Science.gov

Sample records for adenosquamous cell lung

  1. PD-L1 expression in lung adenosquamous carcinomas compared with the more common variants of non-small cell lung cancer

    PubMed Central

    Shi, Xiaohua; Wu, Shafei; Sun, Jian; Liu, Yuanyuan; Zeng, Xuan; Liang, Zhiyong

    2017-01-01

    Lung adenosquamous cell carcinomas (ASCs) is a rare variant of NSCLC with a poorer prognosis and fewer treatment option than the more common variants. PD-L1 expression is reported to be the predictor of clinical response in trials of NSCLC. In our study, PD-L1 expression was evaluated via immunohistochemistry using a specific monoclonal antibody (SP263), and PD-L1 mRNA expression was evaluated via in situ hybridization. This study included 51 ASCs, 133 lung adenocarcinomas, and 83 lung squamous cell carcinomas (SCC). Similar results were obtained for PD-L1 expression measured at the mRNA and protein level (k coefficient, 0.851, P = 1.000). PD-L1 expression was significantly higher in the squamous versus glandular component of the 36 ASCs in which the components were analyzed separately. The PD-L1 expression rate was similar in the squamous cell component of ASCs and lung SCC (38.89% vs. 28.92%, P = 0.293), so does the adenocarcinoma component of ASCs and lung adenocarcinomas (11.11% vs 13.53%, P = 1.000). PD-L1 expression correlated significantly with lymphovascular invasion (P = 0.016), but not with EGFR, KRAS, and ALK mutations in lung ASCs. Anit-PD-L1 is a promising treatment option in lung ASC cases in which PD-L1 upregulated and EGFR mutations are present. PMID:28387300

  2. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-11-01

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  3. Erlotinib Hydrochloride With or Without Carboplatin and Paclitaxel in Treating Patients With Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-04-04

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Lung Adenocarcinoma; Malignant Pericardial Effusion; Malignant Pleural Effusion; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  4. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-03-28

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  5. Gefitinib in Treating Patients With Stage IB, II, or IIIA Non-small Cell Lung Cancer That Was Completely Removed by Surgery

    ClinicalTrials.gov

    2014-12-19

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer

  6. Docetaxel, Cisplatin, Pegfilgrastim, and Erlotinib Hydrochloride in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-01-17

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  7. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-12-20

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  8. Image-Guided Hypofractionated Radiation Therapy With Stereotactic Body Radiation Therapy Boost and Combination Chemotherapy in Treating Patients With Stage II-III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-09-07

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  9. Pulmonary adenosquamous carcinoma in a dog.

    PubMed

    Sato, T; Ito, J; Shibuya, H; Asano, K; Watari, T

    2005-12-01

    A mass that developed in the lung of a 10-year-old mixed-breed dog was pathologically examined. Histopathological examination showed papillary and tubular growth of glandular epithelium-like cells in some areas and growth of squamous cells arranged in nests in other areas, showing coexistence of adenocarcinoma and squamous cell carcinoma in a lung tumour. Immunohistochemical staining with anti-keratin-cytokeratin antibody was strongly positive for cytoplasms in both components. Electron microscopically, the neoplastic cells of the adenocarcinoma component had features of glandular cells, with microvilli, numerous free ribosomes, large round secretory granules and intercellular desmosomes. Non-keratinized squamous cells had tonofilaments and intercellular desmosomes. These findings led to the diagnosis of primary adenosquamous carcinoma, which demonstrates phenotypic profiles characteristic of both epidermal keratinocytes and glandular epithelium.

  10. MCM2 and TIP30 are prognostic markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of the gallbladder

    PubMed Central

    Liu, Ziru; Yang, Zhulin; Jiang, Song; Zou, Qiong; Yuan, Yuan; Li, Jinghe; Li, Daiqiang; Liang, Lufeng; Chen, Meigui; Chen, Senlin

    2016-01-01

    The clinicopathological and biological characteristics of squamous cell/adenosquamous carcinoma (SC/ASC) of the gallbladder remain to be fully elucidated, due to the fact that it is a rare gallbladder cancer subtype. In the current study, the expression of minichromosome maintenance complex component 2 (MCM2) and HIV-1 tat interactive protein 2 (TIP30) was measured in 46 cases of SC/ASC and 80 adenocarcinomas (AC) using immunohistochemistry. Positive MCM2 and negative TIP30 expression were significantly associated with large tumor size, high TNM stage, invasion, lymph node metastasis and lack of surgical curability in SC/ASC and AC. Positive MCM2 and negative TIP30 expression were significantly associated with poor differentiation in AC, whereas only MCM2 was correlated with differentiation in SC/ASC. Univariate Kaplan-Meier analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and surgical curability were significantly associated with post-operative survival in patients with SC/ASC and AC. Multivariate Cox regression analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and lack of surgical curability were also independent predictors of poor prognosis in patients with SC/ASC and AC. These data suggest that positive MCM2 and negative TIP30 expression are closely correlated with the clinical, pathological and biological parameters, in addition to poor prognosis in patients with gallbladder cancer. PMID:27748889

  11. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  12. Evidence, Mechanism, and Clinical Relevance of the Transdifferentiation from Lung Adenocarcinoma to Squamous Cell Carcinoma.

    PubMed

    Hou, Shenda; Zhou, Shiyu; Qin, Zhen; Yang, Liu; Han, Xiangkun; Yao, Shun; Ji, Hongbin

    2017-03-08

    Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two distinct subtypes of non-small-cell lung carcinoma. Interestingly, approximately 4% to 9% of human non-small-cell lung carcinoma tumors contain mixed adenomatous and squamous pathologies in a single lesion, clinically termed adenosquamous cell carcinoma. More important, these two different pathological components frequently share identical oncogenic mutations, indicative of a potential transition. Indeed, recent data have provided convincing evidence in supporting the ADC to SCC transdifferentiation in lungs. In the liver kinase B1 (official name STK11)-deficient mouse model, lung ADC can progressively transdifferentiate to SCC through pathologically mixed adenosquamous cell carcinoma as the intermediate status. Mechanistic studies further identify essential roles of extracellular matrix remodeling and metabolic reprogramming during this phenotypic transition. Small molecular compounds, including lysyl oxidase inhibitors and reactive oxygen species-inducing reagents such as phenformin, significantly accelerate the transition from lung ADC to SCC and thus confer lung tumors with drug resistance. Consistent with these findings, recent clinical studies have shown that epidermal growth factor receptor-mutant lung ADC can transdifferentiate to SCC in relapsed cancer patients. Together, these data support that this phenotypic transition from lung ADC to SCC might represent a novel mechanism for drug resistance. This review will summarize our current understanding of the transdifferentiation from lung ADC to SCC.

  13. Characterization of primary pulmonary adenosquamous carcinoma-associated pleural effusion.

    PubMed

    Stewart, Jennifer; Holloway, Andrew; Rasotto, Roberta; Bowlt, Kelly

    2016-03-01

    A 10-year-old, female spayed Shih Tzu was presented due to weight loss, increased respiratory effort and lethargy, determined to be secondary to a congenital para-esophageal diaphragmatic defect with partial herniation of the stomach and spleen. Four days following reduction surgery of the displaced abdominal organs thoracic effusion developed. Thoracic fluid evaluation revealed a cell-rich, protein-poor modified transudate with neutrophils, reactive mesothelial cells, and atypical epitheloid cells which occasionally appeared to be keratinizing, consistent with neoplastic exfoliation. Thoracic effusion recurred 2 days later, with similar characteristics as the initial sample. Computed tomography (CT) indicated consolidation and displacement of the right middle and accessory lung lobes. Exploratory thoracic surgery demonstrated a thickened, hyperemic right middle lung lobe, and thickened pericardial diaphragmatic ligament. Histologic evaluation of these tissues identified a primary pulmonary adenosquamous carcinoma with intravascular and pleural invasion. Based on these cytologic, histologic, and clinical findings, we conclude that primary pulmonary carcinomas may involve superficial thoracic structures and exfoliate into a thoracic effusion.

  14. Impact of histological subtype on survival in patients with locally advanced cervical cancer that were treated with definitive radiotherapy: adenocarcinoma/adenosquamous carcinoma versus squamous cell carcinoma

    PubMed Central

    Kuroda, Hiromasa; Kimura, Tadashi

    2017-01-01

    Objective To compare the survival outcomes of patients with cervical squamous cell carcinoma (SCC) and adenocarcinoma/adenosquamous carcinoma (AC/ASC) among patients with locally advanced cervical cancer that were treated with definitive radiotherapy. Methods The baseline characteristics and outcome data of patients with locally advanced cervical cancer who were treated with definitive radiotherapy between November 1993 and February 2014 were collected and retrospectively reviewed. A Cox proportional hazards regression model was used to investigate the prognostic significance of AC/ASC histology. Results The patients with AC/ASC of the cervix exhibited significantly shorter overall survival (OS) (p=0.004) and progression-free survival (PFS) (p=0.002) than the patients with SCC of the cervix. Multivariate analysis showed that AC/ASC histology was an independent negative prognostic factor for PFS. Among the patients who displayed AC/ASC histology, larger tumor size, older age, and incomplete response to radiotherapy were found to be independent prognostic factors. PFS was inversely associated with the number of poor prognostic factors the patients exhibited (the estimated 1-year PFS rates; 100.0%, 77.8%, 42.8%, 0.0% for 0, 1, 2, 3 factors, respectively). Conclusion Locally advanced cervical cancer patients with AC/ASC histology experience significantly worse survival outcomes than those with SCC. Further clinical studies are warranted to develop a concurrent chemoradiotherapy (CCRT) protocol that is specifically tailored to locally advanced cervical AC/ASC. PMID:28028992

  15. Adenosquamous carcinoma of the pancreas: preoperative diagnosis and molecular alterations.

    PubMed

    Murakami, Yoshiaki; Yokoyama, Takashi; Yokoyama, Yujiro; Kanehiro, Tetsuya; Uemura, Kenichiro; Sasaki, Masaru; Morifuji, Masahiko; Sueda, Taijiro

    2003-01-01

    Adenosquamous carcinoma of the pancreas is a rare tumor which has a less favorable prognosis than common ductal cell carcinoma of the pancreas, and a definite preoperative diagnosis of this tumor is quite difficult. We herein report two cases of this rare variant. The patients were a 41-year-old man (patient 1) and a 67-year-old woman (patient 2). Patient 1 had a hypoechoic mass measuring 3 cm in the uncus of the pancreas, while patient 2 had a huge mass, measuring 8 cm, in the tail of the pancreas. Patient 2 was successfully diagnosed preoperatively as having an adenosquamous carcinoma, by cytological examination of the pure pancreatic juice obtained by endoscopic retrograde pancreatic juice aspiration. A pylorus-preserving pancreatoduodenectomy was performed for patient 1, and a distal pancreatectomy with resection of the spleen and the left kidney was performed for patient 2. Subsequent pathological findings of these two tumors revealed adenosquamous carcinoma of the pancreas. K- ras point mutation, p53 overexpression, and telomerase activity in both tumor specimens were detected by the mutant allele specific amplification method, immunohistochemical staining, and telomeric repeat amplification protocol assay, respectively. The two patients died of recurrent disease 5 and 4 months, respectively, after surgery. Cytological examination of pure pancreatic juice is a useful modality for the preoperative diagnosis of this tumor, and frequent molecular alterations may be associated with the poor prognosis of adenosquamous carcinoma of the pancreas.

