Sample records for adenosine triphosphate metabolism

  1. Metabolic Cooperative Control of Electrolyte Levels by Adenosine Triphosphate in the Frog Muscle

    PubMed Central

    Gulati, J.; Ochsenfeld, M. M.; Ling, G. N.

    1971-01-01

    This study examines the effects of metabolic inhibitors on the content of cellular K, Na, and adenosine triphosphate (ATP). ATP and K are seen to fall in the inhibited tissues. The ATP content is correlated with the K content. The role of ATP is examined according to a recent biophysical approach. It is suggested that ATP may control the electrolyte levels by inducing conformational changes in the cytoplasmic proteins. PMID:5316285

  2. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage: the neuroprotective effects of adenosine triphosphate against apoptosis

    PubMed Central

    Lu, Na; Wang, Baoying; Deng, Xiaohui; Zhao, Honggang; Wang, Yong; Li, Dongliang

    2014-01-01

    After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, flow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy first appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury. PMID:25368646

  3. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  4. The Role of Extracellular Adenosine Triphosphate in Ischemic Organ Injury.

    PubMed

    Zhao, Hailin; Kilgas, Susan; Alam, Azeem; Eguchi, Shiori; Ma, Daqing

    2016-05-01

    Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.

  5. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    PubMed

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. © The Author(s) 2016.

  6. Systemic Adenosine Triphosphate Impairs Neutrophil Chemotaxis and Host Defense in Sepsis.

    PubMed

    Li, Xiaoou; Kondo, Yutaka; Bao, Yi; Staudenmaier, Laura; Lee, Albert; Zhang, Jingping; Ledderose, Carola; Junger, Wolfgang G

    2017-01-01

    Sepsis remains an unresolved clinical problem. Therapeutic strategies focusing on inhibition of neutrophils (polymorphonuclear neutrophils) have failed, which indicates that a more detailed understanding of the underlying pathophysiology of sepsis is required. Polymorphonuclear neutrophil activation and chemotaxis require cellular adenosine triphosphate release via pannexin-1 channels that fuel autocrine feedback via purinergic receptors. In the current study, we examined the roles of endogenous and systemic adenosine triphosphate on polymorphonuclear neutrophil activation and host defense in sepsis. Prospective randomized animal investigation and in vitro studies. Preclinical academic research laboratory. Wild-type C57BL/6 mice, pannexin-1 knockout mice, and healthy human subjects used to obtain polymorphonuclear neutrophils for in vitro studies. Wild-type and pannexin-1 knockout mice were treated with suramin or apyrase to block the endogenous or systemic effects of adenosine triphosphate. Mice were subjected to cecal ligation and puncture and polymorphonuclear neutrophil activation (CD11b integrin expression), organ (liver) injury (plasma aspartate aminotransferase), bacterial spread, and survival were monitored. Human polymorphonuclear neutrophils were used to study the effect of systemic adenosine triphosphate and apyrase on chemotaxis. Inhibiting endogenous adenosine triphosphate reduced polymorphonuclear neutrophil activation and organ injury, but increased the spread of bacteria and mortality in sepsis. By contrast, removal of systemic adenosine triphosphate improved bacterial clearance and survival in sepsis by improving polymorphonuclear neutrophil chemotaxis. Systemic adenosine triphosphate impairs polymorphonuclear neutrophil functions by disrupting the endogenous purinergic signaling mechanisms that regulate cell activation and chemotaxis. Removal of systemic adenosine triphosphate improves polymorphonuclear neutrophil function and host defenses

  7. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase.

    PubMed

    Filippov, Sergey; Pinkosky, Stephen L; Newton, Roger S

    2014-08-01

    To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.

  8. Imaging Adenosine Triphosphate (ATP)

    PubMed Central

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-01-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provides valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific for ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies that are available to visualize ATP in living cells and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  9. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. © 2016 Marine Biological Laboratory.

  10. Does adenosine triphosphate released into voided urodynamic fluid contribute to urgency signaling in women with bladder dysfunction?

    PubMed

    Cheng, Ying; Mansfield, Kylie J; Allen, Wendy; Walsh, Colin A; Burcher, Elizabeth; Moore, Kate H

    2010-03-01

    Adenosine triphosphate released from urothelium during stretch stimulates afferent nerves and conveys information on bladder fullness. We measured adenosine triphosphate released during cystometric bladder filling in women with idiopathic detrusor overactivity and stress incontinence (controls), and assessed whether the level of released adenosine triphosphate is related to cystometric parameters. Routine cystometry was done in 51 controls and 48 women with detrusor overactivity who were 28 to 87 years old. Voided urodynamic fluid was collected and stored at -30 C. Adenosine triphosphate was measured by a bioluminescence assay. Adenosine triphosphate levels were similar in voided urodynamic fluid of controls and patients with detrusor overactivity (p = 0.79). A significant inverse correlation was seen between adenosine triphosphate and maximal cystometric capacity in controls (p = 0.013), and between voided volume and adenosine triphosphate in controls (p = 0.015) and detrusor overactivity cases (p = 0.019). A significant correlation between first desire to void and adenosine triphosphate was also noted in detrusor overactivity cases (p = 0.033) but not in controls (p = 0.58). No correlation was seen between adenosine triphosphate and detrusor pressure during filling or voiding. Adenosine triphosphate measurement in voided urodynamic fluid is a novel approach to understanding signals that may contribute to the urgency sensation (a sudden compelling desire to pass urine). The inverse correlation between adenosine triphosphate in voided urodynamic fluid and first desire to void suggests that adenosine triphosphate has a role in modulating the early filling sensation in patients with detrusor overactivity. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Immune monitoring with a lymphocyte adenosine triphosphate assay in kidney transplant recipients treated with a calcineurin inhibitor.

    PubMed

    Sugiyama, Kentaro; Tsukaguchi, Mahoto; Toyama, Akira; Satoh, Hiroshi; Saito, Kazuhide; Nakagawa, Yuki; Takahashi, Kota; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2014-06-01

    The adenosine triphosphate assay using peripheral lymphocytes may be useful to evaluate the risks of acute rejection and infection in kidney transplant patients. We used the adenosine triphosphate assay to evaluate differences between recipients who were treated with cyclosporine- or tacrolimus-based immunosuppressive therapy. Adenosine triphosphate levels were measured in peripheral CD4+ cells before and after transplant and were correlated with clinical outcomes in 45 kidney transplant recipients. These recipients received immunosuppressive therapy with either cyclosporine (23 patients) or tacrolimus (22 patients). Adenosine triphosphate levels were significantly lower in the cyclosporine- than tacrolimus-based therapy groups from 2 to 6 weeks after transplant. Adenosine triphosphate levels were similar between these groups before and 1 week after transplant. The frequency of cytomegalovirus infection was greater in the recipients who received cyclosporine (17 patients [74%]) than tacrolimus (6 patients [27%]; P ≦ .003). The frequency of acute rejection episodes was similar between the cyclosporine and tacrolimus groups. These observations suggest that cyclosporine-based immunosuppressive therapy causes excessive immunosuppression compared with tacrolimus-based therapy, evidenced by the lymphocyte adenosine triphosphate levels. The adenosine triphosphate assay using peripheral CD4+ cells may be a useful method for predicting the occurrence of cytomegalovirus infections in kidney transplant recipients.

  12. Elevated synovial fluid concentration of adenosine triphosphate in dogs with osteoarthritis or sodium urate-induced synovitis of the stifle.

    PubMed

    Torres, Bryan T; Jimenez, David A; Budsberg, Steven C

    2016-07-19

    Adenosine triphosphate has been shown to stimulate nociceptive nerve terminals in joints. Elevated synovial fluid adenosine triphosphate concentrations as well as a correlation between synovial fluid adenosine triphosphate concentrations and osteoarthritic knee pain has been demonstrated in humans, but not yet in dogs. This study documented elevated synovial fluid adenosine triphosphate concentrations in the stifles of dogs with secondary osteoarthritis and urate-induced synovitis, as compared to normal stifles.

  13. Administration of exogenous adenosine triphosphate to ischemic skeletal muscle induces an energy-sparing effect: role of adenosine receptors.

    PubMed

    Maldonado, Claudio; Pushpakumar, Sathnur B; Perez-Abadia, Gustavo; Arumugam, Sengodagounder; Lane, Andrew N

    2013-05-01

    Ischemia-reperfusion injury is a devastating complication that occurs in allotransplantation and replantation of limbs. Over the years, several preservation strategies have been used to conserve the critical levels of intracellular adenosine triphosphate (ATP) during ischemia to sustain the ion gradients across the membranes and thus the tissue viability. The administration of exogenous ATP to ischemic tissues is known to provide beneficial effects during reperfusion, but it is unclear whether it provides protection during ischemia. The purpose of the present study was to determine the effect of ATP administration on high-energy phosphate levels in ischemic skeletal muscle and to examine the role of purinergic and adenosine receptors in mediating the response to exogenous ATP. The extensor digitorum longus muscles of Fischer rats were subjected to ischemia and treated with different concentrations of ATP with or without purinergic and adenosine receptor blockers. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to measure the rate of decay of ATP, phosphocreatine (PCr), and the formation of adenosine monophosphate and acidification. Phosphorylated compounds were analyzed using a simple model of energy metabolism, and the PCr half-life was used as an index of internal depletion of ATP to distinguish between intracellular and extracellular ATP. PCr decay was rapid in all muscle groups and was followed by gradual ATP decay. The half-life of PCr was significantly longer in the ATP-treated muscles than in the vehicle controls and was maximally prolonged by treating with slow hydrolyzing adenosine 5'-O-(3-thio)triphosphate. Purinoceptor (P2X) blockade with ATP treatment significantly increased the half-life of PCr, and adenosine receptor blockers blunted the response. Administration of adenosine to ischemic muscles significantly increased the half-life of PCr compared with that in the vehicle controls. Exogenous ATP administration to ischemic skeletal

  14. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  15. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  16. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  17. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  18. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  19. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  20. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  1. Sustained release carrier for adenosine triphosphate as signaling molecule.

    PubMed

    Wischke, Christian; Weigel, Judith; Bulavina, Larisa; Lendlein, Andreas

    2014-12-10

    Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Extracellular adenosine triphosphate affects systemic and kidney immune cell populations in pregnant rats.

    PubMed

    Spaans, Floor; Melgert, Barbro N; Borghuis, Theo; Klok, Pieter A; de Vos, Paul; Bakker, Winston W; van Goor, Harry; Faas, Marijke M

    2014-09-01

    Changes in the systemic immune response are found in preeclampsia. This may be related to high extracellular adenosine triphosphate (ATP) levels. The question arose whether ATP could affect immune responses in pregnancy. Previously, we investigated whether ATP affected monocyte activation and subpopulations. Here, we investigated ATP-induced changes in other immune cell populations in pregnant rats, systemically and in the kidney, an affected organ in preeclampsia. Using flow cytometry or immunohistochemistry, blood and kidney leukocytes were studied in pregnant and non-pregnant rats at different intervals after ATP or saline infusion. Adenosine triphosphate (ATP) infusion induced increased peripheral blood non-classical monocytes and decreased T lymphocyte subsets in pregnant rats only, higher glomerular macrophage and T lymphocyte numbers in non-pregnant animals 1 day after infusion, and higher glomerular macrophage numbers in pregnant rats 6 days after infusion. Adenosine triphosphate (ATP) infusion in pregnant rats induced a pregnancy-specific inflammatory response. Increased ATP levels could potentially contribute to development of the inflammatory response of preeclampsia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Changes in Adenosine Triphosphate and Nitric Oxide in the Urothelium of Patients with Benign Prostatic Hyperplasia and Detrusor Underactivity.

    PubMed

    Cho, Kang Jun; Koh, Jun Sung; Choi, Jinbong; Kim, Joon Chul

    2017-12-01

    We investigated changes in the levels of adenosine triphosphate and nitric oxide in the urothelium of men with detrusor underactivity and benign prostatic hyperplasia. We prospectively enrolled in study 30 men who planned to undergo surgical treatment for benign prostatic hyperplasia. The 15 patients with a bladder contractility index less than 100 were assigned to the detrusor underactivity group while the 15 with a bladder contractility index more than 100 were assigned to the no detrusor underactivity group. Bladder mucosal specimens were collected at surgical prostate resection, and adenosine triphosphate and endothelial nitric oxide synthase were analyzed in these specimens. The levels of adenosine triphosphate and endothelial nitric oxide synthase were compared between the 2 groups. The correlation of urodynamic parameters with adenosine triphosphate and endothelial nitric oxide synthase was assessed in all patients. Mean ± SEM endothelial nitric oxide synthase did not significantly differ between the detrusor underactivity and no underactivity groups (3.393 ± 0.969 vs 1.941 ± 0.377 IU/ml, p = 0.247). However, the mean level of adenosine triphosphate in the detrusor underactivity group was significantly lower than in the no detrusor underactivity group (1.289 ± 0.320 vs 9.262 ± 3.285 pmol, p = 0.011). In addition, in all patients adenosine triphosphate positively correlated with the bladder contractility index (r = 0.478, p = 0.018) and with detrusor pressure on maximal flow (r = 0.411, p = 0.046). Adenosine triphosphate was significantly decreased in the urothelium in men with detrusor underactivity and benign prostatic hyperplasia, reflecting the change in detrusor function. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Potentiation of adenosine triphosphate-induced contractile responses of the guinea-pig isolated vas deferens by adenosine monophosphate and adenosine 5'-monophosphorothioate.

    PubMed Central

    Fedan, J. S.

    1987-01-01

    The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (300 microM) concentration of ATP to obtain control responses, one vas deferens of a pair was incubated for 5 min with one of the adenine nucleotides, while the contralateral preparation was incubated with the corresponding phosphorothioate analogue. At the conclusion of the incubation the preparations were challenged again with ATP. Incubation with AMP or AMP alpha S resulted in a transient potentiation of responses to 1 microM and 300 microM ATP. The potentiation following incubation with AMP alpha S was larger than that produced by AMP. After incubation with ADP, ADP beta S, ATP and ATP gamma S, responses to 1 microM ATP were decreased, while those to 300 microM ATP were unaffected. Thus, incubation with AMP and AMP alpha S results in potentiation, rather than inhibition, of ATP-induced responses. On the other hand, 5'-diphosphate, 5'-triphosphate, 5'-O-(2-thiodiphosphate) and 5'-O-(3-thiotriphosphate) moieties on adenosine have no effect or cause autoinhibition. These results indicate that AMP exerts a potentiating effect on reactivity to exogenous ATP. AMP arising from the enzymatic degradation of ATP might modulate the level of response to ATP released endogenously as a cotransmitter. PMID:3038248

  5. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods.

    PubMed

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-08

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ~56 nm and diameter ~12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  6. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  7. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  8. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  9. Paul D. Boyer, Adenosine Triphosphate (ATP), and the Binding Change

    Science.gov Websites

    -- October 1975, DOE Technical Report, 1975 A Perspective of the Binding Change Mechanism for ATP Synthesis Reports, Vol. 18, No. 3, 1998 ATP Synthesis and the Binding Change Mechanism: The Work of Paul D. Boyer Mechanism of ATP Synthesis Additional Web Pages: Adenosine Triphosphate: The Energy Currency of Life Paul D

  10. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: application to adenosine triphosphate and pyrophosphate sensing.

    PubMed

    Yu, Cheng-Ju; Wu, Su-Mei; Tseng, Wei-Lung

    2013-09-17

    We report that magnetite nanoparticles (Fe3O4 NPs) act as an efficient quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) that is highly fluorescent in bulk solution. BODIPY-ATP molecules attached to the surface of Fe3O4 NPs through the coordination between the triphosphate group of BODIPY-ATP and Fe(3+)/Fe(2+) on the NP surface. The formed complexes induced an apparent reduction in the BODIPY-ATP fluorescence resulting from an oxidative-photoinduced electron transfer (PET) from the BODIPY-ATP excited state to an unfilled d shell of Fe(3+)/Fe(2+) on the NP surface. A comparison of the Stern-Volmer quenching constant between Fe(3+) and Fe(2+) suggests that Fe(3+) on the NP surface dominantly controls this quenching process. The efficiency for Fe3O4 NP-induced fluorescence quenching of the BODIPY-ATP was enhanced by increasing the concentration of Fe3O4 NPs and lowering the pH of the solution to below 6.0. We found that pyrophosphate and ATP compete with BODIPY-ATP for binding to Fe3O4 NPs. Thus, we amplified BODIPY-ATP fluorescence in the presence of increasing the pyrophosphate and ATP concentration; the detection limits at a signal-to-noise ratio of 3 for pyrophosphate and ATP were determined to be 7 and 30 nM, respectively. The Fe3O4 NP-based competitive binding assay detected ATP and pyrophosphate in only 5 min. The selectivity of this assay for ATP over metal ions, amino acids, and adenosine analogues is particularly high. The practicality of using the developed method to determine ATP in a single drop of blood is also validated.

  11. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  12. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  13. Optical Aptasensors for Adenosine Triphosphate.

    PubMed

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives.

  14. Adenosine Triphosphate Metabolism Measured by Phosphorus Magnetic Resonance Spectroscopy: A Potential Biomarker for Multiple Sclerosis Severity.

    PubMed

    Kauv, Paul; Ayache, Samar S; Créange, Alain; Chalah, Moussa A; Lefaucheur, Jean-Pascal; Hodel, Jérôme; Brugières, Pierre

    2017-01-01

    Phosphorus magnetic resonance spectroscopy (31P-MRS) has previously shown abnormal changes in energy metabolites in the brain of multiple sclerosis (MS) patients. However, the relationship between these energy metabolites - particularly adenosine triphosphate (ATP) - and the disease severity remains unclear. The objective of this study was to determine whether measuring ATP metabolites can help to predict disease severity in MS patients. 31P-MRS at 3 tesla was performed in 9 relapsing remitting (RRMS), 9 secondary progressive MS patients (SPMS), and 10 age-matched healthy controls. ATP metabolites (expressed as %) in normally appearing white matter of the centrum semiovale were compared between patients and healthy controls. The relationship between Expanded Disability Status Scale (EDSS) and ATP metabolites was evaluated. RRMS and SPMS patients had higher phosphocreatine (PCr) and lower phosphodiesters than healthy controls. In addition, RRMS patients had higher β-ATP% than SPMS patients. β-ATP% was negatively correlated with EDSS in all patients. Our findings suggest a defective PCr metabolism in both patient groups, and a higher state of energy production in RRMS that might reflect a compensatory mechanism in face of the increased needs. The correlation of β-ATP with EDSS makes it a candidate biomarker for assessing MS disease severity. © 2017 S. Karger AG, Basel.

  15. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development.

    PubMed

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L

    2015-01-30

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.

  16. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  17. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  18. Extraction and analysis of adenosine triphosphate from aquatic environments

    USGS Publications Warehouse

    Stephens, Doyle W.; Shultz, David J.

    1981-01-01

    A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize acdurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30°C were stable for months.

  19. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV).

    PubMed

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-10-12

    Zr(IV) can form phosphate and Zr(IV) (-PO₃ 2- -Zr 4+ -) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A 520nm / A 650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  20. Determination of adenosine disodium triphosphate (ATP) using oxytetracycline-Eu 3+ as a fluorescence probe by spectrofluorimetry

    NASA Astrophysics Data System (ADS)

    Hou, Faju; Miao, Yanhong; Jiang, Chongqiu

    2005-10-01

    A new spectrofluorimetric method was developed for determination of adenosine disodium triphosphate (ATP). We studied the interactions between oxytetracycline (OTC)-Eu 3+ complex and adenosine disodium triphosphate (ATP) by using UV-vis absorption and fluorescence spectra. Using oxytetracycline (OTC)-Eu 3+ as a fluorescence probe, under the optimum conditions, ATP can remarkably enhance the fluorescence intensity of the OTC-Eu 3+ complex at λ = 612 nm and the enhanced fluorescence intensity of Eu 3+ ion is in proportion to the concentration of ATP. Optimum conditions for the determination of ATP were also investigated. The linear ranges for ATP are 8.00 × 10 -8-1.50 × 10 -6 mol L -1 with detection limits of 2.67 × 10 -9 mol L -1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of ATP in samples. The mechanism of fluorescence enhancement between oxytetracycline (OTC)-Eu 3+ complex and ATP was also studied.

  1. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    PubMed Central

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  3. Extraction and quantification of adenosine triphosphate in mammalian tissues and cells.

    PubMed

    Chida, Junji; Kido, Hiroshi

    2014-01-01

    Adenosine 5'-triphosphate (ATP) is the "energy currency" of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.

  4. Vasodilatory responsiveness to adenosine triphosphate in ageing humans.

    PubMed

    Kirby, Brett S; Crecelius, Anne R; Voyles, Wyatt F; Dinenno, Frank A

    2010-10-15

    Endothelium-dependent vasodilatation is reduced with advancing age in humans, as evidenced by blunted vasodilator responsiveness to acetylcholine (ACh). Circulating adenosine triphosphate (ATP) has been implicated in the control of skeletal muscle vascular tone during mismatches in oxygen delivery and demand (e.g. exercise) via binding to purinergic receptors (P2Y) on the endothelium evoking subsequent vasodilatation, and ageing is typically associated with reductions in muscle blood flow under such conditions. Therefore, we tested the hypothesis that ATP-mediated vasodilatation is impaired with age in healthy humans. We measured forearm blood flow (venous occlusion plethysmography) and calculated vascular conductance (FVC) responses to local intra-arterial infusions of ACh, ATP, and sodium nitroprusside (SNP) before and during ascorbic acid (AA) infusion in 13 young and 13 older adults. The peak increase in FVC to ACh was significantly impaired in older compared with young adults (262 ± 71% vs. 618 ± 97%; P < 0.05), and this difference was abolished during AA infusion (510 ± 82% vs. 556 ± 71%; not significant, NS). In contrast, peak FVC responses were not different between older and young adults to either ATP (675 ± 105% vs. 734 ± 126%) or SNP (1116 ± 111% vs. 1138 ± 148%) and AA infusion did not alter these responses in either age group (both NS). In another group of six young and six older adults, we determined whether vasodilator responses to adenosine and ATP were influenced by P1-receptor blockade via aminophylline. The peak FVC responses to adenosine were not different in young (350 ± 65%) versus older adults (360 ± 80%), and aminophylline blunted these responses by ∼50% in both groups. The peak FVC responses to ATP were again not different in young and older adults, and aminophylline did not impact the vasodilatation in either group. Thus, in contrast to the observed impairments in ACh responses, the vasodilatory response to exogenous ATP is not

  5. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    PubMed

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  6. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  7. Extracellular adenosine 5'-triphosphate concentrations changes in rat spinal cord associated with the activation of urinary bladder afferents. A microdialysis study.

    PubMed

    Rocha, Jeová Nina

    2016-01-01

    To determine adenosine 5'-triphosphate levels in the interstice of spinal cord L6-S1 segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. A microdialysis probe was transversally implanted in the dorsal half of spinal cord L6-S1 segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5'-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH2O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5'-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5'-triphosphate levels and no further increase in adenosine 5'-triphosphate was observed during bladder distension. Adenosine 5'-triphosphate was present in the interstice of L6-S1 spinal cord segments, was degraded by ectonucleotidase, and its concentration increased following the activation of bladder mechanosensitive but not of the chemosensitive afferents fibers. Adenosine 5'-triphosphate may originate either from the central endings of bladder mechanosensitive primary afferent neurons, or most likely from intrinsic spinal neurons, or glial cells and its release appears to be modulated by capsaicin activated bladder primary afferent or by adenosine 5'-triphosphate itself. Determinar as concentra

  8. Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Wei, J.; Dong, C.; Chen, B.

    2017-04-01

    We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.

  9. A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer.

    PubMed

    Zhou, Zi-Ming; Yu, Yong; Zhao, Yuan-Di

    2012-09-21

    We designed an aptasensor for the detection of adenosine triphosphate (ATP) based on chemiluminescence resonance energy transfer (CRET). An adenosine aptamer was cut into two pieces of ssDNA, which were attached to quantum dots (QDs) and horse radish peroxidase (HRP), respectively. They could reassemble into specific structures in the presence of ATP and then decrease the distance of HRP and QDs. ATP detection can be easily realized according to the fluorescent intensity of QDs, which is excited by CRET between luminol and QDs. Results show that the concentration of ATP is linear relation with the fluorescent intensity of the peak of QDs emission and the linear range for the linear equation is from 50 μM to 231 μM and the detection limit was 185 nM. When the concentration of ATP was 2 mM, the efficiency of CRET is 13.6%. Good specificity for ATP had been demonstrated compared to thymidine triphosphate (TTP), cytidine triphosphate (CTP) and guanosine triphosphate (GTP), when 1 mM of each was added, respectively. This method needs no external light source and can avoid autofluorescence and photobleaching, and ATP can be detected selectively, specifically, and sensitively in a low micromolar range, which means that the strategy reported here can be applicable to the detection of several other target molecules.

  10. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer.

    PubMed

    Li, Zheng; Wang, Yijing; Liu, Ying; Zeng, Yongyi; Huang, Aimin; Peng, Niancai; Liu, Xiaolong; Liu, Jingfeng

    2013-09-07

    We designed a novel aptamer based biosensor (aptasensor) for ultrasensitive detection of adenosine triphosphate (ATP) through resonance energy transfer (RET). The ATP aptamer was modified with Cy3 at the 3' end, and a green quantum dot (525) was attached to the 5' end of its complementary sequence respectively. The ATP aptamer and its complementary sequence could assemble into a duplex structure in the absence of target ATP, and then decrease the distance between the quantum dot and Cy3 which could produce significant RET signal. Upon ATP binding, the ATP aptamer could dissociate with its complementary sequence and then increase the distance between the quantum dot and Cy3 which would significantly decrease the RET signal. Therefore, the ATP detection could be easily achieved through detection of the fluorescence intensity ratio between 525 nm and 560 nm. The results show that the emission fluorescence intensity ratio of 525/560 is linearly related to the logarithmic concentration of ATP. The linear range of this aptasensor is from 0.1 nM to 1 μM, and the detection limit is lower down to 0.01 nM. Excellent selectivity of this aptasensor for ATP has been demonstrated through the detection of thymidine triphosphate (TTP), cytidine triphosphate (CTP), guanosine triphosphate (GTP) and adenosine diphosphate (ADP) respectively as control. The method we described here could easily detect ATP with excellent selectivity, linearity and sensitivity down to the nanomolar range, as well as avoid photobleaching.

  11. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  12. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides.

    PubMed

    Zhao, Qiang; Lv, Qin; Wang, Hailin

    2015-08-15

    We previously reported a fluorescence anisotropy (FA) approach for small molecules using tetramethylrhodamine (TMR) labeled aptamer. It relies on target-binding induced change of intramolecular interaction between TMR and guanine (G) base. TMR-labeling sites are crucial for this approach. Only terminal ends and thymine (T) bases could be tested for TMR labeling in our previous work, possibly causing limitation in analysis of different targets with this FA strategy. Here, taking the analysis of adenosine triphosphate (ATP) as an example, we demonstrated a success of conjugating TMR on other bases of aptamer adenine (A) or cytosine (C) bases and an achievement of full mapping various labeling sites of aptamers. We successfully constructed aptamer fluorescence anisotropy (FA) sensors for adenosine triphosphate (ATP). We conjugated single TMR on adenine (A), cytosine (C), or thymine (T) bases or terminals of a 25-mer aptamer against ATP and tested FA responses of 14 TMR-labeled aptamer to ATP. The aptamers having TMR labeled on the 16th base C or 23rd base A were screened out and exhibited significant FA-decreasing or FA-increasing responses upon ATP, respectively. These two favorable TMR-labeled aptamers enabled direct FA sensing ATP with a detection limit of 1 µM and the analysis of ATP in diluted serum. The comprehensive screening various TMR labeling sites of aptamers facilitates the successful construction of FA sensors using TMR-labeled aptamers. It will expand application of TMR-G interaction based aptamer FA strategy to a variety of targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor.

    PubMed

    Garai, Ashok; Mani, Jesrael; Chowdhury, Debashish

    2012-04-01

    Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp ∼ 50 nm of a double-stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called "footprint." We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments on mononucleosomes.

  14. Activation of P2Y6 Receptors Facilitates Nonneuronal Adenosine Triphosphate and Acetylcholine Release from Urothelium with the Lamina Propria of Men with Bladder Outlet Obstruction.

    PubMed

    Silva, Isabel; Ferreirinha, Fátima; Magalhães-Cardoso, Maria Teresa; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2015-10-01

    Deregulation of purinergic bladder signaling may contribute to persistent detrusor overactivity in patients with bladder outlet obstruction. Activation of uridine diphosphate sensitive P2Y6 receptors increases voiding frequency in rats indirectly by releasing adenosine triphosphate from the urothelium. To our knowledge this mechanism has never been tested in the human bladder. We examined the role of the uridine diphosphate sensitive P2Y6 receptor on tetrodotoxin insensitive nonneuronal adenosine triphosphate and [(3)H]acetylcholine release from the human urothelium with the lamina propria of control organ donors and patients with benign prostatic hyperplasia. The adenosine triphosphate-to-[(3)H]acetylcholine ratio was fivefold higher in mucosal urothelium/lamina propria strips from benign prostatic hyperplasia patients than control men. The selective P2Y6 receptor agonist PSB0474 (100 nM) augmented by a similar amount adenosine triphosphate and [(3)H]acetylcholine release from mucosal urothelium/lamina propria strips from both groups of individuals. The facilitatory effect of PSB0474 was prevented by MRS2578 (50 nM) and by carbenoxolone (10 μM), which block P2Y6 receptor and pannexin-1 hemichannels, respectively. Blockade of P2X3 (and/or P2X2/3) receptors with A317491 (100 nM) also attenuated release facilitation by PSB0474 in control men but not in patients with benign prostatic hyperplasia. Immunolocalization studies showed that P2Y6, P2X2 and P2X3 receptors were present in choline acetyltransferase positive urothelial cells. In contrast to P2Y6 staining, choline acetyltransferase, P2X2 and P2X3 immunoreactivity decreased in the urothelium of benign prostatic hyperplasia patients. Activation of P2Y6 receptor amplifies mucosal adenosine triphosphate release underlying bladder overactivity in patients with benign prostatic hyperplasia. Therefore, we propose selective P2Y6 receptor blockade as a novel therapeutic strategy to control persistent storage symptoms in

  15. Synthesis of γ-Phosphate-Labeled and Doubly Labeled Adenosine Triphosphate Analogs.

    PubMed

    Hacker, Stephan M; Welter, Moritz; Marx, Andreas

    2015-03-09

    This unit describes the synthesis of γ-phosphate-labeled and doubly labeled adenosine triphosphate (ATP) analogs and their characterization using the phosphodiesterase I from Crotalus adamanteus (snake venom phosphodiesterase; SVPD). In the key step of the synthesis, ATP or an ATP analog, bearing a linker containing a trifluoroacetamide group attached to the nucleoside, are modified with an azide-containing linker at the terminal phosphate using an alkylation reaction. Subsequently, different labels are introduced to the linkers by transformation of one functional group to an amine and coupling to an N-hydroxysuccinimide ester. Specifically, the Staudinger reaction of the azide is employed as a straightforward means to obtain an amine in the presence of various labels. Furthermore, the fluorescence characteristics of a fluorogenic, doubly labeled ATP analog are investigated following enzymatic cleavage by SVPD. Copyright © 2015 John Wiley & Sons, Inc.

  16. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.

    PubMed

    Huo, Yuan; Qi, Liang; Lv, Xiao-Jun; Lai, Ting; Zhang, Jing; Zhang, Zhi-Qi

    2016-04-15

    Adenosine triphosphate (ATP) is the most direct source of energy in organisms. This study is the first to demonstrate that ATP-aptamer complexes provide greater protection for unmodified gold nanoparticles (AuNPs) against salt-induced aggregation than either aptamer or ATP alone. This protective effect was confirmed using transmission electron microscopy, dynamic light scattering, Zeta potential measurement, and fluorescence polarization techniques. Utilizing controlled particle aggregation/dispersion as a gauge, a sensitive and selective aptasensor for colorimetric detection of ATP was developed using ATP-binding aptamers as the identification element and unmodified AuNPs as the probe. This aptasensor exhibited a good linear relationship between the absorbance and the logarithm concentration of ATP within a 50-1000 nM range. ATP analogs such as guanosine triphosphate, uridine triphosphate and cytidine triphosphate resulted in little or no interference in the determination of ATP. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Prostasomes from four different species are able to produce extracellular adenosine triphosphate (ATP).

    PubMed

    Ronquist, K Göran; Ek, Bo; Morrell, Jane; Stavreus-Evers, Anneli; Ström Holst, Bodil; Humblot, Patrice; Ronquist, Gunnar; Larsson, Anders

    2013-10-01

    Prostasomes are extracellular vesicles. Intracellularly they are enclosed by another larger vesicle, a so called "storage vesicle" equivalent to a multivesicular body of late endosomal origin. Prostasomes in their extracellular context are thought to play a crucial role in fertilization. Prostasomes were purified according to a well worked-out schedule from seminal plasmas obtained from human, canine, equine and bovine species. The various prostasomes were subjected to SDS-PAGE separation and protein banding patterns were compared. To gain knowledge of the prostasomal protein systems pertaining to prostasomes of four different species proteins were analyzed using a proteomic approach. An in vitro assay was employed to demonstrate ATP formation by prostasomes of different species. The SDS-PAGE banding pattern of prostasomes from the four species revealed a richly faceted picture with most protein bands within the molecular weight range of 10-150kDa. Some protein bands seemed to be concordant among species although differently expressed and the number of protein bands of dog prostasomes seemed to be distinctly fewer. Special emphasis was put on proteins involved in energy metabolic turnover. Prostasomes from all four species were able to form extracellular adenosine triphosphate (ATP). ATP formation was balanced by ATPase activity linked to the four types of prostasomes. These potencies of a possession of functional ATP-forming enzymes by different prostasome types should be regarded against the knowledge of ATP having a profound effect on cell responses and now explicitly on the success of the sperm cell to fertilize the ovum. This study unravels energy metabolic relationships of prostasomes from four different species. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Application of adenosine triphosphate-driven bioluminescence for quantification of plaque bacteria and assessment of oral hygiene in children.

    PubMed

    Fazilat, Shahram; Sauerwein, Rebecca; McLeod, Jennifer; Finlayson, Tyler; Adam, Emilia; Engle, John; Gagneja, Prashant; Maier, Tom; Machida, Curtis A

    2010-01-01

    Dentistry has undergone a shift in caries management toward prevention and improved oral hygiene and diagnosis. Caries prevention now represents one of the most important aspects of modern dental practice. The purpose of this cross-sectional study was to demonstrate the use of adenosine triphosphate- (ATP-) driven bioluminescence as an innovative tool for the rapid chairside enumeration of oral bacteria (including plague streptococci) and assessment of oral hygiene and caries risk. Thirty-three pediatric patients (7- to 12-year-old males and females) were examined, and plague specimens, in addition to stimulated saliva, were collected from representative teeth within each quadrant. Oral specimens (n=150 specimens) were assessed by plating on enriched and selective agars, to enumerate total bacteria and streptococci, and subjected to adenosine triphosphate- (ATP-) driven bioluminescence determinations using a luciferase-based assay system. Statistical correlations, linking ATP values to numbers of total bacteria, oral streptococci and mutans streptococci, yielded highly significant r values of 0.854, 0.840, and 0.796, respectively Our clinical data is consistent with the hypothesis that ATP measurements have a strong statistical association with bacterial number in plague and saliva specimens, including numbers for oral streptococci, and may be used as a potential assessment tool for oral hygiene and caries risk in children.

  20. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms?

    PubMed

    Chagoya de Sánchez, V

    1995-03-01

    The present review describes the biological implications of the periodic changes of adenosine concentrations in different tissues of the rat. Adenosine is a purine molecule that could have been formed in the prebiotic chemical evolution and has been preserved. The rhythmicity of this molecule, as well as its metabolism and even the presence of specific receptors, suggests a regulatory role in eukaryotic cells and in multicellular organisms. Adenosine may be considered a chemical messenger and its action could take place at the level of the same cell (autocrine), the same tissue (paracrine), or on separate organs (endocrine). Exploration of the circadian variations of adenosine was planned considering the liver as an important tissue for purine formation, the blood as a vehicle among tissues, and the brain as the possible acceptor for hepatic adenosine or its metabolites. The rats used in these studies were adapted to a dark-light cycle of 12 h with an unrestrained feeding and drinking schedule. The metabolic control of adenosine concentration in the different tissues studied through the 24-h cycle is related to the activity of adenosine-metabolizing enzyme: 5'-nucleotidase adenosine deaminase, adenosine kinase, and S-adenosylhomocysteine hydrolase. Some possibilities of the factors modulating the activity of these enzymes are commented upon. The multiphysiological action of adenosine could be mediated by several actions: (i) by interaction with extracellular and intracellular receptors and (ii) through its metabolism modulating the methylation pathway, possibly inducing physiological lipoperoxidation, or participating in the energetic homeostasis of the cell. The physiological meaning of the circadian variations of adenosine and its metabolism was focused on: maintenance of the energetic homeostasis of the tissues, modulation of membrane structure and function, regulation of fasting and feeding metabolic pattern, and its participation in the sleep-wake cycle. From

  1. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  2. A dual-function fluorescent probe for monitoring the degrees of hypoxia in living cells via the imaging of nitroreductase and adenosine triphosphate.

    PubMed

    Fang, Yu; Shi, Wen; Hu, Yiming; Li, Xiaohua; Ma, Huimin

    2018-05-24

    A new dual-function fluorescent probe is developed for detecting nitroreductase (NTR) and adenosine triphosphate (ATP) with different responses. Imaging application of the probe reveals that intracellular NTR and ATP display an adverse changing trend during a hypoxic process and ATP can serve as a new sign for cell hypoxia.

  3. Effects of nucleotides adenosine monophosphate and adenosine triphosphate in combination with L-arginine on male rabbit corpus cavernosum tissue.

    PubMed

    Hupertan, V; Neuzillet, Y; Stücker, O; Pons, C; Leammel, E; Lebret, T

    2012-12-01

    Purines and more specifically adenosine monophosphate (AMP) and adenosine triphosphate (ATP) have a strong relaxant effect on smooth muscle cells of the dog, rabbit and human corpus cavernosum, to approximately the same degree as nitric oxide (NO). However, purines are considered as modulators of erectile function rather than key mediators. This suggests that the use of purines combined with NO donors could be effective to treat some specific erectile disorders. The relaxation induced by the combination of l-arginine (Arg), a natural substrate for NO synthase, was assessed with a purine-nucleotide (AMP, ATP) on a rabbit corpus cavernosum model, to determine if these substances could potentiate each other's effect. When a pre-contraction was induced by phenylephrine, AMP alone induced a 43% CC relaxation rate and ATP alone a 26% rate. The relaxation rate induced by Arg was lower in comparison (8% at 5.10(-4) m vs. 25% at AMP 5.10(-4) m and 15% at ATP 5.10(-4) m). NO synthase inhibitor n-nitro-l-arginine did not modify the relaxing effect provoked by AMP suggesting that the mechanism of action of this nucleotide does not involve the NO pathway. The combination of Arg at 5.10(-4) m with either AMP or ATP at different doses ranging from 5.10(-4) to 10(-3) m significantly enhanced the relaxing response reaching rates of 62 and 80% respectively, leading to a synergistic effect. The present data indicate that a 'NO donor' combined with an 'adenosine donor' could be an effective therapeutic approach. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  4. Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits.

    PubMed

    Kivi, Rait; Solovjova, Karina; Haljasorg, Tõiv; Arukuusk, Piret; Järv, Jaak

    2016-12-01

    The allosteric influence of adenosine triphosphate (ATP) on the binding effectiveness of a series of peptide inhibitors with the catalytic subunit of 3'5'-cyclic adenosine monophosphate dependent protein kinase was investigated, and the dependence of this effect on peptide structure was analyzed. The allosteric effect was calculated as ratio of peptide binding effectiveness with the enzyme-ATP complex and with the free enzyme, quantified by the competitive inhibition of the enzyme in the presence of ATP excess, and by the enzyme-peptide complex denaturation assay, respectively It was found that the principle "better binding-stronger allostery" holds for interactions of the studied peptides with the enzyme, indicating that allostery and peptide binding with the free enzyme are governed by the same specificity pattern. This means that the allosteric regulation does not include new ligand-protein interactions, but changes the intensity (strength) of the interatomic forces that govern the complex formation in the case of each individual ligand. We propose that the allosteric regulation can be explained by the alteration of the intrinsic dynamics of the protein by ligand binding, and that this phenomenon, in turn, modulates the ligand off-rate from its binding site as well as the binding affinity. The positive allostery could therefore be induced by a reduction in the enzyme's overall intrinsic dynamics.

  5. A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5'-triphosphate.

    PubMed

    Liu, Xiaojie; Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli

    2018-04-02

    A multifunctional fluorescent probe is synthesized for the determination of adenosine 5'-triphosphate (ATP). The 6-carboxyfluorescein-labeled aptamer (FAM-aptamer) was bound to the surface of magnetite nanoparticles coated with polydopamine (Fe 3 O 4 @PDA) by π-π stacking interaction to form the multifunctional probe. The probe has three functions including recognition, magnetic separation, and yielding a fluorescent signal. In the presence of ATP, FAM-aptamer on the surface of the probe binds to ATP and returns to the solution. Thus, the fluorescence of the supernatant is enhanced and can be related to the concentration of ATP. Fluorescence intensities were measured at excitation/emission wavelengths of 494/526 nm. Response is linear in the 0.1-100 μM ATP concentration range, and the detection limit is 89 nM. The probe was applied to the quantitation of ATP in spiked human urine and serum samples, with recoveries ranging between 94.8 and 102%. Graphical abstract A multifunctional fluorescent probe based on the use of FAM-aptamer and Fe 3 O 4 @PDA is described for the determination of ATP in spiked human urine and serum samples. FAM-aptamer: 6-carboxyfluorescein-labeled aptamer; Fe 3 O 4 @PDA: magnetite nanoparticles coated with polydopamine. ATP: adenosine 5'-triphosphate.

  6. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells

    PubMed Central

    Wang, Chiuhui Mary; Ploia, Cristina; Anselmi, Fabio; Sarukhan, Adelaida; Viola, Antonella

    2014-01-01

    Organization of immune responses requires exchange of information between cells. This is achieved through either direct cell–cell contacts and establishment of temporary synapses or the release of soluble factors, such as cytokines and chemokines. Here we show a novel form of cell-to-cell communication based on adenosine triphosphate (ATP). ATP released by stimulated T cells induces P2X4/P2X7-mediated calcium waves in the neighboring lymphocytes. Our data obtained in lymph node slices suggest that, during T-cell priming, ATP acts as a paracrine messenger to reduce the motility of lymphocytes and that this may be relevant to allow optimal tissue scanning by T cells. PMID:24843045

  7. Metabolic intervention to affect myocardial recovery following ischemia.

    PubMed Central

    Pasque, M K; Wechsler, A S

    1984-01-01

    Myocardial recovery during reperfusion following ischemia is critical to patient survival in a broad spectrum of clinical settings. Myocardial functional recovery following ischemia correlates well with recovery of myocardial adenosine triphosphate (ATP). Adenosine triphosphate recovery is uniformly incomplete during reperfusion following moderate ischemic injury and is therefore subject to manipulation by metabolic intervention. By definition ATP recovery is limited either by (1) energy availability and application in the phosphorylation of adenosine monophosphate (AMP) to ATP or (2) availability of AMP for this conversion. Experimental data suggest that substrate energy and the mechanisms required for its application in the creation of high energy phosphate bonds (AMP conversion to ATP) are more than adequate during reperfusion following moderate ischemic injury. Adenosine monophosphate availability, however, is inadequate following ischemia due to loss of diffusable adenine nucleotide purine metabolites. These purine precursors are necessary to fuel adenine nucleotide salvage pathways. Metabolic interventions that enhance AMP recovery rather than those that improve substrate energy availability during reperfusion are therefore recommended. The mechanisms of various metabolic interventions are discussed in this framework along with the rationale for or against their clinical application. PMID:6428332

  8. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.

    PubMed

    Li, Li Juan; Tian, Xue; Kong, Xiang Juan; Chu, Xia

    2015-01-01

    A G-quadruplex-based, label-free fluorescence assay was demonstrated for the detection of adenosine triphosphate (ATP). A double-stranded DNA (dsDNA), hybridized by ATP-aptamer and its complementary sequence, was employed as a substrate for ATP binding. SYBR Green I (SG I) was a fluorescent probe and exonuclease III (Exo III) was a nuclease to digest the dsDNA. Consequently, in the absence of ATP, the dsDNA was inset with SG I and was digested by Exo III, resulting in a low background signal. In the presence of ATP, the aptamer in dsDNA folded into a G-quadruplex structure that resisted the digestion of Exo III. SG I was inserted into the structure, showing high fluorescence. Owing to a decrease of the background noise, a high signal-to-noise ratio could be obtained. This sensor can detect ATP with a concentration ranging from 50 μM to 5 mM, and possesses a capacity for the sensitive determination of other targets.

  9. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  10. (-) Epicatechin attenuates mitochondrial damage by enhancing mitochondrial multi-marker enzymes, adenosine triphosphate and lowering calcium in isoproterenol induced myocardial infarcted rats.

    PubMed

    Stanely Mainzen Prince, P

    2013-03-01

    Cardiac mitochondrial damage plays an important role in the pathology of myocardial infarction. The protective effects of (-) epicatechin on cardiac mitochondrial damage in isoproterenol induced myocardial infarction were evaluated in rats. Rats were pretreated with (-) epicatechin (20 mg/kg body weight) daily for a period of 21 days. After the pretreatment period, isoproterenol (100 mg/kg body weight) was injected subcutaneously into rats twice at an interval of 24 h to induce myocardial infarction. Isoproterenol induced myocardial infarcted rats showed a significant increase in the levels of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, calcium, and a significant decrease in the activities/levels of heart mitochondrial glutathione peroxidase, glutathione reductase, reduced glutathione, isocitrate, succinate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase and adenosine triphosphate. (-) Epicatechin pretreatment showed significant protective effects on all the biochemical parameters evaluated. The in vitro study revealed the superoxide and hydroxyl radical scavenging activity of (-) epicatechin. The possible mechanisms for the beneficial effects of (-) epicatechin on cardiac mitochondria could be attributed to scavenging of free radicals, decreasing calcium, increasing multi-enzymes (antioxidant, tricarboxylic acid cycle and respiratory chain enzymes), reduced glutathione and adenosine triphosphate. Thus, (-) epicatechin attenuated mitochondrial damage in isoproterenol induced myocardial infarcted rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  12. Intracellular Adenosine Triphosphate Delivery Enhanced Skin Wound Healing in Rabbits

    PubMed Central

    Wang, Jianpu; Zhang, Qunwei; Wan, Rong; Mo, Yiqun; Li, Ming; Tseng, Michael T.; Chien, Sufan

    2016-01-01

    Small unilamellar lipid vesicles were used to encapsulate adenosine triphosphate (ATP-vesicles) for intracellular energy delivery. This technique was tested in full-thickness skin wounds in 16 adult rabbits. One ear was rendered ischemic by using a minimally invasive surgery. The other ear served as a normal control. Four circular full-thickness wounds were created on the ventral side of each ear. ATP-vesicles or saline was used and the wounds were covered with Tegaderm (3M, St. Paul, MN). Dressing was changed and digital photos were taken daily until all the wounds were healed. The mean healing times of ATP-vesicles–treated wounds were significantly shorter than that of saline-treated wounds on ischemic and nonischemic ears. Histologic study indicated better-developed granular tissue and reepithelial-ization in the ATP-vesicles–treated wounds. The wounds treated by ATP-vesicles exhibited extremely fast granular tissue growth. More CD31 positive cells were seen in the ATP-vesicles–treated wounds. This preliminary study shows that direct intracellular delivery of ATP can accelerate the healing process of skin wounds on ischemic and nonischemic rabbit ears. The extremely fast granular tissue growth was something never seen or reported in the past. PMID:19158531

  13. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    PubMed

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The effects of noradrenaline and adenosine 5'-triphosphate on polyphosphoinositide and phosphatidylcholine hydrolysis in arterial smooth muscle.

    PubMed Central

    Nally, J. E.; Muir, T. C.; Guild, S. B.

