Science.gov

Sample records for adenosine triphosphatase atpase

  1. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  2. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  3. Modulatory action of α-tocopherol on erythrocyte membrane adenosine triphosphatase against radiation damage in oral cancer.

    PubMed

    Chitra, Subramaniam; Shyamaladevi, Chennam Srinivasulu

    2011-03-01

    To investigate the possible effects of α-tocopherol on erythrocyte membrane adenosine triphosphatases against radiation damage in oral cancer patients. Adenosine triphosphatase activities were analysed in oral cancer patients before and after radiotherapy (at a dosage of 6000 cGY in five fractions per week for a period of six weeks) and after supplemented with α-tocopherol (400 IU per day for entire period of radiotherapy). The membrane bound enzymes such as Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and some trace elements were altered in oral cancer patients before and after radiotherapy. Supplemented with α-tocopherol modulates the erythrocyte membrane which is damaged by radiotherapy which suggests that α-tocopherol protects the erythrocyte membrane from radiation damage in oral cancer patients.

  4. Adenosine triphosphatase localization in amphibian epidermis.

    PubMed

    Farquhar, M G; Palade, G E

    1966-08-01

    The localization of ATPase(1) activity has been studied by light and electron microscopy in the epidermis of Rana pipiens, Rana catesbiana, and Bufo marinus. The reaction was carried out on skin (glutaraldehyde-fixed or fresh) sectioned with or without freezing. Best results were obtained with nonfrozen sections of fixed tissue. The incubation mixture was either a Wachstein-Meisel medium, or a modification which approximates assay systems used in biochemical studies of transport ATPases. The reaction product was found localized in contact with the outer leaflet of all cell membranes facing the labyrinth of intercellular spaces of the epidermis. It was absent from: (a) membrane areas involved in cell junctions (desmosomes, zonulae and maculae occludentes); (b) cell membranes facing the external medium (i.e., those on the distal aspect of the ultimate cell layer in s. corneum); (c) cell membranes facing the dermis (those on the proximal aspect of cells in s. germinativum). In the presence of (Na(+) + K(+)) the localization did not change, but the reaction was not appreciably activated. A similar though less intense reaction was obtained with ITP, but not with ADP, AMP, and GP as substrates. The results are discussed in relation to available data on transport ATPases in general, and on the morphology and physiology of amphibian skin in particular. Assuming that the ATPase studied is related to transport ATPase, the findings suggest a series of modifications to the frog skin model proposed by Koefoed-Johnsen and Ussing. The salient feature of this modified model is the localization of the Na(+) pump along all cell membranes facing the intercellular spaces of the epidermis. PMID:4226195

  5. Targeting Na⁺/K⁺ -translocating adenosine triphosphatase in cancer treatment.

    PubMed

    Durlacher, Cameron T; Chow, Kevin; Chen, Xiao-Wu; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Zhou, Shu-Feng

    2015-05-01

    The Na(+) /K(+) -translocating adenosine triphosphatase (ATPase) transports sodium and potassium across the plasma membrane and represents a potential target in cancer chemotherapy. Na(+) /K(+) -ATPase belongs to the P-type ATPase family (also known as E1-E2 ATPase), which is involved in transporting certain ions, metals, and lipids across the plasma membrane of mammalian cells. In humans, the Na(+) /K(+) -ATPase is a binary complex of an α-subunit that has four isoforms (α1 -α4 ) and a β-subunit that has three isoforms (β1 -β3 ). This review aims to update our knowledge on the role of Na(+) /K(+) -ATPase in cancer development and metastasis, as well as on how Na(+) /K(+) -ATPase inhibitors kill tumour cells. The Na(+) /K(+) -ATPase has been found to be associated with cancer initiation, growth, development, and metastasis. Cardiac glycosides have exhibited anticancer effects in cell-based and mouse studies via inhibition of the Na(+) /K(+) -ATPase and other mechanisms. Na(+) /K(+) -ATPase inhibitors may kill cancer cells via induction of apoptosis and autophagy, radical oxygen species production, and cell cycle arrest. They also modulate multiple signalling pathways that regulate cancer cell survival and death, which contributes to their antiproliferative activities in cancer cells. The clinical evidence supporting the use of Na(+) /K(+) -ATPase inhibitors as anticancer drugs is weak. Several phase I and phase II clinical trials with digoxin, Anvirzel, and huachansu (an intravenous formulated extract of the venom of the wild toad), either alone or more often in combination with other anticancer agents, have shown acceptable safety profiles but limited efficacy in cancer patients. Well-designed randomized clinical trials with reasonable sample sizes are certainly warranted to confirm the efficacy and safety of cardiac glycosides for the treatment of cancer.

  6. Purification of an Ion-Stimulated Adenosine Triphosphatase from Plant Roots: Association with Plasma Membranes

    PubMed Central

    Hodges, T. K.; Leonard, R. T.; Bracker, C. E.; Keenan, T. W.

    1972-01-01

    A membrane-bound adenosine triphosphatase (EC 3.6.1.3) that requires Mg++ and that is stimulated by monovalent ions has been purified 7- to 8-fold from homogenates of oat (Avena sativa L. Cult. Goodfield) roots by discontinuous sucrose-gradient centrifugation. The enzyme was substrate specific; adenosine triphosphate was hydrolyzed 25 times more rapidly than other nucleoside triphosphates. The membrane fraction containing adenosine triphosphatase was enriched in plasma membranes, which were identified by the presence of a glucan synthetase (EC 2.4.1.12), a high sterol to phospholipid ratio, and by a stain consisting of periodic acid, chromic acid, and phosphotungstic acid that is specific for plant plasma membranes. Oat-root plasma membranes and the associated adenosine triphosphatase were purified on either a 6-layer discontinuous sucrose gradient or on a simplified gradient consisting of only two sucrose layers. These results represent the first demonstration that plant plasma membranes contain an adenosine triphosphatase that is activated by monovalent ions, and this finding further implicates the enzyme in the absorption of inorganic ions by plant roots. Images PMID:16592027

  7. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle.

    PubMed Central

    Pollard, T D; Bhandari, D; Maupin, P; Wachsstock, D; Weeds, A G; Zot, H G

    1993-01-01

    We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not

  8. Ultrastructural localization of the membrane-bound Mg-adenosine triphosphatase activity in rat meninges.

    PubMed

    Angelov, D N; Vasilev, V A

    1989-01-01

    The distribution of the membrane-bound magnesium ions-dependent adenosine triphosphatase (Mg-ATPase) activity has been studied ultracytochemically in rat meninges by the method of Wachstein and Meisel (1957). A device specially constructed to avoid preparation artefacts has been used to obtain sections from the parietal region of the head. The meninges display an intense though irregularly distributed ATPase activity marked by depositions of electron-dense reaction product (RP) which is almost absent in the outer and middle dural layers. In the borderline zone between dura mater and the arachnoid the RP deposits are found at the outer surface of the inner dural cells and at the contact sites between these cells and the dural neurothelium. The intercellular cleft(s) between the neurothelium and the outer arachnoidal layer, occupied by an "electron-dense band", remains free of RP. The strongest accumulations of reactions granules are observed on the surface of the leptomeningeal cells of the arachnoidal space. In the contact region between the inner arachnoidal and the outer pial layers the distribution of the RP is similar to the one observed in the interface zone dura mater/arachnoid, while the pial cells themselves are definitely reaction-positive. In all meningeal vessels RP is found at the lumenal and abluminal aspects of the endothelium as well as at the cell membranes of the perivascular cells. These results emphasize the importance of the dural neurothelium for the functions of the blood-cerebrospinal fluid (CSF)-barrier between the dural blood vessels and the CSF.

  9. Salt-stimulated Adenosine Triphosphatase from Smooth Microsomes of Turnip.

    PubMed

    Rungie, J M; Wiskich, J T

    1973-06-01

    The turnip (Brassica rapa L.) microsome fraction contains both a Mg(2+)-inhibited acid phosphatase and a salt-stimulated Mg(2+)-activated ATPase. However, as the pH optimum of the ATPase was 8.0 to 8.5, the acid phosphatase activity could be eliminated by assaying at or above pH 7.8. The ATPase was concentrated in a fraction equivalent to the smooth microsomal membranes and was not due to fragments of mitochondria. The salt-stimulated activity showed specificity for anions rather than cations. The activity was further stimulated by carbonyl cyanide m-chloro-phenylhydrazone (CCCP), 2,4-dinitrophenol, valinomycin, nigericin, and NH(4)Cl. There was a synergistic effect between CCCP and valinomycin. Activity was insensitive to oligomycin phlorizin, ouabain, and atractylate. Based on similarity to the chloroplast ATPase, it was proposed that this ATPase was situated on the outside of the vesicle.It is suggested that the ATPase is involved in the movement of ions, particularly anions, and may be related to the anion accumulation mechanism, which is known to occur across the tonoplast of such tissues.

  10. Sulfhydryl groups of the F1 adenosine triphosphatase of Escherichia coli and the stoichiometry of the subunits.

    PubMed

    Stan-Lotter, H; Bragg, P D

    1984-02-15

    The distribution and total number of sulfhydryl groups present in the F1 adenosine triphosphatase of Escherichia coli were used to calculate the stoichiometry of the alpha-delta subunits. Titration with 5,5'-dithiobis (2-nitrobenzoate) gave 19.1 +/- 2.2 sulfhydryl groups/mol ATPase. Labeling with [14C]iodoacetamide and [14C]N-ethylmaleimide showed that 11.9, 3.1, 1.9, and 1.8 sulfhydryl groups per molecule of ATPase were associated with the alpha, beta, gamma, and delta subunits, respectively. The epsilon subunit was not labeled. Application of the method of Creighton [Nature (London) (1980) 284, 487-489] showed that 4, 1, and 2 sulfhydryl groups were present in the alpha, beta, and gamma subunits, respectively. This, together with published data for the delta subunit, allowed a subunit stoichiometry of alpha 3 beta 3 gamma delta to be calculated. The presence of four cysteinyl residues in the alpha subunit, as shown by several different methods, does not agree with the results of DNA sequencing of the ATPase genes [H. Kanazawa, T. Kayano, K. Mabuchi, and M. Futai (1981) Biochem. Biophys. Res. Commun. 103, 604-612; N. J. Gay and J. E. Walker (1981) Nucl. Acids Res. 9, 2187-2194] where three cysteinyl residues/alpha subunit have been found. It is suggested that post-translational modification of the alpha subunit to add a fourth cysteinyl residue might occur.

  11. Alterations in the expression of uvomorulin and Na+,K(+)-adenosine triphosphatase during mouse skin tumor progression.

    PubMed Central

    Ruggeri, B.; Caamano, J.; Slaga, T. J.; Conti, C. J.; Nelson, W. J.; Klein-Szanto, A. J.

    1992-01-01

    Uvomorulin (E-cadherin), a cell adhesion molecule, and Na+,K(+)-adenosine triphosphatase (ATPase), a marker protein of the basal-lateral cell membrane domains of polarized epithelial cells, were investigated in a group of mouse skin tumors induced by a two-stage chemical carcinogenesis protocol and in cell lines derived from mouse skin papillomas and squamous cell carcinomas (SCC). Although these two markers were present in benign tumors and in nontumorigenic cell lines, the Na+,K(+)-ATPase showed an altered pattern of distribution that included the presence of enzyme not only in the basolateral domain but also on the apical domain of the cell membrane of basal and spinous cells in well-differentiated squamous cell carcinomas (SCC). In higher grade SCC, a loss of Na+,K(+)-ATPase immunoreactivity was simultaneously detected with a marginal or absent expression of uvomorulin. The more differentiated SCC and papillomas expressed less uvomorulin immunoreactivity than normal epidermal cells. Both markers were seen in tumor cell lines that produced well-differentiated SCC after subcutaneous inoculation into nude mice. Neither Na+,K(+)-ATPase nor uvomorulin could be detected in cell lines that produced high grade, poorly differentiated SCC. Northern blots confirmed the absence of uvomorulin mRNA in these highly malignant cell lines. These data indicate that progression from premalignant papilloma to low-grade SCC and subsequently to high-grade SCC is accompanied by loss of epithelial cell polarity as detected by changes in Na+,K(+)-ATPase and by decreased or absent expression of uvomorulin in tumors and cell lines characterized by an advanced malignant phenotype. Images Figure 1 Figure 2 Figure 3 PMID:1316085

  12. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5'-triphosphatase and ATPase activities.

    PubMed

    Jin, J; Dong, W; Guarino, L A

    1998-12-01

    The baculovirus Autographa californica nuclear polyhedrosis virus encodes a DNA-dependent RNA polymerase that is required for transcription of viral late genes. This polymerase is composed of four equimolar subunits, LEF-8, LEF-4, LEF-9, and p47. The LEF-4 subunit has guanylyltransferase activity, suggesting that baculoviruses may encode a full complement of capping enzymes. Here we show that LEF-4 is a bifunctional enzyme that hydrolyzes the gamma phosphates of triphosphate-terminated RNA and also hydrolyzes ATP and GTP to the respective diphosphate forms. Alanine substitution of five residues previously shown to be essential for vaccinia virus RNA triphosphatase activity inactivated the triphosphatase component of LEF-4 but not the guanylyltransferase domain. Conversely, mutation of the invariant lysine in the guanylyltransferase domain abolished the guanylyltransferase activity without affecting triphosphatase function. We also investigated the effects of substituting phenylalanine for leucine at position 105, a mutation that results in a virus that is temperature sensitive for late gene expression. We found that this mutation had no significant effect on the ATPase or guanylyltransferase activity of LEF-4 but resulted in a modest decrease in RNA triphosphatase activity. PMID:9811739

  13. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    PubMed

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases. PMID:25978134

  14. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    PubMed

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases.

  15. Adenosine Triphosphatase from Soybean Callus and Root Cells

    PubMed Central

    Hendrix, Donald L.; Kennedy, Ralph M.

    1977-01-01

    The ATPase activity of a membrane fraction from soybean (Glycine max L.) root and callus cells, presumed to be enriched in plasma membrane, has been characterized with respect to ion stimulation, pH requirement, and nucleotide specificity. The enzyme from both sources was activated by divalent cations (Mg2+ > Mn2+ > Zn2+ > Ca2+ > Sr2+) and further stimulated by monovalent salts. Preparations from root cells were stimulated by monovalent ions according to the sequence: K+ > Rb+ > Choline+ > Na+ > Li+ > NH4+ > Cs+ > tris+. Membrane preparations from callus cells showed similar stimulatory patterns except for a slight preference for Na+ over K+. No synergism between K+ and Na+ was found with preparations from either cell source. The pH optimum for ATP hydrolysis in the presence of 50 mm KCl and 3 mm MgSO4 was 6.5 for both preparations and slightly higher in the presence of 3 mm MgSO4 alone. The order of nucleotide preference was found to be: ATP ≫ ADP > GTP > CTP > UTP. Maximal glucan synthetase activity at high (1 mm), but not at low (1 μm), substrate was found to be coincident with the position of this fraction on the sucrose gradient. PMID:16659830

  16. A simple statistical approach to the boyer model of the molecular motor adenosine triphosphatase

    SciTech Connect

    Loginov, E. B. Pikin, S. A.

    2006-03-15

    A physical description of the F{sub 0}F{sub 1} adenosine triphosphatase as a rotating motor is proposed. The catalytic center and the ion-conducting membrane are considered within the classical Boyer model for the rotor and the catalytic parts of the motor, thereby allowing application of a simple three-pole model, which decreases the number of parameters significantly. The stochastic character of the processes occurring in motors is described by the Fokker-Planck equations. Various dependences of the rotation speed on the degree of excitation, localization of excitations, and the amplitude of the potential are reported.

  17. Localization of calcium stimulated adenosine triphosphatase activity in blood vessels of the skeleton

    NASA Technical Reports Server (NTRS)

    Doty, S. B.

    1985-01-01

    Alkaline phosphatase is an enzyme found in bone forming cells which decreases in certain bones as a result of hypogravity or non-weight bearing. This enzyme can also hydrolyze adenosine triphosphate. Therefore, an effort was made to localize calcium-stimulated ATPase by cytochemistry to determine whether altered bone cell activity might be related to changing calcium levels which occur during hypogravity. The results indicate that Ca(++)-ATPase is largely found along the endothelium and basal lamina of blood vessels, and not found in bone forming cells. This suggests that calcium regulation in the vicinity of bone formation may be modulated by the vasculature of the area.

  18. Membrane bound pyrophosphatase and P-type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: similarities and differences in inhibitor sensitivities.

    PubMed

    Sen, S S; Bhuyan, N R; Lakshman, K; Roy, A K; Chakraborty, B; Bera, T

    2009-12-01

    The activities of inorganic pyrophosphatase (PPase) and adenosine triphosphatase (ATPase) were studied in the plasma membrane of Leishmania donovani promastigotes and amastigotes. It was shown that the specific activity of PPase was greater than that of ATPase in the promastigote plasma membrane. We characterized H+-PPase present in the plasma membrane of L. donovani and investigated its possible role in the survival of promastigote and amastigote. PPase activity was stimulated by K+ and sodium orthovanadate and inhibited by pyrophosphate analogs (imidodiphosphate and alendronate), KF, N,N'-dicyclohexylcarbodiimide (DCCD), thiol reagents (p-chloromercuribenzenesulfonate (PCMBS), N-ethylmaleimide (NEM), and phenylarsine oxide (PAO)), the ABC superfamily transport modulator verapamil, and also by the F(1)F(o)-ATPase inhibitor quercetin. ATPase activity was stimulated by K+ and verapamil, inhibited by DCCD, PCMBS, NEM, sodium azide, sodium orthovanadate, and quercetin, and was unaffected by PAO. We conclude that there are significant differences within promastigote, amastigote, and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase transporter as a putative target for rational drug design. PMID:19961421

  19. Mitochondrial adenosine triphosphatase of the fission yeast, Schizosaccharomyces pombe 972h-. Changes in activity and inhibitor-sensitivity in response to catabolite repression.

    PubMed Central

    Lloyd, D; Edwards, S W

    1976-01-01

    1. The specific activity of mitochondrial ATPase (adenosine triphosphatase) in extracts of Schizosaccharomyces pombe decreased 2.5-fold as the glucose concentration in the growth medium decreased from 50mM to 15mM. 2. During the late exponential phase of growth, ATPase activity doubled. 3. Sensitivity to oligomycin and Dio-9 as measured by values for I50(mug of inhibitor/mg of protein giving 50% inhibition) at pH 6.8 increased sixfold and ninefold respectively during the initial decrease in ATPase activity, and this degree of sensitivity was maintained for the remainder of the growth cycle. 4. Increased sensitivity to NN'-dicyclohexylcarbodi-imide, triethyltin and venturicidin was also observed during the early stage of glucose de-repression. 5. Smaller increases in sensitivity to efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diaz-le, quercetin and spegazzinine also occurred. 6. The ATPase of glycerol-grown cells was less sensitive to inhibitors than that of glucose-repressed cells; change in values for I50 were not so marked during the growth cycle of cells growing with glycerol. 7. When submitochondrial particles from glycerol-grown cells were tested by passage through Sephadex G-50, a fourfold increase in activity was accompanied by increased inhibitor resistance. 8. Gel filtration of submitochondrial particles from glucose-de-repressed cells gave similar results, whereas loss of ATPase occurred in submitochondrial particles from glucose-repressed cells. 9. It is proposed that alterations in sensitivity to inhibitors at different stages of glucose derepression may be partly controlled by a naturally occuring inhibitor of ATPase. 10. The inhibitors tested may be classififed into two groups on the basis of alterations of sensitivity of the ATPase during physiological modification: (a) oligomycin, Dio-9, NN'-dicyclohexylcarbodi-imide, venturicidin and triethyltin, and (b) efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin and

  20. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers.

    PubMed

    Ikebe, M; Barsotti, R J; Hinkins, S; Hartshorne, D J

    1984-10-01

    The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Hydrogen potassium adenosine triphosphatase activity inhibition and downregulation of its expression by bioactive fraction DLBS2411 from Cinnamomum burmannii in gastric parietal cells

    PubMed Central

    Tjandrawinata, Raymond R; Nailufar, Florensia; Arifin, Poppy F

    2013-01-01

    This study assessed the gastric acid antisecretory effect of DLBS2411 fractionated from Cinnamomum burmannii. Hydrogen potassium adenosine triphosphatase (H+/K+ ATPase) activity and its gene expression were observed, and the antioxidant activity of DLBS2411 was also investigated. Treatment of DLBS2411 decreased the level of H+/K+ ATPase messenger RNA expression on human embryonic kidney 293 cells and rat gastric parietal cells in a dose-dependent manner, in vitro and ex vivo. DLBS2411 also acted as a competitive inhibitor by showing inhibition in gastric H+/K+ ATPase activity at various pHs. In gastric ulcer animal models induced with indomethacin and ethanol, DLBS2411showed a reduction in the number of petechiae, suggesting that the fraction also confers gastroprotective activity. Moreover, DLBS2411 was also found to have potent antioxidant activity. Taken together, DLBS2411 is a promising novel agent for the management of dyspepsia, a condition of hyperacidity and diseases in the stomach requiring gastroprotection. PMID:24101879

  2. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves

    PubMed Central

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O.

    2016-01-01

    Background: Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. Objective: To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Materials and Methods: Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. Results: We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg2+ ATPase activity and a nonsignificant increase in Na+/K+ ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. Conclusion: The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose

  3. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule

    PubMed Central

    Thorley-Lawson, David A.; Green, N. Michael

    1977-01-01

    The ATPase (adenosine triphosphatase) from sarcoplasmic reticulum contains 20 thiol groups/115000 daltons, measured by using either N-ethyl[14C]maleimide or 5,5′-dithiobis-(2-nitrobenzoate) in sodium dodecyl sulphate. After reduction there were 26 thiol groups, in good agreement with 26.5 residues of cysteic acid found by amino acid analysis. The difference between this and the 20 residues measured before reduction implies the presence of three disulphide residues. The same number of disulphide residues was found by direct measurement. Three to six fewer thiol groups were found in preparations made in the absence of dithiothreitol. The missing residues were accounted for as cysteic acid. The distribution of disulphide bonds and of exposed and buried thiol groups among the tryptic fragments of the molecule was measured after labelling with N-ethyl[14C]-maleimide. The disulphides were confined to fragment B (mol.wt. 55000), whereas several thiol groups were present on each of the fragments (A, B, A1 and A2). The kinetics of the reaction of the ATPase with 5,5′-dithiobis-(2-nitrobenzoate) showed that four or five of the thiol groups were unreactive in the absence of detergent and that 13 of the remainder reacted with a single first-order rate constant. In the presence of ATP and Ca2+ the reaction rate of all but two groups of this class was uniformly decreased. In the presence or absence of ATP and Ca2+ the rate constant for inactivation was close to the rate constant for this class, but was not identical with it. No selective protection of a specific active-site-thiol group was observed. Parallel experiments with sarcoplasmic reticulum gave similar results, except that the reaction rates were a little lower and there were two more buried groups. Solution of ATPase of sarcoplasmic reticulum in detergent greatly increased the reactivity of all thiol groups. The effects of low concentrations of deoxycholate were reversible. EGTA or low concentrations (0.02mm) of Ca2

  4. Distribution of activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase in the cranial dura mater-arachnoid interface zone of the rat.

    PubMed

    Angelov, D N

    1990-05-01

    The distribution of the activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase was studied in the encephalic dura mater-arachnoid borderline (interface) zone of albino Wistar rats. Intense clustering of electron-dense granules that indicated alkaline phosphatase activity was observed in the inner dural cells, the neurothelial cells, the outermost row of the outer arachnoidal cells and in the intercellular cleft between the latter two (the so-called electron-dense band). The remainder of the outer arachnoidal cells contained almost no reaction product. Mg-adenosine triphosphatase activity was distributed differently; a lack of reaction product was observed not only in the outer arachnoidal cells, but also in the zone occupied by the electron-dense band. The data confirm histochemically the barrier properties of the dura mater-arachnoid interface zone.

  5. Solubilization and Partial Purification of the Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction

    PubMed Central

    Dupont, Frances M.; Leonard, Robert T.

    1980-01-01

    The K+-stimulated ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mo 17) by solubilization with 30 millimolar octyl-β-d-glucopyranoside followed by precipitation with dilute ammonium sulfate. The specific activity of the enzyme was increased about five times by this procedure. The molecular weight of the detergent-extracted ATPase complex was estimated to be at least 500,000 daltons by chromatography on a Bio-Gel A-5m column. Negative staining electron microscopy indicated that the detergent-extracted material consisted of amorphous particles, while the ammonium sulfate precipitate was composed of uniform vesicles with an average diameter of 100 nanometers. The protein composition of the ammonium sulfate precipitate was significantly different from that of the plasma membrane fraction when compared by sodium dodecyl sulfate gel electrophoresis. The characteristics of the partially purified ATPase resembled those of the plasma membrane associated enzyme. The ATPase required Mg2+, was further stimulated by K+, was almost completely inhibited by 0.1 millimolar diethylstilbestrol, and was not affected by 5.0 micrograms per milliliter oligomycin. Although the detergents sodium cholate, deoxycholate, Triton X-100 and Lubrol WX also solubilized some membrane protein, none solubilized the K+-stimulated ATPase activity. Low concentrations of each detergent, including octyl-β-d-glucopyranoside, activated the ATPase and higher concentrations inactivated the enzyme. These results suggest that the plasma membrane ATPase is a large, integral membrane protein or protein complex that requires lipids to maintain its activity. Images PMID:16661309

  6. Mechanism of inhibition of rat brain adenosine triphosphatase by mercuric chloride

    SciTech Connect

    Chetty, C.S.; Rajanna, B.; Rajanna, S. )

    1989-02-09

    Mercuric Chloride (Hg), a neurotoxic compound inhibited ATPase system of rat brain microsomes. Membrane bound enzymes, Na{sup +}-K{sup +} ATPase (IC{sub 50} = 2.35 {times} 10{sup {minus}7M}) and K-paranitrophenyl phosphatase (K-PNPPase) (IC{sub 50} = 2.7 {times} 10{sup {minus}7M}) and {sup 3}H-Ouabain binding (IC{sub 50} = 3.3 {times} 10{sup {minus}7M}) were inhibited by Hg at micromolar concentrations in a dose dependent manner. Hydrolysis of ATP was linear with time with or without Hg in the reaction mixtures. Altered pH or temperature versus enzyme activity showed higher inhibition by Hg at basic pH (8.0-9.0) and at lower temperatures (17-32{degree}C). Activation energy ({Delta}E) values were increased at 27-37{degree}C in the presence of Hg. Kinetic studies of cationic-substrate activation of Na{sup +}-K{sup +} ATPase and K-PNPPase in the presence of Hg showed significant changes in kinetic constant (K{sub m} and V{sub max}). Inhibition of Na{sup +}-K{sup +} ATPase was partially restored by repeated washings of microsomes. Preincubation with sulfhydryl agents protected Na{sup +}-K{sup +} ATPase from Hg inhibition. Cumulative inhibition studies with Hg and ouabain indicated possible interaction between the two inhibitors of Na{sup +}-K{sup +} ATPase by interacting at Na{sup +} and K{sup +} sites.

  7. Characterization of a Partially Purified Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction 1

    PubMed Central

    Dupont, Frances M.; Burke, Linda L.; Spanswick, Roger M.

    1981-01-01

    The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ ≫ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots. PMID:16661634

  8. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.

    PubMed

    Cataldi de Flombaum, M A; Stoppani, A O

    1986-06-01

    Incubation of Trypanosoma cruzi mitochondrial ATPase (Fo-F1) with the xanthine oxidase system (XO), Fenton's reagent (Fe2+ + H2O2) and the ascorbate-Cu system, caused gradual loss of enzyme activity, which increased as a function of incubation time and rate of oxygen radical generation. The essential role of OH. radicals for ATPase inactivation was supported by a) the enzyme protection afforded by superoxide dismutase, catalase and mannitol, when using the XO system; b) the similar effect of mannitol and benzoate with Fenton's reagent; c) the similar effect of catalase, EDTA and histidine with the ascorbate-Cu system; d) the increased rate of ATPase inactivation by 1) the XO system supplemented with chelated iron, and 2) the ascorbate-Cu system supplemented with H2O2. Comparison of oxygen radical generators for their action on membrane-bound (Fo-F1) and soluble F1 revealed that ascorbate-Cu was the most effective one, possibly because of its capability of producing OH. radicals that react preferentially with the enzyme at their formation site. PMID:3017349

  9. On the Functional Role of the {epsilon} Subunit of the Molecular Motor F-Adenosine Triphosphatase in Lipid Membranes of Cells

    SciTech Connect

    Pikin, S. A. Loginov, E. B.

    2010-11-15

    The effect of the e subunit of the molecular motor F-adenosine triphosphatase, which is built into the lipid membrane of a cell, on the dynamics of the rotor ({gamma} subunit), with which this subunit is bound, has been qualitatively considered. It is shown that its structural and conformational features arising during the hydrolysis of 'fuel' adenosine triphosphate (ATP) molecules can be explained by the change in the potential within which the rotor is located. As the numerical calculations showed, at a low ATP concentration, the hydrolysis is accompanied by an unstable rotation of the {gamma} subunit and the related proton current. A model is proposed to describe the interaction between the {epsilon} subunit and the lipid order fluctuations caused by the membrane transition to the gel state. It is demonstrated that the rotor rotations become inhomogeneous when this interaction is enhanced with a decrease in the cell temperature.

  10. [Study of the calmodulin-dependent regulation of calcium adenosine triphosphatase of erythrocyte membranes in patients with ischemic heart disease].

    PubMed

    Malaia, L T; Petruniaka, V V; Rudyk, Iu S

    1991-01-01

    The inhibitor calmodulin (R 24571) was examined for effects on the activity of red blood cell Ca-ATPases in patients with coronary heart disease during the treatment with nitrates, beta-blockers and calcium antagonists. The maximum activity of Ca-ATPase was measured in the erythrocytes perforated with saponine in the presence of endogenous regulators at a concentration of Ca2+ of 3-5 microM. Patients with high and low Ca-ATPase activity were identified. In the control group R24571 failed to affect Ca-ATPase activity. In patients, the calmodulin inhibitor caused both Ca-ATPase activation and inhibition. The effects of R 24571 correlated with the severity of the patients' condition. In effective therapy, the action of the calmodulin inhibitor became lower on Ca-ATPase activity. It was concluded that there was Ca-ATPase regulation imbalance in patients with coronary heart diseases. PMID:1838226

  11. Absorption of water and sodium and activity of adenosine triphosphatases in the rectal mucosa in tropical sprue.

    PubMed Central

    Ramakrishna, B S; Mathan, V I

    1988-01-01

    In 10 southern Indian patients with tropical sprue, in vivo dialysis showed a defect of absorption of water and sodium from the rectum, when compared with 11 healthy volunteers. Sodium-potassium-ATPase activity, measured in homogenates of rectal biopsies, was significantly diminished in patients with sprue. Magnesium-ATPase and alkaline phosphatase were normal in biopsy homogenates. Decreased activity of colonic sodium-potassium-ATPase may contribute to diarrhoea in some patients with tropical sprue. PMID:2840363

  12. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  13. Thyroid thermogenesis. Relationships between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in rat skeletal muscle.

    PubMed Central

    Asano, Y; Liberman, U A; Edelman, I S

    1976-01-01

    The effect of thyroid status on QO2, QO2 (t) and NaK-ATPase activity was examined in rat skeletal muscle. QO2(t) (i.e. Na+-transport-dependent respiration) was estimated with ouabain or Na+-free media supplemented with K+. In contrast to the effects of ouabain on ion composition, intracellular K+ was maintained at about 125 meq/liter, and intracellular Na+ was almost nil in the Na+-free media. The estimates of QO2(t) were independent of the considerable differences in tissue ion concentrations. The increase in QO2(t) account for 47% of the increase in QO2 in the transition from the hypothyroid to the euthyroid state and 84% of the increase in the transition from the euthyroid to the hyperthyroid state. Surgical thyroidectomy lowered NaK-ATPase activity of the microsomal fraction (expressed per milligram protein) 32%; injections of triodothyronine (T3) increased this activity 75% in initially hypothyroid rats and 26% in initially euthyroid rats. Thyroidectomy was attended by significant falls in serum Ca and Pi concentrations. Administration of T3 resulted in further declines in serum Ca and marked increases in serum Ps concentrations. Similar effects were seen in 131I-treated rats, but the magnitude of the declines in serum Ca were less. The effects of T3 on QO2, QO2(t), and NaK-ATPase activity of skeletal muscle were indistinguishable in the 131I-ablated and surgically thyroidectomized rats. In thyroidectomized or euthyroid rats given repeated doses of T3, QO2(t) and NaA-ATPase activity increased proportionately. In thyroidectomized rats injected with single doses of T3, either 10, 50, or 250 mug/100 g body wt, QO2(t) increased linearly with NaK-ATPase activity. The kinetics of the NaK-ATPase activity was assessed with an ATP-generating system. T3 elicited a significant increase in Vmax with no change in Km for ATP. PMID:130385

  14. Effect of nitration and D/sub 2/O on the kinetics of beef heart mitochondrial adenosine triphosphatase

    SciTech Connect

    Dorgan, L.J.; Schuster, S.M.

    1981-04-25

    The role of tyrosine in the catalytic mechanism of nucleoside triphosphate hydrolysis by beef heart mitochondrial ATPase is explored. Compared are the rates of the ATPase reaction by both nitrated and native F1 at both pH 8 and pH 6. The pH-activity profile of nitrated F1 is compared to the pH-activity profile of the unmodified enzyme. These data indicate that the phenolic group of an active-site tyrosine must be protonated during the hydrolysis reaction. Deuterium oxide is used in the reaction buffer to explore the role of protons in the ATPase reaction. Kinetic constants of the nucleoside triphosphates are obtained at various levels of D20 using both the nitrated and native forms of F1. Several nucleoside diphosphates are used as inhibitors of F1-catalyzed ITP hydrolysis. Dissociation constants of these inhibitors are obtained at both low and high concentrations of D20 for both the nitrated and native F1. We explore the possibility that a tyrosine and an arginine lie in close proximity in the F1 active site by studying the effects of sequential modification of arginine and tyrosine. These results are interpreted in terms of possible ATP hydrolysis mechanisms. Two possible roles for tyrosine in the hydrolysis of nucleoside triphosphates by F1 are suggested.

  15. Sperm motility and kinetics of dynein ATPase in astheno- and normozoospermic samples after stimulation with adenosine and its analogues.

    PubMed

    Romac, P; Zanić-Grubisić, T; Culić, O; Cvitković, P; Flogel, M

    1994-08-01

    We tested the effects of adenosine and 2-deoxyadenosine on the activation of human spermatozoa. In the asthenozoospermic group of patients adenosine produces an increase in sperm motility from 33.3 +/- 2.1% to 42.1 +/- 3.4%, progressive motility from 22.5 +/- 1.3% to 28.6 +/- 1.7% and forward progression rating from 2.1 +/- 0.2% to 2.8 +/- 0.1%. 2-Deoxyadenosine stimulated asthenozoospermic samples to a greater degree than adenosine. Sperm motility rose to 48.9 +/- 3.4%, progressive motility to 32.1 +/- 3.4% and forward progression rating to 3.0 +/- 0.1% following stimulation with 2-deoxy-adenosine. The kinetic parameters and basic characteristics of dynein ATPase were determined. The maximum activity of dynein ATPase, Vmax, was significantly different (P < 0.001) for asthenozoospermic and normozoospermic samples: 6.46 +/- 2.1 nmol Pi/mg/min and 16.99 +/- 3.7 nmol Pi/mg/min respectively. However, the enzyme affinity for ATP was not different. Stimulation of asthenozoospermic samples with adenosine and 2-deoxyadenosine caused an increase of Vmax (70-90% and 90-110% respectively) and no significant change in KM was observed. In order to block the nucleoside transporter and to eliminate the action of adenosine inside the cell, dipyridamole was used but the effects of adenosine were not neutralized. 5'-(N-ethylcarboxy-amido)-adenosine showed effects similar to those of adenosine, even when applied in 1 microM concentration. These results indicate that adenosine and its analogues stimulate sperm motility and activity of dynein ATPase, most probably via A2 receptors.

  16. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase

    SciTech Connect

    Penefsky, H.S.

    1985-11-05

    Incubation of (gamma-TSP)ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the (gamma-TSP)ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of (gamma-TSP)ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.

  17. Chemical modification and fluorescence labeling study of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum using iodoacetamide and its N-substituted derivatives.

    PubMed

    Baba, A; Nakamura, T; Kawakita, M

    1986-11-01

    Sarcoplasmic reticulum membrane vesicles from rabbit skeletal muscle were treated with iodoacetamide (IAA) at pH 7.0 and 30 degrees C. At 1.0 mM IAA, 1 mol of IAA per mol of ATPase peptide was bound in 1 h. Under these conditions, IAA was attached specifically to the B-tryptic fragment portion of the peptide. The binding of IAA did not affect the Ca2+-transporting activity of ATPase. Three fluorescent derivatives of iodoacetamide, 5-(2-acetamidoethyl)aminonaphthalene-1-sulfonate (IAEDANS), 5-iodoacetamido fluorescein (IAF), and 5-iodoacetamido eosin (IAE), were also tested for reactivity toward sarcoplasmic reticulum ATPase at 30 degrees C and pH 7.0. In 1 h at 50 microM concentration, each of these fluorescent labels modified ATPase to a labeling density of 1 mol per mol of ATPase. Neither IAEDANS nor IAF at this labeling density affected Ca2+-transporting activity, but IAE reduced it to 20% of the untreated control. The target site of IAEDANS at this labeling density was located exclusively on the B-fragment portion, as was the case with IAA, but IAF label was found on both A1 and B fragments after limited tryptic digestion. IAEDANS was used as a B-fragment portion-directed conformational probe of Ca2+-transport ATPase, and an increase in fluorescence intensity accompanying E1Ca-P formation was detected. The fluorescence enhancement was abolished when E1Ca-P X ADP beta S was formed by adding ADP beta S to preformed E1Ca-P. This suggests that the conformation of ATPase in the neighborhood of the IAEDANS binding site may be altered in response to the dissociation of ADP from the phosphorylated intermediate.

  18. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.

    PubMed

    Salcedo, Guillermo; Cano-Sánchez, Patricia; de Gómez-Puyou, Marietta Tuena; Velázquez-Campoy, Adrián; García-Hernández, Enrique

    2014-01-01

    The function of F1-ATPase relies critically on the intrinsic ability of its catalytic and noncatalytic subunits to interact with nucleotides. Therefore, the study of isolated subunits represents an opportunity to dissect elementary energetic contributions that drive the enzyme's rotary mechanism. In this study we have calorimetrically characterized the association of adenosine nucleotides to the isolated noncatalytic α-subunit. The resulting recognition behavior was compared with that previously reported for the isolated catalytic β-subunit (N.O. Pulido, G. Salcedo, G. Pérez-Hernández, C. José-Núñez, A. Velázquez-Campoy, E. García-Hernández, Energetic effects of magnesium in the recognition of adenosine nucleotides by the F1-ATPase β subunit, Biochemistry 49 (2010) 5258-5268). The two subunits exhibit nucleotide-binding thermodynamic signatures similar to each other, characterized by enthalpically-driven affinities in the μM range. Nevertheless, contrary to the catalytic subunit that recognizes MgATP and MgADP with comparable strength, the noncatalytic subunit much prefers the triphosphate nucleotide. Besides, the α-subunit depends more on Mg(II) for stabilizing the interaction with ATP, while both subunits are rather metal-independent for ADP recognition. These binding behaviors are discussed in terms of the properties that the two subunits exhibit in the whole enzyme.

  19. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  20. Adenosine Diphosphate (ADP)-Ribosylation of the Guanosine Triphosphatase (GTPase) Rho in Resting Peripheral Blood Human T Lymphocytes Results in Pseudopodial Extension and the Inhibition of  T Cell Activation

    PubMed Central

    Woodside, Darren G.; Wooten, David K.; McIntyre, Bradley W.

    1998-01-01

    Scrape loading Clostridium botulinum C3 exoenzyme into primary peripheral blood human T lymphocytes (PB T cells) efficiently adenosine diphosphate (ADP)-ribosylates and thus inactivates the guanosine triphosphatase (GTPase) Rho. Basal adhesion of PB T cells to the β1 integrin substrate fibronectin (Fn) was not inhibited by inactivation of Rho, nor was upregulation of adhesion using phorbol myristate acetate (PMA; 10 ng/ml) or Mn++ (1 mM) affected. Whereas untreated PB T cells adherent to Fn remain spherical, C3-treated PB T cells extend F-actin–containing pseudopodia. Inactivation of Rho delayed the kinetics of PMA-dependent PB T cell homotypic aggregation, a process involving integrin αLβ2. Although C3 treatment of PB T cells did not prevent adhesion to the β1 integrin substrate Fn, it did inhibit β1 integrin/CD3-mediated costimulation of proliferation. Analysis of intracellular cytokine production at the single cell level demonstrated that ADP-ribosylation of Rho inhibited β1 integrin/ CD3 and CD28/CD3 costimulation of IL-2 production within 6 h of activation. Strikingly, IL-2 production induced by PMA and ionomycin was unaffected by C3 treatment. Thus, the GTPase Rho is a novel regulator of T lymphocyte cytoarchitecture, and functional Rho is required for very early events regulating costimulation of IL-2 production in PB T cells. PMID:9763600

  1. DNA variation in the genes of the Na,K-adenosine triphosphatase and its relation with resting metabolic rate, respiratory quotient, and body fat.

    PubMed Central

    Dériaz, O; Dionne, F; Pérusse, L; Tremblay, A; Vohl, M C; Côté, G; Bouchard, C

    1994-01-01

    The aim of this study was to investigate in 261 subjects from 58 families the association between DNA variation at the genes coding for the Na,K-ATPase peptides and resting metabolic rate (RMR), respiratory quotient (RQ), and percent body fat (%FAT). Five restriction fragment length polymorphisms (RFLP) at three Na,K-ATPase genes were determined: one at the alpha 1 locus (BglII), and two at the beta locus (beta MspI and beta PvuII). Haplotypes were determined from the two variable sites of the alpha 2 gene (alpha 2 haplotypes) and the beta gene (beta haplotypes). There was a strong trend for %FAT to be related to the RFLP generated by BglII at the alpha 2 exons 21-22 in males (P = 0.06) and females (P = 0.05). RQ was (a) associated with the BglII RFLP at the alpha 2 exon 1 (P = 0.02) and with the alpha 2 8.0 kb/4.3 kb haplotype (P = 0.04) and (b) linked with the beta gene MspI marker (P = 0.04) and with the beta 5.3 kb/5.1 kb haplotype (P = 0.008) based on sib-pair analysis. The present study suggests that the genes encoding Na,K-ATPase may be associated or linked with RQ and perhaps with %FAT but not with RMR. PMID:7509349

  2. Increased red cell calcium, decreased calcium adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis in glucose-6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals.