  16. Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma

    PubMed Central

    Han, Xiangkun; Li, Fuming; Fang, Zhaoyuan; Gao, Yijun; Li, Fei; Fang, Rong; Yao, Shun; Sun, Yihua; Li, Li; Zhang, Wenjing; Ma, Huimin; Xiao, Qian; Ge, Gaoxiang; Fang, Jing; Wang, Hongda; Zhang, Lei; Wong, Kwok-kin; Chen, Haiquan; Hou, Yingyong; Ji, Hongbin

    2014-01-01

    Lineage transition in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) of non-small cell lung cancer, as implicated by clinical observation of mixed ADC and SCC pathologies in adenosquamous cell carcinoma, remains a fundamental yet unsolved question. Here we provide in vivo evidence showing the transdifferentiation of lung cancer from ADC to SCC in mice: Lkb1-deficient lung ADC progressively transdifferentiates into SCC, via a pathologically mixed mAd-SCC intermediate. We find that reduction of lysyl oxidase (Lox) in Lkb1-deficient lung ADC decreases collagen disposition and triggers extracellular matrix remodelling and upregulates p63 expression, a SCC lineage survival oncogene. Pharmacological Lox inhibition promotes the transdifferentiation, whereas ectopic Lox expression significantly inhibits this process. Notably, ADC and SCC show differential responses to Lox inhibition. Collectively, our findings demonstrate the de novo transdifferentiation of lung ADC to SCC in mice and provide mechanistic insight that may have important implications for lung cancer treatment. PMID:24531128

  17. Adenosquamous carcinoma of vesicovaginal fistula: a rare entity.

    PubMed

    Tabali, Rudresh; Ramkumar, Aravind

    2014-01-01

    A 56-year-old lady presented with a vesicovaginal fistula (VVF) along with past history of abdominal hysterectomy. Biopsy of the fistulous tract showed squamous cell carcinoma (SCC). Patient underwent radical cystourethrectomy, total vaginectomy, and bilateral pelvic lymph node dissection along with ileal conduit. The final histopathology report of the resected specimen showed adenosquamous carcinoma in VVF. As this is a rare entity, we are reporting this case.

  18. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  19. [A Case of Adenosquamous Carcinoma of the Ascending Colon].

    PubMed

    Hijikawa, Takeshi; Yoshida, Ryo; Yamada, Masanori; Nakatani, Kazuyoshi; Tokuhara, Katsuji; Kitade, Hiroaki; Shikata, Nobuaki; Yoshioka, Kazuhiko; Kon, Masanori

    2015-10-01

    We report a case of adenosquamous carcinoma of the colon. A 70-year-old woman underwent a colonoscopic examination because of a positive fecal occult blood test. Colonoscopy demonstrated a type 2 tumor of the ascending colon, and a biopsy specimen showed poorly-moderately differentiated tubular adenocarcinoma. We performed a right hemicolectomy with D2 lymphadenectomy. The histopathology of the tumor demonstrated adenosquamous adenocarcinoma. Primary adenosquamous carcinoma of the colon is relatively rare and has a poor prognosis. Therefore, adenosquamous carcinoma of the colon may require strict follow-up.

  20. Adenosquamous carcinoma of the oesophagus in a dog.

    PubMed

    Okanishi, H; Shibuya, H; Miyasaka, T; Asano, K; Sato, T; Watari, T

    2015-08-01

    A six-year-old mixed-breed male dog weighing 7.0 kg was presented with chronic vomiting and regurgitation. Endoscopic examination revealed prominent oesophageal dilation in the thoracic region, multiple small greyish-white nodules over the oesophageal lumen and cauliflower-like masses in the caudal oesophagus. Histopathological studies revealed a characteristic pattern of coexisting elements of infiltrating adenocarcinoma and squamous cell carcinoma. Immunohistochemical staining with anti-cytokeratin AE1 + AE3 was positive in both types of neoplastic cells. Neoplastic glandular cells stained positively for cytokeratin 8 while neoplastic squamous cells stained positively for cytokeratin 5/6. On the basis of these findings, the dog was diagnosed with oesophageal adenosquamous carcinoma. The case history and findings suggest that the malignancy might have developed from Barrett's oesophagus following irritation of the oesophageal mucosa due to chronic vomiting and regurgitation.

  1. Clinical characteristics of adenosquamous esophageal carcinoma

    PubMed Central

    Yendamuri, Sai; Malhotra, Usha; Hennon, Mark; Miller, Austin; Groman, Adrienne; Halloon, Alaa

    2017-01-01

    Background Current published information of adenosquamous carcinoma (ASC) of the esophagus in the United States is limited to isolated case reports. We sought to study the clinical characteristics of this tumor using the Surveillance, Epidemiology and End Results (SEER) database. Methods Relevant data of all patients with esophageal cancer in the SEER database diagnosed from 1998–2010 was obtained. Demographic, grade, stage, treatment and survival characteristics of patients with ASC were summarized and compared to those patients with adenocarcinoma (ACA) and squamous cell carcinoma (SqCC). Univariate analyses across comparison groups were performed using Wilcoxon rank sum test for continuous covariates and the Pearson Chi-square test for categorical covariates. To evaluate the association of selected covariates to survival by histology, unadjusted and adjusted proportional hazards models were generated for the entire study population. To further control for the difference in covariates among the histology groups, propensity weighted Cox regression modeling was performed using the inverse propensity to treat weighting (IPTW) approach. Results Of 29,890 patients with the histological subgroups, only 284 patients had ASC (1%). Patients with ACA had a higher grade (72.9% with grade III/IV) and presented with advanced stage (48.2% distant disease) than their comparison group. Patients with ASC had worse overall survival compared to ACA but not SqCC in both univariate and multivariate analyses (OR =0.76; P<0.05 and OR =0.86; P<0.05 respectively). These results were further confirmed by the propensity weighted Cox regression analysis. Analysis of the ASC population alone demonstrated that decreasing stage, radiation therapy (OR =0.59; P<0.001) and surgery (OR =0.86; P<0.001) were associated with better overall survival, but grade was not. Conclusions ASC of the esophagus is a rare histological variant comprising 1% of esophageal ACA in the Unites States. This

  2. Codon 12 Ki-ras mutation in non-small-cell lung cancer: comparative evaluation in tumoural and non-tumoural lung.

    PubMed Central

    Urban, T.; Ricci, S.; Lacave, R.; Antoine, M.; Kambouchner, M.; Capron, F.; Bernaudin, J. F.

    1996-01-01

    Ki-ras activation by point mutation on codon 12 has been reported in non-small-cell lung carcinomas and in various models of experimental lung tumours induced by chemical carcinogens. The cellular targets for carcinogenic compounds of tobacco smoke are usually considered to be the cells of the bronchial mucosa or alveolar epithelium. However, little is known about preneoplastic events in bronchopulmonary carcinogenesis. The hypothesis of the presence of widespread target cells containing Ki-ras mutation was investigated by evaluating concurrent neoplastic and non-neoplastic bronchial and alveolar samples from 51 patients with non-small-cell lung carcinomas. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method used can detect one cell with a mutation on codon 12 among 10(2) normal cells. In tumour samples, a mutation was detected in 20% of adenocarcinomas, but in none of the adenosquamous or squamous cell carcinomas. No mutation was detected in the non-neoplastic bronchial or parenchymal samples. When using an enriched PCR-RFLP method detecting one mutated allele among 10(3) normal alleles a mutation was detected in 23% of adenocarcinomas. In conclusion, Ki-ras activation by mutation on codon 12 was not observed in non-neoplastic bronchial or parenchymal tissues in patients with bronchopulmonary cancers and does not appear to be a genetic event present in non-malignant epithelial target cells exposed to tobacco smoke. Images Figure 1 Figure 2 Figure 3 PMID:8855973

  3. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  4. [Comparative clinico-morphological characteristics of the variants of adeno-squamous carcinoma and adenocarcinoma of the endometrium].

    PubMed

    Smirnov, O A; Smirnova, O N

    1985-01-01

    A clinico-morphological analysis of the data available on cases of adeno-squamous carcinoma (72) and endometrial adenocarcinoma (102) pointed to a correlation between the decrease in the degree of cell differentiation in said neoplasms and the decline in the frequency of hyperestrimism and metabolic-endocrine disorders. As a result over 70% of well-differentiated cell tumors were referred to one pathogenetic pattern of endometrial carcinoma (after Bokhman) and more than 50% of poorly-differentiated cell tumors--to another one. These findings further support the rationale for distinguishing the well- and poorly-differentiated cell patterns of adeno-squamous carcinoma. They may be used in establishing individual prognosis as well as choosing optimal scheme of treatment.

  5. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    PubMed

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC.

  6. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/ progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air–liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types. PMID:17141060

  7. The Therapeutic Potential of Differentiated Lung Cells from Embryonic Stem Cells in Lung Diseases.

    PubMed

    Mokhber Dezfouli, Mohammad Reza; Chaleshtori, Sirous Sadeghian; Dehghan, Mohammad Mehdi; Tavanaeimanesh, Hamid; Baharvand, Hossein; Tahamtani, Yaser

    2017-01-01

    Lung diseases cause great morbidity and mortality. The choice of effective medical treatment is limited and the number of lung diseases are difficult to treat with current treatments. The embryonic stem cells (ESCs) have the potential to differentiate into cell types of all three germinal layers, including lung epithelial cells. So they can be a potential source for new cell therapies for hereditary or acquired diseases of the airways and lungs. One method for treatment of lung diseases is cell therapy and the use of ESCs that can replace the damaged epithelial and endothelial cells. Progress using ESCs has developed slowly for lung regeneration because differentiation of lung cells from ESCs is more difficult as compared to differentiation of other cells. The review studies the therapeutic effects of differentiated lung cells from embryonic stem cells in lung diseases. There are few studies of differentiation of ESCs into a lineage of respiratory and then investigation of this cell in experimental model of lung diseases.