    1992-01-01

    1. The effects of noradrenaline and alpha,beta,methylene adenosine 5'-triphosphate (alpha,beta,methylene ATP) on polyphosphoinositide metabolism, phosphatidylcholine hydrolysis and contraction in rabbit saphenous arteries were investigated. The effect of noradrenaline upon polyphosphoinositide metabolism was also investigated in the rat tail artery. 2. Noradrenaline (10(-7)-10(-4) M) evoked a concentration-dependent increase in total inositol phosphate accumulation in the rat tail but not in the rabbit saphenous artery. Propranolol (3 x 10(-6) M) did not alter this result in the rabbit saphenous artery. In addition, alpha,beta,methylene ATP (10(-6) M) significantly increased total inositol phosphate accumulation in the rabbit saphenous artery, while potassium chloride (8 x 10(-2) M) was ineffective. 3. Phorbol 1,2-myristate 1,3-acetate (3 x 10(-8) M) enhanced noradrenaline (10(-2)-10(-4) M)-evoked contractions in rabbit saphenous artery. The contractile responses to potassium chloride (1- 16 x 10(-2) M) in tissues treated with 6-hydroxydopamine (5 x 10(-4) M), in vitro, were unaffected by these concentrations of the phorbol ester. 4. Noradrenaline (10(-6)-10(-4) M) evoked a concentration-dependent increase in the levels of choline and choline phosphate, but not in those of glycerophosphocholine, in the rabbit saphenous artery. Choline levels increased significantly over the first 15-30 s then declined to control levels within 2 min of addition of noradrenaline (10(-5) M). A smaller initial rise in choline phosphate levels (15-30 s) was followed by a larger secondary rise at 2-4 min.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1327389

  15. Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantum dots for selective room temperature phosphorescence detection of arginine and methylated arginine in urine based on supramolecular Mg(2+)-adenosine triphosphate-arginine ternary system.

    PubMed

    Ren, Hu-Bo; Yan, Xiu-Ping

    2012-08-15

    An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The use of adenosine and adenosine triphosphate testing in the diagnosis, risk stratification and management of patients with syncope: current evidence and future perspectives.

    PubMed

    Fragakis, Nikolaos; Antoniadis, Antonios P; Saviano, Massimo; Vassilikos, Vassilios; Pappone, Carlo

    2015-03-15

    Syncope is a significant source of cardiovascular-related morbidity yet the etiology is frequently obscure and the identification of patients at highest risk is challenging. Adenosine (AD) and adenosine triphosphate (ATP) administrations have been suggested as potentially useful non-invasive tools in the diagnostic workup of patients with neurally-mediated or bradycardia-related syncope. It has been postulated that both compounds by modulating the autonomic innervation in the heart and exerting negative chronotropic and dromotropic effects in the conduction system, may unmask the mechanism of syncope. However, the clinical implications derived from the efficacy of both tests in the investigation of syncope remain unclear mainly due to inconclusive and occasionally contradictory results of published studies. This review article summarizes recent and past information in the use of ATP and AD in the investigation of syncope with emphasis on clinical trials. We present the current level of evidence for the use of these agents in clinical practice, identify areas where further research is warranted and highlight the future perspectives of these agents as complements to an accurate risk-stratification of patients with syncope. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of cadmium on lake water bacteria as determined by the luciferase assay of adenosine triphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyfried, P.L.; Horgan, C.B.L.

    1981-10-01

    A firefly luciferase assay of bacterial adenosine triphosphate (ATP) was developed to measure the toxic effects of cadmium ions on aquatic organisms. Toxicity was monitored using intracellular (I/C) ATP (in micrograms per litre) as well as plate counts (colony-forming units per millilitre). The bacteria, which belonged mainly to the families Enterobacteriaceae and Pseudomonadaceae, exhibited varying degrees of resistance to up to 100 ppm cadmium when grown in a glucose-salts medium at pH 6.8. Among the organisms tested, cadmium resistance decreased in the following order: Pseudomonas vesicularis > P. aeruginosa > Enterobacter sp. > P. fluorescens > Chromobacter sp. > Serratiamore » sp. A rise in the pH of the growth medium from 5 to 7 resulted in increased toxicity of cadmium.« less

  18. Comparing visual inspection, aerobic colony counts, and adenosine triphosphate bioluminescence assay for evaluating surface cleanliness at a medical center.

    PubMed

    Huang, Yu-Shan; Chen, Yee-Chun; Chen, Mei-Ling; Cheng, Aristine; Hung, I-Chen; Wang, Jann-Tay; Sheng, Wang-Huei; Chang, Shan-Chwen

    2015-08-01

    Environmental cleaning is essential in reducing microbial colonization and health care-associated infections in hospitals. However, there is no consensus for the standard method to assess hospital cleanliness, and comparisons of newer methodology, such as adenosine triphosphate bioluminescence assay, with the traditional methods are limited. A prospective study was conducted at a medical center between January 2013 and August 2013. In each selected room, 10-12 high-touch surfaces were sampled before and after terminal cleaning. The adequacy of cleaning was evaluated by visual inspection, aerobic colony counts (ACCs), and adenosine triphosphate (ATP) bioluminescence assay. Eighty-five environmental surfaces from 8 rooms were evaluated by all 3 methods. The overall inadequacy defined by visual inspection, ACC, and ATP level was 11.8%, 20.0%, and 50.6% before cleaning and 4.7%, 5.9%, 21.2% after cleaning, respectively. A correlation between the ACC and ATP was found (r = 0.285, P < .001) using log10 values. Using ACCs <2.5 colony forming units/cm(2) as the cutoff for cleanliness, the ATP assay had better sensitivity than visual inspection (63.6% vs 27.3%). The receiver operating characteristics of the ATP assay indicated that the optimal ATP cutoff value was estimated to be 5.57 relative light units/cm(2). ATP bioluminescence assay is a sensitive and rapid tool in evaluating the quality of terminal cleaning. We emphasize the value of using a quantitative method to monitor environmental cleaning at hospitals. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex.

    PubMed

    Butler, Stephen J

    2014-11-24

    Two tripodal fluorescent probes Zn⋅L(1,2) have been synthesised, and their anion-binding capabilities were examined by using fluorescence spectroscopy. Probe Zn⋅L(1) allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real-time monitoring of the apyrase-catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages.

    PubMed

    Gicquel, Thomas; Victoni, Tatiana; Fautrel, Alain; Robert, Sacha; Gleonnec, Florence; Guezingar, Marie; Couillin, Isabelle; Catros, Véronique; Boichot, Elisabeth; Lagente, Vincent

    2014-04-01

    Adenosine triphosphate (ATP) has been described as a danger signal activating the NOD-like receptor-family protein 3 (NLRP3)-inflammasome leading to the pro-inflammatory cytokine, interleukin (IL)-1β, release in the lung. The NLRP3-inflammasome pathway has been previously described to be involved in experimental collagen deposition and the development of pulmonary fibrosis. The aim of the present study was to investigate the role of the NLRP3 inflammasome pathway and P2X7 purinergic receptor in the activation of human macrophages in vitro by ATP. We showed that adenosine 5'-[γ-thio]triphosphate tetralithium salt (ATPγS) and 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP), two stable analogs of ATP, are able to potentiate the release of IL-1β from human monocyte-derived macrophages induced by low concentration of lipopolysaccharide (LPS). However, in the same conditions no increase in IL-1α and IL-6 was observed. Immunochemistry has shown that human macrophages natively express NLRP3 and purinergic P2X7 receptors (P2X7 R). NLRP3 and IL-1β mRNA expression were induced from LPS-primed macrophages, but also after 5-h treatment of BzATP as analysed by reverse transcription quantitative polymerase chain reaction. However, other inflammasome pathways (NLRP1, NLRP2, NLRC4, NLRP6 and AIM2) and P2X7 R were not induced by BzATP. We observed that P2X7 R antagonists, A-438079 and A-740003, were able to reduce the release of IL-1β, but not of IL-1α and IL-6 from macrophages stimulated by ATPγS or BzATP. The present results showed the involvement of the P2X7 R-NLRP3 inflammasome pathway in the secretion of IL-1β from ATP-stimulated human macrophages, and suggest that P2X7 R were not involved in IL-1α and IL-6 release. This study also points out that repression of the P2X7 R represents a novel potential therapeutic approach to control fibrosis in lung injury. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  2. Adenosine triphosphate-guided pulmonary vein isolation for atrial fibrillation: the UNmasking Dormant Electrical Reconduction by Adenosine TriPhosphate (UNDER-ATP) trial.

    PubMed

    Kobori, Atsushi; Shizuta, Satoshi; Inoue, Koichi; Kaitani, Kazuaki; Morimoto, Takeshi; Nakazawa, Yuko; Ozawa, Tomoya; Kurotobi, Toshiya; Morishima, Itsuro; Miura, Fumiharu; Watanabe, Tetsuya; Masuda, Masaharu; Naito, Masaki; Fujimoto, Hajime; Nishida, Taku; Furukawa, Yoshio; Shirayama, Takeshi; Tanaka, Mariko; Okajima, Katsunori; Yao, Takenori; Egami, Yasuyuki; Satomi, Kazuhiro; Noda, Takashi; Miyamoto, Koji; Haruna, Tetsuya; Kawaji, Tetsuma; Yoshizawa, Takashi; Toyota, Toshiaki; Yahata, Mitsuhiko; Nakai, Kentaro; Sugiyama, Hiroaki; Higashi, Yukei; Ito, Makoto; Horie, Minoru; Kusano, Kengo F; Shimizu, Wataru; Kamakura, Shiro; Kimura, Takeshi

    2015-12-07

    Most of recurrent atrial tachyarrhythmias after pulmonary vein isolation (PVI) for atrial fibrillation (AF) are due to reconnection of PVs. The aim of the present study was to evaluate whether elimination of adenosine triphosphate (ATP)-induced dormant PV conduction by additional energy applications during the first ablation procedure could reduce the incidence of recurrent atrial tachyarrhythmias. We randomly assigned 2113 patients with paroxysmal, persistent, or long-lasting AF to either ATP-guided PVI (1112 patients) or conventional PVI (1001 patients). The primary endpoint was recurrent atrial tachyarrhythmias lasting for >30 s or those requiring repeat ablation, hospital admission, or usage of Vaughan Williams class I or III antiarrhythmic drugs at 1 year with the blanking period of 90 days post ablation. Among patients assigned to ATP-guided PVI, 0.4 mg/kg body weight of ATP provoked dormant PV conduction in 307 patients (27.6%). Additional radiofrequency energy applications successfully eliminated dormant conduction in 302 patients (98.4%). At 1 year, 68.7% of patients in the ATP-guided PVI group and 67.1% of patients in the conventional PVI group were free from the primary endpoint, with no significant difference (adjusted hazard ratio [HR] 0.89; 95% confidence interval [CI] 0.74-1.09; P = 0.25). The results were consistent across all the prespecified subgroups. Also, there was no significant difference in the 1-year event-free rates from repeat ablation for any atrial tachyarrhythmia between the groups (adjusted HR 0.83; 95% CI 0.65-1.08; P = 0.16). In the catheter ablation for AF, we found no significant reduction in the 1-year incidence of recurrent atrial tachyarrhythmias by ATP-guided PVI compared with conventional PVI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Tuttle, S. A.; Schrock, C. G.; Deming, J. W.; Barza, M. J.; Wienstein, L.; Chappelle, E. W.

    1977-01-01

    The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation.

  4. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  5. Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection

    PubMed Central

    Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J.; Kawarada, Hiroshi

    2017-01-01

    Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current–drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current–drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface. PMID:28753998

  6. Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection.

    PubMed

    Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J; Kawarada, Hiroshi

    2017-07-21

    Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current-drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current-drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.

  7. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  8. Evaluation of the relationship between the Adenosine Triphosphate (ATP) bioluminescence assay and the presence of Bacillus anthracis spores and vegetative cells.

    PubMed

    Gibbs, Shawn G; Sayles, Harlan; Colbert, Erica M; Hewlett, Angela; Chaika, Oleg; Smith, Philip W

    2014-05-28

    The Adenosine triphosphate (ATP) bioluminescence assay was utilized in laboratory evaluations to determine the presence and concentration of vegetative and spore forms of Bacillus anthracis Sterne 34F2. Seventeen surfaces from the healthcare environment were selected for evaluation. Surfaces were inoculated with 50 µL of organism suspensions at three concentrations of 104, 106, 108 colony forming units per surface (CFU/surface) of B. anthracis. Culture-based methods and ATP based methods were utilized to determine concentrations. When all concentrations were evaluated together, a positive correlation between log-adjusted CFU and Relative Light Units (RLU) for endospores and vegetative cells was established. When concentrations were evaluated separately, a significant correlation was not demonstrated. This study demonstrated a positive correlation for ATP and culture-based methods for the vegetative cells of B. anthracis. When evaluating the endospores and combining both metabolic states, the ATP measurements and CFU recovered did not correspond to the initial concentrations on the evaluated surfaces. The results of our study show that the low ATP signal which does not correlate well to the CFU results would not make the ATP measuring devises effective in confirming contamination residual from a bioterrorist event.

  9. Adenosine Triphosphate Promotes Allergen-Induced Airway Inflammation and Th17 Cell Polarization in Neutrophilic Asthma.

    PubMed

    Zhang, Fang; Su, Xin; Huang, Gang; Xin, Xiao-Feng; Cao, E-Hong; Shi, Yi; Song, Yong

    2017-01-01

    Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4 + T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.

  10. A rapid method for the determination of microbial susceptibility using the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.

  11. Effects of caffeine on fractional flow reserve values measured using intravenous adenosine triphosphate.

    PubMed

    Nakayama, Masafumi; Chikamori, Taishiro; Uchiyama, Takashi; Kimura, Yo; Hijikata, Nobuhiro; Ito, Ryosuke; Yuhara, Mikio; Sato, Hideaki; Kobori, Yuichi; Yamashina, Akira

    2018-04-01

    We investigated the effects of caffeine intake on fractional flow reserve (FFR) values measured using intravenous adenosine triphosphate (ATP) before cardiac catheterization. Caffeine is a competitive antagonist for adenosine receptors; however, it is unclear whether this antagonism affects FFR values. Patients were evenly randomized into 2 groups preceding the FFR study. In the caffeine group (n = 15), participants were given coffee containing 222 mg of caffeine 2 h before the catheterization. In the non-caffeine group (n = 15), participants were instructed not to take any caffeine-containing drinks or foods for at least 12 h before the catheterization. FFR was performed in patients with more than intermediate coronary stenosis using the intravenous infusion of ATP at 140 μg/kg/min (normal dose) and 170 μg/kg/min (high dose), and the intracoronary infusion of papaverine. FFR was followed for 30 s after maximal hyperemia. In the non-caffeine group, the FFR values measured with ATP infusion were not significantly different from those measured with papaverine infusion. However, in the caffeine group, the FFR values were significantly higher after ATP infusion than after papaverine infusion (P = 0.002 and P = 0.007, at normal and high dose ATP vs. papaverine, respectively). FFR values with ATP infusion were significantly increased 30 s after maximal hyperemia (P = 0.001 and P < 0.001 for normal and high dose ATP, respectively). The stability of the FFR values using papaverine showed no significant difference between the 2 groups. Caffeine intake before the FFR study affected FFR values and their stability. These effects could not be reversed by an increased ATP dose.

  12. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    PubMed

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  13. A multifunctional label-free electrochemical impedance biosensor for Hg(2+), adenosine triphosphate and thrombin.

    PubMed

    Chen, Lifen; Chen, Zhong-Ning

    2015-01-01

    A multifunctional label-free biosensor for the detection of Hg(2+), adenosine triphosphate and thrombin has been developed based on the changing of the electrochemical impedance spectroscopy (EIS) from the modified electrodes when nucleic acid subunits interacting with different targets. The modified electrode consists of three interaction sections, including DNA with T-T mismatch recognizing Hg(2+) to form T-Hg(2+)-T complex, split DNA chip against ATP, and DNA domin against thrombin to form G-quadruplex. Upon DNA interaction with thrombin or ATP, an increased charge transfer resistance (Rct) had been detected. However, a decreased Rct against Hg(2+) was obtained. The Rct difference (ΔRct) has relationship with the concentration of the different targets, Hg(2+), ATP and thrombin can be selectively detected with the detection limit of 0.03, 0.25, and 0.20 nmol L(-1), respectively. To separately detect the three analytes existing in the same sample, ATP aptamer, G-rich DNA strands and EDTA were applied to mask ATP, Hg(2+) or thrombin separately. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  15. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells.

    PubMed

    Cutarelli, Alessandro; Marini, Mario; Tancredi, Virginia; D'Arcangelo, Giovanna; Murdocca, Michela; Frank, Claudio; Tarantino, Umberto

    2016-05-01

    In the last years adenosine triphosphate (ATP) and subsequent purinergic system activation through P2 receptors were investigated highlighting their pivotal role in bone tissue biology. In osteoblasts ATP can regulate several activities like cell proliferation, cell death, cell differentiation and matrix mineralization. Since controversial results exist, in this study we analyzed the ATP effects on differentiation and mineralization in human osteoblast-like Saos-2 cells. We showed for the first time the altered functional activity of ATP receptors. Despite that, we found that ATP can reduce cell proliferation and stimulate osteogenic differentiation mainly in the early stages of in vitro maturation as evidenced by the enhanced expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and Osteocalcin (OC) genes and by the increased ALP activity. Moreover, we found that ATP can affect mineralization in a biphasic manner, at low concentrations ATP always increases mineral deposition while at high concentrations it always reduces mineral deposition. In conclusion, we show the osteogenic effect of ATP on both early and late stage activities like differentiation and mineralization, for the first time in human osteoblastic cells. © 2016 Japanese Society of Developmental Biologists.

  16. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; ...

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  17. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA)

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity. Results NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates. Conclusion Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses. PMID:22035583

  18. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    PubMed

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H 2 S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Adenosine Triphosphate Quantification Correlates Poorly with Microbial Contamination of Duodenoscopes.

    PubMed

    Olafsdottir, Lovisa B; Wright, Sharon B; Smithey, Anne; Heroux, Riley; Hirsch, Elizabeth B; Chen, Alice; Lane, Benjamin; Sawhney, Mandeep S; Snyder, Graham M

    2017-06-01

    OBJECTIVE The aim of this study was to quantify the correlation between adenosine triphosphate (ATP) measurements and bacterial cultures from duodenoscopes for evaluation of contamination following high-level disinfection. DESIGN Duodenoscopes used for any intended endoscopic retrograde cholangiopancreatography (ERCP) procedure were included. Microbiologic and ATP data were collected concomitantly and in the same manner from ERCP duodenoscopes. SETTING A high-volume endoscopy unit at a tertiary referral acute-care facility. METHODS Duodenoscopes were sampled for ATP and bacterial contamination in a contemporaneous and highly standardized fashion using a "flush-brush-flush" method for the working channel (WC) and a dry flocked swab for the elevator mechanism (EM). Specimens were processed for any aerobic bacterial growth (colony-forming units, CFU). Growth of CFU>0 and ATP relative light unit (RLU)>0 was considered a contaminated result. Frequency of discord between among WC and EM measurements were calculated using 2×2 contingency tables. The Spearman correlation coefficient was used to calculate the relatedness of bacterial contamination and ATP as continuous measurements. RESULTS The Spearman correlation coefficient did not demonstrate significant relatedness between ATP and CFU for either a WC or EM site. Among 390 duodenoscope sampling events, ATP and CFU assessments of contamination were discordant in 82 of 390 WC measurements (21%) and 331 of 390 of EM measurements (84.9%). The EM was frequently and markedly positive by ATP measurement. CONCLUSION ATP measurements correlate poorly with a microbiologic standard assessing duodenoscope contamination, particularly for EM sampling. ATP may reflect biological material other than nonviable aerobic bacteria and may not serve as an adequate marker of bacterial contamination. Infect Control Hosp Epidemiol 2017;38:678-684.

  20. Effects of adenosine triphosphate (ATP) on early recovery after total knee arthroplasty (TKA): a randomized, double-blind, controlled study.

    PubMed

    Long, Gong; Zhang, Guo Qiang

    2014-12-01

    Functional exercise after total knee arthroplasty (TKA) is necessary. However, it may be a difficult and painful process for the patient. Desirable methods of relieving the patient's pain are worth exploring. Oral supplement of adenosine triphosphate (ATP) is a potential option. In the present study, we decide to investigate whether short-term administration of ATP benefits patients undergoing TKA. A total of 244 subjects were randomized to receive 120mg ATP or placebo each day for 4weeks. Significant differences in quadriceps strength, pain scores at postoperative days 7, 14, 21, and 28 and total opioid consumption were detected. It follows that oral supplement of ATP could benefit patients recovering from TKA. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.

    PubMed

    Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin

    2018-01-15

    In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    PubMed

    Flitney, F W; Singh, J

    1980-07-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are

  4. Ribavirin suppresses hepatic lipogenesis through inosine monophosphate dehydrogenase inhibition: Involvement of adenosine monophosphate-activated protein kinase-related kinases and retinoid X receptor α.

    PubMed

    Satoh, Shinya; Mori, Kyoko; Onomura, Daichi; Ueda, Youki; Dansako, Hiromichi; Honda, Masao; Kaneko, Shuichi; Ikeda, Masanori; Kato, Nobuyuki

    2017-08-01

    Ribavirin (RBV) has been widely used as an antiviral reagent, specifically for patients with chronic hepatitis C. We previously demonstrated that adenosine kinase, which monophosphorylates RBV into the metabolically active form, is a key determinant for RBV sensitivity against hepatitis C virus RNA replication. However, the precise mechanism of RBV action and whether RBV affects cellular metabolism remain unclear. Analysis of liver gene expression profiles obtained from patients with advanced chronic hepatitis C treated with the combination of pegylated interferon and RBV showed that the adenosine kinase expression level tends to be lower in patients who are overweight and significantly decreases with progression to advanced fibrosis stages. In our effort to investigate whether RBV affects cellular metabolism, we found that RBV treatment under clinically achievable concentrations suppressed lipogenesis in hepatic cells. In this process, guanosine triphosphate depletion through inosine monophosphate dehydrogenase inhibition by RBV and adenosine monophosphate-activated protein kinase-related kinases, especially microtubule affinity regulating kinase 4, were required. In addition, RBV treatment led to the down-regulation of retinoid X receptor α (RXRα), a key nuclear receptor in various metabolic processes, including lipogenesis. Moreover, we found that guanosine triphosphate depletion in cells induced the down-regulation of RXRα, which was mediated by microtubule affinity regulating kinase 4. Overexpression of RXRα attenuated the RBV action for suppression of lipogenic genes and intracellular neutral lipids, suggesting that down-regulation of RXRα was required for the suppression of lipogenesis in RBV action. Conclusion : We provide novel insights about RBV action in lipogenesis and its mechanisms involving inosine monophosphate dehydrogenase inhibition, adenosine monophosphate-activated protein kinase-related kinases, and down-regulation of RXRα. RBV may be a

  5. Monitoring of endoscope reprocessing with an adenosine triphosphate (ATP) bioluminescence method.

    PubMed

    Parohl, Nina; Stiefenhöfer, Doris; Heiligtag, Sabine; Reuter, Henning; Dopadlik, Dana; Mosel, Frank; Gerken, Guido; Dechêne, Alexander; Heintschel von Heinegg, Evelyn; Jochum, Christoph; Buer, Jan; Popp, Walter

    2017-01-01

    Background: The arising challenges over endoscope reprocessing quality proposes to look for possibilities to measure and control the process of endoscope reprocessing. Aim: The goal of this study was to evaluate the feasibility of monitoring endoscope reprocessing with an adenosine triphosphate (ATP) based bioluminescence system. Methods: 60 samples of eight gastroscopes have been assessed from routine clinical use in a major university hospital in Germany. Endoscopes have been assessed with an ATP system and microbial cultures at different timepoints during the reprocessing. Findings: After the bedside flush the mean ATP level in relative light units (RLU) was 19,437 RLU, after the manual cleaning 667 RLU and after the automated endoscope reprocessor (AER) 227 RLU. After the manual cleaning the mean total viable count (TVC) per endoscope was 15.3 CFU/10 ml, and after the AER 5.7 CFU/10 ml. Our results show that there are reprocessing cycles which are not able to clean a patient used endoscope. Conclusion: Our data suggest that monitoring of flexible endoscope with ATP can identify a number of different influence factors, like the endoscope condition and the endoscopic procedure, or especially the quality of the bedside flush and manual cleaning before the AER. More process control is one option to identify and improve influence factors to finally increase the overall reprocessing quality, best of all by different methods. ATP measurement seems to be a valid technique that allows an immediate repeat of the manual cleaning if the ATP results after manual cleaning exceed the established cutoff of 200 RLU.

  6. Increased intracellular adenosine triphosphate level as an index to predict acute rejection in kidney transplant recipients.

    PubMed

    Wang, Xu-Zhen; Jin, Zhan-Kui; Tian, Xiao-Hui; Xue, Wu-Jun; Tian, Pu-Xun; Ding, Xiao-Ming; Zheng, Jin; Li, Yang; Jing, Xin; Luo, Zi-Zhen

    2014-01-01

    Peripheral blood CD4+ T cell adenosine triphosphate (ATP) release has been reported to be an adjunct tool to evaluate global cellular immune response in solid-organ transplant recipients. However, the correlation between the ATP level and rejection was controversial. The aim of this prospective clinical study was to explore the association between the intracellular ATP level and the occurrence, progression, and treatment of acute rejection (AR) episodes, determine the predicting value of intracellular ATP level for AR in kidney transplant (KT) recipients. In the period of October 2011 to October 2012, 140 KT recipients were recruited and followed for six months after transplantation. Patients were categorized into stable group and AR group according to their clinical course. Whole blood samples were collected pretransplantation, and at 7, 14, 21, and 28days, and at 2, 3, 4, 5 and 6months post-transplantation. Additional blood samples were obtained from AR patients on the day AR occurred, on the day before and 3 and 7days after intravenous anti-rejection therapy started, and on the day when AR reversed. The intracellular ATP in CD4+ T cells was detected by ImmuKnow Immune Cell Function Assay according to the manufacturer's instruction. The absolute number of CD4+ T cells and the trough levels of tacrolimus and cyclosporine were also measured. The ATP level detected on the day AR occurred (627.07±149.85ng/ml) was obviously higher than that of the stable group (320.48±149.11ng/ml, P<0.05). ATP value decreased to 265.35±84.33ng/m at the end of anti-rejection therapy, which was obviously lower than that measured on the day before the anti-rejection therapy started (665.87±162.85ng/ml, P<0.05). ROC analysis revealed that increased intracellular adenosine triphosphate level showed better sensitivity and specificity than those obtained using single time point detection (89.5% vs 85.0%;95.0% vs 88.9%). The best cutoff value was 172.55ng/ml. A positive correlation

  7. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator.

    PubMed

    Huang, Xiang; Li, Yuqin; Zhang, Xiaoshan; Zhang, Xin; Chen, Yaowen; Gao, Wenhua

    2015-09-07

    An efficient aptasensor was developed in which graphene oxide (GO) was employed as an indicator for both electrochemical impedance spectroscopy and electrochemiluminescence (ECL) signal generation. The aptasensor was fabricated by self-assembling the ECL probe of a thiolated adenosine triphosphate binding aptamer (ABA) tagged with a Ru complex (Ru(bpy)3(2+) derivatives) onto the surface of gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). ABA immobilized onto AuNP modified GCE could strongly adsorb GO due to the strong π-π interaction between ABA and graphene oxide; ECL quenching of the Ru complex then takes place because of energy transfer and electron transfer, and a large increase of the electron transfer resistance (Ret) of the electrode. While in the presence of target adenosine triphosphate (ATP), the ABA prefers to form ABA-ATP bioaffinity complexes, which have weak affinity to graphene oxide and keep the graphene oxide away from the electrode surface, thus allowing the ECL signal enhancement, and in conjunction with the decrease of the Ret. Because of the high ECL quenching efficiency, unique structure, and electronic properties of graphene oxide, the Ret and ECL intensity versus the logarithm of ATP concentration was linear in the wide range from 10 pM to 10 nM with an ultra-low detection limit of 6.7 pM to 4.8 pM, respectively. The proposed aptasensor exhibited excellent reproducibility, stability, and outstanding selectivity, and ATP could be effectively distinguished from its analogues. More significantly, this efficient ECL aptasensor strategy based on GO acting both as an electrochemical and ECL signal indicator is general and can be easily extended to other biological binding events.

  8. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage.

    PubMed

    de Korte, Dirk; Kleine, Mya; Korsten, Herbert G H; Verhoeven, Arthur J

    2008-06-01

    Current additive solutions (ASs) for red cells (RBCs) do not maintain a constant level of critical metabolites such as adenosine triphosphate (ATP) and 2,3-diphosphoglycerate acid (2,3-DPG) during cold storage. From the literature it is known that the intracellular pH is an important determinant of RBC metabolism. Therefore, a new, alkaline, AS was developed with the aim to allow cold storage of RBCs with stable product characteristics. Whole blood-derived RBCs (leukoreduced) were resuspended in experimental medium phosphate-adenine-guanosine-glucose-gluconate-mannitol (PAGGG-M; pH 8.2) with and without washing in the same medium. During cold storage several in vitro variables, such as intracellular pH, 2,3-DPG, ATP, and hemolysis, were analyzed. During cold storage, RBCs resuspended in PAGGG-M showed a constant ATP level (approx. 6 mumol/g Hb) and a very limited hemolysis (<0.2%). The 2,3-DPG content showed an increase until Day 21 (150% of initial level), followed by a slow decrease, with at Day 35 still 100 percent of the initial level. RBCs washed in PAGGG-M even showed a continuous increase of 2,3-DPG during 35 days, with a maximum level of 200 percent of the initial value. The effect of PAGGG-M appears to be related to long-lasting effects of the initial intracellular pH shortly after production. Resuspension of RBCs in our alkaline medium PAGGG-M resulted in a RBC unit of high quality during storage for up to at least 35 days, with 2,3-DPG levels of higher than 10 mumol per g Hb, hemolysis of less than 0.2 percent, and ATP levels of higher than 5 mumol per g Hb.

  10. Improving environmental cleaning in clinical areas: staff education based on adenosine triphosphate readings.

    PubMed

    Villanueva, Ariadna; Guanche, Humberto

    2016-11-01

    Aim To describe the effect of education on environmental cleaning in patient care areas using adenosine triphosphate (ATP) readings. Method A quality improvement initiative was developed in a community hospital in Qatar. Over a two-month period, an infection-control practitioner monitored ATP readings in patient care areas, at any time and regardless of the time of the previous disinfection. The initiative included staff education, use of ATP readings and the drawing up of quarterly quality reports. The ATP readings were considered 'pass', meaning well cleaned, or 'fail', meaning non-cleaned, according to the following standards:>250 relative light units (RLU) in non-critical units and<200RLU for critical units. The proportion of test passes was calculated per 100 tests performed. Results A total of 1,617 tests were performed, after which 1,259 (78%) surfaces were identified as well cleaned. The lowest proportion of non-pass and higher ATP readings was observed in non-critical areas. The test points with the lowest proportion of passes were telephones (40.5%), a medication dispensing system (58.5%), an oximeter (66.7%) and callbox buttons (67.6%). A sustained increase in test passes was observed during the study period. Conclusion There was an improvement in environmental cleaning due to monitoring of ATP on surfaces and staff education.

  11. Photoinduced Regeneration of an Aptamer-Based Electrochemical Sensor for Sensitively Detecting Adenosine Triphosphate.

    PubMed

    Zhang, Xiaoyu; Song, Chunxia; Yang, Ke; Hong, Wenwen; Lu, Ying; Yu, Ping; Mao, Lanqun

    2018-04-17

    Electrochemical aptasensors generally include three elements, that is, recognition element, signal-transformation element, and regeneration element. In this study, a new adenosine triphosphate (ATP) aptasensor is developed by combining three elements into one DNA oligonucleotide chain. In the DNA oligonucleotide chain, DNA aptamer is used as the recognition element, ferrocene group attached at the 3'-end of the aptamer is used as the signal-transformation element, and azobenzene moiety embedded into the DNA chain is used as the regeneration element. In addition to the similar analytical properties with the traditional ones, the aptasensor developed here is easily regenerated with UV-light irradiation. The current response recorded on the aptasensor increases with increasing the concentration of ATP in the incubation solution and is linear with the logarithm of ATP concentration in the range from 1 nM to 100 μM. The limit of detection is 0.5 nM (S/N = 3). The basal level of ATP in the rat brain cortex microdialysate is determined to be 21.33 ± 4.1 nM ( n = 3). After being challenged with ATP, the aptasensor could be readily regenerated by UV-light irradiation for more than seven cycles. The regeneration of the aptasensor is proposed to be regulated by conversing azobenzene from its trans to cis form under UV irradiation.

  12. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    PubMed

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  13. Oral Adenosine-5'-triphosphate (ATP) Administration Increases Postexercise ATP Levels, Muscle Excitability, and Athletic Performance Following a Repeated Sprint Bout.

    PubMed

    Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf

    2017-01-01

    Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.

  14. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  15. An incubation medium for the elevation of adenosine triphosphate and 2,3-diphosphoglycerate in fresh and long-preserved human erythrocytes.

    PubMed

    Rubinstein, D; Warrendorf, E

    1975-06-01

    The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.

  16. The effect of growth phase and medium on the use of the firefly adenosine triphosphate (ATP) assay for the quantitation of bacteria

    NASA Technical Reports Server (NTRS)

    Bush, V. N.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was used as a rapid method to determine the number of bacteria in a urine sample after nonbacterial components were removed. Accurate cellular ATP values, determined when bacteria were grown in an environment similar to that in which they were found, were necessary for the calculation of bacterial titer in urine. Cellular ATP values vary depending on the extraction method, the cell growth phase, and cell growth conditions. ATP per cell values of stationary E. coli grown in urine were two times greater than ATP per cell values of cells grown in trypticase soy broth. Glucose and urea were examined as possible components responsible for the cellular ATP variation.

  17. Facile synthesis of titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles for highly specific enrichment and analysis of intact phosphoproteins.

    PubMed

    Wang, Hao; Tian, Zhixin

    2018-06-06

    Analysis of phosphoproteins always faces the challenge of low stoichiometry, which demands highly selective and efficient enrichment in the initial sample preparation. Here we report our synthesis of the novel titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles (Ti 4+ -ATP-NPs) for efficient enrichment of intact phosphoproteins. The average diameter of Ti 4+ -ATP-NPs was about 128 nm with good dispersibility and the saturated adsorption capacity for β-casein was 1046.5 mg/g. In addition, Ti 4+ -ATP-NPs exhibited high specificity and selectivity in enriching phosphoproteins from both standard protein mixtures and complex biological samples (non-fat milk, chicken egg white and mouse heart tissue extract) as demonstrated by SDS-PAGE. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Cerebrospinal fluid from subarachnoid haemorrhage patients causes excessive oxidative metabolism compared to vascular smooth muscle force generation.

    PubMed

    Pyne, G J; Cadoux-Hudson, T A; Clark, J F

    2001-01-01

    Cerebrospinal fluid (CSF) from subarachnoid haemorrhage (SAH) patients can stimulate vascular smooth muscle to generate force in vitro. CSF from SAH patients suffering from delayed ischaemic neurological deficits due to cerebral vasospasm can generate near maximal force in vitro and previous experiments have ascribed this generation of force to be a calcium mediated event. The intracellular calcium concentration has been demonstrated to rise during the vasospastic process. Calcium also stimulates oxidative metabolism as does adenosine diphosphate (ADP), the product of adenosine triphosphate (ATP) hydrolysis. Significant alteration in high energy metabolites such as ATP, ADP and phosphocreatine have also been demonstrated in various models of SAH mediated vasospasm. Vascular smooth muscle predominantly uses oxidative metabolism for force generation and reserves glycolytic metabolism for ion homeostasis. A decrease in oxidative metabolism during force generation would imply failing mitochondria and increased glycolytic high-energy phosphate supply. Increased oxidative metabolism would imply a decreased efficiency of the contractile apparatus or mitochondria. The aim of this study was to see if SAH CSF stimulation of porcine carotid artery oxidative metabolism was altered during force generation when compared with incremental calcium stimulation with potassium chloride depolarisation. CSF from patients (n = 10) who had subarachnoid haemorrhage stimulated force generation but with a significant 'right shift' in oxygen consumption. This 'right shift' is indicative of an increased energy cost for contractile work. These results suggest that vascular smooth muscle contractile apparatus, when stimulated by subarachnoid cerebrospinal fluid, is consuming excess adenosine triphosphate during force generation.

  19. Cardioprotective benefits of adenosine triphosphate-sensitive potassium channel opener diazoxide are lost with administration after the onset of stress in mouse and human myocytes.

    PubMed

    Janjua, M Burhan; Makepeace, Carol M; Anastacio, Melissa M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2014-10-01

    Adenosine triphosphate-sensitive (KATP) potassium channel opener diazoxide (DZX) maintains myocyte volume and contractility during stress via an unknown mechanism when administered at the onset of stress. This study was performed to investigate the cardioprotective potential of DZX when added after the onset of the stresses of hyperkalemic cardioplegia, metabolic inhibition, and hypo-osmotic stress. Isolated mouse ventricular and human atrial myocytes were exposed to control Tyrode's solution (TYR) for 10 to 20 minutes, test solution for 30 minutes (hypothermic hyperkalemic cardioplegia [CPG], CPG + 100uM diazoxide [CPG+DZX], metabolic inhibition [MI], MI+DZX, mild hypo-osmotic stress [0.9T], or 0.9T + DZX), with DZX added after 10 or 20 minutes of stress, followed by 20 minutes of re-exposure to TYR (±DZX). Myocyte volume (human + mouse) and contractility (mouse) were compared. Mouse and human myocytes demonstrated significant swelling during exposure to CPG, MI, and hypo-osmotic stress that was not prevented by DZX when administered either at 10 or 20 minutes after the onset of stress. Contractility after the stress of CPG in mouse myocytes significantly declined when DZX was administered 20 minutes after the onset of stress (p < 0.05 vs TYR). Contractility after hypo-osmotic stress in mouse myocytes was not altered by the addition of DZX. To maintain myocyte volume homeostasis and contractility during stress (hyperkalemic cardioplegia, metabolic inhibition, and hypo-osmotic stress), KATP channel opener diazoxide requires administration at the onset of stress in this isolated myocyte model. These data have potential implications for any future clinical application of diazoxide. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.

    PubMed

    Kucherenko, Ivan S; Didukh, Daria Yu; Soldatkin, Oleksandr O; Soldatkin, Alexei P

    2014-06-03

    The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions.

  1. Digoxin and Adenosine Triphosphate Enhance the Functional Properties of Tissue-Engineered Cartilage

    PubMed Central

    Makris, Eleftherios A.; Huang, Brian J.; Hu, Jerry C.; Chen-Izu, Ye

    2015-01-01

    Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca2+-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca2+ modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10–14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52–110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca2+ imaging experiments revealed that both digoxin and ATP were able to increase Ca2+ oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca2+ modulators. PMID:25473799

  2. Adenosine Triphosphate Regresses Endometrial Explants in a Rat Model of Endometriosis.

    PubMed

    Zhang, Chen; Gao, Li; Yi, Yanhong; Han, Hongjing; Cheng, Hongyan; Ye, Xue; Ma, Ruiqiong; Sun, Kunkun; Cui, Heng; Chang, Xiaohong

    2016-07-01

    The aim of this study was to determine the effects of adenosine triphosphate (ATP) in a rat endometriosis model. After surgical induction of endometriosis, 3 rats were killed, and explants were measured in the remaining 19 rats, which were then randomly assigned to 4 groups. Group 1 (n = 4) received normal saline (2 mL/d intragastric [IG]), group 2 (n = 4) gestrinone (0.5 mg/kg/d IG), group 3 (n = 5) ATP (3.4 mg/kg/d IG), and group 4 (n = 6) ATP (1.0 mg/kg/d; intramuscularly), respectively. Four weeks after medication, they were euthanized to evaluate histological features of explants and eutopic uterine tissues. To test the effect of ATP on the growth of eutopic endometrium stromal cells, proliferation rates of hEM15A cells at 24, 48, and 72 hours after treatment with different concentrations of ATP and vehicle control were detected with the Cell Counting Kit-8 (CCK-8) method. There was a significant difference between pretreatment and posttreatment volumes within group 2 (positive control; P = .048) and group 4 (P = .044). On condition that pretreatment implant size was similar in both groups (P = .516), regression of explants in group 4 was significantly higher than that in group 1 (negative control; P = .035). Epithelial cells were significantly better preserved in group 1 than in group 3 (P = .008) and group 4 (P = .037). The CCK-8 assay showed no significant difference in proliferation among hEM15A cells treated with ATP and controls. These results suggest that ATP regresses endometriotic tissues in a rat endometriosis model but has no impact on the growth of eutopic endometrium stromal cells. © The Author(s) 2016.

  3. Adenosine triphosphate-based chemotherapy response assay-guided chemotherapy in unresectable colorectal liver metastasis

    PubMed Central

    Hur, H; Kim, N K; Kim, H G; Min, B S; Lee, K Y; Shin, S J; Cheon, J H; Choi, S H

    2012-01-01

    Background: This study aims to evaluate the effectiveness of adenosine triphosphate-based chemotherapy response assay (ATP-CRA)-guided neoadjuvant chemotherapy for increasing resectability in patients with unresectable colorectal liver metastasis. Patients and methods: Patients were randomised into two groups: Group A was treated by conventional chemotherapy regimen and Group B was treated by chemotherapy regimen according to the ATP-CRA. Three chemotherapeutic agents (5-fluorouracil, oxaliplatin and irinotecan) were tested by ATP-CRA and more sensitive agents were selected. Either FOLFOX or FOLFIRI was administered. Between Group A and B, treatment response and resectability were compared. Results: Between November 2008 and October 2010, a total 63 patients were randomised to Group A (N=32) or Group B (N=31). FOLFOX was more preferred in Group A than in Group B (26 out of 32 (81.3%) vs 20 out of 31 (64.5%)). Group B showed better treatment response than Group A (48.4% vs 21.9%, P=0.027). The resectability of hepatic lesion was higher in Group B (35.5% vs 12.5%, P=0.032). Mean duration from chemotherapy onset to the time of liver resection was 11 cycles (range 4–12) in Group A and 8 cycles (range 8–16) in Group B. Conclusion: This study showed that tailored-chemotherapy based on ATP-CRA could improve the treatment response and resectability in initially unresectable colorectal liver metastasis. PMID:22068817

  4. Interaction of Beta-Hydroxy-Beta-Methylbutyrate Free Acid and Adenosine Triphosphate on Muscle Mass, Strength, and Power in Resistance Trained Individuals.

    PubMed

    Lowery, Ryan P; Joy, Jordan M; Rathmacher, John A; Baier, Shawn M; Fuller, John C; Shelley, Mack C; Jäger, Ralf; Purpura, Martin; Wilson, Stephanie M C; Wilson, Jacob M

    2016-07-01

    Lowery, RP, Joy, JM, Rathmacher, JA, Baier, SM, Fuller, JC Jr, Shelley, MC II, Jäger, R, Purpura, M, Wilson, SMC, and Wilson, JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 30(7): 1843-1854, 2016-Adenosine-5'-triphosphate (ATP) supplementation helps maintain performance under high fatiguing contractions and with greater fatigue recovery demands also increase. Current evidence suggests that the free acid form of β-hydroxy-β-methylbutyrate (HMB-FA) acts by speeding regenerative capacity of skeletal muscle after high-intensity or prolonged exercise. Therefore, we investigated the effects of 12 weeks of HMB-FA (3 g) and ATP (400 mg) administration on lean body mass (LBM), strength, and power in trained individuals. A 3-phase double-blind, placebo-, and diet-controlled study was conducted. Phases consisted of an 8-week periodized resistance training program (phase 1), followed by a 2-week overreaching cycle (phase 2), and a 2-week taper (phase 3). Lean body mass was increased by a combination of HMB-FA/ATP by 12.7% (p < 0.001). In a similar fashion, strength gains after training were increased in HMB-FA/ATP-supplemented subjects by 23.5% (p < 0.001). Vertical jump and Wingate power were increased in the HMB-FA/ATP-supplemented group compared with the placebo-supplemented group, and the 12-week increases were 21.5 and 23.7%, respectively. During the overreaching cycle, strength and power declined in the placebo group (4.3-5.7%), whereas supplementation with HMB-FA/ATP resulted in continued strength gains (1.3%). In conclusion, HMB-FA and ATP in combination with resistance exercise training enhanced LBM, power, and strength. In addition, HMB-FA plus ATP blunted the typical response to overreaching, resulting in a further increase in strength during that period. It seems that the combination of HMB-FA/ATP could benefit those who

  5. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8.

    PubMed

    Yamazaki, Yasuhiro; Yasui, Kenta; Hashizume, Takahiro; Suto, Arisa; Mori, Ayaka; Murata, Yuzuki; Yamaguchi, Masahiko; Ikari, Akira; Sugatani, Junko

    2015-10-01

    The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery. © 2015 by the American Association for the Study of Liver Diseases.

  6. Capture and quality control mechanisms for adenosine-5'-triphosphate binding.

    PubMed

    Li, Li; Martinis, Susan A; Luthey-Schulten, Zaida

    2013-04-24

    The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.

  7. Cloning and bacterial expression of adenosine-5'-triphosphate sulfurylase from the enteric protozoan parasite Entamoeba histolytica.

    PubMed

    Nozaki, T; Arase, T; Shigeta, Y; Asai, T; Leustek, T; Takeuchi, T

    1998-12-08

    A gene encoding adenosine-5'-triphosphate sulfurylase (AS) was cloned from the enteric protozoan parasite Entamoeba histolytica by polymerase chain reaction using degenerate oligonucleotide primers corresponding to conserved regions of the protein from a variety of organisms. The deduced amino acid sequence of E. histolytica AS revealed a calculated molecular mass of 47925 Da and an unusual basic pI of 9.38. The amebic protein sequence showed 23-48% identities with AS from bacteria, yeasts, fungi, plants, and animals with the highest identities being to Synechocystis sp. and Bacillus subtilis (48 and 44%, respectively). Four conserved blocks including putative sulfate-binding and phosphate-binding regions were highly conserved in the E. histolytica AS. The upstream region of the AS gene contained three conserved elements reported for other E. histolytica genes. A recombinant E. histolytica AS revealed enzymatic activity, measured in both the forward and reverse directions. Expression of the E. histolytica AS complemented cysteine auxotrophy of the AS-deficient Escherichia coli strains. Genomic hybridization revealed that the AS gene exists as a single copy gene. In the literature, this is the first description of an AS gene in Protozoa.

  8. A target-triggered strand displacement reaction cycle: the design and application in adenosine triphosphate sensing.

    PubMed

    Cheng, Sheng; Zheng, Bin; Wang, Mozhen; Lam, Michael Hon-Wah; Ge, Xuewu

    2014-02-01

    A strand displacement reaction (SDR) system that runs solely on oligonucleotides has been developed for the amplification detection of adenosine triphosphate (ATP). It involves a target-induced SDR and an entropy-driven catalytic cycle of two SDRs with five oligonucleotides, denoted as substrate, fuel, catalyst, C-1, and C-2. Catalyst, released from the ATP aptamer-catalyst duplex by ATP molecule, catalyzes the SDRs to finally form the substrate-fuel duplex. All of the intermediates in the catalytic SDR processes have been identified by polyacrylamide gel electrophoresis (PAGE) analysis. The introduction of ATP into the SDR system will induce the ATP aptamer to form G-quadruplex conformation so as to release catalyst and trigger the SDR cycle. When the substrate and C-2 oligonucleotides were labeled with a carboxyfluorescein (FAM) fluorophore and a 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) quencher, this SDR catalytic system exhibited a "turn-on" response for ATP. The condition for detecting ATP, such as Mg²⁺ concentration, has been optimized to afford a detection limit of 20 nM. This work provides an enzyme-free biosensing strategy and has potential application in aptamer-based biosensing. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    PubMed

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  10. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  11. Expression and activity of the 5'-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development.

    PubMed

    Proszkowiec-Weglarz, M; Richards, M P

    2009-01-01

    The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved serine-threonine protein kinase and a key part of a kinase-signaling cascade that senses cellular energy status (adenosine monophosphate:adenosine triphosphate ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating metabolic pathways. The objective of this study was to investigate aspects of the AMPK pathway in the liver, brain, breast muscle, and heart from d 12 of incubation through hatch in chickens. We first determined mRNA and protein expression profiles for a major upstream AMPK kinase, LKB1, which is known to activate (phosphorylate) AMPK in response to increases in the adenosine monophosphate:adenosine triphosphate ratio. Expression of LKB1 protein was greatest in the brain, which demonstrated tissue-specific patterns for phosphorylation. Next, AMPK subunit mRNA and protein expression profiles were determined. Significant changes in AMPK subunit mRNA expression occurred in all tissues from d 12 of incubation to hatch. Differences in the levels of active (phosphorylated) AMPK as well as alpha and beta subunit proteins were observed in all 4 tissues during embryonic development. Finally, we determined the protein level and phosphorylation status of an important downstream target for AMPK, acetyl-coenzyme A carboxylase. The expression of acetyl-co-enzyme A carboxylase and phosphorylated acetyl-coenzyme A was greater in the brain than the liver, but was undetectable by Western blotting in the breast muscle and heart throughout the period of study. Together, our results are the first to demonstrate the expression and activity of the AMPK pathway in key tissues during the transition from embryonic to posthatch development in chickens.