    PubMed

    Turrini, F; Naitana, A; Mannuzzu, L; Pescarmona, G; Arese, P

    1985-08-01

    RBCs from four glucose-6-phosphate dehydrogenase (G6PD)-deficient (Mediterranean variant) subjects were studied during fava bean hemolysis. In the density-fractionated RBC calcium level, Ca2+-ATPase activity, reduced glutathione level, and ghost protein pattern were studied. In the bottom fraction, containing most heavily damaged RBCs, calcium level ranged from 143 to 244 mumol/L RBCs (healthy G6PD-deficient controls: 17 +/- 5 mumol/L RBCs). The Ca2+-ATPase activity ranged from 0.87 to 1.84 mumol ATP consumed/g Hb/min (healthy G6PD-deficient controls: 2.27 +/- 0.4). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of ghosts showed: (1) the presence of high mol wt aggregates (in three cases they were reduced by dithioerythritol; in one case, only partial reduction was possible); (2) the presence of multiple, scattered new bands; and (3) the reduction of band 3. Oxidant-mediated damage to active calcium extrusion, hypothetically associated with increased calcium permeability, may explain the large increase in calcium levels. They, in turn, could activate calcium-dependent protease activity, giving rise to the profound changes in the ghost protein pattern.

  3. miR-495 enhances the sensitivity of non-small cell lung cancer cells to platinum by modulation of copper-transporting P-type adenosine triphosphatase A (ATP7A).

    PubMed

    Song, Liqiang; Li, Yan; Li, Weina; Wu, Shouzhen; Li, Zhikui

    2014-07-01

    Copper-transporting P-type adenosine triphosphatase A (ATP7A) is associated with platinum drug resistance in non-small cell lung cancer (NSCLC). microRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression at post-transcriptional level. In this study, the aim is to explore which miRNAs might participate in the platinum resistance by targeting ATP7A in NSCLC. Using real-time PCR-based miRNA expression profiling and bioinformatics, we selected miR-495 as a candidate miRNA. EGFP reporter assay, real-time PCR, and Western blot validated that ATP7A was a direct target for miR-495. The drug sensitivity assay indicated that miR-495 enhanced the cell response to cisplatin (CDDP) in NSCLC cells, while inhibition of miR-495 led to the opposite effects. Importantly, either overexpression or knockdown of ATP7A could override the effect of miR-495 on chemosensitivity. We also demonstrated that miR-495 increased the intracellular CDDP accumulation and overexpression of ATP7A can reduce the increased drug concentration induced by miR-495. Finally, we discovered that there was a converse relationship between miR-495 and ATP7A levels in NSCLC tissues sensitive or resistant to CDDP. In conclusion, our data demonstrate that miR-495 regulates the multi-drug resistance by modulation of ATP7A expression in NSCLC and suggest that miR-495 may serve as a potential biomarker for the treatment of multi-drug resistant NSCLC patients with high ATP7A levels. PMID:24038379

  4. Eukaryotic V-ATPase: novel structural findings and functional insights.

    PubMed

    Marshansky, Vladimir; Rubinstein, John L; Grüber, Gerhard

    2014-06-01

    The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.

  5. The partial purification of sodium-plus-potassium ion-dependent adenosine triphosphatase from the gills of Anguilla anguilla and its inhibition by orthovanadate.

    PubMed Central

    Bell, M V; Sargent, J R

    1979-01-01

    1. (Na+ +K+)-dependent ATPase was partially purified from eel gills by a procedure in which the microsomal fraction of crude preparations of chloride cells was selectively extracted with sodium dodecyl sulphate. 2. The microsomal specific activity was increased 2-fold during optimal treatment with detergent. 3. The final preparation (56% pure) had a specific activity of 341 mumol of ATP hydrolysed/h per mg of protein and a turnover number of 3560 min-1. The number of ouabain-binding sties equalled the number of sites phosphorylated by ATP. 4. Both sodium orthovanadate and ouabain inhibited the purified preparation more than the microsomal fraction, vanadate being more effective on an equimolar basis than ouabain. 5. Inhibition by orthovanadate was not enhanced at 28 mM-as compared with 1mM-MgCl2 and was not reversed by beta-adrenergic agonists (cf. Josephson & Cantley (1977) Biochemistry 16, 4572--4578). 6. Of various other metallic oxyanions tested only niobate proved an effective inhibitor of the enzyme although this anion was less effective than orthovanadate. 7. Orthovanadate partially inhibited phosphorylation of the enzyme by ATP in the presence of 28 mM-MgCl2. PMID:39542

  6. In vitro effect of mercury and cadmium on brain Ca/sup 2 +/-ATPase of the catfish Ictalurus punctatus

    SciTech Connect

    Reddy, R.S.; Jinna, R.R.; Uzodinma, J.E.; Desaiah, D.

    1988-09-01

    Freshwater teleosts possess a calcium activated adenosine triphosphatase in the gills and brain which has an important role in calcium metabolism. Earlier studies have demonstrated that pesticides are found to inhibit the Ca/sup 2 +/-ATPase activity in the gills of fish. Although heavy metals have been shown to affect Na/sup +/-K/sup +/-ATPase in the brain and Ca/sup 2 +/-ATPase in the gills of fish, the mode of action of heavy metals on fish brain Ca/sup 2 +/-ATPase has not been clearly understood to date. Since heavy metals are known to produce neurotoxic action in higher vertebrates, the disruptive action of heavy metals on calcium pump in fish brain could be explained if they were found to affect this enzyme. Hence, this study was undertaken to evaluate the in vitro effect of divalent metals, mercury and cadmium on Ca/sup 2 +/-ATPase in the brain of catfish, Ictalurus punctatus.

  7. Human Mitochondrial Hsp70 (Mortalin): Shedding Light on ATPase Activity, Interaction with Adenosine Nucleotides, Solution Structure and Domain Organization

    PubMed Central

    Dores-Silva, Paulo R.; Barbosa, Leandro R. S.; Ramos, Carlos H. I.; Borges, Júlio C.

    2015-01-01

    The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings

  8. Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-α2 controlling glutamate uptake in astrocytes.

    PubMed

    Matos, Marco; Augusto, Elisabete; Agostinho, Paula; Cunha, Rodrigo A; Chen, Jiang-Fan

    2013-11-20

    Astrocytic glutamate transporter-1 (GLT-I) is critical to control the bulk of glutamate uptake and, thus, to regulate synaptic plasticity and excitotoxicity. GLT-I glutamate uptake is driven by the sodium gradient implemented by Na(+)/K(+)-ATPases (NKAs) and the α2 subunit of NKA (NKA-α2) is actually linked to GLT-I to regulate astrocytic glutamate transport. We recently found that adenosine A2A receptors (A2ARs), which control synaptic plasticity and neurodegeneration, regulate glutamate uptake through unknown mechanisms. Here we report that A2AR activation decreases NKA activity selectively in astrocytes to inhibit glutamate uptake. Furthermore, we found a physical association of A2ARs with NKA-α2s in astrocytes, as gauged by coimmunoprecipitation and in situ proximity ligation assays, in the cerebral cortex and striatum, two brain regions where A2ARs inhibit the astrocytic glutamate uptake. Moreover, the selective deletion of A2ARs in astrocytes (using Gfa2-A2AR-KO mice) leads to a concurrent increase of both astrocytic glutamate uptake and NKA-α2 levels and activity in the striatum and cortex. This coupling of astrocytic A2ARs to the regulation of glutamate transport through modulation of NKA-α2 activity provides a novel mechanism linking neuronal activity to ion homeostasis controlling glutamatergic activity, all of which are processes intricately associated with the etiology of several brain diseases.

  9. Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    PubMed Central

    Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad; Maxwell, Kyle; Yan, Yanling; Wang, Xiaoliang; Shah, Preeya T.; Khawaja, Asad A.; Martin, Rebecca; Robinette, Tylor J.; El-Hamdani, Adee; Dodrill, Michael W.; Sodhi, Komal; Drummond, Christopher A.; Haller, Steven T.; Kennedy, David J.; Abraham, Nader G.; Xie, Zijian; Shapiro, Joseph I.

    2016-01-01

    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder. PMID:27698370

  10. MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing#

    PubMed Central

    Moissiard, Guillaume; Cokus, Shawn J.; Cary, Joshua; Feng, Suhua; Billi, Allison C.; Stroud, Hume; Husmann, Dylan; Zhan, Ye; Lajoie, Bryan R.; McCord, Rachel Patton; Hale, Christopher J.; Feng, Wei; Michaels, Scott D.; Frand, Alison R.; Pellegrini, Matteo; Dekker, Job; Kim, John K.; Jacobsen, Steve

    2012-01-01

    Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause de-repression of DNA-methylated genes and TEs, but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes. PMID:22555433

  11. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases.

    PubMed

    Mazhab-Jafari, Mohammad T; Rubinstein, John L

    2016-07-01

    Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases.

  12. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases.

    PubMed

    Mazhab-Jafari, Mohammad T; Rubinstein, John L

    2016-07-01

    Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases. PMID:27532044

  13. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases

    PubMed Central

    Mazhab-Jafari, Mohammad T.; Rubinstein, John L.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases. PMID:27532044

  14. Physiological Studies on Pea Tendrils. III. ATPase Activity and Contractility Associated with Coiling

    PubMed Central

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Extracts of the tendrils of Pisum sativum, Var. Alaska, exhibit adenosine triphosphatase activity which is inversely proportional to the amount the tendrils have coiled. The specific viscosity of the extract decreases when ATP is added. This evidence indicates a possible role of a contractile adenosine triphosphatase in coiling. PMID:16656580

  15. Direct observation of proton pumping by a eukaryotic P-type ATPase.

    PubMed

    Veshaguri, Salome; Christensen, Sune M; Kemmer, Gerdi C; Ghale, Garima; Møller, Mads P; Lohr, Christina; Christensen, Andreas L; Justesen, Bo H; Jørgensen, Ida L; Schiller, Jürgen; Hatzakis, Nikos S; Grabe, Michael; Pomorski, Thomas Günther; Stamou, Dimitrios

    2016-03-25

    In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.

  16. Direct observation of proton pumping by a eukaryotic P-type ATPase.

    PubMed

    Veshaguri, Salome; Christensen, Sune M; Kemmer, Gerdi C; Ghale, Garima; Møller, Mads P; Lohr, Christina; Christensen, Andreas L; Justesen, Bo H; Jørgensen, Ida L; Schiller, Jürgen; Hatzakis, Nikos S; Grabe, Michael; Pomorski, Thomas Günther; Stamou, Dimitrios

    2016-03-25

    In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters. PMID:27013734

  17. Axle-less F1-ATPase rotates in the correct direction.

    PubMed

    Furuike, Shou; Hossain, Mohammad Delawar; Maki, Yasushi; Adachi, Kengo; Suzuki, Toshiharu; Kohori, Ayako; Itoh, Hiroyasu; Yoshida, Masasuke; Kinosita, Kazuhiko

    2008-02-15

    F1-adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of three alpha and three beta subunits alternately arranged. The rotor shaft, an antiparallel alpha-helical coiled coil of the amino and carboxyl termini of the gamma subunit, deeply penetrates the central cavity of the stator cylinder. We truncated the shaft step by step until the remaining rotor head would be outside the cavity and simply sat on the concave entrance of the stator orifice. All truncation mutants rotated in the correct direction, implying torque generation, although the average rotary speeds were low and short mutants exhibited moments of irregular motion. Neither a fixed pivot nor a rigid axle was needed for rotation of F1-ATPase. PMID:18276891

  18. Relation of Na+, K(+)-ATPase to delayed motor nerve conduction velocity: effect of aldose reductase inhibitor, ADN-138, on Na+, K(+)-ATPase activity.

    PubMed

    Hirata, Y; Okada, K

    1990-06-01

    The role of sorbitol, myo-inositol, and Na+, K(+)-adenosine triphosphatase (ATPase) activity on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-diabetic rats was studied. Reduction of MNCV and Na+, K(+)-ATPase in caudal nerves appeared after 3 weeks of diabetes, and at this time treatment with aldose reductase inhibitor (ARI), ADN-138 and 1% myo-inositol supplement was begun. One percent myo-inositol supplement for 3 weeks resulted in a significant increase in myo-inositol levels in diabetic nerves, but left MNCV and sorbitol levels unchanged. In contrast, treatment with ADN-138 for 3 weeks reduced sorbitol levels in diabetic nerves and resulted in significant increases in MNCV and Na+, K(+)-ATPase in the nerves. Since ADN-138 did not restore myo-inositol levels, the increase in Na+, K(+)-ATPase levels by ADN-138 treatment was independent of myo-inositol levels. Also, nerve Na+ levels in ADN-138-treated rats were reduced and the ratio of K+ to Na+ was raised, while 1% myo-inositol supplement did not affect them. These results suggest that treatment with ADN-138 elevates MNCV through a series of processes: ARI----reduction of sorbitol level----increase in Na+, K(+)-ATPase activity----correction of K+, Na+ imbalance----increase in MNCV.

  19. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    PubMed

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation.

  20. Identification of amino acid residues photolabeled with 2-azido(alpha-/sup 32/P)adenosine diphosphate in the beta subunit of beef heart mitochondrial F1-ATPase

    SciTech Connect

    Garin, J.; Boulay, F.; Issartel, J.P.; Lunardi, J.; Vignais, P.V.

    1986-07-29

    When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido(alpha-/sup 32/P)adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled (Dalbon, P., Boulay, F., and Vignais, P. V. (1985) FEBS Lett. 180, 212-218). The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.

  1. Radiation inactivation analysis of chloroplast CF0-CF1 ATPase

    SciTech Connect

    Wang, M.Y.; Chien, L.F.; Pan, R.L.

    1988-06-25

    Radiation inactivation technique was employed to measure the functional size of adenosine triphosphatase of spinach chloroplasts. The functional size for acid-base-induced ATP synthesis was 450 +/- 24 kilodaltons; for phenazine methosulfate-mediated ATP synthesis, 613 +/- 33 kilodaltons; and for methanol-activated ATP hydrolysis, 280 +/- 14 kilodaltons. The difference (170 +/- 57 kilodaltons) between 450 +/- 24 and 280 +/- 14 kilodaltons is explained to be the molecular mass of proton channel (coupling factor 0) across the thylakoid membrane. Our data suggest that the stoichiometry of subunits I, II, and III of coupling factor 0 is 1:2:15. Ca2+- and Mg2+-ATPase activated by methanol, heat, and trypsin digestion have a similar functional size. However, anions such as SO/sub 3/(2-) and CO/sub 3/(2-) increased the molecular mass for both ATPase's (except trypsin-activated Mg2+-ATPase) by 12-30%. Soluble coupling factor 1 has a larger target size than that of membrane-bound. This is interpreted as the cold effect during irradiation.

  2. Potassium inhibits nitric oxide and adenosine arteriolar vasodilatation via K(IR) and Na(+)/K(+) ATPase: implications for redundancy in active hyperaemia.

    PubMed

    Lamb, Iain R; Murrant, Coral L

    2015-12-01

    Redundancy, in active hyperaemia, where one vasodilator can compensate for another if the first is missing, would require that one vasodilator inhibits the effects of another; therefore, if the first vasodilator is inhibited, its inhibitory influence on the second vasodilator is removed and the second vasodilator exerts a greater vasodilatory effect. We aimed to determine whether vasodilators relevant to skeletal muscle contraction [potassium chloride (KCl), adenosine (ADO) and nitric oxide] inhibit one another and, in addition, to investigate the mechanisms for this interaction. We used the hamster cremaster muscle and intravital microscopy to directly visualize 2A arterioles when exposed to a range of concentrations of one vasodilator [10(-8) to 10(-5) M S-nitroso-N-acetyl penicillamine (SNAP), 10(-8) to 10(-5) M ADO, 10 and 20 mM KCl] in the absence and then in the presence of a second vasodilator (10(-7) M ADO, 10(-7) M SNAP, 10 mM KCl). We found that KCl significantly attenuated SNAP-induced vasodilatations by ∼65.8% and vasodilatations induced by 10(-8) to 10(-6) M ADO by ∼72.8%. Furthermore, we observed that inhibition of KCl vasodilatation, by antagonizing either Na(+)/K(+) ATPase using ouabain or inward rectifying potassium channels using barium chloride, could restore the SNAP-induced vasodilatation by up to ∼53.9% and 30.6%, respectively, and also restore the ADO-induced vasodilatations by up to ∼107% and 76.7%, respectively. Our data show that vasodilators relevant to muscle contraction can interact in a way that alters the effectiveness of other vasodilators. These data suggest that active hyperaemia may be the result of complex interactions between multiple vasodilators via a redundant control paradigm.

  3. Characterization of a baculovirus-encoded RNA 5'-triphosphatase.

    PubMed

    Gross, C H; Shuman, S

    1998-09-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) encodes a 168-amino-acid polypeptide that contains the signature motif of the superfamily of protein phosphatases that act via a covalent cysteinyl phosphate intermediate. The sequence of the AcNPV phosphatase is similar to that of the RNA triphosphatase domain of the metazoan cellular mRNA capping enzyme. Here, we show that the purified recombinant AcNPV protein is an RNA 5'-triphosphatase that hydrolyzes the gamma-phosphate of triphosphate-terminated poly(A); it also hydrolyzes ATP to ADP and GTP to GDP. The phosphatase sediments as two discrete components in a glycerol gradient: a 9.5S oligomer and 2.5S putative monomer. The 2.5S form of the enzyme releases 32Pi from 1 microM gamma-32P-labeled triphosphate-terminated poly(A) with a turnover number of 52 min-1 and converts ATP to ADP with Vmax of 8 min-1 and Km of 25 microM ATP. The 9.5S oligomeric form of the enzyme displays an initial pre-steady-state burst of ADP and Pi formation, which is proportional to and stoichiometric with the enzyme, followed by a slower steady-state rate of product formation (approximately 1/10 of the steady-state rate of the 2.5S enzyme). We surmise that the oligomeric enzyme is subject to a rate-limiting step other than reaction chemistry and that this step is either distinct from or slower than the rate-limiting step for the 2.5S enzyme. Replacing the presumptive active site nucleophile Cys-119 by alanine abrogates RNA triphosphatase and ATPase activity. Our findings raise the possibility that baculoviruses encode enzymes that cap the 5' ends of viral transcripts synthesized at late times postinfection by a virus-encoded RNA polymerase. PMID:9696798

  4. Nutrient transport in the small intestine: Na+,K+-ATPase expression and activity in the small intestine of the chicken as influenced by dietary sodium.

    PubMed

    Gal-Garber, O; Mabjeesh, S J; Sklan, D; Uni, Z

    2003-07-01

    The Na+-K+-ATPase, localized in the basolateral membrane of enterocytes plays a major role in nutrient transport in the small intestine by transferring K+ ions into and Na+ out of the cell. Within the enterocyte, homeostasis is maintained by active exclusion of Na from the cell by the Na+,K+-adenosine triphosphatase (ATPase) or sodium pump. Because much of the intestinal nutrient transport is by Na cotransporters, Na+,K+-ATPase may be used to evaluate nutrient uptake. In this study, nutrient transport was evaluated by determining expression and activity of Na+-K+-ATPase in the jejunum of chicks fed diets with different concentrations of Na. Expression of the chicken Na+-K+-ATPase gene was examined following isolation of an 1,140 bp cDNA fragment of the alpha-subunit using a reverse transcription (RT)-PCR reaction with specific primers. This fragment was sequenced and showed 95 to 98% homology with the mammalian alpha-subunit of the Na+-K+-ATPase genes. This cDNA fragment was used as a specific probe in Northern blot hybridization for determination of expression in the chicken jejunum. Expression of mRNA of Na+-K+-ATPase was enhanced at low dietary Na but was unchanged at high dietary Na concentrations. In contrast, activity of the enzyme was low with low dietary Na and unchanged at high dietary Na. The Vmax of the Na+-K+-ATPase was unchanged, but affinity was altered by dietary Na concentrations. Thus, determination of expression and activity of intestinal Na+-K+-ATPase allows clearer understanding of changes in intestinal uptake due to dietary Na.

  5. [Na,K-ATPase activity of erythrocytes of rats during prolonged starvation].

    PubMed

    Skverchinskaia, E A; Tavrovskaia, T V; Novozhilov, A V

    2013-01-01

    Activity of Na,K-ATPase (Na+,K+-adenosine triphosphatase, EC 3.6.3.9) in the whole erythrocytes was studied in dynamics of the complete rat alimentary starvation for 1, 3, 5, 7-8, and 10-12 days with water drinking ad libitum. There has been established a change of the erythrocyte Na,K-ATPase activity depending on the phase of starvation (the period connected with a certain level of metabolism). After the state on an empty stomach and adaptation to endogenous nutrition (the 0-I phase), from the 3rd to the 7-8th starvation day, the II phase, the period of compensated adaptation occurs (the euglycemia is preserved, the plateau level is preserved, the plateau level is achieved for protein loss and hormonal stimulation). Changes of the Na,K-ATPase activity level within the limits of the II phase were insignificant (p < 0.05), but loses of potassium content in plasma and erythrocytes have been from the 5th starvation day. The III phase (the 12-13th day) is the beginning of the terminal period and is characterized by a decrease of the Na,K-ATPase activity (the oubain-sensitive activity) and of Mg2+-ATPase (the oubain-independent activity), by a decrease of the plasma sodium level (prior to that, this level remained practically unchanged). Ad causes of the revealed decrease of the ATPase activities at the long-term starvation, there are considered aging of population of circulating erythrocytes (the absence of reticulocytes and young erythrocytes), depletion of cell energetic resources (hypoglycemia and glycopenia), effect of endogenous oubain, and endotoxemia.

  6. Properties of mammalian nuclear-envelope nucleoside triphosphatase.

    PubMed Central

    Agutter, P S; Cockrill, J B; Lavine, J E; McCaldin, B; Sim, R B

    1979-01-01

    The nucleoside triphosphatase activities of the nuclear envelopes from rat liver, pig liver and simian-virus-40-transformed mouse-embryo 3T3 cells were shown to exhibit similar parperties. All three preparations hydrolyse ATP, 2'-dATP, 3'-dATP, GTP, CTP and UTP in the presence of Mg2+, Ca2+, Mn2+ and Co2+ with a pH optimum of 8.0, are sensitive to inhibition by mercurials, arsenicals, quercetin, proflavin and adenosine 5'-[gamma-thio]triphosphate and are partially inactivated by exposure to high ionic strength. The kinetic behaviour is similar for all substrates irrespective of the source of material. The typical Eadie-Hofstee plot, which is concave upwards at pH 8.0 when the ionic strength is 20mM, becomes linear when the pH is increased to 8.5 or the ionic strength to 160mM. The overall evidence, particularly the labelling of only one polypeptide by [gamma-32P]ATP, suggests that under the conditions of preparation and assay used only one class of nucleoside triphosphatase active sites is detectable in nuclear envelopes. The importance of these results for an understanding of the role of the enzyme in vivo is discussed. PMID:229821

  7. Properties of mammalian nuclear-envelope nucleoside triphosphatase.

    PubMed

    Agutter, P S; Cockrill, J B; Lavine, J E; McCaldin, B; Sim, R B

    1979-09-01

    The nucleoside triphosphatase activities of the nuclear envelopes from rat liver, pig liver and simian-virus-40-transformed mouse-embryo 3T3 cells were shown to exhibit similar parperties. All three preparations hydrolyse ATP, 2'-dATP, 3'-dATP, GTP, CTP and UTP in the presence of Mg2+, Ca2+, Mn2+ and Co2+ with a pH optimum of 8.0, are sensitive to inhibition by mercurials, arsenicals, quercetin, proflavin and adenosine 5'-[gamma-thio]triphosphate and are partially inactivated by exposure to high ionic strength. The kinetic behaviour is similar for all substrates irrespective of the source of material. The typical Eadie-Hofstee plot, which is concave upwards at pH 8.0 when the ionic strength is 20mM, becomes linear when the pH is increased to 8.5 or the ionic strength to 160mM. The overall evidence, particularly the labelling of only one polypeptide by [gamma-32P]ATP, suggests that under the conditions of preparation and assay used only one class of nucleoside triphosphatase active sites is detectable in nuclear envelopes. The importance of these results for an understanding of the role of the enzyme in vivo is discussed.

  8. The early and late effects of digoxin treatment on the sodium transport, sodium content and Na+K+- ATPase or erythrocytes.

    PubMed

    Cumberbatch, M; Zareian, K; Davidson, C; Morgan, D B; Swaminathan, R

    1981-06-01

    1 Erythrocyte sodium content, sodium transport (ouabain sensitive sodium flux Eos, and ouabain sensitive efflux rate constant ERCos) sodium, potassium activated ouabain sensitive adenosine triphosphatase (Na+K+ATPase) and plasma digoxin were measured in patients during acute digitalisation and in patients who were on long-term digoxin treatment. 2 In the six patients who were studied during digitalisation, the ERCos and Na+K+ATPase activity decreased and erythrocyte sodium content increased during days 2-4 treatment, but there was no change in Eos. 3 In 39 patients on long term digoxin therapy (2-119 months) the erythrocyte sodium content was normal, but the erythrocyte Na+K+ATPase activity was higher than the control group. When the results from these 39 patients were divided according to the duration of treatment it was found that the erythrocyte sodium content was higher in patients treated for 2-4 months than in patients treated for longer periods and the erythrocyte Na+K+ATPase activity increased with duration of treatment. In eight patients (duration of treatment greater than 29 months) in whom ERCos and Eos were measured, ERCos and Eos were higher than the control group. 4 The results suggest that the effects of digoxin on erythrocytes which occur during acute digoxin treatment do not persist in the long term. 5 The possible explanation for the higher ERCos, Eos and Na+K+ATPase activity in patients treated with digoxin for more than 2 months is discussed. PMID:6268133

  9. Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis

    PubMed Central

    Carnell, Michael; Zech, Tobias; Calaminus, Simon D.; Ura, Seiji; Hagedorn, Monica; Johnston, Simon A.; May, Robin C.; Soldati, Thierry; Machesky, Laura M.

    2011-01-01

    WASP and SCAR homologue (WASH) is a recently identified and evolutionarily conserved regulator of actin polymerization. In this paper, we show that WASH coats mature Dictyostelium discoideum lysosomes and is essential for exocytosis of indigestible material. A related process, the expulsion of the lethal endosomal pathogen Cryptococcus neoformans from mammalian macrophages, also uses WASH-coated vesicles, and cells expressing dominant negative WASH mutants inefficiently expel C. neoformans. D. discoideum WASH causes filamentous actin (F-actin) patches to form on lysosomes, leading to the removal of vacuolar adenosine triphosphatase (V-ATPase) and the neutralization of lysosomes to form postlysosomes. Without WASH, no patches or coats are formed, neutral postlysosomes are not seen, and indigestible material such as dextran is not exocytosed. Similar results occur when actin polymerization is blocked with latrunculin. V-ATPases are known to bind avidly to F-actin. Our data imply a new mechanism, actin-mediated sorting, in which WASH and the Arp2/3 complex polymerize actin on vesicles to drive the separation and recycling of proteins such as the V-ATPase. PMID:21606208

  10. Rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  11. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  12. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R

    PubMed Central

    LIU, SHUANGXIN; ZHU, WEIPING; LI, SIJIA; MA, JIANCHAO; ZHANG, HUITAO; LI, ZHONGHE; ZHANG, LI; ZHANG, BIN; LI, ZHUO; LIANG, XINLING; SHI, WEI

    2016-01-01

    The vacuolar-type H+ adenosine triphosphatase (V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone (bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow (BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit (by RT-qPCR and western blot analysis), V-ATPase activity (using the V type ATPase Activity Assay kit) and the bone resorption function of osteoclasts (by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and 100 ng/ml) alone or with bPTH and its inhibitor, bafilomycin A1. Furthermore, the expression of parathyroid hormone (PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose-dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycin A1. In addition, we confirmed the existence of parathyroid hormone 1 receptor (PTH1R) in osteoclasts using three different methods (RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling. PMID:26647715

  13. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  14. Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation

    PubMed Central

    Ladurner, Rene; Bhaskara, Venugopal; Huis in ’t Veld, Pim J.; Davidson, Iain F.; Kreidl, Emanuel; Petzold, Georg; Peters, Jan-Michael

    2014-01-01

    Summary Background Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl. Results Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis. Conclusions Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA. PMID:25220052

  15. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function.

    PubMed Central

    Root, D D; Reisler, E

    1992-01-01

    The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin. PMID:1420910

  16. Relationship of the Membrane ATPase from Halobacterium saccharovorum to Vacuolar ATPases

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Bowman, Emma J.; Hochstein, Lawrence I.

    1991-01-01

    Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-Chloro-7-nitrobenzofurazan in- hibited the hatobacterial ATPase also in a nucleotide- protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggested that this halobacterial ATPase may have conserved structural features from both the vacuotar and the F-type ATPases.

  17. RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein.

    PubMed

    Gross, C H; Shuman, S

    1998-12-01

    Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5'-triphosphatase that hydrolyzes the gamma phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 microM ATP; Vmax = 30 s-1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases. PMID:9811740

  18. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors

    PubMed Central

    Williamson, W. Ryan; Wang, Dong; Haberman, Adam S.

    2010-01-01

    The vesicular adenosine triphosphatase (v-ATPase) is a proton pump that acidifies intracellular compartments. In addition, mutations in components of the membrane-bound v-ATPase V0 sector cause acidification-independent defects in yeast, worm, fly, zebrafish, and mouse. In this study, we present a dual function for the neuron-specific V0 subunit a1 orthologue v100 in Drosophila melanogaster. A v100 mutant that selectively disrupts proton translocation rescues a previously characterized synaptic vesicle fusion defect and vesicle fusion with early endosomes. Correspondingly, V100 selectively interacts with syntaxins on the respective target membranes, and neither synaptic vesicles nor early endosomes require v100 for their acidification. In contrast, V100 is required for acidification once endosomes mature into degradative compartments. As a consequence of the complete loss of this neuronal degradation mechanism, photoreceptors undergo slow neurodegeneration, whereas selective rescue of the acidification-independent function accelerates cell death by increasing accumulations in degradation-incompetent compartments. We propose that V100 exerts a temporally integrated dual function that increases neuronal degradative capacity. PMID:20513768

  19. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope.

    PubMed Central

    Agutter, P S; Harris, J R; Stevenson, I

    1977-01-01

    1. The specific activity of rat and pig liver nuclear-envelope nucleoside triphosphatase (EC 3.6.1.3) decreases when the system is depleted of RNA. The activity can be restored by adding high concentrations of yeast RNA to the assay medium. 2. Exogenous RNA also increases the activity of the enzyme in control envelopes (not RNA-depleted). The effect appears to be largely specific for poly(A) and poly(G); it is not stimulated by rRNA or tRNA preparations, ribonuclease-hydrolysed RNA, AMP, or double- or single-stranded DNA. 3. Inhibitors of the enzyme, in concentrations at which half-maximal inhibition of the enzyme is achieved, do not affect the percentage stimulation of the enzyme by yeast RNA. 4. The simulation is abolished by the inclusion of 150 mM-KCl or -NaCl in the assay medium, but not by increasing the assay pH to 8.5. 5. The results are discussed in the light of the possible role of the nucleoside triphosphatase in vivo in nucleo-cytoplasmic ribonucleoprotein translocation. 6. It is proposed that poly(G)-stimulated Mg2+-activated adenosine triphosphatase activity should be adopted as an enzymic marker for the nuclear envelope. Images PLATE 1 PMID:141276

  20. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope.

    PubMed

    Agutter, P S; Harris, J R; Stevenson, I

    1977-03-15

    1. The specific activity of rat and pig liver nuclear-envelope nucleoside triphosphatase (EC 3.6.1.3) decreases when the system is depleted of RNA. The activity can be restored by adding high concentrations of yeast RNA to the assay medium. 2. Exogenous RNA also increases the activity of the enzyme in control envelopes (not RNA-depleted). The effect appears to be largely specific for poly(A) and poly(G); it is not stimulated by rRNA or tRNA preparations, ribonuclease-hydrolysed RNA, AMP, or double- or single-stranded DNA. 3. Inhibitors of the enzyme, in concentrations at which half-maximal inhibition of the enzyme is achieved, do not affect the percentage stimulation of the enzyme by yeast RNA. 4. The simulation is abolished by the inclusion of 150 mM-KCl or -NaCl in the assay medium, but not by increasing the assay pH to 8.5. 5. The results are discussed in the light of the possible role of the nucleoside triphosphatase in vivo in nucleo-cytoplasmic ribonucleoprotein translocation. 6. It is proposed that poly(G)-stimulated Mg2+-activated adenosine triphosphatase activity should be adopted as an enzymic marker for the nuclear envelope.

  1. Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis.

    PubMed Central

    Maloney, P C

    1977-01-01

    Proton influx was measured after imposition of an electrochemical potential difference for protons (delta muH+) across the cell membrane of the anaerobe, Streptococcus lactis. As delta muH+ was increased, there was an approximately parallel increase in proton entry, until delta muH+ attained 175 to 200 mV. At this point, a new pathway became available for proton entry, allowing an abrupt increase in both the rate and extent of H+ influx. This gated response depended upon the value of delta muH+ itself, and not upon the value of either the membrane potential or the pH gradient. For delta muH+ above 175 to 200 mV, elevated proton entry occurred only in cells having a functional membrane-bound Ca2+-stimulated, Mg2+stimulated adenosine 5'-triphosphatase (EC 3.6.1.3). When present, elevated proton entry coincided with the appearance of net synthesis of adenosine 5'-triphosphate catalyzed by this adenosine 5'-triphosphatase. These observations demonstrate that membrane-bound adenosine 5'-triphosphatase catalyzes an obligatory coupling between the inward movement of protons and synthesis of adenosine 5'-triphosphate. PMID:21165

  2. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    PubMed Central

    Smith, Paul; Ho, C. Kiong; Takagi, Yuko; Djaballah, Hakim

    2016-01-01

    ABSTRACT Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. PMID:26908574

  3. Full activation of mouse platelets requires ADP secretion regulated by SERCA3 ATPase-dependent calcium stores.

    PubMed

    Elaïb, Ziane; Adam, Frédéric; Berrou, Eliane; Bordet, Jean-Claude; Prévost, Nicolas; Bobe, Régis; Bryckaert, Marijke; Rosa, Jean-Philippe

    2016-08-25

    The role of the sarco-endoplasmic reticulum calcium (Ca(2+)) adenosine triphosphatase (ATPase) 3 (SERCA3) in platelet physiology remains poorly understood. Here, we show that SERCA3 knockout (SERCA3(-/-)) mice exhibit prolonged tail bleeding time and rebleeding. Thrombus formation was delayed both in arteries and venules in an in vivo ferric chloride-induced thrombosis model. Defective platelet adhesion and thrombus growth over collagen was confirmed in vitro. Adenosine 5'-diphosphate (ADP) removal by apyrase diminished adhesion and thrombus growth of control platelets to the level of SERCA3(-/-) platelets. Aggregation, dense granule secretion, and Ca(2+) mobilization of SERCA3(-/-) platelets induced by low collagen or low thrombin concentration were weaker than controls. Accordingly, SERCA3(-/-) platelets exhibited a partial defect in total stored Ca(2+) and in Ca(2+) store reuptake following thrombin stimulation. Importantly ADP, but not serotonin, rescued aggregation, secretion, and Ca(2+) mobilization in SERCA3(-/-) platelets, suggesting specificity. Dense granules appeared normal upon electron microscopy, mepacrine staining, and total serotonin content, ruling out a dense granule defect. ADP induced normal platelet aggregation, excluding a defect in ADP activation pathways. The SERCA3-specific inhibitor 2,5-di-(tert-butyl)-1,4-benzohydroquinone diminished both Ca(2+) mobilization and secretion of control platelets, as opposed to the SERCA2b inhibitor thapsigargin. This confirmed the specific role of catalytically active SERCA3 in ADP secretion. Accordingly, SERCA3-dependent Ca(2+) stores appeared depleted in SERCA3(-/-) platelets. Finally, αIIbβ3 integrin blockade did not affect SERCA3-dependent secretion, therefore proving independent of αIIbβ3 engagement. Altogether, these results show that SERCA3-dependent Ca(2+) stores control a specific ADP secretion pathway required for full platelet secretion induced by agonists at low concentration and independent

  4. Two ATPases

    PubMed Central

    Senior, Alan E.

    2012-01-01

    In this article, I reflect on research on two ATPases. The first is F1F0-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization. PMID:22822068

  5. Crystal Structure of Baculovirus RNA Triphosphatase Complexed with Phosphate

    SciTech Connect

    Changela, Anita; Martin, Alexandra; Shuman, Stewart; Mondragon, Alfonso

    2010-03-05

    Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 {angstrom} resolution. BVP adopts the characteristic cysteine-phosphatase {alpha}/{beta} fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif {sup 118}HCTHGXNRT{sup 126} in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.

  6. [Ultrastructural localization of adenosine triphosphatase activity in the proximal kidney tubules of white rats].

    PubMed

    Panasiuk, E N; Birov, V V; Nazar, P S; Saĭ, V G; Kavalishin, V I

    1977-10-01

    In white rats, the ferment topography of Mg+2 and (Na+ + K+)-activated ATPh-ses in proximal canaliculi was studied with the aid of the ultrastructural cytochemistry. The final product of the fermentative reaction (PhHPO4) in the form of small dense granuli is positioned on the duplicate folds of epithelial cells, the cells limiting the brush border micropiles, and on invaginations of the apical plasmalemme at the micropiles base. For (Na+ %K+)-activated ATPh-ses a localisation of the reaction product was determined in the canaliculi vessels.

  7. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  8. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei.

    PubMed Central

    Agutter, P S

    1980-01-01

    The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability. PMID:6157391

  9. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei.

    PubMed

    Agutter, P S

    1980-04-15

    The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability.

  10. Targeted Mutations in the Na,K-ATPase Alpha 2 Isoform Confer Ouabain Resistance and Result in Abnormal Behavior in Mice

    PubMed Central

    Schaefer, Tori L.; Lingrel, Jerry B; Moseley, Amy E.; Vorhees, Charles V.; Williams, Michael T.

    2011-01-01

    Sodium and potassium-activated adenosine triphosphatases (Na,K-ATPase) are ubiquitous, participate in osmotic balance and membrane potential, and are composed of α, β, and γ subunits. The α subunit is required for the catalytic and transport properties of the enzyme and contains binding sites for cations, ATP, and digitalis-like compounds including ouabain. There are four known α isoforms; three that are expressed in the CNS in a regional and cell-specific manner. The α2 isoform is most commonly found in astrocytes, pyramidal cells of the hippocampus in adults, and developmentally in several other neuronal types. Ouabain-like compounds are thought to be produced endogenously in mammals, bind the Na,K-ATPase, and function as a stress-related hormone, however, the impact of the Na,K-ATPase ouabain binding site on neurobehavioral function is largely unknown. To determine if the ouabain binding site of the α2 isoform plays a physiological role in CNS function, we examined knock-in mice in which the normally ouabain-sensitive α2 isoform was made resistant (α2R/R) while still retaining basal Na,K-ATPase enzymatic function. Egocentric learning (Cincinnati water maze) was impaired in adult α2R/R mice compared to wild type (WT) mice. They also exhibited decreased locomotor activity in a novel environment and increased responsiveness to a challenge with an indirect sympathomimetic agonist (methamphetamine) relative to WT mice. The α2R/R mice also demonstrated a blunted acoustic startle reflex and a failure to habituate to repeated acoustic stimuli. The α2R/R mice showed no evidence of altered anxiety (elevated zero maze) nor were they impaired in spatial learning or memory in the Morris water maze and neither group could learn in a large Morris maze. These results suggest that the ouabain binding site is involved in specific types of learning and the modulation of dopamine-mediated locomotor behavior. PMID:20936682

  11. The influence of beta subunit structure on the interaction of Na+/K(+)-ATPase complexes with Na+. A chimeric beta subunit reduces the Na+ dependence of phosphoenzyme formation from ATP.

    PubMed

    Eakle, K A; Lyu, R M; Farley, R A

    1995-06-01

    High-affinity ouabain binding to Na+/K(+)-ATPase (sodium- and potassium-transport adenosine triphosphatase (EC 3.6.1.37)) requires phosphorylation of the alpha subunit of the enzyme either by ATP or by inorganic phosphate. For the native enzyme (alpha/beta 1), the ATP-dependent reaction proceeds about 4-fold more slowly in the absence of Na+ than when saturating concentrations of Na+ are present. Hybrid pumps were formed from either the alpha 1 or the alpha 3 subunit isoforms of Na+/K(+)-ATPase and a chimeric beta subunit containing the transmembrane segment of the Na+/K(+)-ATPase beta 1 isoform and the external domain of the gastric H+/K(+)-ATPase beta subunit (alpha/NH beta 1 complexes). In the absence of Na+, these complexes show a rate of ATP-dependent ouabain binding from approximately 75-100% of the rate seen in the presence of Na+ depending on buffer conditions. Nonhydrolyzable nucleotides or treatment of ATP with apyrase abolishes ouabain binding, demonstrating that ouabain binding to alpha/NH beta 1 complexes requires phosphorylation of the protein. Buffer ions inhibit ouabain binding by alpha/NH beta 1 in the absence of Na+ rather than promote ouabain binding, indicating that they are not substituting for sodium ions in the phosphorylation reaction. The pH dependence of ATP-dependent ouabain binding in the presence or absence of Na+ is similar, suggesting that protons are probably not substituting for Na+. Hybrid alpha/NH beta 1 pumps also show slightly higher apparent affinities (2-3-fold) for ATP, Na+, and ouabain; however, these are not sufficient to account for the increase in ouabain binding in the absence of Na+. In contrast to phosphoenzyme formation and ouabain binding by alpha/NH beta 1 complexes in the absence of Na+, ATPase activity, measured as release of phosphate from ATP, requires Na+. These data suggest that the transition from E1P to E2P during the catalytic cycle does not occur when the sodium binding sites are not occupied. Thus, the

  12. Fission yeast RNA triphosphatase reads an Spt5 CTD code.

    PubMed

    Doamekpor, Selom K; Schwer, Beate; Sanchez, Ana M; Shuman, Stewart; Lima, Christopher D

    2015-01-01

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner. PMID:25414009

  13. Adenosine and ATP Link PCO2 to Cortical Excitability via pH

    PubMed Central

    Dulla, Chris G.; Dobelis, Peter; Pearson, Tim; Frenguelli, Bruno G.; Staley, Kevin J.; Masino, Susan A.