  8. [A case of adenosquamous carcinoma of the ascending colon].

    PubMed

    Toyoda, Tetsutaka; Nishimura, Yoji; Yatsuoka, Toshimasa; Yokoyama, Yasuyuki; Shimada, Ryu; Ishikawa, Hideki; Fukuda, Takashi; Amikura, Katsumi; Kawashima, Yoshiyuki; Sakamoto, Hirohiko; Tanaka, Yoichi; Nishimura, Yu

    2014-11-01

    A 6 8-year-old man was admitted to our hospital with lower abdominal pain. Lower gastrointestinal endoscopy showed type 2 advanced cancer in the ascending colon. Histopathological examination after endoscopical biopsy revealed both moderately differentiated adenocarcinoma and well-differentiated squamous carcinoma. Subsequently, right hemicolectomy was performed. The tumor was 55 × 40 mm in size and was diagnosed as an adenosquamous carcinoma A, type 2, pSS, pN0, sH0, sP0, sM0, fStageII. Adenosquamous carcinoma is extremely rare, represents about 0.1% of all colorectal cancer, and usually has a poor prognosis. Thirty-one months after surgery, the patient is still in good health and displays no signs of recurrence.

  9. Primary gastric adenosquamous carcinoma in an Indian male.

    PubMed

    Bansal, Rinkesh Kumar; Sharma, Praveen; Kaur, Ramneet; Arora, Anil

    2013-01-01

    Adenosquamous carcinoma (ASC) of the stomach is a very rare tumor comprising less than 0.5% of all stomach malignancies. Here, we report a case of a 37-year-old male, who presented with upper gastrointestinal bleeding in the form of hematemesis and malena. A subtotal gastrectomy was done in view of massive uncontrolled bleed. Histology showed evidence of ASC of the body and antrum with metastasis to the liver, perigastric lymph nodes and peritoneal and pleural cavity.

  10. miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression.

    PubMed

    Chatterjee, Abhisek; Chattopadhyay, Dhrubajyoti; Chakrabarti, Gopal

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is one of the most leading causes of cancer-related deaths worldwide. Paclitaxel based combination therapies have long been used as a standard treatment in aggressive NSCLCs. But paclitaxel resistance has emerged as a major clinical problem in combating non-small-cell lung cancer and autophagy is one of the important mechanisms involved in this phenomenon. In this study, we used microRNA (miRNA) arrays to screen differentially expressed miRNAs between paclitaxel sensitive lung cancer cells A549 and its paclitaxel-resistant cell variant (A549-T24). We identified miR-17-5p was one of most significantly downregulated miRNAs in paclitaxel-resistant lung cancer cells compared to paclitaxel sensitive parental cells. We found that overexpression of miR-17-5p sensitized paclitaxel resistant lung cancer cells to paclitaxel induced apoptotic cell death. Moreover, in this report we demonstrated that miR-17-5p directly binds to the 3'-UTR of beclin 1 gene, one of the most important autophagy modulator. Overexpression of miR-17-5p into paclitaxel resistant lung cancer cells reduced beclin1 expression and a concordant decease in cellular autophagy. We also observed similar results in another paclitaxel resistant lung adenosquamous carcinoma cells (H596-TxR). Our results indicated that paclitaxel resistance of lung cancer is associated with downregulation of miR-17-5p expression which might cause upregulation of BECN1 expression.

  11. Evidence for Human Lung Stem Cells

    PubMed Central

    Kajstura, Jan; Rota, Marcello; Hall, Sean R.; Hosoda, Toru; D’Amario, Domenico; Sanada, Fumihiro; Zheng, Hanqiao; Ogórek, Barbara; Rondon-Clavo, Carlos; Ferreira-Martins, João; Matsuda, Alex; Arranto, Christian; Goichberg, Polina; Giordano, Giovanna; Haley, Kathleen J.; Bardelli, Silvana; Rayatzadeh, Hussein; Liu, Xiaoli; Quaini, Federico; Liao, Ronglih; Leri, Annarosa; Perrella, Mark A.; Loscalzo, Joseph; Anversa, Piero

    2011-01-01

    BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.) PMID:21561345

  12. Lung stem cell update: promise and controversy.

    PubMed

    Neuringer, I P; Randell, S H

    2006-03-01

    Currently, there is great enthusiasm about potential stem cell therapies for intractable diseases. We previously reviewed the topic of stem cells in lung injury and repair, including the role of endogenous, tissue (somatic) stem cells and the contribution of circulating cells to the lung parenchyma. Our purpose here is to provide a concise update in this fast-moving field. New information and ongoing debate focus attention on basic issues in lung stem cell biology and highlight the need for additional studies to establish the feasibility of cell therapies to prevent or treat lung diseases.

  13. Cancer Stem Cells in Lung Tumorigenesis

    PubMed Central

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2011-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continued research in the field of lung cancer stem cell biology is vital, as ongoing efforts promise to yield new prognostic and therapeutic targets. PMID:20493987

  14. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-04-23

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.

  15. Clinical outcomes of surgically resected combined small cell lung cancer: a two-institutional experience

    PubMed Central

    Zhang, Chao; Yang, Haitang; Zhao, Heng; Lang, Baoping; Yu, Xiangdong; Xiao, Peng

    2017-01-01

    Background The combined small cell lung cancer (c-SCLC) was rare and its clinicopathological characteristics had not been thoroughly described. The aim of this study was to determine prognostic factors and survival in c-SCLC patients. Methods Clinical records of patients with c-SCLC who underwent surgery between January 2009 and December 2013 in two institutions were retrospectively reviewed. Results Ninety-seven patients were identified. The most common pathology was combined SCLC and large cell neuroendocrine carcinoma (LCNEC, N=46), followed by combined SCLC and squamous cell carcinoma (SCC) (N=32), combined SCLC and adenocarcinoma (AC) (N=12), and combined SCLC and adenosquamous carcinoma (ASC) (N=7). The overall survival (OS) rates of the entire cohort were 42.4% and 35.2% at 3 and 5 years, respectively. Multivariate analysis identified sex [female vs. male, hazards ratio (HR) =0.38; 95% confidence interval (CI): 0.19–0.79; P=0.010], age (<53 vs. >53 years, HR =0.28; 95% CI: 0.09–0.81; P=0.019), performance status (<2 vs. >2, HR =0.08; 95% CI: 0.02–0.32; P<0.001), combined non-small cell lung cancer (NSCLC) components (LCNEC vs. non-LCNEC, HR =3.00; 95% CI: 1.03–8.76; P=0.045), adjuvant therapy (yes vs. no, HR =0.33; 95% CI: 0.17–0.67; P=0.002) as significantly prognostic factors of OS in patients with complete resection and lymphadenectomy. Conclusions The mixed NSCLC components within c-SCLCs had a significant influence on the survival. Compared with surgery alone, adjuvant therapy was associated with significantly improved survival in patients with complete resection and lymphadenectomy. PMID:28203418

  16. Lung cancer stem cells: An epigenetic perspective.

    PubMed

    Shukla, Samriddhi; Khan, Sajid; Sinha, Sonam; Meeran, Syed Musthapa

    2017-02-05

    Lung cancer remains the major cause of human mortality among all the cancer types despite the colossal amount of efforts to prevent the cancer onset and to provide the appropriate cure. Recent reports have identified that important contributors of lung cancer-related mortality are the drug resistance and aggressive tumor relapse, the characteristics contributed by the presence of lung cancer stem cells (CSCs). The identification of lung CSCs is inherently complex due to the quiescent nature of lung epithelium, which makes the distinction between the normal lung epithelium and lung CSCs difficult. Recently, multiple researches have helped in the identification of lung CSCs based on the presence or absence of certain specific types of stem cell markers. Maintenance of lung CSCs is chiefly mediated through the epigenetic modifications of their genome. In this review, we will discuss about the origin of lung CSCs and the role of epigenetic modifications in their maintenance. We will also discuss in brief the major lung CSC markers and the therapeutic approaches to selectively target this population of cells.

  17. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-01-05

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  18. Adult stem cells underlying lung regeneration.

    PubMed

    Xian, Wa; McKeon, Frank

    2012-03-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.

  19. Adenosquamous Carcinoma of Extrahepatic Bile Duct: A Case Report

    PubMed Central

    Lim, Sin Hyung; Kim, Anna; Cha, Sang Woo; Jung, Sung Hee; Go, Hoon; Lee, Woong Chul

    2007-01-01

    Most malignant tumors originating from the biliary tract are adenocarcinomas, and adenosqamous carcinoma of Klatskin's tumor is a very rare finding. An 83-yr-old man was admitted to our hospital because of jaundice. The abdominal computed tomography and magnetic resonance cholangiopancreatography revealed wall thickening and luminal stenosis of both the intrahepatic duct confluent portion and the common hepatic duct. These findings were compatible with Klatskin's tumor, Bismuth type III. Considering the patient's old age, palliative combined modality therapy was performed. After percutaneous transhepatic biliary drainage, biopsy was performed via percutaneous transhepatic cholangioscopy. The histopathologic findings showed adenosquamous carcinoma. External radiotherapy and intraluminal brachytherapy through the endobiliary Y-type stent were then done. Nine months after the radiotherapy, the laboratory findings and the abdominal computed tomography revealed biliary obstruction and progressive hepatic metastasis. The combined modality therapy of external radiotherapy, intraluminal brachytherapy and stenting assisted him to live a normal life until he finally experienced biliary obstruction. PMID:17939340

  20. Primary adenosquamous carcinoma of the liver: a case report

    PubMed Central

    Nam, Kyung Han; Kim, Ji Yeon

    2016-01-01

    Adenosquamous carcinoma of the liver is a rare variant of cholangiocarcinoma. It is known to be a highly aggressive tumor with a poor prognosis, but its pathogenesis remains unclear owing to limited data in the literature. We report a case of 56-year-old woman who presented with a 1-week history of epigastric pain. Magnetic resonance imaging revealed a 6.5-cm ill-defined mass with low signal intensity in the left lobe of the liver, which was suspicious of cholangiocarcinoma. The patient underwent left hemihepatectomy. Microscopically, the tumor consisted of malignant glandular and squamous components and staged as pT2aN1. Despite postoperative chemoradiation, the patient had recurrence 8 months after surgery. PMID:28081592

  1. Adenosquamous carcinoma of paranasal sinuses and Kartagener syndrome: an unusual combination.

    PubMed

    Naqvi, Syeda Uzma; Hussain, Syed Iqbal; Quadri, Shaheen

    2014-03-01

    A 34 years old non-smoker male patient reported with growth of right maxillary region which on histopathology confirmed adenosquamous carcinoma of nose and paranasal sinus. Patient also had total situs inversus including dextrocardia, bronchiectasis and sinusitis. His blood group was AB negative. This association of Kartagener syndrome with adenosquamous carcinoma of paranasal sinuses has never been reported. Carcinoma of paranasal sinuses accounts only 0.3% of all cancers. Adenosquamous carcinoma makes only 2% of the nose and paranasal sinuses tumours. Kartagener syndrome, AB negative blood group and adenosquamous carcinoma of paranasal sinuses all are extremely rare clinical conditions found in populations and the combination of all three in the same patient have never been reported to the best of authors' knowledge.