  12. Acetyl L-carnitine targets adenosine triphosphate synthase in protecting zebrafish embryos from toxicities induced by verapamil and ketamine: An in vivo assessment.

    PubMed

    Guo, Xiaoqing; Dumas, Melanie; Robinson, Bonnie L; Ali, Syed F; Paule, Merle G; Gu, Qiang; Kanungo, Jyotshna

    2017-02-01

    Verapamil is a Ca 2 + channel blocker and is highly prescribed as an anti-anginal, antiarrhythmic and antihypertensive drug. Ketamine, an antagonist of the Ca 2 + -permeable N-methyl-d-aspartate-type glutamate receptors, is a pediatric anesthetic. Previously we have shown that acetyl l-carnitine (ALCAR) reverses ketamine-induced attenuation of heart rate and neurotoxicity in zebrafish embryos. Here, we used 48 h post-fertilization zebrafish embryos that were exposed to relevant drugs for 2 or 4 h. Heart beat and overall development were monitored in vivo. In 48 h post-fertilization embryos, 2 mm ketamine reduced heart rate in a 2 or 4 h exposure and 0.5 mm ALCAR neutralized this effect. ALCAR could reverse ketamine's effect, possibly through a compensatory mechanism involving extracellular Ca 2 + entry through L-type Ca 2 + channels that ALCAR is known to activate. Hence, we used verapamil to block the L-type Ca 2 + channels. Verapamil was more potent in attenuating heart rate and inducing morphological defects in the embryos compared to ketamine at specific times of exposure. ALCAR reversed cardiotoxicity and developmental toxicity in the embryos exposed to verapamil or verapamil plus ketamine, even in the presence of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, an inhibitor of intracellular Ca 2 + release suggesting that ALCAR acts via effectors downstream of Ca 2 + . In fact, ALCAR's protective effect was blunted by oligomycin A, an inhibitor of adenosine triphosphate synthase that acts downstream of Ca 2 + during adenosine triphosphate generation. We have identified, for the first time, using in vivo studies, a downstream effector of ALCAR that is critical in abrogating ketamine- and verapamil-induced developmental toxicities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1977-01-01

    Blood samples from Spacelab crewmembers were studied for possible environment effects on red cell components. Analysis involved peroxidation of red cell lipids, enzymes of red cell metabolism, and levels of 2,3-diphosphoglyceric acid and adenosine triphosphate. Results show that there is no evidence of lipid peroxidation, that biochemical effect known to be associated with irreversible red cell damage. Changes observed in glycolytic intermediates and enzymes cannot be directly implicated as indicating evidence of red cell damage.

  14. Discovery of Imidazo[1,2-a]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis.

    PubMed

    Tantry, Subramanyam J; Markad, Shankar D; Shinde, Vikas; Bhat, Jyothi; Balakrishnan, Gayathri; Gupta, Amit K; Ambady, Anisha; Raichurkar, Anandkumar; Kedari, Chaitanyakumar; Sharma, Sreevalli; Mudugal, Naina V; Narayan, Ashwini; Naveen Kumar, C N; Nanduri, Robert; Bharath, Sowmya; Reddy, Jitendar; Panduga, Vijender; Prabhakar, K R; Kandaswamy, Karthikeyan; Saralaya, Ramanatha; Kaur, Parvinder; Dinesh, Neela; Guptha, Supreeth; Rich, Kirsty; Murray, David; Plant, Helen; Preston, Marian; Ashton, Helen; Plant, Darren; Walsh, Jarrod; Alcock, Peter; Naylor, Kathryn; Collier, Matthew; Whiteaker, James; McLaughlin, Robert E; Mallya, Meenakshi; Panda, Manoranjan; Rudrapatna, Suresh; Ramachandran, Vasanthi; Shandil, Radha; Sambandamurthy, Vasan K; Mdluli, Khisi; Cooper, Christopher B; Rubin, Harvey; Yano, Takahiro; Iyer, Pravin; Narayanan, Shridhar; Kavanagh, Stefan; Mukherjee, Kakoli; Balasubramanian, V; Hosagrahara, Vinayak P; Solapure, Suresh; Ravishankar, Sudha; Hameed P, Shahul

    2017-02-23

    The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo[1,2-a]pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure-activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection.

  15. Elevated uric acid and adenosine triphosphate concentrations in bronchoalveolar lavage fluid of eosinophilic pneumonia.

    PubMed

    Kobayashi, Takehito; Nakagome, Kazuyuki; Noguchi, Toru; Kobayashi, Kiyoko; Ueda, Yutaka; Soma, Tomoyuki; Ikebuchi, Kenji; Nakamoto, Hidetomo; Nagata, Makoto

    2017-09-01

    Recent evidence has suggested that the innate immune response may play a role in the development of eosinophilic airway inflammation. We previously reported that uric acid (UA) and adenosine triphosphate (ATP), two important damage-associated molecular pattern molecules (DAMPs), activate eosinophil functions, suggesting that these molecules may be involved in the development of eosinophilic airway inflammation. The objective of this study was to measure the concentrations of DAMPs including UA and ATP in the bronchoalveolar lavage fluid (BALF) of patients with eosinophilic pneumonia (EP). BAL was performed in patients with EP including acute and chronic eosinophilic pneumonia, and in patients with hypersensitivity pneumonia, and sarcoidosis. UA, ATP, and cytokine concentrations in the BALF were then measured. The UA concentration was increased in the BALF of EP patients. UA concentrations correlated with eosinophil numbers, and with eosinophil-derived neurotoxin and interleukin (IL)-5 concentrations. Furthermore, the ATP concentration was increased in the BALF of EP patients and ATP concentrations correlated with UA concentrations. Moreover, IL-33 was increased in EP patients and IL-33 concentrations correlated with UA and ATP concentrations. The UA and ATP concentration was increased in the BALF of EP patients. UA concentrations correlated with eosinophil numbers, and with ATP and IL-33 concentrations. Our findings suggest that DAMPs such as UA and ATP play a role in the pathogenesis of EP. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Validation of adenosine triphosphate to audit manual cleaning of flexible endoscope channels.

    PubMed

    Alfa, Michelle J; Fatima, Iram; Olson, Nancy

    2013-03-01

    Compliance with cleaning of flexible endoscope channels cannot be verified using visual inspection. Adenosine triphosphate (ATP) has been suggested as a possible rapid cleaning monitor for flexible endoscope channels. There have not been published validation studies to specify the level of ATP that indicates inadequate cleaning has been achieved. The objective of this study was to validate the Clean-Trace (3M Inc, St. Paul, MN) ATP water test method for monitoring manual cleaning of flexible endoscopes. This was a simulated use study using a duodenoscope as the test device. Artificial test soil containing 10(6) colony-forming units of Pseudomonas aeruginosa and Enterococcus faecalis was used to perfuse all channels. The flush sample method for the suction-biopsy (L1) or air-water channel (L2) using 40 and 20 mLs sterile reverse osmosis water, respectively, was validated. Residuals of ATP, protein, hemoglobin, and bioburden were quantitated from channel samples taken from uncleaned, partially cleaned, and fully cleaned duodenoscopes. The benchmarks for clean were as follows: <6.4 μg/cm(2) protein, <2.2 μg/cm(2) hemoglobin, and <4-log10 colony-forming units/cm(2) bioburden. The average ATP in clean channel samples was 27.7 RLUs and 154 RLUs for L1 and L2, respectively (<200 RLUs for all channels). The average protein, hemoglobin, and bioburden benchmarks were achieved if <200 RLUs were detected. If the channel sample was >200 RLUs, the residual organic and bioburden levels would exceed the acceptable benchmarks. Our data validated that flexible endoscopes that have complete manual cleaning will have <200 RLUs by the Clean-Trace ATP test. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Adenosine triphosphate as a molecular mediator of the vascular response to injury.

    PubMed

    Guth, Christy M; Luo, Weifung; Jolayemi, Olukemi; Chadalavada, Kalyan S; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M

    2017-08-01

    Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Electrochemiluminescence aptasensor for adenosine triphosphate detection using host-guest recognition between metallocyclodextrin complex and aptamer.

    PubMed

    Chen, Hong; Chen, Qiong; Zhao, Yingying; Zhang, Fan; Yang, Fan; Tang, Jie; He, Pingang

    2014-04-01

    A sensitive and label-free electrochemiluminescence (ECL) aptasensor for the detection of adenosine triphosphate (ATP) was successfully designed using host-guest recognition between a metallocyclodextrin complex, i.e., tris(bipyridine)ruthenium(II)-β-cyclodextrin [tris(bpyRu)-β-CD], and an ATP-binding aptamer. In the protocol, the NH2-terminated aptamer was immobilized on a glassy carbon electrode (GCE) by a coupling interaction. After host-guest recognition between tris(bpyRu)-β-CD and aptamer, the tris(bpyRu)-β-CD/aptamer/GCE produced a strong ECL signal as a result of the photoactive properties of tris(bpyRu)-β-CD. However, in the presence of ATP, the ATP/aptamer complex was formed preferentially, which restricted host-guest recognition, and therefore less tris(bpyRu)-β-CD was attached to the GCE surface, resulting in an obvious decrease in the ECL intensity. Under optimal determination conditions, an excellent logarithmic linear relationship between the ECL decrease and ATP concentration was obtained in the range 10.0-0.05 nM, with a detection limit of 0.01 nM at the S/N ratio of 3. The proposed ECL-based ATP aptasensor exhibited high sensitivity and selectivity, without time-consuming signal-labeling procedures, and is considered to be a promising model for detection of aptamer-specific targets. Copyright © 2014. Published by Elsevier B.V.

  19. Extracellular adenosine triphosphate increases cation permeability of chronic lymphocytic leukemic lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.S.; Dubyak, G.R.

    Extracellular adenosine triphosphate (ATP) is known to reversibly increase the cation permeability of a variety of freshly isolated and cultured cell types. In this study the effects of extracellular ATP were studied using peripheral blood lymphocytes (PBL) isolated from both normal subjects and from patients with chronic lymphocytic leukemia (CLL). Changes in the permeability to Na+, Rb+, and Li+ ions were measured using conventional isotope and flame photometry techniques. In addition, changes in cytosolic (Ca2+) were fluorimetrically monitored to assess possible changes in net Ca2+ influx. ATP produced a 12-fold increase in 22Na+ influx into CLL cells but only amore » 3.5-fold increase in this flux in PBL cells. A maximal response was produced by 0.1 mmol/L ATP in the absence of Mg2+, while a twofold molar excess of Mg2+ over ATP abolished the response. ATP had no effect on the passive (ouabain-insensitive) 86Rb+ influx into PBL cells but stimulated this flux by fivefold in the CLL cells. Li+ influx into CLL cells was also stimulated threefold by ATP. Under these same conditions ATP also produced a net increase in total cell Na and a decrease in total cell K in the CLL cells. Exclusion of two normally impermeable dyes, trypan blue and ethidium bromide, was not altered in the ATP-treated CLL cells. Finally, extracellular ATP (3 mmol/L) produced no significant change in the cytosolic (Ca2+) of normal, monocyte-depleted populations of PBL. Conversely, this same concentration of ATP produced a very rapid and a significant (an average threefold peak change) increase in the cytosolic (Ca2+) of cell preparations derived from five out of nine CLL patients. In these latter CLL cells, the ATP-induced elevation in cytosolic (Ca2+) appeared to be due to a net increase in Ca2+ influx, since no elevations were observed when the extracellular (Ca2+) was reduced to less than 0.1 mmol/L.« less

  20. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    PubMed Central

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  1. [High performance liquid chromatogram (HPLC) determination of adenosine phosphates in rat myocardium].

    PubMed

    Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji

    2005-04-18

    To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.

  2. Cultured astrocytes do not release adenosine during hypoxic conditions

    PubMed Central

    Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480

  3. A quantitative analysis of the effects of 2,3-diphosphoglycerate, adenosine triphosphate and inositol hexaphosphate on the oxygen dissociation curve of human haemoglobin.

    PubMed Central

    Goodford, P J; St-Louis, J; Wootton, R

    1978-01-01

    1. Oxygen dissociation curves have been measured for human haemoglobin solutions with different concentrations of the allosteric effectors 2,3-diphosphoglycerate, adenosine triphosphate and inositol hexaphosphate. 2. Each effector produces a concentration dependent right shift of the oxygen dissociation curve, but a point is reached where the shift is maximal and increasing the effector concentration has no further effect. 3. Mathematical models based on the Monod, Wyman & Changeux (1965) treatment of allosteric proteins have been fitted to the data. For each compound the simple two-state model and its extension to take account of subunit inequivalence were shown to be inadequate, and a better fit was obtained by allowing the effector to lower the oxygen affinity of the deoxy conformational state as well as binding preferentially to this conformation. PMID:722582

  4. Downregulation of Metabolic Activity Increases Cell Survival Under Hypoxic Conditions: Potential Applications for Tissue Engineering

    PubMed Central

    Kim, Jaehyun; Andersson, Karl-Erik; Jackson, John D.; Lee, Sang Jin; Atala, Anthony

    2014-01-01

    A major challenge to the success of cell-based implants for tissue regeneration is an insufficient supply of oxygen before host vasculature is integrated into the implants, resulting in premature cell death and dysfunction. Whereas increasing oxygenation to the implants has been a major focus in the field, our strategy is aimed at lowering oxygen consumption by downregulating cellular metabolism of cell-based implants. Adenosine, which is a purine nucleoside that functions as an energy transferring molecule, has been reported to increase under hypoxia, resulting in reducing the adenosine triphosphate (ATP) demands of the Na+/K+ ATPase. In the present study, we investigated whether adenosine could be used to downregulate cellular metabolism to achieve prolonged survival under hypoxic conditions. Murine myoblasts (C2C12) lacking a self-survival mechanism were treated with adenosine under 0.1% hypoxic stress. The cells, cultured in the presence of 5 mM adenosine, maintained their viability under hypoxia, and regained their normal growth and function of forming myotubes when transferred to normoxic conditions at day 11 without further supply of adenosine, whereas nontreated cells failed to survive. An increase in adenosine concentrations shortened the onset of reproliferation after transfer to normoxic conditions. This increase correlated with an increase in metabolic downregulation during the early phase of hypoxia. A higher intracellular ATP level was observed in adenosine-treated cells throughout the duration of hypoxia. This strategy of increasing cell survival under hypoxic conditions through downregulating cellular metabolism may be utilized for cell-based tissue regeneration applications as well as protecting tissues against hypoxic injuries. PMID:24524875

  5. An improved red blood cell additive solution maintains 2,3-diphosphoglycerate and adenosine triphosphate levels by an enhancing effect on phosphofructokinase activity during cold storage.

    PubMed

    Burger, Patrick; Korsten, Herbert; De Korte, Dirk; Rombout, Eva; Van Bruggen, Robin; Verhoeven, Arthur J

    2010-11-01

    Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage. We have previously shown that with a new AS called phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM), both 2,3-DPG and ATP could be maintained throughout storage for 35 days. In this study, the mechanism underlying the effect of PAGGGM on RBC storage was studied in more detail. By using double-erythrocytapheresis units (leukoreduced), a direct comparison could be made between the current AS saline-adenine-glucose-mannitol (SAGM) and the experimental solution PAGGGM. During cold storage, several in vitro characteristics were analyzed. In agreement with our previous findings with single RBCs, PAGGGM maintained 2,3-DPG and ATP levels for 35 days of cold storage. Furthermore, glucose consumption and lactate production were higher in PAGGGM units during the first 21 days of cold storage. Fructose-1,6-diphophate and dihydroxyacetone phosphate levels were also increased during the first 21 days of storage in PAGGGM units. These results indicate that it is likely that phosphofructokinase (PFK) activity is enhanced in PAGGGM units relative to SAGM units. After 21 days, PFK activity also decreases in PAGGGM units, but sufficient metabolic reserve in these units prevents depletion of 2,3-DPG and ATP. © 2010 American Association of Blood Banks.

  6. A novel Raman spectrophotometric method for quantitative measurement of nucleoside triphosphate hydrolysis.

    PubMed

    Jenkins, R H; Tuma, R; Juuti, J T; Bamford, D H; Thomas, G J

    1999-01-01

    A novel spectrophotometric method, based upon Raman spectroscopy, has been developed for accurate quantitative determination of nucleoside triphosphate phosphohydrolase (NTPase) activity. The method relies upon simultaneous measurement in real time of the intensities of Raman marker bands diagnostic of the triphosphate (1115 cm(-1)) and diphosphate (1085 cm(-1)) moieties of the NTPase substrate and product, respectively. The reliability of the method is demonstrated for the NTPase-active RNA-packaging enzyme (protein P4) of bacteriophage phi6, for which comparative NTPase activities have been estimated independently by radiolabeling assays. The Raman-determined rate for adenosine triphosphate substrate (8.6 +/- 1.3 micromol x mg(-1) x min(-1) at 40 degrees C) is in good agreement with previous estimates. The versatility of the Raman method is demonstrated by its applicability to a variety of nucleotide substrates of P4, including the natural ribonucleoside triphosphates (ATP, GTP) and dideoxynucleoside triphosphates (ddATP, ddGTP). Advantages of the present protocol include conservative sample requirements (approximately 10(-6) g enzyme/protocol) and relative ease of data collection and analysis. The latter conveniences are particularly advantageous for the measurement of activation energies of phosphohydrolase activity.

  7. Use of adenosine triphosphate to audit reprocessing of flexible endoscopes with an elevator mechanism.

    PubMed

    Quan, Erik; Mahmood, Rizwan; Naik, Amar; Sargon, Peter; Shastri, Nikhil; Venu, Mukund; Parada, Jorge P; Gupta, Neil

    2018-05-21

    There have been reported outbreaks of carbapenem-resistant Enterobacteriaceae infections linked to endoscopes with elevator mechanisms. Adenosine triphosphate (ATP) testing has been used as a marker for bioburden and monitoring manual cleaning for flexible endoscopes with and without an elevator mechanism. The objective of this study was to determine whether routine ATP testing could identify areas of improvement in cleaning of endoscopes with an elevator mechanism. ATP testing after manual cleaning of TJF-Q180V duodenoscopes and GF-UCT180 linear echoendoscopes (Olympus America Inc, Center Valley, PA) was implemented. Samples were tested from the distal end, the elevator mechanism, and water flushed through the lumen of the biopsy channel. Data were recorded and compared by time point, test point, and reprocessing technician. Overall failure rate was 6.99% (295 out of 4,219). The highest percentage of failed ATP tests (17.05%) was reported in the first quarter of routine testing, with an overall decrease in rates over time. The elevator mechanism and working channel lumen had higher failure rates than the distal end. Quality of manual cleaning between reprocessing technicians showed variation. ATP testing is effective in identifying residual organic material and improving quality of manual cleaning of endoscopes with an elevator mechanism. Cleaning efficacy is influenced by reprocessing technicians and location tested on the endoscope. Close attention to the working channel and elevator mechanism during manual cleaning is warranted. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Measurement of adenosine triphosphate and 2,3-diphosphoglycerate in stored blood with 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Ambruso, D R; Hawkins, B; Johnson, D L; Fritzberg, A R; Klingensmith, W C; McCabe, E R

    1986-06-01

    Conditions for blood storage are chosen to assure adequate levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG). Because of the invasive nature of the techniques, biochemical assays are not routinely used to measure levels of these compounds in stored blood. However, 31P NMR spectroscopy measures phosphorylated intermediates in intact cells and could be used without disruption of the storage pack. We compared levels of ATP and 2,3-DPG measured by 31P spectroscopy and standard enzyme-linked biochemical assays in whole blood (WB) and packed red blood cells (PRBCs) at weekly intervals during a 35-day storage period. NMR demonstrated a marked decrease in 2,3-DPG and an increase in inorganic phosphate after the first week of storage. No significant differences in ATP concentrations were seen in WB during the storage period, but a significant decrease in ATP in PRBCs was documented. There was good agreement in levels of ATP and 2,3-DPG measured by NMR and biochemical techniques. 31P NMR spectroscopy is a noninvasive technique for measuring ATP and 2,3-DPG which has a potential use in quality assurance of stored blood.

  9. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater

    USGS Publications Warehouse

    Bushon, R.N.; Likirdopulos, C.A.; Brady, A.M.G.

    2009-01-01

    Untreated wastewater samples from California, North Carolina, and Ohio were analyzed by the immunomagnetic separation/adenosine triphosphate (IMS/ATP) method and the traditional culture-based method for E. coli and enterococci concentrations. The IMS/ATP method concentrates target bacteria by immunomagnetic separation and then quantifies captured bacteria by measuring bioluminescence induced by release of ATP from the bacterial cells. Results from this method are available within 1 h from the start of sample processing. Significant linear correlations were found between the IMS/ATP results and results from traditional culture-based methods for E. coli and enterococci enumeration for one location in California, two locations in North Carolina, and one location in Ohio (r??values ranged from 0.87 to 0.97). No significant linear relation was found for a second location in California that treats a complex mixture of residential and industrial wastewater. With the exception of one location, IMS/ATP showed promise as a rapid method for the quantification of faecal-indicator organisms in wastewater.

  10. The Therapeutic Potential of Adenosine Triphosphate as an Immune Modulator in the Treatment of HIV/AIDS: A Combination Approach with HAART

    PubMed Central

    Wagner, Marc C.E.

    2011-01-01

    Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host’s own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection. PMID:21675943

  11. An ultrasensitive quantum dots fluorescent polarization immunoassay based on the antibody modified Au nanoparticles amplifying for the detection of adenosine triphosphate.

    PubMed

    He, Yanlong; Tian, Jianniao; Hu, Kun; Zhang, Juanni; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin

    2013-11-13

    In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8×10(-12) M to 2.40×10(-4) M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Immune function monitoring in lung transplantation using adenosine triphosphate production: time trends and relationship to postoperative infection.

    PubMed

    Takahashi, Mamoru; Ohsumi, Akihiro; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi; Chen-Yoshikawa, Toyofumi F

    2017-06-01

    The ImmuKnow (IK) assay is a comprehensive immune function test that involves measuring adenosine triphosphate produced by the cluster of differentiation 4+ T lymphocytes in peripheral blood. The aim of this study was to analyze the time trends of IK values and assess the relationship between IK values and infections in lung transplants. We prospectively collected 178 blood samples from 22 deceased-donor lung transplant (DDLT) recipients and 17 living-donor lobar lung transplant (LDLLT) recipients. A surveillance IK assay was performed postoperatively, then after 1 week and 1, 3, 6, and 12 months. Time trends of IK values in stable recipients peaked 1 week after DDLT (477 ± 247 ATP ng/ml), and 1 month after LDLLT (433 ± 134 ng/ml), followed by a gradual decline over 1 year. The mean IK values in infections were significantly lower than those in the stable state (119 vs 312 ATP ng/ml, p = 0.0002). IK values increased sharply after lung transplantation and then decreased gradually over time in the first year, suggesting a natural history of immune function. IK values were also significantly reduced during infections. These results may provide new insights into the utility of immune monitoring after lung transplantation.

  13. Adenosine triphosphate induces P2Y2 activation and interleukin-8 release in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2017-07-01

    Immune-mediated mucosal inflammation characterized by the release of interleukin (IL)-8 is associated with gastroesophageal reflux disease. ATP released by human esophageal epithelial cells (HEECs) mediates the release of cytokines through P2 nucleotide receptors that are present on various cells, including HEECs. This study characterized and identified human esophageal epithelial P2 receptors that are responsible for ATP-mediated release of IL-8 by using a human esophageal stratified squamous epithelial model. Primary HEECs were cultured with the use of an air-liquid interface (ALI) system. The ATP analogue adenosine 5'-O-3-thiotriphosphate (ATP-γ-S) was added to the basolateral compartment, and IL-8 release was measured. Involvement of the P2Y2 receptor was assessed with the use of selective and non-selective receptor antagonists and a P2Y2 receptor agonist. Expression of the P2Y2 receptor was assessed using western blotting and immunohistochemistry. Adenosine triphosphate-γ-S induced IL-8 release through the P2Y2 receptor. A P2Y2 receptor antagonist but not a P2X3 receptor antagonist or a P2Y1 receptor antagonist blocked ATP-γ-S-mediated IL-8 release. Conversely, a P2Y2 receptor agonist induced IL-8 release. Western blotting and immunohistochemistry of the P2Y2 receptor showed strong expression of the P2Y2 receptor on ALI-cultured HEECs and in human esophagus. Inhibition of extracellular signal-regulated kinase but not of protein kinase C blocked the ATP-mediated release of IL-8. ATP-γ-S induced phosphorylation of extracellular signal-regulated kinase, and a P2Y2 receptor antagonist blocked this phosphorylation. Interleukin-8 release after purinergic stimulation in ALI-cultured HEECs is mediated through P2Y2 receptor activation. ATP-induced IL-8 release maybe involved in the pathogenesis of refractory gastroesophageal reflux disease. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  14. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail

    PubMed Central

    Mittelstädt, Gerd; Moggré, Gert‐Jan; Panjikar, Santosh; Nazmi, Ali Reza

    2016-01-01

    Abstract Adenosine triphosphate phosphoribosyltransferase (ATP‐PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP‐PRT from the pathogenic ε‐proteobacteria Campylobacter jejuni (CjeATP‐PRT). This enzyme is a member of the long form (HisGL) ATP‐PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP‐PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP‐PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP‐PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme. PMID:27191057

  15. Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide.

    PubMed

    Wang, Guixiang; Su, Xiaoli; Xu, Qingjun; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang

    2018-03-15

    Direct detection of targets in complex biological media with conventional biosensors is an enormous challenge due to the nonspecific adsorption and severe biofouling. In this work, a facile strategy for sensitive and low fouling detection of adenosine triphosphate (ATP) is developed through the construction of a mixed self-assembled biosensing interface, which was composed of zwitterionic peptide (antifouling material) and ATP aptamer (bio-recognition element). The peptide and aptamer (both containing thiol groups) were simultaneously self-assembled onto gold electrode surface electrodeposited with gold nanoparticles. The developed aptasensor possessed high selectivity and sensitivity for ATP, and it showed a wide linear response range towards ATP from 0.1pM to 5nM. Owing to the presence of peptide with excellent antifouling property in the biosensing interface, the aptasensor can detect ATP in complex biological media with remarkably reduced biofouling or nonspecific adsorption effect. Moreover, it can directly detect ATP in 1% human whole blood without suffering from any significant interference, indicating its great potential for practical assaying of ATP in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail.

    PubMed

    Mittelstädt, Gerd; Moggré, Gert-Jan; Panjikar, Santosh; Nazmi, Ali Reza; Parker, Emily J

    2016-08-01

    Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme. © 2016 The Protein Society.

  17. Childhood lymphoblastic leukemia adverse drug reactions: study of risk factors and therapy prognosis by optical methods

    NASA Astrophysics Data System (ADS)

    Zyubin, A.; Lavrova, A.; Babak, S.; Malaschenko, V.; Borisova, A.; Opryshko, N.

    2016-10-01

    The treatment of acute lymphoblastic leukemia (ALL) can result in the side-effects such as kidney affection, hepatic failure and tissue hypoxia. We study dynamics of special biochemical marker of these pathologies - adenosine triphosphate, that is well-known substance of energy metabolism. We use methods of confocal microscopy for determining the cellular and mitochondrial concentration of adenosine triphosphate (ATP). Quantitative values of adenosine triphosphate were calculated for each patient and correlation with degree of side-effects had been done. The application of confocal microscopy for studying of side-effects and therapy of lymphoblastic leukemia is discussed.

  18. Ternary Interactions and Energy Transfer between Fluorescein Isothiocyanate, Adenosine Triphosphate, and Graphene Oxide Nanocarriers.

    PubMed

    Ratajczak, Katarzyna; Stobiecka, Magdalena

    2017-07-20

    The interactions of fluorescent probes and biomolecules with nanocarriers are of key importance to the emerging targeted drug delivery systems. Graphene oxide nanosheets (GONs) as the nanocarriers offer biocompatibility and robust drug binding capacity. The interactions of GONs with fluorophores lead to strong fluorescence quenching, which may interfere with fluorescence bioimaging and biodetection. Herein, we report on the interactions and energy transfers in a model ternary system: GONs-FITC-ATP, where FITC is a model fluorophore (fluorescein isothiocyanate) and ATP is a common biomolecule (adenosine-5'-triphosphate). We have found that FITC fluorescence is considerably quenched by ATP (the quenching constant K SV = 113 ± 22 M -1 ). The temperature coefficient of K SV is positive (α T = 4.15 M -1 deg -1 ). The detailed analysis of a model for internal self-quenching of FITC indicates that the temperature dependence of the net quenching efficiency η for the FITC-ATP pair is dominated by FITC internal self-quenching modes with their contribution estimated at 79%. The quenching of FITC by GONs is much stronger (K SV = 598 ± 29 M -1 ) than that of FITC-ATP and is associated with the formation of supramolecular assemblies bound with hydrogen bonding and π-π stacking interactions. For the analysis of the complex behavior of the ternary system GONs-FITC-ATP, a model of chemisorption of ATP on GONs, with partial blocking of FITC quenching, has been developed. Our results indicate that ATP acts as a moderator for FITC quenching by GONs. The interactions between ATP, FITC, and GONs have been corroborated using molecular dynamics and quantum mechanical calculations.

  19. Duodenoscope reprocessing surveillance with adenosine triphosphate testing and terminal cultures: a clinical pilot study.

    PubMed

    Visrodia, Kavel; Hanada, Yuri; Pennington, Kelly M; Tosh, Pritish K; Topazian, Mark D; Petersen, Bret T

    2017-07-01

    Recent reports of infectious outbreaks linked to duodenoscopes have led to proposals for duodenoscope surveillance culturing, which has inherent limitations. We aimed to assess the feasibility of real-time adenosine triphosphate (ATP) testing after manual cleaning and its ability to predict reprocessing adequacy, as determined by terminal duodenoscope cultures. Clinically used duodenoscopes underwent reprocessing per current guidelines. After manual cleaning, ATP samples were obtained from the elevator, within the proximal biopsy port, and by flushing of the biopsy channel. After high-level disinfection (HLD), aerobic cultures of the elevator and biopsy channel were obtained using sterile technique. Duodenoscopes with any ATP sample ≥200 relative light units underwent repeated cycles of cleaning, ATP testing, HLD, and terminal culturing. Twenty clinically used duodenoscopes were included; 18 underwent a second reprocessing cycle, and 6 underwent a third reprocessing cycle because of detection of high ATP. After the initial reprocessing cycle, 12 of 20 (60%) duodenoscopes had positive culture results, most commonly yielding gram-negative bacilli (GNB, n = 11 from 9 duodenoscopes), and catalase-positive gram-positive cocci (CP-GPC, n = 7 from 7 duodenoscopes), suggesting staphylococcal organisms. Ambient environmental controls also showed GNB and CP-GPC growth. The overall sensitivity and specificity of ATP testing compared with terminal cultures were 30% and 53%, respectively. ATP sampling appears to correlate poorly with terminal culture results and cannot be recommended as a surrogate for terminal cultures. The performance and interpretation of cultures remains complicated by the potential recovery of environmental contaminants. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  20. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    PubMed Central

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  1. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients.

    PubMed

    Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro

    2017-01-11

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.

  2. Visual and surface plasmon resonance sensor for zirconium based on zirconium-induced aggregation of adenosine triphosphate-stabilized gold nanoparticles.

    PubMed

    Qi, Wenjing; Zhao, Jianming; Zhang, Wei; Liu, Zhongyuan; Xu, Min; Anjum, Saima; Majeed, Saadat; Xu, Guobao

    2013-07-17

    Owing to its high affinity with phosphate, Zr(IV) can induce the aggregation of adenosine 5'-triphosphate (ATP)-stabilized AuNPs, leading to the change of surface plasmon resonance (SPR) absorption spectra and color of ATP-stabilized AuNP solutions. Based on these phenomena, visual and SPR sensors for Zr(IV) have been developed for the first time. The A(660 nm)/A(518 nm) values of ATP-stabilized AuNPs in SPR absorption spectra increase linearly with the concentrations of Zr(IV) from 0.5 μM to 100 μM (r=0.9971) with a detection limit of 95 nM. A visual Zr(IV) detection is achieved with a detection limit of 30 μM. The sensor shows excellent selectivity against other metal ions, such as Cu(2+), Fe(3+), Cd(2+), and Pb(2+). The recoveries for the detection of 5 μM, 10 μM, 25 μM and 75 μM Zr(IV) in lake water samples are 96.0%, 97.0%, 95.6% and 102.4%, respectively. The recoveries of the proposed SPR method are comparable with those of ICP-OES method. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  4. Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice.

    PubMed

    Bayliss, Jill; Delarosa, Sara; Wu, Jianfeng; Peterson, Jonathan R; Eboda, Oluwatobi N; Su, Grace L; Hemmila, Mark; Krebsbach, Paul H; Cederna, Paul S; Wang, Stewart C; Xi, Chuanwu; Levi, Benjamin

    2014-01-01

    Extracellular adenosine triphosphate (ATP), present in thermally injured tissue, modulates the inflammatory response and causes significant tissue damage. The authors hypothesize that neutrophil infiltration and ensuing tissue necrosis would be mitigated by removing ATP-dependent signaling at the burn site. Mice were subjected to 30% TBSA partial-thickness scald burn by dorsal skin immersion in a water bath at 60 or 20°C (nonburn controls). In the treatment arm, an ATP hydrolyzing enzyme, apyrase, was applied directly to the site immediately after injury. Skin was harvested after 24 hours and 5 days for hematoxylin and eosin stain, elastase, and Ki-67 staining. Tumor necrosis factor (TNF)-α and interferon (IFN)-β expression were measured through quantitative real-time polymerase chain reaction. At 24 hours, the amount of neutrophil infiltration was different between the burn and burn + apyrase groups (P < .001). Necrosis was less extensive in the apyrase group when compared with the burn group at 24 hours and 5 days. TNF-α and IFN-β expression at 24 hours in the apyrase group was lower than in the burn group (P < .05). However, Ki-67 signaling was not significantly different among the groups. The results of this study support the role of extracellular ATP in neutrophil activity. The authors demonstrate that ATP hydrolysis at the burn site allays the neutrophil response to thermal injury and reduces tissue necrosis. This decrease in inflammation and tissue necrosis is at least partially because of TNF-α and IFN-β signaling. Apyrase could be used as topical inflammatory regulators to quell the injury caused by inflammation.

  5. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Inhibition of Dengue Virus RNA Synthesis by an Adenosine Nucleoside ▿ †

    PubMed Central

    Chen, Yen-Liang; Yin, Zheng; Duraiswamy, Jeyaraj; Schul, Wouter; Lim, Chin Chin; Liu, Boping; Xu, Hao Ying; Qing, Min; Yip, Andy; Wang, Gang; Chan, Wai Ling; Tan, Hui Pen; Lo, Melissa; Liung, Sarah; Kondreddi, Ravinder Reddy; Rao, Ranga; Gu, Helen; He, Handan; Keller, Thomas H.; Shi, Pei-Yong

    2010-01-01

    We recently reported that (2R,3R,4R,5R)-2-(4-amino-pyrrolo[2,3-d]pyrimidin-7-yl)-3-ethynyl-5-hydroxy-methyl-tetrahydro-furan-3,4-diol is a potent inhibitor of dengue virus (DENV), with 50% effective concentration (EC50) and cytotoxic concentration (CC50) values of 0.7 μM and >100 μM, respectively. Here we describe the synthesis, structure-activity relationship, and antiviral characterization of the inhibitor. In an AG129 mouse model, a single-dose treatment of DENV-infected mice with the compound suppressed peak viremia and completely prevented death. Mode-of-action analysis using a DENV replicon indicated that the compound blocks viral RNA synthesis. Recombinant adenosine kinase could convert the compound to a monophosphate form. Suppression of host adenosine kinase, using a specific inhibitor (iodotubercidin) or small interfering RNA (siRNA), abolished or reduced the compound's antiviral activity in cell culture. Studies of rats showed that 14C-labeled compound was converted to mono-, di-, and triphosphate metabolites in vivo. Collectively, the results suggest that this adenosine inhibitor is phosphorylated to an active (triphosphate) form which functions as a chain terminator for viral RNA synthesis. PMID:20457821

  7. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique

    USGS Publications Warehouse

    Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V.

    2009-01-01

    Aims: The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water. Methods and Results: Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis (r = 0.62 and 0.77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci. Conclusions: The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria. Significance and Impact of the Study: The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications. ?? 2009 The Authors.

  8. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.

    PubMed

    Qian, Zhaosheng; Chai, Lujing; Tang, Cong; Huang, Yuanyuan; Chen, Jianrong; Feng, Hui

    2015-03-03

    A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

  9. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A₂A receptor levels in rats subjected to neuroinflammation.

    PubMed

    Smith, Mark D; Bhatt, Dhaval P; Geiger, Jonathan D; Rosenberger, Thad A

    2014-06-04

    Acetate supplementation reduces neuroglia activation and pro-inflammatory cytokine expression in rat models of neuroinflammation and Lyme neuroborreliosis. Because single-dose glyceryl triacetate (GTA) treatment increases brain phosphocreatine and reduces brain AMP levels, we postulate that GTA modulates adenosine metabolizing enzymes and receptors, which may be a possible mechanism to reduce neuroinflammation. To test this hypothesis, we quantified the ability of GTA to alter brain levels of ecto-5'-nucleotidase (CD73), adenosine kinase (AK), and adenosine A2A receptor using western blot analysis and CD73 activity by measuring the rate of AMP hydrolysis. Neuroinflammation was induced by continuous bacterial lipopolysaccharide (LPS) infusion in the fourth ventricle of the brain for 14 and 28 days. Three treatment strategies were employed, one and two where rats received prophylactic GTA through oral gavage with LPS infusion for 14 or 28 days. In the third treatment regimen, an interventional strategy was used where rats were subjected to 28 days of neuroinflammation, and GTA treatment was started on day 14 following the start of the LPS infusion. We found that rats subjected to neuroinflammation for 28 days had a 28% reduction in CD73 levels and a 43% increase in AK levels that was reversed with prophylactic acetate supplementation. CD73 activity in these rats was increased by 46% with the 28-day GTA treatment compared to the water-treated rats. Rats subjected to neuroinflammation for 14 days showed a 50% increase in levels of the adenosine A2A receptor, which was prevented with prophylactic acetate supplementation. Interventional GTA therapy, beginning on day 14 following the induction of neuroinflammation, resulted in a 67% increase in CD73 levels and a 155% increase in adenosine A2A receptor levels. These results support the hypothesis that acetate supplementation can modulate brain CD73, AK and adenosine A2A receptor levels, and possibly influence purinergic

  10. A comparison of the chronotropic and dromotropic actions between adenosine triphosphate and edrophonium in patients undergoing coronary artery bypass graft surgery.

    PubMed

    Watanabe, Seiji; Kono, Yasuo; Oishi-Tobinaga, Yoko; Yamada, Shin-ichi; Hara, Masato; Kano, Tatsuhiko

    2002-10-01

    To compare the effects of the stimulation of adenosine receptors and acetylcholine receptors in the cardiac conduction system in patients with ischemic heart disease. Prospective. University hospital. Patients scheduled for coronary artery bypass graft surgery (n = 37). The patients were divided into 3 groups: control group (n = 9), adenosine triphosphate (ATP) group (n = 12), and edrophonium group (n = 16). ATP (10 mg) or edrophonium (0.25 mg/kg) followed by saline or the same amount of saline was injected through a central venous catheter. ATP induced atrioventricular block in 10 of 12 patients (83%). The ATP injection produced a more prominent prolongation in the PQ duration (P-R interval) (139%) than in the P-P interval (105%) at the last beat before the development of atrioventricular block. The prolongation in the P-P interval (11%, average 85 msec) and PQ duration during atrioventricular block disappeared immediately after the restoration of atrioventricular conduction. After edrophonium, the maximal prolongation in P-P (118%, p < 0.01) and PQ (120%, p < 0.01) intervals was the same. P-P interval remained prolonged (p < 0.01) after PQ interval returned to baseline. Neither ATP nor edrophonium affected the QRS duration. These findings suggest that ATP predominantly inhibited atrioventricular conduction rather than the firing rate of sinoatrial nodes, and edrophonium inhibited both proportionally even with prolonged inhibitory action on the sinoatrial nodes. An injection of ATP is needed only when a transient cardiac standstill is requested, such as in endovascular grafting surgery. Edrophonium may be used to slow heart rate during coronary artery bypass graft surgery. Copyright 2002, Elsevier Science (USA). All rights reserved.

  11. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles.

    PubMed

    Song, Quanwei; Peng, Manshu; Wang, Le; He, Dacheng; Ouyang, Jin

    2016-03-15

    The novel, facile and universal aptamer-based methods for the highly sensitive and selective fluorescence detection of important biomolecules have attracted considerable interest. Here, we present a label-free aptasensor for adenosine triphosphate (ATP) detection in aqueous solutions by using an ultra-sensitive nucleic acid stain PicoGreen (PG) as a fluorescent indicator and core-shell Ag@SiO2 nanoparticles (NPs) as a metal-enhanced fluorescence (MEF) platform. In the presence of ATP, the complementary DNA (cDNA)/aptamer duplexes confined onto the Ag@SiO2 NPs surface can release their aptamers into the buffered solution, causing a significant reduction in fluorescence intensity. By virtue of the amplified fluorescence signal, this aptasensor toward ATP can achieve a detection limit of 14.2 nM with a wide linear range and exhibit a good assay performance in complex biological samples. This sensing approach is cost-effective and efficient because it avoids the fluorescence labeling process and the use of any enzymes. Hence, this method may offer an alternative tool for determining the concentrations of ATP in biochemical and biomedical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of Adenosine Triphosphate on Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells.

    PubMed

    Wang, Wei; Yi, Xiaosong; Ren, Yanfang; Xie, Qiufei

    2016-10-01

    Adenosine 5'-triphosphate (ATP) is a potent signaling molecule that regulates diverse biological activities in cells. Its effects on human dental pulp cells (HDPCs) remain unknown. This study aimed to examine the effects of ATP on proliferation and differentiation of HDPCs. Reverse transcription polymerase chain reaction was performed to explore the mRNA expression of P2 receptor subtypes. Cell Counting Kit-8 test and flow cytometry analysis were used to examine the effects of ATP on proliferation and cell cycle of HDPCs. The effects of ATP on differentiation of HDPCs were examined by using alizarin red S staining, energy-dispersive x-ray analysis, Western blot analysis, and real-time polymerase chain reaction. The purinoceptors P2X3, P2X4, P2X5, P2X7, and all P2Y receptor subtypes were confirmed to present in HDPCs. ATP enhanced HDPC proliferation at 10 μmol/L concentration. However, it inhibited cell proliferation by arresting the cell cycle in G0G1 phase (P < .05 versus control) and induced odontoblastic differentiation, ERK/MAPK activation, and dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) mRNA transcriptions at 800 μmol/L concentration. Suramin, an ATP receptor antagonist, inhibited ERK/MAPK activation and HDPC odontoblastic differentiation (P < .05 versus control). Extracellular ATP activates P2 receptors and downstream signaling events that induce HDPC odontogenic differentiation. Thus, ATP may promote dental pulp tissue healing and repair through P2 signaling. Results provide new insights into the molecular regulation of pulpal wound healing. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Antihyperlipidemic activity of adenosine triphosphate in rabbits fed a high-fat diet and hyperlipidemic patients.

    PubMed

    Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong

    2016-10-01

    Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p < 0.01). ATP treatment significantly decreased serum TG level (p < 0.01), whilst other parameters remained statistically unaltered. Meanwhile, ATP significantly reduced the thickness of fat layer in cardiac epicardium (p < 0.05) and pathological gradation of ballooning degeneration in hepatocytes (p < 0.05). After taking ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p < 0.01), but other lipid parameters had no significant change. Discussion and conclusion The study indicates that ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.

  14. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise.

    PubMed

    Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi

    2014-07-15

    A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP.

  15. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    PubMed

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  16. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    PubMed

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  17. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    PubMed Central

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  18. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2.

    PubMed

    Peng, Shuang; Gerasimenko, Julia V; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Petersen, Ole H; Gerasimenko, Oleg V

    2016-08-05

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca(2+) signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca(2+) elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca(2+) signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5-10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca(2+) release followed by Ca(2+) entry and also substantially reduced Ca(2+) extrusion because of decreased intracellular ATP levels. The toxic Ca(2+) signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca(2+) signals and necrosis. We tested the effects of inhibiting the Ca(2+) release-activated Ca(2+) entry by the Ca(2+) channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca(2+) entry and also protected effectively against the development of necrosis.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Authors.

  19. Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and L-Carnitine

    PubMed Central

    Owen, Lauren; Sunram-Lea, Sandra I.

    2011-01-01

    Over the past four or five decades, there has been increasing interest in the neurochemical regulation of cognition. This field received considerable attention in the 1980s, with the identification of possible cognition enhancing agents or “smart drugs”. Even though many of the optimistic claims for some agents have proven premature, evidence suggests that several metabolic agents may prove to be effective in improving and preserving cognitive performance and may lead to better cognitive aging through the lifespan. Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. There are a number of agents with the potential to improve metabolic activity. Research is now beginning to identify these various agents and delineate their potential usefulness for improving cognition in health and disease. This review provides a brief overview of the metabolic agents glucose, oxygen, pyruvate, creatine, and L-carnitine and their beneficial effects on cognitive function. These agents are directly responsible for generating ATP (adenosine triphosphate) the main cellular currency of energy. The brain is the most metabolically active organ in the body and as such is particularly vulnerable to disruption of energy resources. Therefore interventions that sustain adenosine triphosphate (ATP) levels may have importance for improving neuronal dysfunction and loss. Moreover, recently, it has been observed that environmental conditions and diet can affect transgenerational gene expression via epigenetic mechanisms. Metabolic agents might play a role in regulation of nutritional epigenetic effects. In summary, the reviewed metabolic agents represent a promising strategy for improving cognitive function and possibly slowing or preventing cognitive decline. PMID:22254121

  20. Difference Between Dormant Conduction Sites Revealed by Adenosine Triphosphate Provocation and Unipolar Pace-Capture Sites Along the Ablation Line After Pulmonary Vein Isolation.

    PubMed

    Kogawa, Rikitake; Okumura, Yasuo; Watanabe, Ichiro; Sonoda, Kazumasa; Sasaki, Naoko; Takahashi, Keiko; Iso, Kazuki; Nagashima, Koichi; Ohkubo, Kimie; Nakai, Toshiko; Kunimoto, Satoshi; Hirayama, Atsushi

    2016-01-01

    Dormant pulmonary vein (PV) conduction revealed by adenosine/adenosine triphosphate (ATP) provocation test and exit block to the left atrium by pacing from the PV side of the ablation line ("pace and ablate" method) are used to ensure durable pulmonary vein isolation (PVI). However, the mechanistic relation between ATP-provoked PV reconnection and the unexcitable gap along the ablation line is unclear.Forty-five patients with atrial fibrillation (AF) (paroxysmal: 31 patients, persistent: 14 patients; age: 61.1 ± 9.7 years) underwent extensive encircling PVI (EEPVI, 179 PVs). After completion of EEPVI, an ATP provocation test (30 mg, bolus injection) and unipolar pacing (output, 10 mA; pulse width, 2 ms) were performed along the previous EEPVI ablation line to identify excitable gaps. Dormant conduction was revealed in 29 (34 sites) of 179 PVs (16.2%) after EEP-VI (22/45 patients). Pace capture was revealed in 59 (89 sites) of 179 PVs (33.0%) after EEPVI (39/45 patients), and overlapping sites, ie, sites showing both dormant conduction and pace capture, were observed in 22 of 179 (12.3%) PVs (17/45 patients).Some of the ATP-provoked dormant PV reconnection sites were identical to the sites with excitable gaps revealed by pace capture, but most of the PV sites were differently distributed, suggesting that the main underling mechanism differs between these two forms of reconnection. These findings also suggest that performance of the ATP provocation test followed by the "pace and ablate" method can reduce the occurrence of chronic PV reconnections.