    2007-01-01

    Summary In addition to affecting respiration and vascular tone, deviations from normal CO2 alter pH, consciousness, and seizure propensity. Outside the brainstem, however, the mechanisms by which CO2 levels modify neuronal function are unknown. In the hippocampal slice preparation, increasing CO2, and thus decreasing pH, increased the extracellular concentration of the endogenous neuromodulator adenosine and inhibited excitatory synaptic transmission. These effects involve adenosine A1 and ATP receptors and depend on decreased extracellular pH. In contrast, decreasing CO2 levels reduced extracellular adenosine concentration and increased neuronal excitability via adenosine A1 receptors, ATP receptors, and ecto-ATPase. Based on these studies, we propose that CO2-induced changes in neuronal function arise from a pH-dependent modulation of adenosine and ATP levels. These findings demonstrate a mechanism for the bidirectional effects of CO2 on neuronal excitability in the forebrain. PMID:16364904

  14. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland.

    PubMed Central

    Kelley, G G; Aassar, O S; Forrest, J N

    1991-01-01

    The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport. Images PMID:1752953

  15. Purification and Characterization of West Nile Virus Nucleoside Triphosphatase (NTPase)/Helicase: Evidence for Dissociation of the NTPase and Helicase Activities of the Enzyme

    PubMed Central

    Borowski, Peter; Niebuhr, Andreas; Mueller, Oliver; Bretner, Maria; Felczak, Krzysztof; Kulikowski, Tadeusz; Schmitz, Herbert

    2001-01-01

    The nucleoside triphosphatase (NTPase)/helicase associated with nonstructural protein 3 of West Nile (WN) virus was purified from cell culture medium harvested from virus-infected Vero cells. The purification procedure included sequential chromatography on Superdex-200 and Reactive Red 120 columns, followed by a concentration step on an Ultrogel hydroxyapatite column. The nature of the purified protein was confirmed by immunoblot analysis using a WN virus-positive antiserum, determination of its NH2 terminus by microsequencing, and a binding assay with 5′-[14C]fluorosulfonylbenzoyladenosine. Under optimized reaction conditions the enzyme catalyzed the hydrolysis of ATP and the unwinding of the DNA duplex with kcat values of 133 and 5.5 × 10−3 s−1, respectively. Characterization of the NTPase activity of the WN virus enzyme revealed that optimum conditions with respect to the Mg2+ requirement and the monovalent salt or polynucleotide response differed from those of other flavivirus NTPases. Initial kinetic studies demonstrated that the inhibition (or activation) of ATPase activity by ribavirin-5′-triphosphate is not directly related to changes in the helicase activity of the enzyme. Further analysis using guanine and O6-benzoylguanine derivatives revealed that the ATPase activity of WN virus NTPase/helicase may be modulated, i.e., increased or reduced, with no effect on the helicase activity of the enzyme. On the other hand the helicase activity could be modulated without changing the ATPase activity. Our observations show that the number of ATP hydrolysis events per unwinding cycle is not a constant value. PMID:11238848

  16. Chlorella Virus Encoded Deoxyuridine triphosphatases Exhibit different Temperature Optima

    SciTech Connect

    Zhang,Y.; Moriyama, H.; Homma, K.; Van Etten, J.

    2005-01-01

    A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg{sup 2+} for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K{sub m} of 11.7 {mu}M, a turnover k{sub cat} of 6.8 s{sup -1}, and a catalytic efficiency of k{sub cat}/K{sub m} = 5.8 x 105 M{sup -1} s{sup -1}. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37{sup o}C) than PBCV-1 dUTPase (50{sup o}C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81{yields}Ser81 and Thr84{yields}Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84{yields}Arg84, Glu81{yields}Ser81, and Glu81{yields}Ser81 plus Thr84{yields}Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55{sup o}C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.

  17. Occurrence and Characteristics of {sup 18}O-exchange Reactions Catalyzed By Sodium- and Potassium-dependent Adenosine Triphosphatases

    DOE R&D Accomplishments Database

    Dahms, A. S.; Boyer, P. D.

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  18. Adenosine and sleep

    SciTech Connect

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  19. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    PubMed

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  20. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  1. Adenosine and Sleep

    PubMed Central

    Bjorness, Theresa E; Greene, Robert W

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed. PMID:20190965

  2. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  3. [PROPERTIES OF CHICKEN LIVER MEMBRANE-ASSOCIATED THIAMINE TRIPHOSPHATASE].

    PubMed

    Kolas, I K; Makarchikov, A F

    2015-01-01

    The enzymes involved in thiamine triphosphate (ThTP) metabolism in birds are not characterized so far. The aim of the present work was to study some properties of ThTPase in chicken liver. In liver homogenate, ThTPase activity has been found to display a bell-like pH-profile with a maximum of 5.5-6.0. Low activity was observed without divalent metal ions, while the addition of Mg2+ or Ca2+, each at 5 mM concentration, enhanced the rate of ThTP hydrolysis by a factor of 17-20. In the presence of 5 mM Mg2+ an apparent K(m) of the enzyme for ThTP was estimated by the method of non-linear regression as well as from the Hanes plot to be 1.7-2.2 mM. Monovalent anions such as I-, SCN-, NO3-, Br-, Cl- (at 150 mM concentration) showed inhibitory effect decreasing the rate of ThTPase reaction by 20-60%. After the homogenate was centrifuged, more than 85% of ThTPase activity was revealed in the fraction of insoluble particles indicating a membrane localization of the enzyme. The precipitate treatment with 1% sodium deoxycholate caused about 53% solubilization of the activity. During Toyopeal HW-55 chromatography, ThTPase activity was eluted simultaneously with ATPase and ITPase peaks in the void volume of the column. Thus, a non-specific high molecular mass protein complex seems to be involved in ThTP hydrolysis in the chicken liver. The chicken liver phosphatase is clearly distinguishable from all membrane-bound ThTPases reported previously. PMID:26502698

  4. [PROPERTIES OF CHICKEN LIVER MEMBRANE-ASSOCIATED THIAMINE TRIPHOSPHATASE].

    PubMed

    Kolas, I K; Makarchikov, A F

    2015-01-01

    The enzymes involved in thiamine triphosphate (ThTP) metabolism in birds are not characterized so far. The aim of the present work was to study some properties of ThTPase in chicken liver. In liver homogenate, ThTPase activity has been found to display a bell-like pH-profile with a maximum of 5.5-6.0. Low activity was observed without divalent metal ions, while the addition of Mg2+ or Ca2+, each at 5 mM concentration, enhanced the rate of ThTP hydrolysis by a factor of 17-20. In the presence of 5 mM Mg2+ an apparent K(m) of the enzyme for ThTP was estimated by the method of non-linear regression as well as from the Hanes plot to be 1.7-2.2 mM. Monovalent anions such as I-, SCN-, NO3-, Br-, Cl- (at 150 mM concentration) showed inhibitory effect decreasing the rate of ThTPase reaction by 20-60%. After the homogenate was centrifuged, more than 85% of ThTPase activity was revealed in the fraction of insoluble particles indicating a membrane localization of the enzyme. The precipitate treatment with 1% sodium deoxycholate caused about 53% solubilization of the activity. During Toyopeal HW-55 chromatography, ThTPase activity was eluted simultaneously with ATPase and ITPase peaks in the void volume of the column. Thus, a non-specific high molecular mass protein complex seems to be involved in ThTP hydrolysis in the chicken liver. The chicken liver phosphatase is clearly distinguishable from all membrane-bound ThTPases reported previously.

  5. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    PubMed Central

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-01-01

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process. PMID:229828

  6. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    PubMed

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-09-15

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.

  7. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... Health Conditions adenosine deaminase 2 deficiency adenosine deaminase 2 deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Adenosine deaminase 2 (ADA2) deficiency is a disorder characterized by abnormal ...

  8. A Systematic Study on Structure and Function of ATPase of Wuchereria bancrofti

    PubMed Central

    Islam, Md. Saiful; Patwary, Noman Ibna Amin; Muzahid, Nazmul Hasan; Shahik, Shah Md.; Sohel, Md.; Hasan, Md. Anayet

    2014-01-01

    Background: Analyzing the structures and functions of different proteins of Wuchereria bancrofti is very important because till date no effective drug or vaccine has been discovered to treat lymphatic filariasis (LF). ATPase is one of the most important proteins of Wuchereria bancrofti. Adenosine triphosphate (ATP) converts into adenosine diphosphate (ADP) and a free phosphate ion by the action of these ATPase enzymes. Energy releases from these dephosphorylation reactions drive the other chemical reactions in the cell. Materials and Methods: In this study we worked on the protein ATPase of Wuchereria bancrofti which has been annotated from National Center for Biotechnology Information (NCBI). Various computational tools and databases have been used to determine the various characteristics of that enzyme such as physiochemical properties, secondary structure, three-dimensional (3D) structure, conserved domain, epitope, and their molecular evolutionary relationship. Result: Subcellular localization of ATPase was identified and we have found that 55.5% are localized in the cytoplasm. Secondary and 3D structure of this protein was also predicted. Both structure and function analysis of ATPase of Wuchereria bancrofti showed unique nonhomologous epitope sites and nonhomologous antigenicity sites. Moreover, it resulted in 15 ligand drug-binding sites in its tertiary structure. Conclusion: Structure prediction of these proteins and detection of binding sites and antigenicity sites from this study would indicate a potential target aiding docking studies for therapeutic designing against filariasis. PMID:25948965

  9. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  10. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  11. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  12. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum

    PubMed Central

    Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.

    2016-01-01

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  13. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.

    PubMed

    Ferguson, Scott A; Cook, Gregory M; Montgomery, Martin G; Leslie, Andrew G W; Walker, John E

    2016-09-27

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a "down" state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an "up" state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme's hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual "open" conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  14. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  15. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  16. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5'-triphosphatase and diphosphatase activities.

    PubMed

    Takagi, T; Taylor, G S; Kusakabe, T; Charbonneau, H; Buratowski, S

    1998-08-18

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5'-phosphatase. BVP sequentially removes gamma and beta phosphates from the 5' end of triphosphate-terminated RNA, leaving a 5'-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  17. Rotary ATPases: models, machine elements and technical specifications.

    PubMed

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  18. A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase

    PubMed Central

    Niikura, Kazuaki; Takano, Mikiko; Sawada, Masae

    2004-01-01

    Vacuolar ATPase (V-ATPase) has been proposed as a drug target in lytic bone diseases. Studies of bafilomycin derivatives suggest that the key issue regarding the therapeutic usefulness of V-ATPase inhibitors is selective inhibition of osteoclast V-ATPase. Previous efforts to develop therapeutic inhibitors of osteoclast V-ATPase have been frustrated by a lack of synthetically tractable and biologically selective leads. Therefore, we tried to find novel potent and specific V-ATPase inhibitors, which have new structural features and inhibition selectivity, from random screening using osteoclast microsomes. Finally, a novel V-ATPase inhibitor, FR167356, was obtained through chemical modification of a parental hit compound. FR167356 inhibited not only H+ transport activity of osteoclast V-ATPase but also H+ extrusion from cytoplasm of osteoclasts, which depends on the V-ATPase activity. As expected, FR167356 remarkably inhibited bone resorption in vitro. FR167356 also showed inhibitory effects on other V-ATPases, renal brush border V-ATPase, macrophage microsome V-ATPase and lysosomal V-ATPase. However, FR167356 was approximately seven-fold less potent in inhibiting lysosomal V-ATPase compared to osteoclast V-ATPase. Moreover, LDL metabolism in cells, which depends on acidification of lysosome, was blocked merely at higher concentration than bone resorption, suggesting that FR167356 inhibits V-ATPase of osteoclast ruffled border membrane still more selectively than lysosome at the cellular level. These results from the experiments seem to indicate that osteoclast V-ATPase may be different from lysosomal V-ATPase in respect of their structure. FR167356 had a novel chemical structural feature as well as inhibitory characteristics distinctly different from any previously known V-ATPase inhibitor family. Therefore, FR167356 is thought to be a useful tool for estimating the essential characteristics of V-ATPase inhibitors for drug development. PMID:15148249

  19. Hybrid integrated biological–solid-state system powered with adenosine triphosphate

    PubMed Central

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-01-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm−2) are able to sustain a short-circuit current of 32.6 pA mm−2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm−2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%. PMID:26638983

  20. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    PubMed

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  1. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    PubMed

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-01-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%. PMID:26638983

  2. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  3. Roles of LEF-4 and PTP/BVP RNA Triphosphatases in Processing of Baculovirus Late mRNAs▿

    PubMed Central

    Li, Yi; Guarino, Linda A.

    2008-01-01

    The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases. PMID:18385232

  4. 5'-Adenosine monophosphate and adenosine metabolism, and adenosine responses in mouse, rat and guinea pig heart.

    PubMed

    Headrick, J P; Peart, J; Hack, B; Garnham, B; Matherne, G P

    2001-11-01

    We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.

  5. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions adenosine monophosphate deaminase deficiency adenosine ...

  6. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  7. Rho and Rap guanosine triphosphatase signaling in B cells and chronic lymphocytic leukemia.

    PubMed

    Mele, Silvia; Devereux, Stephen; Ridley, Anne J

    2014-09-01

    Chronic lymphocytic leukemia (CLL) cells proliferate predominantly in niches in the lymph nodes, where signaling from the B cell receptor (BCR) and the surrounding microenvironment are critical for disease progression. In addition, leukemic cells traffic constantly from the bloodstream into the lymph nodes, migrate within lymphatic tissues and egress back to the bloodstream. These processes are driven by chemokines and their receptors, and depend on changes in cell migration and integrin-mediated adhesion. Here we describe how Rho and Rap guanosine triphosphatases (GTPases) contribute to both BCR signaling and chemokine receptor signaling, particularly by regulating cytoskeletal dynamics and integrin activity. We propose that new inhibitors of BCR-activated kinases are likely to affect CLL cell trafficking via Rho and Rap GTPases, and that upstream regulators or downstream effectors could be good targets for therapeutic intervention in CLL.

  8. CrATP as a new inhibitor of ecto-ATPases of trypanosomatids.

    PubMed

    Moreira, O C; Rios, P F; Esteves, F F; Meyer-Fernandes, J R; Barrabin, H

    2009-01-01

    Trypanosomatid protozoa include heteroxenic species some of them pathogenic for men, animals and plants. Parasite membrane contains ecto-enzymes whose active sites face the external medium rather than the cytoplasm. Herpetomonas sp. displayed a Mg2+-dependent ecto-ATPase activity, a Mg-independent ecto-ADPase and an ecto-phosphatase activity. Both, the ecto-ADPase and phosphatase activities were insensitive to CrATP (chromium(III) adenosine 5'-triphosphate complex). Ecto-ATPase activity was reversibly inhibited. At 2 mm ATP the apparent Ki was 4 x 7+/-1 x 0 microm but a fraction of about 40-50% was insensitive to CrATP. Remarkably, at low substrate concentration (0 x 2 mm) more than 90% of the ecto-ATPase was inhibited with Ki=0 x 33+/-0 x 10 microm. These parameter dependences are interpreted as the presence of 2 ecto-ATPases activities, one of them with high ATP apparent affinity and sensitivity to CrATP. DIDS (4,4 diisothiocyanatostilbene 2,2' disulfonic acid), suramin and ADP were also effective as inhibitors. Only ADP presented no additive inhibition with CrATP. The pattern of partial inhibition by CrATP was also observed for the ecto-ATPase activities of Leishmania amazonensis, Trypanosoma cruzi and Trypanosoma rangeli. CrATP emerges as a new inhibitor of ecto-ATPases and as a tool for a better understanding of properties and role of ecto-ATPases in the biology of parasites. PMID:19126268

  9. Features of adenosine metabolism of mouse heart.

    PubMed

    Deussen, Andreas; Weichsel, Johannes; Pexa, Annette

    2006-11-01

    Adenosine metabolism and transport were evaluated in the isolated perfused mouse heart and compared with the well-established model of isolated perfused guinea pig heart. Coronary venous release of adenosine under well-oxygenated conditions in the mouse exceeds that in the guinea pig threefold when related to tissue mass. Total myocardial adenosine production rate under this condition was approximately 2 nmol/min per gramme and similar in both species. Coronary resistance vessels of mice are highly sensitive to exogenous adenosine, and the threshold for adenosine-induced vasodilation is approximately 30 nmol/l. Adenosine membrane transport was largely insensitive to nitrobenzyl-thioinosine (NBTI) in mouse heart, which is in contrast to guinea pig and several other species. This indicates the dominance of NBTI-insensitive transporters in mouse heart. For future studies, the assessment of cytosolic and extracellular adenosine metabolism and its relationship with coronary flow will require the use of more effective membrane transport blockers.

  10. Fluorescent ligands for adenosine receptors.

    PubMed

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A

    2013-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.

  11. Enhanced Diffusion of Molecular Motors in the Presence of Adenosine Triphosphate and External Force

    NASA Astrophysics Data System (ADS)

    Shinagawa, Ryota; Sasaki, Kazuo

    2016-06-01

    The diffusion of a molecular motor in the presence of a constant external force is considered on the basis of a simple theoretical model. The motor is represented by a Brownian particle moving in a series of parabolic potentials placed periodically on a line, and the potential is switched stochastically from one parabola to another by a chemical reaction, which corresponds to the hydrolysis or synthesis of adenosine triphosphate (ATP) in motor proteins. It is found that the diffusion coefficient as a function of the force exhibits peaks. The mechanism of this diffusion enhancement and the possibility of observing it in F1-ATPase, a biological rotary motor, are discussed.

  12. Nonnucleoside inhibitors of adenosine kinase.

    PubMed

    Gomtsyan, Arthur; Lee, Chih-Hung

    2004-01-01

    Adenosine (ADO) is an endogenous inhibitory neuromodulator that increases nociceptive thresholds in response to tissue trauma and inflammation. Adenosine kinase (AK) is a key intracellular enzyme regulating intra- and extracellular concentrations of ADO. AK inhibition selectively amplifies extracellular ADO levels at cell and tissue sites where accelerated release of ADO occurs. AK inhibitors have been shown to provide effective antinociceptive, antiinflammatory and anticonvulsant activity in animal models, thus suggesting their potential therapeutic utility for pain, inflammation, epilepsy and possibly other central and peripheral nervous system diseases associated with cellular trauma and inflammation. This beneficial outcome may potentially lack nonspecific effects associated with the systemic administration of ADO receptor agonists. Until recently all of the reported AK inhibitors contained adenosine-like structural motif. The present review will discuss design, synthesis and analgesic and antiinflammatory properties of the novel nonnucleoside AK inhibitors that do not have close structural resemblance with the natural substrate ADO. Two classes of the nonnucleoside AK inhibitors are built on pyridopyrimidine and alkynylpyrimidine cores.

  13. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.

    PubMed Central

    Rodriguez, J F; Kahn, J S; Esteban, M

    1986-01-01

    A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses. Images PMID:3025846

  14. Crystallization and Crystal-Packing Studies of Chlorella Virus Deoxyuridine Triphosphatase

    SciTech Connect

    Homma, K.; Moriyama, H

    2009-01-01

    The 141-amino-acid deoxyuridine triphosphatase (dUTPase) from the algal Chlorella virus IL-3A and its Glu81Ser/Thr84Arg-mutant derivative Mu-22 were crystallized using the hanging-drop vapor-diffusion method at 298 K with polyethylene glycol as the precipitant. An apo IL-3A dUTPase with an amino-terminal T7 epitope tag and a carboxy-terminal histidine tag yielded cubic P2{sub 1}3 crystals with unit-cell parameter a = 106.65 {angstrom}. In the presence of dUDP, the enzyme produced thin stacked orthorhombic P222 crystals with unit-cell parameters a = 81.0, b = 96.2, c = 132.8 {angstrom}. T7-histidine-tagged Mu-22 dUTPase formed thin stacked rectangular crystals. Amino-terminal histidine-tagged dUTPases did not crystallize but formed aggregates. Glycyl-seryl-tagged dUTPases yielded cubic P2{sub 1}3 IL-3A crystals with unit-cell parameter a = 105.68 {angstrom} and hexagonal P6{sub 3} Mu-22 crystals with unit-cell parameters a = 132.07, c = 53.45 {angstrom}, {gamma} = 120{sup o}. Owing to the Thr84Arg mutation, Mu-22 dUTPase had different monomer-to-monomer interactions to those of IL-3A dUTPase.

  15. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.

    PubMed

    Rodriguez, J F; Kahn, J S; Esteban, M

    1986-12-01

    A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses.

  16. The effect of chemical agents on the turnover of the bound phosphate associated with the sodium-and-potassium ion-stimulated adenosine triphosphatase in ox brain microsomes

    PubMed Central

    Rodnight, R.

    1970-01-01

    1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate. PMID:4250238

  17. Genetic variability in copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with Alzheimer's disease in a Chinese population.

    PubMed

    Liu, H P; Lin, W Y; Wang, W F; Tsai, C H; Wu, W C; Chiou, M T; Shen, C P; Wu, B T; Tsai, F J

    2013-01-01

    Previous experiments demonstrated that transgenic mice carrying both amyloid precursor protein and mutant ATP7B transgenes reduce amyloid plaques and diminish plasma Abeta levels. These experiments showed that a structural change of ATP7B may affect Alzheimer’s disease (AD) susceptibility. In this study three missense SNPs in ATP7B gene (rs1801243, rs1801244, and rs1801249) were chosen to test whether they were associated with AD. We tested this hypothesis using a case control design. The experimental data showed that there was a significant deviation from Hardy-Weinberg equilibrium (HWE) for SNP rs1801249 (c.3419 T greater than C, Val1140Ala) in the case group (p = 0.014) but not in the control group and that there was an association between SNP rs1801249 and AD under a recessive model (p = 0.003). The data also showed that the genotype frequency distribution of the ATP7B c.1366 G greater than C polymorphism (rs1801244, Val456Leu) differed significantly between the AD patients and the normal subjects (p = 0.012). In addition, the frequency of the TGC haplotype of SNPs rs1801243, rs1801244, and rs1801249 was significantly higher in the AD patients compared with the normal subjects (p = 8.49×10-7). These observations suggested that genetic variations in the copper transporter gene ATP7B might contribute to AD pathogenesis in the Taiwanese population.

  18. Coassembly of Photosystem II and ATPase as Artificial Chloroplast for Light-Driven ATP Synthesis.

    PubMed

    Feng, Xiyun; Jia, Yi; Cai, Peng; Fei, Jinbo; Li, Junbai

    2016-01-26

    Adenosine triphosphate (ATP) is one of the most important energy sources in living cells, which can drive serial key biochemical processes. However, generation of a proton gradient for ATP production in an artificial way poses a great challenge. In nature, photophosphorylation occurring in chloroplasts is an ideal prototype of ATP production. In this paper we imitate the light-to-ATP conversion process occurring in the thylakoid membrane by construction of FoF1-ATPase proteoliposome-coated PSII-based microspheres with well-defined core@shell structures using molecular assembly. Under light illumination, PSII can split water into protons, oxygen, and electrons and can generate a proton gradient for ATPase to produce ATP. Thus, an artificially designed chloroplast for PSII-driven ATP synthesis is realized. This biomimetic system will help to understand the photophosphorylation process and may facilitate the development of ATP-driven devices by remote light control.

  19. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance

    PubMed Central

    Buscarlet, Manuel; Krasteva, Veneta; Ho, Lena; Simon, Camille; Hébert, Josée; Wilhelm, Brian; Crabtree, Gerald R.; Sauvageau, Guy; Thibault, Pierre

    2014-01-01

    In mammals, combinatorial assembly of alternative families of subunits confers functional specificity to adenosine triphosphate (ATP)-dependent SWI/SNF-like Brg/Brm-associated factor (BAF) chromatin remodeling complexes by creating distinct polymorphic surfaces for interaction with regulatory elements and DNA-binding factors. Although redundant in terms of biochemical activity, the core ATPase subunits, BRG/SMARCA4 and BRM/SMARCA2, are functionally distinct and may contribute to complex specificity. Here we show using quantitative proteomics that BAF complexes expressed in leukemia are specifically assembled around the BRG ATPase. Moreover, using a mouse model of acute myeloid leukemia, we demonstrate that BRG is essential for leukemia maintenance, as leukemic cells lacking BRG rapidly undergo cell-cycle arrest and apoptosis. Most importantly, we show that BRG is dispensable for the maintenance of immunophenotypic long-term repopulating hematopoietic stem cells, suggesting that adroit targeting of BRG in leukemia may have potent and specific therapeutic effects. PMID:24478402

  20. Effects of adenosine on polymorphonuclear leucocyte function, cyclic 3': 5'-adenosine monophosphate, and intracellular calcium.

    PubMed Central

    Nielson, C. P.; Vestal, R. E.

    1989-01-01

    1. Inhibition of human polymorphonuclear leucocyte (PMN) function by adenosine was studied with respect to effects of adenosine on intracellular cyclic AMP and calcium during the PMN respiratory burst. 2. The adenosine analogue 5'-N-ethylcarboxamide-adenosine (NECA) and L-N6-phenyl-isopropyl-adenosine (L-PIA) inhibited PMN oxygen metabolite generation with relative potencies (NECA greater than adenosine greater than L-PIA) characteristic of an A2 receptor. 3. The respiratory burst was inhibited by adenosine when PMN were activated by calcium ionophore or chemotactic peptide but not when cells where activated by oleoyl-acetyl-glycerol (OAG). 4. Adenosine increased intracellular cyclic AMP during the PMN respiratory burst regardless of whether cells were stimulated by ionophore, chemotactic peptide or OAG. 5. To determine whether the differences in cell inhibition by adenosine were related to differences in intracellular calcium mobilization by each activating agent, calcium was evaluated with the fluorescent probe, indo-1. Adenosine suppressed the increase in intracellular calcium following PMN activation by calcium ionophore or chemotactic peptide. In contrast, calcium did not increase in PMN activated by OAG and adenosine did not affect intracellular calcium changes following this stimulus. 6. These results demonstrate that physiological concentrations of adenosine inhibit the PMN respiratory burst in association with an increase in intracellular cyclic AMP and reduction of intracellular calcium. PMID:2547490

  1. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  2. ATPase Activity of Pea Cotyledon Submitochondrial Particles

    PubMed Central

    Grubmeyer, Charles; Spencer, Mary

    1980-01-01

    Submitochondrial particles freshly prepared by sonication from pea cotyledon mitochondria showed low ATPase activity. Activity increased 20-fold on exposure to trypsin. The pea cotyledon submitochondrial particle ATPase was also activated by “aging” in vitro. At pH 7.0 addition of 1 millimolar ATP prevented the activation. ATPase of freshly prepared pea cotyledon submitochondrial particles had a substrate specificity similar to that of the soluble ATPase from pea cotyledon mitochondria, with GTPase > ATPase. “Aged” or trypsin-treated particles showed equal activity with the two substrates. NaCl and NaHCO3, which stimulate the ATPase but not the GTPase activity of the soluble pea enzyme, were stimulatory to both the ATPase and GTPase activities of freshly prepared submitochondrial particles. However, they were stimulatory only to the ATPase activity of trypsin-treated or “aged” submitochondrial particles. In contrast, the ATPase activity of rat liver submitochondrial particles was stimulated by HCO3−, but inhibited by Cl−, indicating that Cl− stimulation is a distinguishing property of the pea mitochondrial ATPase complex. PMID:16661174

  3. Regulation of Cardiovascular Development by Adenosine and Adenosine-Mediated Embryo Protection

    PubMed Central

    Rivkees, Scott A.; Wendler, Christopher C.

    2012-01-01

    Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists include the methlyxanthines caffeine and theophylline. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined how adenosine acts via A1ARs to influence embryo development. Transgenic mice were studied along with embryo cultures. Embryos lacking A1ARs were markedly growth retarded following intrauterine hypoxia exposure. Studies of mice selectively lacking A1AR in the heart identify the heart as a key site of adenosines embryo protective effects. Studies of isolated embryos showed that adenosine plays a key role in modulating embryo cardiac function, especially in the setting of hypoxia. When pregnant mice were treated during embryogenesis with the adenosine antagonist caffeine, adult mice had abnormal heart function. Adenosine acts via A1ARs to play an essential role in protecting the embryo against intra uterine stress, and adenosine antagonists, including caffeine, may be an unwelcome exposure for the embryo. PMID:22423036

  4. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  5. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  6. Nucleoside triphosphatase and RNA helicase activities associated with GB virus B nonstructural protein 3.

    PubMed

    Zhong, W; Ingravallo, P; Wright-Minogue, J; Skelton, A; Uss, A S; Chase, R; Yao, N; Lau, J Y; Hong, Z

    1999-09-01

    GB virus B (GBV-B) is a positive-stranded RNA virus that belongs to the Flaviviridae family. This virus is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species). Nonstructural protein 3 (NS3) of GBV-B contains sequence motifs predictive of three enzymatic activities: serine protease, nucleoside triphosphatase (NTPase), and RNA helicase. The N-terminal serine protease has been characterized and shown to share similar substrate specificity with the HCV NS3 protease. In this report, a full-length GBV-B NS3 protein was expressed in Escherichia coli and purified to homogeneity. This recombinant protein was shown to possess polynucleotide-stimulated NTPase and double-stranded RNA (dsRNA) unwinding activities. Both activities were abolished by a single amino acid substitution, from the Lys (K) residue in the conserved walker motif A (or Ia) "AXXXXGK(210)S" to an Ala (A), confirming that they are intrinsic to GBV-B NS3. Kinetic parameters (K(m) and k(cat)) for hydrolysis of various NTPs or dNTPs were obtained. The dsRNA unwinding activity depends on the presence of divalent metal ions and ATP and requires an RNA duplex substrate with 3' unpaired regions (RNAs with 5' unpaired regions only or with blunt ends are not suitable substrates for this enzyme). This indicates that GBV-B NS3 RNA helicase unwinds dsRNA in the 3' to 5' direction. Direct interaction of the GBV-B NS3 protein with a single-stranded RNA was established using a gel-based RNA bandshift assay. Finally, a homology model of GBV-B NS3 RNA helicase domain based on the 3-dimensional structure of the HCV NS3 helicase that shows a great similarity in overall structure and surface charge distribution between the two proteins was proposed. PMID:10497107

  7. High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved

    PubMed Central

    Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

    2012-01-01

    Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

  8. Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases.

    PubMed

    Biswas, Poulomi; Kundu, Anirban; Ghosh, Ananta Kumar

    2015-01-01

    Cloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5' RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2'-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N(7)-and ribose 2'-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5' G*pppG end showed that guanine N(7) methylation occurred prior to the ribose 2'-O methylation to yield a m(7)GpppG/m(7)GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N(7)- and 2'-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the Km values of N(7)-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5' end of viral RNA. PMID:25228490

  9. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  10. A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry.

    PubMed

    Scott, Duncan E; Dawes, Gwen J; Ando, Michiyo; Abell, Chris; Ciulli, Alessio

    2009-11-23

    A new strategy that combines the concepts of fragment-based drug design and dynamic combinatorial chemistry (DCC) for targeting adenosine recognition sites on enzymes is reported. We demonstrate the use of 5'-deoxy-5'-thioadenosine as a noncovalent anchor fragment in dynamic combinatorial libraries templated by Mycobacterium tuberculosis pantothenate synthetase. A benzyl disulfide derivative was identified upon library analysis by HPLC. Structural and binding studies of protein-ligand complexes by X-ray crystallography and isothermal titration calorimetry informed the subsequent optimisation of the DCC hit into a disulfide containing the novel meta-nitrobenzyl fragment that targets the pantoate binding site of pantothenate synthetase. Given the prevalence of adenosine-recognition motifs in enzymes, our results provide a proof-of-concept for using this strategy to probe adjacent pockets for a range of adenosine binding enzymes, including other related adenylate-forming ligases, kinases, and ATPases, as well as NAD(P)(H), CoA and FAD(H2) binding proteins.

  11. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  12. The adenosine neuromodulation system in schizophrenia.

    PubMed

    Rial, Daniel; Lara, Diogo R; Cunha, Rodrigo A

    2014-01-01

    The management of schizophrenia endophenotypes, namely positive, negative, and cognitive symptoms is still an open goal, justifying the search of novel therapeutic avenues. We now review the evidence supporting the interest in targeting the adenosine modulation system to counteract the core features of schizophrenia. This interest is forwarded by the combined ability of strategies aimed at bolstering adenosine levels together with the increasingly recognized impact of adenosine A2A receptors to control dopaminergic signaling, working memory, and behavioral sensitization; this is further heralded by the suggested clinical effectiveness of therapies increasing extracellular adenosine such as dipyridamole and allopurinol and the emergent recognition of a role for adenosine in neurodevelopment. Finally, the combined role of A1 and A2A receptors in assisting the implementation of adaptive changes and encoding of information salience in neuronal circuits together with the adaptive alterations of A1 and A2A receptor density upon brain dysfunction prompts the novel working hypothesis that the parallel imbalance of adenosine formation and of A1 and A2A receptors blurs the adequate encoding of information salience in neuronal circuits, which we propose to be a core pathogenic feature in the development of schizophrenia endophenotypes. This proposal should also provide a rationale to assist the design of future therapeutic intervention targeting the adenosine modulation system to manage schizophrenia endophenotypes: these should not be based only on an attempt to target adenosine kinase-A1 receptors or only A2A receptors, but should instead simultaneously target these two arms of the adenosine modulation system. PMID:25175974

  13. Genetics and complementation of Haemophilus influenzae mutants deficient in adenosine 5'-triphosphate-dependent nuclease.

    PubMed Central

    Kooistra, J; Small, G D; Setlow, J K; Shapanka, R

    1976-01-01

    Eight different mutations in Haemophilus influenzae leading to deficiency in adenosine 5'-triphosphate (ATP)-dependent nuclease have been investigated in strains in which the mutations of the originally mutagenized strains have been transferred into the wild type. Sensitivity to mitomycin C and deoxycholate and complementation between extracts and deoxyribonucleic acid (DNA)-dependent ATPase activity have been measured. Genetic crosses have provided information on the relative position of the mutations on the genome. There are three complementation groups, corresponding to three genetic groups. The strains most sensitive to mitomycin and deoxycholate, derived from mutants originally selected on the basis of sensitivity to mitomycin C or methyl methanesulfonate, are in one group. Apparently all these sensitive strains lack DNA-dependent ATPase activity, as does a strain intermediate in sensitivity to deoxycholate, which is the sole representative of another group. There are four strains that are relatively resistant to deoxycholate and mitomycin C, and all of these contain the ATPase activity. Three of these are in the same genetic and complementation group, whereas the other incongruously belongs in the same group as the sensitive strains. It is postulated that there are three cistrons in H. influenzae that code for the three known subunits of the ATP-dependent nuclease. PMID:177397

  14. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  15. Mast Cell Adenosine Receptors Function: A Focus on the A3 Adenosine Receptor and Inflammation

    PubMed Central

    Rudich, Noam; Ravid, Katya; Sagi-Eisenberg, Ronit

    2012-01-01

    Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells (MCs), as an attractive drug candidate. Four subtypes (A1, A2a, A2b, and A3) of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R) in mediating hyper responsiveness to adenosine in MCs, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human MCs. The relevance of mouse studies to the human is discussed. PMID:22675325

  16. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  17. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  18. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons

    PubMed Central

    Hawryluk, J. M.; Ferrari, L. L.; Keating, S. A.

    2012-01-01

    Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A1 receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated. PMID:22357797

  19. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    PubMed

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  20. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  1. Vacuolar ATPase in Phagosome-Lysosome Fusion

    PubMed Central

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S.; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-01-01

    The vacuolar H+-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. PMID:25903133

  2. Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts

    SciTech Connect

    Yao, GuanFeng; Feng, HaoTian; Cai, YanLing; Qi, WeiLi; Kong, KangMei . E-mail: kangmeikong@21cn.com

    2007-06-15

    V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V{sub 1} domain responsible for ATP hydrolysis and integral V{sub 0} domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.

  3. A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation.

    PubMed

    Uchimura, Seiichi; Fujii, Takashi; Takazaki, Hiroko; Ayukawa, Rie; Nishikawa, Yosuke; Minoura, Itsushi; Hachikubo, You; Kurisu, Genji; Sutoh, Kazuo; Kon, Takahide; Namba, Keiichi; Muto, Etsuko

    2015-01-19

    Dynein is a motor protein that moves on microtubules (MTs) using the energy of adenosine triphosphate (ATP) hydrolysis. To understand its motility mechanism, it is crucial to know how the signal of MT binding is transmitted to the ATPase domain to enhance ATP hydrolysis. However, the molecular basis of signal transmission at the dynein-MT interface remains unclear. Scanning mutagenesis of tubulin identified two residues in α-tubulin, R403 and E416, that are critical for ATPase activation and directional movement of dynein. Electron cryomicroscopy and biochemical analyses revealed that these residues form salt bridges with the residues in the dynein MT-binding domain (MTBD) that work in concert to induce registry change in the stalk coiled coil and activate the ATPase. The R403-E3390 salt bridge functions as a switch for this mechanism because of its reversed charge relative to other residues at the interface. This study unveils the structural basis for coupling between MT binding and ATPase activation and implicates the MTBD in the control of directional movement.

  4. Sodium, potassium-atpases in algae and oomycetes.

    PubMed

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.

  5. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  6. Determination of adenosine effects and adenosine receptors in murine corpus cavernosum.

    PubMed

    Tostes, Rita C; Giachini, Fernanda R C; Carneiro, Fernando S; Leite, Romulo; Inscho, Edward W; Webb, R Clinton

    2007-08-01

    This study tested the hypothesis that adenosine, in murine corpora cavernosa, produces direct relaxation of smooth muscle cells and inhibition of contractile responses mediated by sympathetic nerve stimulation. Penes were excised from anesthetized male C57BL/6 mice, dissected, and cavernosal strips were mounted to record isometric force. Adenosine, 2-chloroadenosine (stable analog of adenosine), and 2-phenylaminoadenosine (CV1808) (A2(A)/A2(B) agonist) produced concentration-dependent relaxations of phenylephrine-contracted tissues. Relaxation to 2-chloroadenosine was inhibited, in a concentration-dependent manner, by 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261; A2(A) antagonist; 10(-9)-10(-6) M) and N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamida (MRS1706; A2(B) antagonist; 10(-8)-10(-6) M). The combination of both antagonists abrogated 2-chloroadenosine-induced relaxation. Electrical field stimulation (EFS; 1-32 Hz) of adrenergic nerves produced frequency-dependent contractions that were inhibited by compounds that increase adenosine levels, such as 5'-iodotubercidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor), and dipyridamole (inhibitor of adenosine transport). The adenosine A1 receptor agonist N(6)-cyclopentyladenosine (C8031) right-shifted contractile responses to EFS, with a significant inhibitory effect at 10(-6) M. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine (C101) (10(-7) M) enhanced contractile responses to EFS and eliminated the inhibitory effects of 5'-iodotubercidin. Dipyridamole and 5'-iodotubercidin had no effect on adenosine-mediated relaxation. In summary, adenosine directly relaxes cavernosal smooth muscle cells, by the activation of A2(A)/A2(B) receptor subtypes. In addition, adenosine negatively modulates sympathetic neurotransmission, by A1 receptor

  7. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  8. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  9. Inactivation of mitochondrial ATPase by ultraviolet light

    SciTech Connect

    Chavez, E.; Cuellar, A.

    1984-05-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation.

  10. Working memory and the homeostatic control of brain adenosine by adenosine kinase.

    PubMed

    Singer, P; McGarrity, S; Shen, H-Y; Boison, D; Yee, B K

    2012-06-28

    The neuromodulator adenosine maintains brain homeostasis and regulates complex behaviour via activation of inhibitory and excitatory adenosine receptors (ARs) in a brain region-specific manner. AR antagonists such as caffeine have been shown to ameliorate cognitive impairments in animal disease models but their effects on learning and memory in normal animals are equivocal. An alternative approach to reduce AR activation is to lower the extracellular tone of adenosine, which can be achieved by up-regulating adenosine kinase (ADK), the key enzyme of metabolic adenosine clearance. However, mice that globally over-express an Adk transgene ('Adk-tg' mice) were devoid of a caffeine-like pro-cognitive profile; they instead exhibited severe spatial memory deficits. This may be mechanistically linked to cortical/hippocampal N-methyl-d-aspartate receptor (NMDAR) hypofunction because the motor response to acute MK-801 was also potentiated in Adk-tg mice. Here, we evaluated the extent to which the behavioural phenotypes of Adk-tg mice might be modifiable by up-regulating adenosine levels in the cortex/hippocampus. To this end, we investigated mutant 'fb-Adk-def' mice in which ADK expression was specifically reduced in the telencephalon leading to a selective increase in cortical/hippocampal adenosine, while the rest of the brain remained as adenosine-deficient as in Adk-tg mice. The fb-Adk-def mice showed an even greater impairment in spatial working memory and a more pronounced motor response to NMDAR blockade than Adk-tg mice. These outcomes suggest that maintenance of cortical/hippocampal adenosine homeostasis is essential for effective spatial memory and deviation in either direction is detrimental with increased expression seemingly more disruptive than decreased expression.

  11. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  12. Interaction of pentobarbital with gabaergic drugs acting on the Cl(-)-ATPase activity of the plasma membranes from bream brain (Abramis brama L.).

    PubMed

    Menzikov, Sergey; Menzikova, Olga

    2002-12-16

    The present study was designed to investigate the role of the interaction of pentobarbital with gamma-aminobutyric acid (GABA)ergic drugs acting on the Cl(-)-adenosine triphosphate (ATP)ase activity of the plasma membranes fraction of bream brain. The preincubation and then incubation of the membranes with pentobarbital as well as with other GABAergic ligands was conducted at physiologic pH (7.4), i.e. at the condition where the Cl(-)-ATPase activity is not detected. Pentobarbital (1-100 microM) induces Cl(-)-ATPase activity, however at high concentration (1,000 microM) no effect of the ligand was found. In addition pentobarbital (50 microM) enhances the effect of low concentration of GABA (1 microM) on the Cl(-)-ATPase activity, but inhibits the action of high concentration of GABA (100 microM) on the enzyme. Whereas no activating effect of pentobarbital in the presence of baclofen (1 microM) was found. The blocker of GABA(A)-receptors, picrotoxin (50 microM) and bicuculline (5 microM) eliminated the action of pentobarbital on the enzyme. The present results provide evidence for the first time that at physiologic pH in incubation medium the interaction of pentobarbital with GABAergic drugs on the Cl(-)-ATPase activity is similar to the effects of these ligands on the GABA(A)-receptor.