  2. Atypical breast adenosquamous carcinoma following acute myeloid leukemia in a middle-aged woman: A case report

    PubMed Central

    Hashemi, Seyed Mehdi; Mahmoudi Shan, Shokoufeh; Jahantigh, Mahdi; Allahyari, Abolghasem

    2017-01-01

    Adenosquamous carcinoma of the breast is a rare cancer that develops as glands and tubules admixed with solid nests of squamous cells in a spindle cell background. Furthermore, its occurrence following AML is also rare. To the best of our knowledge, based on a review of the relevant literature, thus far there have not been any welldocumented cases. In the present case report, we report on a middle-aged woman with a 2year history of acute myeloid leukemia (AML) who was admitted to hospital due to a mass in the right breast, with concurrent cutaneous lesions on the breast. The clinical and pathological investigations resulted in the diagnosis of adenosquamous carcinoma of the breast. The patient underwent a modified radical mastectomy (MRM). Subsequently, the patient received chemotherapy, involved-field radiation therapy and target therapy. At 9 months after the final cycle of chemotherapy, and while she was on targeted therapy with trastuzumab (6 mg administered every 3 weeks), the patient presented with extensive dermatomal skin lesions. A biopsy report revealed metastatic lesions of invasive ductal carcinoma in the abdomen, so chemotherapy resumed with a course lasting for 6 cycles, with the identical treatments, but lacking trastuzumab.

  3. Gastric metastasis by lung small cell carcinoma

    PubMed Central

    Casella, Giovanni; Bella, Camillo Di; Cambareri, Antonino Roberto; Buda, Carmelo Antonio; Corti, Gianluigi; Magri, Filippo; Crippa, Stefano; Baldini, Vittorio

    2006-01-01

    Metastatic tumors of the gastrointestinal tract are rare. We describe a case of gastric metastasis due to primary lung cancer, revealed by an upper gastrointestinal endoscopy (UGIE). Haematogenous metastases to the stomach are a rare event. To our knowledge, only 55 cases have been described in the international literature. In these patients, the prognosis is very poor. We report herein a case of gastric metastasis by lung small cell carcinoma, with a review of the literature about this rare entity. PMID:16810769

  4. Stem cells and cell therapies in lung biology and lung diseases.

    PubMed

    Weiss, Daniel J; Bertoncello, Ivan; Borok, Zea; Kim, Carla; Panoskaltsis-Mortari, Angela; Reynolds, Susan; Rojas, Mauricio; Stripp, Barry; Warburton, David; Prockop, Darwin J

    2011-06-01

    The University of Vermont College of Medicine and the Vermont Lung Center, with support of the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Emory Center for Respiratory Health,the Lymphangioleiomyomatosis (LAM) Treatment Alliance,and the Pulmonary Fibrosis Foundation, convened a workshop,‘‘Stem Cells and Cell Therapies in Lung Biology and Lung Diseases,’’ held July 26-29, 2009 at the University of Vermont,to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of the mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases.

  5. Mast cells promote melanoma colonization of lungs.

    PubMed

    Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar

    2016-10-18

    Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.

  6. Treatment options for small cell lung cancer.

    PubMed

    Wolf, Todd; Gillenwater, Heidi H

    2004-07-01

    Lung cancer remains the leading cause of cancer-related death in the United States. Small cell lung cancer (SCLC) comprises 15% to 25% of all lung cancers. The leading cause of lung cancer remains smoking, and rates of smoking continue to rise in women, whereas rates in other subgroups have slowed. In this article we review recent advances in the treatment of limited-stage as well as extensive-stage small cell lung cancer. In limited-stage disease, the best survival results are observed when patients are treated with twice-daily thoracic radiotherapy given concurrently with chemotherapy. Patients who have been successful in smoking cessation during therapy for limited-stage disease may have a survival benefit over those who are unable to quit smoking during treatment. In extensive-stage disease, the most significant trial is one comparing irinotecan plus cisplatin and etoposide plus cisplatin, showing a survival advantage for the irinotecan arm. This trial may change the standard of care for patients with extensive-stage disease. A similar ongoing trial in the United States is attempting to confirm these results.

  7. Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Lau, Allison N; Goodwin, Meagan; Kim, Carla F; Weiss, Daniel J

    2012-01-01

    A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below. PMID:22395528

  8. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2017-04-03

    Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Squamous Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  9. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  10. [Radiotherapy for small cell lung carcinoma].

    PubMed

    Pourel, N

    2016-10-01

    Radiotherapy for small cell lung carcinoma has known significant improvements over the past 10 years especially through routine use of PET-CT in the initial work-up and contouring before treatment. Prophylactic cranial irradiation remains a standard of care for locally advanced disease and is a subject of controversy for metastatic disease. A new indication for thoracic radiotherapy may soon arise for metastatic disease, still confirmation studies are ongoing.

  11. Lung dendritic cells at the innate-adaptive immune interface

    PubMed Central

    Condon, Tracy Voss; Sawyer, Richard T.; Fenton, Matthew J.; Riches, David W. H.

    2011-01-01

    This review updates the basic biology of lung DCs and their functions. Lung DCs have taken center stage as cellular therapeutic targets in new vaccine strategies for the treatment of diverse human disorders, including asthma, allergic lung inflammation, lung cancer, and infectious lung disease. The anatomical distribution of lung DCs, as well as the division of labor between their subsets, aids their ability to recognize and endocytose foreign substances and to process antigens. DCs can induce tolerance in or activate naïve T cells, making lung DCs well-suited to their role as lung sentinels. Lung DCs serve as a functional signaling/sensing unit to maintain lung homeostasis and orchestrate host responses to benign and harmful foreign substances. PMID:21807741

  12. Treatment of lung large cell neuroendocrine carcinoma.

    PubMed

    Lo Russo, Giuseppe; Pusceddu, Sara; Proto, Claudia; Macerelli, Marianna; Signorelli, Diego; Vitali, Milena; Ganzinelli, Monica; Gallucci, Rosaria; Zilembo, Nicoletta; Platania, Marco; Buzzoni, Roberto; de Braud, Filippo; Garassino, Marina Chiara

    2016-06-01

    Lung large cell neuroendocrine carcinoma (L-LCNEC) is a rare, aggressive, and difficult-to-treat tumor. It is classified as a neuroendocrine subtype of large cell lung carcinoma (LCLC) belonging to the non-small cell lung cancer (NSCLC) group, but it is also included in the neuroendocrine tumor (NET) group. Most of the available data related to its treatment derive from retrospective analyses or small case series. For patients with L-LCNEC, prognosis is generally very poor. In early stages (I-II-III), surgery is recommended but does not seem to be sufficient. Platinum-based adjuvant chemotherapy may be useful while the role of neoadjuvant chemotherapy is still not well defined. In patients with advanced L-LCNEC, the chemotherapy regimens used in SCLC still remain the standard of treatment, but results are not satisfactory. Due to their peculiar clinical and biological features and the lack of literature data, there is an emerging need for a consensus on the best treatment strategy for L-LCNEC and for the identification of new therapeutic options. In this review, we will discuss the key aspects of L-LCNEC management with the aim to clarify the most controversial issues.

  13. Bone marrow-derived lung epithelial cells.

    PubMed

    Krause, Diane S

    2008-08-15

    Bone marrow-derived cells can take on the phenotype of epithelial cells and express epithelial-specific genes in multiple organs. Here, we focus on recent data on the appearance of marrow-derived epithelial cells in the adult lung. These findings have garnered significant skepticism because in most cases marrow-derived epithelial cells are very rare, the marrow cell of origin is not known, the techniques for detection have needed improvement, and there seem to be multiple mechanisms by which this occurs. Recent studies have focused on these concerns. Once these important concerns are addressed, further studies on the function(s) of these cells will need to be performed to determine whether this engraftment has any clinical significance-either beneficial or detrimental.

  14. Clinical Behaviors and Outcomes for Adenocarcinoma or Adenosquamous Carcinoma of Cervix Treated by Radical Hysterectomy and Adjuvant Radiotherapy or Chemoradiotherapy

    SciTech Connect

    Huang, Yi-Ting; Wang, Chun-Chieh; Tsai, Chien-Sheng; Lai, Chyong-Huey; Chang, Ting-Chang; Chou, Hung-Hsueh; Lee, Steve P.; Hong, Ji-Hong

    2012-10-01

    Purpose: To compare clinical behaviors and treatment outcomes between patients with squamous cell carcinoma (SCC) and adenocarcinoma/adenosquamous carcinoma (AC/ASC) of the cervix treated with radical hysterectomy (RH) and adjuvant radiotherapy (RT) or concurrent chemoradiotherapy (CCRT). Methods and Materials: A total of 318 Stage IB-IIB cervical cancer patients, 202 (63.5%) with SCC and 116 (36.5%) with AC/ASC, treated by RH and adjuvant RT/CCRT, were included. The indications for RT/CCRT were deep stromal invasion, positive resection margin, parametrial invasion, or lymph node (LN) metastasis. Postoperative CCRT was administered in 65 SCC patients (32%) and 80 AC/ASC patients (69%). Patients with presence of parametrial invasion or LN metastasis were stratified into a high-risk group, and the rest into an intermediate-risk group. The patterns of failure and factors influencing survival were evaluated. Results: The treatment failed in 39 SCC patients (19.3%) and 39 AC/ASC patients (33.6%). The 5-year relapse-free survival rates for SCC and AC/ASC patients were 83.4% and 66.5%, respectively (p = 0.000). Distant metastasis was the major failure pattern in both groups. After multivariate analysis, prognostic factors for local recurrence included younger age, parametrial invasion, AC/ASC histology, and positive resection margin; for distant recurrence they included parametrial invasion, LN metastasis, and AC/ASC histology. Compared with SCC patients, those with AC/ASC had higher local relapse rates for the intermediate-risk group but a higher distant metastasis rate for the high-risk group. Postoperative CCRT tended to improve survival for intermediate-risk but not for high-risk AC/ASC patients. Conclusions: Adenocarcinoma/adenosquamous carcinoma is an independent prognostic factor for cervical cancer patients treated by RH and postoperative RT. Concurrent chemoradiotherapy could improve survival for intermediate-risk, but not necessarily high-risk, AC/ASC patients.