  1. Interlaboratory validation of the modified murine local lymph node assay based on adenosine triphosphate measurement.

    PubMed

    Omori, Takashi; Idehara, Kenji; Kojima, Hajime; Sozu, Takashi; Arima, Kazunori; Goto, Hirohiko; Hanada, Tomohiko; Ikarashi, Yoshiaki; Inoda, Taketo; Kanazawa, Yukiko; Kosaka, Tadashi; Maki, Eiji; Morimoto, Takashi; Shinoda, Shinsuke; Shinoda, Naoki; Takeyoshi, Masahiro; Tanaka, Masashi; Uratani, Mamoru; Usami, Masahito; Yamanaka, Atsushi; Yoneda, Tomofumi; Yoshimura, Isao; Yuasa, Atsuko

    2008-01-01

    The murine local lymph node assay (LLNA) is a well-established alternative to the guinea pig maximization test (GPMT) or Buehler test (BT) for the assessment of the skin sensitizing ability of drugs and chemicals. Daicel Chemical Industries Ltd. has developed a modified LLNA based on the adenosine triphosphate (ATP) content (LLNA-DA). We conducted 2 interlaboratory validation studies to evaluate the reliability and relevance of LLNA-DA. The experiment involved 17 laboratories, wherein 14 chemicals were examined under blinded conditions. In the first study, 3 chemicals were examined in 10 laboratories and the remaining 9 were examined in 3 laboratories. In the second study, 1 chemical was examined in 7 laboratories and the remaining 4 chemicals were examined in 4 laboratories. The data were expressed as the ATP content for each chemical-treated group, and the stimulation index (SI) for each chemical-treated group was determined as the increase in the ATP content relative to the concurrent vehicle control group. An SI of 3 was set as the cut-off value for exhibiting skin sensitization activity. The results of the first study obtained in the experiments conducted for the 3 chemicals that were examined in all the 10 laboratories and for 5 of the remaining 9 chemicals were sufficiently consistent with small variations in their SI values. The sensitivity, specificity, and accuracy of LLNA-DA against those of GPMT/BT were 7/8 (87.5%), 3/3 (100%), and 10/11 (90.9%), respectively. In the second study, all the 5 chemicals studied demonstrated acceptably small interlaboratory variations. In the first study, a large variation was observed for 2 chemicals; in the second study, this variation was small. It was attributed to the application of dimethylsulfoxide as the solvent for the metallic salts. In conclusion, these 2 studies provide good evidence for the reliability of the LLNA-DA.

  2. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.

    PubMed

    Mairbäurl, Heimo; Ruppe, Florian A; Bärtsch, Peter

    2013-10-01

    Specific adenosine triphosphate (ATP) release from red blood cells has been discussed as a possible mediator controlling microcirculation in states of decreased tissue oxygen. Because intravascular hemolysis might also contribute to plasma ATP, we tested in vitro which portion of ATP release is due to hemolysis in typical exercise-induced strains to the red blood cells (shear stress, deoxygenation, and lactic acidosis). Human erythrocytes were suspended in dextran-containing media (hematocrit 10%) and were exposed to shear stress in a rotating Couette viscometer at 37°C. Desaturation (oxygen saturation of hemoglobin ∼20%) was achieved by tonometry with N2 before shear stress exposure. Cells not exposed to shear stress were used as controls. Na lactate (15 mM), lactic acid (15 mM, pH 7.0), and HCl (pH 7.0) were added to simulate exercise-induced lactic acidosis. After incubation, extracellular hemoglobin was measured to quantify hemolysis. ATP was measured with the luciferase assay. Shear stress increased extracellular ATP in a stress-related and time-dependent manner. Hypoxia induced a ∼10-fold increase in extracellular ATP in nonsheared cells and shear stress-exposed cells. Lactic acid had no significant effect on ATP release and hemolysis. In normoxic cells, approximately 20%-50% of extracellular ATP was due to hemolysis. This proportion decreased to less than 10% in hypoxic cells. Our results indicate that when exposing red blood cells to typical strains they encounter when passing through capillaries of exercising skeletal muscle, ATP release from red blood cells is caused mainly by deoxygenation and shear stress, whereas lactic acidosis had only a minor effect. Hemolysis effects were decreased when hemoglobin was deoxygenated. Together, by specific release and hemolysis, extracellular ATP reaches values that have been shown to cause local vasodilatation.

  3. Mucosal adenosine triphosphate mediates serotonin release from ileal but not colonic guinea pig enterochromaffin cells.

    PubMed

    Patel, B A

    2014-02-01

    Mechanical stimulation of the mucosal epithelium results in increased serotonin (5-HT) release from enterochromaffin (EC) cells. Little is known about how this process varies in different regions of the intestinal tract; however, purines are felt to play a role. We studied the relationship between mechanical stimulation, adenosine triphosphate (ATP), and 5-HT release from ileal and colonic mucosal tissue. Amperometric recordings of ATP and 5-HT were carried out using an ATP biosensor and boron-doped diamond microelectrode. Levels of extracellular ATP and 5-HT were monitored using high performance liquid chromatography. Under basal conditions, 5-HT levels were significantly decreased in the ileum (p < 0.001) but not the colon in the presence of the P2 antagonist suramin (100 μM). Ecto-ATPase inhibitor ARL67156 (10 μM) elevated ATP levels in the ileum and colon (both p < 0.001), but only 5-HT levels in the ileum (p < 0.001). Exogenous ATP increased 5-HT release in the presence of tetrodotoxin in the ileum (p < 0.001), but had not effect in the colon. Mechanical stimulation increased levels of 5-HT in the ileum (p < 0.001) and colon (p < 0.01), but levels returned to baseline in the presence of suramin and MRS2179 in the ileum. The onset of 5-HT release was delayed following mechanical stimulation. The rise time of the ATP response was quicker than that of 5-HT during mechanical stimulation. During mechanical stimulation of the mucosal epithelium, ATP mediates 5-HT release from EC cells in the ileum, but not the colon. Mucosal 5-HT signaling following mechanical stimulation is varied in different regions of the intestinal tract. © 2013 John Wiley & Sons Ltd.

  4. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  5. Myocardial high-energy phosphate metabolism is altered after treatment with anthracycline in childhood.

    PubMed

    Eidenschink, A B; Schröter, G; Müller-Weihrich, S; Stern, H

    2000-11-01

    We aimed to investigate whether changes in high-energy phosphate metabolism after treatment of children and young adults with anthracycline can be demonstrated non-invasively by 31P magnetic resonance spectroscopy. Abnormal myocardial energy metabolism has been suggested as a mechanism for anthracycline-induced cardiotoxicity. Deterioration in such has been shown in animal studies by resonance spectroscopy. We studied 62 patients, with a mean age of 13.5+/-5 years, 3.7+/-4.3 years after a cumulative anthracycline dose of 270+/-137 mg/m2. Normal echocardiographic findings had been elicited in 54 patients. The control group consisted of 28 healthy subjects aged 20+/-7 years. Resonance spectrums of the anterior left ventricular myocardium were obtained at 1.5 Tesla using an image-selected in vivo spectroscopy localization technique. The ratio of phosphocreatine to adenosine triphosphate after blood correction was 1.09+/-0.43 for the patients, and 1.36+/-0.36 (mean+/-SD) for controls (p=0.005), with a significantly reduced mean ratio even in the subgroup of patients with normal echocardiographic results (1.11+/-0.44 versus 1.36+/-0.36, p=0.01). The ratio did not correlate with the cumulative dose of anthracycline. The ratio of phosphodiester to adenosine triphosphate was similar in patients and controls (0.90+/-0.56 versus 0.88+/-0.62). In patients treated with anthracyclines in childhood, myocardial high-energy phosphate metabolism may be impaired even in the absence of cardiomyopathy. Our data support the concept that anthracycline-induced cardiotoxicity is not clearly dose dependent.

  6. Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors

    PubMed Central

    Ross, Fiona M; Brodie, Martin J; Stone, Trevor W

    1998-01-01

    When perfused with a medium containing no added magnesium and 4-aminopyridine (4AP) (50 μM) hippocampal slices generated epileptiform bursts of an interictal nature. We have shown in a previous study that adenosine 5′-triphosphate (ATP) depressed epileptiform activity and that this effect was blocked by the adenosine A1 receptor antagonist cyclopentyltheophylline but was not affected by adenosine deaminase. This implied that ATP might act indirectly at P1 receptors or at a xanthine-sensitive P2 receptor. The aim of the present study was to investigate further the action of ATP on epileptiform activity.ATP can be metabolized by ecto-nucleotidases to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP) and adenosine, respectively. Each of these metabolites can activate receptors in its own right: P2 receptors for ADP and P1 receptors for AMP and adenosine.We now show that both AMP and ATP (50 μM) significantly decrease epileptiform discharge rate in a rapid and reversible manner. 5′Adenylic acid deaminase (AMP deaminase, AMPase) (0.2 u ml−1), when perfused alone did not significantly alter the discharge rate over the 10 min superfusion period used for drug application. When perfused concurrently with AMP (50 μM), AMP deaminase prevented the depressant effect of AMP on discharge rate.AMP deaminase, at a concentration of 0.2 u ml−1 which annulled the effect of AMP (50 μM), prevented the inhibitory activity of ATP (50 μM). A higher concentration of ATP (200 μM) depressed the frequency of spontaneous bursts to approximately 30% control and this response was also prevented by AMP deaminase.Superfusion of the slices with 5′-nucleotidase also prevented the inhibitory activity of ATP on epileptiform discharges.The results suggest that AMP mediates the inhibitory effects of ATP on epileptiform activity, a conclusion which can explain the earlier finding that cyclopentyltheophylline but not adenosine deaminase inhibited the

  7. The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism.

    PubMed

    Gaidhu, Mandeep Pinky; Ceddia, Rolando Bacis

    2011-04-01

    Recent evidence indicates that the enzyme adenosine monophosphate (AMP) kinase exerts important fat-reducing effects in the adipose tissue, which has created great interest in this enzyme as a potential target for obesity treatment. This review summarizes our findings that chronic AMP kinase activation remodels adipocyte glucose and lipid metabolism and enhances the ability of adipose tissue to dissipate energy within itself and reduce adiposity.

  8. A High Affinity Adenosine Kinase from Anopheles gambiae

    PubMed Central

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  9. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Cassera; M Ho; E Merino

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactionsmore » for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.« less

  10. Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats.

    PubMed

    Kommajosyula, Srinivasa P; Randall, Marcus E; Faingold, Carl L

    2016-01-01

    A major cause of mortality in epilepsy patients is sudden unexpected death in epilepsy (SUDEP). Post-ictal respiratory dysfunction following generalized convulsive seizures is most commonly observed in witnessed cases of human SUDEP. DBA mouse models of SUDEP are induced by audiogenic seizures (AGSz) and show high incidences of seizure-induced death due to respiratory depression. The relatively low incidence of human SUDEP suggests that it may be useful to examine seizure-associated death in an AGSz model that rarely exhibits sudden death, such as genetically epilepsy-prone rats (GEPR-9s). Adenosine is released extensively during seizures and depresses respiration, which may contribute to seizure-induced death. The present study examined the effects of inhibiting adenosine metabolism on the durations of post-ictal depression (PID) and respiratory distress (RD), changes in blood oxygen saturation (% SpO2), and the incidence of post-seizure mortality in GEPR-9s. Systemic administration of adenosine metabolism inhibitors, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, 30 mg/kg) with 5-Iodotubericidin (5-ITU, 3mg/kg) in GEPR-9s resulted in significant changes in the duration of AGSz-induced PID as compared to vehicle in both genders. These agents also significantly increased the duration of post-seizure RD and significantly decreased the mean% SpO2 after AGSz, as compared to vehicle but only in females. Subsequently, we observed that the incidences of death in both genders 12-48 h post-seizure were significantly greater in drug vs. vehicle treatment. The incidence of death in females was also significantly higher than in males, which is consistent with the elevated seizure sensitivity of female GEPR-9s developmentally. These results support a potentially important role of elevated adenosine levels following generalized seizures in the increased incidence of death in GEPR-9s induced by adenosine metabolism inhibitors. These findings may also be relevant to human SUDEP, in

  11. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.

    PubMed

    Martić, Sanela; Rains, Meghan K; Freeman, Daniel; Kraatz, Heinz-Bernhard

    2011-08-17

    The 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates (3 and 4), containing the poly(ethylene glycol) spacers, were synthesized and compared to a hydrophobic analogue as co-substrates for the following protein kinases: sarcoma related kinase (Src), cyclin-dependent kinase (CDK), casein kinase II (CK2α), and protein kinase A (PKA). Electrochemical kinase assays indicate that the hydrophobic Fc-ATP analogue was an optimal co-substrate for which K(M) values were determined to be in the 30-200 μM range, depending on the particular protein kinase. The luminescence kinase assay demonstrated the kinase utility for all Fc-ATP conjugates, which is in line with the electrochemical data. Moreover, Fc-ATP bioconjugates exhibit competitive behavior with respect to ATP. Relatively poor performance of the polar Fc-ATP bioconjugates as co-substrates for protein kinases was presumably due to the additional H-bonding and electrostatic interactions of the poly(ethylene glycol) linkers of Fc-ATP with the kinase catalytic site and the target peptides. Phosphorylation of the full-length protein, His-tagged pro-caspase-3, was demonstrated through Fc-phosphoamide transfer to the Ser residues of the surface-bound protein by electrochemical means. These results suggest that electrochemical detection of the peptide and protein Fc-phosphorylation via tailored Fc-ATP co-substrates may be useful for probing protein-protein interactions.

  12. Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver.

    PubMed

    Maldonado, Marcos Rodrigues; Bracht, Lívia; de Sá-Nakanishi, Anacharis Babeto; Corrêa, Rúbia Carvalho Gomes; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2018-01-01

    p-Synephrine is one of the main active components of the fruit of Citrus aurantium (bitter orange). Extracts of the bitter orange and other preparations containing p-synephrine have been used worldwide to promote weight loss and for sports performance. The purpose of the study was to measure the action of p-synephrine on hepatic enzyme activities linked to carbohydrate and energy metabolism and the levels of adenine mononucleotides. Enzymes and adenine mononucleotides were measured in the isolated perfused rat liver and in vivo after oral administration of the drug (50 and 300 mg/kg) by using standard techniques. p-Synephrine increased the activity of glycogen phosphorylase in vivo and in the perfused liver. It decreased, however, the activities of pyruvate kinase and pyruvate dehydrogenase also in vivo and in the perfused liver. p-Synephrine increased the hepatic pools of adenosine diphosphate and adenosine triphosphate. Stimulation of glycogen phosphorylase is consistent with the reported increased glycogenolysis in the perfused liver and increased glycemia in rats. The decrease in the pyruvate dehydrogenase activity indicates that p-synephrine is potentially capable of inhibiting the transformation of carbohydrates into lipids. The capability of increasing the adenosine triphosphate-adenosine diphosphate pool indicates a beneficial effect of p-synephrine on the cellular energetics. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in

  14. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  15. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery.

    PubMed

    Gorzkiewicz, Michał; Buczkowski, Adam; Appelhans, Dietmar; Voit, Brigitte; Pułaski, Łukasz; Pałecz, Bartłomiej; Klajnert-Maculewicz, Barbara

    2018-06-10

    Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. In Vitro Adenosine Triphosphate-Based Chemotherapy Response Assay as a Predictor of Clinical Response to Fluorouracil-Based Adjuvant Chemotherapy in Stage II Colorectal Cancer

    PubMed Central

    Kwon, Hye Youn; Kim, Im-kyung; Kang, Jeonghyun; Sohn, Seung-Kook; Lee, Kang Young

    2016-01-01

    Purpose We evaluated the usefulness of the in vitro adenosine triphosphate-based chemotherapy response assay (ATP-CRA) for prediction of clinical response to fluorouracil-based adjuvant chemotherapy in stage II colorectal cancer. Materials and Methods Tumor specimens of 86 patients with pathologically confirmed stage II colorectal adenocarcinoma were tested for chemosensitivity to fluorouracil. Chemosensitivity was determined by cell death rate (CDR) of drug-exposed cells, calculated by comparing the intracellular ATP level with that of untreated controls. Results Among the 86 enrolled patients who underwent radical surgery followed by fluorouracil-based adjuvant chemotherapy, recurrence was found in 11 patients (12.7%). The CDR ≥ 20% group was associated with better disease-free survival than the CDR < 20% group (89.4% vs. 70.1%, p=0.027). Multivariate analysis showed that CDR < 20% and T4 stage were poor prognostic factors for disease-free survival after fluorouracil-based adjuvant chemotherapy. Conclusion In stage II colorectal cancer, the in vitro ATP-CRA may be useful in identifying patients likely to benefit from fluorouracil-based adjuvant chemotherapy. PMID:26511802

  17. Plaque retention by self-ligating vs elastomeric orthodontic brackets: quantitative comparison of oral bacteria and detection with adenosine triphosphate-driven bioluminescence.

    PubMed

    Pellegrini, Peter; Sauerwein, Rebecca; Finlayson, Tyler; McLeod, Jennifer; Covell, David A; Maier, Tom; Machida, Curtis A

    2009-04-01

    Enamel decalcification is a common problem in orthodontics. The objectives of this randomized clinical study were to enumerate and compare plaque bacteria surrounding 2 bracket types, self-ligating (SL) vs elastomeric ligating (E), and to determine whether adenosine triphosphate (ATP)-driven bioluminescence could be used for rapid assessment of bacterial load in plaque. Patients (ages, 11-17 years) were bonded with SL and E brackets in 14 maxillary and 12 mandibular arches by using a split-mouth design. Recall visits were at 1 and 5 weeks after bonding. Plaque specimens were assayed for oral bacteria and subjected to ATP-driven bioluminescence determinations with a luciferin-based assay. In most patients, teeth bonded with SL attachments had fewer bacteria in plaque than did teeth bonded with E brackets. At 1 and 5 weeks after bonding, the means for SL vs E brackets were statistically lower for total bacteria and oral streptococci (P <0.05). ATP bioluminescence values were statistically correlated to the total oral bacteria and oral streptococci, with correlation coefficients of 0.895 and 0.843, respectively. SL appliances promote reduced retention of oral bacteria, and ATP bioluminescence might be a useful tool in the rapid quantification of bacterial load and the assessment of oral hygiene during orthodontic treatment.

  18. Adenosine 5′-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    PubMed Central

    2012-01-01

    Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine), or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube) or 7 h (pellets) post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003) and naso-duodenal tube (P = 0.001), but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of ATP in the proximal

  19. [Effects of +Gx load on energy metabolism of brain tissue in rats].

    PubMed

    Wu, Bin; Xie, Bao-sheng; You, Guang-xing; Liu, Xing-hua; Lu, Sheng-qiang; Huang, Wei-fen

    2002-12-01

    Objective. To observe the changes of energy metabolism of brain tissue in rats under +Gx loads, and to explore its possible role in changes of brain function and work efficiency induced by +Gx stress. Method. Forty-five male Wistar rats were randomly divided into control, +5 Gx, +10 Gx, +15 Gx and +20 Gx group. Each group was exposed to the corresponding G value for 3 min. After that, cortical adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid (LA) content, lactate dehydrogenase (LDH) activity were measured. Result. Compared with the control group, the cortical (LA) content increased significantly after +5 Gx, +10 Gx, +15 Gx and +20 Gx exposure (P<0.01). Cortical ADP content and ratio of ADP/AMP and AMP/ATP increased significantly after +10 Gx, +15 Gx and +20 Gx exposure (P<0.01), whereas ATP content, energy charge and LDH activity decreased significantly (P<0.05 or 0.01). Cortical AMP content increased significantly after +15 Gx and +20 Gx exposure (P<0.05 and 0.01). Conclusion. It is suggested that +Gx load can result in obvious depression of brain energy metabolism, which could be an important reason for the change of brain function and work efficiency induced by +Gx stress.

  20. The adenosine triphosphate test is a rapid and reliable audit tool to assess manual cleaning adequacy of flexible endoscope channels.

    PubMed

    Alfa, Michelle J; Fatima, Iram; Olson, Nancy

    2013-03-01

    The study objective was to verify that the adenosine triphosphate (ATP) benchmark of <200 relative light units (RLUs) was achievable in a busy endoscopy clinic that followed the manufacturer's manual cleaning instructions. All channels from patient-used colonoscopes (20) and duodenoscopes (20) in a tertiary care hospital endoscopy clinic were sampled after manual cleaning and tested for residual ATP. The ATP test benchmark for adequate manual cleaning was set at <200 RLUs. The benchmark for protein was <6.4 μg/cm(2), and, for bioburden, it was <4-log10 colony-forming units/cm(2). Our data demonstrated that 96% (115/120) of channels from 20 colonoscopes and 20 duodenoscopes evaluated met the ATP benchmark of <200 RLUs. The 5 channels that exceeded 200 RLUs were all elevator guide-wire channels. All 120 of the manually cleaned endoscopes tested had protein and bioburden levels that were compliant with accepted benchmarks for manual cleaning for suction-biopsy, air-water, and auxiliary water channels. Our data confirmed that, by following the endoscope manufacturer's manual cleaning recommendations, 96% of channels in gastrointestinal endoscopes would have <200 RLUs for the ATP test kit evaluated and would meet the accepted clean benchmarks for protein and bioburden. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  1. Correlation of Early Recurrence With In Vitro Adenosine Triphosphate Based Chemotherapy Response Assay in Pancreas Cancer With Postoperative Gemcitabine Chemotherapy.

    PubMed

    Park, Joon Seong; Kim, Jae Keun; Yoon, Dong Sup

    2016-11-01

    Gemcitabine-based regimens represent the standard systemic first line treatment in patients after pancreatic resection. However, the clinical impact of gemcitabine varies significantly in individuals because of chemoresistance. An in vitro adenosine triphosphate based chemotherapy response assay (ATP-CRA) was designed to evaluate the sensitivity of cancer cells to various chemotherapeutic agents. This study investigated the correlation between in vitro gemcitabine sensitivity of tumor cells and early recurrence after curative resection. From January 2007 to December 2010, the ATP-CRA for gemcitabine was tested in 64 patients surgically treated for pancreas cancer at Gangnam Severance Hospital, Seoul, Korea. We analyzed the relationship between chemosensitivity and early systemic recurrence in patients with pancreas cancer to predict disease-free survival (DFS) after curative resection in pancreas cancer. The mean cell death rate (CDR) was 20.0 (±14.5) and divided into two groups according to the mean values of the CDR. Lymphovascular invasion was more frequently shown in gemcitabine resistance group without statistical significance. In univariate and multivariate analysis, advanced tumor stage and gemcitabine sensitive group (CDR ≥ 20) were identified as independent prognostic factors for DFS. Gemcitabine sensitivity measured by ATP-CRA was well correlated with in vivo drug responsibility to predict early recurrence following gemcitabine-based adjuvant chemotherapy in patients with pancreas cancer. © 2016 Wiley Periodicals, Inc.

  2. Adenosine triphosphate bioluminescence for bacteriological surveillance and reprocessing strategies for minimizing risk of infection transmission by duodenoscopes

    PubMed Central

    Sethi, Saurabh; Huang, Robert J.; Barakat, Monique T.; Banaei, Niaz; Friedland, Shai; Banerjee, Subhas

    2017-01-01

    Background/Aims Recent outbreaks of duodenoscope-transmitted infections underscore the importance of adequate endoscope reprocessing. Adenosine triphosphate (ATP) bioluminescence testing allows rapid evaluation of endoscopes for bacteriological/biological residue. In this prospective study we evaluate the utility of ATP in bacteriological surveillance, and the effects of endoscopy staff education and dual cycles of cleaning and high-level disinfection (HLD) on endoscope reprocessing. Methods ATP bioluminescence was measured after pre-cleaning, manual cleaning and HLD on rinsates from suction-biopsy channels of all endoscopes and elevator channels of duodenoscopes/linear echoendoscopes after use. ATP bioluminescence was re-measured in duodenoscopes (1) after re-education and competency testing of endoscopy staff, and subsequently (2) after 2 cycles of pre-cleaning and manual cleaning and single cycle of HLD, or (3) after 2 cycles of pre-cleaning, manual cleaning and HLD. Results The ideal ATP bioluminescence benchmark of <200 relative light units (RLUs) after manual cleaning was achieved from suction-biopsy channel rinsates of all endoscopes, but 9 of 10 duodenoscope elevator channel rinsates failed to meet this benchmark. Re-education reduced RLUs in duodenoscope elevator channel rinsates after pre-cleaning (23218.0 vs 1340.5 RLUs, p<0.01) and HLD (177.0 vs 12.0 RLUs, p<0.01). After 2 cycles of manual cleaning/HLD, duodenoscope elevator channel RLUs achieved levels similar to sterile water, with corresponding negative cultures. Conclusions ATP testing offers a rapid, inexpensive alternative for detection of endoscope microbial residue. Re-education of endoscopy staff and 2 cycles of cleaning and HLD decrease elevator channel RLUs to levels similar to sterile water and may therefore minimize the risk of transmission of infections by duodenoscopes. PMID:27818222

  3. Determination of adenosine phosphates in rat gastrocnemius at various postmortem intervals using high performance liquid chromatography.

    PubMed

    Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan

    2010-09-01

    Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.

  4. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish, Liposarcus pardalis (castelnau), during hypoxia.

    PubMed

    Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert

    2006-04-01

    The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.

  5. Mechanism of action of minoxidil in the treatment of androgenetic alopecia is likely mediated by mitochondrial adenosine triphosphate synthase-induced stem cell differentiation.

    PubMed

    Goren, A; Naccarato, T; Situm, M; Kovacevic, M; Lotti, T; McCoy, J

    2017-01-01

    Topical minoxidil is the only topical drug approved by the US Food and Drug Administration (FDA) for the treatment of androgenetic alopecia. However, the exact mechanism by which minoxidil stimulates anagen phase and promotes hair growth is not fully understood. In the late telegen phase of the hair follicle growth cycle, stem cells located in the bulge region differentiate and re-enter anagen phase, a period of growth lasting 2-6 years. In androgenetic alopecia, the anagen phase is shortened and a progressive miniaturization of hair follicles occurs, eventually leading to hair loss. Several studies have demonstrated that minoxidil increases the amount of intracellular Ca2+, which has been shown to up-regulate the enzyme adenosine triphosphate (ATP) synthase. A recent study demonstrated that ATP synthase, independent of its role in ATP synthesis, promotes stem cell differentiation. As such, we propose that minoxidil induced Ca2+ influx can increase stem cell differentiation and may be a key factor in the mechanism by which minoxidil facilitates hair growth. Based on our theory, we provide a roadmap for the development of a new class of drugs for the treatment of androgenetic alopecia.

  6. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  7. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    PubMed

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Repression of adenosine triphosphate-binding cassette transporter ABCG2 by estrogen increases intracellular glutathione in brain endothelial cells following ischemic reperfusion injury.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi

    2018-06-01

    The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  10. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae

    PubMed Central

    Matsushika, Akinori; Nagashima, Atsushi; Goshima, Tetsuya; Hoshino, Tamotsu

    2013-01-01

    In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4

  11. [A prospective study of adenosine triphosphate-tumor chemosensitivity assay directed chemotherapy in patients with recurrent ovarian cancer].

    PubMed

    Gao, Yu-tao; Wu, Ling-ying; Zhang, Wei; Zhao, Dan; Li, Ning; Tian, Hai-mei; Wang, Xiao-bing; Li, Mo; Sun, Yang-chun; Li, Nan; Li, Xiao-guang

    2013-05-01

    To investigate the efficacy of adenosine triphosphate (ATP)-tumor chemosensitivity assay (TCA) directed chemotherapy in patients with recurrent epithelial ovarian cancer. From August 2010 to June 2012, recurrent epithelial ovarian cancer patients were prospectively enrollmented in Cancer Hospital, Peking Union Medical College,Chinese Academy of Medical Sciences.The entry criteria are as follows: (1) Histologically proven to be epithelial ovarian cancer. (2) Patients of recurrent ovarian cancer with bidimensionally measurable tumor, or ascitic or pleural fluid for testing. (3) Karnofsky performance status > 60. (4) A life expectancy of at least more than 6 months.According to patients desires, they were assigned into two groups: assay-directed therapy group and physician's-choice therapy group, patients' clinical and pathological characteristics, response rate to chemotherapy and progression-free survival (PFS) were compared between two groups. A total of 113 patients with recurrent epithelial ovarian cancer were prospectively enrollmented to assay-directed chemotherapy (n = 56) or physician's-choice chemotherapy (n = 57).There was no difference in median age,types of recurrence, surgical-pathological stage, pathological type, tumor grade, times of recurrence, residual disease at secondary cytoreductive surgery between assay-directed group and physician's-choice group. The overall response rate (ORR) and median PFS in the ATP-TCA group was 66% (37/56) and 7 months, while the ORR in the control group was 46% (26/57, P = 0.037), the median PFS was 4 months (P = 0.040). For platinum-resistant patients, the ORR between ATP-TCA directed chemotherapy 59% (16/27) and control group 25% (7/28) were significantly different (P = 0.010), and the median PFS between two groups were also significantly different (5 months and 2 months, respectively, P = 0.003). ATP-TCA directed chemotherapy could improve ORR and PFS in patients with recurrent epithelial ovarian cancer, especially

  12. The adenosine triphosphate method as a quality control tool to assess 'cleanliness' of frequently touched hospital surfaces.

    PubMed

    Knape, L; Hambraeus, A; Lytsy, B

    2015-10-01

    The adenosine triphosphate (ATP) method is widely accepted as a quality control method to complement visual assessment, in the specifications of requirements, when purchasing cleaning contractors in Swedish hospitals. To examine whether the amount of biological load, as measured by ATP on frequently touched near-patient surfaces, had been reduced after an intervention; to evaluate the correlation between visual assessment and ATP levels on the same surfaces; to identify aspects of the performance of the ATP method as a tool in evaluating hospital cleanliness. A prospective intervention study in three phases was carried out in a medical ward and an intensive care unit (ICU) at a regional hospital in mid-Sweden between 2012 and 2013. Existing cleaning procedures were defined and baseline tests were sampled by visual inspection and ATP measurements of ten frequently touched surfaces in patients' rooms before and after intervention. The intervention consisted of educating nursing staff about the importance of hospital cleaning and direct feedback of ATP levels before and after cleaning. The mixed model showed a significant decrease in ATP levels after the intervention (P < 0.001). Relative light unit values were lower in the ICU. Cleanliness as judged by visual assessments improved. In the logistic regression analysis, there was a significant association between visual assessments and ATP levels. Direct feedback of ATP levels, together with education and introduction of written cleaning protocols, were effective tools to improve cleanliness. Visual assessment correlated with the level of ATP but the correlation was not absolute. The ATP method could serve as an educational tool for staff, but is not enough to assess hospital cleanliness in general as only a limited part of a large area is covered. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Adenosine triphosphate bioluminescence for bacteriologic surveillance and reprocessing strategies for minimizing risk of infection transmission by duodenoscopes.

    PubMed

    Sethi, Saurabh; Huang, Robert J; Barakat, Monique T; Banaei, Niaz; Friedland, Shai; Banerjee, Subhas

    2017-06-01

    Recent outbreaks of duodenoscope-transmitted infections underscore the importance of adequate endoscope reprocessing. Adenosine triphosphate (ATP) bioluminescence testing allows rapid evaluation of endoscopes for bacteriologic/biologic residue. In this prospective study we evaluate the utility of ATP in bacteriologic surveillance and the effects of endoscopy staff education and dual cycles of cleaning and high-level disinfection (HLD) on endoscope reprocessing. ATP bioluminescence was measured after precleaning, manual cleaning, and HLD on rinsates from suction-biopsy channels of all endoscopes and elevator channels of duodenoscopes/linear echoendoscopes after use. ATP bioluminescence was remeasured in duodenoscopes (1) after re-education and competency testing of endoscopy staff and subsequently (2) after 2 cycles of precleaning and manual cleaning and single cycle of HLD or (3) after 2 cycles of precleaning, manual cleaning, and HLD. The ideal ATP bioluminescence benchmark of <200 relative light units (RLUs) after manual cleaning was achieved from suction-biopsy channel rinsates of all endoscopes, but 9 of 10 duodenoscope elevator channel rinsates failed to meet this benchmark. Re-education reduced RLUs in duodenoscope elevator channel rinsates after precleaning (23,218.0 vs 1340.5 RLUs, P < .01) and HLD (177.0 vs 12.0 RLUs, P < .01). After 2 cycles of manual cleaning/HLD, duodenoscope elevator channel RLUs achieved levels similar to sterile water, with corresponding negative cultures. ATP testing offers a rapid, inexpensive alternative for detection of endoscope microbial residue. Re-education of endoscopy staff and 2 cycles of cleaning and HLD decreased elevator channel RLUs to levels similar to sterile water and may therefore minimize the risk of transmission of infections by duodenoscopes. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  14. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR

    NASA Astrophysics Data System (ADS)

    Majer, Günter; Southan, Alexander

    2017-06-01

    The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.

  15. Increased adenosine triphosphate production by peripheral blood CD4+ cells in patients with hematologic malignancies treated with stem cell mobilization agents.

    PubMed

    Manga, Kiran; Serban, Geo; Schwartz, Joseph; Slotky, Ronit; Patel, Nita; Fan, Jianshe; Bai, Xiaolin; Chari, Ajai; Savage, David; Suciu-Foca, Nicole; Colovai, Adriana I

    2010-07-01

    Hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with hematologic malignancies. To explore the immunomodulatory effects of HSC mobilization agents, we studied the function and phenotype of CD4(+) T cells from 16 adult patients with hematologic malignancies undergoing HSC mobilization treatment for autologous transplantation. Immune cell function was determined using the Immuknow (Cylex) assay by measuring the amount of adenosine triphosphate (ATP) produced by CD4(+) cells from whole blood. ATP activity measured in G-CSF-treated patients was significantly higher than that measured in healthy individuals or "nonmobilized" patients. In patients treated with G-CSF, CD4(+) T cells were predominantly CD25(low)FOXP3(low), consistent with an activated phenotype. However, T-cell depletion did not abrogate ATP production in blood samples from G-CSF-treated patients, indicating that CD4(+) myeloid cells contributed to the increased ATP levels observed in these patients. There was a significant correlation between ATP activity and patient survival, suggesting that efficient activation of CD4(+) cells during mobilization treatment predicts a low risk of disease relapse. Monitoring immune cell reactivity using the Immuknow assay may assist in the clinical management of patients with hematologic malignancies and optimization of HSC mobilization protocols. Copyright 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  16. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluation of adenosine triphosphate test for cleaning assessment of gastroscopes and the effect on workload in a busy endoscopy center.

    PubMed

    Schmitt, Cristiane; Pires Maciel, Amanda Luiz; Boszczowski, Icaro; da Silva, Thaís Pereira; Neves, Eliane Aparecida Job; Rossini, Giulio Fabio; Rizek, Camila; Costa, Silvia Figueiredo; Lourenço, Rogério Ferreira; Alfa, Michelle J

    2018-05-18

    Using adenosine triphosphate (ATP) tests to assess manual cleaning of gastroscopes and to determine the associated workload in a busy endoscopy unit. Patient-used gastroscopes were sampled before and after cleaning to assess ATP levels, bioburden, and protein. Samples were collected by flushing 20 mL of sterile water through the biopsy port to the distal end. Time spent for reprocessing and performing the ATP test was recorded. Twenty-four samples were collected from 10 gastroscopes. After manual cleaning, 14/24 (58.3%) samples had no microbial growth (mean, 21 colony-forming units/cm 2 ), and in 22/24 (91.7%) samples the protein was undetectable (mean, 0.04 µg/cm 2 ). ATP test was above the cutoff (200 relative light units [RLU]) in 17/24 (70.8%) samples (mean, 498 RLU). After the second cleaning, 11/17 (64.7%) gastroscopes still failed the ATP test (mean, 321.2 RLU). The mean time spent to perform manual cleaning and ATP tests was 16 and 8 minutes, respectively. Hence, each test increased the length of time for cleaning plus testing cleanliness by 50%. Further studies regarding the optimal cutoff for ATP tests are needed. ATP tests for cleaning monitoring are easy to perform and provide immediate feedback to the team. However, the increased workload needs to be considered. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. A novel inositol phosphate selectively inhibits vasoconstriction evoked by the sympathetic co-transmitters neuropeptide Y (NPY) and adenosine triphosphate (ATP).

    PubMed

    Wahlestedt, C; Reis, D J; Yoo, H; Adamsson, M; Andersson, D; Edvinsson, L

    1992-08-31

    Postganglionic sympathetic nerves release norepinephrine (NE) as their primary neurotransmitter at vascular and other targets. However, much evidence supports involvement of additional messengers, co-transmitters, which are co-released with NE upon sympathetic nerve stimulation and thereby contribute to their actions, e.g., vasoconstriction. Two such putative co-transmitters, neuropeptide Y (NPY) and adenosine triphosphate (ATP) have been of particular interest since they fulfill several neurotransmitter criteria. Importantly, hitherto it has been difficult to antagonize vasoconstriction evoked by either NPY or ATP with agents that are devoid of intrinsic activity. The present study describes the ability of a novel inositol phosphate, D-myo-inositol 1,2,6-trisphosphate (Ins[1,2,6]P3; PP-56) to in vitro potently block vasoconstrictor responses elicited by NPY and ATP, but not by NE, as studied in guinea-pig isolated basilar artery. The action of Ins[1,2,6]P3 does not seem to occur through antagonism at NPY- or ATP-receptor recognition sites, labeled by 125I-peptide YY and 35S-gamma-ATP, respectively, in membranes of rat cultured vena cava vascular smooth muscle cells. However, it does involve inhibition of the influx of Ca2+ induced by either co-transmitter in these same vena cava cells. It is proposed that Ins[1,2,6]P3 may be a useful functional antagonist of non-adrenergic component(s) of the vasoconstrictor response to sympathetic nerve stimulation.

  19. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  20. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    PubMed

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  1. Effects of adenosine 5'-monophosphate on epidermal turnover.

    PubMed

    Furukawa, Fukumi; Kanehara, Shoko; Harano, Fumiki; Shinohara, Shigeo; Kamimura, Junko; Kawabata, Shigekatsu; Igarashi, Sachiyo; Kawamura, Mitsuaki; Yamamoto, Yuki; Miyachi, Yoshiki

    2008-10-01

    The structure and function of the epidermis is maintained by cell renewal based on epidermal turnover. Epidermal turnover is delayed by aging, and it is thought that the delay of the epidermal turnover is a cause of aging alternation of skin. The epidermal turnover is related to the energy metabolism of epidermal basal cells. Adenosine 5'-triphosphate (ATP) is needed for cell renewal: cell division, and adenosine 5'-monophosphate (AMP) increases the amount of intracellular ATP. These findings suggest that AMP accelerates the epidermal turnover delayed by aging. This study investigated whether AMP and adenosine 5'-monophosphate disodium salt (AMP2Na) accelerates the epidermal turnover. An effect of AMP2Na on cell proliferation was examined by our counting of keratinocytes. An effect of AMP2Na on cell cycle was examined by our counting of basal cells in DNA synthetic period of hairless rats. The effects of AMP2Na (or AMP) on the epidermal turnover were examined by our measuring stratum corneum transit time by use of guinea pigs, and by our measuring stratum corneum surface area by use of hairless rats and in a clinical pharmacological study. The AMP2Na showed two different profiles on the proliferation of primary cultured keratinocytes. At a low concentration it induced cell growth, whereas at a high concentration it inhibited cell growth. The number of basal cells in the DNA synthetic period of AMP2Na was significantly higher than that of the vehicle in hairless rats. The stratum corneum transit time of AMP2Na was significantly shorter than that of the vehicle in guinea pigs. The corneocyte surface area of emulsion containing AMP2Na was significantly smaller than that of the vehicle in volunteers. We conclude that AMP promotes the cell proliferation and the cell cycle progression of epidermal basal cells and accelerates epidermal turnover safely. In addition, AMP is useful for skin rejuvenation in dermatology and aesthetic dermatology.

  2. Effects of dietary starch types on early postmortem muscle energy metabolism in finishing pigs.

    PubMed

    Li, Y J; Gao, T; Li, J L; Zhang, L; Gao, F; Zhou, G H

    2017-11-01

    This study aimed to investigate the effects of different dietary starch types on early postmortem muscle energy metabolism in finishing pigs. Ninety barrows (68.0±2.0kg) were randomly allotted to three experimental diets with five replicates of six pigs, containing pure waxy maize starch (WMS), nonwaxy maize starch (NMS), and pea starch (PS) (amylose/amylopectin were 0.07, 0.19 and 0.28 respectively). Compared with the WMS diet, pigs fed the PS diet exhibited greater creatine kinase activity, higher adenosine triphosphate and adenosine diphosphate contents, lower phosphocreatine (PCr), adenosine monophosphate and glycogen contents, and lower glycolytic potential (P<0.05). Moreover, the PS diet led to reduced percentage of bound hexokinase activity, decreased level of phosphorylated AKT (P<0.05) and increased level of hypoxia-inducible factor-1α (P<0.05). In conclusion, diet with high amylose content might promote PCr degradation and inhibit the rate of glycolysis, followed by attenuation of early postmortem glycolysis in finishing pigs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  4. Adenosine kinase regulation of cardiomyocyte hypertrophy

    PubMed Central

    Fassett, John T.; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie

    2011-01-01

    There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKTSer473 phosphorylation but did attenuate sustained phosphorylation of RafSer338 (24–48 h), mTORSer2448 (24–48 h), p70S6kThr389 (2.5–48 h), and ERKThr202/Tyr204 (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6kThr389 phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERKThr202/Tyr204 and AKTSer473. Reduction of Raf-induced p70S6kThr389 phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of

  5. Adenosine kinase regulation of cardiomyocyte hypertrophy.

    PubMed

    Fassett, John T; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie; Bache, Robert J

    2011-05-01

    There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte

  6. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E.

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation.more » In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.« less

  7. A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots.

    PubMed

    Saberi, Zeinab; Rezaei, Behzad; Khayamian, Taghi

    2018-06-01

    A new fluorimetric aptasensor was designed for the determination of adenosine triphosphate (ATP) based on magnetic nanoparticles (MNPs) and carbon dots (CDs). In this analytical strategy, an ATP aptamer was conjugated on MNPs and a complementary strand of the aptamer (CS) was labeled with CDs. The aptamer and its CS were hybridized to form a double helical structure. The hybridized aptamers could be used for the specific recognition of ATP in a biological complex matrix using a strong magnetic field to remove the interfering effect. In the absence of ATP, no CDs-CS could be released into the solution and this resulted in a weak fluorescence signal. In the presence of ATP, the target binds to its aptamer and causes the dissociation of the double helical structure and liberation of the CS, such that a strong fluorescence signal was generated. The increased fluorescence signal was proportional to ATP concentration. The limit of detection was estimated to be 1.0 pmol L -1 with a dynamic range of 3.0 pmol L -1 to 5.0 nmol L -1 . The specific aptasensor was applied to detect ATP in human serum samples with satisfactory results. Moreover, molecular dynamic simulation (MDS) studies were used to analyze interactions of the ATP molecule with the aptamer. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Use of a Sampling Area-Adjusted Adenosine Triphosphate Bioluminescence Assay Based on Digital Image Quantification to Assess the Cleanliness of Hospital Surfaces.

    PubMed

    Ho, Yu-Huai; Wang, Lih-Shinn; Jiang, Hui-Li; Chang, Chih-Hui; Hsieh, Chia-Jung; Chang, Dan-Chi; Tu, Hsin-Yu; Chiu, Tan-Yun; Chao, Huei-Jen; Tseng, Chun-Chieh

    2016-06-09

    Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate "cleanliness" using a sampling area-adjusted adenosine triphosphate (ATP) assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC) plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs). The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC) was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU)/cm², 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64%) were significantly improved, except under stringent (5 RLU/cm²) and lax (500 RLU) ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm², which corresponded to culture-assay levels of <2.5 CFU/cm². An area adjustment of the ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate.

  9. Comparative Transcriptome Analysis of Bacillus subtilis Responding to Dissolved Oxygen in Adenosine Fermentation

    PubMed Central

    Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce

    2011-01-01

    Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism. PMID:21625606

  10. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    PubMed

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  11. Hepatic fat and adenosine triphosphate measurement in overweight and obese adults using 1H and 31P magnetic resonance spectroscopy

    PubMed Central

    Solga, Steven F.; Horska, Alena; Hemker, Susanne; Crawford, Stephen; Diggs, Charalett; Diehl, Anna Mae; Brancati, Frederick L.; Clark, Jeanne M.

    2009-01-01

    Background/Aims Magnetic resonance spectroscopy (MRS) measures hepatic fat and adenosine triphosphate (ATP), but magnetic resonance studies are challenging in obese subjects. We aimed to evaluate the inter- and intrarater reliability and stability of hepatic fat and ATP measurements in a cohort of overweight and obese adults. Methods We measured hepatic fat and ATP using proton MRS (1H MRS) and phosphorus MRS (31P MRS) at baseline in adults enrolled in the Action for Health in Diabetes (Look AHEAD) clinical trial at one site. Using logistic regression, we determined factors associated with successful MRS data acquisition. We calculated the intra- and inter-rater reliability for hepatic fat and ATP based on 20 scans analysed twice by two readers. We also calculated the stability of these measures three times on five healthy volunteers. Results Of 244 participants recruited into our ancillary study, 185 agreed to MRS. We obtained usable hepatic fat data from 151 (82%) and ATP data from 105 (58%). Obesity was the strongest predictor of failed data acquisition; every unit increase in the body mass index reduced the likelihood of successful fat data by 11% and ATP data by 14%. The inter- and intrarater reliability were excellent for fat (intraclass correlation coefficient = 0.99), but substantially more variable for ATP. Fat measures appeared relatively stable, but this was less true for ATP. Conclusions Obesity can hinder 1H and 31P MRS data acquisition and subsequent analysis. This impact was greater for hepatic ATP than hepatic fat. PMID:18331237

  12. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  13. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  14. Deranged Cardiac Metabolism and the Pathogenesis of Heart Failure

    PubMed Central

    2016-01-01

    Activation of the neuro-hormonal system is a pathophysiological consequence of heart failure. Neuro-hormonal activation promotes metabolic changes, such as insulin resistance, and determines an increased use of non-carbohydrate substrates for energy production. Fasting blood ketone bodies as well as fat oxidation are increased in patients with heart failure, yielding a state of metabolic inefficiency. The net result is additional depletion of myocardial adenosine triphosphate, phosphocreatine and creatine kinase levels with further decreased efficiency of mechanical work. In this context, manipulation of cardiac energy metabolism by modification of substrate use by the failing heart has produced positive clinical results. The results of current research support the concept that shifting the energy substrate preference away from fatty acid metabolism and towards glucose metabolism could be an effective adjunctive treatment in patients with heart failure. The additional use of drugs able to partially inhibit fatty acids oxidation in patients with heart failure may therefore yield a significant protective effect for clinical symptoms and cardiac function improvement, and simultaneously ameliorate left ventricular remodelling. Certainly, to clarify the exact therapeutic role of metabolic therapy in heart failure, a large multicentre, randomised controlled trial should be performed. PMID:28785448

  15. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  16. On the use of X-ray absorption spectroscopy to elucidate the structure of lutetium adenosine mono- and triphosphate complexes.

    PubMed

    Mostapha, S; Berthon, C; Fontaine-Vive, F; Gaysinski, M; Guérin, L; Guillaumont, D; Massi, L; Monfardini, I; Solari, P L; Thomas, O P; Charbonnel, M C; Den Auwer, C

    2014-02-01

    Although the physiological impact of the actinide elements as nuclear toxicants has been widely investigated for half a century, a description of their interactions with biological molecules remains limited. It is however of primary importance to better assess the determinants of actinide speciation in cells and more generally in living organisms to unravel the molecular processes underlying actinide transport and deposition in tissues. The biological pathways of this family of elements in case of accidental contamination or chronic natural exposure (in the case of uranium rich soils for instance) are therefore a crucial issue of public health and of societal impact. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, phosphate derivatives are considered as probable targets of these cations. Among them, nucleotides and in particular adenosine mono- (AMP) and triphosphate (ATP) nucleotides occur in more chemical reactions than any other compounds on the earth's surface, except water, and are therefore critical target molecules. In the present study, we are interested in trans-plutonium actinide elements, in particular americium and curium that are more rarely considered in environmental and bioaccumulation studies than early actinides like uranium, neptunium and plutonium. A first step in this strategy is to work with chemical analogues like lanthanides that are not radioactive and therefore allow extended physical chemical characterization to be conducted that are difficult to perform with radioactive materials. We describe herein the interaction of lutetium(III) with adenosine AMP and ATP. With AMP and ATP, insoluble amorphous compounds have been obtained with molar ratios of 1:2 and 1:1, respectively. With an excess of ATP, with 1:2 molar ratio, a soluble complex has been obtained. A combination of spectroscopic techniques (IR, NMR, ESI-MS, EXAFS) together with quantum

  17. Understanding the Warburg effect: the metabolic requirements of cell proliferation.

    PubMed

    Vander Heiden, Matthew G; Cantley, Lewis C; Thompson, Craig B

    2009-05-22

    In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

  18. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs.