  13. Adenosine induced coronary spasm – A rare presentation

    PubMed Central

    Arora, P.; Bhatia, V.; Arora, M.; Kaul, U.

    2014-01-01

    Adenosine is commonly used as a pharmacological agent in myocardial perfusion imaging, as an antiarrhythmic agent, and in Cath Lab. during PCI for treating no reflow phenomenon. Coronary spasm has been reported following adenosine injection during stress imaging. We report a rare complication with ST segment elevation, following adenosine injection, given for treatment of supraventricular tachycardia. PMID:24581102

  14. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    PubMed

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  15. Is the Paracoccus halodenitrificans ATPase a chimeric enzyme?

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1996-01-01

    Membranes from Paracoccus halodenitrificans contain an ATPase that is most active in the absence of NaCl. The most unusual characteristic of the enzyme is its pattern of sensitivity to various inhibitors. Azide and rhodamine 6G, inhibitors of F1F0-ATPases, inhibit ATP hydrolysis as do bafilomycin A1, concanamycin A (folimycin), N-ethylmaleimide, and p-chloromercuriphenylsulfonate which are inhibitors of vacuolar ATPases. This indiscriminate sensitivity suggests that this ATPase may be a hybrid and that caution should be exercised when using inhibition as a diagnostic for distinguishing between F1F0-ATPases and vacuolar ATPases.

  16. The Helicase-Like Domain of Plant Potexvirus Replicase Participates in Formation of RNA 5′ Cap Structure by Exhibiting RNA 5′-Triphosphatase Activity

    PubMed Central

    Li, Yi-Ija; Shih, Ting-Wan; Hsu, Yau-Heiu; Han, Yu-Tsung; Huang, Yih-Leh; Meng, Menghsiao

    2001-01-01

    Open reading frame 1 (ORF1) of potexviruses encodes a viral replicase comprising three functional domains: a capping enzyme at the N terminus, a putative helicase in the middle, and a polymerase at the C terminus. To verify the enzymatic activities associated with the putative helicase domain, the corresponding cDNA fragment from bamboo mosaic virus (BaMV) was cloned into vector pET32 and the protein was expressed in Escherichia coli and purified by metal affinity chromatography. An activity assay confirmed that the putative helicase domain has nucleoside triphosphatase activity. We found that it also possesses an RNA 5′-triphosphatase activity that specifically removes the γ phosphate from the 5′ end of RNA. Both enzymatic activities were abolished by the mutation of the nucleoside triphosphate-binding motif (GKS), suggesting that they have a common catalytic site. A typical m7GpppG cap structure was formed at the 5′ end of the RNA substrate when the substrate was treated sequentially with the putative helicase domain and the N-terminal capping enzyme, indicating that the putative helicase domain is truly involved in the process of cap formation by exhibiting its RNA 5′-triphosphatase activity. PMID:11711602

  17. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    SciTech Connect

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-04-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, (/sup 3/H)NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine.

  18. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.

    PubMed Central

    Arruda, Ana Paula; Da-Silva, Wagner S; Carvalho, Denise P; De Meis, Leopoldo

    2003-01-01

    The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism. PMID:12887329

  19. Trypsin-induced ATPase Activity in Potato Mitochondria.

    PubMed

    Jung, D W; Laties, G G

    1976-04-01

    Potato mitochondria (Solanum tuberosum var. Russet Burbank), which readily phosphorylate ADP in oxidative phosphorylation, show low levels of ATPase activity which is stimulated neither by Mg(2+), 2,4-dinitrophenol, incubation with respiratory substrates, nor disruption by sonication or treatment with Triton X-100, individually or in concert. Treatment of disrupted potato mitochondria with trypsin stimulates Mg(2+)-dependent, oligomycin-sensitive ATPase activity 10- to 15-fold, suggesting the presence of an ATPase inhibitor protein. Trypsin-induced ATPase activity was unaffected by uncoupler. Oligomycin-sensitive ATPase activity decreases as exposure to trypsin is increased. Incubation at alkaline pH or heating at 60 C for 2 minutes also activates ATPase of sonicated potato mitochondria. Disruption of cauliflower (Brassica oleracea), red sweet potato (Ipomoea batatas), and carrot (Daucus carota) mitochondria increases ATPase activity, which is further enhanced by treatment with trypsin. The significance of the tight association of the inhibitor protein and ATPase in potato mitochondria is not clear.

  20. Effect of plictran on beef heart mitochondrial ATPases.

    PubMed

    Mehrotra, B D; Prasada Rao, K S; Desaiah, D

    1985-07-01

    The in vitro effects of plictran on oligomycin-sensitive Mg2+-ATPase and Ca2+-ATPase activities in beef heart mitochondria were studied. Beef heart mitochondrial fractions were prepared by the conventional centrifugation method. ATPase activities were measured by determining the inorganic phosphate released by the hydrolysis of ATP. Plictran inhibited both oligomycin-sensitive (o.s.) Mg2+-ATPase and Ca2+ ATPase activities at nanomolar concentrations. However, plictran did not affect the oligomycin-insensitive (o.i.) Mg2+-ATPase activity at any concentration studied. Substrate activation kinetics revealed that plictran inhibited o.s. Mg2+-ATPase uncompetitively and Ca2+-ATPase non-competitively. These results clearly indicate that plictran affects ATP synthesis and calcium ion transport in beef heart mitochondria.

  1. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

  2. Characterization of a Trifunctional Mimivirus mRNA Capping Enzyme and Crystal Structure of the RNA Triphosphatase Domain

    SciTech Connect

    Benarroch,D.; Smith, P.; Shuman, S.

    2008-01-01

    The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnel fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.

  3. Protein sequence comparisons show that the 'pseudoproteases' encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family.

    PubMed Central

    McGeoch, D J

    1990-01-01

    Amino acid sequence comparisons show extensive similarities among the deoxyuridine triphosphatases (dUTPases) of Escherichia coli and of herpesviruses, and the 'protease-like' or 'pseudoprotease' sequences encoded by certain retroviruses in the oncovirus and lentivirus families and by poxviruses. These relationships suggest strongly that the 'pseudoproteases' actually are dUTPases, and have not arisen by duplication of an oncovirus protease gene as had been suggested. The herpesvirus dUTPase sequences differ from the others in that they are longer (about 370 residues, against around 140) and one conserved element ('Motif 3') is displaced relative to its position in the other sequences; a model involving internal duplication of the herpesvirus gene can account effectively for these observations. Sequences closely similar to Motif 3 are also found in phosphofructokinases, where they form part of the active site and fructose phosphate binding structure; thus these sequences may represent a class of structural element generally involved in phosphate transfer to and from glycosides. PMID:2165588

  4. Aurora kinase A activates the vacuolar H+-ATPase (V-ATPase) in kidney carcinoma cells.

    PubMed

    Al-Bataineh, Mohammad M; Alzamora, Rodrigo; Ohmi, Kazuhiro; Ho, Pei-Yin; Marciszyn, Allison L; Gong, Fan; Li, Hui; Hallows, Kenneth R; Pastor-Soler, Núria M

    2016-06-01

    Extracellular proton-secreting transport systems that contribute to extracellular pH include the vacuolar H(+)-ATPase (V-ATPase). This pump, which mediates ATP-driven transport of H(+) across membranes, is involved in metastasis. We previously showed (Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. J Biol Chem 285: 24676-24685, 2010) that V-ATPase A subunit phosphorylation at Ser-175 is important for PKA-induced V-ATPase activity at the membrane of kidney intercalated cells. However, Ser-175 is also located within a larger phosphorylation consensus sequence for Aurora kinases, which are known to phosphorylate proteins that contribute to the pathogenesis of metastatic carcinomas. We thus hypothesized that Aurora kinase A (AURKA), overexpressed in aggressive carcinomas, regulates the V-ATPase in human kidney carcinoma cells (Caki-2) via Ser-175 phosphorylation. We found that AURKA is abnormally expressed in Caki-2 cells, where it binds the V-ATPase A subunit in an AURKA phosphorylation-dependent manner. Treatment with the AURKA activator anacardic acid increased V-ATPase expression and activity at the plasma membrane of Caki-2 cells. In addition, AURKA phosphorylates the V-ATPase A subunit at Ser-175 in vitro and in Caki-2 cells. Immunolabeling revealed that anacardic acid induced marked membrane accumulation of the V-ATPase A subunit in transfected Caki-2 cells. However, anacardic acid failed to induce membrane accumulation of a phosphorylation-deficient Ser-175-to-Ala (S175A) A subunit mutant. Finally, S175A-expressing cells had decreased migration in a wound-healing assay compared with cells expressing wild-type or a phospho-mimetic Ser-175-to-Asp (S175D) mutant A subunit. We conclude that AURKA activates the V-ATPase in kidney carcinoma cells via phosphorylation of Ser-175 in the V-ATPase A subunit. This regulation contributes to kidney carcinoma V-ATPase-mediated extracellular

  5. Specific anion effects on ATPase activity, calmodulin sensitivity, and solubilization of dynein ATPases.

    PubMed

    Blum, J J; Hayes, A

    1984-01-01

    The basal ATPase activity of 30S dynein, whether obtained by extraction of ciliary axonemes with a high (0.5 M NaCl) or low (1 mM Tris-0.1 mM EDTA) ionic strength buffer is increased by NaCl, NaNO3, and Na acetate, with NaNO3 causing the largest increase. The calmodulin-activated ATPase activity of 30S dynein is also increased by addition of NaCl, NaNO3, or Na acetate, but the effects are less pronounced than on basal activity, so that the calmodulin activation ratio (CAR) decreases to 1.0 as salt concentration increases to 0.2 M. These salts also reduce the CAR of 14S dynein ATPase to 1.0 but by strongly inhibiting the calmodulin-activated ATPase activity and only slightly inhibiting the basal activity. Sodium fluoride differs both quantitatively and qualitatively from the other three salts studied. It inhibits the ATPase activity of both 14S and 30S dyneins at concentrations below 5 mM and, by a stronger inhibition of the calmodulin-activated ATPase activities, reduces the CAR to 1.0. Na acetate does not inhibit axonemal ATPase, nor does it interfere with the drop in turbidity caused by ATP and extracts very little protein from the axonemes. NaCl and, especially, NaNO3, cause a slow decrease in A350 of an axonemal suspension and an inhibition of the turbidity response to ATP. NaF, at concentrations comparable to those that inhibit the ATPase activities of the solubilized dyneins, also inhibits axonemal ATPase activity and the turbidity response. Pretreatment of demembranated axonemes with a buffer containing 0.25 M sodium acetate for 5 min followed by extraction for 5 min with a buffer containing 0.5 M NaCl and resolution of the extracted dynein on a sucrose density gradient generally yields a 30S dynein that is activated by calmodulin in a heterogeneous manner, ie, the "light" 30S dynein ATPase fractions are more activated than the "heavy" 30S dynein fractions. These results demonstrate specific anion effects on the basal and calmodulin-activated dynein ATPase

  6. Na+/K+-ATPase: Activity and inhibition

    NASA Astrophysics Data System (ADS)

    Čolović, M.; Krstić, D.; Krinulović, K.; Momić, T.; Savić, J.; Vujačić, A.; Vasić, V.

    2009-09-01

    The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4]-, [PdCl4]2-, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed.

  7. Myocardial Na,K-ATPase: Clinical aspects

    PubMed Central

    Kjeldsen, Keld

    2003-01-01

    The specific binding of digitalis glycosides to Na,K-ATPase is used as a tool for Na,K-ATPase quantification with high accuracy and precision. In myocardial biopsies from patients with heart failure, total Na,K-ATPase concentration is decreased by around 40%; a correlation exists between a decrease in heart function and a decrease in Na,K-ATPase concentration. During digitalization, around 30% of remaining pumps are occupied by digoxin. Myocardial Na,K-ATPase is also influenced by other drugs used for the treatment of heart failure. Thus, potassium loss during diuretic therapy has been found to reduce myocardial Na,K-ATPase, whereas angiotensin-converting enzyme inhibitors may stimulate Na,K pump activity. Furthermore, hyperaldosteronism induced by heart failure has been found to decrease Na,K-ATPase activity. Accordingly, treatment with the aldosterone antagonist, spironolactone, may also influence Na,K-ATPase activity. The importance of Na,K pump modulation with heart disease, inhibition in digitalization and other effects of medication should be considered in the context of sodium, potassium and calcium regulation. It is recommended that digoxin be administered to heart failure patients who, after institution of mortality-reducing therapy, still have heart failure symptoms, and that the therapy be continued if symptoms are revealed or reduced. Digitalis glycosides are the only safe inotropic drugs for oral use that improve hemodynamics in heart failure. An important aspect of myocardial Na,K pump affection in heart disease is its influence on extracellular potassium (Ke) homeostasis. Two important aspects should be considered: potassium handling among myocytes, and effects of potassium entering the extracellular space of the heart via the bloodstream. It should be noted that both of these aspects of Ke homeostasis are affected by regulatory aspects, eg, regulation of the Na,K pump by physiological and pathophysiological conditions, as well as by medical

  8. Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

    PubMed

    Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji

    2015-07-17

    Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.

  9. Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

    PubMed

    Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji

    2015-07-17

    Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle. PMID:26113637

  10. Adenosine Receptors: Expression, Function and Regulation

    PubMed Central

    Sheth, Sandeep; Brito, Rafael; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined. PMID:24477263

  11. Adenosine-induced worsening of supraventricular tachycardia

    PubMed Central

    Kunnumpuram, Georgey Koshy; Patel, Ashfaq

    2012-01-01

    An approximately 20-year-old to 30-year-old patient presented with a haemodynamically stable supraventricular tachycardia . The patient was managed with intravenous adenosine primarily, with two bolus doses of 6 and 12 mg. This, however, caused a rare paradoxical surge of tachycardia with mild haemodynamic compromise. The patient further required a combination of Metoprolol and Verapamil administration to slow down and reverse the arrhythmia. Following this the patient remained stable with no further episodes till discharge. PMID:23230260

  12. Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1985-01-01

    Membranes from Halobacterium saccharovorum contained a cryptic ATPase which required Mg(2+) or Mn(2+) and was activated by Triton X-100. The optimal pH for ATP hydrolysis was 9-10. ATP or GTP were hydrolyzed at the same rate while ITP, CTP, and UTP were hydrolyzed at about half that rate. The products of ATP hydrolysis were ADP and phosphate. The ATPase required high concentrations (3.5 M) of NaCl for maximum activity. ADP was a competitive inhibitor of the activity, with an apparent Ki of 50 micro-M. Dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis. The inhibition was marginal at the optimum pH of the enzyme. When the ATPase was preincubated with DCCD at varying pH values, but assayed at the optimal pH for activity, DCCD inhibition was observed to increase with increasing acidity of the preincubation medium. DCCD inhibition was also dependent on time of preincubation, and protein and DCCD concentrations. When preincubated at pH 6.0 for 4 h at a protein:DCCD ratio of 40 (w/w), ATPase activity was inhibited 90 percent.

  13. Chloroplast ATPase in Acetabularia acetabulum: purification and characterization of chloroplast F1-ATPase.

    PubMed

    Satoh, S; Moritani, C; Ohhashi, T; Konishi, K; Ikeda, M

    1994-03-01

    ATPases were isolated from chloroplasts of the unicellular marine alga Acetabularia acetabulum. Two preparations of ATPase, a chloroplast-enriched fraction and an alpha beta gamma-complex were compared. The alpha beta gamma-complex was released into an EDTA solution and purified by anion-exchange chromatography, hydrophobic chromatography, and gel permeation chromatography. The subunit composition of this enzyme appeared to be 52-53 (alpha), 51 (beta), and 40 (gamma) kDa from SDS-PAGE. ATPase activity was enriched about 260-fold to a specific activity of approximate 4.1 U.mg protein-1. The catalytic properties of the alpha beta gamma-complex were as follows: pH optimum at 7.5; substrate specificity, ATP > ITP, GTP > UTP = CTP (Km for ATP 0.2 mM); divalent cation requirement, Mg2+ = Mn2+ = Co2+ > Zn2+ > Ni2+ > Ca2+; ATPase activity was inhibited by monovalent anions (NO3-, SCN-), while monovalent cations had neither inhibitory nor stimulatory effect. Orthovanadate had no inhibitory effect on the enzyme activity of alpha beta gamma-complex. Azide was the most effective inhibitor of the alpha beta gamma-complex. N-Terminal amino acid sequences of the alpha and beta subunits were not obtained and appeared to be blocked. The gamma subunit gave a sequence of AGLKEMKD-XIGSVXNTKKI, which showed 60% similarity to the gamma subunits of spinach and Chlamydomonas reinhardtii CF1-ATPase and EF1-ATPase.

  14. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    SciTech Connect

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. )

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  15. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  16. Use of adenosine echocardiography for diagnosis of coronary artery disease

    SciTech Connect

    Zoghbi, W.A. )

    1991-07-01

    Two-dimensional echocardiography combined with exercise is sensitive and specific in the detection of coronary artery disease (CAD) by demonstrating transient abnormalities in wall motion. Frequently, however, patients cannot achieve maximal exercise because of various factors. Pharmacologic stress testing with intravenous adenosine was evaluated as a means of detecting CAD in a noninvasive manner. Patients with suspected CAD underwent echocardiographic imaging and simultaneous thallium 201 single-photon emission computed tomography during the intravenous administration of 140 micrograms/kg/min of adenosine. An increase in heart rate, decrease in blood pressure, and increase in double product were observed during adenosine administration. Initial observations revealed that wall motion abnormalities were induced by adenosine in areas of perfusion defects. The adenosine infusion was well tolerated, and symptoms disappeared within 1 to 2 minutes after termination of the infusion. Therefore preliminary observations suggest that adenosine echocardiography appears to be useful in the assessment of CAD.

  17. Measurement of plasma adenosine concentration: methodological and physiological considerations

    SciTech Connect

    Gewirtz, H.; Brown, P.; Most, A.S.

    1987-05-01

    This study tested the hypothesis that measurements of plasma adenosine concentration made on samples of blood obtained in dipyridamole and EHNA (i.e., stopping solution) may be falsely elevated as a result of ongoing in vitro production and accumulation of adenosine during sample processing. Studies were performed with samples of anticoagulated blood obtained from anesthesized domestic swine. Adenosine concentration of ultra filtrated plasma was determined by HPLC. The following parameters were evaluated: (i) rate of clearance of (/sup 3/H)adenosine added to plasma, (ii) endogenous adenosine concentration of matched blood samples obtained in stopping solution alone, stopping solution plus EDTA, and perchloric acid (PCA), (iii) plasma and erythrocyte endogenous adenosine concentration in nonhemolyzed samples, and (iv) plasma adenosine concentration of samples hemolyzed in the presence of stopping solution alone or stopping solution plus EDTA. We observed that (i) greater than or equal to 95% of (/sup 3/H)adenosine added to plasma is removed from it by formed elements of the blood in less than 20 s, (ii) plasma adenosine concentration of samples obtained in stopping solution alone is generally 10-fold greater than that of matched samples obtained in stopping solution plus EDTA, (iii) deliberate mechanical hemolysis of blood samples obtained in stopping solution alone resulted in substantial augmentation of plasma adenosine levels in comparison with matched nonhemolyzed specimens--addition of EDTA to stopping solution prevented this, and (iv) adenosine content of blood samples obtained in PCA agreed closely with the sum of plasma and erythrocyte adenosine content of samples obtained in stopping solution plus EDTA.

  18. Role of adenosine receptor subtypes in methamphetamine reward and reinforcement.

    PubMed

    Kavanagh, Kevin A; Schreiner, Drew C; Levis, Sophia C; O'Neill, Casey E; Bachtell, Ryan K

    2015-02-01

    The neurobiology of methamphetamine (MA) remains largely unknown despite its high abuse liability. The present series of studies explored the role of adenosine receptors on MA reward and reinforcement and identified alterations in the expression of adenosine receptors in dopamine terminal areas following MA administration in rats. We tested whether stimulating adenosine A1 or A2A receptor subtypes would influence MA-induced place preference or MA self-administration on fixed and progressive ratio schedules in male Sprague-Dawley rats. Stimulation of either adenosine A1 or A2A receptors significantly reduced the development of MA-induced place preference. Stimulating adenosine A1, but not A2A, receptors reduced MA self-administration responding. We next tested whether repeated experimenter-delivered MA administration would alter the expression of adenosine receptors in the striatal areas using immunoblotting. We observed no change in the expression of adenosine receptors. Lastly, rats were trained to self-administer MA or saline for 14 days and we detected changes in adenosine A1 and A2A receptor expression using immunoblotting. MA self-administration significantly increased adenosine A1 in the nucleus accumbens shell, caudate-putamen and prefrontal cortex. MA self-administration significantly decreased adenosine A2A receptor expression in the nucleus accumbens shell, but increased A2A receptor expression in the amygdala. These findings demonstrate that MA self-administration produces selective alterations in adenosine receptor expression in the nucleus accumbens shell and that stimulation of adenosine receptors reduces several behavioral indices of MA addiction. Together, these studies shed light onto the neurobiological alterations incurred through chronic MA use that may aid in the development of treatments for MA addiction.

  19. Caffeine intensifies taste of certain sweeteners: role of adenosine receptor.

    PubMed

    Schiffman, S S; Diaz, C; Beeker, T G

    1986-03-01

    Caffeine, a potent antagonist of adenosine receptors, potentiates the taste of some but not all sweeteners. It significantly enhances the taste of acesulfam-K, neohesperidin dihydrochalcone, d-tryptophan, thaumatin, stevioside, and sodium saccharin. Adenosine reverses the enhancement. Caffeine has no effect on aspartame, sucrose, fructose, and calcium cyclamate. These results suggest that the inhibitory A1 adenosine receptor plays an important local role in modulating the taste intensity of certain sweeteners and that several transduction mechanisms mediate sweet taste.

  20. Transport proteins.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This Teaching Resource provides and describes two animated lessons that illustrate general properties of transport proteins. The lesson called "transport protein classes" depicts major classes and subclasses of transport proteins. The "transporters, mechanism of action" lesson explains how transporters and P class ATPase (adenosine triphosphatase) pumps function. These animations serve as valuable resources for any collegiate-level course that describes these important factors. Courses that might use them include introductory biology, biochemistry, cell biology, physiology, and biophysics.

  1. Brome Mosaic Virus 1a Nucleoside Triphosphatase/Helicase Domain Plays Crucial Roles in Recruiting RNA Replication Templates

    PubMed Central

    Wang, Xiaofeng; Lee, Wai-Ming; Watanabe, Tokiko; Schwartz, Michael; Janda, Michael; Ahlquist, Paul

    2005-01-01

    Positive-strand RNA virus RNA replication is invariably membrane associated and frequently involves viral proteins with nucleoside triphosphatase (NTPase)/helicase motifs or activities. Brome mosaic virus (BMV) encodes two RNA replication factors: 1a has a C-terminal NTPase/helicase-like domain, and 2apol has a central polymerase domain. 1a accumulates on endoplasmic reticulum membranes, recruits 2apol, and induces 50- to 70-nm membrane invaginations (spherules) serving as RNA replication compartments. 1a also recruits BMV replication templates such as genomic RNA3. In the absence of 2apol, 1a dramatically stabilizes RNA3 by transferring RNA3 to a membrane-associated, nuclease-resistant state that appears to correspond to the interior of the 1a-induced spherules. Prior results show that the 1a NTPase/helicase-like domain contributes to RNA recruitment. Here, we tested mutations in the conserved helicase motifs of 1a to further define the roles of this domain in RNA template recruitment. All 1a helicase mutations tested showed normal 1a accumulation, localization to perinuclear endoplasmic reticulum membranes, and recruitment of 2apol. Most 1a helicase mutants also supported normal spherule formation. Nevertheless, these mutations severely inhibited RNA replication and 1a-induced stabilization of RNA3 in vivo. For such 1a mutants, the membrane-associated RNA3 pool was both reduced and highly susceptible to added nuclease. Thus, 1a recruitment of viral RNA templates to a membrane-associated, nuclease-resistant state requires additional functions beyond forming spherules and recruiting RNA to membranes, and these functions depend on the 1a helicase motifs. The possibility that, similar to some double-stranded RNA viruses, the 1a NTPase/helicase-like domain may be involved in importing viral RNAs into a preformed replication compartment is discussed. PMID:16227294

  2. Protein kinase A-Iα regulates Na,K-ATPase endocytosis in alveolar epithelial cells exposed to high CO(2) concentrations.

    PubMed

    Lecuona, Emilia; Sun, Haiying; Chen, Jiwang; Trejo, Humberto E; Baker, Margaret A; Sznajder, Jacob I

    2013-05-01

    Elevated concentrations of CO2 (hypercapnia) lead to alveolar epithelial dysfunction by promoting Na,K-ATPase endocytosis. In the present report, we investigated whether the CO2/HCO3(-) activated soluble adenylyl cyclase (sAC) regulates this process. We found that hypercapnia increased the production of cyclic adenosine monophosphate (cAMP) and stimulated protein kinase A (PKA) activity via sAC, which was necessary for Na,K-ATPase endocytosis. During hypercapnia, cAMP was mainly produced in specific microdomains in the proximity of the plasma membrane, leading to PKA Type Iα activation. In alveolar epithelial cells exposed to high CO2 concentrations, PKA Type Iα regulated the time-dependent phosphorylation of the actin cytoskeleton component α-adducin at serine 726. Cells expressing small hairpin RNA for PKAc, dominant-negative PKA Type Iα, small interfering RNA for α-adducin, and α-adducin with serine 726 mutated to alanine prevented Na,K-ATPase endocytosis. In conclusion, we provide evidence for a new mechanism by which hypercapnia via sAC, cAMP, PKA Type Iα, and α-adducin regulates Na,K-ATPase endocytosis in alveolar epithelial cells. PMID:23349050

  3. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment.

    PubMed

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy. PMID:27066002

  4. Adenosine analogs inhibit fighting in isolated male mice

    SciTech Connect

    Palmour, R.M.; Lipowski, C.J.; Simon, C.K.; Ervin, F.R.

    1989-01-01

    The potent adenosine analogs N-ethylcarboxamide adenosine (NECA) and phenylisopropyladenosine (PIA) inhibit fighting and associated agonistic behaviors in isolated male mice. These effects are reversed by methylxanthines; moderate doses of NECA which inhibit fighting have minimal effects on spontaneous locomotor activity. At very low doses, both NECA and PIA increase fighting in parallel with previously reported increases of motor activity. Brain levels of (/sup 3/H)-NECA and (/sup 3/H)-PIA achieved at behaviorally effective doses suggest an involvement of adenosine receptors. The biochemical mechanism of adenosine receptor action with respect to fighting is unknown, but may include neuromodulatory effects on the release of other, more classical neurotransmitters.

  5. Adenosine signaling: good or bad in erectile function?

    PubMed

    Wen, Jiaming; Xia, Yang

    2012-04-01

    The erectile status of penile tissue is governed largely by the tone of cavernosal smooth muscle cells, which is determined by the balance of vascular relaxants and constrictors. Vascular relaxants play a key role in regulating the tone of cavernosal smooth muscle and thus the initiation and maintenance of penile erection. Early studies drew attention to the potential role of adenosine signaling in this process. However, the serendipitous discovery of the effect of sildenafil on erectile physiology drew more attention toward nitric oxide (NO) as a vasodilator in the process of penile erection, and a recently discovered, unexpected erectile phenotype of adenosine deaminase-deficient mice reemphasizes the importance of adenosine as a key regulatory of erectile status. Adenosine, like NO, is a potent and short-lived vasorelaxant that functions via cyclic nucleotide second messenger signaling to promote smooth muscle relaxation. Recent studies reviewed here show that adenosine functions to relax the corpus cavernosum and promote penile erection. Excess adenosine in penile tissue contributes to the disorder called priapism, and impaired adenosine signaling is associated with erectile dysfunction. More recent research summarized in this review reveals that adenosine functions as a key endogenous vasodilator in the initiation and maintenance of normal penile erection. This new insight highlights adenosine signaling pathways operating in penile tissue as significant therapeutic targets for the treatment of erectile disorders.

  6. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation.... Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  7. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters.

    PubMed

    Monteiro, M Cândida; De Lucas, J Ramón

    2010-01-01

    The identification of essential genes represents a critical step in the discovery of novel therapeutic targets in Aspergillus fumigatus. Structural analyses of the Saccharomyces cerevisiae RNA triphosphatase pointed out this enzyme as an attractive therapeutic target for fungal infections. In addition, demonstration of the essentiality of the S. cerevisiae RNA triphosphatase encoding gene enhanced the value of this potential therapeutic target. Nevertheless, consideration of a fungal RNA triphosphatase as an ideal therapeutic target needs confirmation of the essentiality of the respective gene in a fungal pathogen. In this work, we analyzed the essentiality of the A. fumigatus triA gene, encoding RNA triphosphatase, by conditional gene expression and heterokaryon deletion. Using the conditional gene expression driven by the alcA promoter (alcA(P)), we found that TriA depletion causes morphological abnormalities that result in a very strong growth inhibition. Nevertheless, since a strict terminal phenotype was not observed, the essentiality of the triA gene could not be ensured. Accordingly, the essentiality of this gene was analyzed by the heterokaryon rescue technique. Results obtained unequivocally demonstrated the essentiality of the A. fumigatus triA gene, indicating the suitability of the RNA triphosphatase as an ideal therapeutic target to treat A. fumigatus infections. Besides, a second conditional gene expression system, based on the niiA promoter (niiA(P)), was utilized in this work. Although the niiA(P)-mediated repression of triA was less severe than that driven by the alcA(P), a strong growth inhibition was also found in niiA(P)-triA strains. Finally, E-tests performed to determine whether triA down-regulated cells became more sensitive to antifungals suggest a synergic effect between amphotericin B and another antifungal inhibiting the A. fumigatus RNA triphosphatase activity.

  8. Introduction to Adenosine Receptors as Therapeutic Targets

    PubMed Central

    Jacobson, Kenneth A.

    2012-01-01

    Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four sub-types of G protein-coupled adenosine receptors (ARs): A1, A2A, A2B, and A3. The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A2A and A3), cardioprotective (preconditioning by A1 and A3 and postconditioning by A2B), cerebroprotective (A1 and A3), and antinociceptive (A1) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A1), antifibrotic (A2A), neuroprotective (A2A), and antiglaucoma (A3) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A1 and A3 ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs. PMID:19639277

  9. Adenosine signaling in normal and sickle erythrocytes and beyond

    PubMed Central

    Zhang, Yujin; Xia, Yang

    2012-01-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression

  10. Characterization of adenosine binding proteins in human placental membranes

    SciTech Connect

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  11. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases.

  12. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases. PMID:25631710

  13. Kinesin ATPase: Rate-limiting ADP release

    SciTech Connect

    Hackney, D.D.

    1988-09-01

    The ATPase rate of kinesin isolated from bovine brain by the method of S.A. Kuznetsov and V.I. Gelfand is stimulated 1000-fold by interaction with tubulin. The tubulin-stimulated reaction exhibits no extra incorporation of water-derived oxygens over a wide range of ATP and tubulin concentrations, indicating that P/sub i/ release is faster than the reversal of hydrolysis. ADP release, however, is slow for the basal reaction and its release is rate limiting as indicated by the very tight ADP binding (K/sub i/ < 5 nM), the retention of a stoichiometric level of bound ADP through ion-exchange chromatography and dialysis, and the reversible labeling of a bound ADP by (/sup 14/C)ATP at the steady-state ATPase rate as shown by centrifuge gel filtration and inaccessibility to pyruvate kinase. Tubulin accelerates the release of the bound ADP consistent with its activation of the net ATPase reaction. The detailed kinetics of ADP release in the presence of tubulin are biphasic indicating apparent heterogeneity with a fraction of the kinesin active sites being unaffected by tubulin.

  14. Kinesin ATPase: Rate-Limiting ADP Release

    NASA Astrophysics Data System (ADS)

    Hackney, David D.

    1988-09-01

    The ATPase rate of kinesin isolated from bovine brain by the method of S. A. Kuznetsov and V. I. Gelfand [(1986) Proc. Natl. Acad. Sci. USA 83, 8530-8534)] is stimulated 1000-fold by interaction with tubulin (turnover rate per 120-kDa peptide increases from ≈ 0.009 sec-1 to 9 sec-1). The tubulin-stimulated reaction exhibits no extra incorporation of water-derived oxygens over a wide range of ATP and tubulin concentrations, indicating that Pi release is faster than the reversal of hydrolysis. ADP release, however, is slow for the basal reaction and its release is rate limiting as indicated by the very tight ADP binding (Ki < 5 nM), the retention of a stoichiometric level of bound ADP through ion-exchange chromatography and dialysis, and the reversible labeling of a bound ADP by [14C]ATP at the steady-state ATPase rate as shown by centrifuge gel filtration and inaccessibility to pyruvate kinase. Tubulin accelerates the release of the bound ADP consistent with its activation of the net ATPase reaction. The detailed kinetics of ADP release in the presence of tubulin are biphasic indicating apparent heterogeneity with a fraction of the kinesin active sites being unaffected by tubulin.

  15. Norepinephrines effect on adenosine transport in the proximal straight tubule

    SciTech Connect

    Barfuss, D.W.; McCann, W.P.; Katholi, R.E.

    1986-03-01

    The effect of norepinephrine on C/sup 14/-adenosine transport in the rabbit proximal tubule (S/sub 2/) was studied. The transepithelial transport of adenosine (0.02 mM0 from lumin to bathing solution was measured by its rate of appearance (J/sub A/) in the bathing solution and by its disappearances (J/sub D/) from the luminal fluid. Norepinephrine (0.24 ..mu..M) was added to the bathing solution after a control flux period. After three samples from the experiment period the tubules were quickly harvested and the cellular concentration of C/sup 14/-adenosine was determined. The high cellular adenosine concentration and th marked difference in adenosine appearance rate in the bathing solution compared to the luminal disappearance rate indicates the absorbed adenosine is trapped in the cells. This trapping may be due to adenosine metabolism or difficulty of crossing the basolateral membrane. Whichever is the case, norepinephrine appears to stimulate movement of adenosine or its metabolites into the bathing solution across the basolateral membrane.

  16. Comorbidities in Neurology: Is Adenosine the Common Link?

    PubMed Central

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  17. Effect of theophylline on adenosine production in the canine myocardium

    SciTech Connect

    McKenzie, J.E.; Steffen, R.P.; Haddy, F.J.

    1987-01-01

    Adenosine is thought to participate in local regulation of coronary blood flow. However, competitive antagonists of adenosine fail to block myocardial active hyperemia. The authors examined the effect of locally administered theophylline on active hyperemia and myocardial adenosine production during intracoronary isoproterenol infusion in the dog heart. Isoproterenol decreased coronary resistance and increased myocardial adenosine production. Infusion of theophylline at a rate that attenuated the vasodilator response to exogenously administered adenosine failed to attenuate the increase in coronary blood flow produced by isoproterenol. However, theophylline plus isoproterenol production greater increases in myocardial adensine production than isoproterenol alone. The curves relating resistance and adenosine in the presence of theophylline fell to the right of those in the absence of theophylline. These findings suggest that the failure of theophylline to attenuate isoproterenol hyperemia in the dog heart results at least in part from an increase in adenosine concentration at the arteriole to a level beyond that blocked by this competitive antagonist and that adenosine may in fact play a role in isoproterenol-induced active hyperemia.

  18. Vacuolar-ATPase (V-ATPase) Mediates Progesterone-Induced Uterine Fluid Acidification in Rats.

    PubMed

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-04-01

    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence.

  19. Vacuolar-ATPase (V-ATPase) Mediates Progesterone-Induced Uterine Fluid Acidification in Rats.

    PubMed

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-04-01

    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence. PMID:26403527

  20. Mode of Cell Death Induction by Pharmacological Vacuolar H+-ATPase (V-ATPase) Inhibition*

    PubMed Central

    von Schwarzenberg, Karin; Wiedmann, Romina M.; Oak, Prajakta; Schulz, Sabine; Zischka, Hans; Wanner, Gerhard; Efferth, Thomas; Trauner, Dirk; Vollmar, Angelika M.

    2013-01-01

    The vacuolar H+-ATPase (V-ATPase), a multisubunit proton pump, has come into focus as an attractive target in cancer invasion. However, little is known about the role of V-ATPase in cell death, and especially the underlying mechanisms remain mostly unknown. We used the myxobacterial macrolide archazolid B, a potent inhibitor of the V-ATPase, as an experimental drug as well as a chemical tool to decipher V-ATPase-related cell death signaling. We found that archazolid induced apoptosis in highly invasive tumor cells at nanomolar concentrations which was executed by the mitochondrial pathway. Prior to apoptosis induction archazolid led to the activation of a cellular stress response including activation of the hypoxia-inducible factor-1α (HIF1α) and autophagy. Autophagy, which was demonstrated by degradation of p62 or fusion of autophagosomes with lysosomes, was induced at low concentrations of archazolid that not yet increase pH in lysosomes. HIF1α was induced due to energy stress shown by a decline of the ATP level and followed by a shutdown of energy-consuming processes. As silencing HIF1α increases apoptosis, the cellular stress response was suggested to be a survival mechanism. We conclude that archazolid leads to energy stress which activates adaptive mechanisms like autophagy mediated by HIF1α and finally leads to apoptosis. We propose V-ATPase as a promising drugable target in cancer therapy caught up at the interplay of apoptosis, autophagy, and cellular/metabolic stress. PMID:23168408

  1. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  2. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  3. ATP-binding sites in brain p97/VCP (valosin-containing protein), a multifunctional AAA ATPase.

    PubMed Central

    Zalk, Ran; Shoshan-Barmatz, Varda

    2003-01-01

    VCP (valosin-containing protein) or p97 is a member of the AAA family (ATPases associated with a variety of cellular activities family), a diverse group of proteins sharing a key conserved AAA module containing duplicate putative ATP-binding sites. Although the functions of the AAA family are related to their putative ATP-binding sites, the binding of ATP to these sites has not yet been demonstrated. In the present study, the ATP-binding site(s) of brain VCP was characterized using the photoreactive ATP analogue, BzATP [3'- O -(4-benzoylbenzoyl)ATP]. Photo-activation of Bz-[alpha-(32)P]ATP resulted in its covalent binding to a 97-kDa purified soluble or membrane-associated protein, identified by amino acid sequencing as VCP. Bz-[alpha-(32)P]ATP covalently bound to the purified homo-hexameric VCP with an apparent high affinity (74-111 nM). A molar stoichiometry of 2.23+/-0.14 BzATP bound per homo-hexameric VCP (n =6) was determined using different methods for analysis of radiolabelling and protein determination. Nucleotides inhibited the binding of Bz-[alpha-(32)P]ATP to VCP with the following efficiency: BzATP>ATP>ADP>>adenosine 5'-[beta,gamma-imido]triphosphate>or=adenosine 5'-[beta,gamma-methylene]triphosphate, whereas AMP, GTP and CTP were ineffective. VCP was observed to possess very low ATPase activity, with nucleotide specificity similar to that for BzATP binding. Conformational changes induced by an alternating site mechanism for ATP binding are suggested as a molecular mechanism for coupling ATP binding to the diverse activities of the AAA family. PMID:12747802

  4. Serum adenosine deaminase activity in cutaneous anthrax

    PubMed Central

    Sunnetcioglu, Mahmut; Karadas, Sevdegul; Aslan, Mehmet; Ceylan, Mehmet Resat; Demir, Halit; Oncu, Mehmet Resit; Karahocagil, Mustafa Kasım; Sunnetcioglu, Aysel; Aypak, Cenk

    2014-01-01

    Background Adenosine deaminase (ADA) activity has been discovered in several inflammatory conditions; however, there are no data associated with cutaneous anthrax. The aim of this study was to investigate serum ADA activity in patients with cutaneous anthrax. Material/Methods Sixteen patients with cutaneous anthrax and 17 healthy controls were enrolled. We measured ADA activity; peripheral blood leukocyte, lymphocyte, neutrophil, and monocyte counts; erythrocyte sedimentation rate; and C reactive protein levels. Results Serum ADA activity was significantly higher in patients with cutaneous anthrax than in the controls (p<0.001). A positive correlation was observed between ADA activity and lymphocyte counts (r=0.589, p=0.021) in the patient group. Conclusions This study suggests that serum ADA could be used as a biochemical marker in cutaneous anthrax. PMID:24997584

  5. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  6. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  7. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  8. Adenosine deaminase in disorders of purine metabolism and in immune deficiency

    SciTech Connect

    Tritsch, G.L.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the selection titles are: Adenosine Deaminase Impairment and Ribonucleotide Reductase in Human Cells; Adenosine Deaminase and Malignant Cells; Inhibition of Adenosine Deaminase to Increase the Antitumor Activity of Adenine Nucleoside Analogues; and Molecular Biology of the Adenosine Deaminase Gene and Messenger RNA.

  9. Purification and Properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  10. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  11. Purification and properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    The paper reports properties of a sulfite-activated ATPase from Sulfolobus solfataricus, purified using ammonium sulfate precipitation, column chromatography on UltraGel and Sepharose 6B, and SDS-PAGE. The 92-fold purified enzyme had a relative molecular mass of 370,000. It could be dissociated into three subunits with respective molecular masses of 63,000, 48,000, and 24,000. The ATPase activity was found to be inhibitable by nitrate, N-ethylmaleimide (which bound predominantly to the largest subunit), and 4-chloro 7-nitrobenzofurazan, but not by azide, quercetin, or vanadate. While the ATPase from S. solfataricus shared a number of properties with the S. acidocaldarius ATPase, there were also significant differences suggesting the existence of several types of archaeal ATPases.

  12. Anatomy of F1-ATPase powered rotation

    PubMed Central

    Martin, James L.; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D.

    2014-01-01

    F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank). PMID:24567403

  13. Self-association of isolated large cytoplasmic domain of plasma membrane H+ -ATPase from Saccharomyces cerevisiae: role of the phosphorylation domain in a general dimeric model for P-ATPases.