  15. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  16. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches

    PubMed Central

    Akram, Khondoker M.; Patel, Neil; Spiteri, Monica A.; Forsyth, Nicholas R.

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  17. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  18. Mast Cells in Lung Homeostasis: Beyond Type I Hypersensitivity.

    PubMed

    Campillo-Navarro, Marcia; Chávez-Blanco, Alma D; Wong-Baeza, Isabel; Serafín-López, Jeanet; Flores-Mejía, Raúl; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2014-06-01

    Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases.

  19. Human embryonic stem cells and lung regeneration.

    PubMed

    Varanou, A; Page, C P; Minger, S L

    2008-10-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically.

  20. Biological therapies in nonsmall cell lung cancer.

    PubMed

    Zugazagoitia, Jon; Molina-Pinelo, Sonia; Lopez-Rios, Fernando; Paz-Ares, Luis

    2017-03-01

    Biological therapies have improved survival outcomes of advanced-stage nonsmall cell lung cancer (NSCLC). Genotype-directed therapies have changed treatment paradigms of patients with EGFR-mutant and ALK/ROS1-rearranged lung adenocarcinomas, and the list of druggable targets with demonstrated clinical actionability (BRAF, MET, RET, NTRK1 and HER2) continues to expand. Furthermore, we have incrementally understood the mechanisms of cancer immune evasion and foresee ways to effectively circumvent them, particularly at the immune checkpoint level. Drugs targeting the tumour immune-evasive PD-1 pathway have demonstrated remarkable treatment benefits in this disease, with a non-negligible fraction of patients potentially receiving long-term survival benefits. Herein, we briefly discuss the role of various medical disciplines in the management of advanced-stage NSCLC and review the most relevant biological therapies for this disease, with particular emphasis in genotype-directed therapies and immune checkpoint inhibitors.

  1. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  2. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2017-01-04

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer; Stage III Pleural Mesothelioma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Pleural Mesothelioma

  3. Predictive and prognostic value of preoperative serum tumor markers in resectable adenosqamous lung carcinoma

    PubMed Central

    Yue, Dongsheng; Li, Kai; Jiang, Richeng

    2016-01-01

    Background Adenosquamous carcinoma is a rare and aggressive form of lung cancer. The prognostic and predictive value of preoperative serum tumor markers and frequency of EGFR mutations in adenosquamous lung carcinoma are unclear. Methods We retrospectively analyzed data and samples collected from 106 radically resected adenosquamous lung carcinoma patients with pathological stage I-IIIA between 2008 and 2013. Correlations between serum tumor marker levels and EGFR mutations as well as survival parameters were analyzed and prognostic factors were identified. Results Of the 106 adenosquamous lung carcinoma patients, 29 (27.4%) harbored EGFR mutations. By univariate analysis, advanced clinical stage (P = 0.009 for disease-free survival [DFS]; P = 0.046 for overall survival [OS]), larger tumor size (P = 0.001 for DFS; P = 0.002 for OS), regional lymph node metastasis (P = 0.024 for DFS; P = 0.030 for OS), higher NSE level (P = 0.002 for DFS; P < 0.001 for OS), and higher TMI (tumor marker index) (P = 0.009 for OS) were significantly correlated with a worse prognosis. By multivariate analysis, NSE (P = 0.014) was confirmed as independent predictor for DFS, while NSE (P = 0.001) and TMI (P = 0.038) were independent prognostic factors for OS. Conclusion Adenosquamous lung carcinoma is an aggressive malignancy with relatively high EGFR mutation frequency. Elevated preoperative NSE level and TMI are adverse predictive and prognostic indicators. PMID:27623437

  4. ABLATION OF LUNG EPITHELIAL CELLS DEREGULATES FGF-10 EXPRESSION AND IMPAIRS LUNG BRANCHING MORPHOGENESIS

    PubMed Central

    Kim, Namjin; Yamamoto, Hiroaki; Pauling, Michelle Haynes; Lorizio, Walter; Vu, Thiennu H.

    2010-01-01

    Epithelial-mesenchymal interactions are essential for tissue patterning during organogenesis. Distal lung epithelium and its adjacent mesenchyme comprise the epithelial-mesenchymal signaling unit that regulates lung branching morphogenesis. Tissue recombination experiments have demonstrated the importance of mesenchymal signals in inducing lung epithelial differentiation and branching, but the role of the epithelium in regulating mesenchymal signals has not been well characterized. Using transgenic mice, we ablated distal lung epithelial cells during lung development by inducing the expression of a constitutively active proapoptotic Bax protein under the surfactant protein C (SP-C) promoter. We found that epithelial cell ablation results in impaired lung branching morphogenesis, which progresses to emphysematous airspaces in the adults. Mesenchymal expression of fibroblast growth factor 10 (Fgf-10), whose strict spatial and temporal expression is critical for proper lung branching morphogenesis, is disrupted and loses its localized pattern. Interestingly, the expression of sonic hedgehog (Shh), an epithelial gene known to modulate Fgf-10 expression, is unchanged, indicating the existence of other distal epithelial signals that regulate mesenchymal Fgf-10 expression. We propose that distal SP-C expressing lung epithelial cells provide essential signals for the downregulation of Fgf-10 expression in the distal mesenchyme during lung development. PMID:19115389

  5. Ablation of lung epithelial cells deregulates FGF-10 expression and impairs lung branching morphogenesis.

    PubMed

    Kim, Namjin; Yamamoto, Hiroaki; Pauling, Michelle Haynes; Lorizio, Walter; Vu, Thiennu H

    2009-01-01

    Epithelial-mesenchymal interactions are essential for tissue patterning during organogenesis. Distal lung epithelium and its adjacent mesenchyme comprise the epithelial-mesenchymal signaling unit that regulates lung branching morphogenesis. Tissue recombination experiments have demonstrated the importance of mesenchymal signals in inducing lung epithelial differentiation and branching, but the role of the epithelium in regulating mesenchymal signals has not been well characterized. Using transgenic mice, we ablated distal lung epithelial cells during lung development by inducing the expression of a constitutively active proapoptotic Bax protein under the surfactant protein C (SP-C) promoter. We found that epithelial cell ablation results in impaired lung branching morphogenesis, which progresses to emphysematous airspaces in the adults. Mesenchymal expression of fibroblast growth factor 10 (Fgf-10), whose strict spatial and temporal expression is critical for proper lung branching morphogenesis, is disrupted and loses its localized pattern. Interestingly, the expression of sonic hedgehog (Shh), an epithelial gene known to modulate Fgf-10 expression, is unchanged, indicating the existence of other distal epithelial signals that regulate mesenchymal Fgf-10expression. We propose that distal SP-C expressing lung epithelial cells provide essential signals for the downregulation of Fgf-10 expression in the distal mesenchyme during lung development. 292:123-130, 2009. (c) 2008 Wiley-Liss, Inc.

  6. Harnessing the potential of lung stem cells for regenerative medicine.

    PubMed

    McQualter, Jonathan L; Anthony, Desiree; Bozinovski, Steven; Prêle, Cecilia M; Laurent, Geoffrey J

    2014-11-01

    In response to recurrent exposure to environmental insults such as allergens, pollution, irritants, smoke and viral/bacterial infection, the epithelium of the lung is continually damaged. Homeostasis of the lung requires a balance between immune regulation and promotion of tissue regeneration, which requires the co-ordinated proliferation and differentiation of stem and progenitor cells. In this review we reflect on the current understanding of lung epithelial stem and progenitor cells and advocate a model hierarchy in which self-renewing multipotent lung epithelial stem cells give rise to lineage restricted progenitor cells that repopulate airway and alveolar epithelial cell lineages during homeostasis and repair. We also discuss the role of mesenchymal progenitor cells in maintaining the structural integrity of the lung and propose a model in which mesenchymal cells act as the quintessential architects of lung regeneration by providing molecular signals, such as FGF-10, to regulate the fate and specificity of epithelial stem and progenitor cells. Moreover, we discuss the current status and future prospects for translating lung stem cell therapies to the clinic to replace, repair, or regenerate diseased lung tissue. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.

  7. [Advances of molecular targeted therapy in squamous cell lung cancer].

    PubMed

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  8. Vasculogenic mimicry in small cell lung cancer.

    PubMed

    Williamson, Stuart C; Metcalf, Robert L; Trapani, Francesca; Mohan, Sumitra; Antonello, Jenny; Abbott, Benjamin; Leong, Hui Sun; Chester, Christopher P E; Simms, Nicole; Polanski, Radoslaw; Nonaka, Daisuke; Priest, Lynsey; Fusi, Alberto; Carlsson, Fredrika; Carlsson, Anders; Hendrix, Mary J C; Seftor, Richard E B; Seftor, Elisabeth A; Rothwell, Dominic G; Hughes, Andrew; Hicks, James; Miller, Crispin; Kuhn, Peter; Brady, Ged; Simpson, Kathryn L; Blackhall, Fiona H; Dive, Caroline

    2016-11-09

    Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (P<0.025). VM vessels are also observed in 9/10 CTC patient-derived explants (CDX), where molecular analysis of fractionated VE-cadherin-positive cells uncovered copy-number alterations and mutated TP53, confirming human tumour origin. VE-cadherin is required for VM in NCI-H446 SCLC xenografts, where VM decreases tumour latency and, despite increased cisplatin intra-tumour delivery, decreases cisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention.