    PubMed

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-06-13

    BACKGROUND There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. MATERIAL AND METHODS Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen's cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. RESULTS ATP (0.1-10 µM) reduced the potassium current (IK+) in the majority of the recorded Hensen's cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 µM to 10 mM), which was reversibly blocked by 100 µM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. CONCLUSIONS Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).

  19. Amplification of the effects of magnetization exchange by (31) P band inversion for measuring adenosine triphosphate synthesis rates in human skeletal muscle.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-12-01

    The goal of this study was to amplify the effects of magnetization exchange between γ-adenosine triphosphate (ATP) and inorganic phosphate (Pi) for evaluation of ATP synthesis rates in human skeletal muscle. The strategy works by simultaneously inverting the (31) P resonances of phosphocreatine (PCr) and ATP using a wide bandwidth, adiabatic inversion radiofrequency pulse followed by observing dynamic changes in intensity of the noninverted Pi signal versus the delay time between the inversion and observation pulses. This band inversion technique significantly delays recovery of γ-ATP magnetization; consequently, the exchange reaction, Pi ↔ γ-ATP, is readily detected and easily analyzed. The ATP synthesis rate measured from high-quality spectral data using this method was 0.073 ± 0.011 s(-1) in resting human skeletal muscle (N = 10). The T1 of Pi was 6.93 ± 1.90 s, consistent with the intrinsic T1 of Pi at this field. The apparent T1 of γ-ATP was 4.07 ± 0.32 s, about two-fold longer than its intrinsic T1 due to storage of magnetization in PCr. Band inversion provides an effective method to amplify the effects of magnetization transfer between γ-ATP and Pi. The resulting data can be easily analyzed to obtain the ATP synthesis rate using a two-site exchange model. © 2014 Wiley Periodicals, Inc.

  20. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  1. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  2. [Features of influence adenosine, AMP and hyperadrenalinemiya on the immune status, metabolic enzymes of purine nucleotides and the antioxidant defense system].

    PubMed

    Tapbergenov, S O; Sovetov, B S; Tapbergenov, A T

    2016-11-01

    Administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) increased blood levels of total leukocytes, lymphocytes, decreased T-cell suppressors, leukocyte migration inhibition reaction (LMIR) and NBT test, but increased the level of conjugated dienes (CD). Administration of AMPand adenosine increased levels of total leukocytes, lymphocytes, T- lymphocytes, T-helpers, decreased the level of malondialdehyde (MDA), LMIR, and T-cell suppressors. Sympathetic hyperactivation induced by administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) was accompanied by an increase in heart and liver activities of glutathione peroxidase (GPx), catalase, AMP deaminase (AMPD), and adenosine deaminase (AD). Administration of AMP or adenosine caused a decrease in activities of glutathione reductase (GR), GPx, catalase, a decrease in the MDA level and an increase in activities of AMPD and AD in the heart. In the liver AMP and adenosine also caused a decrease in activities of glutathione reductase (GR), GPx, a decrease in the MDA level and an increase in activities of AMPD and AD. The data obtained suggest that administration of adrenaline, AMP, and adenosine influences activity of enzymes involved in purine nucleotide metabolism. However, in contrast to adrenaline, administration of AMP or adenosine does not provoke stress reaction.

  3. Reconsideration of the sequence of rigor mortis through postmortem changes in adenosine nucleotides and lactic acid in different rat muscles.

    PubMed

    Kobayashi, M; Takatori, T; Iwadate, K; Nakajima, M

    1996-10-25

    We examined the changes in adenosine triphosphate (ATP), lactic acid, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in five different rat muscles after death. Rigor mortis has been thought to occur simultaneously in dead muscles and hence to start in small muscles sooner than in large muscles. In this study we found that the rate of decrease in ATP was significantly different in each muscle. The greatest drop in ATP was observed in the masseter muscle. These findings contradict the conventional theory of rigor mortis. Similarly, the rates of change in ADP and lactic acid, which are thought to be related to the consumption or production of ATP, were different in each muscle. However, the rate of change of AMP was the same in each muscle.

  4. Depletion of cellular adenosine triphosphate and hepatocellular damage in rat after subchronic exposure to leachate from anthropogenic recycling site.

    PubMed

    Akintunde, J K; Oboh, G

    2015-11-01

    One of the major hazards arising from recycling sites is the generation of leachate containing mixed metal. This study evaluated the toxic effects of leachate obtained from Elewi Odo municipal auto-battery recycling site (EOMABRSL) on male liver functions using hepatic indices and biomarker of cellular adenosine triphosphate (ATP) in rat via the oral route. Concentrations of heavy metals analysis showed that lead, cadmium, nickel, chromium, manganese, and iron were 1.5-, 2-, 2.5-, 1.36-, 19.61-, and 8.89-folds, respectively, higher than acceptable limits set by regulatory authority World Health Organization. Copper, zinc, and cobalt were 5.9-, 300-, and 1.02-folds, respectively, lower than permissible limits. The EOMABRSL was administered at 20, 40, 60, 80, and 100% concentrations to adult male rats for 60 days. Following exposure, plasma and livers were collected for several biochemistry assays. Exposure of animals to EOMABRSL resulted in 27.51, 28.14, 63.93, 28.42, and 40.16% increase in aspartate aminotransferase activity, whereas it elevated alanine aminotransferase activity by 5.35, 22.33, 88.68, 183.02, and 193.08%, respectively, when compared with the control. Similarly, γ-glutamyl transferase activity increased by 111.22, 114.19, 122.96, 573.14, and 437.02%, respectively, when compared with the control. EOMABRSL administration significantly decreased catalase activity and reduced glutathione level and superoxide dismutase with concomitant increase in malondialdehyde and hydrogen peroxide levels. Also, significant (p < 0.05) decrease in lactate dehydrogenase (LDH) activity (marker of cellular ATP) was observed. Taken together, the hepatotoxicity of EOMABRSL could be due to the depletion of LDH and induction of oxidative damage, which may suggest possible health hazards in subjects with occupational or environmental exposure. © The Author(s) 2015.

  5. A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP

    PubMed Central

    Sazani, Peter L.; Larralde, Rosa

    2004-01-01

    We report the in vitro selection of an RNA-based ATP aptamer with the ability to discriminate between adenosine ligands based on their 5‘ phosphorylation state. Previous selection of ATP aptamers yielded molecules that do not significantly discriminate between ligands at the 5‘ position. By applying a selective pressure that demands recognition of the 5‘ triphosphate, we obtained an aptamer that binds to ATP with a Kd of approximately 5 μM, and to AMP with a Kd of approximately 5.5 mM, a difference of 1100-fold. This aptamer demonstrates the ability of small RNAs to interact with negatively charged moieties. PMID:15237981

  6. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    PubMed

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field.

    PubMed

    Zhu, Xiao-Hong; Lu, Ming; Chen, Wei

    2018-07-01

    Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  9. p53 and metabolism: from mechanism to therapeutics

    PubMed Central

    Simabuco, Fernando M.; Morale, Mirian G.; Pavan, Isadora C.B.; Morelli, Ana P.; Silva, Fernando R.; Tamura, Rodrigo E.

    2018-01-01

    The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics. PMID:29805774

  10. Functional effects of uridine triphosphate on human skinned skeletal muscle fibers.

    PubMed

    Vianna-Jorge, R; Oliveira, C F; Mounier, Y; Suarez-Kurtz, G

    1998-02-01

    Chemically skinned human skeletal muscle fibers were used to study the effects of uridine triphosphate (UTP) on the tension-pCa relationship and on Ca2+ uptake and release by the sarcoplasmic reticulum (SR). Total replacement (2.5 mM) of adenosine triphosphate (ATP) with UTP (i) displaced the tension-pCa relationship to the left along the abcissae and increased maximum Ca(2+)-activated tension, both effects being larger in slow- than in fast-type fibers; (ii) markedly reduced Ca2+ uptake by the SR (evaluated by the caffeine-evoked tension) in both fiber types; (iii) had no effect on the rate of depletion of caffeine-sensitive Ca2+ stores during soaking in relaxing solutions; (iv) induced tension in slow- but not in fast-type fibers. The effects on the SR functional properties are consistent with the notion that UTP is a poor substitute for ATP as a substrate for the Ca ATPase pump and as an agonist of the ryanodine-sensitive Ca(2+)-release channel. The UTP-induced tension in human slow-type fibers is attributed to effect(s) of the nucleotide on the tension-pCa relationship of the contractile machinery. The present data reveal important differences between the effects of UTP on human versus rat muscle fibers.

  11. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation

    PubMed Central

    Williams, Niamh C.; O’Neill, Luke A. J.

    2018-01-01

    Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA) is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function. PMID:29459863

  12. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation.

    PubMed

    Williams, Niamh C; O'Neill, Luke A J

    2018-01-01

    Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA) is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function.

  13. Aprikalim a potassium adenosine triphosphate channel opener reduces neurologic injury in a rabbit model of spinal cord ischemia.

    PubMed

    Lozos, Vasileios A; Toumpoulis, Ioannis K; Agrogiannis, Georgios; Giamarellos-Bourboulis, Evangelos J; Chamogeorgakis, Themistocles P; Rizos, Ioannis K; Patsouris, Efstratios S; Anagnostopoulos, Constantine E; Rokkas, Chris K

    2013-01-01

    Potassium adenosine triphosphate (KATP) channel openers have been involved in the enhancement of ischemic tolerance in various tissues. The purpose of the present study is to evaluate the effects of aprikalim, a specific KATP channel opener, on spinal cord ischemic injury. Fifty-four rabbits were randomly assigned to three groups: group 1 (n = 18, sham operation), group 2 (n = 18, 30 min of normothermic aortic cross-clamping) and group 3 (n = 18, aprikalim 100 μg/kg was administered 15 min before 30 min of normothermic aortic cross-clamping). Neurologic evaluation was performed according to the modified Tarlov scale. Six animals from each group were sacrificed at 24, 48 and 168 h postoperatively. The lumbar spinal cords were harvested and examined histologically. The motor neurons were counted and the histologic lesions were scored (0-3, 3: normal). Group 3 (aprikalim group) had better Tarlov scores compared to group 2 at all-time points (P < 0.025). The histologic changes were proportional to the Tarlov scores and group 3 had better functional outcome as compared to group 2 at 168 h (number of neurons: 21.2 ± 4.9 vs. 8.0 ± 2.7, P < 0.001 and histologic score: 1.67 ± 1.03 vs. 0.50 ± 0.55, P = 0.03). Although aprikalim exhibited improved effect on clinical and histologic neurologic outcome when compared to normothermic spinal cord ischemia, animals in group 3 had worse Tarlov score, reduced number of motor neurons and worse histologic score when compared to group 1 (sham operation) at 168 h (P = 0.003, P = 0.001 and P = 0.019 respectively). Aprikalim reduces the severity of spinal cord ischemic injury in a rabbit model of spinal cord ischemia. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    PubMed Central

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  15. Garlic capsule and selenium-vitamins ACE combination therapy modulate key antioxidant proteins and cellular adenosine triphosphate in lisinopril-induced lung damage in rats.

    PubMed

    Akintunde, Jacob K; Bolarin, Olakunle Enock; Akintunde, Daniel G

    2016-03-01

    Garlic capsule (GAR) and/or selenium- vitamin A, C, E (S-VACE) might be useful in the treatment of lung diseases. The present study evaluated the toxicity of lisinopril (LIS) in the lungs of male rats and the reversal effect of GAR and/or selenium-vitamins A, C, and E (S-VACE). Group I served as the control, whereas animals in groups II, III, IV, and V received 28 mg of LIS/kg body weight by gavage. Group III was co-treated with GAR at a therapeutic dosage of 250 mg/kg body weight per day. Group IV was co-treated with S-VACE at dosage of 500 mg/kg body weight per day. Lastly, group V was co-treated with GAR and S-VACE at dosages of 250 and 500 mg/kg body weight per day, respectively. The experiment lasted for 8 days (sub-acute exposure). Administration of therapeutic dose of LIS to male rats depleted enzymatic antioxidants (superoxide dismutase and catalase) and cellular adenosine triphosphate content with concomitant increase in lipid peroxidation. Histopathology examination showed damage to the epithelial cells of the airways. These effects were prevented by both single and combination treatment of GAR and S-VACE in male rats with LIS-induced lung toxicity. We therefore concluded that the combination of GAR and S-VACE can be a novel therapy for the management of lung diseases in humans.

  16. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.

    PubMed

    Prins, Mayumi L; Matsumoto, Joyce H

    2014-12-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. ATP-citrate lyase links cellular metabolism to histone acetylation.

    PubMed

    Wellen, Kathryn E; Hatzivassiliou, Georgia; Sachdeva, Uma M; Bui, Thi V; Cross, Justin R; Thompson, Craig B

    2009-05-22

    Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (ACL), the enzyme that converts glucose-derived citrate into acetyl-CoA. We found that ACL is required for increases in histone acetylation in response to growth factor stimulation and during differentiation, and that glucose availability can affect histone acetylation in an ACL-dependent manner. Together, these findings suggest that ACL activity is required to link growth factor-induced increases in nutrient metabolism to the regulation of histone acetylation and gene expression.

  18. The effect of experimental gastric dilatation-volvulus on adenosine triphosphate content and conductance of the canine gastric and jejunal mucosa.

    PubMed

    Peycke, Laura E; Hosgood, Giselle; Davidson, Jacqueline R; Tetens, Joanne; Taylor, H Wayne

    2005-07-01

    The objective of this study was to determine if experimental gastric dilatation volvulus (GDV) would decrease adenosine triphosphate (ATP) concentration and increase membrane conductance of the canine gastric and jejunal mucosa. Male dogs (n = 15) weighing between 20 and 30 kg were used. Dogs were randomly assigned to 1 of 3 equal groups: Group 1 was control, group 2 was GDV, and group 3 was ischemia. All dogs were anesthetized for 210 min. Group 1 had no manipulation. Group 2 had GDV experimentally induced for 120 min followed by decompression, derotation, and reperfusion for 90 min. Group 3 had GDV experimentally induced for 210 min. Gastric (fundus and pylorus) and jejunal tissue was taken at 0, 120, and 210 min from all of the dogs. Tissue was analyzed for ATP concentration, mucosal conductance, and microscopic changes. The ATP concentration in the fundus did not change significantly from baseline in group 2, but decreased significantly below baseline at 210 min in group 3. The ATP concentration in the jejunum decreased significantly below baseline in groups 2 and 3 at 120 min, remaining significantly decreased in group 3 but returning to baseline at 210 min in group 2. Mucosal conductance of the fundus did not change significantly in any dog. Mucosal conductance of the jejunum increased at 120 min in groups 2 and 3, and became significantly increased above baseline at 210 min. The jejunal mucosa showed more profound cellular changes than the gastric mucosa. The jejunum showed substantial decreases in ATP concentration with an increase in mucosal conductance, suggesting cell membrane dysfunction. Dogs sustaining a GDV are likely to have a change in the activity of mucosal cells in the jejunum, which may be important in the pathophysiology of GDV.

  19. The effect of experimental gastric dilatation-volvulus on adenosine triphosphate content and conductance of the canine gastric and jejunal mucosa

    PubMed Central

    2005-01-01

    Abstract The objective of this study was to determine if experimental gastric dilatation volvulus (GDV) would decrease adenosine triphosphate (ATP) concentration and increase membrane conductance of the canine gastric and jejunal mucosa. Male dogs (n = 15) weighing between 20 and 30 kg were used. Dogs were randomly assigned to 1 of 3 equal groups: Group 1 was control, group 2 was GDV, and group 3 was ischemia. All dogs were anesthetized for 210 min. Group 1 had no manipulation. Group 2 had GDV experimentally induced for 120 min followed by decompression, derotation, and reperfusion for 90 min. Group 3 had GDV experimentally induced for 210 min. Gastric (fundus and pylorus) and jejunal tissue was taken at 0, 120, and 210 min from all of the dogs. Tissue was analyzed for ATP concentration, mucosal conductance, and microscopic changes. The ATP concentration in the fundus did not change significantly from baseline in group 2, but decreased significantly below baseline at 210 min in group 3. The ATP concentration in the jejunum decreased significantly below baseline in groups 2 and 3 at 120 min, remaining significantly decreased in group 3 but returning to baseline at 210 min in group 2. Mucosal conductance of the fundus did not change significantly in any dog. Mucosal conductance of the jejunum increased at 120 min in groups 2 and 3, and became significantly increased above baseline at 210 min. The jejunal mucosa showed more profound cellular changes than the gastric mucosa. The jejunum showed substantial decreases in ATP concentration with an increase in mucosal conductance, suggesting cell membrane dysfunction. Dogs sustaining a GDV are likely to have a change in the activity of mucosal cells in the jejunum, which may be important in the pathophysiology of GDV. PMID:16187546

  20. The Effect of Vitrification and in vitro Culture on the Adenosine Triphosphate Content and Mitochondrial Distribution of Mouse Pre-Implantation Embryos

    PubMed Central

    Amoushahi, Mahboobeh; Salehnia, Mojdeh; HosseinKhani, Saman

    2013-01-01

    Background: The mitochondria are an important source of adenosine triphosphate (ATP) production in pre-implantation embryo. Therefore, the objective of this study was to investigate the effect of vitrification and in vitro culture of mouse embryos on their mitochondrial distribution and ATP content. Methods: The embryos at 2-PN, 4-cell and blastocyst stages were collected from the oviduct of stimulated pregnant mice and uterine horns. Then, the embryos were vitrified with the cryotop method using ethylene glycol and dimethylsulphoxide. After evaluating the survival rates of vitrified embryos, their development to hatching stages were assessed. The ATP content of collected in vivo and in vitro embryos at different stages was measured by luciferin-luciferase bioluminescence assay. The distribution of mitochondria was studied using Mito-tracker green staining under a fluorescent microscope. Results: The survival rates of vitrified embryos at 2-PN, 4-cell and early blastocyst stages were 84.3, 87.87 and 89.89%, respectively. The hatching rates in previous developmental stages in vitrified group were 57.44, 66.73 and 70.89% and in non-vitrified group were 66.32, 73.25 and 75.89%, respectively (P>0.05). The ATP content of in vivo or in vitro collected embryos was not significantly different in both vitrified and non-vitrified groups (P>0.05). Mitochondrial distribution of vitrified and non-vitrified 2-PN embryos was similar, but some clampings or large aggregation of mitochondria within the vitrified 4-cell embryos was prominent. Conclusions: Vitrification method did not affect the mouse embryo ATP content. Also, the cellular stress was not induced by this procedure and the safety of vitrification was shown. PMID:23748889

  1. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing.

    PubMed

    Li, Na; Liu, Shi Gang; Fan, Yu Zhu; Ju, Yan Jun; Xiao, Na; Luo, Hong Qun; Li, Nian Bing

    2018-07-12

    The various synthetic routes of carbon dots (C-dots) feature a considerable step toward their potential use in chemical sensors and biotechnology. Herein, by coupling phosphorus and nitrogen element introduction, the adenosine-derived N/P co-doped C-dots with fluorescence enhancement were achieved. By separately employing adenosine, adenosine monophosphate, adenosine diphosphate, and adenosine-5'-triphosphate as precursors, the effect of N/P co-doping on the fluorescence emission is discussed in detail. The formed C-dots with adenosine monophosphate exhibited strong blue fluorescence with a high quantum yield of 33.81%. Then the C-dots were employed as a fluorescent probe and utilized to develop a fast, sensitive, and selective picric acid sensor. The fluorescence of C-dots can be quenched by picric acid immediately, giving rise to a picric acid determination down to 30 nM. The possible mechanism of fluorescence quenching was discussed, which was proved to be inner filter effect and static quenching. Moreover, this method has the potential to detect picric acid in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. EFFECTS OF HYPERTHERMIA AND HYPERTHERMIA PLUS MICROWAVES ON RAT BRAIN ENERGY METABOLISM

    EPA Science Inventory

    The effects of hyperthermia, alone and in conjunction with microwave exposure, on brain energetics were studied in anesthetized male Sprague-Dawley rats. The effects of temperature on adenosine triphosphate concentration (ATP) and creatine phosphate concentration (CP) was determi...

  3. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    PubMed

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor

  4. Metabolic control of the epigenome in systemic Lupus erythematosus

    PubMed Central

    Oaks, Zachary; Perl, Andras

    2014-01-01

    Epigenetic mechanisms are proposed to underlie aberrant gene expression in systemic lupus erythematosus (SLE) that results in dysregulation of the immune system and loss of tolerance. Modifications of DNA and histones require substrates derived from diet and intermediary metabolism. DNA and histone methyltransferases depend on S-adenosylmethionine (SAM) as a methyl donor. SAM is generated from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (MAT), a redox-sensitive enzyme in the SAM cycle. The availability of B vitamins and methionine regulate SAM generation. The DNA of SLE patients is hypomethylated, indicating dysfunction in the SAM cycle and methyltransferase activity. Acetyl-CoA, which is necessary for histone acetylation, is generated from citrate produced in mitochondria. Mitochondria are also responsible for de novo synthesis of flavin adenine dinucleotide (FAD) for histone demethylation. Mitochondrial oxidative phosphorylation is the dominant source of ATP. The depletion of ATP in lupus T cells may affect MAT activity as well as adenosine monophosphate (AMP) activated protein kinase (AMPK), which phosphorylates histones and inhibits mechanistic target of rapamycin (mTOR). In turn, mTOR can modify epigenetic pathways including methylation, demethylation, and histone phosphorylation and mediates enhanced T-cell activation in SLE. Beyond their role in metabolism, mitochondria are the main source of reactive oxygen intermediates (ROI), which activate mTOR and regulate the activity of histone and DNA modifying enzymes. In this review we will focus on the sources of metabolites required for epigenetic regulation and how the flux of the underlying metabolic pathways affects gene expression. PMID:24128087

  5. Thyroid hormone action on intermediary metabolism. Part I: respiration, thermogenesis and carbohydrate metabolism.

    PubMed

    Müller, M J; Seitz, H J

    1984-01-02

    The effect of thyroid hormones on mitochondrial respiration are summarized: T3 directly stimulates mitochondrial respiration and the synthesis of adenosine 5'-triphosphate (ATP). Cytosolic ATP availability is increased by a thyroid hormone-induced increase in adenine nucleotide translocation across the mitochondrial membrane; the steady state ATP concentration and the cytosolic ATP/adenosine 5'-diphosphate (ADP) ratio is even decreased in hyperthyroid tissues because of the simultaneous stimulation of the synthesis and consumption of ATP. With regard to the thyroid hormone-induced energy wasting processes, heart work, intra- and interorgan futile cycling and Na+/K+-ATPase are involved to varying degrees. As a consequence of the thyroid hormone-induced hydrolysis of ATP, thermogenesis is increased in hyper- and decreased in hypothyroidism. Despite an increased rate of glucose utilization, clinical and experimental hyperthyroidism is often characterized by an abnormal oral glucose tolerance test. This finding is due to the thyroid hormone-induced increase in intestinal glucose absorption as well as the still enhanced endogenous glucose production in the liver. Hypothyroid patients show a reduced glucose tolerance test because of a decrease in intestinal glucose absorption and a sometimes reduced glucose turnover. The thyroid hormone-induced alterations in glucose metabolism are most probably not due to alterations in serum insulin levels and/or to a peripheral insulin resistance at the receptor level.

  6. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  7. Colorimetric sensor for triphosphates and their application as a viable staining agent for prokaryotes and eukaryotes.

    PubMed

    Ghosh, Amrita; Shrivastav, Anupama; Jose, D Amilan; Mishra, Sanjiv K; Chandrakanth, C K; Mishra, Sandhya; Das, Amitava

    2008-07-15

    The chromogenic complex 1 x Zn (where 1 is (E)-4-(4-dimethylamino-phenylazo)-N,N-bispyridin-2-ylmethyl-benzenesulfonamide) showed high affinity toward the phosphate ion in tetrabutylammonium phosphate in acetonitrile solution and could preferentially bind to adenosine triphosphate (ATP) in aqueous solution at physiological pH. This binding caused a visual change in color, whereas no such change was noticed with other related anions (adenosine monophosphate, adenosine diphosphate, pyrophosphate, and phosphate) of biological significance. Thus, 1 x Zn could be used as a staining agent for different biological cells through binding to the ATP, generated in situ by the mitochondria (in eukaryotes). For prokaryotes (bacteria) the cell membrane takes care of the cells' energy conversion, since they lack mitochondria. ATP is produced in their unique cell structure on the cell membrane, which is not found in any eukaryotes. These stained cells could be viewed with normal light microscopy. This reagent could even be used for distinguishing the gram-positive and the gram-negative bacteria (prokaryotes). This dye was found to be nonlipophilic in nature and nontoxic to living microbes (eukaryotes and prokaryotes). Further, stained cells were found to grow in their respective media, and this confirmed the maintenance of viability of the microbes even after staining, unlike with many other dyes available commercially.

  8. The 2′,3′-cAMP-adenosine pathway

    PubMed Central

    2011-01-01

    Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2′,3′-cAMP, a positional isomer of the second messenger 3′,5′-cAMP. To our knowledge, this represents the first detection of 2′,3′-cAMP in any cell/tissue/organ/organism. Nuclear magnetic resonance experiments with isolated RNases and experiments in isolated, perfused kidneys suggest that 2′,3′-cAMP likely arises from RNase-mediated transphosphorylation of mRNA. Both in vitro and in vivo kidney experiments demonstrate that extracellular 2′,3′-cAMP is efficiently metabolized to 2′-AMP and 3′-AMP, both of which can be further metabolized to adenosine. This sequence of reactions is called the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine). Experiments in rat and mouse kidneys show that metabolic poisons increase extracellular levels of 2′,3′-cAMP, 2′-AMP, 3′-AMP, and adenosine; however, little is known regarding the pharmacology of 2′,3′-cAMP, 2′-AMP, and 3′-AMP. What is known is that 2′,3′-cAMP facilitates activation of mitochondrial permeability transition pores, a process that can lead to apoptosis and necrosis, and inhibits proliferation of vascular smooth muscle cells and glomerular mesangial cells. In summary, there is mounting evidence that at least some types of cellular injury, by triggering mRNA degradation, engage the 2′,3′-cAMP-adenosine pathway, and therefore this pathway should be added to the list of biochemical pathways that produce adenosine. Although speculative, it is possible that the 2′,3′-cAMP-adenosine pathway may protect against some forms of acute organ injury, for example acute kidney injury, by both removing an intracellular toxin (2′,3′-cAMP) and increasing an extracellular renoprotectant (adenosine). PMID:21937608

  9. Adaptation of red cell enzymes and intermediates in metabolic disorders.

    PubMed

    Goebel, K M; Goebel, F D; Neitzert, A; Hausmann, L; Schneider, J

    1975-01-01

    The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.

  10. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  11. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate.

    PubMed

    Peters, E; Geraci, S; Heemskerk, S; Wilmer, M J; Bilos, A; Kraenzlin, B; Gretz, N; Pickkers, P; Masereeuw, R

    2015-10-01

    Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection of alkaline phosphatase. The effect of human recombinant alkaline phosphatase (recAP) on LPS-induced renal injury was studied in Sprague-Dawley rats. Renal function was assessed by transcutaneous measurement of FITC-sinistrin elimination in freely moving, awake rats. The mechanism of action of recAP was further investigated in vitro using conditionally immortalized human proximal tubular epithelial cells (ciPTEC). In vivo, LPS administration significantly prolonged FITC-sinistrin half-life and increased fractional urea excretion, which was prevented by recAP co-administration. Moreover, recAP prevented LPS-induced increase in proximal tubule injury marker, kidney injury molecule-1 expression and excretion. In vitro, LPS-induced production of TNF-α, IL-6 and IL-8 was significantly attenuated by recAP. This effect was linked to dephosphorylation, as enzymatically inactive recAP had no effect on LPS-induced cytokine production. RecAP-mediated protection resulted in increased adenosine levels through dephosphorylation of LPS-induced extracellular ADP and ATP. Also, recAP attenuated LPS-induced increased expression of adenosine A2A receptor. However, the A2A receptor antagonist ZM-241385 did not diminish the effects of recAP. These results indicate that the ability of recAP to reduce renal inflammation may account for the beneficial effect observed in septic acute kidney injury patients, and that dephosphorylation of ATP and LPS are responsible for this protective effect. © 2015 The British Pharmacological Society.

  12. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.

    PubMed

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-03-25

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001.

  13. In vitro release of adenosine triphosphate from the urothelium of human bladders with detrusor overactivity, both neurogenic and idiopathic.

    PubMed

    Kumar, Vivek; Chapple, Christopher R; Rosario, Derek; Tophill, Paul R; Chess-Williams, Russell

    2010-06-01

    There is increased evidence to suggest a role for nonadrenergic-noncholinergic neurotransmission in the pathogenesis of bladder dysfunction. In this set of experiments, we have assessed the contribution of the urothelium to purinergic activity by quantifying the amount of adenosine triphosphate (ATP) released from the urothelium of patients with idiopathic detrusor overactivity (IDO) and with neurogenic detrusor overactivity (NDO) and comparing these releases to those of controls. Bladder tissue with urodynamically and clinically proven NDO (n=8) and IDO (n=8) were included in this study. The carefully dissected urothelium was stimulated by mechanically stretching as well as electrically stimulating and the ATP; thus, release was quantified. We used a Lucy Anthos 1 luminometre (Anthos Labtec Instruments GmBH, Wals, Austria) to perform the assay. The results were analysed using Stingray software (Dazdaq Ltd, Brighton, UK). Both mechanical stretch and electric field stimulation (EFS) led to increased ATP release in both sets of tissues with overactivity compared to the controls; this rise was even more significant for the IDO urothelium (2416.7±479.8 pmol/g [p<0.005]) than for the NDO urothelium (133.1±22.4 pmol/g [p<0.01]); values for the controls were 77.6±16.2 pmol/g. ATP release following mechanical stretch was more sensitive to tetrodotoxin in bladders with NDO compared to those with IDO as well as to the controls, with ATP levels falling from 233.5±20.7 pmol/g to 107.2±11.6 pmol/g, expressed as percentage of basal levels (p<0.002). The experiments were performed in vitro, and the female patients were a mix of peri- and postmenopausal states. These experiments suggested a significant rise in ATP release from the urothelium of bladders with NDO as well as those with IDO in comparison to controls. Most of the ATP released from bladders with NDO is primarily from neuronal sources. Copyright © 2009 European Association of Urology. Published by Elsevier B

  14. Secreted adenosine triphosphate from Aggregatibacter actinomycetemcomitans triggers chemokine response.

    PubMed

    Ding, Q; Quah, S Y; Tan, K S

    2016-10-01

    Extracellular ATP (eATP) is an important intercellular signaling molecule secreted by activated immune cells or released by damaged cells. In mammalian cells, a rapid increase of ATP concentration in the extracellular space sends a danger signal, which alerts the immune system of an impending danger, resulting in recruitment and priming of phagocytes. Recent studies show that bacteria also release ATP into the extracellular milieu, suggesting a potential role for eATP in host-microbe interactions. It is currently unknown if any oral bacteria release eATP. As eATP triggers and amplifies innate immunity and inflammation, we hypothesized that eATP secreted from periodontal bacteria may contribute to inflammation in periodontitis. The aims of this study were to determine if periodontal bacteria secrete ATP, and to determine the function of bacterially derived eATP as an inducer of inflammation. Our results showed that Aggregatibacter actinomycetemcomitans, but not Porphyromonas gingivalis, Prevotella intermedia, or Fusobacterium nucleatum, secreted ATP into the culture supernatant. Exposure of periodontal fibroblasts to filter sterilized culture supernatant of A. actinomycetemcomitans induced chemokine expression in an eATP-dependent manner. This occurred independently of cyclic adenosine monophosphate and phospholipase C, suggesting that ionotrophic P2X receptor is involved in sensing of bacterial eATP. Silencing of P2X7 receptor in periodontal fibroblasts led to a significant reduction in bacterial eATP-induced chemokine response. Furthermore, bacterial eATP served as a potent chemoattractant for neutrophils and monocytes. Collectively, our findings provide evidence for secreted ATP of A. actinomycetemcomitans as a novel virulence factor contributing to inflammation during periodontal disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Variability in platelet dense granule adenosine triphosphate release findings amongst patients tested multiple times as part of an assessment for a bleeding disorder.

    PubMed

    Badin, M S; Graf, L; Iyer, J K; Moffat, K A; Seecharan, J L; Hayward, C P M

    2016-12-01

    Lumi-aggregometry quantification of platelet dense granule adenosine triphosphate (ATP) release is commonly used for diagnosing platelet function disorders. As the test findings show considerable variability for healthy controls, we postulated that patient findings might also be variable and investigated patients who were assessed for dense granule ATP release defects more than once. Analyses were performed on prospectively collected data for first and second tests for subjects tested for dense granule ATP release defects more than once by the Hamilton Regional Laboratory Program (HRLMP) between January 2007 and June 2013 (cohort I). Similar analyses were performed for subjects who were recruited to a platelet disorder study (cohort II) and were assessed for ATP release defects more than once before October 2015. A total of 150 unique subjects had multiple ATP release tests. Results with individual agonists were variable for many subjects. While normal findings with all tested agonists were often confirmed by the second test (cohort I: 83%; cohort II: 100%), impaired release with multiple agonists was confirmed in only some subjects (cohort I: 34%; cohort II: 54%). Inconsistent findings were common (cohort I: 36%; cohort II: 39%). ISTH bleeding scores showed no relationship to the test findings. The finding of impaired ATP release with 2 or more agonists on both tests was not associated with an increased likelihood of a definite bleeding disorder. The variability in platelet dense granule ATP release findings amongst patients assessed for diagnostic purposes suggests that the test has limited value for diagnosing platelet disorders. © 2016 John Wiley & Sons Ltd.

  16. Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3′-azido-2′,3′-dideoxyguanosine-5′-triphosphates as adenosine analogs

    PubMed Central

    Herman, Brian D.; Schinazi, Raymond F.; Zhang, Hong-wang; Nettles, James H.; Stanton, Richard; Detorio, Mervi; Obikhod, Aleksandr; Pradère, Ugo; Coats, Steven J.; Mellors, John W.; Sluis-Cremer, Nicolas

    2012-01-01

    β-D-3′-Azido-2′,3′-dideoxyguanosine (3′-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3′-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3′-azido-ddG in primary cells. To gain insight into their structure–activity–resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT). Steady-state and pre-steady-state kinetic experiments show that the 6-modified-3′-azido-ddGTP analogs act as adenosine rather than guanosine mimetics in DNA synthesis reactions. The order of potency of the TP analogs against wild-type RT was: 3′-azido-2,6-diaminopurine >3′-azido-6-chloropurine; 3′-azido-6-N-allylaminopurine > 2-amino-6-N,N-dimethylaminopurine; 2-amino-6-methoxypurine. Molecular modeling studies reveal unique hydrogen-bonding interactions between the nucleotide analogs and the template thymine base in the active site of RT. Surprisingly, the structure–activity relationship of the analogs differed in HIV-1 RT ATP-mediated excision assays of their monophosphate forms, suggesting that it may be possible to rationally design a modified base analog that is efficiently incorporated by RT but serves as a poor substrate for ATP-mediated excision reactions. Overall, these studies identify a promising strategy to design novel nucleoside analogs that exert profound antiviral activity against both WT and drug-resistant HIV-1. PMID:21914723

  17. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; da Rocha, Juliana T; Dobrachinski, Fernando; Carvalho, Nélson R; Soares, Félix A; da Luz, Sônia C Almeida; Nogueira, Cristina W

    2016-01-01

    The metabolic syndrome is a group of metabolic alterations considered a worldwide public health problem. Organic selenium compounds have been reported to have many different pharmacological actions, such as anti-hypercholesterolemic and anti-hyperglycemic. The aim of this study was to evaluate the effect of p-chloro-diphenyl diselenide (p-ClPhSe)2, an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. The rats were treated during the first ten postnatal days with MSG and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 45th to 51 th postnatal day. Glucose, lipid and lactate levels were determined in plasma of rats. Glycogen levels and activities of tyrosine aminotransferase, hexokinase, citrate synthase and glucose-6-phosphatase (G-6-Pase) were determined in livers of rats. Renal G-6-Pase activity was also determined. The purine content [Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate] and mitochondrial functionality in the liver were also investigated. p-(ClPhSe)2 did not alter the reduction in growth performance and in the body weight caused by MSG but reduced epididymal fat deposition of rats. p-(ClPhSe)2 restored glycemia, triglycerides, cholesterol and lactate levels as well as the glucose metabolism altered in rats treated with MSG. p-(ClPhSe)2 restored hepatic mitochondrial dysfunction and the decrease in citrate synthase activity and ATP and ADP levels caused by MSG in rats. In summary, (p-ClPhSe)2 had homeostatic effects on glucose metabolism and mitochondrial function alterations induced by MSG administration to rats.

  18. Simultaneous measurement of adenosine triphosphate release and aggregation potentiates human platelet aggregation responses for some subjects, including persons with Quebec platelet disorder.

    PubMed

    Hayward, C P M; Moffat, K A; Castilloux, J-F; Liu, Y; Seecharan, J; Tasneem, S; Carlino, S; Cormier, A; Rivard, G E

    2012-04-01

    Platelet aggregometry and dense granule adenosine triphosphate (ATP) release assays are helpful to diagnose platelet disorders. Some laboratories simultaneously measure aggregation and ATP release using Chronolume® a commercial reagent containing D-luciferin, firefly luciferase and magnesium. Chronolume® can potentiate sub-maximal aggregation responses, normalising canine platelet disorder findings. We investigated if Chronolume® potentiates human platelet aggregation responses after observing discrepancies suspicious of potentiation. Among patients simultaneously tested by light transmission aggregometry (LTA) on two instruments, 18/43 (42%), including 14/24 (58%) with platelet disorders, showed full secondary aggregation with one or more agonists only in tests with Chronolume®. As subjects with Quebec platelet disorder (QPD) did not show the expected absent secondary aggregation responses to epinephrine in tests with Chronolume®, the reason for the discrepancy was investigated using samples from 10 QPD subjects. Like sub-threshold ADP (0.75 μM), Chronolume® significantly increased QPD LTA responses to epinephrine (p<0.0001) and it increased both initial and secondary aggregation responses, leading to dense granule release. This potentiation was not restricted to QPD and it was mimicked adding 1-2 mM magnesium, but not D-luciferin or firefly luciferase, to LTA assays. Chronolume® potentiated the ADP aggregation responses of QPD subjects with a reduced response. Furthermore, it increased whole blood aggregation responses of healthy control samples to multiple agonists, tested at concentrations used for the diagnosis of platelet disorders (p values <0.05). Laboratories should be aware that measuring ATP release with Chronolume® can potentiate LTA and whole blood aggregation responses, which alters findings for some human platelet disorders, including QPD.

  19. Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2013-04-01

    Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.

  20. Extracellular 2′,3′-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells

    PubMed Central

    Gillespie, Delbert G.

    2013-01-01

    In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and extracellular 2′-AMP and 3′-AMP to adenosine (the extracellular 2′,3′-cAMP-adenosine pathway; extracellular 2′,3′-cAMP → 2′-AMP + 3′-AMP → adenosine). The purpose of this study was to investigate the metabolism of extracellular 2′,3′-cAMP in proximal tubular vs. thick ascending limb vs. collecting duct epithelial cells freshly isolated from their corresponding nephron segments obtained from rat kidneys. In epithelial cells from all three nephron segments, 1) extracellular 2′,3′-cAMP was metabolized to 2′-AMP and 3′-AMP, with 2′-AMP > 3′-AMP, 2) the metabolism of extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP was not inhibited by either 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor) or 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), 3) extracellular 2′,3′-cAMP increased extracellular adenosine levels, 4) 3′-AMP and 2′-AMP were metabolized to adenosine with an efficiency similar to that of 5′-AMP, and 5) the metabolism of 5′-AMP, 3′-AMP, and 2′-AMP was not inhibited by α,β-methylene-adenosine-5′-diphosphate (CD73 inhibitor). These results support the conclusion that renal epithelial cells all along the nephron can metabolize extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and can efficiently metabolize extracellular 2′-AMP and 3′-AMP to adenosine and that the metabolic enzymes involved are not the classical phosphodiesterases nor ecto-5′-nucleotidase (CD73). Because 2′,3′-cAMP is released by injury and because previous studies demonstrate that the extracellular 2′,3′-cAMP-adenosine pathway stimulates epithelial cell proliferation via adenosine A2B receptors, the present results suggest that the extracellular 2′,3′-cAMP-adenosine pathway may help restore epithelial

  1. Genetic Polymorphism of Inosine Triphosphate Pyrophosphatase Is a Determinant of Mercaptopurine Metabolism and Toxicity During Treatment for Acute Lymphoblastic Leukemia

    PubMed Central

    Stocco, G; Cheok, MH; Crews, KR; Dervieux, T; French, D; Pei, D; Yang, W; Cheng, C; Pui, C-H; Relling, MV; Evans, WE

    2009-01-01

    The influence of genetic polymorphism in inosine triphosphate pyrophosphatase (ITPA) on thiopurine-induced adverse events has not been investigated in the context of combination chemotherapy for acute lymphoblastic leukemia (ALL). This study investigated the effects of a common ITPA variant allele (rs41320251) on mercaptopurine metabolism and toxicity during treatment of children with ALL. Significantly higher concentrations of methyl mercaptopurine nucleotides were found in patients with the nonfunctional ITPA allele. Moreover, there was a significantly higher probability of severe febrile neutropenia in patients with a variant ITPA allele among patients whose dose of mercaptopurine had been adjusted for TPMT genotype. In a cohort of patients whose mercaptopurine dose was not adjusted for TPMT phenotype, the TPMT genotype had a greater effect than the ITPA genotype. In conclusion, genetic polymorphism of ITPA is a significant determinant of mercaptopurine metabolism and of severe febrile neutropenia, after combination chemotherapy for ALL in which mercaptopurine doses are individualized on the basis of TPMT genotype. PMID:18685564

  2. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia.

    PubMed

    Stocco, G; Cheok, M H; Crews, K R; Dervieux, T; French, D; Pei, D; Yang, W; Cheng, C; Pui, C-H; Relling, M V; Evans, W E

    2009-02-01

    The influence of genetic polymorphism in inosine triphosphate pyrophosphatase (ITPA) on thiopurine-induced adverse events has not been investigated in the context of combination chemotherapy for acute lymphoblastic leukemia (ALL). This study investigated the effects of a common ITPA variant allele (rs41320251) on mercaptopurine metabolism and toxicity during treatment of children with ALL. Significantly higher concentrations of methyl mercaptopurine nucleotides were found in patients with the nonfunctional ITPA allele. Moreover, there was a significantly higher probability of severe febrile neutropenia in patients with a variant ITPA allele among patients whose dose of mercaptopurine had been adjusted for TPMT genotype. In a cohort of patients whose mercaptopurine dose was not adjusted for TPMT phenotype, the TPMT genotype had a greater effect than the ITPA genotype. In conclusion, genetic polymorphism of ITPA is a significant determinant of mercaptopurine metabolism and of severe febrile neutropenia, after combination chemotherapy for ALL in which mercaptopurine doses are individualized on the basis of TPMT genotype.

  3. NAMPT and NAMPT-controlled NAD Metabolism in Vascular Repair.

    PubMed

    Wang, Pei; Li, Wen-Lin; Liu, Jian-Min; Miao, Chao-Yu

    2016-06-01

    Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.

  4. METABOLISM OF ω-AMINO ACIDS V.

    PubMed Central

    Hardman, John K.; Stadtman, Thressa C.

    1963-01-01

    Hardman, John K. (National Heart Institute, National Institutes of Health, Bethesda, Md.) and Thressa C. Stadtman. Metabolism of ω-amino acids. V. Energetics of the γ-aminobutyrate fermentation by Clostridium aminobutyricum. J. Bacteriol. 85:1326–1333. 1963.—Clostridium aminobutyricum utilizes γ-aminobutyrate as its sole carbon, nitrogen, and energy source, producing ammonia, acetate, and butyrate as a result of this fermentation. Coenzyme A (CoA)-transferase, phosphotransacetylase, and acetokinase activities have been demonstrated in crude extracts of the organism; the coupling of the reactions catalyzed by these enzymes to the fermentation reactions provides a mechanism whereby C. aminobutyricum can obtain energy, in the form of adenosine triphosphate, from the decomposition of γ-aminobutyrate. Indirect evidence of additional phosphorylation, at the electron-transport level, has been obtained from molar growth yield studies and from the inhibition by 2,4-dinitrophenol of butyrate synthesis from γ-aminobutyrate and from crotonyl-CoA. PMID:14047225

  5. Adenosine triphosphate postconditioning is associated with better preserved global and regional cardiac function during myocardial ischemia and reperfusion: a speckle tracking imaging-based echocardiologic study.

    PubMed

    Ren, Min; Liu, Yujie; Zhao, Huiya; Dong, Shixia; Jiang, Zhonghui; Li, Keting; Tian, Jiawei

    2016-10-01

    Effects of ischemic postconditioning (IPostC) and adenosine triphosphate (ATP)-mediated pharmacologic postconditioning (ATP-PPostC) on cardiac function were evaluated by speckle tracking imaging (STI)-based echocardiography. A myocardial I/R model was induced in rabbits by reversible ligation of the left ventricular branch of coronary artery. Rabbits were randomized into three groups: ischemia and reperfusion (IR) (no further intervention), IPostC, and ATP-PPostC groups. Cardiac function was evaluated by conventional and STI-based echocardiography. Myocardial necrosis, apoptosis, and myocardial mRNAs of apoptosis-related proteins (Bcl-2 and Bax) were evaluated. Speckle tracking imaging (STI)-based echocardiography revealed that IPostC and ATP-PPostC were associated with better preserved global and regional cardiac function, as indicated by significantly increased GLSrsys, GLSrd, GLSsys, SrLsys, SrLd, and SLsys in both groups (all P<.5). Subsequent pathologic studies indicate that the percentage of necrotic myocardium and permillage of apoptotic cells were significantly lower in the IPostC and ATP-PPostC groups than in the IR group (all P<.05). Moreover, both IPostC and ATP-PPostC were associated with increased Bcl-2 mRNA levels and reduced Bax mRNA levels. IPostC and ATP-PPostC may exert cardioprotective functions by better preservation of cardiac function during the I/R process and at least partly via attenuation of myocardial apoptosis. © 2016 John Wiley & Sons Ltd.

  6. Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.

    2014-01-01

    Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant

  7. Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency

    PubMed Central

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties. PMID:22969765

  8. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  9. Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men

    PubMed Central

    2013-01-01

    Background Currently, there is a lack of studies examining the effects of adenosine-5′-triphosphate (ATP) supplementation utilizing a long-term, periodized resistance-training program (RT) in resistance-trained populations. Therefore, we investigated the effects of 12 weeks of 400 mg per day of oral ATP on muscular adaptations in trained individuals. We also sought to determine the effects of ATP on muscle protein breakdown, cortisol, and performance during an overreaching cycle. Methods The study was a 3-phase randomized, double-blind, and placebo- and diet-controlled intervention. Phase 1 was a periodized resistance-training program. Phase 2 consisted of a two week overreaching cycle in which volume and frequency were increased followed by a 2-week taper (Phase 3). Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of ATP; assessment performance variables also occurred at the end of weeks 9 and 10, corresponding to the mid and endpoints of the overreaching cycle. Results There were time (p < 0.001), and group x time effects for increased total body strength (+55.3 ± 6.0 kg ATP vs. + 22.4 ± 7.1 kg placebo, p < 0.001); increased vertical jump power (+ 796 ± 75 ATP vs. 614 ± 52 watts placebo, p < 0.001); and greater ultrasound determined muscle thickness (+4.9 ± 1.0 ATP vs. (2.5 ± 0.6 mm placebo, p < 0.02) with ATP supplementation. During the overreaching cycle, there were group x time effects for strength and power, which decreased to a greater extent in the placebo group. Protein breakdown was also lower in the ATP group. Conclusions Our results suggest oral ATP supplementation may enhance muscular adaptations following 12-weeks of resistance training, and prevent decrements in performance following overreaching. No statistically or clinically significant changes in blood chemistry or hematology were observed. Trial registration ClinicalTrials.gov NCT01508338 PMID

  10. Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer.

