardial perfusion defects.

    PubMed

    Gaibazzi, Nicola; Rigo, Fausto; Reverberi, Claudio

    2011-10-01

    We reviewed patients with normal or near-normal coronary angiograms enrolled in the SPAM contrast stress echocardiographic diagnostic study in which 400 patients with chest pain syndrome of suspected cardiac origin with a clinical indication to coronary angiography were enrolled. Patients underwent dipyridamole contrast stress echocardiography (cSE) with sequential analysis of wall motion, myocardial perfusion, and Doppler coronary flow reserve before elective coronary angiography. Ninety-six patients with normal or near-normal epicardial coronary arteries were screened for the presence of 2 prespecified findings: severely tortuous coronary arteries and myocardial bridging. Patients were divided in 2 groups based on the presence (false-positive results, n = 37) or absence (true-negative results, n = 59) of reversible myocardial perfusion defects during cSE and compared for history and clinical and angiographic characteristics. Prevalence of severely tortuous coronary arteries (35% vs 5%, p <0.001) or myocardial bridging (13% vs 2%, p <0.05) was 7 times higher in patients who demonstrated reversible perfusion defects at cSE compared to those without reversible perfusion defects. No significant differences were found between the 2 groups for the main demographic variables and risk factors. Patients in the false-positive group more frequently had a history of effort angina (p <0.001) and ST-segment depression at treadmill electrocardiography (p <0.001). In conclusion, we hypothesize that patients with a positive myocardial perfusion finding at cSE but without obstructive epicardial coronary artery disease have a decreased myocardial blood flow reserve, which may be caused by a spectrum of causes other than obstructive coronary artery disease, among which severely tortuous coronary arteries/myocardial bridging may play a significant role. PMID:21784382

  5. Acute myocardial infarction.

    PubMed

    Rischpler, Christoph

    2016-09-01

    Inflammatory processes after myocardial infarction have gained major interest in recent cardiovascular research. It is believed that not only the degree of cell recruitment to the heart plays a pivotal role in the quality of wound healing after myocardial infarction, but also the balance between different types or even subtypes of cells. It is also this balance which is thought to control key processes in tissue repair, such as apoptosis and neoangiogenesis. In this paper, we aim to review imaging strategies (with a special focus on nuclear molecular imaging strategies) that target cells and processes involved in postischemic inflammation and that have a high potential to be translated into clinic or that are already being used and evaluated in humans. PMID:27225319

  6. Myocardial infarction: management of the subacute period.

    PubMed

    Mercado, Michael G; Smith, Dustin K; McConnon, Michael L

    2013-11-01

    Optimal management of myocardial infarction in the subacute period focuses on improving the discharge planning process, implementing therapies early to prevent recurrent myocardial infarction, and avoiding hospital readmission. Evidence-based guidelines for the care of patients with acute coronary syndrome are not followed up to 25% of the time. Antiplatelet therapy, renin-angiotensin-aldosterone system inhibitors, beta blockers, and statins constitute the foundation of medical therapy. Early noninvasive stress testing is an important risk assessment tool, especially in patients who do not undergo revascularization. Discharge preparation should include a review of medications, referral for exercise-based cardiac rehabilitation, activity recommendations, education about lifestyle modification and recognition of cardiac symptoms, and a clear follow-up plan. Because nonadherence to medications is common in patients after a myocardial infarction and is associated with increased mortality risk, modifiable factors associated with medication self-discontinuation should be addressed before discharge. Structured discharge processes should be used to enhance communication and facilitate the transition from the hospital to the family physician's care. PMID:24364634

  7. Tomoscintigraphic assessment of myocardial metabolic heterogenity

    SciTech Connect

    Roesler, H.; Hess, T.; Weiss, M.; Noelpp, U.; Mueller, G.; Hoeflin, F.; Kinser, J.

    1983-04-01

    I-123-omega-heptadecanoic acid (HDA) was evaluated for myocardial scanning in 59 healthy volunteers and 133 patients, using a 7-pinhole collimator. Early (uptake) and late (retention) images were compared visually. Regional HDA elimination was also followed semiquantitatively based on the calculation of a retention-over-uptake ratio, R(phi), derived from the maximal counts/pixel in 60 midventricular slice sectors. The healthy heart concentrated HDA homogeneously in all segments with no difference between early and late images. The minimal R(phi), taken as representative of that myocardium with the best function, was unchanged after maximal ergometer stress and with dipyramidole-induced hyperperfusion. A circumscribed decreased HDA uptake is the clear-cut criterion for an abnormal finding. HDA tomography of the myocardium had an 86% sensitivity for myocardial infarcts (MIs) up to 4 wk old, and 83% for myocardial scars (MSs). Comparing early and late tomograms, we find a cool-warm sequence more often with acute and subacute MIs. A cool-cool or a cold-cold sequence dominated with MSs. HDA tomoscintigraphy cannot replace TI-201 for the evaluation of regional coronary reserve in coronary heart disease.

  8. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc. PMID:27319979

  9. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  10. The 1999 Ji-Ji (Taiwan) earthquake as a trigger for acute myocardial infarction.