  9. Vasculogenic mimicry in small cell lung cancer

    PubMed Central

    Williamson, Stuart C.; Metcalf, Robert L.; Trapani, Francesca; Mohan, Sumitra; Antonello, Jenny; Abbott, Benjamin; Leong, Hui Sun; Chester, Christopher P. E.; Simms, Nicole; Polanski, Radoslaw; Nonaka, Daisuke; Priest, Lynsey; Fusi, Alberto; Carlsson, Fredrika; Carlsson, Anders; Hendrix, Mary J. C.; Seftor, Richard E. B.; Seftor, Elisabeth A.; Rothwell, Dominic G.; Hughes, Andrew; Hicks, James; Miller, Crispin; Kuhn, Peter; Brady, Ged; Simpson, Kathryn L.; Blackhall, Fiona H.; Dive, Caroline

    2016-01-01

    Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form ‘endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (P<0.025). VM vessels are also observed in 9/10 CTC patient-derived explants (CDX), where molecular analysis of fractionated VE-cadherin-positive cells uncovered copy-number alterations and mutated TP53, confirming human tumour origin. VE-cadherin is required for VM in NCI-H446 SCLC xenografts, where VM decreases tumour latency and, despite increased cisplatin intra-tumour delivery, decreases cisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention. PMID:27827359

  10. Fatal submucosal invasive gastric adenosquamous carcinoma detected at surveillance after gastric endoscopic submucosal dissection

    PubMed Central

    Shirahige, Akinori; Suzuki, Haruhisa; Oda, Ichiro; Sekiguchi, Masau; Mori, Genki; Abe, Seiichiro; Nonaka, Satoru; Yoshinaga, Shigetaka; Sekine, Shigeki; Kushima, Ryoji; Saito, Yutaka; Fukagawa, Takeo; Katai, Hitoshi

    2015-01-01

    An 80-year-old man was under annual surveillance esophagogastroduodenoscopy after endoscopic submucosal dissection (ESD) for early gastric cancer (EGC). Two years after the initial ESD, a 0-IIc type metachronous EGC lesion, 8 mm in size, without an ulcer scar, was found in the gastric antrum. The estimated tumor depth was up to the mucosa, and biopsy revealed well and poorly differentiated adenocarcinoma. ESD was performed for this lesion and en bloc resection with negative margins was achieved. Histopathological examination revealed an adenosquamous carcinoma 8 mm in size invading the deep submucosal layer (1600 μm), with lymphovascular invasion, consistent with the diagnosis of non-curative resection. Additional gastrectomy was recommended for this patient; however, two months after the ESD, preoperative computed tomography revealed multiple liver metastases, and the patient was considered as an unsuitable candidate for surgical resection. Systemic chemotherapy was therefore started; however, the patient died of gastric cancer 27 mo after the second ESD. Early gastric adenosquamous carcinoma localized to the mucosa and submucosa is extremely rare and its clinical behavior is not well known. The present report is very significant in that it underscores the distinct possibility of gastric adenosquamous carcinoma being very aggressive and fatal even when detected at an early cancer. PMID:25892891

  11. S0819: Carboplatin and Paclitaxel With or Without Bevacizumab and/or Cetuximab in Treating Patients With Stage IV or Recurrent Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-03-16

    Recurrent Large Cell Lung Carcinoma; Recurrent Lung Adenocarcinoma; Recurrent Squamous Cell Lung Carcinoma; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Squamous Cell Lung Carcinoma

  12. Obstructive Jaundice from Metastatic Squamous Cell Carcinoma of the Lung.

    PubMed

    Seth, Abhishek; Palmer, Thomas R; Campbell, Jason

    2016-01-01

    Obstructive jaundice from metastatic lung cancer is extremely rare. Most reported cases have had small cell cancer of lung or adenocarcinoma of lung as primary malignancy metastasizing to the biliary system. We report the case of a patient presenting with symptoms of obstructive jaundice found to have metastatic involvement of hepatobiliary system from squamous cell cancer (SCC) of lung. ERCP (endoscopic retrograde cholangiopancreatography) with biliary stenting is the procedure of choice in such patients. Our case is made unique by the fact that technical difficulties made it difficult for the anesthesiologists to intubate the patient for an ERCP. As a result percutaneous transhepatic cholangiogram (PTC) with internal-external biliary drainage was performed.

  13. Primary adenosquamous carcinoma of the esophagus: an analysis of 39 cases

    PubMed Central

    Ni, Peng-Zhi; Yang, Yu-Shang; Hu, Wei-Peng; Wang, Wen-Ping; Yuan, Yong

    2016-01-01

    Background Adenosquamous carcinoma (ASC) of the esophagus is an uncommon type of malignant esophageal neoplasm containing both squamous cell carcinoma (SCC) and adenocacinoma (AC) components. The aim of this study was to explore the clinical characteristics and prognosis of esophageal ASC. Methods A retrospective review of esophageal ASC patients who underwent transthoracic esophagectomy with lymphadenectomy in our hospital from July 2007 to April 2014. Results A total of 39 (1.0%) esophageal ASC patients among 3855 patients with esophageal cancers were collected to analyze. There were 34 men and 5 women with a median age of 61.0 years (range from 39–85). Median follow-up time was 30.0 months and median survival time was 44.4 months. The 1-, 3- and 5-year overall survival rates were 82.1%, 51.6% and 37.5%, respectively. Compared to esophageal SCC and AC, there were no significant difference in survive time (P=0.616). Thirty five (92.1%) of the 38 patients who underwent preoperative endoscopic biopsy were misdiagnosed, mostly as SCC. Fifteen patients (38.5%) were found to have lymph node metastasis. Thirty two patients (82.1%) had a poorly differentiated or undifferentiated tumor. According to the 2009 American Joint Committee on Cancer (AJCC) staging system for esophageal squamous cell carcinoma, 3 patients were at Stage I, 21 patients at Stage II and 15 patients at Stage III. In univariate analysis, pT stage, lymph node metastasis and pTNM Stage significantly influenced survive time. In multivariate analysis, however, only lymph node metastasis (P=0.003; 95% CI: 1.626–10.972) was found to be the independent prognostic factor. Conclusions Primary ASC of the esophagus is a rare disease with difficultly to be histologically confirmed by endoscopic biopsy. The prognosis of esophageal ASC was no worse than esophageal SCC and AC. Lymph node metastasis is the most influent prognostic factor. The TNM staging system of esophageal SCC is applicable for esophageal ASC

  14. Intracellular signals of lung cancer cells as possible therapeutic targets

    PubMed Central

    Tanaka, Kiyomichi; Kumano, Keiki; Ueno, Hiroo

    2015-01-01

    In recent years, several molecularly targeted therapies have been developed as part of lung cancer treatment; they have produced dramatically good results. However, among the many oncogenes that have been identified to be involved in the development of lung cancers, a number of oncogenes are not covered by these advanced therapies. For the treatment of lung cancers, which is a group of heterogeneous diseases, persistent effort in developing individual therapies based on the respective causal genes is important. In addition, for the development of a novel therapy, identification of the lung epithelial stem cells and the origin cells of lung cancer, and understanding about candidate cancer stem cells in lung cancer tissues, their intracellular signaling pathways, and the mechanism of dysregulation of the pathways in cancer cells are extremely important. However, the development of drug resistance by cancer cells, despite the use of molecularly targeted drugs for the causal genes, thus obstructing treatment, is a well-known phenomenon. In this article, we discuss major causal genes of lung cancers and intracellular signaling pathways involving those genes, and review studies on origin and stem cells of lung cancers, as well as the possibility of developing molecularly targeted therapies based on these studies. PMID:25707772

  15. Lung regeneration: mechanisms, applications and emerging stem cell populations

    PubMed Central

    Kotton, Darrell N; Morrisey, Edward E

    2014-01-01

    Recent studies have shown that the respiratory system has an extensive ability to respond to injury and regenerate lost or damaged cells. The unperturbed adult lung is remarkably quiescent, but after insult or injury progenitor populations can be activated or remaining cells can re-enter the cell cycle. Techniques including cell-lineage tracing and transcriptome analysis have provided novel and exciting insights into how the lungs and trachea regenerate in response to injury and have allowed the identification of pathways important in lung development and regeneration. These studies are now informing approaches for modulating the pathways that may promote endogenous regeneration as well as the generation of exogenous lung cell lineages from pluripotent stem cells. The emerging advances, highlighted in this Review, are providing new techniques and assays for basic mechanistic studies as well as generating new model systems for human disease and strategies for cell replacement. PMID:25100528

  16. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-03-06

    Metastatic Malignant Neoplasm in the Brain; Stage IIIA Large Cell Lung Carcinoma; Stage IIIA Lung Adenocarcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Large Cell Lung Carcinoma; Stage IIIB Lung Adenocarcinoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Non-Small Cell Lung Cancer

  17. Sensitive methods for detection of the S768R substitution in exon 18 of the DDR2 gene in patients with central nervous system metastases of non-small cell lung cancer.

    PubMed

    Nicoś, Marcin; Powrózek, Tomasz; Krawczyk, Paweł; Jarosz, Bożena; Pająk, Beata; Sawicki, Marek; Kucharczyk, Krzysztof; Trojanowski, Tomasz; Milanowski, Janusz

    2014-10-01

    Discoidin death receptor 2 (DDR2) receptor belongs to a DDR family that shows a tyrosine kinase activity. The somatic mutations in DDR2 gene, reported in non-small cell lung cancer (NSCLC), are involved in up-regulation of cells' migration, proliferation and survival. A S768R substitution in DDR2 gene was commonly reported in squamous cell lung carcinoma. Clinical data of patients carrying the DDR2 gene mutation suggest that its presence can be independent of gender and age. The effectiveness of an oral dual-specific (Src and Abl) multikinase inhibitors-dasatinib-was observed in different cell lines and in some NSCLC patients with identified DDR2 mutation. In the present study, we have used three molecular methods (ASP-real-time PCR, ASP-DNA-FLA PCR and direct sequencing) to detect the DDR2 gene mutation in 143 patients with NSCLC metastases to the central nervous system (CNS). The prevalence of the DDR2 gene mutation was correlated with the occurrence of mutations in the EGFR, KRAS, HER2 and BRAF genes. We identified three patients (2.1% of studied group) with DDR2 mutation. The mutation was observed in two patients with low differentiated squamous cell lung cancer and in one patient with adeno-squamous cell carcinoma (ADSCC). In ADSCC patients, DDR2 mutation coexisted with G12C substitution in KRAS gene. According to the current knowledge, examination of the presence of the DDR2 gene mutation in metastatic lesion is the first such report worldwide. The information, that these driver mutations are present in CNS metastases of NSCLC, could broaden therapeutic choices in such group of patients.