    PubMed

    Zhang, Shusheng; Yan, Yameng; Bi, Sai

    2009-11-01

    In the present study, binary and triplex DNA molecular beacons, as signaling probes based on a luminol-H(2)O(2)-horseradish peroxidase (HRP)-fluorescein chemiluminescence resonance energy transfer (CRET) system and structure-switching aptamers for highly sensitive detection of small molecules, are developed using adenosine triphosphate (ATP) as a model analyte to demonstrate the generality of the strategy. This CRET process occurs from donor luminol to acceptor fluorescein, which is oxidized by H(2)O(2) and catalyzed by HRP. DNA aptamer for ATP is first attached on the surface of magnetic nanoparticles (MNPs). The cDNA linker has an extension that hybridizes with two other DNAs (LumAuNP-DNA and F-DNA) or three other DNAs (HRP-DNA, LumAuNP-DNA, and F-DNA) to fabricate CRET-BMBP-MNP or CRET-TMBP-MNP conjugates that provide the CRET signals. Thus, in the absence of ATP, when the MNPs are removed from the solution, they also take with them the linker DNA and the CRET signal probes, and no CRET signal can be detected. However, when ATP is introduced, a competition for the ATP aptamer between ATP and the cDNA linker occurs. As a result, CRET-BMBP and CRET-TMBP are forced to dissociate from the MNP surface based on the structure switching of the aptamer. The CRET signals are proportional to the concentration of ATP. In order to accelerate the rate of the aptamer structure-switching process, an invader DNA is introduced into the proposed strategy. The present CRET system provides a low detection limit of 1.1 x 10(-7) and 3.2 x 10(-7) M for ATP detection by BMBP and TMBP, respectively, which also exhibits a good selectivity for ATP detection. Sample assays of ATP in K562 leukemia cells and 4T1 breast cancer cells confirm the reliability and practicality of the protocol, which reveal a good prospect of this platform for biological sample analysis.

  11. Origin and ablation of the adenosine triphosphate induced atrial fibrillation after circumferential pulmonary vein isolation: effects on procedural success rate.

    PubMed

    Zhang, Jinlin; Tang, Cheng; Zhang, Yonghua; Su, X I

    2014-04-01

    Adenosine triphosphate (ATP) has been used to provoke dormant pulmonary vein (PV) conduction after circumferential PV isolation (CPVI). However, there have been no systematic studies examining the incidence and the mechanism of ATP-induced atrial fibrillation (AF) following CPVI in paroxysmal AF. In this study, we explore the mechanism of ATP-induced AF and assess the feasibility of eliminating this response by additional radiofrequency (RF) ablation. A total of 300 consecutive patients with paroxysmal AF underwent CPVI. After all PVs were isolated, intravenous ATP (40 mg) was administered during an intravenous isoproterenol (ISP) infusion (5 μg/min). AF was reproducibly induced by ATP in 39 patients. Non-PV foci were confirmed and located in 29 of these patients at the onset of AF, including 27 foci in the superior vena cava (SVC), 1 focus in the crista terminalis, and 1 focus near the antrum of the PV. In all these cases, ATP-induced AF was eliminated after the non-PV foci were successfully ablated. For the other 10 patients, the foci triggering AF could not be confirmed or located due to the transient effect of ATP, thus no further ablation was performed. After a mean follow-up period of 18.7 ± 6.4 (8-24) months, the success rate in the ATP-induced AF group was not significantly different compared with the conventional treatment group who did not exhibit ATP-induced AF (76.9% vs 67.3%; P = 0.25). But in the subgroup of which the ATP-induced AF could be eliminated by additional RF ablation, the success rate was significantly higher than the non-ATP inducible group (86.2% vs 67.3%; P = 0.04). A large proportion of the ATP-induced AF post CPVI were initiated by rapid firing in the SVC. Eliminating this response by additional ablation may have an influence on clinical results of paroxysmal AF ablation. © 2014 Wiley Periodicals, Inc.

  12. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    PubMed

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-22

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe 3 O 4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe 3 O 4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H 2 O 2 ) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe 3 O 4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe 2+ /Fe 3+ sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H 2 O 2 . Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe 3 O 4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe 3 O 4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe 3 O 4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe 3 O 4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe 3 O 4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  13. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    PubMed Central

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I.; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits. PMID:29497379

  14. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins.

    PubMed

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  15. Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake in Escherichia coli.

    PubMed

    Pezo, Valérie; Hassan, Camille; Louis, Dominique; Sargueil, Bruno; Herdewijn, Piet; Marlière, Philippe

    2018-05-18

    We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.

  16. Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus.

    PubMed

    Kimura, Yoshio; Tanaka, Chihiro; Oka, Manami

    2018-07-01

    Myxococcus xanthus generates diadenosine tetraphosphates (Ap 4 A) and diadenosine pentaphosphates (Ap 5 A) under various stress conditions. M. xanthus lysyl-tRNA synthetase (LysS) efficiently synthesizes Ap 4 A from ATP, Ap 5 A from ATP and adenosine tetraphosphate (Ap 4 ), and Ap 4 from ATP and triphosphate. To identify other M. xanthus enzymes that can catalyze Ap 4 A and Ap 4 synthesis, 15 M. xanthus aminoacyl-tRNA synthetases (aaRSs), four acyl-CoA synthetases (Acys), three acetyl-CoA synthetases (Aces), phosphoglycerate kinase (Pgk), and adenylate kinase (Adk) were expressed in Escherichia coli and examined for Ap 4 A or Ap 4 synthetase activity using ATP or ATP and triphosphate as substrates. Among the tested enzymes, LysS had the highest Ap 4 A synthetase activity. AlaRS, SerRS, and LeuRS1 showed high ADP synthetase activity with ATP as a substrate in the presence of pyrophosphatase, and also demonstrated the ability to produce Ap 4 from ATP and triphosphate in the absence of pyrophosphatase. Ap 4 formation by AlaRS, SerRS, and LeuRS1 was approximately 4- to 13-fold higher compared with that of Ap 4 A, suggesting that these enzymes prefer triphosphate over ATP as a substrate in the second reaction. Some of the recombinant M. xanthus Acys and Aces also synthesized Ap 4 from ATP and triphosphate. However, Pgk was capable of catalyzing the production of Ap 4 from ATP and 3-phosphoglycerate in the presence of Mg 2+ and did not require triphosphate, suggesting that this enzyme is mainly responsible for Ap 4 synthesis in M. xanthus.

  17. Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in Cryptococcus neoformans.

    PubMed

    Blundell, Ross D; Williams, Simon J; Arras, Samantha D M; Chitty, Jessica L; Blake, Kirsten L; Ericsson, Daniel J; Tibrewal, Nidhi; Rohr, Jurgen; Koh, Y Q Andre E; Kappler, Ulrike; Robertson, Avril A B; Butler, Mark S; Cooper, Matthew A; Kobe, Bostjan; Fraser, James A

    2016-09-09

    Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.

  18. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    DTIC Science & Technology

    1986-01-01

    Paddle and Burnstock (326), Williams and Forrester (463), Forrester and Williams (151) and Clemens and Forrester (82) provide evidence that hypoxia may...an ATp4 - receptor. Fed. Proc. 45:208, 1986. (abstr) 99. Dahlen , S.E. and Hedqvist, P. ATP, B,y-methylene ATP andN adenosine inhibit non-cholinergic...regulation of skeletal muscle blood low. Circ Res. 29:375-384, 1971. 117. Dodd, J., Jahr, C.E., Hamilton, P.N., Heath, M.J., Matthew , W.P., and Jessell, T.M

  19. Determination of intracellular fludarabine triphosphate in human peripheral blood mononuclear cells by LC-MS/MS.

    PubMed

    Huang, Liusheng; Lizak, Patricia; Aweeka, Francesca; Long-Boyle, Janel

    2013-12-01

    Fludarabine is a nucleoside analog routinely used in conditioning regimens of pediatric allogeneic stem cell transplantation to promote stem cell engraftment. In children, it remains a challenge to accurately and precisely quantify the active intracellular triphosphate species of fludarabine in vivo, primarily due to limitations on blood volume and inadequate assay sensitivity. Here we report a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of fludarabine triphosphate in human peripheral blood mononuclear cells (PBMC). PBMC (∼5 million cells) were collected and lysed in 1mL 70% methanol containing 1.2mM tris buffer (pH 7.4). The lysate (80μL) was mixed with internal standard (2-chloro-adenosine triphosphate, 150ng/mL, 20μL) and injected onto an API5000 LC-MS/MS system. Separation was achieved on a hypercarb column (100mm×2.1mm, 3μm) eluted with 100mM ammonium acetate (pH 9.8) and acetonitrile in a gradient mode at a flow rate of 0.4mL/min. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI(-)) were used for detection. The ion pairs 524.0/158.6 for the drug and 540.0/158.8 for the IS were selected for quantification and 524.0/425.7 used for confirmation. Retention time was 3.0 and 3.4min for fludarabine triphosphate and the IS, respectively. The concentration range for the calibration curve was 1.52-76nM. Our method is simple, fast, and has been successfully applied in a clinical dose-concentration study in children to quantify intracellular fludarabine in low volume clinical samples. The median concentration was 1.03 and 3.19pmole/million PBMC at trough and peak time points, respectively. Fludarabine triphosphate is degraded in water within hours but relatively stable in 70% methanol-tris (1.2mM, pH 7.4). One limitation is that the hypercarb column takes a longer time to equilibrate than conventional reverse phase columns, and peaks become broad and distorted if the column is not washed

  20. Energy metabolism of intervertebral disc under mechanical loading.

    PubMed

    Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles

    2013-11-01

    Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.

  1. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    PubMed

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various

  3. No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat

    DTIC Science & Technology

    2008-11-01

    358–363, 1996. 11. Cook NC, Samman S. Flavonoids — chemistry , metabolism, cardiopro- tective effects, and dietary sources. Nutr Biochem 7: 66–76, 1996...metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305–310, 1997. R400 ADENOSINE RECEPTOR ANTAGONISM AND EXERCISE IN THE HEAT...Interactions of flavonoids with adenosine receptors. J Med Chem 39: 781–788, 1996. 35. MacRae HS, Mefferd KM. Dietary antioxidant supplementation com

  4. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  5. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Aerobic metabolism on muscle contraction in porcine iris sphincter.

    PubMed

    Kanda, Hidenori; Kaneda, Takeharu; Kato, Asami; Yogo, Takuya; Harada, Yasuji; Hara, Yasusi; Urakawa, Norimoto; Shimizu, Kazumasa

    2016-12-01

    Eyes are supplied O 2 through the cornea and vessels of the retina and iris, which are tissues characterized by aerobic metabolism. Meanwhile, there are no reports on the association between iris sphincter contraction and aerobic metabolism. In this paper, we studied the aforementioned association. Eyes from adult pigs of either sex were obtained from a local abattoir. A muscle strip was connected to a transducer to isometrically record the tension. O 2 consumption was measured using a Clark-type polarograph connected to a biological oxygen monitor. Creatine phosphate (PCr) and adenosine triphosphate (ATP) contents were measured in the muscle strips by high-performance liquid chromatography (HPLC). Iris sphincter muscles were measured in resting, contractile or hypoxic phases. Contraction was induced by hyperosmotic 65 mM KCl (H-65K + ) or carbachol (CCh), and hypoxia was induced by aeration with N 2 instead of O 2 or by addition of sodium cyanide (NaCN). H-65K + - and CCh-induced muscle contraction, involved increasing O 2 consumption. Hypoxia and NaCN significantly decreased H-65K + - and CCh-induced muscle contraction and/or O 2 consumption and PCr contents. Our results suggest that the contractile behavior in porcine iris sphincter highly depends on mitogen oxidative metabolism.

  7. Mannose and fructose metabolism in red blood cells during cold storage in SAGM.

    PubMed

    Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard

    2017-11-01

    Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.

  8. Adenosine triphosphate stress myocardial perfusion imaging for risk stratification of patients aged 70 years and older with suspected coronary artery disease.

    PubMed

    Yao, Zhiming; Zhu, Hui; Li, Wenchan; Chen, Congxia; Wang, Hua; Shi, Lei; Zhang, Wenjie

    2017-04-01

    We investigated the cardiac risk stratification value of adenosine triphosphate stress myocardial perfusion imaging (ATP-MPI) in patients aged 70 years and older with suspected coronary artery disease (CAD). We identified a series of 415 consecutive patients aged 70 years and older with suspected CAD, who had undergone ATP-MPI with 99m Tc-MIBI. The presence of a fixed and/or reversible perfusion defect was considered as an abnormal MPI. Follow-up was available in 399 patients (96.1%) over 3.45 ± 1.71 years after excluding 16 patients who underwent early coronary revascularization <60 days after MPI. The major adverse cardiac events (MACE), including cardiac death, nonfatal infarction, and late coronary revascularization, were recorded. One hundred twenty-five (31.3%) patients had abnormal MPI and the remaining had normal MPI. A multivariable analysis using Cox regression demonstrated that abnormal MPI was independently associated with MACE (hazard ratio 19.50 and 95% confidence interval 5.91-64.31, P value .000). The patients with SSS > 8 had significantly higher cumulative MACE rate than patients with SSS ≤ 8 had (37.8% vs 5.2%, respectively, P < .001). The Kaplan-Meier cumulative MACE-free survival in patients with abnormal MPI (57.0%) was significantly lower than that in patients with normal MPI (89.6%), P < .0001. Among patients with SSS > 8, the Kaplan-Meier cumulative MACE-free survival were 36.9% in patients ≥80 years old and 49.5% in patients 70-79 years old, respectively, P < .05. However, among patients with SSS ≤ 8, there was no difference between the Kaplan-Meier cumulative MACE-free survivals of these two age groups. ATP-MPI data are useful for the prediction of major adverse cardiac events in patients aged 70 years and older with suspected CAD.

  9. Ba-Wei-Die-Huang-Wan (Hachimi-jio-gan) can ameliorate cyclophosphamide-induced ongoing bladder overactivity and acidic adenosine triphosphate solution-induced hyperactivity on rats prestimulated bladder.

    PubMed

    Lee, Wei-Chia; Wu, Chia-Ching; Chuang, Yao-Chi; Tain, You-Lin; Chiang, Po-Hui

    2016-05-26

    Ba-Wei-Die-Huang-Wan (BWDHW) is the traditional Chinese medicine formula containing eight ingredients, namely Rehmannia glutinosa (Gaetn.) DC., root, steamed & dried; Cornus officinalis Siebold & Zucc., fructus, dried; Dioscorea oppositifolia L., root, dried; Alisma plantago-aquatica, subsp. orientale (Sam.) Sam., tuber, dried; Poria cocos (Fr.) Wolf., sclerotium, dried; Paeonia×suffruticosa Andrews, bark, dried; Cinnamomum cassia (Nees & T.Nees) J. Presl, bark, dried; Aconitum carmichaeli Debeaux, lateral root, dried & processed. It has been used for diabetes and urinary frequency treatments. We investigate effects of BWDHW on cyclophosphamide (CYP)-induced ongoing bladder overactivity and acidic adenosine triphosphate (ATP) solution-induced hyperactivity on rat's prestimulated bladder. Female Wistar rats were injected with intraperitoneal CYP (100mg/kg) or saline respectively. Rats were treated with BWDHW (90mg/kg/day) or vehicle for the next five days. After treatments animals were evaluated both in metabolic cage model and then by cystometry. Acidic ATP solution (5mM, pH 3.3) was instilled to provoke bladder hyperactivity. Bladder mucosa and muscle proteins were assessed by Western blotting. As compared to the controls, the CYP group showed significantly decreased mean cystometric intercontractile interval and increased micturition frequency, whereas the CYP/BWDWH group did not. The CYP group had significant protein overexpression in mucosal M2, M3, P2X2, and P2X3 receptors as well as detrusor M2 and M3 receptors. However, the CYP/BWDWH group had insignificant changes from controls. In the provoking test, the control/BWDHW and CYP/BWDHW groups were less affected by acidic ATP stimulation of intercontractile interval changes than the control group. Compared to the control group, the control/BWDHW group showed significantly lower mucosal P2X3 protein expression and the CYP group showed significant mucosal TRPV1 protein upregulation after the provoking test

  10. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets.

    PubMed

    Vilches-Flores, Alonso; Tovar, Armando R; Marin-Hernandez, Alvaro; Rojas-Ochoa, Alberto; Fernandez-Mejia, Cristina

    2010-07-01

    Besides its role as a carboxylase prosthetic group, biotin has important effects on gene expression. However, the molecular mechanisms through which biotin exerts these effects are largely unknown. We previously found that biotin increases pancreatic glucokinase expression. We have now explored the mechanisms underlying this effect. Pancreatic islets from Wistar rats were treated with biotin, in the presence or absence of different types of inhibitors. Glucokinase mRNA and 18s rRNA abundance were determined by real-time PCR. Adenosine triphosphate (ATP) content was analyzed by fluorometry. Biotin treatment increased glucokinase mRNA abundance approximately one fold after 2 h; the effect was sustained up to 24 h. Inhibition of soluble guanylate cyclase or protein kinase G (PKG) signalling suppressed biotin-induced glucokinase expression. The cascade of events downstream of PKG in biotin-mediated gene transcription is not known. We found that inhibition of insulin secretion with diazoxide or nifedipine prevented biotin-stimulated glucokinase mRNA increase. Biotin treatment increased islet ATP content (control: 4.68+/-0.28; biotin treated: 6.62+/-0.26 pmol/islet) at 30 min. Inhibition of PKG activity suppressed the effects of biotin on ATP content. Insulin antibodies or inhibitors of phosphoinositol-3-kinase/Akt insulin signalling pathway prevented biotin-induced glucokinase expression. The nucleotide 8-Br-cGMP mimicked the biotin effects. We propose that the induction of pancreatic glucokinase mRNA by biotin involves guanylate cyclase and PKG activation, which leads to an increase in ATP content. This induces insulin secretion via ATP-sensitive potassium channels. Autocrine insulin, in turn, activates phosphoinositol-3-kinase/Akt signalling. Our results offer new insights into the pathways that participate in biotin-mediated gene expression. (c) 2010 Elsevier Inc. All rights reserved.

  11. Effector T cells require fatty acid metabolism during murine graft-versus-host disease

    PubMed Central

    Byersdorfer, Craig A.; Tkachev, Victor; Opipari, Anthony W.; Goodell, Stefanie; Swanson, Jacob; Sandquist, Stacy; Glick, Gary D.; Ferrara, James L. M.

    2013-01-01

    Activated T cells require increased energy to proliferate and mediate effector functions, but the metabolic changes that occur in T cells following stimulation in vivo are poorly understood, particularly in the context of inflammation. We have previously shown that T cells activated during graft-versus-host disease (GVHD) primarily rely on oxidative phosphorylation to synthesize adenosine 5′-triphosphate. Here, we demonstrate that alloreactive effector T cells (Teff) use fatty acids (FAs) as a fuel source to support their in vivo activation. Alloreactive T cells increased FA transport, elevated levels of FA oxidation enzymes, up-regulated transcriptional coactivators to drive oxidative metabolism, and increased their rates of FA oxidation. Importantly, increases in FA transport and up-regulation of FA oxidation machinery occurred specifically in T cells during GVHD and were not seen in Teff following acute activation. Pharmacological blockade of FA oxidation decreased the survival of alloreactive T cells but did not influence the survival of T cells during normal immune reconstitution. These studies suggest that pathways controlling FA metabolism might serve as therapeutic targets to treat GVHD and other T-cell–mediated immune diseases. PMID:24046012

  12. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  13. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  14. 27-Hydroxycholesterol contributes to disruptive effects on learning and memory by modulating cholesterol metabolism in the rat brain.

    PubMed

    Zhang, D-D; Yu, H-L; Ma, W-W; Liu, Q-R; Han, J; Wang, H; Xiao, R

    2015-08-06

    Cholesterol metabolism is important for neuronal function in the central nervous system (CNS). The oxysterol 27-hydroxycholesterol (27-OHC) is a cholesterol metabolite that crosses the blood-brain barrier (BBB) and may be a useful substitutive marker for neurodegenerative diseases. However, the effects of 27-OHC on learning and memory and the underlying mechanisms are unclear. To determine this mechanism, we investigated learning and memory and cholesterol metabolism in rat brain following the injection of various doses of 27-OHC into the caudal vein. We found that 27-OHC increased cholesterol levels and upregulated the expression of liver X receptor-α (LXR-α) and adenosine triphosphate (ATP)-binding cassette transporter protein family member A1 (ABCA1). In addition, 27-OHC decreased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CR) and low-density lipoprotein receptor (LDLR) in rat brain tissues. These findings suggest that 27-OHC may negatively modulate cognitive effects and cholesterol metabolism in the brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.

    PubMed

    Coskuner, Orkid; Murray, Ian V J

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.

  16. Nonenzymatic glycation of guanosine 5'-triphosphate by glyceraldehyde: an in vitro study of AGE formation.

    PubMed

    Li, Yuyuan; Dutta, Udayan; Cohenford, Menashi A; Dain, Joel A

    2007-12-01

    Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway.

  17. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide.

    PubMed

    Caiazzo, Elisabetta; Maione, Francesco; Morello, Silvana; Lapucci, Andrea; Paccosi, Sara; Steckel, Bodo; Lavecchia, Antonio; Parenti, Astrid; Iuvone, Teresa; Schrader, Jürgen; Ialenti, Armando; Cicala, Carla

    2016-07-15

    Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73

  18. Development of a human-specific B. thetaiotaomicron IMS/ATP assay for measuring viable human contamination in surface waters in Baja California, Mexico

    EPA Science Inventory

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-couple...

  19. Reappraisal of the clinical implications of adenosine triphosphate in terms of the prediction of reconnection sites in cases with electrical isolation of the pulmonary veins.

    PubMed

    Okishige, Kaoru; Aoyagi, Hideshi; Ihara, Kensuke; Iwai, Shinsuke; Nakamura, Tomofumi; Yamashita, Mitsumi; Katoh, Nobutaka; Hasegawa, Tomoaki; Kawaguchi, Naohiko; Keida, Takehiko; Sasano, Tetsuo; Hirao, Kenzo

    2015-11-01

    Dormant conduction (DC) induced by intravenous adenosine triphosphate (ATP) after pulmonary vein (PV) isolation (PVI) could predict subsequent PV reconnection (RC) sites. This study aimed to investigate the relationship between the DC and RC sites during the long-term follow-up. Ninety-one consecutive patients (62 males; mean age, 62 ± 11 years) with symptomatic persistent (n = 18) or paroxysmal (n = 73) atrial fibrillation (AF) who underwent PVI were included in this study. After a successful PVI, we administered ATP to reveal the DC sites. In total, DC sites were observed in 46 (51%) patients, and all were left un-ablated after marking or tagging all of them using fluoroscopic images and a three-dimensional (3D) mapping system. After the follow-up period (14.8 ± 3.6 months), AF recurred in 29 (32%) patients, all of whom had a DC in the initial ablation session, and underwent redo sessions. We divided the DC sites into three groups; in group A, the RC sites differed from the DC sites, in group B, the RC sites were identical to the DC sites, and in group C, the RC sites involved both DC and other sites. As a result, 20 (69%), 3 (11.5%), and 6 (19.5%) patients belonged to groups A, B, and C, respectively. Statistical analyses comparing the agreement between DC and the RC sites yielded a weak relationship. DC sites implying RC sites had a weak agreement, and other options to predict RC sites will be required to improve the clinical benefit of CA of AF.

  20. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    PubMed

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  1. Postischemic Treatment With Ethyl Pyruvate Prevents Adenosine Triphosphate Depletion, Ameliorates Inflammation, and Decreases Thrombosis in a Murine Model of Hind-Limb Ischemia and Reperfusion

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Atkins, Marvin D.; Jones, John J.; Conrad, Mark F.; Austen, William G.; Fink, Mitchell P.; Watkins, Michael T.

    2011-01-01

    Introduction Experiments were designed to investigate the effects of ethyl pyruvate (EP) in a murine model of hind-limb ischemia-reperfusion (IR) injury. Methods C57BL6 mice underwent 90 minutes of unilateral ischemia followed by 24 hours of reperfusion using two treatment protocols. For the preischemic treatment (pre-I) protocol, mice (n = 6) were given 300 mg/kg EP before ischemia, followed by 150 mg/kg of EP just before reperfusion and at 6 hours and 12 hours after reperfusion. In a postischemic treatment (post-I) protocol, mice (n = 7) were treated with 300 mg/kg EP at the end of the ischemic period, then 15 minutes later, and 2 hours after reperfusion and 150 mg/kg of EP at 4 hours, 6 hours, 10 hours, 16 hours, and 22 hours after reperfusion. Controls mice for both protocols were treated with lactated Ringers alone at time intervals identical to EP. Skeletal muscle levels of adenosine triphosphate (ATP), interleukin-1β, keratinocyte chemoattractant protein, and thrombin antithrombin-3 complex were measured. Skeletal muscle architectural integrity was assessed microscopically. Results ATP levels were higher in mice treated with EP compared with controls under the both treatment protocols (p = 0.02). Interleukin-1β, keratinocyte chemoattractant protein, thrombin antithrombin-3 complex (p < 0.05), and the percentage of injured fibers (p < 0.0001) were significantly decreased in treated versus control mice under the both protocols. Conclusion Muscle fiber injury and markers of tissue thrombosis and inflammation were reduced, and ATP was preserved with EP in pre-I and post-I protocols. Further investigation of the efficacy of EP to modulate IR injury in a larger animal model of IR injury is warranted. PMID:21217488

  2. Application of adenosine triphosphate affinity probe and scheduled multiple-reaction monitoring analysis for profiling global kinome in human cells in response to arsenite treatment.

    PubMed

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-11-04

    Phosphorylation of cellular components catalyzed by kinases plays important roles in cell signaling and proliferation. Quantitative assessment of perturbation in global kinome may provide crucial knowledge for elucidating the mechanisms underlying the cytotoxic effects of environmental toxicants. Here, we utilized an adenosine triphosphate (ATP) affinity probe coupled with stable isotope labeling by amino acids in cell culture (SILAC) to assess quantitatively the arsenite-induced alteration of global kinome in human cells. We constructed a SILAC-compatible kinome library for scheduled multiple-reaction monitoring (MRM) analysis and adopted on-the-fly recalibration of retention time shift, which provided better throughput of the analytical method and enabled the simultaneous quantification of the expression of ∼300 kinases in two LC-MRM runs. With this improved analytical method, we conducted an in-depth quantitative analysis of the perturbation of kinome of GM00637 human skin fibroblast cells induced by arsenite exposure. Several kinases involved in cell cycle progression, including cyclin-dependent kinases (CDK1 and CDK4) and Aurora kinases A, B, and C, were found to be hyperactivated, and the altered expression of CDK1 was further validated by Western analysis. In addition, treatment with a CDK inhibitor, flavopiridol, partially restored the arsenite-induced growth inhibition of human skin fibroblast cells. Thus, sodium arsenite may confer its cytotoxic effect partly through the aberrant activation of CDKs and the resultant perturbation of cell cycle progression. Together, we developed a high-throughput, SILAC-compatible, and MRM-based kinome profiling method and demonstrated that the method is powerful in deciphering the molecular modes of action of a widespread environmental toxicant. The method should be generally applicable for uncovering the cellular pathways triggered by other extracellular stimuli.

  3. Application of Adenosine Triphosphate Affinity Probe and Scheduled Multiple-Reaction Monitoring Analysis for Profiling Global Kinome in Human Cells in Response to Arsenite Treatment

    PubMed Central

    2015-01-01

    Phosphorylation of cellular components catalyzed by kinases plays important roles in cell signaling and proliferation. Quantitative assessment of perturbation in global kinome may provide crucial knowledge for elucidating the mechanisms underlying the cytotoxic effects of environmental toxicants. Here, we utilized an adenosine triphosphate (ATP) affinity probe coupled with stable isotope labeling by amino acids in cell culture (SILAC) to assess quantitatively the arsenite-induced alteration of global kinome in human cells. We constructed a SILAC-compatible kinome library for scheduled multiple-reaction monitoring (MRM) analysis and adopted on-the-fly recalibration of retention time shift, which provided better throughput of the analytical method and enabled the simultaneous quantification of the expression of ∼300 kinases in two LC-MRM runs. With this improved analytical method, we conducted an in-depth quantitative analysis of the perturbation of kinome of GM00637 human skin fibroblast cells induced by arsenite exposure. Several kinases involved in cell cycle progression, including cyclin-dependent kinases (CDK1 and CDK4) and Aurora kinases A, B, and C, were found to be hyperactivated, and the altered expression of CDK1 was further validated by Western analysis. In addition, treatment with a CDK inhibitor, flavopiridol, partially restored the arsenite-induced growth inhibition of human skin fibroblast cells. Thus, sodium arsenite may confer its cytotoxic effect partly through the aberrant activation of CDKs and the resultant perturbation of cell cycle progression. Together, we developed a high-throughput, SILAC-compatible, and MRM-based kinome profiling method and demonstrated that the method is powerful in deciphering the molecular modes of action of a widespread environmental toxicant. The method should be generally applicable for uncovering the cellular pathways triggered by other extracellular stimuli. PMID:25301106

  4. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.

    PubMed

    Zhou, Qian; Lin, Youxiu; Lin, Yuping; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-01-01

    Biomolecular immobilization and construction of the sensing platform are usually crucial for the successful development of a high-efficiency detection system. Herein we report on a novel and label-free signal-amplified aptasensing for sensitive electrochemical detection of small molecules (adenosine triphosphate, ATP, used in this case) by coupling with target-induced hybridization chain reaction (HCR) and the assembly of electroactive silver nanotags. The system mainly consisted of two alternating hairpin probes, a partial-pairing trigger-aptamer duplex DNA and a capture probe immobilized on the electrode. Upon target ATP introduction, the analyte attacked the aptamer and released the trigger DNA, which was captured by capture DNA immobilized on the electrode to form a newly partial-pairing double-stranded DNA. Thereafter, the exposed domain at trigger DNA could be utilized as the initator strand to open the hairpin probes in sequence, and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix. The electrochemical signal derived from the assembled silver nanotags on the nicked double-helix. Under optimal conditions, the electrochemical aptasensor could exhibit a high sensitivity and a low detection limit, and allowed the detection of ATP at a concentration as low as 0.03 pM. Our design showed a high selectivity for target ATP against its analogs because of the high-specificity ATP-aptamer reaction, and its applicable for monitoring ATP in the spiking serum samples. Improtantly, the distinct advantages of the developed aptasensor make it hold a great potential for the development of simple and robust sensing strategies for the detection of other small molecules by controlling the apatmer sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells.

    PubMed

    Koo, Tai Yeon; Lee, Jae-Ghi; Yan, Ji-Jing; Jang, Joon Young; Ju, Kyung Don; Han, Miyeun; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok

    2017-08-01

    Extracellular adenosine triphosphate (ATP) binds to purinergic receptors and, as a danger molecule, promotes inflammatory responses. Here we tested whether periodate-oxidized ATP (oATP), a P2X7 receptor (P2X7R) antagonist can attenuate renal ischemia-reperfusion injury and clarify the related cellular mechanisms. Treatment with oATP prior to ischemia-reperfusion injury decreased blood urea nitrogen, serum creatinine, the tubular injury score, and tubular epithelial cell apoptosis after injury. The infiltration of dendritic cells, neutrophils, macrophages, CD69 + CD4 + , and CD44 + CD4 + T cells was attenuated, but renal Foxp3 + CD4 + Treg infiltration was increased by oATP. The levels of IL-6 and CCL2 were reduced in the oATP group. Additionally, oATP treatment following injury improved renal function, decreased the infiltration of innate and adaptive effector cells, and increased the renal infiltration of Foxp3 + CD4 + Tregs. Post-ischemia-reperfusion injury oATP treatment increased tubular cell proliferation and reduced renal fibrosis. oATP treatment attenuated renal functional deterioration after ischemia-reperfusion injury in RAG-1 knockout mice; however, Treg depletion using PC61 abrogated the beneficial effects of oATP in wild-type mice. Furthermore, oATP treatment after transfer of Tregs from wild-type mice improved the beneficial effects of Tregs on ischemia-reperfusion injury, but treatment after transfer of Tregs from P2X7R knockout mice did not. Renal ischemia-reperfusion injury was also attenuated in P2X7R knockout mice. Experiments using bone marrow chimeras established that P2X7R expression on hematopoietic cells rather than non-hematopoietic cells, such as tubular epithelial cells, plays a major role in ischemia-reperfusion injury. Thus, oATP attenuated acute renal damage and facilitated renal recovery in ischemia-reperfusion injury by expansion of Tregs. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights

  6. Beneficial effect of extracellular adenosine 5'-triphosphate treatment on the Indochinese leopard (Panthera pardus delacouri) sperm quality after cryopreservation.

    PubMed

    Thuwanut, P; Tipkantha, W; Siriaroonrat, B; Comizzoli, P; Chatdarong, K

    2017-04-01

    The Indochinese leopard (Panthera pardus delacouri) population, included in CITES Appendix I, has been declining for decades. Proper gamete preservation condition is critical for breeding programme management using artificial insemination or in vitro fertilization (IVF). The present study aimed at investigating the impact of post-thawing treatment of leopard semen with extracellular adenosine 5'-triphosphate (ATPe) on sperm quality (including morphological traits and ability to fertilize an oocyte). Semen from six adult male leopards was collected by electroejaculation (one ejaculation per cat). After the evaluation of the fresh sample quality, the semen was cryopreserved (10 × 10 6 cells per straw; two straws per cat). After thawing, the sperm sample from the first straw of each cat was divided into three aliquots: control (no ATPe), supplemented with 1.0 or 2.5 mM ATPe that were evaluated for sperm quality at 10, 30 min and 3 hr post-thawing. The sperm sample from the second straw, supplemented with 0, 1.0 or 2.5 mM ATPe for 30 min, was assessed for IVF with domestic cat oocytes. Sperm quality (all metrics) was negatively affected by the cryopreservation process (p ≤ .05). However, the percentage of sperm motility, level of progressive motility and percentage of plasma membrane integrity did not differ (p > .05) among post-thawing groups. The sperm mitochondrial membrane potential was enhanced (p ≤ .05) by ATPe treatment (1.0 and 2.5 mM; 10 min to 3 hr of incubation). Furthermore, incubation of ATPe (1.0 and 2.5 mM) for 30 min could promote sperm velocity patterns (curvilinear velocity; VCL and straight line velocity; VSL) (p ≤ .05). The percentage of pronuclear formation and cleaved embryos was increased (p ≤ .05) after 1.0 ATPe treatment (49.8 ± 2.8; 45.9 ± 1.5) compared to 0 mM (41.4 ± 3.3; 38.9 ± 0.5) whereas the number of sperm binding/oocyte did not significantly differ among groups. In summary, we suggest that ATPe

  7. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons.

    PubMed

    Mayorquin, Lady C; Rodriguez, Andrea V; Sutachan, Jhon-Jairo; Albarracín, Sonia L

    2018-01-01

    The central nervous system (CNS) requires sophisticated regulation of neuronal activity. This modulation is partly accomplished by non-neuronal cells, characterized by the presence of transmembrane gap junctions (GJs) and hemichannels (HCs). This allows small molecule diffusion to guarantee neuronal synaptic activity and plasticity. Astrocytes are metabolically and functionally coupled to neurons by the uptake, binding and recycling of neurotransmitters. In addition, astrocytes release metabolites, such as glutamate, glutamine, D-serine, adenosine triphosphate (ATP) and lactate, regulating synaptic activity and plasticity by pre- and postsynaptic mechanisms. Uncoupling neuroglial communication leads to alterations in synaptic transmission that can be detrimental to neuronal circuit function and behavior. Therefore, understanding the pathways and mechanisms involved in this intercellular communication is fundamental for the search of new targets that can be used for several neurological disease treatments. This review will focus on molecular mechanisms mediating physiological and pathological coupling between astrocytes and neurons through GJs and HCs.

  8. The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.

    PubMed Central

    Szondy, Z; Newsholme, E A

    1989-01-01

    The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990

  9. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  10. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies.

    PubMed

    Heydemann, Ahlke

    2018-06-20

    The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca 2+ ) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.

  11. Oxygen Transport Changes in Canine Subjects Transfused with Stored Blood from Chronically Anemic Donors.

    DTIC Science & Technology

    diphosphoglycerate , and adenosine triphosphate occurred with storage in both sets. 2,3 diphosphoglycerate levels were slightly higher initially in...Adenosine triphosphate levels increased significantly and remained high 24 hr after transfusion. Red cell survival decreased with storage for both

  12. Prolonged adenosine triphosphate infusion and exercise hyperemia in humans.

    PubMed

    Shepherd, John R A; Joyner, Michael J; Dinenno, Frank A; Curry, Timothy B; Ranadive, Sushant M

    2016-09-01

    In humans, intra-arterial ATP infusion in limbs mimics many features of exercise hyperemia. However, it remains unknown whether ATP can evoke the prolonged vasodilation seen during exercise. Therefore, we addressed two questions during a continuous 3-h brachial artery infusion of ATP [20 μg·100 ml forearm volume (FAV)(-1)·min(-1)]: 1) would skeletal muscle blood flow remain robust or wane over time (tachyphylaxis); and 2) would the hyperemic response to moderate-intensity exercise performed during the ATP administration be blunted compared with that during control (saline) infusion. Nine participants (25 ± 1 yr) performed one trial consisting of seven bouts of rhythmic handgrip exercise (20 contractions/min at 20% of maximum), two bouts during saline (control), and five bouts during 180 min of continuous ATP infusion. Five minutes of ATP infusion resulted in a 710% increase in forearm vascular conductance (FVC) from control (4.8 ± 0.77 vs. 35.0 ± 5.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1), P < 0.05). Contrary to our expectations, FVC did not wane over time with values of 35.0 ± 5.7 and 36.0 ± 7.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) (P > 0.05), seen prior to the exercise bouts at 5 vs. 150 min, respectively. During superimposed exercise, FVC increased from 35.0 ± 5.7 to 49.6 ± 5.4 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) at 5 min and 36.0 ± 7.7 to 54.5 ± 5.0 at 150 min (P < 0.05). Our findings demonstrate ATP vasodilation is prolonged over time without tachyphylaxis; however, exercise hyperemia responses remain intact. Our results challenge the metabolic theory of exercise hyperemia, suggesting a disconnect between matching of blood flow and metabolic demand. Copyright © 2016 the American Physiological Society.

  13. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  14. Introduction to the molecular basis of cancer metabolism and the Warburg effect.

    PubMed

    Ngo, Darleen C; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C

    2015-04-01

    In differentiated normal cells, the conventional route of glucose metabolism involves glycolysis, followed by the citric acid cycle and electron transport chain to generate usable energy in the form of adenosine triphosphate (ATP). This occurs in the presence of oxygen. In hypoxic conditions, normal cells undergo anaerobic glycolysis to yield significantly less energy producing lactate as a product. As first highlighted in the 1920s by Otto Warburg, the metabolism exhibited by tumor cells involves an increased rate of aerobic glycolysis, known as the Warburg effect. In aerobic glycolysis, pyruvate molecules yielded from glycolysis are converted into fewer molecules of ATP even in the presence of oxygen. Evidence indicates that the reasons as to why tumor cells undergo aerobic glycolysis include: (1) the shift in priority to accumulate biomass rather than energy production, (2) the evasion of apoptosis as fewer reactive oxygen species are released by the mitochondria and (3) the production of lactate to further fuel growth of tumors. In this mini-review we discuss emerging molecular aspects of cancer metabolism and the Warburg effect. Aspects of the Warburg effect are analyzed in the context of the established hallmarks of cancer including the role of oncogenes and tumor suppressor genes.

  15. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field

    PubMed Central

    Gentric, Géraldine; Mieulet, Virginie

    2017-01-01

    Abstract Significance: In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. Critical Issues: OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. Future Directions: Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment

  16. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    PubMed Central

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  17. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases.

    PubMed

    Cronstein, Bruce N; Sitkovsky, Michail

    2017-01-01

    Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.

  18. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID

    PubMed Central

    Sauer, Aisha V.; Brigida, Immacolata; Carriglio, Nicola; Jofra Hernandez, Raisa; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L.; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna

    2012-01-01

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)–mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA–treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA−/− Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA–treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA–treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID. Trials were registered at www.clinicaltrials.gov as NCT00598481/NCT00599781. PMID:22184407

  19. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    PubMed

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  20. Adenosine and preeclampsia.

    PubMed

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  1. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.

    PubMed

    Sun, D; Samuelson, L C; Yang, T; Huang, Y; Paliege, A; Saunders, T; Briggs, J; Schnermann, J

    2001-08-14

    Adenosine is a determinant of metabolic control of organ function increasing oxygen supply through the A2 class of adenosine receptors and reducing oxygen demand through A1 adenosine receptors (A1AR). In the kidney, activation of A1AR in afferent glomerular arterioles has been suggested to contribute to tubuloglomerular feedback (TGF), the vasoconstriction elicited by elevations in [NaCl] in the macula densa region of the nephron. To further elucidate the role of A1AR in TGF, we have generated mice in which the entire A1AR coding sequence was deleted by homologous recombination. Homozygous A1AR mutants that do not express A1AR mRNA transcripts and do not respond to A1AR agonists are viable and without gross anatomical abnormalities. Plasma and urinary electrolytes were not different between genotypes. Likewise, arterial blood pressure, heart rates, and glomerular filtration rates were indistinguishable between A1AR(+/+), A1AR(+/-), and A1AR(-/-) mice. TGF responses to an increase in loop of Henle flow rate from 0 to 30 nl/min, whether determined as change of stop flow pressure or early proximal flow rate, were completely abolished in A1AR(-/-) mice (stop flow pressure response, -6.8 +/- 0.55 mmHg and -0.4 +/- 0.2 in A1AR(+/+) and A1AR(-/-) mice; early proximal flow rate response, -3.4 +/- 0.4 nl/min and +0.02 +/- 0.3 nl/min in A1AR(+/+) and A1AR(-/-) mice). Absence of TGF responses in A1AR-deficient mice suggests that adenosine is a required constituent of the juxtaglomerular signaling pathway. A1AR null mutant mice are a promising tool to study the functional role of A1AR in different target tissues.

  2. AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland ( Squalus acanthias).

    PubMed

    Neuman, Rugina I; van Kalmthout, Juliette A M; Pfau, Daniel J; Menendez, Dhariyat M; Young, Lawrence H; Forrest, John N

    2018-04-01

    The production of endogenous adenosine during secretagogue stimulation of CFTR leads to feedback inhibition limiting further chloride secretion in the rectal gland of the dogfish shark (Squalus acanthias). In the present study, we examined the role of AMP-kinase (AMPK) as an energy sensor also modulating chloride secretion through CFTR. We found that glands perfused with forskolin and isobutylmethylxanthine (F + I), potent stimulators of chloride secretion in this ancient model, caused significant phosphorylation of the catalytic subunit Thr 172 of AMPK. These findings indicate that AMPK is activated during energy-requiring stimulated chloride secretion. In molecular studies, we confirmed that the activating Thr 172 site is indeed present in the α-catalytic subunit of AMPK in this ancient gland, which reveals striking homology to AMPKα subunits sequenced in other vertebrates. When perfused rectal glands stimulated with F + I were subjected to severe hypoxic stress or perfused with pharmacologic inhibitors of metabolism (FCCP or oligomycin), phosphorylation of AMPK Thr 172 was further increased and chloride secretion was dramatically diminished. The pharmacologic activation of AMPK with AICAR-inhibited chloride secretion, as measured by short-circuit current, when applied to the apical side of shark rectal gland monolayers in primary culture. These results indicate that that activated AMPK, similar to adenosine, transmits an inhibitory signal from metabolism, that limits chloride secretion in the shark rectal gland.

  3. Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice.

    PubMed

    Lanaspa, Miguel A; Andres-Hernando, Ana; Orlicky, David J; Cicerchi, Christina; Jang, Cholsoon; Li, Nanxing; Milagres, Tamara; Kuwabara, Masanari; Wempe, Michael F; Rabinowitz, Joshua D; Johnson, Richard J; Tolan, Dean R

    2018-04-23

    Increasing evidence suggests a role for excessive intake of fructose in the Western diet as a contributor to the current epidemics of metabolic syndrome and obesity. Hereditary fructose intolerance (HFI) is a difficult and potentially lethal orphan disease associated with impaired fructose metabolism. In HFI, the deficiency of aldolase B results in the accumulation of intracellular phosphorylated fructose, leading to phosphate sequestration and depletion, increased adenosine triphosphate (ATP) turnover, and a plethora of conditions that lead to clinical manifestations such as fatty liver, hyperuricemia, Fanconi syndrome, and severe hypoglycemia. Unfortunately, there is currently no treatment for HFI, and avoiding sugar and fructose has become challenging in our society. In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI. Herein we provide evidence for the first time to our knowledge of a potential therapeutic approach for HFI. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI.

  4. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.

    PubMed

    Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M

    2014-07-01

    Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.

  5. The clinical relevance and prognostic significance of adenosine triphosphate ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study.

    PubMed

    Farawela, Hala M; Khorshied, Mervat M; Kassem, Neemat M; Kassem, Heba A; Zawam, Hamdy M

    2014-08-01

    Multidrug resistance (MDR1) represents a major obstacle in the chemotherapeutic treatment of acute leukemia (AL). Adenosine triphosphate ATP-binding cassette (ABCB5) and MDR1 genes are integral membrane proteins belonging to ATP-binding cassette transporters superfamily. The present work aimed to investigate the impact of ABCB5 and MDR1 genes expression on the response to chemotherapy in a cohort of Egyptian AL patients. The study included 90 patients: 53 AML cases and 37 ALL cases in addition to 20 healthy volunteers as controls. Quantitative assessment of MDR1 and ABCB5 genes expression was performed by quantitative real-time polymerase chain reaction. Additional prognostic molecular markers were determined as internal tandem duplications of the FLT3 gene (FLT3-ITD) and nucleophosmin gene mutation (NPM1) for AML cases, and mbcr-abl fusion transcript for B-ALL cases. In AML patients, ABCB5 and MDR1 expression levels did not differ significantly between de novo and relapsed cases and did not correlate with the overall survival or disease-free survival. AML patients were stratified according to the studied genetic markers, and complete remission rate was found to be more prominent in patients having low expression of MDR1 and ABCB5 genes together with mutated NPM1 gene. In ALL patients, ABCB5 gene expression level was significantly higher in relapsed cases and MDR1 gene expression was significantly higher in patients with resistant disease. In conclusion, the results obtained by the current study provide additional evidence of the role played by these genes as predictive factors for resistance of leukemic cells to chemotherapy and hence treatment outcome.

  6. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.

    PubMed

    Townley, Robert; Shapiro, Lawrence

    2007-03-23

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  7. Suitability of the adenosine antagonist istradefylline for the treatment of Parkinson's disease: pharmacokinetic and clinical considerations.

    PubMed

    Müller, Thomas

    2013-08-01

    Recent experimental and clinical research has shown that A2A adenosine receptor antagonism can bring about an improvement in the motor behavior of patients with Parkinson's disease. Istradefylline , a xanthine derivative, has the longest half-life of all the currently available A2A adenosine receptor antagonists; it can successfully permeate through the blood-brain barrier and has a high human A2A adenosine receptor affinity. In this article, the author discusses the potential role of A2A adenosine receptor antagonists in the treatment of Parkinson's disease through the evaluation of istradefylline. Specifically, the article reviews the clinical and pharmacokinetic information available to elucidate its therapeutic potential. A2A adenosine receptor antagonists are efficacious in combination with l-dopa. l-dopa has a complex pharmacokinetic behavior and causes long-term behavioral and metabolic side effects. Future research on A2A adenosine receptor antagonism should consider compounds like istradefylline as l-dopa and/or dopamine agonist-sparing treatment alternatives, since their clinical handling, safety and side-effect profile are superior to l-dopa and/or dopamine agonists. The current focus to demonstrate a specific dyskinesia-ameliorating efficacy of A2A adenosine receptor antagonism in clinical trials is risky, since the presentation of dyskinesia varies on a day-to-day basis and is considerably influenced by peripheral l-dopa metabolism. The demonstration of an antidyskinetic effect may convince authorities, but this is far less relevant in clinical practice as patients generally better tolerate dyskinesia than other phenomena and dopaminergic side effects.

  8. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions.

    PubMed

    Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K

    2014-09-01

    Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.

  9. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts.