    PubMed

    Tsai, Ching-Hong; Lung, For-Wey; Wang, Shing-Yaw

    2004-01-01

    The authors evaluated the effect of stress due to the Ji-Ji, Taiwan, earthquake, which occurred at 1:47 a.m. on September 21, 1999, on the onset of acute myocardial infarction in six counties near the earthquake epicenter. The rate of hospitalization due to acute myocardial infarction increased during the 6 weeks after the earthquake, and a significantly higher number of patients were hospitalized with acute myocardial infarction during that period, compared with the same 6-week period in the previous year (99 and 65 patients, respectively). The findings suggest that extreme emotional stress due to the natural disaster, superimposed on the stress of awakening, increased the incidence of acute myocardial infarction in this population. PMID:15546824

  11. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Phatarpekar, Prasad V.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Priapism is a condition of persistent penile erection in the absence of sexual excitation. Of men with sickle cell disease (SCD), 40% display priapism. The disorder is a dangerous and urgent condition, given its association with penile fibrosis and eventual erectile dysfunction. Current strategies to prevent its progression are poor because of a lack of fundamental understanding of the molecular mechanisms for penile fibrosis in priapism. Here we demonstrate that increased adenosine is a novel causative factor contributing to penile fibrosis in two independent animal models of priapism, adenosine deaminase (ADA)-deficient mice and SCD transgenic mice. An important finding is that chronic reduction of adenosine by ADA enzyme therapy successfully attenuated penile fibrosis in both mouse models, indicating an essential role of increased adenosine in penile fibrosis and a novel therapeutic possibility for this serious complication. Subsequently, we identified that both mice models share a similar fibrotic gene expression profile in penile tissue (including procollagen I, TGF-β1, and plasminogen activator inhibitor-1 mRNA), suggesting that they share similar signaling pathways for progression to penile fibrosis. Thus, in an effort to decipher specific cell types and underlying mechanism responsible for adenosine-mediated penile fibrosis, we purified corpus cavernosal fibroblast cells (CCFCs), the major cell type involved in this process, from wild-type mice. Quantitative RT-PCR showed that the major receptor expressed in these cells is the adenosine receptor A2BR. Based on this fact, we further purified CCFCs from A2BR-deficient mice and demonstrated that A2BR is essential for excess adenosine-mediated penile fibrosis. Finally, we revealed that TGF-β functions downstream of the A2BR to increase CCFC collagen secretion and proliferation. Overall, our studies identify an essential role of increased adenosine in the pathogenesis of penile fibrosis via A2BR signaling and

  12. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine. PMID:17882653

  13. [Myocardial infarct immediately after a normal exercise test].

    PubMed

    Gómez-Jaume, A; González-Hermosillo, J A; Iturralde, P; Romero, L; Colín, L; Villarreal, A

    1990-01-01

    Two cases of myocardial infarction immediately following a normal stress testing, are described. The incidence and possible pathophysiological mechanisms are discussed. In one of the patients it was difficult to establish the pathophysiological mechanism which was the cause of the ischemic event. In the other, the coronary arteriography revealed only minimal obstructive disease. Therefore, coronary vasospasm with thrombus formation as a cause of the infarction ia an interesting speculative possibility in view of the angiographic findings. Acute myocardial infarction after a normal electrocardiographic response to maximal exercise testing is extremely rare, and the precise pathophysiologic mechanism that leads to his complication is not clear. PMID:2344228

  14. [Mortality of myocardial infarction].

    PubMed

    Bonnefoy, E; Kirkorian, G

    2011-12-01

    Coronary disease is a major cause of death and disability. From 1975 to 2000, coronary mortality was reduced by half. Better treatments and reduction of risk factors are the main causes. This phenomenon is observed in most developed countries, but mortality from coronary heart disease continues to increase in developing countries. In-hospital mortality of ST elevation myocardial infarction (STEMI) is in the range of 7 to 10% in registries. In infarction without ST segment elevation (NSTEMI), in-hospital mortality is around 5%. More recent studies found a similar in-hospital mortality for STEMI and NSTEMI. Because of patient selection and monitoring, mortality in clinical trials is much lower. After adjustment for the extent of coronary disease, age, risk factors, history of myocardial infarction, the excess mortality observed in women is fading. Many clinical, biological and laboratory parameters are associated with mortality in myocardial infarction. They refer to the immediate risk of death (ventricular rhythm disturbances, shock…), the extent of infarction (number of leads with ST elevation on the ECG, release of biomarkers, ejection fraction…), the presence of heart failure, the failure of reperfusion and the patient's baseline risk (age, renal function…). Risk scores, and more specifically the GRACE risk score, synthesize these different markers to predict the risk of death in a given patient. However, their use for the treatment of myocardial only concerns NSTEMI. Only a limited number of mechanical or pharmacological interventions reduces mortality of heart attack. The main benefits are observed with reperfusion by thrombolysis or primary angioplasty in STEMI, aspirin, heparin, beta-blockers, angiotensin converting enzyme inhibitors. Some medications such as bivalirudin and fondaparinux reduce mortality by decreasing the incidence of hemorrhagic complications. The guidelines classify interventions according to their benefit and especially their ability