  18. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  19. Role of mesenchymal cell death in lung remodeling after injury.

    PubMed Central

    Polunovsky, V A; Chen, B; Henke, C; Snover, D; Wendt, C; Ingbar, D H; Bitterman, P B

    1993-01-01

    Repair after acute lung injury requires elimination of granulation tissue from the alveolar airspace. We hypothesized that during lung repair, signals capable of inducing the death of the two principal cellular elements of granulation tissue, fibroblasts and endothelial cells, would be present at the air-lung interface. Bronchoalveolar lavage fluid obtained from patients during lung repair induced both fibroblast and endothelial cell death, while fluid obtained at the time of injury or from patient controls did not. The mode of cell death for endothelial cells was apoptosis. Fibroblast death, while morphologically distinct from necrosis, also differed from typical apoptosis. Only proliferating cells were susceptible to the bioactivities in lavage fluid, which were trypsin sensitive and lipid insoluble. Histological examination of lung tissue from patients after lung injury revealed evidence of apoptotic cells within airspace granulation tissue. Our results suggest that cell death induced by peptide(s) present at the air-lung interface may participate in the remodeling process that accompanies tissue repair after injury. Images PMID:8326006

  20. Novel therapies in small cell lung cancer

    PubMed Central

    Induru, Raghava; Jalal, Shadia I.

    2015-01-01

    Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor of the lung with a tendency to metastasize widely early in the course of the disease. The VA staging system classifies the disease into limited stage (LS) which is confined to one hemithorax and can be included into one radiation field or extensive stage (ES) which extends beyond one hemithorax. Current standard of care is concurrent chemoradiation for LS disease and chemotherapy alone for ES disease. Only a quarter of patients with LS disease will be cured with current standard treatments and majority of the patients ultimately succumb to their disease. A very complex genetic landscape of SCLC accounts for its resistance to conventional therapy and a high recurrence rate, however, at the same time this complexity can form the basis for effective targeted therapy for the disease. In recent years, several different therapeutic strategies and targeted agents have been under investigation for their potential role in SCLC. Several of them including EGFR TKIs, BCR-ABL TKIs, mTOR inhibitors, and VEGF inhibitors have been unsuccessful in showing a survival advantage in this disease. Several others including DNA repair inhibitors, cellular developmental pathway inhibitors, antibody drug conjugates (ADCs), as well as immune therapy with vaccines, immunomodulators, and immune checkpoint inhibitors are being tested. So far, none of these agents are approved for use in SCLC and the majority are in phase I/II clinical trials, with immune checkpoint inhibitors being the most promising therapeutic strategy. In this article, we will discuss these novel therapeutic agents and currently available data in SCLC. PMID:26629422

  1. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells.

    PubMed

    Peters, Haley L; Tripathi, Satyendra C; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R; St John, Lisa S; Federico, Lorenzo; Meraz, Ismail M; Roth, Jack A; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L; Heymach, John V; Swisher, Stephen G; Bernatchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J

    2017-03-02

    Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these reinvigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAMs were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTLs from healthy donors that had been expanded against select peptides. Finally, CTLs specific for serine proteases-induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. Cancer Immunol Res; 5(4); 1-11. ©2017 AACR.

  2. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors

    PubMed Central

    Ruiz-Morales, José Manuel; Cano-García, Fernando

    2016-01-01

    Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3–15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase. PMID:27652204

  3. Isolation, cultivation and identification of human lung adenocarcinoma stem cells

    PubMed Central

    ZHANG, DE-GENG; JIANG, AI-GUI; LU, HUI-YU; ZHANG, LI-XIN; GAO, XIAO-YAN

    2015-01-01

    Recently, an increasing number of studies have demonstrated that lung cancer is a stem cell disease. However, ideal cell surface markers for isolating stem cells in lung cancer are yet to be identified. In the present study, a cell population with a cluster of differentiation (CD)133+ phenotype was successfully isolated from a single cell suspension of lung adenocarcinoma tissue using magnetic-activated cell sorting (MACS) and enriched in a serum-free culture. In comparison to CD133− cells, the CD133+ cells exhibited an enhanced capacity for self-renewal and differentiation, and a greater potential for in vivo tumor formation, in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Tumors could be induced in NOD/SCID mice by the transplantation of 102 stem-like cells per mouse. The results of the present study demonstrated that CD133 may serve as a specific cell surface marker for lung adenocarcinoma stem cells, and that MACS combined with serum-free culture is an effective method for isolating and enriching lung cancer stem cells. PMID:25435932

  4. Lung cancer stem cells and implications for future therapeutics.

    PubMed

    Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo

    2014-07-01

    Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

  5. Mast cells in airway diseases and interstitial lung disease.

    PubMed

    Cruse, Glenn; Bradding, Peter

    2016-05-05

    Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease.

  6. Tracking the Clonal Evolution of Adenosquamous Carcinoma, a Rare Variant of Intraductal Papillary Mucinous Neoplasm of the Pancreas.

    PubMed

    Matsuzaka, Suguru; Karasaki, Hidenori; Ono, Yusuke; Ogata, Munehiko; Oikawa, Kensuke; Tamakawa, Susumu; Chiba, Shin-Ichi; Muraki, Miho; Yokochi, Tomoki; Funakoshi, Hiroshi; Kono, Toru; Nagashima, Kazuo; Mizukami, Yusuke

    2016-07-01

    Adenosquamous carcinoma (ASC) is an uncommon variant of pancreatic neoplasm. We sought to trace the mode of tumor progression using specimens of ASC associated with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. A resected specimen of the primary pancreatic ASC, developed in a 72-year-old man, was subjected to mutation profiling using amplicon-targeted sequencing and digital polymerase chain reaction. DNA was isolated from each histological compartment including noninvasive IPMN, squamous cell carcinoma (SCC), and adenocarcinoma (AC). Histologically, an IPMN with a large mural nodule was identified. The invasive tumor predominantly consisted of SCC, and a smaller AC was found around the lesion. Squamous metaplasias were sporadically distributed within benign IPMNs. Mutation alleles KRAS and GNAS were identified in all specimens of IPMN including the areas of squamous metaplasia. In addition, these mutations were found in SCC and AC. Clear transition from flat/low-papillary IPMN to SCC indicated a potent invasion front, and the SCC compartment was genetically unique, because the area has a higher frequency of mutation KRAS. The invasive tumors with distinct histological appearances shared the form of noninvasive IPMN as a common precursor, rather than de novo cancer, suggesting the significance of a genetic profiling scheme of tumors associated with IPMN.

  7. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell.

    PubMed

    Inamdar, Ajinkya C; Inamdar, Arati A

    2013-10-01

    Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD.

  8. Chronic obstructive lung diseases and risk of non-small cell lung cancer in women

    PubMed Central

    Schwartz, Ann G.; Cote, Michele L.; Wenzlaff, Angela S.; Van Dyke, Alison; Chen, Wei; Ruckdeschel, John C.; Gadgeel, Shirish; Soubani, Ayman O.

    2009-01-01

    Introduction The link between lung cancer and chronic obstructive lung diseases (COPD) has not been well studied in women even though lung cancer and COPD account for significant and growing morbidity and mortality among women. Methods We evaluated the relationship between COPD and non-small cell lung cancer (NSCLC) in a population-based case-control study of women and constructed a time course of chronic lung diseases in relation to onset of lung cancer. Five hundred sixty-two women aged 18–74, diagnosed with NSCLC and 564 population-based controls matched on race and age participated. Multivariable unconditional logistic regression models were used to estimate risk associated with a history of COPD, chronic bronchitis or emphysema. Results Lung cancer risk increased significantly for white women with a history of COPD (OR=1.85; 95% CI 1.21–2.81), but this was not seen in African American women. Risk associated with a history of chronic bronchitis was strongest when diagnosed at age 25 or earlier (OR=2.35, 95% CI 1.17–4.72); emphysema diagnosed within nine years of lung cancer was also associated with substantial risk (OR=6.36, 95% CI 2.36–17.13). Race, pack-years of smoking, exposure to environmental tobacco smoke as an adult, childhood asthma and exposure to asbestos were associated with a history of COPD among lung cancer cases. Conclusions In women, COPD is associated with risk of lung cancer differentially by race. Untangling whether COPD is in the causal pathway or simply shares risk factors will require future studies to focus on specific COPD features while exploring underlying genetic susceptibility to these diseases. PMID:19190518

  9. Genetic Testing in Screening Patients With Stage IB-IIIA Non-Small Cell Lung Cancer That Has Been or Will Be Removed by Surgery (The ALCHEMIST Screening Trial)

    ClinicalTrials.gov

    2017-04-12

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IB Squamous Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIA Squamous Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIB Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Squamous Cell Lung Carcinoma

  10. Glucocorticoids decrease Treg cell numbers in lungs of allergic mice.

    PubMed

    Olsen, P C; Kitoko, J Z; Ferreira, T P; de-Azevedo, C T; Arantes, A C; Martins, Μ A

    2015-01-15

    Glucocorticoids have been the hallmark anti-inflammatory drug used to treat asthma. It has been shown that glucocorticoids ameliorate asthma by increasing numbers and activity of Tregs, in contrast recent data show that glucocorticoid might have an opposite effect on Treg cells from normal mice. Since Tregs are target cells that act on the resolution of asthma, the aim of this study was to elucidate the effect of glucocorticoid treatment on lung Tregs in mouse models of asthma. Allergen challenged mice were treated with either oral dexamethasone or nebulized budesonide. Broncoalveolar lavage and airway hyperresponsiveness were evaluated after allergenic challenge. Lung, thymic and lymph node cells were phenotyped on Treg through flow cytometry. Lung cytokine secretion was detected by ELISA. Although dexamethasone inhibited airway inflammation and hyperresponsiveness, improving resolution, we have found that both dexamethasone and budesonide induce a reduction of Treg numbers on lungs and lymphoid organs of allergen challenged mice. The reduction of lung Treg levels was independent of mice strain or type of allergen challenge. Our study also indicates that both glucocorticoids do not increase Treg activity through production of IL-10. Glucocorticoid systemic or localized treatment induced thymic atrophy. Taken together, our results demonstrate that glucocorticoids decrease Treg numbers and activity in different asthma mouse models, probably by reducing thymic production of T cells. Therefore, it is possible that glucocorticoids do not have beneficial effects on lung populations of Treg cells from asthmatic patients.