    PubMed

    Almeida, W I; Martins, O B; Carvalho-Alves, P C

    2006-11-01

    Large cytoplasmic domain (LCD) plasma membrane H+ -ATPase from S. cerevisiae was expressed as two fusion polypeptides in E. coli: a DNA sequence coding for Leu353-Ileu674 (LCDh), comprising both nucleotide (N) and phosphorylation (P) domains, and a DNA sequence coding for Leu353-Thr543 (LCDDeltah, lacking the C-terminus of P domain), were inserted in expression vectors pDEST-17, yielding the respective recombinant plasmids. Overexpressed fusion polypeptides were solubilized with 6 M urea and purified on affinity columns, and urea was removed by dialysis. Their predicted secondary structure contents were confirmed by CD spectra. In addition, both recombinant polypeptides exhibited high-affinity 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5'-triphosphate (TNP-ATP) binding (Kd = 1.9 microM and 2.9 microM for LCDh and LCDDeltah, respectively), suggesting that they have native-like folding. The gel filtration profile (HPLC) of purified LCDh showed two main peaks, with molecular weights of 95 kDa and 39 kDa, compatible with dimeric and monomeric forms, respectively. However, a single elution peak was observed for purified LCDDeltah, with an estimated molecular weight of 29 kDa, as expected for a monomer. Together, these data suggest that LCDh exist in monomer-dimer equilibrium, and that the C-terminus of P domain is necessary for self-association. We propose that such association is due to interaction between vicinal P domains, which may be of functional relevance for H+ -ATPase in native membranes. We discuss a general dimeric model for P-ATPases with interacting P domains, based on published crystallography and cryo-electron microscopy evidence.

  14. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase

    SciTech Connect

    Harvey, B.; Lacoste, I.; Ehrenfeld, J. )

    1991-04-01

    We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride, indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+).

  15. Adenosine receptor ligands: differences with acute versus chronic treatment

    PubMed Central

    Jacobson, Kenneth A.; von Lubitz, Dag K. J. E.; Daly, John W.; Fredholm, Bertil B.

    2012-01-01

    Adenosine receptors have been the target of intense research with respect to potential use of selective ligands in a variety of therapeutic areas. Caffeine and theophylline are adenosine receptor antagonists, and over the past three decades a wide range of selective agonists and antagonists for adenosine receptor subtypes have been developed. A complication to the therapeutic use of adenosine receptor ligands is the observation that the effects of acute administration of a particular ligand can be diametrically opposite to the chronic effects of the same ligand. This ‘effect inversion’ is discussed here by Ken Jecobson and colleagues, and has been observed for effects on cognitive processes, seizures and ischaemic damage. PMID:8936347

  16. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  17. Localization of site-specific probes on the Ca-ATPase of sarcoplasmic reticulum using fluorescence energy transfer.

    PubMed

    Squier, T C; Bigelow, D J; Garcia de Ancos, J; Inesi, G

    1987-04-01

    Highly reactive sulfhydryls, previously labeled with an iodoacetamide spin label on the Ca-ATPase of sarcoplasmic reticulum, were labeled with the fluorescent probe, 5-(2-[iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), without loss of enzymatic activity. We have selectively measured the apparent distance of the more reactive site, relative to other site-specific probes at both the nucleotide and the high affinity calcium binding sites. Fluorescence energy transfer efficiencies from the donor IAEDANS to two acceptors: fluorescein 5'-isothiocyanate or 2',3'-O-(2,4,3-trinitrophenyl)adenosine monophosphate, situated at or near the nucleotide site, were measured using fluorescence lifetimes and yields. Fluorescence on polyacrylamide gels shows that the IAEDANS and fluorescein 5'-isothiocyanate labels are both associated with the B tryptic fragment. The energy transfer measurements are consistent with distances of 56 and 68 A between IAEDANS and these respective binding sites. On the other hand, energy transfer measurements using the lanthanide, praseodymium (Pr3+), as an acceptor indicate that IAEDANS is located 16-18 A from the binding site(s) of this calcium analog. Pr3+ is shown to be a good analog for calcium binding to the high affinity sites on the enzyme since it competitively displaces calcium, as evidenced by the reversal of the specific calcium-dependent intrinsic fluorescent signal and inactivation of ATPase activity, over the same narrow range in Pr3+ concentration where energy transfer is observed. Our observations suggest that the portion of the B fragment spanning the cytoplasmic portion of the ATPase is folded onto the A fragment, bringing the IAEDANS label in close proximity to the high affinity calcium binding domain.

  18. Structural dynamics of the Ca2(+)-ATPase of sarcoplasmic reticulum. Temperature profiles of fluorescence polarization and intramolecular energy transfer.

    PubMed

    Jona, I; Matko, J; Martonosi, A

    1990-10-01

    The temperature dependence of fluorescence polarization and Förster-type resonance energy transfer (FRET) was analyzed in the Ca2(+)-ATPase of sarcoplasmic reticulum using protein tryptophan and site-specific fluorescence indicators such as 5-[2-[iodoacetyl)amino)ethyl]aminonaphthalene-1-sulfonic acid (IAEDANS), fluorescein 5'-isothiocyanate (FITC), 2',3'-O-(2,4,3-trinitrophenyl)adenosine monophosphate (TNP-AMP) or lanthanides (Pr3+, Nd3+) as probes. The normalized energy transfer efficiency between AEDANS bound at cysteine-670 and -674 and FITC bound at lysine-515 increases with increasing temperature in the range of 10-37 degrees C, indicating the existence of a relatively flexible structure in the region of the ATPase molecule that links the AEDANS to the FITC site. These observations are consistent with the theory of Somogyi, Matko, Papp, Hevessy, Welch and Damjanovich (Biochemistry 23 (1984) 3403-3411) that thermally induced structural fluctuations increase the energy transfer. Structural fluctuations were also evident in the energy transfer between FITC linked to the nucleotide-binding domain and Nd3+ bound at the putative Ca2+ sites. By contrast the normalized energy transfer efficiency between AEDANS and Pr3+ was relatively insensitive to temperature, suggesting that the region between cysteine-670 and the putative Ca2+ site monitored by the AEDANS-Pr3+ pair is relatively rigid. A combination of the energy transfer data with the structural information derived from analysis of Ca2(+)-ATPase crystals yields a structural model, in which the location of the AEDANS-, FITC- and Ca2+ sites are tentatively identified.

  19. Determination of the ATP Affinity of the Sarcoplasmic Reticulum Ca(2+)-ATPase by Competitive Inhibition of [γ-(32)P]TNP-8N3-ATP Photolabeling.

    PubMed

    Clausen, Johannes D; McIntosh, David B; Woolley, David G; Andersen, Jens Peter

    2016-01-01

    The photoactivation of aryl azides is commonly employed as a means to covalently attach cross-linking and labeling reagents to proteins, facilitated by the high reactivity of the resultant aryl nitrenes with amino groups present in the protein side chains. We have developed a simple and reliable assay for the determination of the ATP binding affinity of native or recombinant sarcoplasmic reticulum Ca(2+)-ATPase, taking advantage of the specific photolabeling of Lys(492) in the Ca(2+)-ATPase by [γ-(32)P]2',3'-O-(2,4,6-trinitrophenyl)-8-azido-adenosine 5'-triphosphate ([γ-(32)P]TNP-8N3-ATP) and the competitive inhibition by ATP of the photolabeling reaction. The method allows determination of the ATP affinity of Ca(2+)-ATPase mutants expressed in mammalian cell culture in amounts too minute for conventional equilibrium binding studies. Here, we describe the synthesis and purification of the [γ-(32)P]TNP-8N3-ATP photolabel, as well as its application in ATP affinity measurements. PMID:26695037

  20. Determination of the ATP Affinity of the Sarcoplasmic Reticulum Ca(2+)-ATPase by Competitive Inhibition of [γ-(32)P]TNP-8N3-ATP Photolabeling.

    PubMed

    Clausen, Johannes D; McIntosh, David B; Woolley, David G; Andersen, Jens Peter

    2016-01-01

    The photoactivation of aryl azides is commonly employed as a means to covalently attach cross-linking and labeling reagents to proteins, facilitated by the high reactivity of the resultant aryl nitrenes with amino groups present in the protein side chains. We have developed a simple and reliable assay for the determination of the ATP binding affinity of native or recombinant sarcoplasmic reticulum Ca(2+)-ATPase, taking advantage of the specific photolabeling of Lys(492) in the Ca(2+)-ATPase by [γ-(32)P]2',3'-O-(2,4,6-trinitrophenyl)-8-azido-adenosine 5'-triphosphate ([γ-(32)P]TNP-8N3-ATP) and the competitive inhibition by ATP of the photolabeling reaction. The method allows determination of the ATP affinity of Ca(2+)-ATPase mutants expressed in mammalian cell culture in amounts too minute for conventional equilibrium binding studies. Here, we describe the synthesis and purification of the [γ-(32)P]TNP-8N3-ATP photolabel, as well as its application in ATP affinity measurements.

  1. The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates

    PubMed Central

    Iyer, Lakshminarayan M; Aravind, L

    2002-01-01

    Background The CyaB protein from Aeromonas hydrophila has been shown to possess adenylyl cyclase activity. While orthologs of this enzyme have been found in some bacteria and archaea, it shows no detectable relationship to the classical nucleotide cyclases. Furthermore, the actual biological functions of these proteins are not clearly understood because they are also present in organisms in which there is no evidence for cyclic nucleotide signaling. Results We show that the CyaB like adenylyl cyclase and the mammalian thiamine triphosphatases define a novel superfamily of catalytic domains called the CYTH domain that is present in all three superkingdoms of life. Using multiple alignments and secondary structure predictions, we define the catalytic core of these enzymes to contain a novel α+β scaffold with 6 conserved acidic residues and 4 basic residues. Using contextual information obtained from the analysis of gene neighborhoods and domain fusions, we predict that members of this superfamily may play a central role in the interface between nucleotide and polyphosphate metabolism. Additionally, based on contextual information, we identify a novel domain (called CHAD) that is predicted to functionally interact with the CYTH domain-containing enzymes in bacteria and archaea. The CHAD is predicted to be an alpha helical domain, and contains conserved histidines that may be critical for its function. Conclusions The phyletic distribution of the CYTH domain suggests that it is an ancient enzymatic domain that was present in the Last Universal Common Ancestor and was involved in nucleotide or organic phosphate metabolism. Based on the conservation of catalytic residues, we predict that CYTH domains are likely to chelate two divalent cations, and exhibit a reaction mechanism that is dependent on two metal ions, analogous to nucleotide cyclases, polymerases and certain phosphoesterases. Our analysis also suggests that the experimentally characterized members of this

  2. d-Propranolol prevents adenosine formation associated with myocardial hypoperfusion.

    PubMed

    Wangler, R D; Peterson, W P; Sparks, H V

    1989-03-01

    d-Propranolol eliminates the increased adenine nucleoside release from hypoperfused hearts [R. D. Wangler, D. F. DeWitt, and H. V. Sparks, Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H330-H336, 1984]. To determine whether d-propranolol reduces adenosine formation or adenosine release into the vascular compartment, we measured myocardial tissue adenosine (TADO). Decreased formation would lower TADO, whereas decreased release would elevate TADO. Reduction of perfusion pressure by 50% reduced coronary flow (CF), venous oxygen tension (PVO2), and myocardial oxygen consumption (MVO2) by approximately 40, 25, and 35%, respectively. Total adenosine and inosine released during 30 min of hypoperfusion increased 10- and 5-fold, respectively. Also, TADO increased from 2.68 +/- 0.37 to 5.17 +/- 0.67 nmol/g (P less than 0.05). In the presence of d-propranolol, the same reduction in perfusion pressure caused a similar decrease in CF and MVO2. d-Propranolol eliminated the release of adenosine and inosine associated with hypoperfusion. TADO after 30 min of hypoperfusion plus d-propranolol was not significantly increased (3.27 +/- 0.40 nmol/g) and was significantly less than hypoperfused hearts. When severe hypoperfusion was created by reducing perfusion pressure 75%, adenosine release still did not increase if d-propranolol was present. When adenosine release was plotted as a function of oxygen supply-consumption, they were related in a hyperbolic fashion. Despite the severity of hypoperfusion, in the presence of d-propranolol the supply-to-consumption ratio was similar to that of the control perfusion group (no drug). We conclude that d-propranolol blocks nucleoside formation during hypoperfusion by reducing oxygen demand such that a reduction of oxygen supply no longer stimulates adenosine formation. PMID:2923237

  3. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase.

    PubMed

    Zhang, Min; Guo, Su-Miao; Li, Ying-Ru; Zuo, Peng; Ye, Bang-Ce

    2012-06-01

    A simple and reliable fluorescent molecular beacon is developed utilizing DNA-templated silver nanoclusters as a signal indicator and adenosine triphosphate (ATP) and adenosine deaminase as mechanical activators.

  4. A selective adenosine sensor derived from a triplex DNA aptamer.

    PubMed

    Patel, Mayurbhai; Dutta, Avishek; Huang, Haidong

    2011-07-01

    The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM. PMID:21547431

  5. Intrarenal blood flow distribution during adenosine-mediated vasoconstriction.

    PubMed

    Macias, J F; Fiksen-Olsen, M; Romero, J C; Knox, F G

    1983-01-01

    Intrarenal infusion of adenosine induces an initial vasoconstriction followed by a subsequent vasodilation. The intrarenal distribution of blood flow in the vasoconstriction phase is unknown. The present study was undertaken to assess the effect of intrarenal infusion of adenosine on intracortical distribution of renal blood flow during both the vasoconstriction and vasodilation phases. Renal blood flow distribution was measured with radiolabeled microspheres in anesthetized sodium-depleted dogs before and during the early vasoconstriction phase and the late vasodilation phase of intrarenal infusion of adenosine. During the vasoconstriction phase, there was a uniform decrease in blood flow in each renal cortical zone. In the late phase of adenosine infusion, there was a significant increase in deep cortical flow without significant changes in superficial cortical flow compared with control. The effects of adenosine were also compared with those exerted by norepinephrine in which decreased blood flow was demonstrated in all zones. We conclude that the vasoconstrictor phase of adenosine infusion is characterized by a uniform reduction of renal blood flow to all cortical zones, whereas the vasodilator phase is characterized by a selective deep cortical vasodilation.

  6. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  7. Adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase.

    PubMed Central

    Guranowski, A; Günther Sillero, M A; Sillero, A

    1994-01-01

    Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase. Images PMID:7910605

  8. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    PubMed Central

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity, although the activity was lower than that of the wild-type SR Ca(2+)-ATPase. Moreover, this Ca(2+)-sensitive ATPase activity was inhibited by ouabain. The chimera NCC, in which Met1-Gly354 of the SR Ca(2+)-ATPase were replaced with the corresponding portion of the Na+,K(+)-ATPase, lost the thapsigargin-sensitive Ca(2+)-ATPase activity seen in CCC and [n/c]CC. [3H]Ouabain binding to [n/c]CC and NCC demonstrated that the affinity for this inhibitor seen in the wild-type chicken Na+,K(+)-ATPase was restored in these chimeric molecules. Thus, the ouabain-binding domains are distinct from the thapsigargin sites; ouabain binds to the amino-terminal portion (Met1 to Asp200) of the Na+,K(+)-ATPase alpha 1 subunit, whereas thapsigargin interacts with the regions after Asp162 of the Ca(2+)-ATPase. Moreover, the amino-terminal 200 amino acids of the Na+,K(+)-ATPase alpha 1 subunit are sufficient to exert ouabain-dependent inhibition even after incorporation into the corresponding portion of the Ca(2+)-ATPase, and the segment Ile163 to Gly354 of the SR Ca(2+)-ATPase is critical for thapsigargin- and Ca(2+)-sensitive ATPase activity. Images Fig. 5 PMID:8415625

  9. Adaptations in adenosine signaling in drug dependence: therapeutic implications.

    PubMed

    Hack, Stephen P; Christie, Macdonald J

    2003-01-01

    Adenosine is an important endogenous purine neuromodulator in the central nervous system that modulates many important cellular processes in neurons. The physiological effects of adenosine are transduced through four pharmacologically classified receptor types i.e., A1, A2A, A2B and A3. All adenosine receptors are G-protein coupled receptors (GPCR) of the type 1 variety. Adaptations in adenosine signaling have been implicated in a wide range of pathophysiological processes, such as epilepsies, sleep disorders, pain, and drug addictions. Knowledge relating to the etiology of addictive processes is far from complete, and as a result the therapeutic options to deal with drug dependence issues are limited. Drugs of abuse mediate their effects through many distinct cellular effectors, such as neurotransmitter transporters, ion channels, and receptor proteins. However, a unifying feature of the major drugs of abuse-i.e., opiates, cocaine, and alcohol-is that they all directly or indirectly modulate adenosine signaling in neurons. Agents targeting adenosine receptors may therefore offer novel avenues for the development of therapies to manage or treat addictions. A consistent cellular adaptation to long-term drug use is the up- or down-regulation of signaling pathways driven by adenylyl cyclase/cyclic AMP (cAMP) in several brain regions linked to addiction. Withdrawal from mu-opioids or cocaine following their chronic administration leads to an upregulation of adenylyl cyclase-mediated signaling, resulting in high levels of cAMP. Cyclic AMP produced in this way acts as a substrate for the endogenous production of adenosine. Increased levels of endogenous adenosine interact with presynaptic A1 receptors to inhibit the excessive neuronal excitation often seen during morphine/cocaine withdrawal. These pre-clinical findings fit well with other data indicating that drugs which boost endogenous adenosine levels or directly interact with inhibitory A1 receptors can alleviate

  10. Interstitial adenosine concentration is increased by dipyridamole

    SciTech Connect

    Gorman, M.W.; Wangler, R.D.; DeWitt, D.F.; Wang, C.Y.; Bassingthwaighte, J.B.; Sparks, H.V.

    1986-03-01

    The authors used the multiple indicator dilution technique to observe the capillary transport of adenosine (ADO) in isolated guinea pig hearts. Radiolabelled albumin, sucrose and ADO were injected on the arterial side and measured in venous samples collected during the following 20 seconds. Transport parameters calculated from these data include permeability-surface area products (PS) for transendothelial diffusion, endothelial cell (EC) uptake at the lumenal and ablumenal membranes, and EC metabolism. With simultaneous measurements of arterial and venous ADO concentrations and flow, the authors calculated the steady-state interstitial fluid (ISF) ADO concentration. Under control conditions the venous ADO concentration was 7.1 +/- 2.8 nM. The calculated ISF concentration depends on whether they assume the venous ADO comes from the ISF, or directly from ECs. These ISF concentrations are 25 +/- 12 nM and 9.8 +/- 4.0 nM, respectively. During dipyridamole infusion (10 uM) the EC transport parameters became nearly zero. Venous and ISF ADO concentrations increased to 33 +/- 8.9 nM and 169 +/- 42 nM, respectively. The authors conclude that the ISF ADO concentration is 1.5-4 fold higher than the venous concentration at rest, and the ISF concentration increases greatly with dipyridamole.

  11. Regulation of vacuolar H(+)-ATPase in microglia by RANKL.

    PubMed

    Serrano, Eric M; Ricofort, Ryan D; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F; Holliday, L Shannon

    2009-11-01

    Vacuolar H(+)-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor kappaB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor kappaB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  12. Regulation of Vacuolar H+-ATPase in Microglia by RANKL

    PubMed Central

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-01-01

    Vacuolar H+-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPase play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κ B -ligand (RANKL). We found that Receptor Activator of Nuclear Factor κ B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia. PMID:19715671

  13. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  14. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    PubMed

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  15. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  16. C-peptide, Na+,K+-ATPase, and Diabetes

    PubMed Central

    Coste, T. C.; Jannot, M. F.; Raccah, D.; Tsimaratos, M.

    2004-01-01

    Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly

  17. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  18. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  19. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

    PubMed

    Zhou, Aimin; Bu, Yuanyuan; Takano, Tetsuo; Zhang, Xinxin; Liu, Shenkui

    2016-01-01

    In plant cells, the vacuolar-type H(+)-ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

  20. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Phatarpekar, Prasad V.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Priapism is a condition of persistent penile erection in the absence of sexual excitation. Of men with sickle cell disease (SCD), 40% display priapism. The disorder is a dangerous and urgent condition, given its association with penile fibrosis and eventual erectile dysfunction. Current strategies to prevent its progression are poor because of a lack of fundamental understanding of the molecular mechanisms for penile fibrosis in priapism. Here we demonstrate that increased adenosine is a novel causative factor contributing to penile fibrosis in two independent animal models of priapism, adenosine deaminase (ADA)-deficient mice and SCD transgenic mice. An important finding is that chronic reduction of adenosine by ADA enzyme therapy successfully attenuated penile fibrosis in both mouse models, indicating an essential role of increased adenosine in penile fibrosis and a novel therapeutic possibility for this serious complication. Subsequently, we identified that both mice models share a similar fibrotic gene expression profile in penile tissue (including procollagen I, TGF-β1, and plasminogen activator inhibitor-1 mRNA), suggesting that they share similar signaling pathways for progression to penile fibrosis. Thus, in an effort to decipher specific cell types and underlying mechanism responsible for adenosine-mediated penile fibrosis, we purified corpus cavernosal fibroblast cells (CCFCs), the major cell type involved in this process, from wild-type mice. Quantitative RT-PCR showed that the major receptor expressed in these cells is the adenosine receptor A2BR. Based on this fact, we further purified CCFCs from A2BR-deficient mice and demonstrated that A2BR is essential for excess adenosine-mediated penile fibrosis. Finally, we revealed that TGF-β functions downstream of the A2BR to increase CCFC collagen secretion and proliferation. Overall, our studies identify an essential role of increased adenosine in the pathogenesis of penile fibrosis via A2BR signaling and

  1. Comparative analysis of Mg-dependent and Mg-independent HCO3(-) ATPases.

    PubMed

    Dzneladze, S; Tsakadze, L; Leladze, M; Nozadze, E; Arutinova, N; Shioshvili, L; Chkadua, G

    2015-02-01

    The comparative analysis between two enzymes, Mg-dependent and Mg-independent HCO3(-) ATPases, were studied in synaptosomal and microsomal membrane fractions of albino rat brain, using the method of kinetic analysis of the multi-sited enzyme systems. Therefore, it can be inferred that Mg-dependent HCO3(-) ATPase belongs to the group of "P-type" transporting ATPases. Mg-independent HCO3(-) ATPase with its kinetic properties may be attributed to the group of "Ecto" ATPases.

  2. [Vascular effects of adenosine-triphosphate].

    PubMed

    Colson, P; Saussine, M; Gaba, S; Sequin, J; Chaptal, P A; Roquefeuil, B

    1991-01-01

    This study assessed the effects of adenosine triphosphate (ATP) on systemic vascular resistances during the hypothermic cardiopulmonary bypass phase of cardiac surgery. Twenty patients scheduled for cardiac surgery were randomly divided into an ATP group (n = 10), and a placebo group (n = 10). Anaesthesia was similar for all the patients (diazepam, fentanyl and pancuronium). During the heart arrest phase, and as soon as the arterial pressure, the level in the venous return reservoir, and the pump flow rate had all been in steady state for 5 min, ATP or placebo was injected into the venous line of the oxygenator. Injection speed was doubled every three minutes, twice. The following ATP doses were administered: 0.012, 0.025 and 0.05 mg.kg-1.min-1. The level in the venous return reservoir was kept constant. Mean arterial pressure (MAP) and pump flow rate (DP) were assessed every half minute. Systemic vascular resistances were calculated with the relationship MAP/DP. Changes in vascular capacitance were directly proportional to changes in DP as the heart had been excluded, and all the blood returned to the pump, the blood volume being kept constant. MAP and DP remained unchanged in the placebo group. In the opposite ATP induced a dose-related systemic vasodilation: MAP decreased from 82.8 +/- 12.5 mmHg (control) to 66.0 +/- 14.8 mmHg, 59.8 +/- 10.6 mmHg, and 49.0 +/- 4.7 mmHg with 0.012, 0.025 and 0.05 mg.kg-1.min-1 ATP respectively. The MAP returned to preinfusion control levels when the ATP infusion was discontinued (90.0 +/- 17.8 mmHg). The DP, and therefore venous return, did not change, neither during ATP infusion, nor after its discontinuation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1854051

  3. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.

  4. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  5. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis. PMID:26081145

  6. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine.

  7. Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter.

    PubMed

    de Paulis, Tomas; Schmidt, Dennis E; Bruchey, Aleksandra K; Kirby, Michael T; McDonald, Michael P; Commers, Patricia; Lovinger, David M; Martin, Peter R

    2002-05-10

    Preliminary screening of a minor, non-xanthine constituent of roasted coffee, 3,4-diferuloyl-1,5-quinolactone (DIFEQ), showed inhibition of the adenosine transporter at low micromolar concentration. DIFEQ is a neutral derivative of the chlorogenic acids, i.e. isomeric mono- and di-substituted coumaroyl-, caffeoyl-, and feruloyl-esters of quinic acid, formed in the roasting process of coffee. Displacement of the adenosine transporter antagonist [(3)H](S)-(nitrobenzyl)-6-thioinosine binding by DIFEQ in cultured U-937 cell preparations, expressing the human adenosine transporter protein (hENT1), showed a K(i) of 0.96+/-0.13 microM. Extracts of regular and decaffeinated coffee showed binding activities equivalent to 30-40 mg DIFEQ per three cups of coffee. Acute administration of a high dose of DIFEQ (100 mg/kg i.p.) reduced open field locomotion in mice for 20 min in correlation with brain levels of DIFEQ. Both 3,4-dicaffeoyl-1,5-quinide and 3,4-dicoumaroyl-1,5-quinide, two close structural analogs of DIFEQ also present in roasted coffee, showed similar affinities for the adenosine transporter, while the corresponding 3- and 4-mono caffeoyl- and feruloyl-quinides were one to two orders of magnitudes less active. This suggests that 3,4-dicinnamoyl-1,5-quinides in coffee could have the potential to raise extra-cellular adenosine levels, thereby counteracting the stimulant effect of caffeine. PMID:12065074

  8. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    PubMed

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  9. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  10. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex

    PubMed Central

    Goldfarb, P. S. G.; Rodnight, R.

    1970-01-01

    1. The intrinsic Na+, K+, Mg2+ and Ca2+ contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na+ from 90±20 to 24±12, the bound K+ from 27±3 to 7±2, the bound Mg2+ from 20±2 to 3±1 and the bound calcium from 8±1 to <1nmol/mg of protein. 3. The activities of the Na++K++Mg2+-stimulated adenosine triphosphatase and the Na+-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5μm (ATP/protein ratio 12.5pmol/μg). 4. The Na+-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5μm-magnesium chloride and 2μm-potassium chloride. Addition of 2.5μm-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na+-dependent ATP hydrolysis was partly restored with 2.5μm-magnesium chloride; addition of K+ in the range 2–10μm-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0°C with 0.5nmol of K+/mg of protein so that the final added K+ in the reaction mixture was 0.1μm restored the Na+-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [42K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K+/mg of protein was linear over a period of 20min and was inhibited by Na+. Half-maximal inhibition of 42K+-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na+-dependent hydrolysis of ATP observed

  11. Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae.

    PubMed

    Lunde, C S; Kubo, I

    2000-07-01

    The fungicidal mechanism of a naturally occurring sesquiterpene dialdehyde, polygodial, was investigated in Saccharomyces cerevisiae. In an acidification assay, polygodial completely suppressed the glucose-induced decrease in external pH at 3.13 microgram/ml, the same as the fungicidal concentration. Acidification occurs primarily through the proton-pumping action of the plasma membrane ATPase, Pma1p. Surprisingly, this ATPase was not directly inhibited by polygodial. In contrast, the two other membrane-bound ATPases in yeast were found to be susceptible to the compound. The mitochondrial ATPase was inhibited by polygodial in a dose-dependent manner at concentrations similar to the fungicidal concentration, whereas the vacuolar ATPase was only slightly inhibited. Cytoplasmic petite mutants, which lack mitochondrial DNA and are respiration deficient, were significantly less susceptible to polygodial than the wild type, as was shown in time-kill curves. A pet9 mutant which lacks a functional ADP-ATP translocator and is therefore respiration dependent was rapidly inhibited by polygodial. The results of these susceptibility assays link enzyme inhibition to physiological effect. Previous studies have reported that plasma membrane disruption is the mechanism of polygodial-induced cell death; however, these results support a more complex picture of its effect. A major target of polygodial in yeast is mitochondrial ATP synthase. Reduction of the ATP supply leads to a suppression of Pma1 ATPase activity and impairs adaptive responses to other facets of polygodial's cellular inhibition.

  12. Na+-K+-ATPase alpha-subunit containing Q905-V930 of gastric H+-K+-ATPase alpha preferentially assembles with H+-K+-ATPase beta.

    PubMed

    Wang, S G; Eakle, K A; Levenson, R; Farley, R A

    1997-03-01

    Amino acids N886-A911 of the rat Na+-K+-ATPase alpha3-subunit were replaced by the corresponding region (Q905-V930) of the rat gastric H+-K+-ATPase alpha-subunit. The chimera (NGH26) was expressed in yeast with the rat Na+-K+ -ATPase beta1-subunit (rbeta1), the rat H+-K+-ATPase beta-subunit (HKbeta), the chimeric beta-subunit NHbeta1 (containing the carboxy-terminal ectodomain of HKbeta), or the chimeric beta-subunit HNbeta1 (containing the carboxy-terminal ectodomain of rbeta1). Increased resistance to trypsin digestion indicated that NGH26 preferentially assembled with HKbeta and NHbeta1 rather than with rbeta1 or HNbeta1. Ouabain binding also indicated that more functional complexes were assembled when NGH26 was expressed with HKbeta or NHbeta1. These results suggest that the sequence Q905-V930 interacts with the HKbeta-subunit on the extracellular side of the cell membrane. The NGH26 + HKbeta complex is less stable than alpha3 + HKbeta when heated and also has a lower binding affinity for ouabain [dissociation constant (Kd) = 63 nM] compared with alpha3 + rbeta1 or alpha3 + HKbeta (K(d) = 5-10 nM). In contrast, the NGH26+NHbeta1 complex is thermally as stable as alpha3 + rbeta1 complexes, and its ouabain binding affinity (K(d) = 10 nM) is the same as the wild type. These results indicate that the amino acids Q905-V930 of the rat gastric H+-K+-ATPase alpha-subunit preferentially associate with the extracellular domain of H+-K+-ATPase beta-subunit to form functional pump complexes and that the cytoplasmic and/or transmembrane region of the beta-subunit influences the stability of the alpha beta complexes. PMID:9124528

  13. Effect of adenosine and inosine on ureagenesis in hepatocytes.

    PubMed Central

    Guinzberg, R; Laguna, I; Zentella, A; Guzman, R; Piña, E

    1987-01-01

    Adenosine and inosine produced a dose-dependent stimulation of ureagenesis in isolated rat hepatocytes. Hypoxanthine, xanthine and uric acid were without effect. Half-maximally effective concentrations were 0.08 microM for adenosine and 5 microM for inosine. Activation of ureagenesis by both nucleosides had the following characteristics: (a) it was observed with either glutamine or (NH4)2CO3, provided that glucose was present; (b) it was not detected when glucose was replaced by lactate plus oleate; (c) it was mutually antagonized by glucagon, but not by adrenaline; and (d) it was dependent on Ca2+. We suggest that the action of adenosine and inosine on ureagenesis might be of physiological significance. PMID:3663162

  14. Adenosine receptor agonists for promotion of dermal wound healing

    PubMed Central

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of chronic poorly healing wounds. Recent studies have demonstrated that A2A adenosine receptor agonists promote wound healing in normal and diabetic animals and one such agonist, Sonedenoson, is currently being evaluated as a prospective new therapy of diabetic foot ulcers. We will review the mechanisms by which adenosine receptor activation affects the function of the cells and tissues that participate in wound healing, emphasizing the potential beneficial impact of adenosine receptor agonists in diabetic impaired healing. PMID:19041853

  15. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    PubMed

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy. PMID:16961725

  16. Cadmium inhibits motility, activities of plasma membrane Ca(2+)-ATPase and axonemal dynein-ATPase of human spermatozoa.

    PubMed

    Da Costa, R; Botana, D; Piñero, S; Proverbio, F; Marín, R

    2016-05-01

    Cd(2+) has been associated with decreased sperm motility in individuals exposed to this element, such as smokers. Among other factors, this lowered motility could be the result of inhibition exerted by Cd(2+) on the activity of the sperm ATPases associated with sperm motility. In this study, we evaluated the plasma membrane Ca(2+)-ATPase and the axonemal dynein-ATPase activities as well as sperm motility, in the presence of different free Cd(2+) concentrations in the assay media. It was found that spermatozoa incubated for 5 h in a medium containing 25 nm free Cd(2+) showed a significant inhibition of progressive motility, reaching values even lower at higher Cd(2+) concentrations. In addition, it was found that the activity of the plasma membrane Ca(2+)-ATPase reached maximal inhibition at 50 nm free Cd(2+), with a K50% inhibition of 18.3 nm free Cd(2+). The dynein-ATPase activity was maximally inhibited by 25 nm free Cd(2+) in the assay medium, with a K50% inhibition of 11.3 nm Cd(2+). Our results indicate that the decreased activity of the sperm ATPases might have a critical importance in the biochemical mechanisms underlying the decreased sperm motility of individuals exposed to Cd(2+). PMID:26259968

  17. Engineering a Prototypic P-type ATPase Listeria monocytogenes Ca(2+)-ATPase 1 for Single-Molecule FRET Studies.

    PubMed

    Dyla, Mateusz; Andersen, Jacob Lauwring; Kjaergaard, Magnus; Birkedal, Victoria; Terry, Daniel S; Altman, Roger B; Blanchard, Scott C; Nissen, Poul; Knudsen, Charlotte R

    2016-09-21

    Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes. Mutational analyses of the endogenous cysteine residues in LMCA1 were performed to reduce background labeling without compromising activity. Pairs of cysteines were introduced into the optimized low-reactivity background, and labeled with maleimide derivatives of Cy3 and Cy5 resulting in site-specifically double-labeled protein with moderate activity. Ensemble and confocal single-molecule FRET studies revealed changes in FRET distribution related to structural changes during the transport cycle, consistent with those observed by X-ray crystallography for the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Notably, the cytosolic headpiece of LMCA1 was found to be distinctly more compact in the E1 state than in the E2 state. Thus, the established experimental system should allow future real-time FRET studies of the structural dynamics of LMCA1 as a representative P-type ATPase. PMID:27501274

  18. Engineering a Prototypic P-type ATPase Listeria monocytogenes Ca(2+)-ATPase 1 for Single-Molecule FRET Studies.

    PubMed

    Dyla, Mateusz; Andersen, Jacob Lauwring; Kjaergaard, Magnus; Birkedal, Victoria; Terry, Daniel S; Altman, Roger B; Blanchard, Scott C; Nissen, Poul; Knudsen, Charlotte R

    2016-09-21

    Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes. Mutational analyses of the endogenous cysteine residues in LMCA1 were performed to reduce background labeling without compromising activity. Pairs of cysteines were introduced into the optimized low-reactivity background, and labeled with maleimide derivatives of Cy3 and Cy5 resulting in site-specifically double-labeled protein with moderate activity. Ensemble and confocal single-molecule FRET studies revealed changes in FRET distribution related to structural changes during the transport cycle, consistent with those observed by X-ray crystallography for the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Notably, the cytosolic headpiece of LMCA1 was found to be distinctly more compact in the E1 state than in the E2 state. Thus, the established experimental system should allow future real-time FRET studies of the structural dynamics of LMCA1 as a representative P-type ATPase.

  19. Rotating with the brakes on and other unresolved features of the vacuolar ATPase

    PubMed Central

    Rawson, Shaun; Harrison, Michael A.; Muench, Stephen P.

    2016-01-01

    The rotary ATPase family comprises the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and archaeal ATPase (A-ATPase). These either predominantly utilize a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in EM has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F- and V-ATPases, the secondary structure organization of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases, there are still a number of unresolved questions about the mechanism, regulation and overall architecture, which this mini-review aims to highlight and discuss. PMID:27284051

  20. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  1. V-type ATPase proton pump expression during enamel formation.

    PubMed

    Sarkar, Juni; Wen, Xin; Simanian, Emil J; Paine, Michael L

    2016-01-01

    Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the

  2. Evolutionary appearance of the plasma membrane H (+) -ATPase containing a penultimate threonine in the bryophyte.

    PubMed

    Okumura, Masaki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

    2012-08-01

    The plasma membrane H (+) -ATPase provides the driving force for solute transport via an electrochemical gradient of H (+) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H (+) -ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H (+) -ATPase (pT H (+) -ATPase) and non-pT H (+) -ATPase as in the green algae, and that pT H (+) -ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H (+) -ATPase genes, designated PpHA (Physcomitrella patens H (+) -ATPase). Six isoforms are the pT H (+) -ATPase; a remaining isoform is non-pT H (+) -ATPase. An apparent 95-kD protein was recognized by anti-H (+) -ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H (+) -ATPase. Furthermore, we could not detect the pT H (+) -ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H (+) -ATPase most likely appeared for the first time in bryophyte.

  3. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  4. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions.

    PubMed

    Cheng, Changmei; Fan, Chang; Wan, Rong; Tong, Chunyuan; Miao, Zhiwei; Chen, Jing; Zhao, Yufen

    2002-06-01

    The phosphorylation of adenosine with trimetaphosphate in solution, in solid phase and using wet-dry cycles was carried out and it was found that wet-dry cycles were the most efficient. The catalytic effects of some metal ions on the phosphorylation were also studied and it was discovered that Ni(II) is the most effective. The combination of wet-dry cycles (4 cycles) and catalysis by Ni(II) led to an unprecedented high conversion of adenosine to phosphorylated products (30%) near neutral pH. The main phosphorylated products were 2',3'-cyclic AMP (10.4%) and 5'-ATP (13.0%). PMID:12227426

  5. S-Adenosylhomocysteine toxicity in normal and adenosine kinase-deficient lymphoblasts of human origin

    PubMed Central

    Kredich, Nicholas M.; Hershfield, Michael S.

    1979-01-01

    The human lymphoblast line WI-L2 is subject to growth inhibition by a combination of the adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4.) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and adenosine. Although adenosine-induced pyrimidine starvation appears to contribute to this effect, uridine only partially reverses adenosine toxicity in WI-L2 and not at all in strain 107, an adenosine kinase-(ATP:adenosine 5′-phosphotransferase, EC 2.7.1.20) deficient derivative of WI-L2. Treatment of both cell lines with EHNA and adenosine leads to striking elevations in intracellular S-adenosyl-L-homocysteine (AdoHcy), a potent inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent methylation reactions. The methylation in vivo of both DNA and RNA is inhibited by concentrations of EHNA and adenosine that elevate intracellular AdoHcy. Addition of 100 μM L-homocysteine thiolactone to cells treated with EHNA and adenosine enhances adenosine toxicity and further elevates AdoHcy to levels approximately 60-fold higher than those obtained in the absence of this amino acid, presumably by combining with adenosine to form AdoHcy in a reaction catalyzed by S-adenosylhomocysteine hydrolase (EC 3.3.1.1). In the adenosine kinase-deficient strain 107, a combination of ADA inhibition and L-homocysteine thiolactone markedly increases intracellular AdoHcy and inhibits growth even in the absence of exogenous adenosine. These results demonstrate a form of toxicity from endogenously produced adenosine and support the view that AdoHcy, by inhibiting methylation, is a mediator of uridine-resistant adenosine toxicity in these human lymphoblast lines. Furthermore, they suggest that AdoHcy may play a role in the pathogenesis of the severe combined immunodeficiency disease found in most children with heritable ADA deficiency. PMID:221926

  6. Serum activities of adenosine deaminase, dipeptidyl peptidase IV and prolyl endopeptidase in patients with fibromyalgia: diagnostic implications.

    PubMed

    Čulić, Ognjen; Cordero, Mario D; Žanić-Grubišić, Tihana; Somborac-Bačura, Anita; Pučar, Lara Batičić; Detel, Dijana; Varljen, Jadranka; Barišić, Karmela

    2016-10-01

    Fibromyalgia (FM) is a chronic pain syndrome with number of symptoms that present challenge in terms of diagnosis and treatment. Patients with FM show abnormal profile of purines in plasma. In this work, we measured serum activities of enzymes involved in purine metabolism, namely total adenosine deaminase (ADE) and its isoforms (ADE1 and ADE2), ecto-ATPase, and 5'-nucleotidase (5'-NT). We also measured activity of dipeptidyl peptidase IV (DPPIV) and prolyl endopeptidase (PEP). Spectrophotometric and fluorometric methods were used for enzyme activity determinations. Enzyme activities were measured in sera of 24 patients with FM that were not undergoing pharmacological treatment during the study. Control group comprised 32 healthy control subjects. Significantly higher activities of total ADE (P = 0.025) and ADE2 (P = 0.011) were observed in FM patients, while no significant differences in ADE1, ecto-ATPase, and 5'-NT activities (P > 0.05) were found when compared to healthy controls. Moreover, increase in the activity of DPPIV (P = 0.015) and lower activity of PEP (P = 0.011) were also found in the FM group. ROC analysis pointed to different diagnostic sensitivities/specificities for individual enzyme activities measured as follows: ADE (50.0/87.5), ADE2 (41.7/90.6), DPPIV (62.5/71.9), and PEP (83.3/62.5). ADE2 and PEP were shown to be independent predictors of FM, while combination of the two gives AUC of 0.786 (95 % confidence interval of 0.656-0.885, P < 0.05). Our results are showing that serum activities of ADE2 and PEP could be useful as biomarkers for FM diagnosis. However, relatively low diagnostic sensitivity of ADE2 and specificity of PEP must be taken into account.

  7. Photoaffinity labeling of myosin subfragment-one-with 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate

    SciTech Connect

    Mahmood, R.

    1985-01-01

    The photoaffinity analogue 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz/sub 2/ATP) contains the photoreactive benzophenone group esterified at the 2' or 3' hydroxyl groups of ribose. MgBz/sub 2/ADP has a single binding site on skeletal myosin chymotryptic subfragment-one (SF/sub 1/) with a binding constant of 3.2 x 10/sup 5/ M/sup -1/. Bz/sub 2/ATP is also a substrate for the ATPase activity of SF/sub 1/ in the presence of different cations. The irradiation of SF/sub 1/ with (/sup 3/H)Bz/sub 2/ATP photoinactivates the ATPase activity with concomitant incorporation of the analogue into the enzyme. Polyacrylamide gel electrophoresis of photolabeled SF/sub 1/ after milk trypsin digestion shows that all three tryptic peptides, 25 K, 50K, and 20 K, and both light chains are labeled. The presence of ATP during irradiation reduces labeling of the 50 K peptide only indicating that the other peptides are non-specifically labeled. To reduce the non-specific labeling (/sup 3/H)Bz/sub 2/ATP is trapped on SF/sub 1/ by cross-linking the two reactive thiols, SH/sub 1/ and SH/sub 2/, by N,N'-p-phenylene dimaleimide or Co(II)/Co(III) phenanthroline complexes. The Co(II)/Co(III) phenanthroline modified (/sup 14/C)Bz/sub 2/ATP-SF/sub 1/, after proteolytic digestion, yields five labeled peptides which were purified by gel filtration and high performance liquid chromatography.