  15. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. PMID:25604821

  16. Cardiac cell survival and reversibility of myocardial ischemia.

    PubMed

    Rashed, E; Depre, C

    2006-12-01

    Because of a limited capacity for cell regeneration, the cardiac tissue, when submitted to ischemic stress, may activate endogenous mechanisms of cell survival resulting in physiological conditions of adaptation to ischemia, known as myocardial stunning, ischemic preconditioning and myocardial hibernation. These conditions result from a switch in gene and protein expression, which sustains cardiac cell survival in a context of oxygen deprivation and during the stress of reperfusion. Understanding how the molecular adaptation of the cardiac myocyte during stress sustains its survival in these conditions might help to define novel mechanisms of endogenous myocardial salvage, in order to expand the conditions of maintained cellular viability and functional salvage of the ischemic myocardium. This review summarizes recent progress made in the study of the molecular pathways controlling reversible ischemic dysfunction, and the unraveling of novel genomic paradigms. We also focus on the discovery and characterization of novel genes, which further increase our knowledge of myocardial ischemia and open novel therapeutic possibilities for ischemic heart disease. PMID:18942527

  17. Quantitative thallium-201 single-photon emission computed tomography during maximal pharmacologic coronary vasodilation with adenosine for assessing coronary artery disease

    SciTech Connect

    Nishimura, S.; Mahmarian, J.J.; Boyce, T.M.; Verani, M.S. )

    1991-09-01

    The diagnostic value of maximal pharmacologic coronary vasodilation with intravenously administered adenosine in conjunction with thallium-201 single-photon emission computed tomography (SPECT) for detection of coronary artery disease was investigated in 101 consecutive patients who had concomitant coronary arteriography. Tomographic images were assessed visually and from computer-quantified polar maps of the thallium-201 distribution. Significant coronary artery disease, defined as greater than 50% luminal diameter stenosis, was present in 70 patients. The sensitivity for detecting patients with coronary artery disease using quantitative analysis was 87% in the total group, 82% in patients without myocardial infarction and 96% in those with prior myocardial infarction; the specificity was 90%. The sensitivity for diagnosing coronary artery disease in patients without infarction with single-, double-and triple-vessel disease was 76%, 86% and 90%, respectively. All individual stenoses were identified in 68% of patients with double-vessel disease and in 65% of those with triple-vessel disease. The extent of the perfusion defects, as quantified by polar maps, was directly related to the extent of coronary artery disease. In conclusion, quantitative thallium-201 SPECT during adenosine infusion has high sensitivity and specificity for diagnosing the presence of coronary artery disease, localizing the anatomic site of coronary stenosis and identifying the majority of affected vascular regions in patients with multivessel involvement.

  18. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine. PMID:12065074

  19. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis.

    PubMed

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J; Sun, Deming

    2016-03-15

    Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies. PMID:26856700

  20. Prehospital use of adenosine by ambulance services in the Netherlands

    PubMed Central

    Adams, R.; Bon, V.

    2003-01-01

    Background The prehospital use of adenosine in the treatment of supraventricular arrhythmias has recently been implemented in standard ambulance care. However, establishing the origin and nature of the arrhythmia with certainty is an absolute requirement for using adenosine. Methods The ability of the ambulance nurse to predict supraventricular arrhythmias and the necessity of prehospital treatment of arrhythmias in general was evaluated. To do this, cardiologists at the Academic Medical Centre of Amsterdam were consulted and a literature search by means of an electronic search in Pubmed was performed. The search was complemented by a second survey concerning antagonists of adenosine using the keywords: adenosine and theophylline. Moreover, the Ambulance Nurse textbook, the National Protocol for Ambulance Care as well as the explanatory memorandum to the protocol were consulted. Results No strong indication for the prehospital use of adenosine was found, while detrimental effects of the drug can occur. There is no literature showing the ability of ambulance staff to correctly interpret complex cardiac arrhythmias in the Netherlands; the current ambulance protocol does not prevent an incorrect choice of therapy and medication. Conclusion It is strongly advised against using antiarrhythmic medication for the treatment of tachycardias in a prehospital setting if this treatment can be postponed to the hospital environment. PMID:25696211

  1. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  2. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    PubMed

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  3. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats

    PubMed Central

    Jinka, Tulasi R.; Carlson, Zachary A.; Moore, Jeanette T.

    2010-01-01

    Rationale Evidence links longevity to dietary restriction (DR). A decrease in body temperature (Tb) is thought to contribute to enhanced longevity because lower Tb reduces oxidative metabolism and oxidative stress. It is as yet unclear how DR decreases Tb. Objective Here, we test the hypothesis that prolonged DR decreases Tb by sensitizing adenosine A1 receptors (A1AR) and adenosine-induced cooling. Methods and results Sprague–Dawley rats were dietary restricted using an every-other-day feeding protocol. Rats were fed every other day for 27 days and then administered the A1AR agonist, N6-cyclohexyladenosine (CHA; 0.5 mg/kg, i.p.). Respiratory rate (RR) and subcutaneous Tb measured using IPTT-300 transponders were monitored every day and after drug administration. DR animals displayed lower RR on day 20 and lower Tb on day 22 compared to animals fed ad libitum and displayed a larger response to CHA. In all cases, RR declined before Tb. Contrary to previous reports, a higher dose of CHA (5 mg/kg, i.p.) was lethal in both dietary groups. We next tested the hypothesis that sensitization to the effects of CHA was due to increased surface expression of A1AR within the hypothalamus. We report that the abundance of A1AR in the membrane fraction increases in hypothalamus, but not cortex of DR rats. Conclusion These results suggest that every-other-day feeding lowers Tb via sensitization of thermoregulatory effects of endogenous adenosine by increasing surface expression of A1AR. Discussion Evidence that diet can modulate purinergic signaling has implications for the treatment of stroke, brain injury, epilepsy, and aging. PMID:20186398