    PubMed

    Tosaki, A; Hellegouarch, A

    1994-02-01

    This study was conducted to elucidate the role of the adenosine triphosphate (ATP)-sensitive potassium channel blocking agent glibenclamide and the opener cromakalim in the mechanism of reperfusion-induced injury. Recently, ATP-sensitive potassium channel openers have been proposed to reduce ischemia/reperfusion-induced injury, including arrhythmias and heart function. Thus, one might hypothesize that pharmacologic agents that enhance the loss of potassium ions in the myocardium through ATP-sensitive potassium channels would be arrhythmogenic, and agents that interfere with tissue potassium ion loss would be antiarrhythmic. Isolated "working" guinea pig hearts and phosphorus-31 nuclear magnetic resonance spectroscopy were used to study the recovery of myocardial function and phosphorus compounds after 30, 40 and 50 min of normothermic global ischemia followed by reperfusion in untreated control and glibenclamide- and cromakalim-treated groups. After 30 min of ischemia, 1, 3, 10 and 30 mumol/liter of glibenclamide dose-dependently reduced the incidence of reperfusion-induced ventricular fibrillation (total) from its control value of 92% to 75%, 33% (p < 0.05), 33% (p < 0.05) and 42% (p < 0.05), respectively. The incidence of ventricular tachycardia followed the same pattern. A reduction of arrhythmias was also observed after 40 and 50 min of ischemia followed by reperfusion in the glibenclamide-treated hearts. Cromakalim, at the same concentrations, did not reduce the incidence of reperfusion-induced arrhythmias. During reperfusion, glibenclamide (3 and 10 mumol/liter) improved the recovery of coronary blood flow, aortic flow, myocardial contractility and tissue ATP and creatine phosphate content, but cromakalim failed to ameliorate the recovery of postischemic myocardium compared with that in the drug-free control hearts. The preservation of myocardial potassium ions and phosphorus compounds by glibenclamide can improve the recovery of postischemic function, but

  10. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    PubMed Central

    Kawamura, Masahito Jr.; Ruskin, David N.; Masino, Susan A.

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy. PMID:27847463

  11. A step into the RNA world: Conditional analysis of hydrogel formation of adenosine 5'-monophosphate induced by cyanuric acid.

    PubMed

    Yokosawa, Takumi; Enomoto, Ryota; Uchino, Sho; Hirasawa, Ito; Umehara, Takuya; Tamura, Koji

    2017-12-01

    Nucleotide polymerization occurs by the nucleophilic attack of 3'-oxygen of the 3'-terminal nucleotide on the α-phosphorus of the incoming nucleotide 5'-triphosphate. The π-stacking of mononucleotides is an important factor for prebiotic RNA polymerization in terms of attaining the proximity of two reacting moieties. Adenosine and adenosine 5'-monophosphate (AMP) are known to form hydrogel in the presence of cyanuric acid at neutral pH. However, we observed that other canonical ribonucleotides did not gel under the same condition. The π-stacking-induced hydrogel formation of AMP was destroyed at pH 2.0, suggesting that the protonation of N at position 1 of adenine abolished hydrogen bonding with the NH of cyanuric acid and resulted in the deformation of the hexad of adenine and cyanuric acid. A liquid-like gel was formed in the case of adenosine with cyanuric acid and boric acid, whereas AMP caused the formation of a solid gel, implying that the negative charge inherent to AMP prevented the formation of esters of boric acid with the cis-diols of ribose. Cyanuric acid-driven oligomerizations of AMP might have been the first crucial event in the foundation of the RNA world. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    PubMed Central

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  13. Automatic instrument for chemical processing to detect microorganism in biological samples by measuring light reactions

    NASA Technical Reports Server (NTRS)

    Kelbaugh, B. N.; Picciolo, G. L.; Chappelle, E. W.; Colburn, M. E. (Inventor)

    1973-01-01

    An automated apparatus is reported for sequentially assaying urine samples for the presence of bacterial adenosine triphosphate (ATP) that comprises a rotary table which carries a plurality of sample containing vials and automatically dispenses fluid reagents into the vials preparatory to injecting a light producing luciferase-luciferin mixture into the samples. The device automatically measures the light produced in each urine sample by a bioluminescence reaction of the free bacterial adenosine triphosphate with the luciferase-luciferin mixture. The light measured is proportional to the concentration of bacterial adenosine triphosphate which, in turn, is proportional to the number of bacteria present in the respective urine sample.

  14. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  15. Hydrolysis of Extracellular ATP by Ectonucleoside Triphosphate Diphosphohydrolase (ENTPD) Establishes the Set Point for Fibrotic Activity of Cardiac Fibroblasts*

    PubMed Central

    Lu, David; Insel, Paul A.

    2013-01-01

    The establishment of set points for cellular activities is essential in regulating homeostasis. Here, we demonstrate key determinants of the fibrogenic set point of cardiac fibroblasts (CFs) by focusing on the pro-fibrotic activity of ATP, which is released by CFs. We tested the hypothesis that the hydrolysis of extracellular ATP by ectonucleoside triphosphate diphosphohydrolases (ENTPDs) regulates pro-fibrotic nucleotide signaling. We detected two ENTPD isoforms, ENTPD-1 and -2, in adult rat ventricular CFs. Partial knockdown of ENTPD-1 and -2 with siRNA increased basal extracellular ATP concentration and enhanced the pro-fibrotic effect of ATP stimulation. Sodium polyoxotungstate-1, an ENTPD inhibitor, not only enhanced the pro-fibrotic effects of exogenously added ATP but also increased basal expression of α-smooth muscle actin, plasminogen activator inhibitor-1 and transforming growth factor (TGF)-β, collagen synthesis, and gel contraction. Furthermore, we found that adenosine, a product of ATP hydrolysis by ENTPD, acts via A2B receptors to counterbalance the pro-fibrotic response to ATP. Removal of extracellular adenosine or inhibition of A2B receptors enhanced pro-fibrotic ATP signaling. Together, these results demonstrate the contribution of basally released ATP in establishing the set point for fibrotic activity in adult rat CFs and identify a key role for the modulation of this activity by hydrolysis of released ATP by ENTPDs. These findings also imply that cellular homeostasis and fibrotic response involve the integration of signaling that is pro-fibrotic by ATP and anti-fibrotic by adenosine and that is regulated by ENTPDs. PMID:23677997

  16. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.

    PubMed

    Tune, J D; Richmond, K N; Gorman, M W; Feigl, E O

    2000-06-27

    Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. Experiments were performed in chronically instrumented dogs at rest and during graded treadmill exercise before and during inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA, 35 mg/kg IV). Before inhibition of NO synthesis, myocardial oxygen consumption increased approximately 3.7-fold, and coronary blood flow increased approximately 3.2-fold from rest to the highest level of exercise, and this was not changed by NO synthesis inhibition. Coronary venous oxygen tension was modestly reduced by L-NNA at all levels of myocardial oxygen consumption. However, the slope of the relationship between myocardial oxygen consumption and coronary venous oxygen tension was not altered by L-NNA. Inhibition of NO synthesis did not increase coronary venous plasma or estimated interstitial adenosine concentration. During exercise, estimated interstitial adenosine remained well below the threshold concentration necessary for coronary vasodilation before or after L-NNA. NO causes a modest coronary vasodilation at rest and during exercise but does not act as a local metabolic vasodilator. Adenosine does not mediate a compensatory local metabolic coronary vasodilation when NO synthesis is inhibited.

  17. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism.

    PubMed

    Zeng, Zhaobin; Jing, Da; Zhang, Xiaodong; Duan, Yinzhong; Xue, Feng

    2015-10-01

    Energy metabolism is essential for maintaining function and substance metabolism in osteoblasts. However, the role of cyclic stretch in regulating osteoblastic energy metabolism and the underlying mechanisms remain poorly understood. In this study, we found that cyclic stretch (10% elongation at 0.1 Hz) significantly enhanced glucose consumption, lactate levels (determined using a glucose/lactate assay kit), intracellular adenosine triphosphate (ATP) levels (quantified using rLuciferase/Luciferin reagent) and the mRNA expression of energy metabolism-related enzymes [mitochondrial ATP synthase, L-lactate dehydrogenase A (LDHA) and enolase 1; measured by RT-qPCR], and increased the phosphorylation levels of Akt, mammalian target of rapamycin (mTOR) and p70s6k (measured by western blot analysis) in human osteoblast‑like MG‑63 cells. Furthermore, the inhibition of Akt or mTOR with an antagonist (wortmannin or rapamycin) suppressed the stretch-induced increase in glucose consumption, lactate levels, intracellular ATP levels and the expression of mitochondrial ATP synthase and LDHA, indicating the significance of the Akt/mTOR/p70s6k pathway in regulating osteoblastic energy metabolism in response to mechanical stretch. Thus, we concluded that cyclic stretch regulates energy metabolism in MG‑63 cells partially through the Akt/mTOR/p70s6k signaling pathway. The present findings provide novel insight into osteoblastic mechanobiology from the perspective of energy metabolism.

  18. Adaptive Evolution of Mitochondrial Energy Metabolism Genes Associated with Increased Energy Demand in Flying Insects

    PubMed Central

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects. PMID:24918926

  19. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  20. Sludge reduction by uncoupling metabolism: SBR tests with para-nitrophenol and a commercial uncoupler.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I

    2016-11-01

    Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronstein, B.N.; Eberle, M.A.; Levin, R.I.

    1991-03-15

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a mannermore » identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.« less

  2. Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity.

    PubMed

    Poppe, Daniel; Doerr, Jonas; Schneider, Marion; Wilkens, Ruven; Steinbeck, Julius A; Ladewig, Julia; Tam, Allison; Paschon, David E; Gregory, Philip D; Reik, Andreas; Müller, Christa E; Koch, Philipp; Brüstle, Oliver

    2018-06-01

    As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018;7:477-486. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Dibutyryl Adenosine Cyclic 3′:5′-Monophosphate Effects on Goldfish Behavior and Brain RNA Metabolism

    PubMed Central

    Shashoua, Victor E.

    1971-01-01

    Intraventricular administration of dibutyryl adenosine cyclic 3′:5′-monophosphate into goldfish brains produced hyperactive animals. A study of the effects of the drug (25-50 mg/kg) on the incorporation of [5-3H] orotic acid, as a precursor of labeled uridine and cytidine, into newly synthesized RNA showed the formation of an RNA with a uridine to cytidine ratio 20-50% higher than that of the control. In double-labeling experiments with uridine as the labeled precursor, the synthesis of a nuclear RNA fraction (not produced in the absence of drug) was demonstrated. Some of this RNA was found to migrate into the cytoplasmic fraction and to become associated with polysomes. The results suggest that cyclic AMP might function as a “metabolic demand signal” for eliciting new RNA synthesis in goldfish brain. PMID:4330944

  4. Moonlighting adenosine deaminase: a target protein for drug development.

    PubMed

    Cortés, Antoni; Gracia, Eduard; Moreno, Estefania; Mallol, Josefa; Lluís, Carme; Canela, Enric I; Casadó, Vicent

    2015-01-01

    Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest. © 2014 Wiley Periodicals, Inc.

  5. Adenosine 5'-tetraphosphate phosphohydrolase from yellow lupin seeds: purification to homogeneity and some properties.

    PubMed Central

    Guranowski, A; Starzyńska, E; Brown, P; Blackburn, G M

    1997-01-01

    Adenosine 5'-tetraphosphate phosphohydrolase (EC 3.6.1.14) has been purified to homogeneity from the meal of yellow lupin (Lupinus luteus) seeds. The enzyme is a single polypeptide chain of 25+/-1 kDa. It catalyses the hydrolysis of a nucleoside 5'-tetraphosphate to a nucleoside triphosphate and orthophosphate, and hydrolysis of tripolyphosphate but neither pyrophosphate nor tetraphosphate. A divalent cation, Mg2+, Co2+, Ni2+ or Mn2+, is required for these reactions. The pH optimum for hydrolysis of adenosine 5'-tetraphosphate (p4A) is 8.2, Vmax is 21+/-1.7 micromol/min per mg of protein and the Km for p4A is 3+/-0.6 microM. At saturating p4A concentrations, the rate constant for the reaction is 8.5+/-0.7 s-1 [at 30 degrees C, in 50 mM Hepes/KOH (pH8.2)/5 mM MgCl2/0.1 mM dithiothreitol]. p4A and guanosine 5'-tetraphosphate are hydrolysed at the same rate. Adenosine 5'-pentaphosphate (p5A) is degraded 1/200 as fast and is converted into ATP and two molecules of orthophosphate, which are liberated sequentially. This contrasts with the cleavage of p5A by the lupin diadenosine tetraphosphate hydrolase (EC 3.6.1.17), which gives ATP and pyrophosphate. Zn2+, F- and Ca2+ ions inhibit the hydrolysis of p4A with I50 values of 0.1, 0.12 and 0.2 mM respectively. PMID:9359862

  6. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1

    PubMed Central

    Frenguelli, Bruno G; Wigmore, Geoffrey; Llaudet, Enrique; Dale, Nicholas

    2007-01-01

    Abstract Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain. PMID:17459147

  7. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    PubMed

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 < P < 0.10). When averaged over the exercise period, muscle and oesophageal temperatures after pre-cooling were reduced by 1.5 and 0.6 degrees C respectively, compared with control (P < 0.05). Pre-cooling had a limited effect on muscle metabolism, with no differences between the two conditions in muscle glycogen, triglyceride, adenosine triphosphate, creatine phosphate, creatine or lactate contents at rest, or following exercise. These data indicate that whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  8. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.

    PubMed

    Saada, Ann; Ben-Shalom, Efrat; Zyslin, Rivka; Miller, Chaya; Mandel, Hanna; Elpeleg, Orly

    2003-10-24

    Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.

  9. Autoradiography of P2x ATP receptors in the rat brain.

    PubMed Central

    Balcar, V. J.; Li, Y.; Killinger, S.; Bennett, M. R.

    1995-01-01

    1. Binding of a P2x receptor specific radioligand, [3H]-alpha,beta-methylene adenosine triphosphate ([3H]-alpha,beta-MeATP) to sections of rat brain was reversible and association/dissociation parameters indicated that it consisted of two saturable components. Non-specific binding was very low (< 7% at 10 nM ligand concentration). 2. The binding was completely inhibited by suramin (IC50 approximately 14-26 microM) but none of the ligands specific for P2y receptors such as 2-methylthio-adenosine triphosphate (2-methyl-S-ATP) and 2-chloro-adenosine triphosphate (2-C1-ATP) nor 2-methylthio-adenosine diphosphate (2-methyl-S-ADP) a ligand for the P2 receptor on blood platelets ('P2T' type) produced strong inhibitions except for P1,P4-di(adenosine-5')tetraphosphate (Ap4A). 3. Inhibitors of Na+,K(+)-dependent adenosine triphosphatase (ATPase) ouabain, P1-ligand adenosine and an inhibitor of transport of, respectively, adenosine and cyclic nucleotides, dilazep, had no effect. 4. The highest density of P2x binding sites was found to be in the cerebellar cortex but the binding sites were present in all major brain regions, especially in areas known to receive strong excitatory innervation. Images Figure 2 PMID:7670731

  10. Bladder pain induced by prolonged peripheral alpha 1A adrenoceptor stimulation involves the enhancement of transient receptor potential vanilloid 1 activity and an increase of urothelial adenosine triphosphate release.

    PubMed

    Matos, R; Cordeiro, J M; Coelho, A; Ferreira, S; Silva, C; Igawa, Y; Cruz, F; Charrua, A

    2016-12-01

    Pathophysiological mechanisms of chronic visceral pain (CVP) are unknown. This study explores the association between the sympathetic system and bladder nociceptors activity by testing the effect of a prolonged adrenergic stimulation on transient receptor potential vanilloid 1 (TRPV1) activity and on urothelial adenosine triphosphate (ATP) release. Female Wistar rats received saline, phenylephrine (PHE), PHE + silodosin, PHE + naftopidil or PHE + prazosin. TRPV1 knockout and wild-type mice received saline or PHE. Visceral pain behaviour tests were performed before and after treatment. Cystometry was performed, during saline and capsaicin infusion. Fos immunoreactivity was assessed in L6 spinal cord segment. Human urothelial ATP release induced by mechanical and thermal stimulation was evaluated. Subcutaneous, but not intrathecal, PHE administration induced pain, which was reversed by silodosin, a selective alpha 1A adrenoceptor antagonist, but not by naftopidil, a relatively selective antagonist for alpha 1D adrenoceptor. Silodosin also reversed PHE-induced bladder hyperactivity and L6 spinal cord Fos expression. Thus, in subsequent experiments, only silodosin was used. Wild-type, but not TRPV1 knockout, mice exhibited phenylephrine-induced pain. Capsaicin induced a greater increase in voiding contractions in PHE-treated rats than in control animals, and silodosin reversed this effect. When treated with PHE, ATP release from human urothelial cells was enhanced either by mechanical stimulation or by lowering the thermal threshold of urothelial TRPV1, which becomes abnormally responsive at body temperature. This study suggests that the activation of peripheral alpha 1A adrenoceptors induces CVP, probably through its interaction with TRPV1 and ATP release. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  12. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase

    PubMed Central

    Trdá, Lucie; Barešová, Monika; Šašek, Vladimír; Nováková, Miroslava; Zahajská, Lenka; Dobrev, Petre I.; Motyka, Václav; Burketová, Lenka

    2017-01-01

    Among phytohormones, cytokinins (CKs) play an important role in controlling crucial aspects of plant development. Not only plants but also diverse microorganisms are able to produce phytohormones, including CKs, though knowledge concerning their biosynthesis and metabolism is still limited. In this work we demonstrate that the fungus Leptosphaeria maculans, a hemi-biotrophic pathogen of oilseed rape (Brassica napus), causing one of the most damaging diseases of this crop, is able to modify the CK profile in infected B. napus tissues, as well as produce a wide range of CKs in vitro, with the cis-zeatin derivatives predominating. The endogenous CK spectrum of L. maculans in vitro consists mainly of free CK bases, as opposed to plants, where other CK forms are mostly more abundant. Using functional genomics, enzymatic and feeding assays with CK bases supplied to culture media, we show that L. maculans contains a functional: (i) isopentenyltransferase (IPT) involved in cZ production; (ii) adenosine kinase (AK) involved in phosphorylation of CK ribosides to nucleotides; and (iii) CK-degradation enzyme cytokinin oxidase/dehydrogenase (CKX). Our data further indicate the presence of cis–trans isomerase, zeatin O-glucosyltransferase(s) and N6-(Δ2-isopentenyl)adenine hydroxylating enzyme. Besides, we report on a crucial role of LmAK for L. maculans fitness and virulence. Altogether, in this study we characterize in detail the CK metabolism of the filamentous fungi L. maculans and report its two novel components, the CKX and CK-related AK activities, according to our knowledge for the first time in the fungal kingdom. Based on these findings, we propose a model illustrating CK metabolism pathways in L. maculans. PMID:28785249

  13. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    PubMed

    Liang, Dongchun; Woo, Jeong-Im; Shao, Hui; Born, Willi K; O'Brien, Rebecca L; Kaplan, Henry J; Sun, Deming

    2018-01-01

    Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.

  14. Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery

    PubMed Central

    Eltzschig, Holger K.

    2013-01-01

    The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets. PMID:21942704

  15. An easy and fast adenosine 5'-diphosphate quantification procedure based on hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry for determination of the in vitro adenosine 5'-triphosphatase activity of the human breast cancer resistance protein ABCG2.

    PubMed

    Wagmann, Lea; Maurer, Hans H; Meyer, Markus R

    2017-10-27

    Interactions with the human breast cancer resistance protein (hBCRP) significantly influence the pharmacokinetic properties of a drug and can even lead to drug-drug interactions. As efflux pump from the ABC superfamily, hBCRP utilized energy gained by adenosine 5'-triphosphate (ATP) hydrolysis for the transmembrane movement of its substrates, while adenosine 5'-diphosphate (ADP) and inorganic phosphate were released. The ADP liberation can be used to detect interactions with the hBCRP ATPase. An ADP quantification method based on hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution tandem mass spectrometry (HR-MS/MS) was developed and successfully validated in accordance to the criteria of the guideline on bioanalytical method validation by the European Medicines Agency. ATP and adenosine 5'-monophosphate were qualitatively included to prevent interferences. Furthermore, a setup consisting of six sample sets was evolved that allowed detection of hBCRP substrate or inhibitor properties of the test compound. The hBCRP substrate sulfasalazine and the hBCRP inhibitor orthovanadate were used as controls. To prove the applicability of the procedure, the effect of amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir on the hBCRP ATPase activity was tested. Nelfinavir, ritonavir, and saquinavir were identified as hBCRP ATPase inhibitors and none of the five HIV protease inhibitors turned out to be an hBCRP substrate. These findings were in line with a pervious publication. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Mitochondrial Membrane Exopolyphosphatase Is Modulated by, and Plays a Role in, the Energy Metabolism of Hard Tick Rhipicephalus (Boophilus) microplus Embryos

    PubMed Central

    Campos, Eldo; Façanha, Arnoldo R.; Costa, Evenilton P.; Fraga, Amanda; Moraes, Jorge; da Silva Vaz, Itabajara; Masuda, Aoi; Logullo, Carlos

    2011-01-01

    The physiological roles of polyphosphates (polyP) recently found in arthropod mitochondria remain obscure. Here, the relationship between the mitochondrial membrane exopolyphosphatase (PPX) and the energy metabolism of hard tick Rhipicephalus microplus embryos are investigated. Mitochondrial respiration was activated by adenosine diphosphate using polyP as the only source of inorganic phosphate (Pi) and this activation was much greater using polyP3 than polyP15. After mitochondrial subfractionation, most of the PPX activity was recovered in the membrane fraction and its kinetic analysis revealed that the affinity for polyP3 was 10 times stronger than that for polyP15. Membrane PPX activity was also increased in the presence of the respiratory substrate pyruvic acid and after addition of the protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. Furthermore, these stimulatory effects disappeared upon addition of the cytochrome oxidase inhibitor potassium cyanide and the activity was completely inhibited by 20 μg/mL heparin. The activity was either increased or decreased by 50% upon addition of dithiothreitol or hydrogen peroxide, respectively, suggesting redox regulation. These results indicate a PPX activity that is regulated during mitochondrial respiration and that plays a role in adenosine-5′-triphosphate synthesis in hard tick embryos. PMID:21747692

  17. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  18. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    PubMed

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters

    PubMed Central

    Lynge, J; Juel, C; Hellsten, Y

    2001-01-01

    The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells

  1. Microbial Group Specific Uptake Kinetics of Inorganic Phosphate and Adenosine-5′-Triphosphate (ATP) in the North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin; Duhamel, Solange; Karl, David M.

    2012-01-01

    We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition

  2. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  3. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  4. Proximal tubule hydrogen ion transport processes in diuretic-induced metabolic alkalosis.

    PubMed

    Blumenthal, S S; Ware, R A; Kleinman, J G

    1985-07-01

    Transport systems involved in proximal tubule HCO-3 reabsorption were examined in disaggregated renal cortical tubules from rabbits with metabolic alkalosis. The acid-base disorder was induced by first treating the animals with furosemide, and then maintaining them on low Cl--high HCO-3 diets. On this regimen, the rabbits had increases in blood pH and total CO2 values and decreases in serum K+ concentrations. Urine Cl- concentrations were less than 15 mEq/L in all cases. Na+-H+ exchange was evaluated by incubating tubules in rotenone in an Na+-free medium to deplete them of Na+ and adenosine triphosphate. Then the tubules were resuspended in media containing 65 or 12.5 mEq/L Na+ at either pH 7.1 or pH 7.6. The rise in cell pH estimated by dimethadione distribution was taken as a measure of Na+-H+ exchanger activity. At the high incubation pH, Na+-H+ exchanger activity appeared to be the same in tubules taken from alkalotic rabbits compared with those prepared from normal rabbits. At the low incubation pH, the activity of this transport system appeared to be depressed by 40% to 50% in alkalosis, with kinetics that suggested a decreased Vmax for the exchanger. Na+-independent H+ transport, presumably reflecting activity of an H+-adenosine triphosphatase, was evaluated by preincubating tubules in a Na+-free medium in the presence of ouabain, and then sequentially exposing them to and removing them from a solution containing 20 mmol/L NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Content of Adenosine Phosphates and Adenylate Energy Charge in Germinating Ponderosa Pine Seeds

    PubMed Central

    Ching, Te May; Ching, Kim K.

    1972-01-01

    An average of 540 picomoles of total adenosine phosphates was found in the embryo of mature seeds of ponderosa pine (Pinus ponderosa Laws.) and 1140 picomoles in the gametophyte. Adenylate energy charges were 0.44 and 0.26, respectively. After stratification, total adenosine phosphates increased 7-fold and 6-fold in embryo and gametophyte, respectively, and energy charges rose to 0.85 and 0.75. During germination, total adenosine phosphates increased to a 20-fold peak on the 9th day in gametophytic tissue, parallel with the peak of reserve regradation and organellar synthesis, and then decreased. In embryo and seedling, total adenosine phosphates elevated 80-fold with two distinct oscillating increases of AMP and ADP. The oscillating increases occurred before the emergence of radicle and cotyledons during which the highest mitotic index prevailed in all tissues. Energy charges fluctuated between 0.65 at the rapid cell dividing stage to 0.85 at the fully differentiated stage of the seedling, while energy charges remained around 0.75 in the gametophyte. These data indicated that the content of adenosine phosphates of germinating seeds reflects growth, organogenesis, and morphogenesis, and that a compartmentalized energy metabolism must exist in dividing and growing plant cells. PMID:16658212

  6. Evaluation of the metabolism of high energy phosphates in patients with Chagas' disease.

    PubMed

    Leme, Ana Maria Betim Paes; Salemi, Vera Maria Cury; Parga, José Rodrigues; Ianni, Bárbara Maria; Mady, Charles; Weiss, Robert G; Kalil-Filho, Roberto

    2010-08-01

    Abnormalities in myocardial metabolism have been observed in patients with heart failure of different etiologies. Magnetic resonance spectroscopy (MRS) with phosphorus-31 is a noninvasive technique that allows detection of myocardial metabolic changes. To determine the resting metabolism of high-energy phosphates in patients with Chagas' disease (CD) by MRS with phosphorus-31. We studied 39 patients with CD, 23 with preserved ventricular function (PF Group) and 16 with ventricular dysfunction (VD Group), assessed by Doppler echocardiography. MRS of the anterosseptal region was performed in 39 patients and 8 normal subjects (C Group) through a Phillips 1.5 Tesla device, obtaining the phosphocreatine/beta-adenosine triphosphate myocardial ratio (PCr/β-ATP). The levels of cardiac PCr/β-ATP were reduced in VD Group in relation to PF Group, and the latter presented reduced levels compared to C Group (VD Group: 0.89 ± 0.31 vs PF Group: 1.47 ± 0.34 vs C Group: 1.88 ± 0.08, p < 0.001). A correlation was found between left ventricular ejection fraction and PCr/β-ATP in 39 patients (r = 0.64, p < 0.001). Patients under functional class I (n = 22) presented PCr/β-ATP of 1.45 ± 0.35, and those in functional classes II and III (n = 17), PCr/β-ATP of 0.94 ± 0.36 (p < 0.001). The 31-phosphorus MRS was able to detect non-invasively changes in the rest energy metabolism of patients with Chagas' disease, with and without systolic dysfunction. These changes were related to the severity of heart impairment.

  7. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.

    PubMed

    Alhasawi, Azhar; Thomas, Sean C; Appanna, Vasu D

    2016-04-01

    Glycerol is a major by-product of the biodiesel industry. In this study we report on the metabolic networks involved in its transformation into pyruvate, phosphoenolpyruvate (PEP) and ATP. When the nutritionally-versatile Pseudomonas fluorescens was exposed to hydrogen peroxide (H2O2) in a mineral medium with glycerol as the sole carbon source, the microbe reconfigured its metabolism to generate adenosine triphosphate (ATP) primarily via substrate-level phosphorylation (SLP). This alternative ATP-producing stratagem resulted in the synthesis of copious amounts of PEP and pyruvate. The production of these metabolites was mediated via the enhanced activities of such enzymes as pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC). The high energy PEP was subsequently converted into ATP with the aid of pyruvate phosphate dikinase (PPDK), phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) with the concomitant formation of pyruvate. The participation of the phospho-transfer enzymes like adenylate kinase (AK) and acetate kinase (ACK) ensured the efficiency of this O2-independent energy-generating machinery. The increased activity of glycerol dehydrogenase (GDH) in the stressed bacteria provided the necessary precursors to fuel this process. This H2O2-induced anaerobic life-style fortuitously evokes metabolic networks to an effective pathway that can be harnessed into the synthesis of ATP, PEP and pyruvate. The bioconversion of glycerol to pyruvate will offer interesting economic benefit. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    NASA Astrophysics Data System (ADS)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m < 1 suggests that the ATP/apatite adsorption process is mostly guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  9. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770).

    PubMed

    Delaunay, Jean-Louis; Bruneau, Alix; Hoffmann, Brice; Durand-Schneider, Anne-Marie; Barbu, Véronique; Jacquemin, Emmanuel; Maurice, Michèle; Housset, Chantal; Callebaut, Isabelle; Aït-Slimane, Tounsia

    2017-02-01

    ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570). © 2016 by the American Association for the Study of Liver

  10. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage.

    PubMed

    Acevedo, B; Oehmen, A; Carvalho, G; Seco, A; Borrás, L; Barat, R

    2012-04-15

    Previous studies have shown that polyphosphate-accumulating organisms (PAOs) are able to behave as glycogen-accumulating organisms (GAOs) under different conditions. In this study we investigated the behavior of a culture enriched with Accumulibacter at different levels of polyphosphate (poly-P) storage. The results of stoichiometric ratios Gly(degraded)/HAc(uptake), PHB(synthesized)/HAc(uptake), PHV(synthesized)/HAc(uptake) and P(release)/HAc(uptake) confirmed a metabolic shift from PAO metabolism to GAO metabolism: PAOs with high poly-P content used the poly-P to obtain adenosine tri-phosphate (ATP), and glycogen (Gly) to obtain nicotinamide adenine dinucleotide (NADH) and some ATP. In a test where poly-P depletion was imposed on the culture, all the acetate (HAc) added in each cycle was transformed into polyhydroxyalkanoate (PHA) despite the decrease of poly-P inside the cells. This led to an increase of the Gly(degraded)/HAc(uptake) ratio that resulted from a shift towards the glycolytic pathway in order to compensate for the lack of ATP formed from poly-P hydrolysis. The shift from PAO to GAO metabolism was also reflected in the change in the PHA composition as the poly-P availability decreased, suggesting that polyhydroxyvalerate (PHV) is obtained due to the consumption of excess reducing equivalents to balance the internal NADH, similarly to GAO metabolism. Fluorescence in situ hybridization analysis showed a significant PAO population change from Type I to Type II Accumulibacter as the poly-P availability decreased in short term experiments. This work suggests that poly-P storage levels and GAO-like metabolism are important factors affecting the competition between different PAO Types in enhanced biological phosphorus removal systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine.

    PubMed

    Xu, Lei; Shen, Xin; Li, Bingzhi; Zhu, Chunhong; Zhou, Xuemin

    2017-08-08

    Adenosine is an endogenous nucleotide pivotally involved in nucleic acid and energy metabolism. Its excessive existence may indicate tumorigenesis, typically lung cancer. Encouraged by its significance as the clinical biomarker, sensitive assay methods towards adenosine have been popularized, with high cost and tedious procedures as the inevitable defects. Herein, we report a label-free aptamer-based exonuclease III (Exo III) amplification colorimetric aptasensor for the highly sensitive and cost-effective detection of adenosine. The strategy employed two unlabeled hairpin DNA oligonucleotides (HP1 and HP2), where HP1 contained the aptamer towards adenosine and HP2 embedded the guanine-rich sequence (GRS). In the presence of adenosine, hairpin HP1 could form specific binding with adenosine and trigger the unfolding of HP1's hairpin structure. The resulting adenosine-HP1 complex could hybridize with HP2, generating the Exo III recognition site. After Exo III-assisted degradation, the GRS was released from HP2, and the adenosine-HP1 was released back to the solution to combine another HP2, inducing the cycling amplification. After multiple circulations, the released ample GRSs were induced to form G-quadruplex, further catalyzing the oxidation of TMB, yielding a color change which was finally mirrored in the absorbance change. On the contrary, the absence of adenosine failed to unfold HP1, remaining color unchanged eventually. Thanks to the amplification strategy, the limit of detection was lowered to 17 nM with a broad linear range from 50 nM to 6 μM. The proposed method was successfully applied to the detection of adenosine in biological samples and satisfying recoveries were acquired. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine

    PubMed Central

    Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko

    2008-01-01

    SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592

  13. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    PubMed

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  14. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  15. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  16. Blood and muscle metabolic responses to draught work of varying intensity and duration in horses.

    PubMed

    Gottlieb, M; Essén-Gustavsson, B; Skoglund-Wallberg, H

    1989-07-01

    Three standardbred trotters performed treadmill exercise at a velocity of 2 m s-1 with a draught load of both 34 kiloponds (kp) (test 1) and 80 kp (test 2), and also at 7 m s-1 with 34 kp (test 3). The heart rate increased to average values of 111 (+/- 5), 157 (+/- 10) and 197 (+/- 7) beats min-1 in tests 1, 2, and 3, respectively. Plasma free fatty acids increased only during tests 1 and 2. Blood lactate and muscle glucose-6-phosphate and lactate concentrations were low after tests 1 and 2, but high after test 3, where also muscle glycogen utilisation was greatest. Muscle creatine phosphate and adenosine triphosphate concentrations decreased after test 3 only. The study indicates that oxidative metabolism is most important for energy supply in muscles when exercise is performed with draught loads of both 34 and 80 kp at a low velocity. Glycogenolysis with lactate accumulation and phosphagen breakdown becomes much more important when, with a draught load of 34 kp, the velocity of exercise increases.

  17. Removal of interfering nucleotides from brain extracts containing substance p. Effect of drugs on brain concentrations of substance p

    PubMed Central

    Laszlo, I.

    1963-01-01

    Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136

  18. Role of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the renal 2′,3′-cAMP-adenosine pathway

    PubMed Central

    Gillespie, Delbert G.; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Energy depletion increases the renal production of 2′,3′-cAMP (a positional isomer of 3′,5′-cAMP that opens mitochondrial permeability transition pores) and 2′,3′-cAMP is converted to 2′-AMP and 3′-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this “2′,3′-cAMP-adenosine pathway” are unknown, we examined whether 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) participates in the renal metabolism of 2′,3′-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3′,5′-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2′,3′-cAMP to 2′-AMP. Infusions of 2′,3′-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2′-AMP, and this response was diminished by 63% in CNPase knockout (−/−) kidneys, whereas the conversion of 3′,5′-cAMP to 5′-AMP was similar in CNPase +/+ vs. −/− kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2′,3′-cAMP. In contrast, in CNPase −/− kidneys, energy depletion increased kidney tissue levels of 2′,3′-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2′,3′-cAMP-adenosine pathway. PMID:24808540

  19. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis.

    PubMed

    Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana

    2016-01-01

    Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis.

    PubMed

    Vanderwee, M A; Humphrey, S M; Gavin, J B; Armiger, L C

    1981-01-01

    Transmural slices from the left anterior papillary muscle of dog hearts were maintained for 120 min in a moist atmosphere at 37 degrees C. At 15-min intervals tissue samples were taken for estimation of adenosine triphosphate (ATP) and glucose-6-phosphate (G6P) and for electron microscopic examination. At the same time the deformability under standard load of comparable regions of an adjacent slice of tissue was measured. ATP levels fell rapidly during the first 45 to 75 min after excision of the heart. During a subsequent further decline in ATP, the mean deformability of myocardium fell from 30 to 12% indicating the development of rigor mortis. Conversely, G6P levels increased during the first decline in adenosine triphosphate but remained relatively steady thereafter. Whereas many of the myocardial cells fixed after 5 min contracted on contact with glutaraldehyde, all cells examined after 15 to 40 min were relaxed. A progressive increase in the proportion of contracted cells was observed during the rapid increase in myocardial rigidity. During this late contraction the cells showed morphological evidence of irreversible injury. These findings suggest that ischaemic myocytes contract just before actin and myosin become strongly linked to maintain the state of rigor mortis.

  1. Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model.

    PubMed

    Murphy, Adrian D; McCormack, Michael C; Bichara, David A; Nguyen, John T; Randolph, Mark A; Watkins, Michael T; Lee, Raphael C; Austen, William G

    2010-06-01

    Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.

  2. Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis.

    PubMed

    Allen, Scott P; Rajan, Sandeep; Duffy, Lynn; Mortiboys, Heather; Higginbottom, Adrian; Grierson, Andrew J; Shaw, Pamela J

    2014-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder involving the progressive degeneration of motor neurons in the brain and spinal cord. Mitochondrial dysfunction plays a key role in ALS disease progression and has been observed in several ALS cellular and animal models. Here, we show that fibroblasts isolated from ALS cases with a Cu/Zn superoxide dismutase (SOD1) I113T mutation recapitulate these mitochondrial defects. Using a novel technique, which measures mitochondrial respiration and glycolytic flux simultaneously in living cells, we have shown that SOD1 mutation causes a reduction in mitochondrial respiration and an increase in glycolytic flux. This causes a reduction in adenosine triphosphate produced by oxidative phosphorylation and an increase in adenosine triphosphate produced by glycolysis. Switching the energy source from glucose to galactose caused uncoupling of mitochondria with increased proton leak in SOD1(I113T) fibroblasts. Assessment of the contribution of fatty acid oxidation to total respiration, suggested that fatty acid oxidation is reduced in SOD1 ALS fibroblasts, an effect which can be mimicked by starving the control cells of glucose. These results highlight the importance of understanding the interplay between the major metabolic pathways, which has the potential to lead to strategies to correct the metabolic dysregulation observed in ALS cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  4. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.

    PubMed

    Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric

    2016-12-01

    Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets

    NASA Astrophysics Data System (ADS)

    Williams, Holly L.; Erickson, Blake A.; Neumark, Daniel M.

    2018-05-01

    The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ˜210 to 250 fs in adenosine and ˜220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ˜320 fs and was measureable only in adenosine monophosphate.

  6. Modulators of Nucleoside Metabolism in the Therapy of Brain Diseases

    PubMed Central

    Boison, Detlev

    2010-01-01

    Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the “soft and smart” therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed. PMID:21401494

  7. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells

    PubMed Central

    Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia

    2014-01-01

    In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2×7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2×7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2×7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling—p53 increase, AMPK activation, and PARP cleavage—as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. PMID:25103241

  8. A High-Throughput TNP-ATP Displacement Assay for Screening Inhibitors of ATP-Binding in Bacterial Histidine Kinases

    PubMed Central

    Guarnieri, Michael T.; Blagg, Brian S. J.

    2011-01-01

    Abstract Bacterial histidine kinases (HK) are members of the GHKL superfamily, which share a unique adenosine triphosphate (ATP)-binding Bergerat fold. Our previous studies have shown that Gyrase, Hsp90, MutL (GHL) inhibitors bind to the ATP-binding pocket of HK and may provide lead compounds for the design of novel antibiotics targeting these kinases. In this article, we developed a competition assay using the fluorescent ATP analog, 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate. The method can be used for high-throughput screening of compound libraries targeting HKs or other ATP-binding proteins. We utilized the assay to screen a library of GHL inhibitors targeting the bacterial HK PhoQ, and discuss the applications of the 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate competition assay beyond GHKL inhibitor screening. PMID:21050069

  9. Downregulation of adenosine and adenosine 1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy.

    PubMed

    Kan, Hung-Wei; Chang, Chin-Hong; Lin, Chih-Lung; Lee, Yi-Chen; Hsieh, Sung-Tsang; Hsieh, Yu-Lin

    2018-04-16

    The neurochemical effects of adenosine signaling in small-fiber neuropathy leading to neuropathic pain are yet to be explored in a direct manner. This study examined this system at the level of ligand (via the ectonucleotidase activity of prostatic acid phosphatase, PAP) and adenosine A1 receptors (A1Rs) in resiniferatoxin (RTX) neuropathy, a peripheral neurodegenerative disorder which specifically affects nociceptive nerves expressing transient receptor potential vanilloid type 1 (TRPV1). We conducted immunohistochemistry on dorsal root ganglion neurons (DRG), high-performance liquid chromatography (HPLC) for functional assays, and pharmacological interventions to alter PAP and A1Rs in mice with RTX neuropathy. In DRG of RTX neuropathy, PAP(+) neurons were reduced compared with vehicle-treated mice (P = 0.002) . Functionally, PAP ectonucleotidase activity was consequently reduced (i.e., the content of adenosine in DRG, P = 0.012). PAP(+) neuronal density was correlated with the degree of mechanical allodynia, which was reversed by intrathecal lumbar puncture (i.t.) injection of recombinant PAP with a dose-dependent effect. Furthermore, A1Rs were downregulated (P = 0.002), and this downregulation was colocalized with the TRPV1 receptor (31.0% ± 2.8%). Mechanical allodynia was attenuated in a dose-dependent response by i.t. injection of the A1R ligand, adenosine; however, no analgesia was evident when an exogenous adenosine was blocked by A1R antagonist. This study demonstrated dual mechanisms of neuropathic pain in TRPV1-induced neuropathy, involving a reduced adenosine system at both the ligand (adenosine) and receptor (A1Rs) levels.

  10. Adenosine and sleep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanik, G.M. Jr.

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% andmore » 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.« less

  11. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  12. Active Calcium and Strontium Transport in Human Erythrocyte Ghosts

    PubMed Central

    Olson, Erik J.; Cazort, Ralph J.

    1969-01-01

    Both calcium and strontium could be transported actively from erythrocytes if adenosine triphosphate, guanosine triphosphate, or inosine triphosphate were included in the hypotonic medium used to infuse calcium or strontium into the cells. Acetyl phosphate and pyrophosphate were not energy sources for the transport of either ion. Neither calcium nor strontium transport was accompanied by magnesium exchange, and the addition of Mg++ to the reaction medium in a final concentration of 3.0 mmoles/liter did not promote the transport of either ion. In the absence of nucleotide triphosphates, the addition of 1.5 mmoles/liter of Sr++ to the reaction solution did not bring about active calcium transport and similarly 1.5 mmoles/liter of Ca++ did not bring about active strontium transport. The inclusion of 1.5 mmoles/liter of Ca++ or Sr++ in the reaction medium did not interfere with the transport of the other ion when the erythrocytes were infused with adenosine triphosphate. PMID:4304202

  13. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  14. Beneficial metabolic effects of 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine in multiple biological matrices and intestinal flora of hyperlipidemic hamsters.

    PubMed

    Li, Tianqi; Sun, Shanshan; Zhang, Jinyue; Qu, Kai; Yang, Liu; Ma, Changlu; Jin, Xiangju; Zhu, Haibo; Wang, Yinghong

    2018-06-21

    ABSTRACT:Hyperlipidemia is one of the main causes of obesity, type 2 diabetes mellitus (T2DM) and atherosclerosis. The adenosine derivative, 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine (IMM-H007) is an effective lipid-lowering compound that has important implications for the development of lipid-lowering drugs. Metabolomic analysis based on 1H-NMR was used to monitor dynamic changes in diverse biological media including serum, liver, urine, and feces in response to high-fat diet (HFD) and IMM-H007 treatments. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography (GC) analyses were performed to quantify the bile acids and fatty acids in the liver and feces. Fecal microbiome profiling was performed using Illumina sequencing of the 16S ribosomal RNA (16S rRNA) gene. IMM-H007 improved the metabolism of carbohydrate, ketone bodies, fatty acids, amino acids and bile acids in hyperlipidemic hamsters. The correlation between metabolite changes was explored in different biological media. Significant changes in gut microbiota were observed in the HFD and IMM-H007 treatment groups. In the HFD group at the phylum level, we found high levels of the Firmicutes genus and low levels of Bacteroidetes. In contrast, the administration of IMM-H007 reversed the levels of Firmicutes and Bacteroidetes. This reversal suggested that IMM-H007 may have the ability to regulate the composition of the gut flora. We also analyzed the correlation between the gut flora and the metabolites. Our results indicate that IMM-H007 treatment improves the hyperlipidemic metabolism and the structure of the gut microbiota in hyperlipidemic hamsters.

  15. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets.

    PubMed

    Zhang, Li-Li; Zhang, Hao; Li, Yue; Wang, Tian

    2017-06-01

    It has been shown that there is a relationship between intrauterine growth retardation (IUGR) and postnatal intestinal damage involved in energy deficits. Therefore, the present study was conducted to investigate the effect of medium-chain triglycerides (MCT) on the intestinal morphology, intestinal function and energy metabolism of piglets with IUGR. At weaning (21 ± 1.1 d of age), 24 IUGR piglets and 24 normal birth weight (NBW) piglets were selected according to their birth weights (BW) (IUGR: 0.95 ± 0.04 kg BW; NBW: 1.58 ± 0.04 kg BW) and their weights at the time of weaning (IUGR: 5.26 ± 0.15 kg BW; NBW: 6.98 ± 0.19 kg BW). The piglets were fed a diet of either long-chain triglycerides (LCT) (containing 5% LCT) or MCT (containing 1% LCT and 4% MCT) for 28 d. Then, the piglets' intestinal morphology, biochemical parameters and mRNA abundance related to intestinal damage and energy metabolism were determined. IUGR was found to impair intestinal morphology, with evidence of decreased villus height and increased crypt depth; however, these negative effects of IUGR were ameliorated by MCT treatment. IUGR piglets showed compromised intestinal digestion and absorption functions when compared with NBW piglets. However, feeding MCT increased the maltase activity in the jejunum and alleviated IUGR-induced reductions in plasma d-xylose concentrations and jejunal sucrase activity. IUGR decreased the efficiency of the piglets' intestinal energy metabolism; however, piglets fed an MCT diet exhibited increased adenosine triphosphate (ATP) concentrations and ATP synthase F1 complex beta polypeptide expression, as well as decreased adenosine monophosphate-activated kinase alpha 1 expression in the jejunum of piglets. In addition, up-regulation of the piglets' citrate synthase and succinate dehydrogenase levels was found to occur following MCT treatment at both the activity and the transcriptional levels of the jejunum. Therefore, it can be postulated that

  16. Heterogeneities in Myocardial Flow and Metabolism: Exacerbation with Abnormal Excitation

    PubMed Central

    Bassingthwaighte, James B.; Li, Zheng

    2010-01-01

    Because regional myocardial blood flows are remarkably heterogeneous—with a 6- to 10-fold range of flows in normal hearts—and because the spatial profiles of the flows are stable over long periods and over a range of conditions, the relation between flows and other physiologic functions has been explored. Local fatty acid uptake and oxygen consumption are almost linearly related to the flows. Coronary network structure and hydrodynamic resistances give suitable flow heterogeneity but are thought to be a response to local needs rather than being causative. Presumably the cause is the need for adenosine triphosphate (ATP) synthesis locally, and therefore flows, substrate delivery, and oxygen utilization are driven primarily by local rates of ATP hydrolysis, mainly by contractile proteins. This hypothesis is by no means fully tested. Data on pacing dog hearts from different sites, on patients with left bundle branch block, and on unloading transplanted rat hearts, all point in the same direction: unloading ventricular muscle leads to diminished flow and exaggeratedly diminished glucose uptake. The mechanism is likely to be that discovered by Taegtmeyer and colleagues, namely, the expression of fetal genes in regions where the muscle is unloaded and particular metabolic enzymes and transporters are downregulated. PMID:10750580

  17. Functional coupling between adenosine A1 receptors and G-proteins in rat and postmortem human brain membranes determined with conventional guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding or [35S]GTPγS/immunoprecipitation assay.

    PubMed

    Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; Matsuoka, Isao; García-Sevilla, Jesús A

    2018-06-01

    Adenosine signaling plays a complex role in multiple physiological processes in the brain, and its dysfunction has been implicated in pathophysiology of neuropsychiatric diseases such as schizophrenia and affective disorders. In the present study, the coupling between adenosine A 1 receptor and G-protein was assessed by means of two [ 35 S]GTPγS binding assays, i.e., conventional filtration method and [ 35 S]GTPγS binding/immunoprecipitation in rat and human brain membranes. The latter method provides information about adenosine A 1 receptor-mediated Gα i-3 activation in rat as well as human brain membranes. On the other hand, adenosine-stimulated [ 35 S]GTPγS binding determined with conventional assay derives from functional activation of Gα i/o proteins (not restricted only to Gα i-3 ) coupled to adenosine A 1 receptors. The determination of adenosine concentrations in the samples used in the present study indicates the possibility that the assay mixture under our experimental conditions contains residual endogenous adenosine at nanomolar concentrations, which was also suggested by the results on the effects of adenosine receptor antagonists on basal [ 35 S]GTPγS binding level. The effects of adenosine deaminase (ADA) on basal binding also support the presence of adenosine. Nevertheless, the varied patterns of ADA discouraged us from adding ADA into assay medium routinely. The concentration-dependent increases elicited by adenosine were determined in 40 subjects without any neuropsychiatric disorders. The increases in %E max values determined by conventional assay according to aging and postmortem delay should be taken into account in future studies focusing on the effects of psychiatric disorders on adenosine A 1 receptor/G-protein interaction in postmortem human brain tissue.