  8. The inhibition of muscle contraction by adenosine 5' (beta, gamma-imido) triphosphate and by pyrophosphate.

    PubMed Central

    Pate, E; Cooke, R

    1985-01-01

    We have studied the inhibition of the contraction of glycerinated rabbit psoas muscle caused by ligands that bind to the ATPase site of myosin. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decreased the force and stiffness developed in isometric contractions and the velocity of shortening of isotonic contractions. The force exerted by isometric fibers was measured as a function of MgATP in the presence and absence of a constant concentration of the ligands. As the MgATP concentration decreased, the inhibition of tension caused by the ligand increased, reaching approximately 50% at 25 microM MgATP and either 2 mM MgPPi or 2 mM MgAMPPNP. The maximum velocity of shortening was also measured as a function of MgATP concentration in the presence of 1 and 2 mM MgPPi and 2.5 and 5 mM MgAMPPNP. Both ligands acted as pure competitive inhibitors with Ki = 3.0 mM for PPi and 5.1 mM for MgAMPPNP. These data show that both ligands are weak inhibitors of the contraction of fibers. The results provided information on the energetics of actin-myosin-ligand states that occur in the portion of the cross-bridge cycle where MgATP binds to myosin. A simple analysis of the inhibition of velocity suggests that MgAMPPNP binds to the actomyosin complex at this step of the cycle with an effective affinity constant of approximately 2 X 10(2) M-1. PMID:2990586

  9. Electrostatic interactions in catalytic centers of F1-ATPase

    NASA Astrophysics Data System (ADS)

    Pogrebnaya, Alexandra F.; Romanovsky, Yury M.; Tikhonov, Alexander N.

    2003-10-01

    F1-ATPase is one of the most important enzymes of membrane bioenergetics. F1-ATPase is the constituent complex that provides the ATP formation from ADP and inorganic phosphate (Pi) at the expense of energy of electrochemical gradient of hydrogen ions generated across the energy transducing mitochondrial, chloroplast or bacterial membrane. F1-ATPase is a reversible molecular machine that can work as a proton pump due to energy released in the course of ATP hydrolysis (ATPase reaction). The unusual feature of this enzyme is that it operates as a rotary molecular motor. Recently, using the fluorescence microscopy method for the real time visualization of molecular mobility of individual molecules, it was demonstrated directly that the ATP hydrolysis by F1-ATPase is accompanied by unidirectional rotations of mobile subunits (rotor) of F1F0-ATP synthase. In this work, we calculated the contribution of electrostatic interactions between charged groups of a substrate (MgATP), products molecules (MgADP and Pi), and charged amino acid residuals of ATPase molecule to the energy changes associated with the substrate binding and their chemical transformations in the catalytic centers located at the interface of α and β subunits of the enzyme (oligomer complex α3β3γ of bovine mitochondria ATPase). A catalytic cycle of ATP hydrolysis considered in our work includes conformational changes of α and β subunits caused by unidirectional rotations of an eccentric γ subunit. The knowledge of energy characteristics and force field in catalytic center of an enzyme in different conformational states may be important for further simulation dynamic properties of ATP synthase complex.

  10. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  11. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters.

    PubMed Central

    Conaway, R C; Conaway, J W

    1989-01-01

    A transcription factor required for synthesis of accurately initiated run-off transcripts by RNA polymerase II has been purified and shown to have an associated DNA-dependent ATPase (dATPase) activity that is strongly stimulated by the TATA region of promoters. This transcription factor, designated delta, was purified more than 3000-fold from extracts of crude rat liver nuclei and has a native molecular mass of approximately 230 kDa. DNA-dependent ATPase (dATPase) and transcription activities copurify when delta is analyzed by hydrophobic interaction and ion-exchange HPLC, arguing that transcription factor delta possesses an ATPase (dATPase) activity. ATPase (dATPase) is specific for adenine nucleotides; ATP and dATP, but not CTP, UTP, or GTP, are hydrolyzed. ATPase (dATPase) is stimulated by both double-stranded and single-stranded DNAs, including pUC18, ssM13, and poly(dT); however, DNA fragments containing the TATA region of either the adenovirus 2 major late or mouse interleukin 3 promoters stimulate ATPase as much as 10-fold more effectively than DNA fragments containing nonpromoter sequences. These data suggest the intriguing possibility that delta plays a critical role in the ATP (dATP)-dependent activation of run-off transcription through a direct interaction with the TATA region of promoters. Images PMID:2552440

  12. Intracellular adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Pasciu, Valeria; Madeddu, Manuela; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Deiana, Luca; Carru, Ciriaco

    2008-07-01

    We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test. PMID:18551716

  13. Chaperones of F[subscript 1]-ATPase

    SciTech Connect

    Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas; Xu, Xingjue; Gatti, Domenico L.; Ackerman, Sharon H.

    2009-09-25

    Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11p for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.

  14. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  15. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  16. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  17. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  18. CD39/Adenosine Pathway Is Involved in AIDS Progression

    PubMed Central

    Limou, Sophie; Younas, Mehwish; Kök, Ayrin; Huë, Sophie; Seddiki, Nabila; Hulin, Anne; Delaneau, Olivier; Schuitemaker, Hanneke; Herbeck, Joshua T.; Mullins, James I.; Muhtarova, Maria; Bensussan, Armand; Zagury, Jean-François; Lelievre, Jean-Daniel; Lévy, Yves

    2011-01-01

    HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS. PMID:21750674

  19. Adenosine receptor modulation of seizure susceptibility in rats

    SciTech Connect

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  20. Thermodynamic efficiency and mechanochemical coupling of F1-ATPase

    PubMed Central

    Toyabe, Shoichi; Watanabe-Nakayama, Takahiro; Okamoto, Tetsuaki; Kudo, Seishi; Muneyuki, Eiro

    2011-01-01

    F1-ATPase is a nanosized biological energy transducer working as part of FoF1-ATP synthase. Its rotary machinery transduces energy between chemical free energy and mechanical work and plays a central role in the cellular energy transduction by synthesizing most ATP in virtually all organisms. However, information about its energetics is limited compared to that of the reaction scheme. Actually, fundamental questions such as how efficiently F1-ATPase transduces free energy remain unanswered. Here, we demonstrated reversible rotations of isolated F1-ATPase in discrete 120° steps by precisely controlling both the external torque and the chemical potential of ATP hydrolysis as a model system of FoF1-ATP synthase. We found that the maximum work performed by F1-ATPase per 120° step is nearly equal to the thermodynamical maximum work that can be extracted from a single ATP hydrolysis under a broad range of conditions. Our results suggested a 100% free-energy transduction efficiency and a tight mechanochemical coupling of F1-ATPase. PMID:21997211

  1. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  2. Gramicidin A directly inhibits mammalian Na(+)/K (+)-ATPase.

    PubMed

    Takada, Yohei; Matsuo, Kentaro; Kataoka, Takao

    2008-12-01

    The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity.

  3. H/sup +/-translocating ATPases: advances using membrane vesicles

    SciTech Connect

    Sze, H.

    1985-01-01

    In this paper, two primary active transport systems (H/sup +/ -ATPases) in plant cells are examined using membrane vesicles as a simple experimental tool. One electrogenic, H/sup +/ -translocating ATPase is vanadate-sensitive and associated with the plasma membrane. Another electrogenic, H/sup +/ -translocating ATPases is anion-sensitive, and localized on the tonoplast (and perhaps other membranes). According to the working model, the plasma membrane and tonoplast-type H/sup +/ -ATPases are detectable in inside-out plasma membrane and right-side-out tonoplast vesicles. The direction of H/sup +/ pumping into these vesicles would be consistent with the results from intact cells where H/sup +/ are extruded from the cell across the plasma membrane and pumped into the vacuole from the cytoplasm. Understanding the properties of H/sup +/ -pumping ATPases using membrane vesicles has paved the way for studies to identify secondary active transport systems coupled to the proton electrochemical gradient. Redox-driven transport systems can also be studied directly using the isolated vesicles. As transport proteins are identified, the functional activities can be specifically studied after reconstitution of the purified protein(s) into phospholipid membrane vesicles. 154 references.

  4. ATP in equilibrium with 32Pi exchange catalyzed by plasma membrane Ca(2+)-ATPase from kidney proximal tubules

    SciTech Connect

    Vieyra, A.; Caruso-Neves, C.; Meyer-Fernandes, J.R. )

    1991-06-05

    The Ca(2+)-stimulated adenosine 5{prime}-triphosphate-orthophosphate (ATP in equilibrium with 32Pi) exchange reaction was studied using a vesicular preparation derived from plasma membrane of kidney proximal tubules. With native inside-out vesicles, ATP in equilibrium with 32Pi was stimulated by micromolar Ca2+ concentrations. Treatment of the vesicles with the Ca2+ ionophore A23187 that abolished Ca2+ accumulation, strongly inhibited ATP in equilibrium with 32Pi. When Ca(2+)-ATPase was solubilized with the nonionic detergent octaethylene glycol mono n-dodecyl ether, maximal activation of ATP in equilibrium with 32Pi required millimolar Ca2+ concentrations. These Ca2+ concentrations inhibited ATP hydrolysis. ATP in equilibrium with 32Pi exhibited a Michaelian dependence on Pi and Mg2+, was stimulated by ATP, and depended on the ATP/ADP ratio. ATP in equilibrium with 32Pi was modified by the osmolytes urea, trimethylamine-N-oxide, and sucrose, which are representative of the methylamines and polyols that normally accumulate in renal tissue. These compounds did not modify the apparent affinity for Pi; they affected the response to ADP in the same fashion as the overall rate of ATP in equilibrium 32Pi, and their effects depended on medium pH. These data show that the Ca(2+)-ATPase from plasma membrane kidney proximal tubules can operate simultaneously in forward and backward directions. They also show that ATP in equilibrium with 32Pi is modulated by the ligands Ca2+, ATP, ADP, Pi, Mg2+, and H+, and by organic solutes found in renal tissue.

  5. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  6. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    PubMed

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  7. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  8. The effect of basketball training on the players' erythrocyte membrane acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase activities.

    PubMed

    Parthimos, T; Tsopanakis, C; Angelogianni, P; Schulpis, K H; Parthimos, N; Tsakiris, S

    2007-08-01

    The aim of this study was to investigate whether the activities of erythrocyte membrane acetylcholinesterase (AChE), (Na (+),K (+))-ATPase and Mg (2+)-ATPase are modulated by a basketball training. Blood was obtained from 10 basketball players pre- and postexercise. Total antioxidant status (TAS), lactate and pyruvate concentrations were determined with kits, while the enzyme activities were determined spectrophotometrically. Post-training blood lactate and pyruvate concentrations as well as AChE (2.90 +/- 0.05 vs. 3.98 +/- 0.09 Delta OD/min . mg protein, p < 0.01) and Na (+),K (+)-ATPase (0.58 +/- 0.04 vs. 1.27 +/- 0.12 micromol Pi/h . mg protein, p < 0.001) activities were remarkably increased, whereas TAS was significantly decreased. Mg (2+)-ATPase activity remained unaltered at the end of the training. In conclusion, the stimulation of AChE and Na (+),K (+)-ATPase by the training may be due to the rise of blood catecholamine oxidation contributing to TAS decrease and/or the increase of serotonin levels. This stress condition may modulate cholinergic and catecholaminergic/serotoninergic functions in players.

  9. Review: The HSP90 molecular chaperone—an enigmatic ATPase

    PubMed Central

    2016-01-01

    ABSTRACT The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of ‘client’ proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co‐chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally‐coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594–607, 2016. PMID:26991466

  10. Hemoglobin - a novel ligand of hepatocyte ectopic F1-ATPase.

    PubMed

    Gburek, J; Konopska, B; Juszczynska, K; Piwowar, A; Dziegiel, P; Borska, S; Tolosano, E; Golab, K

    2015-12-01

    The liver is largely responsible for free hemoglobin uptake, but the molecular mechanism of this phenomenon has never been revealed. This paper presents the results of the study on hemoglobin binding components of the hepatocyte membrane that were purified using affinity chromatography on a hemoglobin matrix and identified by peptide mass fingerprinting. Both F1-ATPase alpha and beta subunits were retrieved. The binding was confirmed via an intrinsic fluorescence quenching study using a purified recombinant F1-ATPase beta subunit, and the dissociation constant for the complex was estimated from the saturation binding curve (Kd = 7.5 x 10(-7) M). The results indicate that haemoglobin binds to hepatocyte ectopic F1-ATPase. We suggested the plausible role of the receptor in endocytosis of haemoglobin by the hepatocyte.

  11. Directed molecular screening for RecA ATPase inhibitors.

    PubMed

    Wigle, Tim J; Singleton, Scott F

    2007-06-15

    The roles of bacterial RecA in the evolution and transmission of antibiotic resistance genes make it an attractive target for inhibition by small molecules. We report two complementary fluorescence-based ATPase assays that were used to screen for inhibitors of RecA. We elected to employ the ADP-linked variation of the assay, with a Z' factor of 0.83 in 96-well microplates, to assess whether 18 select compounds could inhibit ATP hydrolysis by RecA. The compounds represented five sets of related inhibitor scaffolds, each of which had the potential to cross-inhibit RecA. Although nucleotide analogs, known inhibitors of GHL ATPases, and known protein kinase inhibitors were not active against RecA, we found that three suramin-like agents substantially inhibited RecA's ATPase activity. PMID:17499507

  12. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  13. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  14. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  15. Harnessing nature's own cardiac defense mechanism with acadesine, an adenosine regulating agent: importance of the endothelium.

    PubMed

    Engler, R L

    1994-05-01

    Although the effects of adenosine on the heart, including the clinical suppression of cardiac arrhythmias, have been recognized for more than half a century, it is only in the last decade that the therapeutic potential of adenosine has been recognized. Research related to the clinical application of adenosine has concentrated on two areas. The first came directly from early observations about the use of adenosine in treating cardiac arrhythmias, in particular supraventricular tachycardias. The second relates to the use of adenosine to protect the heart from the deleterious consequences of myocardial ischemia and reperfusion. This review will focus on the latter cardioprotective properties of adenosine, particularly those shown by a novel group of drugs termed adenosine regulating agents, the prototype of which is acadesine (Protara).

  16. Monoclonal Antibodies to the [alpha]- and [beta]-Subunits of the Plant Mitochondrial F1-ATPase.

    PubMed Central

    Luethy, M. H.; Horak, A.; Elthon, T. E.

    1993-01-01

    We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant

  17. Expression, regulation and clinical relevance of the ATPase inhibitory factor 1 in human cancers

    PubMed Central

    Sánchez-Aragó, M; Formentini, L; Martínez-Reyes, I; García-Bermudez, J; Santacatterina, F; Sánchez-Cenizo, L; Willers, I M; Aldea, M; Nájera, L; Juarránz, Á; López, E C; Clofent, J; Navarro, C; Espinosa, E; Cuezva, J M

    2013-01-01

    Recent findings in colon cancer cells indicate that inhibition of the mitochondrial H+-adenosine triphosphate (ATP) synthase by the ATPase inhibitory factor 1 (IF1) promotes aerobic glycolysis and a reactive oxygen species (ROS)-mediated signal that enhances proliferation and cell survival. Herein, we have studied the expression, biological relevance, mechanism of regulation and potential clinical impact of IF1 in some prevalent human carcinomas. We show that IF1 is highly overexpressed in most (>90%) of the colon (n=64), lung (n=30), breast (n=129) and ovarian (n=10) carcinomas studied as assessed by different approaches in independent cohorts of cancer patients. The expression of IF1 in the corresponding normal tissues is negligible. By contrast, the endometrium, stomach and kidney show high expression of IF1 in the normal tissue revealing subtle differences by carcinogenesis. The overexpression of IF1 also promotes the activation of aerobic glycolysis and a concurrent ROS signal in mitochondria of the lung, breast and ovarian cancer cells mimicking the activity of oligomycin. IF1-mediated ROS signaling activates cell-type specific adaptive responses aimed at preventing death in these cell lines. Remarkably, regulation of IF1 expression in the colon, lung, breast and ovarian carcinomas is exerted at post-transcriptional levels. We demonstrate that IF1 is a short-lived protein (t1/2 ∼100 min) strongly implicating translation and/or protein stabilization as main drivers of metabolic reprogramming and cell survival in these human cancers. Analysis of tumor expression of IF1 in cohorts of breast and colon cancer patients revealed its relevance as a predictive marker for clinical outcome, emphasizing the high potential of IF1 as therapeutic target. PMID:23608753

  18. Vacuolar-type H+-ATPase-mediated proton transport in the rat parietal cell.

    PubMed

    Kopic, Sascha; Wagner, Maximilian E H; Griessenauer, Christoph; Socrates, Thenral; Ritter, Markus; Geibel, John P

    2012-03-01

    The vacuolar-type H-ATPase (V-ATPase) plays an important role in the active acidification of intracellular organelles. In certain specialized cells, such as the renal intercalated cell, apical V-ATPase can also function as a proton secretion pathway. In the parietal cells of the stomach, it has been thought that acid secretion is controlled solely via the H,K-ATPase. However, recent observations suggest that functional V-ATPase is necessary for acid secretion to take place. This study aimed to investigate and characterize the role of V-ATPase in parietal cell proton transport. Individual rat gastric glands were incubated with the pH-sensitive dye (BCECF) to monitor changes in intracellular pH in real time. Parietal cell V-ATPase activity was measured by quantifying the rate of intracellular alkalinization (ΔpH/minute) following an acid load, while excluding the contribution of non-V-ATPase proton transport mechanisms through pharmacological inhibition or ion substitution. Expression of V-ATPase was confirmed by immunohistochemistry. We observed concanamycin A-sensitive V-ATPase activity in rat parietal cells following intracellular acidification and H,K-ATPase inhibition. Furthermore, V-ATPase-mediated proton transport could be abolished by inhibiting trafficking mechanisms with paclitaxel and by stimulating H,K-ATPase with acid secretagogues. Our results propose that parietal cells contain a functional V-ATPase that can be mobilized using a microtubule network. V-ATPase may function as an auxiliary acid secretion or proton-buffering pathway in parietal cells, which is inactive during H,K-ATPase activity. Our findings may have important implications for patients experiencing acid breakthrough under proton pump inhibitor therapy.

  19. The C-terminal 165 amino acids of the plasma membrane Ca(2+)-ATPase confer Ca2+/calmodulin sensitivity on the Na+,K(+)-ATPase alpha-subunit.

    PubMed Central

    Ishii, T; Takeyasu, K

    1995-01-01

    The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase. Images PMID:7828596

  20. Regulation of cough by neuronal Na(+)-K(+) ATPases.

    PubMed

    Canning, Brendan J; Farmer, David G S

    2015-06-01

    The Na(+)-K(+) ATPases play an essential role in establishing the sodium gradients in excitable cells. Multiple isoforms of the sodium pumps have been identified, with tissue and cell specific expression patterns. Because the vagal afferent nerves regulating cough must be activated at sustained high frequencies of action potential patterning to achieve cough initiation thresholds, it is a certainty that sodium pump function is essential to maintaining cough reflex sensitivities in health and in disease. The mechanisms by which Na(+)-K(+) ATPases regulate bronchopulmonary vagal afferent nerve excitability are reviewed as are potential therapeutic strategies targeting the sodium pumps in cough.

  1. Contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during KIR channel and Na+/K+-ATPase inhibition

    PubMed Central

    Crecelius, Anne R; Kirby, Brett S; Hearon, Christopher M; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A

    2015-01-01

    Sympathetic vasoconstriction in contracting skeletal muscle is blunted relative to that which occurs in resting tissue; however, the mechanisms underlying this ‘functional sympatholysis’ remain unclear in humans. We tested the hypothesis that α1-adrenergic vasoconstriction is augmented during exercise following inhibition of inwardly rectifying potassium (KIR) channels and Na+/K+-ATPase (BaCl2 + ouabain). In young healthy humans, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) at rest, during steady-state stimulus conditions (pre-phenylephrine), and after 2 min of phenylephrine (PE; an α1-adrenoceptor agonist) infusion via brachial artery catheter in response to two different stimuli: moderate (15% maximal voluntary contraction) rhythmic handgrip exercise or adenosine infusion. In Protocol 1 (n = 11 subjects) a total of six trials were performed in three conditions: control (saline), combined enzymatic inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis (l-NMMA + ketorolac) and combined inhibition of NO, PGs, KIR channels and Na+/K+-ATPase (l-NMMA + ketorolac + BaCl2 + ouabain). In Protocol 2 (n = 6) a total of four trials were performed in two conditions: control (saline), and combined KIR channel and Na+/K+-ATPase inhibition. All trials occurred after local β-adrenoceptor blockade (propranolol). PE-mediated vasoconstriction was calculated (%ΔFVC) in each condition. Contrary to our hypothesis, despite attenuated exercise hyperaemia of ∼30%, inhibition of KIR channels and Na+/K+-ATPase, combined with inhibition of NO and PGs (Protocol 1) or alone (Protocol 2) did not enhance α1-mediated vasoconstriction during exercise (Protocol 1: −27 ± 3%; P = 0.2 vs. control, P = 0.4 vs.l-NMMA + ketorolac; Protocol 2: −21 ± 7%; P = 0.9 vs. control). Thus, contracting human skeletal muscle maintains the ability to blunt α1-adrenergic vasoconstriction during

  2. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.

    PubMed

    Iino, Ryota; Noji, Hiroyuki

    2013-03-01

    F(o) F(1) -Adenosine triphosphate (ATP) synthase, a complex of two rotary motor proteins, reversibly converts the electrochemical potential of protons across the cell membrane into phosphate transfer potential of ATP to provide the energy currency of the cell. The water-soluble motor is F(1) -ATPase, which possesses ATP synthesis/hydrolysis catalytic sites. Isolated F(1) hydrolyses ATP to rotate the rotary shaft against the stator ring. The membrane-embedded motor is F(o) , which is driven by proton flow down the proton electrochemical potential. In the F(o) F(1) complex, the direction of mechanical rotation, the chemical reaction, and the proton transport are determined by the relative amplitudes between the Gibbs free energy of the ATP hydrolysis reaction and the electrochemical potential of protons across the membrane. Therefore, F(o) F(1) -ATP synthase is a highly efficient molecular device in which the chemical, mechanical, and potential energies are tightly and reversibly converted. In this critical review, we summarize our latest knowledge about the operation mechanism of this sophisticated nanomachine, revealed by its structure and dynamics.

  3. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    NASA Astrophysics Data System (ADS)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated ( P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  4. New insights on the Golgi complex of Tritrichomonas foetus.

    PubMed

    De Andrade Rosa, Ivone; Caruso, Marjolly Brigido; Rodrigues, Silas Pessini; Geraldo, Reinaldo Barros; Kist, Luiza Wilges; Bogo, Mauricio Reis; Gonzaga, Luiz; DE Vasconcelos, Ana Tereza R; Morgado-Díaz, Jose Andres; Zingali, Russolina Benedeta; Benchimol, Marlene

    2014-02-01

    Tritrichomonas foetus is a protist that causes bovine trichomoniasis and presents a well-developed Golgi. There are very few studies concerning the Golgi in trichomonads. In this work, monoclonal antibodies were raised against Golgi of T. foetus and used as a tool on morphologic and biochemical studies of this organelle. Among the antibodies produced, one was named mAb anti-Golgi 20.3, which recognized specifically the Golgi complex by fluorescence and electron microscopy. By immunoblotting this antibody recognized two proteins with 60 and 66 kDa that were identified as putative beta-tubulin and adenosine triphosphatase, respectively. The mAb 20.3 also recognized the Golgi complex of the Trichomonas vaginalis, a human parasite. In addition, the nucleotide coding sequences of these proteins were identified and included in the T. foetus database, and the 3D structure of the proteins was predicted. In conclusion, this study indicated: (1) adenosine triphosphatase is present in the Golgi, (2) ATPase is conserved between T. foetus and T. vaginalis, (3) there is new information concerning the nucleic acid sequences and protein structures of adenosine triphosphatase and beta-tubulin from T. foetus and (4) the mAb anti-Golgi 20.3 is a good Golgi marker and can be used in future studies. PMID:24135238

  5. Inosine triphosphatase allele frequency and association with ribavirin-induced anaemia in Brazilian patients receiving antiviral therapy for chronic hepatitis C

    PubMed Central

    Delvaux, Nathália; da Costa, Vanessa Duarte; da Costa, Maristella Matos; Villar, Livia Melo; Coelho, Henrique Sérgio Moraes; Esberard, Eliane Bordalo Cathalá; Flores, Priscila Pollo; Brandão-Mello, Carlos Eduardo; Villela-Nogueira, Cristiane Alves; de Almeida, Adilson José; Lampe, Elisabeth

    2015-01-01

    Inosine triphosphatase (ITPA) single nucleotide polymorphisms (SNPs) are strongly associated with protection against ribavirin (RBV)-induced anaemia in European, American and Asian patients; however, there is a paucity of data for Brazilian patients. The aim of this study was to evaluate the ITPA SNP (rs7270101/rs1127354) frequency in healthy and hepatitis C virus (HCV)-infected patients from Brazil and the association with the development of severe anaemia during antiviral therapy. ITPA SNPs were determined in 200 HCV infected patients and 100 healthy individuals by sequencing. Biochemical parameters and haemoglobin (Hb) levels were analysed in 97 patients who underwent antiviral therapy. A combination of AArs7270101+CCrs1127354 (100% ITPase activity) was observed in 236/300 individuals. Anaemia was observed in 87.5% and 86.2% of treated patients with AA (rs7270101) and CC genotypes (rs1127354), respectively. Men with AA (rs7270101) showed a considerable reduction in Hb at week 12 compared to those with AC/CC (p = 0.1475). In women, there was no influence of genotype (p = 0.5295). For rs1127354, men with the CC genotype also showed a sudden reduction in Hb compared to those with AC. Allelic distribution of rs7270101 and rs1127354 shows high rates of the genotypes AA and CC, respectively, suggesting that the study population had a great propensity for developing RBV-induced anaemia. A progressive Hb reduction during treatment was observed; however, this reduction was greater in men at week 12 than in women. PMID:26154744

  6. AlF4- reversibly inhibits 'P'-type cation-transport ATPases, possibly by interacting with the phosphate-binding site of the ATPase.

    PubMed

    Missiaen, L; Wuytack, F; De Smedt, H; Vrolix, M; Casteels, R

    1988-08-01

    The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.

  7. Lycopene protects against atrazine-induced hepatic ionic homeostasis disturbance by modulating ion-transporting ATPases.

    PubMed

    Lin, Jia; Zhao, Hua-Shan; Xiang, Li-Run; Xia, Jun; Wang, Li-Li; Li, Xue-Nan; Li, Jin-Long; Zhang, Ying

    2016-01-01

    The aim of this study was to evaluate the possible chemoprotective role of lycopene (LYC) against atrazine (ATR)-induced ionic disorder and hepatotoxicity in mice. Male kunming mice were treated with LYC (5mg/kg) and/or ATR (50mg/kg or 200mg/kg) by lavage administration for 21days. Ionic disorder was assessed by determining the Na(+), K(+) and Ca(2+) content and the alteration in ATP enzymes (ATPases) including Na(+)-K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase and the mRNA levels of ATPase's subunits in liver. ATR caused the increases of alanine aminotransferase and aspartate aminotransferase activities and histological changes. LYC pretreatment significantly protected liver against ATR-caused alternation. The significant effect of ATR and LYC on the K(+) and Mg(2+) content in liver was not observed, but ATR increased hepatic Na(+)-K(+)-ATPase activity and decreased Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase activity. The mRNA expressions of Na(+)-K(+)-ATPase subunits were regulated significantly by ATR. A significant increase of Ca(2+) content and seven down-regulated mRNA expressions of Ca(2+)-ATPase subunits and a decrease of Ca(2+)-ATPase activity were observed in the ATR-treated mice. Notably, LYC modulated these ATR-induced alterations of ATPase activity and mRNA expression of their subunits. These results suggest that ATR presents hepatotoxicity via regulating hepatic ATPase's activities and their subunit transcriptions and inducing ionic disorder. LYC protects liver against ATR-induced hepatotoxicity, significantly. LYC modulated hepatic ionic homeostasis disturbance via regulation of ATPase activities and their subunits' (1a1, 1b3, 1b4 and 2b4) transcriptions. In summary, these effects play a critical role of LYC-mediated chemoprevention against ATR-induced hepatotoxicity.

  8. Adenosine Inhibition of Mesopontine Cholinergic Neurons: Implications for EEG Arousal

    PubMed Central

    Rainnie, Donald G.; Grunze, Heinz C. R.; McCarley, Robert W.; Greene, Robert W.

    2013-01-01

    Increased discharge activity of mesopontine cholinergic neurons participates in the production of electroencephalographic (EEG) arousal; such arousal diminishes as a function of the duration of prior wakefulness or of brain hyperthermia. Whole-cell and extracellular recordings in a brainstem slice show that mesopontine cholinergic neurons are under the tonic inhibitory control of endogenous adenosine, a neuromodulator released during brain metabolism. This inhibitory tone is mediated postsynaptically by an inwardly rectifying potassium conductance and by an inhibition of the hyperpolarization-activated current. These data provide a coupling mechanism linking neuronal control of EEG-arousal with the effects of prior wakefulness, brain hyperthermia, and the use of the adenosine receptor blockers caffeine and theophylline. PMID:8303279

  9. Adenosine: an endogenous mediator in the pathogenesis of psoriasis*

    PubMed Central

    Festugato, Moira

    2015-01-01

    It is known that inflammatory and immune responses protect us from the invasion of micro-organisms and eliminate "wastes" from the injured sites, but they may also be responsible for significant tissue damage. Adenosine, as a purine nucleoside, which is produced in inflamed or injured sites, fulfills its role in limiting tissue damage. Although, it may have a pleiotropic effect, which signals it with a proinflammatory state in certain situations, it can be considered a potent anti-inflammatory mediator. The effects of adenosine, which acts through its receptors on T cell, on mast cell and macrophages, on endothelial cells, on neutrophils and dendritic cells, as they indicate TNF-alpha and cytokines, show that this mediator has a central role in the pathogenesis of psoriasis. The way it acts in psoriasis will be reviewed in this study. PMID:26734868

  10. Structure–Activity Relationships of 9-Alkyladenine and Ribose-Modified Adenosine Derivatives at Rat A3 Adenosine Receptors†

    PubMed Central

    Jacobson, Kenneth A.; Siddiqi, Suhaib M.; Olah, Mark E.; Ji, Xiao-duo; Melman, Neli; Bellamkonda, Kamala; Meshulam, Yakov; Stiles, Gary L.; Kim, Hea O.

    2012-01-01

    9-Alkyladenine derivatives and ribose-modified N6-benzyladenosine derivatives were synthesized in an effort to identify selective ligands for the rat A3 adenosine receptor and leads for the development of antagonists. The derivatives contained structural features previously determined to be important for A3 selectivity in adenosine derivatives, such as an N6-(3-iodobenzyl) moiety, and were further substituted at the 2-position with halo, amino, or thio groups. Affinity was determined in radioligand binding assays at rat brain A3 receptors stably expressed in Chinese hamster ovary (CHO) cells, using [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5′-(N-methyluronamide)), and at rat brain A1 and A2a receptors using [3H]-N6-PIA ((R)-N6-phenylisopropyladenosine) and [3H]CGS 21680 (2-[[[4-(2-carboxyethyl)-phenyl]ethyl]amino]-5′-(N-ethylcarbamoyl)adenosine), respectively. A series of N6-(3-iodobenzyl) 2-amino derivatives indicated that a small 2-alkylamino group, e.g., methylamino, was favored at A3 receptors. N6-(3-Iodobenzyl)-9-methyl-2-(methylthio)adenine was 61-fold more potent than the corresponding 2-methoxy ether at A3 receptors and of comparable affinity at A1 and A2a receptors, resulting in a 3–6-fold selectivity for A3 receptors. A pair of chiral N6-(3-iodobenzyl) 9-(2,3-dihydroxypropyl) derivatives showed stereoselectivity, with the R-enantiomer favored at A3 receptors by 5.7-fold. 2-Chloro-9-(β-d-erythrofuranosyl)-N6-(3-iodobenzyl)adenine had a Ki value at A3 receptors of 0.28 µM. 2-Chloro-9-[2-amino-2,3-dideoxy-β-d-5-(methylcarbamoyl)-arabinofuranosyl]-N6-(3-iodobenzyl)adenine was moderately selective for A1 and A3 vs A2a receptors. A 3′-deoxy analogue of a highly A3-selective adenosine derivative retained selectivity in binding and was a full agonist in the inhibition of adenylyl cyclase mediated via cloned rat A3 receptors expressed in CHO cells. The 3′-OH and 4′-CH2OH groups of adenosine are not required for activation at A3 receptors. A

  11. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  12. A sulfur-based transport pathway in Cu+-ATPases

    PubMed Central

    Mattle, Daniel; Zhang, Limei; Sitsel, Oleg; Pedersen, Lotte Thue; Moncelli, Maria Rosa; Tadini-Buoninsegni, Francesco; Gourdon, Pontus; Rees, Douglas C; Nissen, Poul; Meloni, Gabriele

    2015-01-01

    Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB-type Cu+-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu+ across cellular membranes. Crystal structures of a copper-free Cu+-ATPase are available, but the mechanism of Cu+ recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu+-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu+ is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway. PMID:25956886

  13. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    PubMed

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.

  14. Roles and mechanisms of copper transporting ATPases in cancer pathogenesis.

    PubMed

    Zhang, Yuqing; Li, Min; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Copper (Cu) is an essential trace element for cell metabolism as a cofactor to many key metabolic enzymes. Numerous physiological processes rely on the adequate and timely transport of copper ions mediated by copper-transporting ATPases (Cu-ATPases), which are essential for human cell growth and development. Inherited gene mutations of ATP7A and ATP7B result in clinical diseases related to damage in the multiple organ systems. Increased expression of these genes has been recently observed in some human cancer specimens, and may be associated with tumorigenesis and chemotherapy resistance. However, underlying mechanisms of Cu-ATPases in human cancer progression and treatment are largely unknown. In this review, we summarize current progress on the copper transport system, the structural and functional properties of the Cu-ATPases, ATP7A and ATP7B, in copper homeostasis, and their roles in anti-tumor drug resistance and cancer metastasis. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in copper transport as important mediators in human physiology and cancer.

  15. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    PubMed

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase. PMID:27050689

  16. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  17. Molecular Cloning of Tomato Plasma Membrane H+-ATPase 1

    PubMed Central

    Ewing, Nicholas N.; Wimmers, Larry E.; Meyer, David J.; Chetelat, Roger T.; Bennett, Alan B.

    1990-01-01

    Two cDNA clones (LHA1 and LHA2) from tomato (Lycopersicon esculentum) which likely encode isoforms of the plasma membrane H+-ATPase were isolated. The longest cDNA (3229 base pairs), LHA1, comprises an open reading frame that encodes a 956 amino acid, 105 kilodalton polypeptide with several potential transmembrane domains. In vitro transcription and translation of LHA1 yields a major translation product of approximately 100 kilodaltons that is immunoprecipitable with antiserum to the corn root plasma membrane H+-ATPase. LHA2 encodes a portion of a coding sequence that is 96% identical to LHA1, suggesting that LHA2 encodes an isoform of the H+-ATPase. Genomic DNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to a common set of six to eight restriction fragments at moderate stringency and to single distinct fragments at high stringency. LHA1 and LHA2 map to distinct sites on chromosomes three and six, respectively. RNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to 3.4 kilobase pair transcripts present in both leaves and roots, although the LHA2 transcript is relatively more abundant in leaves than in roots. These results indicate that in tomato as many as six to eight genes may encode the plasma membrane H+-ATPase, two of which are expressed at the level of mRNA in both roots and leaves. Images Figure 3 Figure 4 Figure 5 Figure 7 PMID:16667929

  18. Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation

    PubMed Central

    Eltzschig, Holger K; Rivera-Nieves, Jesus; Colgan, Sean P

    2014-01-01

    Extracellular adenosine functions as an endogenous distress signal via activation of four distinct adenosine receptors (A1, A2A, A2B and A3). Conditions of limited oxygen availability or acute inflammation lead to elevated levels of extracellular adenosine and enhanced signaling events. This relates to a combination of four mechanisms: i) increased production of adenosine via extracellular phosphohydrolysis of precursor molecules (particularly ATP and ADP); ii) increased expression and signaling via hypoxia-induced adenosine receptors, particularly the A2B adenosine receptor; iii) attenuated uptake from the extracellular towards the intracellular compartment; and iv) attenuated intracellular metabolism. Due to their large surface area, mucosal organs are particularly prone to hypoxia and ischemia associated inflammation. Therefore, it is not surprising that adenosine production and signaling plays a central role in attenuating tissue inflammation and injury during intestinal ischemia or inflammation. In fact, recent studies combining pharmacological and genetic approaches demonstrated that adenosine signaling via the A2B adenosine receptor dampens mucosal inflammation and tissue injury during intestinal ischemia or experimental colitis. This review outlines basic principles of extracellular adenosine production, signaling, uptake and metabolism. In addition, we discuss the role of this pathway in dampening hypoxia-elicited inflammation, specifically in the setting of intestinal ischemia and inflammation. PMID:19769545

  19. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis.

    PubMed

    Alsharif, Khalaf F; Thomas, Mark R; Judge, Heather M; Khan, Haroon; Prince, Lynne R; Sabroe, Ian; Ridger, Victoria C; Storey, Robert F

    2015-08-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10(-8)M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7%±4.4 vs. control 22.6%±2.4; p<0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10(-8)M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6±6.6 vs. 28.0±6.6; p=0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection.

  20. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    PubMed Central

    Alsharif, Khalaf F.; Thomas, Mark R.; Judge, Heather M.; Khan, Haroon; Prince, Lynne R.; Sabroe, Ian; Ridger, Victoria C.; Storey, Robert F.

    2015-01-01

    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10− 8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7% ± 4.4 vs. control 22.6% ± 2.4; p < 0.01) by acting on the high-affinity A1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10− 8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6 ± 6.6 vs. 28.0 ± 6.6; p = 0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection. PMID:25869515

  1. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  2. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  3. ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes

    PubMed Central

    Šubrtová, Karolína; Panicucci, Brian; Zíková, Alena

    2015-01-01

    In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells. PMID:25714685

  4. Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1986-01-01

    Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.

  5. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  6. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.

    PubMed

    Schep, Daniel G; Zhao, Jianhua; Rubinstein, John L

    2016-03-22

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.

  7. Purification and characterization of a membrane-bound ATPase from Acetabularia cliftonii that corresponds to a Cl(-)-translocating ATPase in Acetabularia acetabulum.

    PubMed

    Moritani, C; Ohhashi, T; Satoh, S; Oesterhelt, D; Ikeda, M

    1994-11-01

    A Mg(2+)-ATPase was solubilized from membranes of Acetabularia cliftonii using nonanoyl-N-methylgluconamide and purified by ion-exchange and gel permeation chromatography. One active ATPase fraction after Mono Q chromatography had a specific activity of 10 units/mg of protein. Judged from subunit composition [54 (a), 50 (b) with a fainter band around 40 kDa], catalytic properties, and N-terminal amino acid sequence of the b subunit, the isolated enzyme was comparable to the Cl(-)-ATPase of Acetabularia acetabulum. Immunological characterization of both subunits showed significant similarity to the F type of ATPase. Cl(-)-transport activity was observed by reconstitution studies into liposomes.

  8. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance

    PubMed Central

    Schep, Daniel G.; Rubinstein, John L.

    2016-01-01

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  9. The regulatory switch of F1-ATPase studied by single-molecule FRET in the ABEL trap

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel D.; Duncan, Thomas M.; Moerner, W. E.; Börsch, Michael

    2014-03-01

    F1-ATPase is the soluble portion of the membrane-embedded enzyme FoF1-ATP synthase that catalyzes the production of adenosine triphosphate in eukaryotic and eubacterial cells. In reverse, the F1 part can also hydrolyze ATP quickly at three catalytic binding sites. Therefore, catalysis of 'non-productive' ATP hydrolysis by F1 (or FoF1) must be minimized in the cell. In bacteria, the ɛ subunit is thought to control and block ATP hydrolysis by mechanically inserting its C-terminus into the rotary motor region of F1. We investigate this proposed mechanism by labeling F1 specifically with two fluorophores to monitor the C-terminus of the ɛ subunit by Förster resonance energy transfer. Single F1 molecules are trapped in solution by an Anti-Brownian electrokinetic trap which keeps the FRET-labeled F1 in place for extended observation times of several hundreds of milliseconds, limited by photobleaching. FRET changes in single F1 and FRET histograms for different biochemical conditions are compared to evaluate the proposed regulatory mechanism.

  10. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression.

    PubMed

    Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A; Barrett, Timothy G

    2015-02-01

    Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca(2+) imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca(2+) concentration ([Ca(2+)]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773

  11. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription

    PubMed Central

    Aydin, Özge Z.; Marteijn, Jurgen A.; Ribeiro-Silva, Cristina; Rodríguez López, Aida; Wijgers, Nils; Smeenk, Godelieve; van Attikum, Haico; Poot, Raymond A.; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA. PMID:24990377

  12. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  13. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    PubMed

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-01

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. PMID:25661654

  14. Interaction between the Ca2(+)-ATPase and the proteolipid in artificial membranes.

    PubMed

    Jóna, I; Martonosi, A

    1989-01-01

    The interaction between the Ca2+ transport ATPase and the proteolipid of rabbit sarcoplasmic reticulum was analyzed by fluorescence energy transfer, using the following donor: acceptor combinations: Ca2(+)-ATPase tryptophan----IAEDANS-proteolipid; IAEDANS-ATPase----IAF-proteolipid; IAEDANS-proteolipid----IAF-ATPase. The observed energy transfer may indicate weak interaction between the Ca2(+)-ATPase and proteolipid, but collisional energy transfer definitely contributes. The energy transfer was abolished by deoxycholate or sodium dodecylsulfate at concentrations sufficient to solubilize the membrane. In view of the low proteolipid content of sarcoplasmic reticulum and the weak interaction suggested by the energy transfer, at best only a small fraction of ATPase molecules could exist in the form of ATPase-proteolipid complexes.