  4. Diurnal variations in myocardial metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasin...

  5. Adenosine deaminase--the non-invasive marker of tuberculosis.

    PubMed

    Pal, Shyamali; Gupta, Sanjoy

    2012-01-01

    Pulmonary tuberculosis is the India's biggest health problem especially in rural areas. A quick and dependable investigation is absolutely essential. Adenosine deaminase was estimated from the biological fluids (ascitic/pleural/CSF) with the help of the kit obtained from Tulip India Pvt Ltd. The method is based on the principle of Galati & Giusti colorimetric method. The method is simple, inexpensive and results are also reproducible. Elevation of adenosine deaminase has shown high specificity in all biological fluids. As the estimation principle is based on synthesis of ammonia so there is limitation of the procedure when the site is kidney. Similarly if the site is skin, as fluid cannot be collected from the site, adenosine deaminase estimation is also not possible. PMID:23029824

  6. Spiral MR myocardial tagging.

    PubMed

    Ryf, Salome; Kissinger, Kraig V; Spiegel, Marcus A; Börnert, Peter; Manning, Warren J; Boesiger, Peter; Stuber, Matthias

    2004-02-01

    In the present study, complementary spatial modulation of magnetization (CSPAMM) myocardial tagging was extended with an interleaved spiral imaging sequence. The use of a spiral sequence enables the acquisition of grid-tagged images with a tagline distance as low as 4 mm in a single breath-hold. Alternatively, a high temporal resolution of 77 frames per second was obtained with 8-mm grid spacing. Ten healthy adult subjects were studied. With this new approach, high-quality images can be obtained and the tags persist throughout the entire cardiac cycle. PMID:14755646

  7. Stability of Diluted Adenosine Solutions in Polyolefin Infusion Bags

    PubMed Central

    Almagambetova, Elise; Hutchinson, David; Blais, Danielle M.; Zhao, Fang

    2013-01-01

    Background: Intravenous or intracoronary adenosine is used in the cardiac catherization lab to achieve maximal coronary blood flow and determine fractional flow reserve. Objective: To determine the stability of adenosine 10 and 50 µg/mL in either 0.9% sodium chloride injection or 5% dextrose injection in polyolefin infusion bags stored at 2 temperatures, refrigeration (2°C-8°C) or controlled room temperature (20°C-25°C). Methods: Adenosine 10 µg/mL and 50 µg/mL solutions were prepared in 50 mL polyolefin infusion bags containing 0.9% sodium chloride injection or 5% dextrose injection and stored at controlled room temperature or under refrigeration. Each combination of concentration, diluent, and storage was prepared in triplicate. Samples were assayed using stability-indicating, reversed-phase high-performance liquid chromatography immediately at time 0 and at 24 hours, 48 hours, 7 days, and 14 days. Stability was defined as retaining 90% to 110% of the initial adenosine concentration. The samples were also visually inspected against a light background for clarity, color, and the presence of particulate matter. Results: After 14 days, all samples retained 99% to 101% of the initial adenosine concentration. No considerable change in pH or visual appearance was noted. The stability data indicated no significant loss of drug due to chemical degradation or physical interactions during storage. Conclusion: Adenosine solutions of 10 and 50 µg/mL were stable for at least 14 days in 50 mL polyolefin infusion bags of 0.9% sodium chloride injection or 5% dextrose injection stored at controlled room temperature and refrigerated conditions. PMID:24421510

  8. Serum estrogen levels in men with acute myocardial infarction.

    PubMed

    Klaiber, E L; Broverman, D M; Haffajee, C I; Hochman, J S; Sacks, G M; Dalen, J E

    1982-12-01

    Serum estradiol and serum estrone levels were assessed in 29 men in 14 men in whom myocardial infarction was ruled out; in 12 men without apparent coronary heart disease but hospitalized in an intensive care unit; and in 28 men who were not hospitalized and who acted as control subjects. (The 12 men who were hospitalized but who did not have coronary heart disease were included to control for physical and emotional stress of a severe medical illness.) Ages ranged from 21 to 56 years. Age, height, and weight did not differ significantly among groups. Blood samples were obtained in the patient groups on each of the first three days of hospitalization. The serum estrone level was significantly elevated in all four patient groups when compared with that in the control group. Estrone level, then, did not differentiate patients with and without coronary heart disease. Serum estradiol levels were significantly elevated in the groups with myocardial infarction, unstable angina, and in the group in whom myocardial infarction was ruled out. However, estradiol levels were not significantly elevated in the group in the intensive care unit without coronary heart disease when compared to the level in the normal control group. Serum estradiol levels, then, were elevated in men with confirmed or suspected coronary heart disease but were not elevated in men without coronary heart disease even under the stressful conditions found in an intensive care unit. Serum estradiol levels were significantly and positively correlated (p less than 0.03) with serum total creatine phosphokinase levels in the patients with myocardial infarction. The five patients with myocardial infarction who died within 10 days of admission had markedly elevated serum estradiol levels. The potential significance of these serum estradiol elevations is discussed in terms of estradiol's ability to enhance adrenergic neural activity and the resultant increase in myocardial oxygen demand. PMID:7148879

  9. Nuclear cardiac imaging for the assessment of myocardial viability

    PubMed Central

    Slart, R.H.J.A.; Bax, J.J.; van der Wall, E.E.; van Veldhuisen, D.J.; Jager, P.L.; Dierckx, R.A.