  18. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  19. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.

    PubMed

    Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue

    2018-01-23

    Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  20. In vitro effect of adenosine agonist GR79236 on the insulin sensitivity of glucose utilisation in rat soleus and human rectus abdominus muscle.

    PubMed

    Webster, J M; Heseltine, L; Taylor, R

    1996-06-07

    The dose-response effects of a new adenosine agonist, GR79236, were examined in isolated rat soleus muscle strips and human rectus abdominus muscle strips. Effects on the insulin sensitivity of carbohydrate metabolism were examined, in particular upon insulin stimulated glycogen synthesis and glycolytic flux. In the presence of adenosine deaminase (ADA), GR79236 increased insulin sensitivity of pyruvate release from rat soleus muscle strips by 24% from 82.5 +/- 10.0 to 102.5 +/- 10.0 (P < 0.01), by 27% to 105.0 +/- 12.5 (P < 0.01) and by 24% to 102.5 +/- 10.0 (P < 0.01) nmol/25 mg per h at 0.1 and 10 microM GR79236, respectively. Rates of lactate release followed a similar but non-significant trend. Addition of GR79236 in the presence of ADA had no effect on rates of glycogen synthesis. Insulin stimulated rates of pyruvate or lactate release or of glycogen synthesis were unaffected by the addition of adenosine deaminase or GR79236 in human rectus abdominus muscle strips. Adenosine agonists may act indirectly to modulate insulin sensitivity of carbohydrate metabolism.

  1. A metabolomics-driven approach reveals metabolic responses and mechanisms in the rat heart following myocardial infarction.

    PubMed

    Nam, Miso; Jung, Youngae; Ryu, Do Hyun; Hwang, Geum-Sook

    2017-01-15

    Myocardial infarction (MI) is caused by myocardial necrosis resulting from prolonged ischemia. However, the biological mechanisms underlying MI remain unclear. We evaluated metabolic and lipidomic changes in rat heart tissue from sham and MI at 1h, 1day and 10day after coronary ligation, using global profiling based on metabolomics. A time-dependent increase or decrease in polar and lipid metabolite levels was measured. The S-adenosylmethionine (SAM) concentration and the SAM/S-adenosylhomocysteine (SAH) ratio gradually decreased in a time-dependent manner and were significantly downregulated 10days after MI. Transcriptome analysis revealed that the levels of coenzyme Q (Coq)-3 and Coq5, both of which are SAM-dependent methyltransferases, were decreased in the MI groups. These results suggested that dysregulation of SAM may be related to down regulated COQ biosynthetic pathway. In addition, short-chain (C3) and medium-chain (C4-C12) acylcarnitine levels gradually decreased, whereas long-chain acylcarnitine (C14-18) levels increased, owing to a defect in β-oxidation during ischemia. These changes are related to energy-dependent metabolic pathways, and a subsequent decrease in adenosine triphosphate concentration was observed. The comprehensive integration of various omics data provides a novel means of understanding the underlying pathophysiological mechanisms of MI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors improve myocardial high-energy phosphate metabolism in men.

    PubMed

    Schocke, Michael F; Martinek, Martin; Kremser, Christian; Wolf, Christian; Steinboeck, Peter; Lechleitner, Monika; Jaschke, Werner; Pachinger, Otmar; Metzler, Bernhard

    2003-01-01

    We intended to prove that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or statins have a beneficial impact on the human myocardial, high-energy, phosphate metabolism. The present study included 18 male patients (mean age 49.8 +/- 10.3) with statin-treated, familiar hypercholesterolemia (FH) and 13 male patients with untreated FH (mean age 44.6 +/- 9.5). Twenty-six healthy male volunteers served as controls (mean age 44.2 +/- 12.1). Phosphorus-31, two-dimensional chemical shift imaging (31P 2D CSI) of the heart was performed in all subjects using a 1.5 Tesla whole-body magnetic resonance (MR) scanner. The ratios between phosphocreatine (PCr) and beta-adenosine-triphosphate (beta-ATP) were calculated for the left ventricular myocardium. Furthermore, echocardiographic evaluation and stress tests were performed in all individuals. The untreated patients with FH exhibited a significant decrease in left ventricular PCr to beta-ATP ratios (1.78 +/- 0.34) compared with statin-treated FH patients (2.15 +/- 0.26, p < 0.001) and healthy controls (2.04 +/- 0.26, p = 0.009). The left ventricular PCr-to-beta-ATP ratios of the treated FH patients were in the range of the healthy controls. Our study shows for the first time an-improvement of the high-energy, phosphate metabolism in the left ventricular myocardium of patients with statin-treated FH compared with untreated FH patients.

  3. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  4. Ticagrelor Compared with Clopidogrel Increased Adenosine and Cyclic Adenosine Monophosphate Plasma Concentration in Acute Coronary Syndrome Patients.

    PubMed

    Li, Xiaoye; Wang, Qibing; Xue, Ying; Chen, Jiahui; Lv, Qianzhou

    2017-06-01

    Ticagrelor produces a more potent antiplatelet effect than clopidogrel and inhibits cellular uptake of adenosine, which is associated with several cardiovascular consequences. We aimed to explore the correlation between adenosine and cyclic adenosine monophosphate (cAMP) plasma concentration and antiplatelet effect by clopidogrel or ticagrelor in patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (DAPT). We conducted a prospective, observational and single-centre cohort study enrolling 68 patients with non-ST-segment elevation ACS from January 2016 to May 2016. We monitored the inhibition of platelet aggregation (IPA) and assessed adenosine, adenosine deaminase (ADA) and cAMP plasma concentrations by immunoassay on admission and 48 hr after coronary angiography. The demographic and clinical data were collected by reviewing their medical records. The two groups exhibited similar baseline characteristics including adenosine, ADA and cAMP. The mean IPA in patients receiving ticagrelor was significantly higher than that in patients receiving clopidogrel (93.5% versus 67.2%; p = 0.000). Also, we observed that patients treated with ticagrelor had a significantly higher increase in levels of adenosine and cAMP compared with those treated with clopidogrel (1.04 (0.86; 1.41) versus 0.04 (-0.25; 0.26); p = 0.029 and 0.78 (-1.67; 1.81) versus 0.60 (-1.91; 4.60); p = 0.037, respectively). And there was a weak correlation between IPA and adenosine as well as cAMP plasma concentration (r = 0.390, p = 0.001 and r = 0.335, p = 0.005, respectively). Ticagrelor increased adenosine and cAMP plasma concentration compared with clopidogrel in patients with ACS. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  6. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes.

    PubMed

    Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee

    2017-02-07

    This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1-6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.

  7. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee

    2017-02-01

    This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1-6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.

  8. Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes.

    PubMed Central

    Rapiejko, P J; Malbon, C C

    1987-01-01

    The effects of short-term hyperthyroidism in vivo on the status of the components of the fat-cell hormone-sensitive adenylate cyclase were investigated. The number of beta-adrenergic receptors was elevated by about 25% in membranes of fat-cells isolated from hyperthyroid rats as compared with euthyroid rats, but their affinity for radioligand was unchanged. Membranes of hyperthyroid-rat fat-cells displayed less than 65% of the normal complement of receptors for [3H]cyclohexyladenosine. The affinity of the receptors for this ligand was normal. In contrast with the marked increase in the amounts of the alpha-subunits of the guanine nucleotide-binding proteins Gi (Mr 41,000) and Go (Mr 39,000) observed in the hypothyroid state [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564], the amounts of alpha-Gi, alpha-Go as well as alpha-Gs subunits [Mr 42,000 (major) and 46,000/48,000 (minor)] were not changed by hyperthyroidism. Adenylate cyclase activity in response to forskolin, guanosine 5'-[gamma-thio]triphosphate or isoprenaline, in contrast, was decreased by 30-50% in fat-cell membranes from hyperthyroid rats. Fat-cells isolated from hyperthyroid rats accumulated cyclic AMP to less than 50% of the extent in their euthyroid counterparts in the presence of adenosine deaminase and either adrenaline or forskolin, suggesting a decrease in the amount or activity of the catalytic subunit of adenylate cyclase. In the absence of exogenous adenosine deaminase, cyclic AMP accumulation in response to adrenaline was elevated rather than decreased in fat-cells from hyperthyroid rats. The inhibitory influence of adenosine is apparently limited in the hyperthyroid state by the decreased complement of inhibitory R-site purinergic receptors in these fat-cells. Short-term hyperthyroidism modulates the fat-cell adenylate cyclase system at the receptor level (beta-receptor number increased, R-site purinergic-receptor number decreased) and the catalytic subunit of adenylate

  9. The examination of urine samples for pathogenic microbes by the luciferase assay for ATP. 1: The effect of the presence of fungi, fungal like bacteria and kidney cells in urine samples

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1973-01-01

    A method for accurately determining urinary tract infections in man is introduced. The method is based on adenosine triphosphate (ATP) concentration in urine samples after removing nonbacterial ATP. Adenosine triphosphate concentration is measured from the bioluminescent reaction of luciferase when mixed with ATP. An examination was also made of the effectiveness of rupturing agents on monkey kidney cells Candia albicans, a Rhodotorula species, and a Streptomyces species in determining whether these cells could contribute ATP to the bacterial ATP value of a urine sample.

  10. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    PubMed

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  11. AMP is an adenosine A1 receptor agonist.

    PubMed

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  12. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  13. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs.

    PubMed

    Yee, Benjamin K; Singer, Philipp; Chen, Jiang-Fan; Feldon, Joram; Boison, Detlev

    2007-12-01

    The neuromodulator adenosine fulfills a unique role in the brain affecting glutamatergic neurotransmission and dopaminergic signaling via activation of adenosine A1 and A2A receptors, respectively. The adenosine system is thus ideally positioned to integrate glutamatergic and dopaminergic neurotransmission, which in turn could affect behavior and cognition. In the adult brain, adenosine levels are largely regulated by its key metabolic enzyme adenosine kinase (ADK), which may assume the role of an 'upstream regulator' of these two neurotransmitter pathways. To test this hypothesis, transgenic mice with an overexpression of ADK in brain (Adk-tg), and therefore reduced brain adenosine levels, were evaluated in a panel of behavioral and psychopharmacological assays to assess possible glutamatergic and dopaminergic dysfunction. In comparison to non-transgenic control mice, Adk-tg mice are characterized by severe learning deficits in the Morris water maze task and in Pavlovian conditioning. The Adk-tg mice also exhibited reduced locomotor reaction to systemic amphetamine, whereas their reaction to the non-competitive N-methyl-d-aspartate receptor antagonist MK-801 was enhanced. Our results confirmed that ADK overexpression could lead to functional concomitant alterations in dopaminergic and glutamatergic functions, which is in keeping with the hypothesized role of ADK in the balance and integration between glutamatergic and dopaminergic neurotransmission. The present findings are of relevance to current pathophysiological hypotheses of schizophrenia and its pharmacotherapy.

  14. Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host-Cell Lipid Metabolism.

    PubMed

    Jiménez de Oya, Nereida; Blázquez, Ana-Belén; Casas, Josefina; Saiz, Juan-Carlos; Martín Acebes, Miguel A

    2018-04-30

    Mosquito-borne flaviviruses are a group of RNA viruses that constitute global threats for human and animal health. Replication of these pathogens is strictly dependent on cellular lipid metabolism. We have evaluated the effect of the pharmacological activation of Adenosine Monophosphate-activated Protein Kinase (AMPK), a master regulator of lipid metabolism, on the infection of three medically relevant flaviviruses: West Nile virus (WNV), Zika virus (ZIKV) and dengue virus (DENV). WNV is responsible for recurrent outbreaks of meningitis and encephalitis affecting humans and horses worldwide. ZIKV has caused a recent pandemic associated with birth defects (microcephaly), reproductive disorders, and severe neurological complications (Guillain-Barré syndrome). DENV is the etiological agent of the most prevalent mosquito-borne viral disease that can induce a potentially lethal complication called severe dengue. Our results showed, for the first time, that activation of AMPK using the specific small molecule activator PF-06409577 reduced both WNV, ZIKV, and DENV infection. This antiviral effect was associated to an impairment of viral replication due to the modulation of host cell lipid metabolism exerted by the compound. These results support that the pharmacological activation of AMPK, which currently constitutes an important pharmacological target for human diseases, could also provide a feasible approach for broad-spectrum host-directed antiviral discovery. Copyright © 2018 American Society for Microbiology.

  15. Caffeine and adenosine.

    PubMed

    Ribeiro, Joaquim A; Sebastião, Ana M

    2010-01-01

    Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.

  16. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.

    PubMed

    Alhasawi, Azhar; Costanzi, Jacob; Auger, Christopher; Appanna, Nishma D; Appanna, Vasu D

    2015-04-20

    Although the ability of microbial systems to adapt to the toxic challenge posed by numerous metal pollutants individually has been well documented, there is little detailed information on how bacteria survive in a multiple-metal environment. Here we describe the metabolic reconfiguration invoked by the soil microbe Pseudomonas fluorescens in a medium with millimolar amounts of aluminum (Al), iron (Fe), gallium (Ga), calcium (Ca), and zinc (Zn). While enzymes involved in the production of NADH were decreased, there was a marked increase in enzymatic activities dedicated to NADPH formation. A modified tricarboxylic acid (TCA) cycle coupled to an alternate glyoxylate shunt mediated the synthesis of adenosine triphosphate (ATP) with the concomitant generation of oxalate. This dicarboxylic acid was a key ingredient in the sequestration of the metals that were detoxified as a lipid complex. It appears that the microbe favors this strategy as opposed to a detoxification process aimed at each metal separately. These findings have interesting implications for bioremediation technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. AMP Is an Adenosine A1 Receptor Agonist*

    PubMed Central

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  18. Decreased energy demanding processes in the frontal lobes of schizophrenics due to neuroleptics? A 31P-magneto-resonance spectroscopic study.

    PubMed

    Volz, H P; Rzanny, R; Rössger, G; Hübner, G; Kreitschmann-Andermahr, I; Kaiser, W A; Sauer, H

    1997-12-30

    In the present investigation on 31P-magneto-resonance spectroscopic parameters in the frontal lobe, we found phosphocreatine levels and the ratio phosphocreatine/adenosine triphosphate to be increased (12.62 +/- 1.98% resp. 0.31 +/- 0.06) in 50 neuroleptic-treated schizophrenics, whereas no differences were detected in 10 neuroleptic-free patients (11.66 +/- 2.57% resp. 0.29 +/- 0.08) compared to 36 controls (11.37 +/- 1.45 resp. 0.29 +/- 0.04). This result points to a major role of neuroleptics in the metabolism of high-energy phosphates.

  19. D-ribose--an additive with caffeine.

    PubMed

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  20. Hypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells

    PubMed Central

    Chao, Ting-Ting; Sytwu, Huey-Kang; Li, Shiue-Li; Fang, Mei-Cho; Chen, Hang-Kang; Lin, Yi-Chun; Kuo, Chao-Yin

    2015-01-01

    Previously, we demonstrated that hypoxia (1% O2) enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs). In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups. The measurement of oxygen consumption rate, extracellular acidification rate (ECAR), and intracellular adenosine triphosphate levels corresponding to 20% and 5% oxygen concentrations was determined using a Seahorse XF extracellular flux analyzer. After low oxygen tension cultivation for 21 days, the mean size of the hypoxia-expanded neurospheres was significantly increased at 5% O2; this correlated with high-level expression of hypoxia-inducible factor-1 alpha (Hif-1α), proliferating cell nuclear antigen (PCNA), cyclin D1, Abcg2, nestin, and Nanog proteins but downregulated expression of p27 compared to that in a normoxic condition. Low oxygen tension cultivation tended to increase the side population fraction, with a significant difference found at 5% O2 compared to that at 20% O2. In addition, hypoxia induced a metabolic energy shift of SPCs toward higher basal ECARs and higher maximum mitochondrial respiratory capacity but lower proton leak than under normoxia, where the SPC metabolism was switched toward glycolysis in long-term hypoxic cultivation. PMID:26236724

  1. Adenosine and inflammation: what's new on the horizon?

    PubMed

    Antonioli, Luca; Csóka, Balázs; Fornai, Matteo; Colucci, Rocchina; Kókai, Endre; Blandizzi, Corrado; Haskó, György

    2014-08-01

    Adenosine contributes to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with adenosine receptor ligands for the management of several inflammatory conditions in preclinical and clinical settings. However, therapeutic applications of these drugs are sometimes complicated by the occurrence of serious adverse effects. The scientific community is making intensive efforts to design novel adenosine receptor ligands endowed with greater selectivity or to develop innovative compounds acting as allosteric receptor modulators. In parallel, research is focusing on novel pharmacological entities (designated as adenosine-regulating agents) that can increase, in a site- and event-specific manner, adenosine concentrations at the inflammatory site, thereby minimizing the adverse systemic effects of adenosine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    PubMed

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  3. REGULATION OF THE T-CELL RESPONSE BY CD39

    PubMed Central

    Takenaka, Maisa C.; Robson, Simon; Quintana, Francisco J.

    2016-01-01

    The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular adenosine triphosphate (eATP) and diphosphate (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates adenosine monophosphate (AMP), which is in turn used by the ecto-5’-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have major impacts on the dynamic equilibrium of pro-inflammatory eATP and ADP nucleotides vs. immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. Here, we review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections and cancer. PMID:27236363

  4. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    PubMed

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  5. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vectormore » containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.« less

  6. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    the conclusion that adenosine is involved in vascular flow control, matching metabolic activity to blood flow in all of these conditions, possibly with the exceptions of autoregulation at mean arterial blood pressures above approximately 60 mmHg. Evidence is presented for a major role of A2A, and a more limited role of A2B receptors, in balancing blood flow with metabolism. The primary effect of receptor occupancy is activation of KATP and KCa channels with smooth muscle relaxation and elevated blood flow rates. There are presently fewer data on ATP's participation in flow control, but recent evidence regarding glial cell control of cerebral arteriolar diameter suggests that this may be an important mechanism. The semi-final section, which briefly describes the evidence for a comparable role of adenosine in regulating coronary blood flow, is followed by a concluding statement reaffirming the importance of adenosine as a cerebral blood flow regulator.

  7. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

    PubMed

    Méndez, Lucía; Pazos, Manuel; Molinar-Toribio, Eunice; Sánchez-Martos, Vanesa; Gallardo, José M; Rosa Nogués, M; Torres, Josep L; Medina, Isabel

    2014-12-01

    The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  9. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence

    PubMed Central

    Jing, Lili; Tamplin, Owen J.; Chen, Michael J.; Deng, Qing; Patterson, Shenia; Kim, Peter G.; Durand, Ellen M.; McNeil, Ashley; Green, Julie M.; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K.; Schlaeger, Thorsten M.; Huttenlocher, Anna; Daley, George Q.; Ravid, Katya

    2015-01-01

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1+/cmyb+ HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl+ hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP–protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates. PMID:25870200

  10. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains

    PubMed Central

    Nesmith, Alexander P.; Horton, Renita E.; Sheehy, Sean P.; Parker, Kevin Kit

    2016-01-01

    Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction. PMID:28044126

  11. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains.

    PubMed

    Pasqualini, Francesco S; Nesmith, Alexander P; Horton, Renita E; Sheehy, Sean P; Parker, Kevin Kit

    2016-01-01

    Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.

  12. Is adenosine associated with sudden death in schizophrenia? A new framework linking the adenosine pathway to risk of sudden death.

    PubMed

    Gadelha, Ary; Zugman, André; Calzavara, Mariana Bendlin; de Mendonça Furtado, Remo Holanda; Scorza, Fulvio Alexandre; Bressan, Rodrigo Afonsecca

    2018-01-01

    Schizophrenia is associated with an increased mortality from cardiovascular disease. Relatively few studies have assessed the putative association of schizophrenia pathophysiology with sudden death. Low adenosine levels have been associated with schizophrenia. In cardiology, increased mortality among patients with congestive heart failure has been associated with genetic polymorphisms that potentially lead to lower adenosine levels. Thus, we hypothesize that adenosine could link schizophrenia and cardiovascular mortality, with decreased adenosine levels leading to increased vulnerability to hyperexcitability following hypoxic insults, increasing the odds of fatal arrhythmias. Low adenosine levels might also lead to a small increase in overall mortality rates and a major increase in the sudden death rate. This hypothesis paves the way for further investigation of the increased cardiac mortality associated with schizophrenia. Potentially, a better characterization of adenosine-related mechanisms of sudden death in schizophrenia could lead to new evidence of factors leading to sudden death in the general population. Copyright © 2017. Published by Elsevier Ltd.

  13. The ADA*2 allele of the adenosine deaminase gene (20q13.11) and recurrent spontaneous abortions: an age-dependent association

    PubMed Central

    Nunes, Daniela Prudente Teixeira; Spegiorin, Lígia Cosentino Junqueira Franco; de Mattos, Cinara Cássia Brandão; Oliani, Antonio Helio; Vaz-Oliani, Denise Cristina Mós; de Mattos, Luiz Carlos

    2011-01-01

    OBJECTIVE: Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS: A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N = 129), and G2, without a history of abortions (N = 182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS: Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS: The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age. PMID:22086524

  14. Staphylococcus aureus synthesizes adenosine to escape host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kern, Justin W.; Missiakas, Dominique M.

    2009-01-01

    Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. PMID:19808256

  15. H2O2 modulates the energetic metabolism of the cloud microbiome

    NASA Astrophysics Data System (ADS)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  16. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression

    PubMed Central

    Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul

    2003-01-01

    The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring

  17. Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A.

    PubMed

    Machann, Wolfram; Breunig, Frank; Weidemann, Frank; Sandstede, Jörn; Hahn, Dietbert; Köstler, Herbert; Neubauer, Stefan; Wanner, Christoph; Beer, Meinrad

    2011-03-01

    In vitro studies have shown impairment of energy metabolism in cardiac fibroblasts from Fabry patients. A recent in vivo study reported an association between cardiac energy metabolism and increased myocardial mass in Fabry patients. We therefore assessed possible disturbances of cardiac energy metabolism in Fabry patients by in vivo (31)P-MR-spectroscopy. Additionally, the effect of enzyme replacement therapy (ERT) on cardiac energetics was tested. Twenty-three patients (41 ± 9 years; 10 females) with genetically proven Fabry disease were examined with a 1.5 T Scanner, and compared with an age-matched healthy control group. Eight patients underwent ERT and had follow-up examinations after 3 and 14 months. The high-energy phosphate molecules phosphocreatine (PCr) and adenosine triphosphate (ATP) were quantified in localized 31P-spectra by SLOOP (spectral localization with optimum point spread function). Cine- and late gadolinium enhancement (LGE) studies were also performed. When compared with healthy controls, Fabry patients demonstrated reduced PCr- (6.1 ± 1.9 vs. 8.8 ± 2.6 mmol/kg; P = 0.003) and ATP concentrations (3.9 ± 1.5 vs. 4.6 ± 1.0 mmol/kg; P = 0.048). During ERT, PCr concentrations increased (7.1 ± 1.5 mmol/kg vs. 6.1 ± 1.9; P < 0.05) and left ventricular mass decreased (215 ± 55 vs. 185 ± 45 g; P = 0.012). Disturbances in cardiac energetics were not correlated to the presence or absence of cardiac fibrosis on LGE. Cardiac energy metabolism is disturbed in Fabry disease; this may play an important role in the pathogenesis of Fabry cardiomyopathy. Enzyme replacement therapy ameliorates energetic depression.

  18. Adenosine regulation of microtubule dynamics in cardiac hypertrophy.

    PubMed

    Fassett, John T; Xu, Xin; Hu, Xinli; Zhu, Guangshuo; French, Joel; Chen, Yingjie; Bache, Robert J

    2009-08-01

    There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.

  19. Differential distribution of adenosine receptors in rat cochlea.

    PubMed

    Vlajkovic, Srdjan M; Abi, Shukri; Wang, Carol J H; Housley, Gary D; Thorne, Peter R

    2007-06-01

    Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.

  20. Mechanism-specific effects of adenosine on ventricular tachycardia.

    PubMed

    Lerman, Bruce B; Ip, James E; Shah, Bindi K; Thomas, George; Liu, Christopher F; Ciaccio, Edward J; Wit, Andrew L; Cheung, Jim W; Markowitz, Steven M

    2014-12-01

    There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 μg/kg) did not terminate sustained VT or have any effect on VT cycle length. These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity. © 2014 Wiley Periodicals, Inc.

  1. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  2. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  3. Role of adenosine receptors in caffeine tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity ofmore » caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.« less

  4. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2 prime -chloro-2 prime -deoxyuridine 5 prime -triphosphate: A 3 prime -2 prime hydrogen transfer during the formation of 3 prime -keto-2 prime -deoxyuridine 5 prime -triphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, G.W.; Harris, G.; Stubbe, J.

    1988-10-04

    The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate (C1UTP) into a mixture of 2{prime}-deoxyuridine triphosphate (dUTP) and the unstable product 3{prime}-keto-2{prime}-deoxyuridine triphosphate (3{prime}-keto-dUTP). This ketone can be trapped by reduction with NaBH{sub 4}, producing a 4:1 mixture of xylo-dUTP and dUTP. When (3{prime}-{sup 3}H)C1UTP is treated with enzyme in the presence of NaBH{sub 4}, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the {sup 3}H in C1UTP. Degradation of these isomeric nucleosides has established the location of the {sup 3}H in 3{prime}-keto-dUTP as predominantly 2{prime}(S). The xylo-dU had 98.6% of its labelmore » at the 2{prime}(S) position and 1.5% at 2{prime}(R). The isolated dU had 89.6% of its label at 2{prime}(S) and 1.4% at 2{prime}(R), with the remaining 9% label inferred to be at the 3{prime}-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1,000 mixture of dUTP and 3{prime}-keto-dUTP, where the 3{prime}-hydrogen of C1UTP is retained at 3{prime} during production of dUTP and is transferred to 2{prime}(S) during production of 3{prime}-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin are discussed in terms of reductase being a model for the B{sub 12}-dependent rearrangement reactions.« less

  5. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy

    PubMed Central

    Yipintsoi, Tada; Kroll, Keith

    2015-01-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5–1 ml·g−1·min−1 and increased to 2–3 ml·g−1·min−1 with catecholamine infusion and to ∼4 ml·g−1·min−1 with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1–0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, “tracking” closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. PMID:26589329

  6. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. Copyright © 2016 the American Physiological Society.

  7. How Mg2+ ions lower the SN2@P barrier in enzymatic triphosphate hydrolysis.

    PubMed

    van Bochove, Marc A; Roos, Goedele; Fonseca Guerra, Célia; Hamlin, Trevor A; Bickelhaupt, F Matthias

    2018-04-03

    Our quantum chemical activation strain analyses demonstrate how Mg2+ lowers the barrier of the enzymatic triphosphate hydrolysis through two distinct mechanisms: (a) weakening of the leaving-group bond, thereby decreasing activation strain; and (b) transition state (TS) stabilization through enhanced electrophilicity of the triphosphate PPP substrate, thereby strengthening the interaction with the nucleophile.

  8. Rapamycin Inhibits Human Laryngotracheal Stenosis–derived Fibroblast Proliferation, Metabolism, and Function in Vitro

    PubMed Central

    Namba, Daryan R.; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D.; Horton, Maureen R.; Hillel, Alexander T.

    2015-01-01

    Objective To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)–derived fibroblasts. Study Design Controlled in vitro study. Setting Tertiary care hospital in a research university. Subjects and Methods Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10−10 M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10−9 M (high-dose) rapamycin dissolved in DMSO. Results The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Conclusions Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin’s anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. PMID:25754184

  9. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells.

    PubMed

    Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia

    2014-10-01

    In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2 × 7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2 × 7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2 × 7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling-p53 increase, AMPK activation, and PARP cleavage-as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. © 2014 Mello et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Increased cortical extracellular adenosine correlates with seizure termination.

    PubMed

    Van Gompel, Jamie J; Bower, Mark R; Worrell, Gregory A; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J; Kim, Inyong; Bennet, Kevin E; Meyer, Fredric B; Marsh, W Richard; Blaha, Charles D; Lee, Kendall H

    2014-02-01

    Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent on neurotransmitters of which little is known regarding their periictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Furthermore, microdialysis studies in humans suggest that adenosine is elevated periictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. White farm swine (n = 45) were used in an acute cortical model of epilepsy, and 10 human epilepsy patients were studied during intraoperative electrocorticography (ECoG). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS)-based fast scan cyclic voltammetry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine-specific triangular waveform or biosensors, respectively. Simultaneous ECoG and electrochemistry demonstrated an average adenosine increase of 260% compared to baseline, at 7.5 ± 16.9 s with amperometry (n = 75 events) and 2.6 ± 11.2 s with FSCV (n = 15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Simultaneous ECoG and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS-based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. Wiley Periodicals, Inc. © 2014 International League Against

  11. [Alteration of metabolic characteristics on the masseter muscle fiber of unilateral chewing rats and its adenosine monophosphate activated protein kinase regulatory mechanism].

    PubMed

    Andi, Shi; Lin, Zeng; Jing, Liu

    2017-06-01

    This study aims to determine the influence of unilateral chewing on metabolic characteristics of masseter muscle fibers in rats and the regulatory effect of an adenosine monophosphate activated protein kinase (AMPK) signal pathway on metabolism. Rats were submitted to exodontia of all the right maxillary molars and divided into 2, 4, 6, and 8 weeks groups, and corresponding control groups were set as well. Sections were stained by nicotine adenine dinucleotide tetrazolim reductase(NADH-TRase) to demonstrate the types, proportion, and density of masseter muscle fibers. AMPKα1 and p-AMPK(Thr172) levels in bilateral masseter muscles were detected by Western blot. In the 2-week group, the percentage of dark fibers augmented in the ipsilateral side, whereas the percentage of intermediary fibers in the contralateral side was increased accompanied by a decrease of light fibers, compared with the control group (P<0.05). The percentage of dark fibers was increased in the bilateral sides, whereas the percentage of dark fiber in the ipsilateral sides surpassed that of the contralateral sides in the 4, 6, and 8-week groups. The percentage of intermediary fibers was decreased in the bilateral sides in the 6 and 8-week groups (P<0.05). The percentage of light fibers was reduced in the ipsilateral sides in the 8-week group, whereas no alteration was observed in contralateral sides (P>0.05). In the ipsilateral sides, p-AMPK (Thr172)/AMPKα1 levels were increased in the 2 and 4-week groups (P<0.05), whereas no change was observed in the contralateral sides in either group (P>0.05). Unilateral chewing increases the oxidative metabolic ability in bilateral masseter muscle fibers especially in the non-working side accompanied with change of muscle fiber types. The improvement of aerobic metabolism ability is related to the AMPK signal pathway.
.

  12. Acidosis slows the response of oxidative phosphorylation to metabolic demand in isolated rabbit heart.

    PubMed

    Hak, J B; van Beek, J H; Westerhof, N

    1993-05-01

    The purpose of this study was to investigate the effect of acidosis on the mean response time of mitochondrial oxygen consumption to steps in heart rate and in left ventricular balloon volume. The mean response time may be viewed as the average delay between a change in adenosine triphosphate (ATP) hydrolysis and oxygen consumption. The mean response time is calculated by subtracting the transport time, required for diffusion of oxygen and for convective transport through the coronary vessels, from the response time measured in the coronary venous effluent. Eight isolated rabbit hearts were perfused according to Langendorff using Tyrode solution at 28 degrees C. Arterial perfusate pH was lowered from 7.30 +/- 0.03 (mean +/- SD) to 6.59 +/- 0.02 by increasing the CO2 tension. At pH 7.3 the mean response time was 12.6 +/- 1.6 s, independent of the time after isolation of the heart. During acidosis, applied 40-75 min after isolation of the heart, the mean response time was 21.4 +/- 0.7 s and increased to 32.6 +/- 4.3 s during acidosis, 85-120 min after isolation. Thus the retardation of the metabolic response by acidosis might depend on the condition of the heart. A decrease of mitochondrial ATP synthetic capacity during acidosis may contribute to the retardation of the metabolic response. Since determination of the mean response time at 37 degrees C is not yet feasible, the experiments were done at 28 degrees C. Extrapolation of our findings to 37 degrees C appears premature.

  13. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    creatine analogue β-guanidinopropionic acid 17-19. Tension production may be inhibited in unloaded antigravity muscles 20, although the muscular activity detected by electromyography is not necessarily decreased 21. Thus, the contents of high-energy phosphates or turnover rate of adenosine triphosphate (ATP), which then affect the mitochondrial energy metabolism, may be altered. Therefore, the responses of high-energy phosphates and metabolic properties of rat hindlimb muscles to gravitational unloading were investigated.

  14. Di-Adenosine Tetraphosphate (Ap4A) Metabolism Impacts Biofilm Formation by Pseudomonas fluorescens via Modulation of c-di-GMP-Dependent Pathways▿

    PubMed Central

    Monds, Russell D.; Newell, Peter D.; Wagner, Jeffrey C.; Schwartzman, Julia A.; Lu, Wenyun; Rabinowitz, Joshua D.; O'Toole, George A.

    2010-01-01

    Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (Pi) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In Pi-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation. PMID:20154123

  15. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways.

    PubMed

    Monds, Russell D; Newell, Peter D; Wagner, Jeffrey C; Schwartzman, Julia A; Lu, Wenyun; Rabinowitz, Joshua D; O'Toole, George A

    2010-06-01

    Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (P(i)) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In P(i)-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation.

  16. A Role for Adenosine Deaminase in Drosophila Larval Development

    PubMed Central

    Dolezal, Tomas; Dolezelova, Eva; Zurovec, Michal

    2005-01-01

    Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals. PMID:15907156

  17. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  18. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    PubMed

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  19. 3-phosphoglycerate kinase from Hydrogenomonas facilis.

    NASA Technical Reports Server (NTRS)

    Mcfadden, B. A.; Schuster, E.

    1972-01-01

    Description of studies of the kinetics of heat inactivation of phosphoglycerate kinase in the soluble fraction from Hydrogenomonas facilis, its extensive purification, and inhibition by adenosine monophosphate (AMP). No evidence was found for an enzyme which catalyzes adenosine-triphosphate-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.

  20. Adenosine receptors and caffeine in retinopathy of prematurity.

    PubMed

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-06-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A 1 R, A 2A R, A 2B R) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adenosine receptors and caffeine in retinopathy of prematurity

    PubMed Central

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-01-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A1R, A2AR, A2BR) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. PMID:28088487

  2. Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy.

    PubMed

    Harata, Shingo; Isobe, Satoshi; Morishima, Itsuro; Suzuki, Susumu; Tsuboi, Hideyuki; Sone, Takahito; Ishii, Hideki; Murohara, Toyoaki

    2015-10-01

    The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.

  3. Adenosine signaling in normal and sickle erythrocytes and beyond.

    PubMed

    Zhang, Yujin; Xia, Yang

    2012-08-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and

  4. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  5. Comparison of the Immunomagnetic Separation/Adenosine Triphosphate Rapid Method and the Modified mTEC Membrane-Filtration Method for Enumeration of Escherichia coli

    USGS Publications Warehouse

    Brady, Amie M.G.; Bushon, Rebecca N.; Bertke, Erin E.

    2009-01-01

    Water quality at beaches is monitored for fecal indicator bacteria by traditional, culture-based methods that can take 18 to 24 hours to obtain results. A rapid detection method that provides estimated concentrations of fecal indicator bacteria within 1 hour from the start of sample processing would allow beach managers to post advisories or close the beach when the conditions are actually considered unsafe instead of a day later, when conditions may have changed. A rapid method that couples immunomagnetic separation with adenosine triphosphate detection (IMS/ATP rapid method) was evaluated through monitoring of Escherichia coli (E. coli) at three Lake Erie beaches in Ohio (Edgewater and Villa Angela in Cleveland and Huntington in Bay Village). Beach water samples were collected between 4 and 5 days per week during the recreational seasons (May through September) of 2006 and 2007. Composite samples were created in the lab from two point samples collected at each beach and were shown to be comparable substitutes for analysis of two individual samples. E. coli concentrations in composite samples, as determined by the culture-based method, ranged from 4 to 24,000 colony-forming units per 100 milliliters during this study across all beaches. Turbidity also was measured for each sample and ranged from 0.8 to 260 neophelometric turbidity ratio units. Environmental variables were noted at the time of sampling, including number of birds at the beach and wave height. Rainfall amounts were measured at National Weather Service stations at local airports. Turbidity, rainfall, and wave height were significantly related to the culture-based method results each year and for both years combined at each beach. The number of birds at the beach was significantly related to the culture-based method results only at Edgewater during 2006 and during both years combined. Results of the IMS/ATP method were compared to results of the culture-based method for samples by year for each beach

  6. Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani.

    PubMed

    Bhaumik, D; Datta, A K

    1988-04-01

    The reaction kinetics and the inhibitor specificity of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) from Leishmania donovani, have been analysed using homogeneous preparation of the enzyme. The reaction proceeds with equimolar stoichiometry of each reactant. Double reciprocal plots of initial velocity studies in the absence of products yielded intersecting lines for both adenosine and Mg2+-ATP. AMP is a competitive inhibitor of the enzyme with respect to adenosine and noncompetitive inhibitor with respect to ATP. In contrast, ADP was a noncompetitive inhibitor with respect to both adenosine and ATP, with inhibition by ADP becoming uncompetitive at very high concentration of ATP. Parallel equilibrium dialysis experiments against [3H]adenosine and [gamma-32P]ATP resulted in binding of adenosine to fre enzyme. Tubercidin (7-deazaadenosine) and 6-methyl-mercaptopurine riboside acted as substrates for the enzyme and were found to inhibit adenosine phosphorylation competitively in vitro. 'Substrate efficiency (Vmax/Km)' and 'turnover numbers (Kcat)' of the enzyme with respect to specific analogs were determined. Taken together the results suggest that (a) the kinetic mechanism of adenosine kinase is sequential Bi-Bi, (b) AMP and ADP may regulate enzyme activity in vivo and (c) tubercidin and 6-methylmercaptopurine riboside are monophosphorylated by the parasite enzyme.

  7. ATP concentration as possible marker of liver damage at leukaemia treatment: confocal microscopy-based experimental study and numerical simulations

    NASA Astrophysics Data System (ADS)

    Malashchenko, V.; Zyubin, A.; Babak, S.; Lavrova, A.

    2017-04-01

    We consider the method of confocal microscopy as a convenient instrument for determination of chemical compounds in biological tissues and cells. In particular, we study the dynamics of adenosine triphosphate (ATP) concentration that could be used as a bio-marker of energy metabolism pathologies at the treatment of acute lymphoblastic leukaemia (ALL). On the basis of data obtained by the confocal microscopy, the values of ATP concentration have been calculated for each case. Possible correlations with other characteristics of pathology processes obtained from plasma of leukemia patients show that ATP value could be a prognostic factor of the treatment success. The role of ATP in the drug metabolism switching is also discussed within the context of kinetic modelling of metabolism processes leading to the production of 6-Thioguanosine monophosphate, which is a principal acting agent in chemotherapy.

  8. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing

  9. Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs.

    PubMed

    Li, Yanjiao; Yu, Changning; Li, Jiaolong; Zhang, Lin; Gao, Feng; Zhou, Guanghong

    2017-12-01

    This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. Seventy-two barrow (Duroc×Landrace×Yorkshire, DLY) pigs (65.0±2.0 kg) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible factor-1α (HIF-1α) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.

  10. Metabolic manipulation in chronic heart failure: study protocol for a randomised controlled trial.

    PubMed

    Beadle, Roger M; Williams, Lynne K; Abozguia, Khaild; Patel, Kiran; Leon, Francisco Leyva; Yousef, Zaheer; Wagenmakers, Anton; Frenneaux, Michael P

    2011-06-06

    Heart failure is a major cause of morbidity and mortality in society. Current medical therapy centres on neurohormonal modulation with angiotensin converting enzyme inhibitors and β-blockers. There is growing evidence for the use of metabolic manipulating agents as adjunctive therapy in patients with heart failure. We aim to determine the effect of perhexiline on cardiac energetics and alterations in substrate utilisation in patients with non-ischaemic dilated cardiomyopathy. A multi-centre, prospective, randomised double-blind, placebo-controlled trial of 50 subjects with non-ischaemic dilated cardiomyopathy recruited from University Hospital Birmingham NHS Foundation Trust and Cardiff and Vale NHS Trust. Baseline investigations include magnetic resonance spectroscopy to assess cardiac energetic status, echocardiography to assess left ventricular function and assessment of symptomatic status. Subjects are then randomised to receive 200 mg perhexiline maleate or placebo daily for 4 weeks with serum drug level monitoring. All baseline investigations will be repeated at the end of the treatment period. A subgroup of patients will undergo invasive investigations with right and left heart catheterisation to calculate respiratory quotient, and mechanical efficiency. The primary endpoint is an improvement in the phosphocreatine to adenosine triphosphate ratio at 4 weeks. Secondary end points are: i) respiratory quotient; ii) mechanical efficiency; iii) change in left ventricular (LV) function. ClinicalTrials.gov: NCT00841139 ISRCTN: ISRCTN72887836.

  11. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  12. Tissue-dependent cerebral energy metabolism in adolescents with bipolar disorder.

    PubMed

    Dudley, Jonathan; DelBello, Melissa P; Weber, Wade A; Adler, Caleb M; Strakowski, Stephen M; Lee, Jing-Huei

    2016-02-01

    To investigate tissue-dependent cerebral energy metabolism by measuring high energy phosphate levels in unmedicated adolescents diagnosed with bipolar I disorder. Phosphorus-31 magnetic resonance spectroscopic imaging data were acquired over the entire brain of 24 adolescents with bipolar I disorder and 19 demographically matched healthy comparison adolescents. Estimates of phosphocreatine (PCr) and adenosine triphosphate (ATP, determined from the γ-resonance) in homogeneous gray and white matter in the right and left hemispheres of the cerebrum of each subject were obtained by extrapolation of linear regression analyses of metabolite concentrations vs. voxel gray matter fractions. Multivariate analyses of variance showed a significant effect of group on high energy phosphate concentrations in the right cerebrum (p=0.0002) but not in the left (p=0.17). Post-hoc testing in the right cerebrum revealed significantly reduced concentrations of PCr in gray matter and ATP in white matter in both manic (p=0.002 and 0.0001, respectively) and euthymic (p=0.004 and 0.002, respectively) bipolar I disorder subjects relative to healthy comparisons. The small sample sizes yield relatively low statistical power between manic and euthymic groups; cross-sectional observations limit the ability to determine if these findings are truly independent of mood state. Our results suggest bioenergetic impairment - consistent with downregulation of creatine kinase - is an early pathophysiological feature of bipolar I disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Correlation of transient adenosine release and oxygen changes in the caudate-putamen

    PubMed Central

    Wang, Ying; Venton, B. Jill

    2016-01-01

    Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2–4 seconds, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients were 3.2 seconds and 3.5 seconds, respectively. On average, the adenosine release starts and peaks 0.2 seconds prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor L-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests adenosine modulates blood flow on a rapid, sub-second time scale. PMID:27314215

  14. Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine.

    PubMed

    Birnbaum, Yochai; Birnbaum, Gilad D; Birnbaum, Itamar; Nylander, Sven; Ye, Yumei

    2016-12-01

    Ticagrelor inhibits the equilibrative-nucleoside-transporter-1 and thereby, adenosine cell re-uptake. Ticagrelor limits infarct size (IS) in non-diabetic rats and the effect is adenosine-dependent. Statins, via ecto-5'-nucleotidase activation, also increase adenosine levels and limit IS. Ticagrelor and rosuvastatin have additive effects on myocardial adenosine levels, and therefore, on IS and post-reperfusion activation of the NLRP3-inflammasome. Diabetic ZDF rats received via oral gavage; water (control), ticagrelor (150 mg/kg/d), prasugrel (7.5 mg/kg/d), rosuvastatin (5 mg/kg/d), ticagrelor + rosuvastatin and prasugrel + rosuvastatin for 3d. On day 4, rats underwent 30 min coronary artery occlusion and 24 h of reperfusion. Two additional groups received, ticagrelor + rosuvastatin or water in combination with CGS15943 (CGS, an adenosine receptor antagonist, 10 mg/kg i.p. 1 h before ischemia). Both ticagrelor and rosuvastatin increased myocardial adenosine levels with an additive effect of the combination whereas prasugrel had no effect. Similarly, both ticagrelor and rosuvastatin significantly reduced IS with an additive effect of the combination whereas prasugrel had no effect. The effect on IS was adenosine dependent as CGS15943 reversed the effect of ticagrelor + rosuvastatin. The ischemia-reperfusion injury increased myocardial mRNA levels of NLRP3, ASC, IL-1β and IL-6. Ticagrelor and rosuvastatin, but not prasugrel, significantly decreased these pro-inflammatory mediators with a trend to an additive effect of the combination. The combination also increased the levels of anti-inflammatory 15-epilipoxin A 4 . Ticagrelor and rosuvastatin when given in combination have an additive effect on local myocardial adenosine levels in the setting of ischemia reperfusion. This translates into an additive cardioprotective effect mediated by adenosine-induced effects including downregulation of pro- but upregulation of anti-inflammatory mediators.

  15. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  16. Detrimental effects of adenosine signaling in sickle cell disease.

    PubMed

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2011-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A(2B) receptor (A(2B)R)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A(2B)R has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.

  17. The alterations in adenosine nucleotides and lactic acid in striated muscles of rats during Rigor mortis following death with drowning or cervical dislocation.

    PubMed

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Yilmaz, Necat; Kocoglu, Hasan; Bakan, Ebubekir

    2003-01-01

    In this study, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid in the muscles of masseter, triceps, and quadriceps obtained from right and left sides of Spraque-Dawley rats following death were investigated. The samples were taken immediately and 120 minutes after death occurred. The rats were killed either by cervical dislocation or drowning. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than in those obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in triceps muscles of the rats killed with drowning. When rats killed with cervical dislocation and with drowning were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of drowning, ATP is consumed faster because of hard exercise or severe physical activity, resulting in a faster rigor mortis. Higher lactic acid levels were determined in muscles of the rats killed with drowning than the other group. In the control and electric shock rats, ATP decreased in different levels in the three different muscle types mentioned above in control group, being much decline in masseter and then in quadriceps. This may be caused by lower mass and less glycogen storage of masseter. No different ATP levels were measured in drowning group with respect to the muscle type possibly because of the severe activity of triceps and quadriceps and because of smaller mass of masseter. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  18. Metabolic control mechanisms in mammalian systems. Involvement of adenosine 3′:5′-cyclic monophosphate in androgen action

    PubMed Central

    Singhal, Radhey L.; Parulekar, M. R.; Vijayvargiya, R.; Robison, G. Alan

    1971-01-01

    1. The ability of exogenously administered cyclic AMP (adenosine 3′:5′-monophosphate) to exert andromimetic action on certain carbohydrate-metabolizing enzymes was investigated in the rat prostate gland and seminal vesicles. 2. Cyclic AMP, when injected concurrently with theophylline, produced marked increases in hexokinase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, pyruvate kinase, and two hexose monophosphate-shunt enzymes, as well as α-glycerophosphate dehydrogenase activity in accessory sexual tissues of castrated rats. The 6-N,2′-O-dibutyryl analogue of cyclic AMP caused increases of enzyme activity that were greater than those induced by the parent compound. 3. Time-course studies demonstrated that, whereas significant increases in the activities of most enzymes occurred within 4h after the injection of cyclic AMP, maximal increases were attained at 16–24h. 4. Increase in the activity of the various prostatic and vesicular enzymes was dependent on the dose of cyclic AMP; in most instances, 2.5mg of the cyclic nucleotide/rat was sufficient to elicit a statistically significant response. 5. Administration of cyclic AMP and theophylline also produced stimulation of enzyme activities in secondary sexual tissues of immature rats. 6. Cyclic AMP and theophylline did not affect significantly any of the enzymes studied in hepatic tissue. 7. Stimulation of various carbohydrate-metabolizing enzymes in the prostate gland and seminal vesicles by cyclic AMP was independent of adrenal function. 8. Concurrent treatment with actinomycin or cycloheximide prevented the cyclic AMP- and theophylline-induced increases in enzyme activities in both castrated and adrenalectomized–castrated animals. 9. Administration of a single dose of testosterone propionate (5.0mg/100g) to castrated rats caused a significant increase in cyclic AMP concentration in both accessory sexual tissues. 10. In addition, treatment with theophylline potentiated the effects of a

  19. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    PubMed

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  20. Adenosine uptake by the isolated epithelium of guine pig jejunum.

    PubMed

    Kolassa, N; Stengg, R; Turnheim, K

    1977-10-01

    The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.