  15. Synthesis and assembly of functional mammalian Na,K-ATPase in yeast.

    PubMed

    Horowitz, B; Eakle, K A; Scheiner-Bobis, G; Randolph, G R; Chen, C Y; Hitzeman, R A; Farley, R A

    1990-03-15

    The yeast Saccharomyces cerevisiae was investigated as an in vivo protein expression system for mammalian Na,K-ATPase. Unlike animal cells, yeast cells lack endogenous Na,K-ATPase. Expression of high affinity ouabain binding sites, ouabain-sensitive ATPase activity, or ouabain-sensitive p-nitrophenylphosphatase activity in membrane fractions of yeast cells was observed to require the expression of both alpha subunit and beta subunit polypeptides of Na,K-ATPase in the same cell. High affinity ouabain binding sites are also expressed at the cell surface of intact yeast cells containing both the alpha subunit and the beta subunit of Na,K-ATPase. These observations demonstrate that both the alpha subunit and the beta subunit of Na,K-ATPase are required for the expression of functional Na,K-ATPase activity and that yeast cells can correctly assemble this oligomeric membrane protein and transport it to the cell surface. PMID:1689721

  16. Characterization of the macrocyclic carbon suboxide factors as potent Na,K-ATPase and SR Ca-ATPase inhibitors.

    PubMed

    Kerek, Franz; Stimac, Robert; Apell, Hans-Jürgen; Freudenmann, Frank; Moroder, Luis

    2002-12-23

    Recently discovered macrocyclic carbon suboxide (MCS) factors with the general formula (C(3)O(2))(n) were found to strongly inhibit rabbit and rat Na,K-ATPase as well as SR Ca-ATPase. Highly active MCS factors were obtained by a base/acid treatment of their lipophilic precursor isolated from plants. In the ESI-MS spectra, the dominant molar mass ion of 431 Da corresponds to a 1:1 complex of the carbon suboxide hexamer (n=6; M(r)=408 Da) with a Na(+) ion. Additional mass ions identified in positive and negative ion mode were assigned as complexes of the MCS hexamer (n=6) and octamer (n=8) with Na(+) or with TFA(-) in various ratios. The dominant mass ion values of these active MCS factors from plants are also found in mass spectra of previously described endogenous digitalis-like factors (EDLF) from animals. This would suggest that ubiquitously distributed MCS factors may function as putative endogenous regulatory substances of Na,K-ATPase and possibly of other ATPases. With the symmetric display of several equivalent carbonyl or hydroxy groups, the structure of MCS factors is particularly suited for interactions with proteins and other bio-molecules. This could explain the high biological activity and the unusual properties of the MCS factors. PMID:12488055

  17. Do Src Kinase and Caveolin Interact Directly with Na,K-ATPase?

    PubMed

    Yosef, Eliyahu; Katz, Adriana; Peleg, Yoav; Mehlman, Tevie; Karlish, Steven J D

    2016-05-27

    Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1β1FXYD1 or porcine α1D369Nβ1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.

  18. Effect of colchicine on sensitivity of duck salt gland Na,K-ATPase to Na+.

    PubMed

    Yakushev, S S; Kumskova, E M; Rubtsov, A M; Lopina, O D

    2008-09-01

    Low molecular mass proteins of the FXYD family that affect the sensitivity of Na,K-ATPase to Na+ and K+ are known to be present in Na,K-ATPases in various tissues. In particular, in Na,K-ATPase from kidney a gamma-subunit (with electrophoretic mobility corresponding to molecular mass of about 10 kD) is present, and Na,K-ATPase preparations from heart contain phospholemman (electrophoretic mobility of this protein corresponds to molecular mass of 13-14 kD), which provides for the interaction of heart Na,K-ATPase with cytoskeletal microtubules. Disruption of microtubules by colchicine removes phospholemman from heart Na,K-ATPase preparations. The goal of the present study was to reveal a low molecular mass protein (probably a member of FXYD family) in preparation of Na,K-ATPase from duck salt glands. Immunoprecipitation of solubilized duck salt gland Na,K-ATPase using antibodies against alpha1-subunit results in the coprecipitation of a 13 kD protein with the Na,K-ATPase complex. Treatment of homogenate from duck salt glands with colchicine removes this protein from the purified preparation of Na,K-ATPase. Simultaneously, we observed a decrease in the sensitivity of Na,K-ATPase to Na+ at pH 6.5. However, colchicine treatment of homogenate from rabbit kidney does not affect either the sensitivity of Na,K-ATPase obtained from this homogenate to Na+ or the content of 10 kD protein (presumably gamma-subunit). The data suggest that phospholemman (or a similar member of the FXYD family) tightly interacts with Na,K-ATPase from duck salt glands and binds it to microtubules, simultaneously participating in the regulation of the sensitivity of Na,K-ATPase to Na+. PMID:18976215

  19. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  20. Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite.

    PubMed

    Rieg, Timo; Schnermann, Jürgen; Vallon, Volker

    2007-01-26

    Adenosine A1 receptor wild-type (+/+) and knockout (-/-) mice were used to elucidate the role of adenosine A1 receptors in caffeine self-administration in a two-bottle choice test and in the effect of caffeine on total fluid intake and plasma renin concentration. With access to water only, adenosine A1 receptor -/- mice showed greater basal fluid intake and greater plasma renin concentration than +/+ mice. Free access to both water and a caffeinated solution (30 mg/100 ml) for 14 days increased total fluid intake only in adenosine A1 receptor +/+ mice (by 23+/-3%), and both total fluid intake and plasma renin concentration were no longer different between genotypes. Mean intake of water and caffeinated solution was not different between adenosine A1 receptor +/+ and -/- mice. These data reveal that adenosine A1 receptors do not contribute to caffeine consumption, but determine the effects of caffeine on fluid intake and plasma renin concentration. PMID:17126319

  1. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  2. Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis

    PubMed Central

    Módis, Katalin; Gerő, Domokos; Nagy, Nóra; Szoleczky, Petra; Tóth, Zoltán Dóri; Szabó, Csaba

    2009-01-01

    Background and purpose: We have established an in vitro model of acute tubular necrosis in rat kidney tubular cells, using combined oxygen-glucose deprivation (COGD) and screened a library of 1280 pharmacologically active compounds for cytoprotective effects. Experimental approach: We used in vitro cell-based, high throughput, screening, with cells subjected to COGD using hypoxia chambers, followed by re-oxygenation. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the Alamar Blue assay measured mitochondrial respiration and the lactate dehydrogenase assay was used to indicate cell death. ATP levels were measured using a luminometric assay. Key results: Adenosine markedly reduced cellular injury, with maximal cytoprotective effect at 100 µM and an EC50 value of 14 µM. Inosine was also found to be cytoprotective. The selective A3 adenosine receptor antagonist MRS 1523 attenuated the protective effects of adenosine and inosine, while an A3 adenosine receptor agonist provided a partial protective effect. Adenosine deaminase inhibition attenuated the cytoprotective effect of adenosine but not of inosine during COGD. Inhibition of adenosine kinase reduced the protective effects of both adenosine and inosine during COGD. Pretreatment of the cells with adenosine or inosine markedly protected against the fall in cellular ATP content in the cells subjected to COGD. Conclusions and implications: The cytoprotection elicited by adenosine and inosine in a model of renal ischaemia involved both interactions with cell surface adenosine receptors on renal tubular epithelial cells and intracellular metabolism and conversion of adenosine to ATP. PMID:19906119

  3. Adenosine stimulates Ca2+ fluxes and increases cytosolic free Ca2+ in cultured rat mesangial cells.

    PubMed Central

    Olivera, A; López-Rivas, A; López-Novoa, J M

    1992-01-01

    Adenosine has been associated with cellular Ca2+ metabolism in some cell types. Since adenosine is able to contract glomerular mesangial cells in culture, and since Ca2+ is the main messenger mediating contractile responses, we studied the effect of adenosine on 45Ca2+ movements into and out of mesangial cells and on the cytosolic free Ca2+ concentration ([Ca2+]i). Adenosine at 0.1 mM increased 45Ca2+ uptake (basal, 9993 +/- 216; + adenosine, 14823 +/- 410 d.p.m./mg; P less than 0.01) through verapamil-sensitive Ca2+ channels. These channels seem to be of the A1-adenosine receptor subtype. Adenosine also stimulated 45Ca2+ efflux from 45Ca(2+)-loaded mesangial cells. This effect was accompanied by a net depletion of intracellular 45Ca2+ content under isotopic equilibrium conditions (basal, 24213 +/- 978; + adenosine, 18622 +/- 885 d.p.m./mg; P less than 0.05). The increase in 45Ca2+ efflux was inhibited by a Ca(2+)-free medium or in the presence of 10 microM-verapamil. However, the intracellular Ca(2+)-release blocker TMB-8 (10 microM) only partially inhibited the adenosine-stimulated 45Ca2+ efflux. In addition, adenosine induced an elevation in [Ca2+]i in mesangial cells with an initial transient peak within 15 s (basal, 113 +/- 7; adenosine, 345 +/- 46 nM), and a secondary increase which was slower (3-4 min) and of lower magnitude than the initial peak (250 +/- 21 nM). In summary, adenosine elevates [Ca2+]i and stimulates both Ca2+ uptake from the extracellular pool and Ca2+ efflux from intracellular pools in mesangial cells. The Ca2+ release from internal stores is produced by a combination of a TMB-8-inhibitable and a non-TMB-8-inhibitable mechanism, and seems to be dependent on Ca2+ influx. PMID:1554371

  4. Search for New Purine- and Ribose-Modified Adenosine Analogues as Selective Agonists and Antagonists at Adenosine Receptors†

    PubMed Central

    Siddiqi, Suhaib M.; Jacobson, Kenneth A.; Esker, John L.; Olah, Mark E.; Ji, Xiao-duo; Melman, Neli; Tiwari, Kamal N.; Secrist, John A.; Schneller, Stewart W.; Cristalli, Gloria; Stiles, Gary L.; Johnson, Carl R.; IJzerman, Ad P.

    2012-01-01

    The binding affinities at rat A1, A2a, and A3 adenosine receptors of a wide range of derivatives of adenosine have been determined. Sites of modification include the purine moiety (1-, 3-, and 7-deaza; halo, alkyne, and amino substitutions at the 2- and 8-positions; and N6-CH2-ring, -hydrazino, and -hydroxylamino) and the ribose moiety (2′-, 3′-, and 5′-deoxy; 2′- and 3′-O-methyl; 2′-deoxy 2′-fluoro; 6′-thio; 5′-uronamide; carbocyclic; 4′- or 3′-methyl; and inversion of configuration). (−)- and (+)-5′-Noraristeromycin were 48- and 21-fold selective, respectively, for A2a vs A1 receptors. 2-Chloro-6′-thioadenosine displayed a Ki value of 20 nM at A2a receptors (15-fold selective vs A1). 2-Chloroadenin-9-yl(β-L-2′-deoxy-6′-thiolyxofuranoside) displayed a Ki value of 8 μM at A1 receptors and appeared to be an antagonist, on the basis of the absence of a GTP-induced shift in binding vs a radiolabeled antagonist (8-cyclopentyl-1,3-dipropylxanthine). 2-Chloro-2′-deoxyadenosine and 2-chloroadenin-9-yl(β-D-6′-thioarabinoside) were putative partial agonists at A1 receptors, with Ki values of 7.4 and 5.4 μM, respectively. The A2a selective agonist 2-(1-hexynyl)-5′-(N-ethylcarbamoyl)adenosine displayed a Ki value of 26 nM at A3 receptors. The 4′-methyl substitution of adenosine was poorly tolerated, yet when combined with other favorable modifications, potency was restored. Thus, N6-benzyl-4′-methyladenosine-5′-(N-methyluronamide) displayed a Ki value of 604 nM at A3 receptors and was 103- and 88-fold selective vs A1 and A2a receptors, respectively. This compound was a full agonist in the A3-mediated inhibition of adenylate cyclase in transfected CHO cells. The carbocyclic analogue of N6-(3-iodobenzyl)adenosine-5′-(N-methyluronamide) was 2-fold selective for A3 vs A1 receptors and was nearly inactive at A2a receptors. PMID:7707320

  5. "Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols.

    PubMed

    Bogdanova, Anna; Petrushanko, Irina Y; Hernansanz-Agustín, Pablo; Martínez-Ruiz, Antonio

    2016-01-01

    Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its "oxygen-sensitivity" is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase "oxygen-sensitive." This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the "optimal" level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors' activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes

  6. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  7. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  8. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  9. Impaired inhibitory function of presynaptic A1-adenosine receptors in SHR mesenteric arteries.

    PubMed

    Rocha-Pereira, Carolina; Arribas, Silvia Magdalena; Fresco, Paula; González, Maria Carmen; Gonçalves, Jorge; Diniz, Carmen

    2013-01-01

    In hypertension, vascular reactivity alterations have been attributed to numerous factors, including higher sympathetic innervation/adenosine. This study examined the modulation of adenosine receptors on vascular sympathetic nerves and their putative contribution to higher noradrenaline spillover in hypertension. We assessed adenosine receptors distribution in the adventitia through confocal microscopy, histomorphometry, and their regulatory function on electrically-evoked [(3)H]-noradrenaline overflow, using selective agonists/antagonists. We found that: i) A1-adenosine receptor agonist (CPA: 100 nM) inhibited tritium overflow to a lower extent in SHR (25% ± 3%, n = 14) compared to WKY (38% ± 3%, n = 14) mesenteric arteries; ii) A2A-adenosine receptor agonist (CGS 21680: 100 nM) induced a slight increase of tritium overflow that was similar in SHR (22% ± 8%, n = 8) and WKY (24% ± 5%, n = 8) mesenteric arteries; iii) A2B- and A3-adenosine receptors did not alter tritium overflow in either strain; iv) all adenosine receptors were present on mesenteric artery sympathetic nerves and/or some adventitial cells of both strains; and v) A1-adenosine receptor staining fractional area was lower in SHR than in WKY mesenteric arteries. We conclude that there is an impaired inhibitory function of vascular presynaptic A1-adenosine receptors in SHR, likely related to a reduced presence of these receptors on sympathetic innervation, which might lead to higher levels of noradrenaline in the synaptic cleft and contribute to hypertension in this strain.

  10. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells.

    PubMed

    Mun, E C; Tally, K J; Matthews, J B

    1998-02-01

    Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders.

  11. Application of a coupled enzyme assay to characterize nicotinamide riboside kinases.

    PubMed

    Dölle, Christian; Ziegler, Mathias

    2009-02-15

    The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening. PMID:19027704

  12. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    PubMed Central

    De Silva, Frank S; Moss, Bernard

    2008-01-01

    Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant

  13. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L) replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N)-methanocarbathymidine

    PubMed Central

    Prichard, Mark N; Kern, Earl R; Quenelle, Debra C; Keith, Kathy A; Moyer, Richard W; Turner, Peter C

    2008-01-01

    Background The vaccinia virus (VV) F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase) that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. Results The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N)-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. Conclusion We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive to (N

  14. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  15. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  16. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  17. Oscillations in glycolysis in Saccharomyces cerevisiae: the role of autocatalysis and intracellular ATPase activity.

    PubMed

    Kloster, Antonina; Olsen, Lars Folke

    2012-05-01

    We have investigated the glycolytic oscillations, measured as NADH autofluorescence, in the yeast Saccharomyces cerevisiae in a batch reactor. Specifically, we have tested the effect of cell density and a number of inhibitors or activators of ATPase activity on the amplitude of the oscillations. The amplitude dependence on cell density shows the same behavior as that observed in cells in a CSTR. Furthermore, the amplitude decreases with increasing inhibition of the three ATPases (i) F(0)F(1) ATPase, (ii) plasma membrane ATPase (Pma1p) and (iii) vacuolar ATPase (V-ATPase). The amplitude of the oscillations also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although this model faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations.

  18. A novel multigene cloning method for the production of a motile ATPase.

    PubMed

    Jang, Min Su; Song, Woo Chul; Shin, Seung Won; Park, Kyung Soo; Kim, Jinseok; Kim, Dong-Ik; Kim, Byung Woo; Um, Soong Ho

    2015-08-10

    With the advent of nanotechnology, new functional modules (e.g., nanomotors, nanoprobes) have become essential in several medical fields. Generally, mechanical modulators systems are the principal components of most cutting-edge technologies in modern biomedical applications. However, the in vivo use of motile probes has raised many concerns due to their low sensitivity and non-biocompatibility. As an alternative, biological enzymatic engines have received increased attention. In particular, ATPases, which belong to a class of motile enzymes that catalyze chemical metabolic reactions, have emerged as a promising motor due to their improved biocompatibility and performance. However, ATPases usually suffer from lower functional activity and are difficult to express recombinantly in bacteria relative to their conventional and synthetic competitors. Here, we report a novel functional modified ATPase with both a simple purification protocol and enhanced motile activity. For this mutant ATPase, a new bacterial subcloning method was established. The ATPase-encoding sequence was redesigned so that the mutant ATPase could be easily produced in an Escherichia coli system. The modified thermophilic F1-ATPase (mTF1-ATPase) demonstrated 17.8unit/mg ATPase activity. We propose that derivatives of our ATPase may enable the development of novel in vitro and in vivo synthetic medical diagnostics, as well as therapeutics.

  19. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  20. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    PubMed

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency. PMID:26637493

  1. Nonequilibrium energetics of a single F1-ATPase molecule.

    PubMed

    Toyabe, Shoichi; Okamoto, Tetsuaki; Watanabe-Nakayama, Takahiro; Taketani, Hiroshi; Kudo, Seishi; Muneyuki, Eiro

    2010-05-14

    Molecular motors drive mechanical motions utilizing the free energy liberated from chemical reactions such as ATP hydrolysis. Although it is essential to know the efficiency of this free energy transduction, it has been a challenge due to the system's microscopic scale. Here, we evaluate the single-molecule energetics of a rotary molecular motor, F1-ATPase, by applying a recently derived nonequilibrium equality together with an electrorotation method. We show that the sum of the heat flow through the probe's rotational degree of freedom and the work against an external load is almost equal to the free energy change per a single ATP hydrolysis under various conditions. This implies that F1-ATPase works at an efficiency of nearly 100% in a thermally fluctuating environment. PMID:20867002

  2. Adenosine triphosphate stress echocardiography in the detection of myocardial ischemia.

    PubMed

    Fukai, T; Koyanagi, S; Tashiro, H; Ichiki, T; Tsutsui, H; Matsumoto, T; Takeshita, A

    1995-10-01

    The purpose of this study was to assess feasibility and safety in the diagnosis of coronary artery in the diagnosis of coronary artery disease and myocardial ischemia using adenosine triphosphate (ATP) stress echocardiography. ATP, a product of human myocardial tissue, is more potent than adenosine in increasing coronary blood flow. Like adenosine, ATP also has a short half-life (<10 s). Left ventricular echocardiograms were recorded during step-wise infusions of ATP in 86 patients who underwent coronary angiography and stress thallium 201 scintigraphy. No serious complications occurred with ATP infusion and most of the side effects were mild and transient. Significant coronary artery disease (>75% diameter stenosis) was present in 34 of 48 patients who had normal echocardiograms at rest. The sensitivity and specificity of ATP-induced wall motion abnormalities for coronary artery disease was 65% (22 of 34) and 100% (14 of 14), respectively. The sensitivity was 50% (10 of 20) in those with one-vessel disease and 86% (12 of 14) in those with multivessel disease (P < .05). In patients with normal echocardiograms at rest and without prior myocardial infarction, the sensitivity of ATP stress echocardiography for the detection of myocardial ischemia assessed by 201Tl single proton emission computed tomography was 58%, with a specificity of 76%, and a diagnostic accuracy of 66%. The sensitivity was 43% in those with one-vessel disease, and 86% in those with multivessel disease (P = .05). In patients with prior myocardial infarction, the sensitivity of ATP stress echocardiography for the detection of viable but jeopardized myocardium was 81%, with a specificity of 91%. The patients with well-developed collateral circulation had a higher incidence of developing wall motion abnormality than those without collaterals (70% v 40%, P < .01). ATP stress echocardiography is valuable for the assessment of coronary artery disease in patients with multivessel disease, coronary

  3. Spectrophotometric assay of renal ouabain-resistant Na(+)-ATPase and its regulation by leptin and dietary-induced obesity.

    PubMed

    Bełtowski, Jerzy; Jamroz-Wiśniewska, Anna; Nazar, Jarosław; Wójcicka, Grazyna

    2004-01-01

    Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.

  4. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  5. The Role of Uridine Adenosine Tetraphosphate in the Vascular System

    PubMed Central

    Matsumoto, Takayuki; Tostes, Rita C.; Webb, R. Clinton

    2011-01-01

    The endothelium plays a pivotal role in vascular homeostasis, and endothelial dysfunction is a major feature of cardiovascular diseases, such as arterial hypertension, atherosclerosis, and diabetes. Recently, uridine adenosine tetraphosphate (Up4A) has been identified as a novel and potent endothelium-derived contracting factor (EDCF). Up4A structurally contains both purine and pyrimidine moieties, which activate purinergic receptors. There is an accumulating body of evidence to show that Up4A modulates vascular function by actions on endothelial and smooth muscle cells. In this paper, we discuss the effects of Up4A on vascular function and a potential role for Up4A in cardiovascular diseases. PMID:22110488

  6. Vasodilatory responsiveness to adenosine triphosphate in ageing humans

    PubMed Central

    Kirby, Brett S; Crecelius, Anne R; Voyles, Wyatt F; Dinenno, Frank A

    2010-01-01

    Endothelium-dependent vasodilatation is reduced with advancing age in humans, as evidenced by blunted vasodilator responsiveness to acetylcholine (ACh). Circulating adenosine triphosphate (ATP) has been implicated in the control of skeletal muscle vascular tone during mismatches in oxygen delivery and demand (e.g. exercise) via binding to purinergic receptors (P2Y) on the endothelium evoking subsequent vasodilatation, and ageing is typically associated with reductions in muscle blood flow under such conditions. Therefore, we tested the hypothesis that ATP-mediated vasodilatation is impaired with age in healthy humans. We measured forearm blood flow (venous occlusion plethysmography) and calculated vascular conductance (FVC) responses to local intra-arterial infusions of ACh, ATP, and sodium nitroprusside (SNP) before and during ascorbic acid (AA) infusion in 13 young and 13 older adults. The peak increase in FVC to ACh was significantly impaired in older compared with young adults (262 ± 71%vs. 618 ± 97%; P < 0.05), and this difference was abolished during AA infusion (510 ± 82%vs. 556 ± 71%; not significant, NS). In contrast, peak FVC responses were not different between older and young adults to either ATP (675 ± 105%vs. 734 ± 126%) or SNP (1116 ± 111%vs. 1138 ± 148%) and AA infusion did not alter these responses in either age group (both NS). In another group of six young and six older adults, we determined whether vasodilator responses to adenosine and ATP were influenced by P1-receptor blockade via aminophylline. The peak FVC responses to adenosine were not different in young (350 ± 65%) versus older adults (360 ± 80%), and aminophylline blunted these responses by ∼50% in both groups. The peak FVC responses to ATP were again not different in young and older adults, and aminophylline did not impact the vasodilatation in either group. Thus, in contrast to the observed impairments in ACh responses, the vasodilatory response to exogenous ATP is not

  7. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    PubMed

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic

  8. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice

    PubMed Central

    Yang, Chun; Franciosi, Serena; Brown, Ritchie E.

    2013-01-01

    Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF) region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV) neurons to determine the effect of adenosine. Whole-cell recordings were made from BF cholinergic neurons and from BF GABAergic and PV neurons with the size (>20 μm) and intrinsic membrane properties (prominent H-currents) corresponding to cortically projecting neurons. A brief (2 min) bath application of adenosine (100 μM) decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in all groups of BF cholinergic, GABAergic, and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM). Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1 receptor-mediated inhibition of glutamatergic inputs to cortically projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required

  9. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep

    PubMed Central

    Bjorness, Theresa E.; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A.; Yanagisawa, Masashi; Bibb, James A.

    2016-01-01

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets

  10. Presynaptic action of adenosine on a 4-aminopyridine-sensitive current in the rat carotid body

    PubMed Central

    Vandier, C; Conway, A F; Landauer, R C; Kumar, P

    1999-01-01

    Plasma adenosine concentration increases during hypoxia to a level that excites carotid body chemoreceptors by an undetermined mechanism. We have examined this further by determining the electrophysiological responses to exogenous adenosine of sinus nerve chemoafferents in vitro and of whole-cell currents in isolated type I cells.Steady-state, single-fibre chemoafferent discharge was increased approximately 5-fold above basal levels by 100 μM adenosine. This adenosine-stimulated discharge was reversibly and increasingly reduced by methoxyverapamil (D600, 100 μM), by application of nickel chloride (Ni2+, 2 mM) and by removal of extracellular Ca2+. These effects strongly suggest a presynaptic, excitatory action of adenosine on type I cells of the carotid body.Adenosine decreased whole-cell outward currents at membrane potentials above -40 mV in isolated type I cells recorded during superfusion with bicarbonate-buffered saline solution at 34–36 °C. This effect was reversible and concentration dependent with a maximal effect at 10 μM.The degree of current inhibition induced by 10 μM adenosine was voltage independent (45.39 ± 2.55% (mean ± s.e.m.) between −40 and +30 mV) and largely (∼75%), but not entirely, Ca2+ independent. 4-Aminopyridine (4-AP, 5 mM) decreased the amplitude of the control outward current by 80.60 ± 3.67% and abolished the effect of adenosine.Adenosine was without effect upon currents near the resting membrane potential of approximately −55 mV and did not induce depolarization in current-clamp experiments.We conclude that adenosine acts to inhibit a 4-AP-sensitive current in isolated type I cells of the rat carotid body and suggest that this mechanism contributes to the chemoexcitatory effect of adenosine in the whole carotid body. PMID:10050009

  11. The stochastic model of F1-ATPase molecular motor functioning

    NASA Astrophysics Data System (ADS)

    Pogrebnaya, Aleksandra F.; Romanovsky, Yury M.; Tikhonov, Aleksander N.

    2004-05-01

    This work is devoted to the study of the energy characteristics of the F1ATPase-substrate complex. The results of calculations of the electrostatic energy in the enzyme-substrate complex are presented in the first part. In calculations, we take into account the electrostatic interactions between the charged groups of the substrate (MgATP) and reaction products (MgADP and Pi) and charged amino acid residues of the α3β3γ complex that correspond to various conformations of the enzyme. The hydrolysis of ATP in the catalytic site leads to coordinated conformational changes in α, β subunits and to ordered rotation of γ subunit located in the center of F1ATPase complex. The calculations show that the energetically favorable process involving MgATP binding at the catalytic site in the "open" conformation initiates γ subunit rotation followed by the hydrolysis in the other (tight) catalytic site. In the second part, we propose the simplest stochastic model describing the ordered rotation of γ subunit (the rotor of F1-ATPase molecular motor). In the model we take into account the electrostatic interaction using the results of the previous calculations. We employ experimentally obtained dynamic parameters. The model takes into account the thermal fluctuations of the bath and the random processes of the substrate binding and the escape of the reaction products.

  12. The Mechanism of Hsp90 ATPase Stimulation by Aha1

    PubMed Central

    Wolmarans, Annemarie; Lee, Brian; Spyracopoulos, Leo; LaPointe, Paul

    2016-01-01

    Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called ‘clients’. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p. Only one molecule of Aha1p is required to fully stimulate the Hsp90 dimer despite the existence of two, presumably identical, binding sites for this regulator. Using ATPase assays with Hsp90 heterodimers, we find that Aha1p stimulates ATPase activity by a three-step mechanism via the catalytic loop in the middle domain of Hsp90. Binding of the Aha1p N domain to the Hsp90 middle domain exerts a small stimulatory effect but also drives a separate conformational rearrangement in the Hsp90 N domains. This second event drives a rearrangement in the N domain of the opposite subunit and is required for the stimulatory action of the Aha1p C domain. Furthermore, the second event can be blocked by a mutation in one subunit of the Hsp90 dimer but not the other. This work provides a foundation for understanding how post-translational modifications regulate co-chaperone engagement with the Hsp90 dimer. PMID:27615124

  13. Protein import into chloroplasts requires a chloroplast ATPase

    SciTech Connect

    Pain, D.; Blobel, G.

    1987-05-01

    The authors have transcribed mRNA from a cDNA clone coding for pea ribulose-1,5-bisphosphate carboxylase, translated the mRNA in a wheat germ cell-free system, and studied the energy requirement for posttranslational import of the (/sup 35/S)methionine-labeled protein into the stroma of pea chloroplasts. They found that import depends on ATP hydrolysis within the stroma. Import is not inhibited when H/sup +/, K/sup +/, Na/sup +/, or divalent cation gradients across the chloroplast membranes are dissipated by ionophores, as long as exogenously added ATP is also present during the import reaction. The data suggest that protein import into the chloroplast stroma requires a chloroplast ATPase that does not function to generate a membrane potential for driving the import reaction but that exerts its effect in another, yet-to-be-determined, mode. They have carried out a preliminary characterization of this ATPase regarding its nucleotide specificity and the effects of various ATPase inhibitors.

  14. A unique mechanism of curcumin inhibition on F1 ATPase.

    PubMed

    Sekiya, Mizuki; Hisasaka, Ryosuke; Iwamoto-Kihara, Atsuko; Futai, Masamitsu; Nakanishi-Matsui, Mayumi

    2014-10-01

    ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277-286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective β-γ subunit interactions (γMet23 to Lys) or β conformational changes (βSer174 to Phe). These results confirm that smooth interaction between each β subunit and entire γ subunit in F1 is pertinent for rotational catalysis. PMID:25230139

  15. The Mechanism of Hsp90 ATPase Stimulation by Aha1.

    PubMed

    Wolmarans, Annemarie; Lee, Brian; Spyracopoulos, Leo; LaPointe, Paul

    2016-01-01

    Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called 'clients'. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p. Only one molecule of Aha1p is required to fully stimulate the Hsp90 dimer despite the existence of two, presumably identical, binding sites for this regulator. Using ATPase assays with Hsp90 heterodimers, we find that Aha1p stimulates ATPase activity by a three-step mechanism via the catalytic loop in the middle domain of Hsp90. Binding of the Aha1p N domain to the Hsp90 middle domain exerts a small stimulatory effect but also drives a separate conformational rearrangement in the Hsp90 N domains. This second event drives a rearrangement in the N domain of the opposite subunit and is required for the stimulatory action of the Aha1p C domain. Furthermore, the second event can be blocked by a mutation in one subunit of the Hsp90 dimer but not the other. This work provides a foundation for understanding how post-translational modifications regulate co-chaperone engagement with the Hsp90 dimer. PMID:27615124

  16. V-ATPase as an effective therapeutic target for sarcomas

    SciTech Connect

    Perut, Francesca; Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela; Hosogi, Shigekuni; Kusuzaki, Katsuyuki; Baldini, Nicola

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  17. Differential distribution of V-type H(+)-ATPase and Na (+)/K (+)-ATPase in the branchial chamber of the palaemonid shrimp Macrobrachium amazonicum.

    PubMed

    Boudour-Boucheker, Nesrine; Boulo, Viviane; Charmantier-Daures, Mireille; Grousset, Evelyse; Anger, Klaus; Charmantier, Guy; Lorin-Nebel, Catherine

    2014-07-01

    V-H(+)-ATPase and Na(+)/K(+)-ATPase were localized in the gills and branchiostegites of M. amazonicum and the effects of salinity on the branchial chamber ultrastructure and on the localization of transporters were investigated. Gills present septal and pillar cells. In freshwater (FW), the apical surface of pillar cells is amplified by extensive evaginations associated with mitochondria. V-H(+)-ATPase immunofluorescence was localized in the membranes of the apical evaginations and in clustered subapical areas of pillar cells, suggesting labeling of intracellular vesicle membranes. Na(+)/K(+)-ATPase labeling was restricted to the septal cells. No difference in immunostaining was recorded for both proteins according to salinity (FW vs. 25 PSU). In the branchiostegite, both V-H(+)-ATPase and Na(+)/K(+)-ATPase immunofluorescence were localized in the same cells of the internal epithelium. Immunogold revealed that V-H(+)-ATPase was localized in apical evaginations and in electron-dense areas throughout the inner epithelium, while Na(+)/K(+)-ATPase occurred densely along the basal infoldings of the cytoplasmic membrane. Our results suggest that morphologically different cell types within the gill lamellae may also be functionally specialized. We propose that, in FW, pillar cells expressing V-H(+)-ATPase absorb ions (Cl(-), Na(+)) that are transported either directly to the hemolymph space or through a junctional complex to the septal cells, which may be responsible for active Na(+) delivery to the hemolymph through Na(+)/K(+)-ATPase. This suggests a functional link between septal and pillar cells in osmoregulation. When shrimps are transferred to FW, gill and branchiostegite epithelia undergo ultrastructural changes, most probably resulting from their involvement in osmoregulatory processes.

  18. The Chromodomains of the Chd1 Chromatin Remodeler Regulate DNA Access to the ATPase Motor

    SciTech Connect

    Hauk, G.; McKnight, J; Nodelman, I; Bowman, G

    2010-01-01

    Chromatin remodelers are ATP-driven machines that assemble, slide, and remove nucleosomes from DNA, but how the ATPase motors of remodelers are regulated is poorly understood. Here we show that the double chromodomain unit of the Chd1 remodeler blocks DNA binding and activation of the ATPase motor in the absence of nucleosome substrates. The Chd1 crystal structure reveals that an acidic helix joining the chromodomains can pack against a DNA-binding surface of the ATPase motor. Disruption of the chromodomain-ATPase interface prevents discrimination between nucleosomes and naked DNA and reduces the reliance on the histone H4 tail for nucleosome sliding. We propose that the chromodomains allow Chd1 to distinguish between nucleosomes and naked DNA by physically gating access to the ATPase motor, and we hypothesize that related ATPase motors may employ a similar strategy to discriminate among DNA-containing substrates.

  19. The Role of the Plasma Membrane H+-ATPase in Plant–Microbe Interactions

    PubMed Central

    Elmore, James Mitch; Coaker, Gitta

    2011-01-01

    Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant–pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility. PMID:21300757

  20. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  1. Crystallization and data collection of the nucleotide-binding domain of Mg-ATPase

    PubMed Central

    Håkansson, Kjell O.; Ćurović, Aida

    2009-01-01

    Understanding of how P-type ATPases work would greatly benefit from the elucidation of more high-resolution structures. The nucleotide-binding domain of Mg-ATPase was selected for structural studies because Mg-ATPase is closely related to eukaryotic Ca-ATPase and Na,K-ATPase while the nucleotide-binding domain itself has diverged substantially. Two fragments of Mg-ATPase were cloned in Escherichia coli and purified. The entire cytoplasmic loop (residues 367–673), consisting of the phosphorylation and nucleotide-binding domains, expressed well and was purified in large quantities. The smaller 19.5 kDa nucleotide-binding domain (residues 383–545) expressed less well but formed crystals that diffracted to a resolution of 1.53 Å which will be used for molecular replacement. PMID:19255470

  2. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  3. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety

    PubMed Central

    Van Rompaey, Philippe; Jacobson, Kenneth A.; Gross, Ariel S.; Gao, Zhan-Guo; Van Calenbergh, Serge

    2012-01-01

    In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3′- and 5′-positions of the ribofuranosyl moiety and the 2- and N6-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3–12 and 24–33, with good hA3AR selectivity and moderate-to-high affinities (as in 32, Ki = 27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3′-position. PMID:15670905

  4. Opiate-induced changes in brain adenosine levels and narcotic drug responses.

    PubMed

    Wu, M; Sahbaie, P; Zheng, M; Lobato, R; Boison, D; Clark, J D; Peltz, G

    2013-01-01

    We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10-40 mg/kg) administered over a 4-day period selectively induced a twofold decrease (p<0.00005) in adenosine abundance in the brainstem of C57BL/6 mice, which exhibited symptoms of narcotic drug dependence; but did not decrease adenosine abundance in 129Sv1 mice, which do not exhibit symptoms of dependence. Based on this finding, the effect of adenosine on dependence was investigated in genetically engineered mice with alterations in adenosine tone in the brain and in pharmacologic experiments. Morphine withdrawal behaviors were significantly diminished (p<0.0004) in genetically engineered mice with reduced adenosine tone in the brainstem, and by treatment with an adenosine receptor(1) (A(1)) agonist (2-chloro-N6-cyclopentyladenosine, 0.5mg/kg) or an A(2a) receptor (A(2a)) antagonist (SCH 58261, 1mg/kg). These results indicate that adenosine homeostasis plays a crucial role in narcotic drug responses. Opiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal.

  5. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  6. Mechanical modulation of ATP-binding affinity of V1-ATPase.

    PubMed

    Tirtom, Naciye Esma; Okuno, Daichi; Nakano, Masahiro; Yokoyama, Ken; Noji, Hiroyuki

    2013-01-01

    V(1)-ATPase is a rotary motor protein that rotates the central shaft in a counterclockwise direction hydrolyzing ATP. Although the ATP-binding process is suggested to be the most critical reaction step for torque generation in F(1)-ATPase (the closest relative of V(1)-ATPase evolutionarily), the role of ATP binding for V(1)-ATPase in torque generation has remained unclear. In the present study, we performed single-molecule manipulation experiments on V(1)-ATPase from Thermus thermophilus to investigate how the ATP-binding process is modulated upon rotation of the rotary shaft. When V(1)-ATPase showed an ATP-waiting pause, it was stalled at a target angle and then released. Based on the response of the V(1)-ATPase released, the ATP-binding probability was determined at individual stall angles. It was observed that the rate constant of ATP binding (k(on)) was exponentially accelerated with forward rotation, whereas the rate constant of ATP release (k(off)) was exponentially reduced. The angle dependence of the k(off) of V(1)-ATPase was significantly smaller than that of F(1)-ATPase, suggesting that the ATP-binding process is not the major torque-generating step in V(1)-ATPase. When V(1)-ATPase was stalled at the mean binding angle to restrict rotary Brownian motion, k(on) was evidently slower than that determined from free rotation, showing the reaction rate enhancement by conformational fluctuation. It was also suggested that shaft of V(1)-ATPase should be rotated at least 277° in a clockwise direction for efficient release of ATP under ATP-synthesis conditions.

  7. Cholinergic synaptic vesicles contain a V-type and a P-type ATPase.

    PubMed

    Yamagata, S K; Parsons, S M

    1989-11-01

    Fifty to eighty-five percent of the ATPase activity in different preparations of cholinergic synaptic vesicles isolated from Torpedo electric organ was half-inhibited by 7 microM vanadate. This activity is due to a recently purified phosphointermediate, or P-type, ATPase, Acetylcholine (ACh) active transport by the vesicles was stimulated about 35% by vanadate, demonstrating that the P-type enzyme is not the proton pump responsible for ACh active transport. Nearly all of the vesicle ATPase activity was inhibited by N-ethylmaleimide. The P-type ATPase could be protected from N-ethylmaleimide inactivation by vanadate, and subsequently reactivated by complexation of vanadate with deferoxamine. The inactivation-protection pattern suggests the presence of a vanadate-insensitive, N-ethylmaleimide-sensitive ATPase consistent with a vacuolar, or V-type, activity expected to drive ACh active transport. ACh active transport was half-inhibited by 5 microM N-ethylmaleimide, even in the presence of vanadate. The presence of a V-type ATPase was confirmed by Western blots using antisera raised against three separate subunits of chromaffin granule vacuolar ATPase I. Both ATPase activities, the P-type polypeptides, and the 38-kilodalton polypeptide of the V-type ATPase precisely copurify with the synaptic vesicles. Solubilization of synaptic vesicles in octaethyleneglycol dodecyl ether detergent results in several-fold stimulation of the P-type activity and inactivation of the V-type activity, thus explaining why the V-type activity was not detected previously during purification of the P-type ATPase. It is concluded that cholinergic vesicles contain a P-type ATPase of unknown function and a V-type ATPase which is the proton pump. PMID:2552014

  8. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H(+)-ATPase in Arabidopsis thaliana.

    PubMed

    Hayashi, Yuki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

    2014-04-01

    Plasma membrane H(+)-ATPase is thought to mediate hypocotyl elongation, which is induced by the phytohormone auxin through the phosphorylation of the penultimate threonine of H(+)-ATPase. However, regulation of the H(+)-ATPase during hypocotyl elongation by other signals has not been elucidated. Hypocotyl elongation in etiolated seedlings of Arabidopsis thaliana was suppressed by the H(+)-ATPase inhibitors vanadate and erythrosine B, and was significantly reduced in aha2-5, which is a knockout mutant of the major H(+)-ATPase isoform in etiolated seedlings. Application of the phytohormone ABA to etiolated seedlings suppressed hypocotyl elongation within 30 min at the half-inhibitory concentration (4.2 µM), and induced dephosphorylation of the penultimate threonine of H(+)-ATPase without affecting the amount of H(+)-ATPase. Interestingly, an ABA-insensitive mutant, abi1-1, did not show ABA inhibition of hypocotyl elongation or ABA-induced dephosphorylation of H(+)-ATPase. This indicates that ABI1, which is an early ABA signaling component through the ABA receptor PYR/PYL/RCARs (pyrabactin resistance/pyrabactin resistance 1-like/regulatory component of ABA receptor), is involved in these responses. In addition, we found that the fungal toxin fusiccocin (FC), an H(+)-ATPase activator, induced hypocotyl elongation and phosphorylation of the penultimate threonine of H(+)-ATPase, and that FC-induced hypocotyl elongation and phosphorylation of H(+)-ATPase were significantly suppressed by ABA. Taken together, these results indicate that ABA has an antagonistic effect on hypocotyl elongation through, at least in part, dephosphorylation of H(+)-ATPase in etiolated seedlings.

  9. Perfusion pressure control by adenosine triphosphate given during cardiopulmonary bypass.

    PubMed

    Hashimoto, K; Kurosawa, H; Horikoshi, S; Miyamoto, H; Suzuki, K

    1993-01-01

    Administration of exogenous adenosine triphosphate (ATP) as a vasodilator during cardiopulmonary bypass was assessed in consecutive adult patients (n = 24) who demonstrated a high arterial perfusion pressure (mean, > 90 mm Hg). The action of ATP was characterized by rapid induction and stabilization of the blood pressure level. The dose of ATP ranged from 0.68 to 2.68 mg/min. Within 1 minute after the administration, there was a significant reduction in the perfusion pressure from 102 +/- 18 mm Hg (mean +/- standard deviation) to 72 +/- 19 mm Hg. The ATP was then able to maintain the desired pressure of 69 +/- 12 mm Hg at 5 minutes, 67 +/- 12 mm Hg at 10 minutes, and consistent values thereafter. After the ATP administration was discontinued, there was a prompt recovery of pressure without bradyarrhythmia. The frequency and amount of inotropes used were consistent with the control group (n = 26). Although the administration of ATP reduced the increase in serum catecholamine concentration, there were no significant changes in other vasoactive mediators (eicosanoid, angiotensin II, endothelin) between the two groups during cardiopulmonary bypass. There was neither an accumulation of metabolic products (uric acid, phosphate) nor a decrease in the level of divalent cation (Ca2+), which is observed when the cations combine with phosphates or adenosine nucleotides. This study confirmed the efficacy and safety of ATP infusion during cardiopulmonary bypass. PMID:8417658

  10. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. PMID:25957126

  11. Novel trypanocidal analogs of 5'-(methylthio)-adenosine.

    PubMed

    Sufrin, Janice R; Spiess, Arthur J; Marasco, Canio J; Rattendi, Donna; Bacchi, Cyrus J

    2008-01-01

    The purine nucleoside 5'-deoxy-5'-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5'-deoxy-5'-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5'-deoxy-5'-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.