    2005-01-01

    An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification. ImagesFigure 1Figure 2Figure 3 PMID:25696432

  10. Cyclic adenosine monophosphate phosphodiesterase in brain: effect on anxiety.

    PubMed

    Beer, B; Chasin, M; Clody, D E; Vogel, J R

    1972-04-28

    Drugs that reduce anxiety may be mediated by cyclic adenosine monophosphate in the brain because (i) potent anxiety-reducing drugs are also potent inhibitors of brain phosphodiesterase activity; (ii) dibutyryl cyclic adenosine monophosphate has the ability to reduce anxiety; (iii) the methylxanthines show significant anxiety-reducing effects; (iv) theophylline and chlordiazepoxide produce additive anxiety-reducing activity; and (v) there is a significant correlation between the anxiety-reducing property of drugs and their ability to inhibit phosphodiesterase activity in the brain. PMID:4402069

  11. Case of angina pectoris at rest and during effort due to coronary spasm and myocardial bridging

    PubMed Central

    Teragawa, Hiroki; Fujii, Yuichi; Ueda, Tomohiro; Murata, Daiki; Nomura, Shuichi

    2015-01-01

    We present a case of a 71-year-old male who had chest symptoms at rest and during effort. He had felt chest oppression during effort for 1 year, and his chest symptoms had recently worsened. One month before admission he felt chest squeezing at rest in the early morning. He presented at our institution to evaluate his chest symptoms. Electrocardiography and echocardiography failed to show any specific changes. Because of the possibility that his chest symptoms were due to myocardial ischemia, he was admitted to our institution for coronary angiography (CAG). An initial CAG showed mild atherosclerotic changes in the proximal segment of the left anterior descending coronary artery (LAD) and mid-segment of the left circumflex coronary artery. Subsequent spasm provocation testing using acetylcholine revealed a bilateral coronary vasospasm, which was relieved after the intracoronary infusion of nitroglycerin. Finally, a CAG showed myocardial bridging (MB) of the mid-distal segments of the LAD. Fractional flow reserve using the intravenous administration of adenosine triphosphate was positive at 0.77, which jumped up to 0.90 through the myocardial bridging segments when the pressure wire was pulled back. Thus, coronary vasospasm and MB might have contributed to his chest symptoms at rest and during effort. Interventional cardiologists should consider the presence of MB as a potential cause of myocardial ischemia. PMID:26131343

  12. Phosphorylation of adenosine in renal brush-border membrane vesicles by an exchange reaction catalysed by adenosine kinase.

    PubMed Central

    Sayós, J; Solsona, C; Mallol, J; Lluis, C; Franco, R

    1994-01-01

    Uptake of [3H]adenosine in brush-border membrane (BBM) vesicles from either rat or pig kidney leads to an accumulation of intravesicular [3H]AMP. The lack of significant levels of ATP and the presence of AMP in BBM indicated that a phosphotransfer between [3H]adenosine and AMP occurs. The phosphotransfer activity is inhibited by iodotubercidin, which suggests that it is performed by adenosine kinase acting in an ATP-independent manner. The existence of a similar phosphotransferase activity was demonstrated in membrane-free extracts from pig kidney. From the compounds tested it was shown that a variety of mononucleotides could act as phosphate donors. The results suggest that phosphotransfer reactions may be physiologically relevant in kidney. PMID:8110185

  13. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning.

    PubMed Central

    Heurteaux, C; Lauritzen, I; Widmann, C; Lazdunski, M

    1995-01-01

    Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels. Images Fig. 2 Fig. 3 PMID:7753861

  14. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  15. Valsartan after myocardial infarction.

    PubMed

    Güleç, Sadi

    2014-12-01

    One of the important problems of the patients undergoing acute myocardial infarction (MI) is early development of heart failure. It has been revealed in various studies that renin-angiotensin-aldosterone system (RAAS) has a significant role in this process. The studies conducted with angiotensin converting enzyme (ACE) inhibitors have resulted in decreased mortality rate. Another RAAS blocker which was discovered about ten years later than other ACE inhibitors in historical process is angiotensin receptor blockers (ARB) inhibiting the efficiency of angiotensin 2 by binding to angiotensin 1 receptor. Valsartan is one of the molecules of this group, which has higher number of large-scale randomized clinical studies. In this review, following presentation of a general overview on heart failure after acute MI, the efficiency of ARBs in this patient group will be discussed. This discussion will mostly emphasize the construction, outcomes and clinical importance of VALIANT (VALsartan In Acute myocardial iNfarcTion), which is the study on valsartan after acute MI heart failure. PMID:25604205

  16. Trauma Induced Myocardial Infarction

    PubMed Central

    Lolay, Georges A.; Abdel-Latef, Ahmed K.

    2016-01-01

    Chest Trauma in athletes is a common health problem. However, myocardial infarction secondary to coronary dissection in the setting of blunt chest trauma is extremely rare. We report a case of acute inferior wall myocardial infarction following blunt chest trauma. A 32-year-old male with no relevant medical problems was transferred to our medical center for retrosternal chest pain after being elbowed in the chest during a soccer game. Few seconds later, he started experiencing sharp retrosternal chest pain that was severe to that point where he called the emergency medical service. Upon arrival to the Trauma department patient was still complaining of chest pain. ECG demonstrated ST segment elevation in the inferior leads with reciprocal changes in the lateral leads all consistent with active ischemia. After rolling out Aortic dissection, patient was loaded with ASA, ticagerlor, heparin and was emergently taken to the cardiac catheterization lab. Coronary angiography demonstrated 100% thrombotic occlusion in the distal right coronary artery with TIMI 0 flow distally. After thrombus aspiration, a focal dissection was noted on the angiogram that was successfully stented. Two days after admission patient was discharged home. Echocardiography prior to discharge showed inferior wall akinesis, normal right ventricular systolic function and normal overall ejection fraction. PMID:26490501

  17. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    PubMed

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  18. Adenosine-dependent activation of tyrosine hydroxylase is defective in adenosine kinase-deficient PC12 cells.

    PubMed Central

    Erny, R; Wagner, J A

    1984-01-01

    (R)-N6-Phenylisopropyladenosine (PIA) stimulates dopa production 3- to 5-fold in PC12 cells, with a half-maximal effective concentration (EC50) of 50 nM. This increase can be explained by a stable activation of tyrosine hydroxylase [TyrOHase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] when it is phosphorylated by a cAMP-dependent protein kinase. The activation of TyrOHase is mediated by the adenosine-dependent activation of adenylate cyclase (EC50 = 600 nM). PIA (10 microM) is as effective as cholera toxin or dibutyryl cAMP in activating TyrOHase in wild-type cells. Adenosine kinase-deficient mutants of PC12 were found to be resistant to PIA-dependent activation of TyrOHase (EC50 = 100-1000 nM). This phenomenon was explored in detail in one adenosine kinase-deficient mutant and was shown to occur because the mutant was resistant to the adenosine-dependent activation of adenylate cyclase. In this mutant, TyrOHase was activated 14-fold by cholera toxin, suggesting that activated TyrOHase is about 14 times as active as unactivated TyrOHase. These studies with kinase-deficient PC12 cells provide genetic evidence that adenosine-dependent activation of TyrOHase is mediated by acute increases in cAMP. When the adenosine receptor found on PC12 cells is expressed in vivo, it might function as either a presynaptic (i.e., localized on the nerve terminal) or a postsynaptic (i.e., localized on the cell body or dendrite) receptor that regulates rates of transmitter synthesis in response to cell activity. PMID:6146982

  19. Anticancer effect of adenosine on gastric cancer via diverse signaling pathways

    PubMed Central

    Tsuchiya, Ayako; Nishizaki, Tomoyuki

    2015-01-01

    Extracellular adenosine induces apoptosis in a variety of cancer cells via intrinsic and extrinsic pathways. In the former pathway, adenosine uptake into cells triggers apoptosis, and in the latter pathway, adenosine receptors mediate apoptosis. Extracellular adenosine also induces apoptosis of gastric cancer cells. Extracellular adenosine is transported into cells through an adenosine transporter and converted to AMP by adenosine kinase. In turn, AMP activates AMP-activated protein kinase (AMPK). AMPK is the factor responsible for caspase-independent apoptosis of GT3-TKB gastric cancer cells. Extracellular adenosine, on the other hand, induces caspase-dependent apoptosis of MKN28 and MKN45 gastric cancer cells by two mechanisms. Firstly, AMP, converted from intracellularly transported adenosine, initiates apoptosis, regardless of AMPK. Secondly, the A3 adenosine receptor, linked to Gi/Gq proteins, mediates apoptosis by activating the Gq protein effector, phospholipase Cγ, to produce inositol 1,4,5-trisphosphate and diacylglycerol, which activate protein kinase C. Consequently, the mechanisms underlying adenosine-induced apoptosis vary, depending upon gastric cancer cell types. Understand the contribution of each downstream target molecule of adenosine to apoptosis induction may aid the establishment of tailor-made chemotherapy for gastric cancer. PMID:26494951

  20. Anticancer effect of adenosine on gastric cancer via diverse signaling pathways.

    PubMed

    Tsuchiya, Ayako; Nishizaki, Tomoyuki

    2015-10-21

    Extracellular adenosine induces apoptosis in a variety of cancer cells via intrinsic and extrinsic pathways. In the former pathway, adenosine uptake into cells triggers apoptosis, and in the latter pathway, adenosine receptors mediate apoptosis. Extracellular adenosine also induces apoptosis of gastric cancer cells. Extracellular adenosine is transported into cells through an adenosine transporter and converted to AMP by adenosine kinase. In turn, AMP activates AMP-activated protein kinase (AMPK). AMPK is the factor responsible for caspase-independent apoptosis of GT3-TKB gastric cancer cells. Extracellular adenosine, on the other hand, induces caspase-dependent apoptosis of MKN28 and MKN45 gastric cancer cells by two mechanisms. Firstly, AMP, converted from intracellularly transported adenosine, initiates apoptosis, regardless of AMPK. Secondly, the A3 adenosine receptor, linked to Gi/Gq proteins, mediates apoptosis by activating the Gq protein effector, phospholipase Cγ, to produce inositol 1,4,5-trisphosphate and diacylglycerol, which activate protein kinase C. Consequently, the mechanisms underlying adenosine-induced apoptosis vary, depending upon gastric cancer cell types. Understand the contribution of each downstream target molecule of adenosine to apoptosis induction may aid the establishment of tailor-made chemotherapy for gastric cancer. PMID:26494951

  1. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    PubMed Central

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  2. Adenosine transporters and receptors: key elements for retinal function and neuroprotection.