  12. Purification and Properties of Adenosine Diphosphoglucose Pyrophosphorylase from Sweet Corn 1

    PubMed Central

    Amir, Jacob; Cherry, Joe H.

    1972-01-01

    A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate. PMID:16658078

  13. Respiratory stimulant effects of adenosine in man after caffeine and enprofylline.

    PubMed Central

    Smits, P; Schouten, J; Thien, T

    1987-01-01

    In a double-blind and randomized study the respiratory stimulant effect of continuous intravenous adenosine infusion was studied after previous administration of caffeine, placebo and enprofylline in 10 healthy young volunteers. After placebo, adenosine induced an increase of minute ventilation (from 6.3 to 12.5 l min-1), tidal volume (from 0.60 to 0.96 l), and breathing rate (from 11.0 to 14.8 min-1). Venous pCO2 fell and pH rose after adenosine. Caffeine significantly reduced the adenosine-induced changes of minute ventilation, tidal volume, venous pCO2 and pH, whereas no changes occurred after enprofylline. Our results suggest that adenosine stimulates respiration in man by binding with specific P1-purinoceptors, which can be blocked by caffeine, but not by enprofylline. PMID:3440102

  14. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation☆

    PubMed Central

    Kang, Huicong; Hu, Qi; Liu, Xiaoyan; Liu, Yinhe; Xu, Feng; Li, Xiang; Zhu, Suiqiang

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges. PMID:25806064

  15. P4-ATPases as Phospholipid Flippases—Structure, Function, and Enigmas

    PubMed Central

    Andersen, Jens P.; Vestergaard, Anna L.; Mikkelsen, Stine A.; Mogensen, Louise S.; Chalat, Madhavan; Molday, Robert S.

    2016-01-01

    P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na+/K+-ATPase by exoplasmic K+. How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca2+ in the opposite direction in the Ca2+-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca2+- and Na+/K+-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the

  16. Sub-chronic effect of neem based pesticide (Vepacide) on acetylcholinesterase and ATPases in rat.

    PubMed

    Rahman, M F; Siddiqui, M K; Jamil, K

    1999-09-01

    Acetylcholinesterases (AChE), Na(+)-K+, Mg2+ and Ca(2+)-ATPases were monitored in rat brain when treated orally with 80, 160 and 320 mg/kg of Vepacide, an active ingredient from neem seed oil, daily for 90 days. Brain AChE, Na(+)-K+ and Ca(2+)-ATPases were inhibited whereas Mg(2+)-ATPase levels were enhanced in both the sexes after 45 and 90 days of treatment. The relative sensitivities of these ATPases to Vepacide indicated that Ca(2+)-ATPase being more sensitive than Na(+)-K(+)-ATPase in both the sexes. The magnitude of Ca(2+)-ATPase inhibited by this compound was higher than that of brain AChE. It appears to be sexual dimorphism in the alterations of brain AChE, Na(+)-K+ and Mg(2+)-ATPases by Vepacide with females being significant when compared with males. After 28 days of post treatment the alterations observed were approached to those of controls both in male and female rats showing reversal of the toxicity. These results indicated that the ATPases were potently inhibited by Vepacide and seemed to be its precise target among the enzyme studied. This can be used as biochemical marker of exposure to this neem derived product. PMID:10466107

  17. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas.

    PubMed

    Andersen, Jens P; Vestergaard, Anna L; Mikkelsen, Stine A; Mogensen, Louise S; Chalat, Madhavan; Molday, Robert S

    2016-01-01

    P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na(+)/K(+)-ATPase by exoplasmic K(+). How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca(2+)- and Na(+)/K(+)-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association

  18. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    PubMed

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  19. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    PubMed

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  20. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    PubMed

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  1. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells

    PubMed Central

    Hassanian, Seyed Mahdi; Dinarvand, Peyman; Rezaie, Alireza R.

    2014-01-01

    The plasma level of the regulatory metabolite adenosine increases during the activation of coagulation and inflammation. Here we investigated the effect of adenosine on modulation of thrombin-mediated proinflammatory responses in HUVECs. We found that adenosine inhibits the barrier-disruptive effect of thrombin in HUVECs by a concentration-dependent manner. Analysis of cell surface expression of adenosine receptors revealed that A2A and A2B are expressed at the highest level among the four receptor subtypes (A2B>A2A>A1>A3) on HUVECs. The barrier-protective effect of adenosine in response to thrombin was recapitulated by the A2A specific agonist, CGS 21680, and abrogated both by the siRNA knockdown of the A2A receptor and by the A2A-specific antagonists, ZM-241385 and SCH-58261. The thrombin-induced RhoA activation and its membrane translocation were both inhibited by adenosine in a cAMP-dependent manner, providing a molecular mechanism through which adenosine exerts a barrier-protective function. Adenosine also inhibited thrombin-mediated activation of NF-κB and decreased adhesion of monocytic THP-1 cells to stimulated HUVECs via down-regulation of expression of cell surface adhesion molecules, VCAM-1, ICAM-1 and E-selectin. Moreover, adenosine inhibited thrombin-induced elevated expression of proinflammatory cytokines, IL-6 and HMGB-1; and chemokines, MCP-1, CXCL-1 and CXCL-3. Taken together, these results suggest that adenosine may inhibit thrombin-mediated proinflammatory signaling responses, thereby protecting the endothelium from injury during activation of coagulation and inflammation. PMID:24477600

  2. Adenosine Deaminase Enzyme Therapy Prevents and Reverses the Heightened Cavernosal Relaxation in Priapism

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Introduction Priapism featured with painful prolonged penile erection is dangerous and commonly seen in sickle cell disease (SCD). The preventive approaches or effective treatment options for the disorder are limited because of poor understanding of its pathogenesis. Recent studies have revealed a novel role of excess adenosine in priapism caused by heightened cavernosal relaxation, and therefore present an intriguing mechanism-based therapeutic possibility. Aim The aim of this study was to determine the therapeutic effects of adenosine deaminase (ADA) enzyme therapy to lower adenosine in priapism. Methods Both ADA-deficient mice and SCD transgenic (Tg) mice display priapism caused by excessive adenosine. Thus, we used these two distinct lines of mouse models of priapism as our investigative tools. Specifically, we treated both of these mice with different dosages of polyethylene glycol–modified ADA (PEG–ADA) to reduce adenosine levels in vivo. At the end points of the experiments, we evaluated the therapeutic effects of PEG–ADA treatment by measuring adenosine levels and monitoring the cavernosal relaxation. Main Outcome Measures Adenosine levels in penile tissues were measured by high-performance liquid chromatography, and cavernosal relaxation was quantified by electrical field stimulation (EFS)-induced corporal cavernosal strip (CCS) assays. Results We found that lowering adenosine levels in penile tissues by PEG–ADA treatment from birth in ADA-deficient mice prevented the increased EFS-induced CCS relaxation associated with priapism. Intriguingly, in both ADA-deficient mice and SCD Tg mice with established priapism, we found that normalization of adenosine levels in penile tissues by PEG–ADA treatment relieved the heightened EFS-induced cavernosal relaxation in priapism. Conclusions Our studies have identified that PEG–ADA is a novel, safe, and mechanism-based drug to prevent and correct excess adenosine-mediated increased cavernosal relaxation

  3. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis

    PubMed Central

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-01-01

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  4. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis.

    PubMed

    Gaudin, Alice; Lepetre-Mouelhi, Sinda; Mougin, Julie; Parrod, Martine; Pieters, Grégory; Garcia-Argote, Sébastien; Loreau, Olivier; Goncalves, Jordan; Chacun, Hélène; Courbebaisse, Yann; Clayette, Pascal; Desmaële, Didier; Rousseau, Bernard; Andrieux, Karine; Couvreur, Patrick

    2015-08-28

    Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury. PMID:26087468

  5. Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models.

    PubMed

    Yang, Zijian; Huang, Ping; Liu, Xiaohong; Huang, Shouyue; Deng, Lianfu; Jin, Zhe; Xu, Shuo; Shen, Xi; Luo, Xunda; Zhong, Yisheng

    2015-01-01

    Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection. PMID:26063641

  6. Spectroscopic and theoretical investigations of adenosine 5'-diphosphate and adenosine 5'-triphosphate dianions in the gas phase.

    PubMed

    Schinle, Florian; Crider, Paul E; Vonderach, Matthias; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2013-05-14

    Doubly deprotonated adenosine 5'-diphosphate ([ADP-2H](2-)) and adenosine 5'-triphosphate ([ATP-2H](2-)) dianions were investigated using infrared multiple photon dissociation (IR-MPD) and photoelectron spectroscopy. Vibrational spectra acquired in the X-H stretch region (X = C, N, O) and augmented by isotope-labelling were compared to density functional theory (DFT) calculations at the B3LYP/TZVPP level. This suggests that in [ATP-2H](2-) the two phosphate groups adjacent to the ribose ring are preferentially deprotonated. Photoelectron spectra recorded at 4.66 and 6.42 eV photon energies revealed adiabatic detachment energies of 1.35 eV for [ADP-2H](2-) and 3.35 eV for [ATP-2H](2-). Repulsive Coulomb barriers were estimated at ~2.2 eV for [ADP-2H](2-) and ~1.9 eV for [ATP-2H](2-). Time-dependent DFT calculations have been used to simulate the photoelectron spectra. Photodetachment occurs primarily from lone pair orbitals on oxygen atoms within the phosphate chain. PMID:23258289

  7. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells.

    PubMed

    Chan, Chun-Yuan; Dominguez, Dennis; Parra, Karlett J

    2016-07-22

    Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448-19457). This study capitalized on the mechanisms suppressing vacuolar H(+)-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly.

  8. A role for adenosine in coronary vasoregulation in man. Effects of theophylline and enprofylline.

    PubMed

    Edlund, A; Conradsson, T; Sollevi, A

    1995-11-01

    Adenosine has been suggested to have a role in regulation of the tone of the cardiac resistance vessels. To elucidate the coronary vasoregulatory role of endogenous adenosine in man, we studied the effects of adenosine receptor antagonism by theophylline on coronary blood flow at rest and during light exercise. However, theophylline may also exert pharmacological effects not related to adenosine antagonism. To clarify the contribution of endogenous adenosine in coronary hyperaemia, the effect of theophylline was compared to that of enprofylline, a xanthine which exerts similar pharmacological effects as theophylline while lacking antagonistic action at adenosine receptors. Twenty healthy subjects (10 males) aged 22-39 years were examined. Coronary sinus (CS) blood flow and blood oxygen content were determined at rest and during supine bicycle exercise, at a load of 50 watts, for 10 min. Thereafter, stepwise infusion of adenosine (30 to 60 micrograms/kg/min into the subclavian vein) was performed. Theophylline or enprofylline treatment was instituted randomly and double-blind (10 in each group), and the procedures (i.e. determinations at rest, during exercise and during infusion of adenosine) were repeated. In all 20 subjects, basal CS flow was 70 +/- 6 ml/min and the cardiac oxygen extraction ((A-CS)O2D) was 123 +/- 3 ml/l. During exercise, CS flow and (A-CS)O2D increased to 135 +/- 17 ml/min and 132 +/- 3 ml/l, respectively. Adenosine increased CS flow dose dependently to 161 +/- 27 ml/min, while (A-CS)O2D decreased to 66 +/- 7 ml/l. The vasodilatory effect of adenosine was readily counteracted by theophylline, the increase in CS flow being 33% vs. 133% in the control situation. Enprofylline, on the other hand, enhanced the response to exogenous adenosine. Theophylline, at a dose lacking effect on heart rate and blood pressure, decreased CS flow at rest by 14% (P < 0.05) and during exercise by 18% (P < 0.05). ((A-CS)O2D increased by 14% at rest and during exercise

  9. Structural aspects of the gastric H,K ATPase.

    PubMed

    Shin, J M; Besancon, M; Bamberg, K; Sachs, G

    1997-11-01

    The gastric H,K ATPase is an alpha beta heterodimeric member of the eukaryotic alkali-cation P-type ion-motive ATPase family. The alpha subunit is composed of 1033 amino acids and the beta subunit of 291 amino acids with 6 or 7 potential N-linked glycosylation sites. Much effort has been expended to define the membrane domain of P-type ATPases. A membrane domain of the large subunit consisting of 10 membrane-spanning sequences is suggested by a combination of methods such as (1) tryptic digestion, separation, and sequencing of membrane peptides, (2) labeling with extracytoplasmic reagents, and (3) in vitro translation of hydrophobic segments. The beta subunit has a single transmembrane segment with strong hydrophobic interactions with the alpha subunit. Blue native gel electrophoresis shows that the enzyme is an (alpha-beta)2 dimer. Cross-linking with Cu-phenanthroline provides evidence that association is between the alpha subunits, and the potential SH groups that are Cu sensitive are at cysteine 565 and cysteine 615, in the region of the large cytoplasmic loop between the fourth and fifth transmembrane segments. No cross-linking is observed in the membrane domain. ATP prevents cross-linking because of a conformational change at the surface of the protein induced by ATP or by direct binding of the nucleotide at the site of cross-linking. The WGA binding properties of the beta subunit allow investigation of the region of interaction with the alpha subunit. Thus, digestion of the enzyme by trypsin followed by SDS solubilization and selective elution from a WGA column resulted in coelution of the membrane fragment containing TM7 and TM8. This result demonstrates major hydrophobic interaction between the seventh and eighth transmembrane segments and the beta subunit. An antibody generated against rat parietal cells also recognized shared epitopes in the same region of both the alpha and beta subunits. Biochemical investigation of the arrangement of the transmembrane

  10. Two types of ATPases from the Pacific white shrimp, Litopenaeus vannamei in response to environmental stress.

    PubMed

    Wang, Lei; Wang, Wei-Na; Liu, Yuan; Cai, Dan-Xia; Li, Jie-Zhen; Wang, An-Li

    2012-06-01

    V-H ATPase and NaK ATPase are important classes of ATP-driven proton pumps that are present in the intracellular and plasma membranes of eukaryotic cells and play diverse roles in both normal and abnormal cellular processes. Among the subunits of the V-H ATPase complex, subunit a is a transmembrane glycoprotein that plays crucial roles in metabolism, growth, survival and cellular immunity. NaK ATPase subunit beta is thought to participate in the proper folding and movement of the NaK ATPase enzyme and may also aid cation transport. In this study, we analyzed the functions of V-H ATPase subunit a and NaK ATPase subunit beta from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNAs of the genes corresponding to V-H ATPase subunit a and NaK ATPase subunit beta were obtained, which were 2654 and 2055 bp long, with open reading frames encoding 830 and 313 amino acids, respectively. RT-PCR analysis indicated that mRNA transcripts were strongly (but differentially) expressed in the gills and hepatopancreas, and at lower levels in other shrimp tissues. In this study, for the first time, the gene expression of V-H ATPase subunit a and NaK ATPase beta of white shrimp Litopenaeus vannamei were analysed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that both of the two genes are sensitive and involved in all different stress responses and are more sensitive to salinity than other stresses. And they may have relationship with the anti-stress mechanism induced by environment stress in shrimp.

  11. Studies on lipids and the activity of Na,K-ATPase in lens fibre cells.

    PubMed Central

    Dean, W L; Delamere, N A; Borchman, D; Moseley, A E; Ahuja, R P

    1996-01-01

    Na,K-ATPase was studied in the two cell types that make up the lens of the eye. Membrane material was isolated from lens fibre cells, which make up the bulk of the lens cell mass, and also from lens epithelial cells, which are present only as a monolayer on the anterior lens surface. Judged by immunoblotting, greater amounts of Na,K-ATPase alpha1 and beta1 polypeptides were found in fibre cell membrane material than in epithelial cell membrane material. However, the NA,K-ATPase activity in epithelial cell membrane material was 20 times that measured in fibre cell membrane material. In 86Rb uptake experiments with intact lenses, ouabain-inhibitable 86Rb uptake was observed for lens epithelium but not for lens fibres. These findings are consistent with a low Na,K-ATPase activity in lens fibre cells even though these cells express a considerable amount of Na,K-ATPase alpha1 and beta1 polypeptides. The lipid composition of lens fibre cell membranes causes them to be more ordered than epithelial cell membranes; this was confirmed by measurements of the infrared CH2 symmetric stretching band frequency. Because lipid composition can influence Na,K-ATPase activity, experiments were conducted to determine whether the activity of Na,K-ATPase alpha1 beta1 is inhibited by lens fibre lipid. However, no significant difference in Na,K-ATPase activity was detected when Na,K-ATPase alpha1 beta1 was purified from rabbit kidney and then reconstituted with lipid that had been isolated from either lens epithelium or lens fibre cells. These studies indicate that lens fibre cells contain both Na,K-ATPase alpha1 and beta1 polypeptides but have low Na,K-ATPase activity. However, the results do not support the notion that this is due to the lipid composition of lens fibre cell membranes. PMID:8615795

  12. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.

    PubMed

    Zhao, Jianhua; Benlekbir, Samir; Rubinstein, John L

    2015-05-14

    Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases. PMID:25971514

  13. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    2000-01-01

    The rapid activation of gill Na+,K+-ATPase was analyzed in the mummichog (Fundulus heteroclitus) and Atlantic salmon (Salmo salar) transferred from low salinity (0.1 ppt) to high salinity (25-35 ppt). In parr and presmolt, Salmo salar gill Na+,K+-ATPase activity started to increase 3 days after transfer. Exposure of Fundulus heteroclitus to 35 ppt seawater (SW) induced a rise in gill Na+,K+-ATPase activity 3 hr after transfer. After 12 hr, the values dropped to initial levels but showed a second significant increase 3 days after transfer. The absence of detergent in the enzyme assay resulted in lower values of gill Na+,K+-ATPase, and the rapid increase after transfer to SW was not observed. Na+,K+-ATPase activity of gill filaments in vitro for 3 hr increased proportionally to the osmolality of the culture medium (600 mosm/kg > 500 mosm/kg > 300 mosm/kg). Osmolality of 800 mosm/kg resulted in lower gill Na+,K+-ATPase activity relative to 600 mosm/kg. Increasing medium osmolality to 600 mosm/kg with mannitol also increased gill Na+,K+-ATPase. Cycloheximide inhibited the increase in gill Na+,K+-ATPase activity observed in hyperosmotic medium in a dose-dependent manner (10-4 M > 10-5 M > 10-6 M). Actinomycin D or bumetanide in the culture (doses of 10-4 M, 10-5 M, and 10-6 M) did not affect gill Na+,K+-ATPase. Injection of fish with actinomycin D prior to gill organ culture, however, prevented the increase in gill Na+,K+-ATPase activity in hyperosmotic media. The results show a very rapid and transitory increase in gill Na+,K+-ATPase activity in the first hours after the transfer of Fundulus heteroclitus to SW that is dependent on translational and transcriptional processes. (C) 2000 Wiley-Liss, Inc.

  14. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.

    PubMed Central

    Bender, G R; Sutton, S V; Marquis, R E

    1986-01-01

    Differences in acid tolerance among representative oral streptococci were found to be related more closely to the dynamic permeabilities of the bacteria to protons than to differences in the sensitivities of cell membranes to gross damage caused by environmental acidification. For Streptococcus mutans GS-5, Streptococcus sanguis NCTC 10904, and Streptococcus salivarius ATCC 13419, gross membrane damage, indicated by the release of magnesium from whole cells, occurred at pH values below about 4 and was rapid and extensive at pH values of about 3 or less. A more aciduric, lactic acid bacterium, Lactobacillus casei ATCC 4646, was more resistant to environmental acidification, and gross membrane damage was evident only at pH values below 3. Assessments of the movements of protons into S. mutans cells after an acid pulse at various pH values indicated that permeability to protons was minimal at a pH value of about 5, at which the average half time for pH equilibration across the cell membrane was about 12 min. The corresponding values for the less aciduric organism S. sanguis were pH 7 and 8.2 min, and the values for the intermediate organism S. salivarius were pH 6 and 6.6 min. The ATPase inhibitor dicyclohexylcarbodiimide acted to increase markedly the permeability of each organism to protons, and this action indicated that permeability involved not only the passive inflow of protons but also active outflow through the proton-translocating membrane ATPase. Membranes were isolated from each of the bacteria, and pH profiles for ATPase activities indicated pH optima of about 7.5, 7.0, 6.0, and 5.0 for S. sanguis, S. salivarius, S. mutans, and L. casei, respectively. Thus, the pH profiles for the enzymes reflected the acid tolerances of the bacteria and the permeabilities of whole cells to protons. PMID:3015800

  15. Response of tonoplast H sup + -pump and ATPase to cadmium

    SciTech Connect

    Salt, D.E.; Lin Wang; Wagner, G.J. )

    1991-05-01

    It has been demonstrated that Cd{sup 2+} accumulates in vacuoles of tobacco leaves exposed to 20 {mu}M Cd{sup 2+}, after 4 days of growth in Hoaglands medium. The accumulation of Cd{sup 2+} is also associated with the accumulation of Cd{sup 2+}-peptide (phytocelatin) in the vacuole. The transport of Cd{sup 2+} and/or Cd{sup 2+}-peptide across the tonoplast membrane may be energized by the H{sup +} electrochemical gradient that exists across this membrane and which is generated by an H{sup +}-pumping ATPase. In vitro 2 {mu}M Cd{sup 2+} inhibits oat root tonoplast H{sup +}-pumping ATPase by 50% with a Ki of approximately 4.0 {mu}M. However, exposure to 2- {mu}M Cd{sup 2+} for 4 days during germination and growth of oat seedlings causes a 100% increase in tonoplast H{sup +}-pumping ATPase activity. This increase on exposure to Cd{sup 2+} during growth may represent part of the physiological mechanism whereby plants accumulate Cd{sup 2+} and/or Cd{sup 2+}-peptide within the vacuole. This could also represent an acclimation of H{sup +}-pumping activity to Cd{sup 2+}. Current studies are testing the effects of Cd{sup 2+}-peptide, organic acids and other ligands on H{sup +}-pumping activity and Cd{sup 2+} transport in root derived tonoplast vesicles of oat and tobacco.

  16. DNA binding to SMC ATPases-trapped for release.

    PubMed

    Schüler, Herwig; Sjögren, Camilla

    2016-04-01

    The SMC/Rad50/RecN proteins are universal DNA‐associated ABC‐type ATPases with crucial functions in genome maintenance. New insights into Rad50-DNA complex structure and cohesin regulation inspire a speculative look at the entire superfamily. Identification of a continuous DNA binding site across the Rad50 dimer interface (Liu et al, 2016; Seifert et al, 2016) suggests a similar site in cohesin. The localization of this site hints a DNA-activated mechanism for cohesin removal from chromosomes.

  17. Substrate independent ATPase activity may complicate high throughput screening.

    PubMed

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  18. Origin of concurrent ATPase activities in skinned cardiac trabeculae from rat.

    PubMed Central

    Ebus, J P; Stienen, G J

    1996-01-01

    1. To determine the rate of ATP turnover by the sarcoplasmic reticulum (SR) Ca2+ pump in cardiac muscle, and to assess the contributions of other ATPase activities to the overall ATP turnover rate, ATPase activity and isometric force production were studied in saponin-skinned trabeculae from rat. ATP hydrolysis was enzymatically coupled to the oxidation of NADH; the concentration of NADH was monitored photometrically. All measurements were performed at 20 +/- 1 degrees C and pH 7.0. Resting sarcomere length was adjusted to 2.1 microns. All solutions contained 5 mM caffeine to ensure continuous release of Ca2+ from the SR. 2. The Ca(2+)-independent ATPase activity, determined in relaxing solution (pCa 9), amounted to 130 +/- 13 microM s-1 (mean +/- S.E.M., n = 7) at the beginning of an experiment. During subsequent measurements in relaxing solution, a decrease in ATPase activity was observed, indicative of loss of membrane-bound ATPase activity. The steady-state Ca(2+)-independent (basal) ATPase activity was 83 +/- 5 microM s-1 (n = 66). 3. Treatment of saponin-skinned preparations with Triton X-100 abolished 50 microM s-1 (60%) of the basal ATPase activity. Addition of ouabain (1 mM) suppressed 14 +/- 5% of the basal activity, whereas 8 +/- 3% was suppressed by 20 microM cyclopiazonic acid (CPA). It is argued that 31 microM s-1 of the basal ATPase activity may be associated with MgATPase from the transverse tubular system. 4. The maximal Ca(2+)-activated ATPase activity, i.e. the total ATPase activity (determined in activating solution, pCa 4.3) corrected for basal ATPase activity, was found to be 409 +/- 15 microM s-1 (n = 66). Experiments with CPA indicated that at least 9 +/- 6% of the maximal Ca(2+)-activated ATPase activity originates from the sarcoplasmic Ca2+ pump. These experiments indicate that the rate of ATP consumption by the SR Ca2+ transporting ATPase amounts to at least 37 microM s-1. 5. Treatment of preparations with Triton X-100 abolished 15 +/- 3

  19. N6-adenosine methylation in MiRNAs.

    PubMed

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  20. N6-Adenosine Methylation in MiRNAs

    PubMed Central

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  1. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  2. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor. PMID:26706174

  3. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor.

  4. Extraction and analysis of adenosine triphosphate from aquatic environments

    USGS Publications Warehouse

    Stephens, Doyle W.; Shultz, David J.

    1981-01-01

    A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize accurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30C were stable for months. (USGS)

  5. Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity

    PubMed Central

    Masino, S.A; Kawamura, M; Wasser, C.D.; Pomeroy, L.T; Ruskin, D.N

    2009-01-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  6. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    PubMed

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P < 0.0001). The change in vellus hair proportion (<40 μm) was significantly lower in the adenosine group than that in the placebo group (P = 0.0154). The change in hair density compared with baseline of the adenosine group was also significantly higher compared with that of the placebo group (P = 0.0470). No adverse effects due to treatment were noted during this study by dermatological evaluation. Adenosine is effective in increasing the proportion of thick hair in Caucasian men with AGA as well as in Japanese men and women.

  7. Adenosine dry powder inhalation for bronchial challenge testing, part 2: proof of concept in asthmatic subjects.

    PubMed

    Lexmond, Anne J; van der Wiel, Erica; Hagedoorn, Paul; Bult, Wouter; Frijlink, Henderik W; ten Hacken, Nick H T; de Boer, Anne H

    2014-09-01

    Adenosine is an indirect stimulus to assess bronchial hyperresponsiveness (BHR(2)) in asthma. Bronchial challenge tests are usually performed with nebulised solutions of adenosine 5'-monophosphate (AMP(3)). The nebulised AMP test has several disadvantages, like long administration times and a restrictive maximum concentration that does not result in BHR in all patients. In this study, we investigated the applicability of dry powder adenosine for assessment of BHR in comparison to nebulised AMP. Dry powder adenosine was prepared in doubling doses (0.01-80 mg) derived from the nebulised AMP test with addition of two higher doses. Five asthmatic subjects performed two bronchial challenge tests, one with nebulised AMP following the 2-min tidal breathing method; the second with dry powder adenosine administered with an investigational inhaler and single slow inhalations (inspiratory flow rate 30-40 L/min). All subjects reached a 20% fall in FEV₁(4) with the new adenosine test (PD20(5)) compared to four subjects with the AMP test (PC₂₀(6)). Dry powder adenosine was well tolerated by all subjects and better appreciated than nebulised AMP. In conclusion, this new bronchial challenge test appears to be a safe and convenient alternative to the nebulised AMP test to assess BHR in asthmatic subjects.

  8. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    PubMed

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  9. Evidence for an antagonism between caffeine and adenosine in the human cardiovascular system.

    PubMed

    Smits, P; Boekema, P; De Abreu, R; Thien, T; van 't Laar, A

    1987-08-01

    A randomized, double-blind and placebo-controlled study was performed in 10 normotensive male subjects to analyze a possible antagonism between caffeine and adenosine with respect to their effects on the cardiovascular system in humans. Caffeine alone, 250 mg intravenously (i.v.), increased blood pressure by 9/12 mm Hg, and resulted in a fall of heart rate (HR) of 3 beats/min. Plasma epinephrine (E) rose by 114% after caffeine. Adenosine alone, in an increasing dose of 0.04-0.16 mg/kg/min, induced an increase in systolic blood pressure (SBP) (17 mm Hg), and HR (33 beats/min), a moderate fall in diastolic blood pressure (DBP) (-4 mm Hg), and no change of mean arterial pressure (MAP). At the highest adenosine infusion rate, forearm blood flow, skin temperature (ST), and transcutaneous oxygen tension were lowered, whereas plasma (nor)epinephrine was increased 227.2 and 215.9%, respectively. Adenosine infusion after caffeine induced comparable effects, but the fractional adenosine-induced changes of SBP, HR, plasma catecholamines, plasma renin activity (PRA), and aldosterone all were significantly reduced by previous administration of caffeine. Our results indicate an antagonism between caffeine and adenosine in humans, which may support the suggestion that some circulatory effects of caffeine are caused by an interaction with endogenous adenosine. PMID:2441163

  10. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase.

    PubMed

    Burgos, Emmanuel S; Gulab, Shivali A; Cassera, María B; Schramm, Vern L

    2012-04-17

    S-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96-well-plate format. The high-affinity adenosine kinase from Anopheles gambiae efficiently converts adenosine to adenosine monophosphate (AMP) in the presence of guanosine triphosphate. AMP is converted to adenosine triphosphate and coupled to firefly luciferase. With this procedure, kinetic parameters (K(m), k(cat)) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultrasensitive detection (10(-7) unit of SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions.

  11. Role of adenosine signalling and metabolism in β-cell regeneration

    SciTech Connect

    Andersson, Olov

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  12. The resurgence of A2B adenosine receptor signaling

    PubMed Central

    Aherne, Carol M.; Kewley, Emily M.; Eltzschig, Holger K.

    2010-01-01

    Since its discovery as a low-affinity adenosine receptor (AR), the A2B receptor (A2BAR), has proven enigmatic in its function. The previous discovery of the A2AAR, which shares many similarities with the A2BAR but demonstrates significantly greater affinity for its endogenous ligand, led to the original perception that the A2BAR was not of substantial physiologic relevance. In addition, lack of specific pharmacological agents targeting the A2BAR made its initial characterization challenging. However, the importance of this receptor was reconsidered when it was observed that the A2BAR is highly transcriptionally regulated by factors implicated in inflammatory hypoxia. Moreover, the notion that during ischemia or inflammation extracellular adenosine is dramatically elevated to levels sufficient for A2BAR activation, indicated that A2BAR signaling may be important to dampen inflammation particularly during tissue hypoxia. In addition, the recent advent of techniques for murine genetic manipulation along with development of pharmacological agents with enhanced A2BAR specificity has provided invaluable tools for focused studies on the explicit role of A2BAR signaling in different disease models. Currently, studies performed with combined genetic and pharmacological approaches have demonstrated that A2BAR signaling plays a tissue protective role in many models of acute diseases e.g. myocardial ischemia, or acute lung injury. These studies indicate that the A2BAR is expressed on a wide variety of cell types and exerts tissue/cell specific effects. This is an important consideration for future studies where tissue or cell type specific targeting of the A2BAR may be used as therapeutic approach. PMID:20546702

  13. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  14. Amp Synthesis in Aqueous Solution of Adenosine and Phosphorus Pentoxide

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Kojima, H.; Ejiri, K.; Inomata, K.

    1982-12-01

    Possible formation of a P4O10 molecule in magma, the stability of the molecule in hydrous volcanic gas at high temperatures and a possible prebiotic phosphate cycle were discussed in relation to chemical evolution. To demonstrate the utility of phosphorus pentoxide as a phosphorylating agent, aqueous solutions of adenosine (0.02M) and phosphorus pentoxide (0.2M) were incubated at 37°C for 5 months. The pH of the solutions was adjusted every day or every few days to each fixed value (9.0, 10.5, 11.5, 12.5) with 10 N NaOH. The HPLC analysis showed the formation of 2'-AMP, 3'-AMP, 5'-AMP, cyclic (2' 3')-AMP and cyclic (3' 5')-AMP. The main components of the products were 2'- and 3'-AMP, though cyclic (2' 3')-AMP was the main component in the early period of the incubation at pH 9.0. The yields (conversion rate of adenosine to AMPs) were increased almost linearly with the incubation time for 5 months in the case of pH 9.0. The final yields were about 3% (pH 9.0), 6% (pH 9.0, 1 M NaCl), 5% (pH 9.0, 0.01 M CaCl2, 0.01 M MgCl2), 7% (pH 9.0, 0.5 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 9% (pH 9.0, 1 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 32% (pH 10.5), 43% (pH 11.5), 35% (pH 12.5).

  15. Role of Adenosine Signaling on Pentylenetetrazole-Induced Seizures in Zebrafish

    PubMed Central

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Schaefer, Isabel da Costa; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2015-01-01

    Abstract Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5′nucleotidase inhibitor adenosine 5′-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5′-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish. PMID:25560904

  16. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway

    PubMed Central

    Sodhi, Puneet; Hartwick, Andrew T E

    2014-01-01

    Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia. PMID:25038240

  17. Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish.

    PubMed

    Siebel, Anna Maria; Menezes, Fabiano Peres; Capiotti, Katiucia Marques; Kist, Luiza Wilges; da Costa Schaefer, Isabel; Frantz, Juliana Zanetti; Bogo, Maurício Reis; Da Silva, Rosane Souza; Bonan, Carla Denise

    2015-04-01

    Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5'nucleotidase inhibitor adenosine 5'-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5'-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish.

  18. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  19. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  20. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation.

    PubMed

    Cheon, Yong-Pil

    2016-06-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.. PMID:27660830

  1. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  2. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation

    PubMed Central

    Cheon, Yong-Pil

    2016-01-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.. PMID:27660830

  3. Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species.

    PubMed

    Allen-Gipson, Diane S; Zimmerman, Matthew C; Zhang, Hui; Castellanos, Glenda; O'Malley, Jennifer K; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H; Wyatt, Todd A

    2013-05-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological

  4. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  5. Eudistomin D and penaresin derivatives as modulators of ryanodine receptor channels and sarcoplasmic reticulum Ca2+ ATPase in striated muscle.

    PubMed

    Diaz-Sylvester, Paula L; Porta, Maura; Juettner, Vanessa V; Lv, Yuanzhao; Fleischer, Sidney; Copello, Julio A

    2014-04-01

    Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal muscle SR microsomes as well as the function of RyRs in planar bilayers. The effects of these alkaloids on [(3)H]ryanodine binding and SR Ca(2+) ATPase (SERCA) activity were also tested. MBED (1-5 μM) fully mimicked maximal activating effects of caffeine (20 mM) on SR Ca(2+) leak. At the single-channel level, MBED mimicked the agonistic action of caffeine on cardiac RyR gating (i.e., stabilized long openings characteristic of "high-open-probability" mode). EuD was a partial agonist at the maximal doses tested. The tested Pen derivatives displayed mild to no agonism on RyRs, SR Ca(2+) leak, or [(3)H]ryanodine binding studies. Unlike caffeine, EuD and some Pen derivatives significantly inhibited SERCA at concentrations required to modulate RyRs. Instead, MBED's affinity for RyRs (EC50 ∼ 0.5 μM) was much larger than for SERCA (IC50 > 285 μM). In conclusion, MBED is a potent RyR agonist and, potentially, a better choice than caffeine for microsomal and cell studies due to its reported lack of effects on adenosine receptors and phosphodiesterases. As a high-affinity caffeine-like probe, MBED could also help identify the caffeine-binding site in RyRs. PMID:24423447

  6. Key chemical factors of arginine finger catalysis of F1-ATPase clarified by an unnatural amino acid mutation.

    PubMed

    Yukawa, Ayako; Iino, Ryota; Watanabe, Rikiya; Hayashi, Shigehiko; Noji, Hiroyuki

    2015-01-20

    A catalytically important arginine, called Arg finger, is employed in many enzymes to regulate their functions through enzymatic hydrolysis of nucleotide triphosphates. F1-ATPase (F1), a rotary motor protein, possesses Arg fingers which catalyze hydrolysis of adenosine triphosphate (ATP) for efficient chemomechanical energy conversion. In this study, we examined the Arg finger catalysis by single-molecule measurements for a mutant of F1 in which the Arg finger is substituted with an unnatural amino acid of a lysine analogue, 2,7-diaminoheptanoic acid (Lyk). The use of Lyk, of which the side chain is elongated by one CH2 unit so that its chain length to the terminal nitrogen of amine is set to be equal to that of arginine, allowed us to resolve key chemical factors in the Arg finger catalysis, i.e., chain length matching and chemical properties of the terminal groups. Rate measurements by single-molecule observations showed that the chain length matching of the side-chain length is not a sole requirement for the Arg finger to catalyze the ATP hydrolysis reaction step, indicating the crucial importance of chemical properties of the terminal guanidinium group in the Arg finger catalysis. On the other hand, the Lyk mutation prevented severe formation of an ADP inhibited state observed for a lysine mutant and even improved the avoidance of inhibition compared with the wild-type F1. The present study demonstrated that incorporation of unnatural amino acids can widely extend with its high "chemical" resolution biochemical approaches for elucidation of the molecular mechanism of protein functions and furnishing novel characteristics.

  7. Mammary gland involution is associated with rapid down regulation of major mammary Ca**2+-ATPases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca**2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca**2+-ATPases and mammary calcium transport is unknown. We found that 24 hours after stopping milk prod...

  8. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    ERIC Educational Resources Information Center

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  9. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  10. Mitochondrial ATPase in the gills of the shore crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Siebers, D.; Hentschel, J.; Böttcher, K.; Lucu, C.

    1992-12-01

    Posterior gills (No. 7 and 8) of shore crabs Carcinus maenas were homogenized and fractionated by means of differential and density gradient centrifugation. Employment of marker enzymes Na-K-ATPase and carbonic anhydrase for plasma membranes and cytochrome oxidase for mitochondria showed that these structural elements were separated. Ultramicroscopic investigations of combined fractions confirmed the presence of the respective mitochondrial and vesicular plasma membrane structures. An ATPase which did not depend on the presence of sodium (20 mM) ions in the incubation medium but on the presence of potassium (20 mM) ions only was found in the mitochondrial fractions. The mitochondrial ATPase was tightly bound to cellular particulates and activated approximately threefold by bicarbonate (20 mM) ions. The activity of this ATPase was nearly completely inhibited by oligomycin (1 μg ml-1) and greatly inhibited by low levels (5 mM) of thiocyanate and calcium ions, the Ki for Ca2+ being ca 4 mM. The results obtained confirm literature data on high mitochondrial densities in crab gills and allow the assumption of significant rates of energy metabolism in these organs. Considering its properties the mitochondrial ATPase is clearly distinct from crab gill Na-K-ATPase and can be measured specifically in samples containing Na-K-ATPase. Mitochondrial ATPase is therefore considered a suitable and reliable marker enzyme for mitochondria.

  11. Membrane-Bound ATPase Contributes to Hop Resistance of Lactobacillus brevis

    PubMed Central

    Sakamoto, Kanta; van Veen, H. W.; Saito, Hiromi; Kobayashi, Hiroshi; Konings, Wil N.

    2002-01-01

    The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 μM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N′-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the α- and β-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds. PMID:12406727

  12. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis

    PubMed Central

    Shah, Preeya T.; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I.; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT). PMID:27445847

  13. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes.

    PubMed

    Vanderkooi, J M; Ierokomas, A; Nakamura, H; Martonosi, A

    1977-04-01

    The purified ATPase of sarcoplasmic reticulum was covalently labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS) or with iodoacetamidofluorescein (IAF). In reconstituted vesicles containing both types of ATPase molecules fluorescence energy transfer was observed from the IAEDANS (donor) to the IAF (acceptor) fluorophore as determined by the ratio of donor and acceptor fluorescence intensities, and by nanosecond decay measurements of donor fluorescence in the presence or absence of the acceptor. The observed energy transfer may arise by random collisions between ATPase molecules due to Brownian motion or by formation of complexes containing several ATPase molecules. Experimental distinction between these two models of energy transfer is possible based on predictions derived from mathematical models. Up to tenfold dilution of the lipid phase of reconstituted vesicles with egg lecithin had no measurable effect upon the energy transfer, suggesting that random collision between ATPase molecules in the lipid phase is not the principal cause of the observed effect. Addition of unlabeled ATPase in five- to tenfold molar excess over the labeled molecules abolished energy transfer. These observations together with electron microscopic and chemical cross-linking studies support the existence of ATPase oligomers in the membrane with sufficiently long lifetimes for energy transfer to occur. A hypothetical equilibrium between monomeric and tetrameric forms of the ATPase governed by the membrane potential is proposed as the structural basis of the regulation of Ca uptake and release by sarcoplasmic reticulum membranes during muscle contraction and relaxation.

  14. Vanadium, Na-K-ATPase, and potassium adaptation in the rat.

    PubMed

    Higashino, H; Bogden, J D; Lavenhar, M A; Bauman, J W; Hirotsu, T; Aviv, A

    1983-02-01

    Vanadate is a potent inhibitor of Na-K-ATPase in vitro. It has been suggested that vanadium may function as a cellular regulator of Na-K-ATPase in vivo. To examine this speculation, we studied in rats the effect of high vanadate intake on 1) the tissue levels and distribution of vanadium, 2) basal activity of Na-K-ATPase in various tissues, and 3) the activity of Na-K-ATPase in various organs under conditions of massive chronic potassium loading known to stimulate Na-K-ATPase in the kidney and colon. Despite extremely high tissue levels of vanadium there was no demonstrable effect of the element on the basal activity of Na-K-ATPase. When subjected to chronic potassium loading, rats with high tissue vanadium concentrations underwent potassium adaptation that was associated with a rise in Na-K-ATPase activity in the renal cortex, renal medulla, and colonic mucosa. Further studies are needed to support or refute the thesis that vanadium might be an intracellular regulator of Na-K-ATPase in vivo.

  15. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis.

    PubMed

    Shah, Preeya T; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-