    PubMed

    Dos Santos-Rodrigues, Alexandre; Pereira, Mariana R; Brito, Rafael; de Oliveira, Nádia A; Paes-de-Carvalho, Roberto

    2015-01-01

    Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. PMID:25817878

  3. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects

    SciTech Connect

    Brunken, R.; Schwaiger, M.; Grover-McKay, M.; Phelps, M.E.; Tillisch, J.; Schelbert, H.R.

    1987-09-01

    Positron emission tomography with /sup 13/N-ammonia and /sup 18/F-2-deoxyglucose was used to assess myocardial perfusion and glucose utilization in 51 myocardial segments with a stress thallium defect in 12 patients. Myocardial infarction was defined by a concordant reduction in segmental perfusion and glucose utilization, and myocardial ischemia was identified by preservation of glucose utilization in segments with rest hypoperfusion. Of the 51 segments studied, 36 had a fixed thallium defect, 11 had a partially reversible defect and 4 had a completely reversible defect. Only 15 (42%) of the 36 segments with a fixed defect and 4 (36%) of the 11 segments with a partially reversible defect exhibited myocardial infarction on study with positron tomography. In contrast, residual myocardial glucose utilization was identified in the majority of segments with a fixed (58%) or a partially reversible (64%) thallium defect. All of the segments with a completely reversible defect appeared normal on positron tomography. Apparent improvement in the thallium defect on delayed images did not distinguish segments with ischemia from infarction. Thus, positron emission tomography reveals evidence of persistent tissue metabolism in the majority of segments with a fixed or partially resolving stress thallium defect, implying that markers of perfusion alone may underestimate the extent of viable tissue in hypoperfused myocardial segments.

  4. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.

    PubMed

    Robador, Pablo A; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-10-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that

  5. Non-rigid registration and KLT filter to improve SNR and CNR in GRE-EPI myocardial perfusion imaging.

    PubMed

    Mihai, Georgeta; Ding, Yu; Xue, Hui; Chung, Yiu-Cho; Rajagopalan, Sanjay; Guehring, Jens; Simonetti, Orlando P

    2012-12-01

    The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following non-rigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically significant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%; p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non- rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process. PMID:23936584

  6. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    PubMed Central

    Meng, Guoliang; Zhu, Jinbiao; Xiao, Yujiao; Huang, Zhengrong; Zhang, Yuqing; Tang, Xin; Xie, Liping; Chen, Yu; Shao, Yongfeng; Ferro, Albert; Wang, Rui; Moore, Philip K.; Ji, Yong

    2015-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts. PMID:26078813

  7. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    PubMed

    Gao, Zhan; Sierra, Ana; Zhu, Zhiyong; Koganti, Siva Rama Krishna; Subbotina, Ekaterina; Maheshwari, Ankit; Anderson, Mark E; Zingman, Leonid V; Hodgson-Zingman, Denice M

    2016-01-01

    The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  8. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury

    PubMed Central

    Gao, Zhan; Sierra, Ana; Zhu, Zhiyong; Koganti, Siva Rama Krishna; Subbotina, Ekaterina; Maheshwari, Ankit; Anderson, Mark E.; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2016-01-01

    The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  9. Takotsubo cardiomyopathy after acute myocardial infarction: An unusual case of possible association.

    PubMed

    Ferrara, Francesco; Baldi, Cesare; Malinconico, Marisa; Acri, Edvige; Cirillo, Annapaola; Citro, Rodolfo; Bossone, Eduardo

    2016-04-01

    Takotsubo cardiomyopathy is an acute reversible clinical condition mimicking an acute myocardial infarction. Although a normal coronary artery tree is frequently detected, the concurrence of coronary artery disease is a common finding in a substantial proportion of patients. We report an unusual case of takotsubo cardiomyopathy in post-menopausal women after emotional stress, occurring after inferior ST-segment elevation myocardial infarction. The possible association between takotsubo cardiomyopathy and coronary artery disease is discussed. PMID:24833638

  10. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  11. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  12. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  13. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  14. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  15. CD39/Adenosine Pathway Is Involved in AIDS Progression

    PubMed Central

    Limou, Sophie; Younas, Mehwish; Kök, Ayrin; Huë, Sophie; Seddiki, Nabila; Hulin, Anne; Delaneau, Olivier; Schuitemaker, Hanneke; Herbeck, Joshua T.; Mullins, James I.; Muhtarova, Maria; Bensussan, Armand; Zagury, Jean-François; Lelievre, Jean-Daniel; Lévy, Yves

    2011-01-01

    HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS. PMID:21750674

  16. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  17. Exercise stress testing

    NASA Technical Reports Server (NTRS)

    Schuster, B.

    1975-01-01

    Positive maximum stress tests in the management of coronary patients are discussed. It is believed that coronary angiography would be the ultimate test to predict the future of patients with coronary heart disease. Progression of angina, myocardial infarction, and death due to heart disease were analyzed.

  18. Manipulation of adenosine kinase affects sleep regulation in mice

    PubMed Central

    Palchykova, Svitlana; Winsky-Sommerer, Raphaelle; Shen, Hai-Ying; Boison, Detlev; Gerling, Andrea; Tobler, Irene

    2010-01-01

    Sleep and sleep intensity are enhanced by adenosine and its receptor agonists, while adenosine receptor antagonists induce wakefulness. Adenosine kinase (ADK) is the primary enzyme metabolizing adenosine in adult brain. To investigate whether adenosine metabolism or clearance affects sleep we recorded sleep in mice with engineered mutations in Adk. Adk-tg mice over-express a transgene encoding the cytoplasmic isoform of ADK in the brain, but lack the nuclear isoform of the enzyme. Wild-type mice and Adk+/− mice that have a 50% reduction of the cytoplasmic and the nuclear isoforms of ADK served as controls. Adk-tg mice showed a remarkable reduction of EEG power in low frequencies in all vigilance states and in theta activity (6.25–11 Hz) in REM sleep and waking. Adk-tg mice were awake 58 min more per day than wild-type mice and spent significantly less time in REM sleep (102±3 vs 128±3 min in wild-type). After sleep deprivation slow-wave activity (0.75–4 Hz), the intensity component of NREM sleep, increased significantly less in Adk-tg mice and their slow-wave energy was reduced. In contrast, the vigilance states and EEG spectra of Adk+/− and wild-type mice did not differ. Our data suggest that over-expression of the cytoplasmic isoform of ADK is sufficient to alter sleep physiology. ADK might orchestrate neurotransmitter pathways involved in the generation of EEG oscillations and regulation of sleep. PMID:20881134

  19. An unusual myocardial infarction

    PubMed Central

    Di Michele, Sara; Mirabelli, Francesca; Mankad, Sunil

    2014-01-01

    Summary We present a 74-year-old male with a chondrosarcoma, who presented with chest pain. The history, electrocardiogram (ECG), and biomarkers established the diagnosis of myocardial infarction (MI); angiography did not show coronary atherosclerosis and, both initial transthoracic echocardiogram and chest computed tomography (CT), did not demonstrate any cardiac abnormalities. A second echocardiogram following a routine ECG showed presence of a mass involving the right ventricle and the cardiac apex that was confirmed by chest CT scan. We underline the importance of considering cardiac tumors in the clinical arena of MI management. Learning points Cardiac tumors cause ECG changes similar to ischemic heart diseases.Keep in mind cardiac tumors when performing transthoracic echocardiogram (TTE) in the setting of suspected MI.TTE is the technique of choice in detecting cardiac tumors. PMID:26693309

  20. Masquerades of myocardial infarction.

    PubMed Central

    Bean, W. B.

    1976-01-01

    I summarize these observations in Figure 1. It represents every person in a hypothetical population who has myocardial infarction. A large but unknown number, some believe almost half, never get help. Mobile coronary care units are reducing this group, but so far only a little. When the diagnosis is not understood the disease is not recognized. Then come discovery and popularization. Hereafter masquerades hide some cases and the diagnosis is missed. Somewhere fairly early the diagnostic fad leads to false positive diagnosis. As new techniques are discovered, perfected and mastered, false positive errors and masquerades leading to oversights diminish but still exist. All the skill and technical virtuosity in the world will not be applied if we do not think of the disease. When we think of it, even obscure cases may be resolved easily. PMID:960416

  1. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  2. Efficacy of cimetidin in the prevention of ulcer formation in the stomach during immobilization stress

    NASA Technical Reports Server (NTRS)

    Dorofeyev, G. I.; Litovskiy, I. A.; Gavrovskaya, L. K.; Ivashkin, V. T.

    1982-01-01

    The effect of stress on the formation of ulcers in the mucous membrane of the stomach, the increase in cyclic adenosine monophosphate level in the gastric tissues, and parietal cell structure alteration. Use of cimetidin prevents these effects

  3. Erythrocyte 2,3-diphosphoglycerate and adenosine-triphosphate in cretins living at high altitude.

    PubMed

    Adams, W H

    1976-01-01

    A comparison of concentrations of 2,3-diphosphoglycerate (2,3-DPG) and adenosine-triphosphate (ATP) in the red cells of cretins and normal controls living at 3,700 m in the Nepal Himalayas has shown that 2,3-DPG and ATP levels were higher in the cretins. A negative correlation between hemoglobin and 2.3-DPG level was found. Chronic hypoxia appears to have provided the additional stress required to differentiate the significance of thyroid hormone deficiency in producing anemia from its effect on 2,3-DPG levels. If thyroid hormone is in fact one regulator of 2,3-DPG, the anemia of hypothyroidism appears to be more significant. This also suggest that the anemia of hypothyroidism, is at least in part, "pathologic" as opposed to "adaptive". PMID:822672

  4. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with c