  11. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  12. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  13. TRIM72 modulates caveolar endocytosis in repair of lung cells.

    PubMed

    Nagre, Nagaraja; Wang, Shaohua; Kellett, Thomas; Kanagasabai, Ragu; Deng, Jing; Nishi, Miyuki; Shilo, Konstantin; Oeckler, Richard A; Yalowich, Jack C; Takeshima, Hiroshi; Christman, John; Hubmayr, Rolf D; Zhao, Xiaoli

    2016-03-01

    Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.

  14. Antiviral B cell and T cell immunity in the lungs.

    PubMed

    Chiu, Christopher; Openshaw, Peter J

    2015-01-01

    Respiratory viruses are frequent causes of repeated common colds, bronchitis and pneumonia, which often occur unpredictably as epidemics and pandemics. Despite those decimating effects on health and decades of intensive research, treatments remain largely supportive. The only commonly available vaccines are against influenza virus, and even these need improvement. The lung shares some features with other mucosal sites, but preservation of its especially delicate anatomical structures necessitates a fine balance of pro- and anti-inflammatory responses; well-timed, appropriately placed and tightly regulated T cell and B cell responses are essential for protection from infection and limitation of symptoms, whereas poorly regulated inflammation contributes to tissue damage and disease. Recent advances in understanding adaptive immunity should facilitate vaccine development and reduce the global effect of respiratory viruses.

  15. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  16. Genetic and molecular coordinates of neuroendocrine lung tumors, with emphasis on small-cell lung carcinomas.

    PubMed Central

    Koutsami, Marilena K.; Doussis-Anagnostopoulou, Ipatia; Papavassiliou, Athanasios G.; Gorgoulis, Vassilis G.

    2002-01-01

    The aim of this review is to present the advances in our understanding of the progression of tumorigenesis in neuroendocrine lung tumors. Current information on established and putative diagnostic and prognostic markers of neuroendocrine tumors are evaluated, with a special reference to small-cell lung carcinoma, due to its higher incidence and aggressive behavior. The genetic and molecular changes that accompany these neoplasms are highlighted, and factors that influence cell-cycle progression, apoptosis, drug resistance, and escape from immune surveillance are critically assessed. PMID:12435853

  17. CT findings of small cell lung carcinoma

    PubMed Central

    Lee, Dongjun; Rho, Ji Young; Kang, Seunghun; Yoo, Koun Joy; Choi, Hye Jeong

    2016-01-01

    Abstract The purpose of this study was to clarify the recognizable computed tomography (CT) features of small cell lung carcinoma (SCLC). Contrast enhanced CT scans were reviewed retrospectively for mass location, mediastinal extension, and other concomitant findings in 142 patients with pathologically proven SCLC. SCLC was classified into hilar mass only (type I), hilar mass with ipsilateral mediastinal extension (type II), hilar mass with bilateral mediastinal extension (type III), and peripheral mass (type IV). When mediastinal lymphadenopathy (m-LAP) was indistinguishable from a hilar mass, we defined it as a mediastinal conglomerate mass (m-CM). Type IIa or IIIa had ipsilateral or bilateral m-LAP and type IIb, IIIb or IIIc had ipsilateral or bilateral m-CM. Type I (n = 8, 5.6%), type II (n = 58, 40.8%), type III (n = 55, 38.8%), and type IV (n = 21, 14.8%) were manifested. The combination of a hilar mass and m-CM was found in 68 patients (47.9%). Type IV masses showed lobulation in 11, microlobulation in 4, both lobulated and irregular margins in 4, and spiculation in 2. A total of 120 patients (84.5%) had a bronchial stenosis/obstruction; single (n = 52) and 2 or more (n = 68). Ninety-five patients (67.0%) had vascular invasion including main/lobar pulmonary artery and superior vena cava, and 55 (38.7%) had pleural effusion and/or pleural nodules. Concomitant parenchymal findings (n = 92, 64.8%) were noted: contiguous consolidation/nodule (n = 45), hematogeneous spread (n = 32), lymphangitic spread (n = 21), obstructive pneumonia (n = 22), and obstructive atelectasis (n = 14). In conclusion, the recognizable CT features of SCLC were a hilar mass with m-CM. Most of the hilar masses showed 2 or more bronchial stenoses/obstructions. Most cases of peripheral SCLC manifested as a lobulated mass rather than a spiculated mass. Vascular invasion and concomitant parenchymal findings were observed commonly. PMID:27893684

  18. Inappropriate antidiuretic hormone secretion due to squamous cell lung cancer.

    PubMed

    Kotoulas, Christophoros; Panagiotou, Ioannis; Tsipas, Panteleimon; Koutoulakis, Emmanouil

    2015-06-01

    The syndrome of inappropriate secretion of antidiuretic hormone is a disorder of impaired water excretion caused by the inability to suppress secretion of antidiuretic hormone. It has been commonly associated with small cell carcinoma. The association of this syndrome with squamous cell lung carcinoma has rarely been reported, with only 4 cases over the past two decades in the English literature. We describe the case of a 75-year-old Caucasian male who developed the syndrome after a right pneumonectomy for down-staged squamous cell lung cancer previously treated with neoadjuvant platinum-based chemotherapy and radiotherapy.

  19. p63 expression in assessment of bronchioloalveolar proliferations of the lung.

    PubMed

    Sheikh, Hina A; Fuhrer, Kimberly; Cieply, Kathleen; Yousem, Samuel

    2004-09-01

    Discrimination of well-differentiated pulmonary adenocarcinoma from reactive bronchioloalveolar epithelium can be difficult on routine histology, especially with small biopsies. Ancillary studies to help in this distinction are desirable. p63, a p53-homologous nuclear protein, is a marker of reserve cells of the bronchus and terminal lobular unit. In this study, 33 cases of adenocarcinoma (20 open lung and 13 transbronchial/percutaneous biopsies) and 43 cases of benign lungs with fibrosis and metaplasia (22 open lung and 21 transbronchial/percutaneous biopsies) were studied for nuclear p63 expression by immunohistochemistry (Dako, Carpinteria, CA, USA). Five additional cases each of atypical adenomatous hyperplasia and adenosquamous carcinoma and three cases of squamous carcinoma (all open lung biopsies) were also stained. The diagnostic categories of benign lung conditions were usual interstitial pneumonia, parenchymal scar, cryptogenic organizing pneumonia and diffuse alveolar damage. In neoplastic cases, p63 positivity was calculated as percentage of all tumor cells examined. In areas of normal lung, p63 decorated the reserve cells of large and small airways and occasional cells of the distal lobular unit. In fibrotic reactive processes, an interrupted but distinct pattern of nuclear staining was present in all cases, with staining of basal cells of the airways as well as bronchiolar- and squamous-metaplastic epithelium (43/43, 100%). p63 immunoreactivity was less uniform in areas of acute lung injury within these cases. One adenocarcinoma and two cases of atypical adenomatous hyperplasia showed strong immunoreactivity (>80%), while three adenocarcinomas highlighted only rare tumor nuclei (<5% of tumor cells). Morphologic areas where p63 immunostaining was not helpful included the junction of normal lung and lepidic growth of adenocarcinoma, and retrograde spread of adenocarcinoma into small airways. Our results highlight the differential expression of p63

  20. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  1. Comprehensive genomic characterization of squamous cell lung cancers

    PubMed Central

    2012-01-01

    Summary Lung squamous cell carcinoma (lung SqCC) is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in lung SqCC have not been comprehensively characterized and no molecularly targeted agents have been developed specifically for its treatment. As part of The Cancer Genome Atlas (TCGA), we profiled 178 lung SqCCs to provide a comprehensive landscape of genomic and epigenomic alterations. Lung SqCC is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumor. We found statistically recurrent mutations in 18 genes in including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations were seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2/KEAP1 in 34%, squamous differentiation genes in 44%, PI3K/AKT in 47%, and CDKN2A/RB1 in 72% of tumors. We identified a potential therapeutic target in the majority of tumors, offering new avenues of investigation for lung SqCC treatment. PMID:22960745

  2. Long-Term Outcome and Prognostic Factors for Adenocarcinoma/Adenosquamous Carcinoma of Cervix After Definitive Radiotherapy

    SciTech Connect

    Huang, Yi-Ting; Wang, Chun-Chieh; Tsai, Chien-Sheng; Lai, Chyong-Huey; Chang, Ting-Chang; Chou, Hung-Hsueh; Hsueh, Swei; Chen, Chien-Kuang; Lee, Steve P.; Hong, Ji-Hong

    2011-06-01

    Purpose: To study the outcomes of patients with adenocarcinoma/adenosquamous carcinoma (AC/ASC) of the cervix primarily treated with radiotherapy (RT), identify the prognostic factors, and evaluate the efficacy of concurrent chemoradiotherapy (CCRT) or salvage surgery. Methods and Materials: A total of 148 patients with Stage I-IVA AC/ASC of cervix after full-course definitive RT were included. Of the 148 patients, 77% had advanced stage disease. Treatment failure was categorized as either distant or local failure. Local failure was further separated into persistent tumor or local relapse after complete remission. The effectiveness of CCRT with cisplatin and/or paclitaxel was examined, and the surgical salvage rate for local failure was reviewed. Results: The 5-year relapse-free survival rate was 68%, 38%, 49%, 30%, and 0% for those with Stage IB/IIA nonbulky, IB/IIA bulky, IIB, III, and IVA disease, respectively, and appeared inferior to that of those with squamous cell carcinoma of the cervix treated using the same RT protocol. Incomplete tumor regression after RT, a low hemoglobin level, and positive lymph node metastasis were independent poor prognostic factors for relapse-free survival. CCRT with weekly cisplatinum did not improve the outcome for our AC/ASC patients. Salvage surgery rescued 30% of patients with persistent disease. Conclusion: Patients with AC/ASC of the cervix primarily treated with RT had inferior outcomes compared to those with squamous cell carcinoma. Incomplete tumor regression after RT was the most important prognostic factor for local failure. Salvage surgery for patients with persistent tumor should be encouraged for selected patients. Our results did not demonstrate a benefit of CCRT with cisplatin for this disease.

  3. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  4. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    PubMed

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  5. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  6. Comprehensive genomic characterization of squamous cell lung cancers.

    PubMed

    2012-09-27

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.

  7. 'Dancing eyes, dancing feet syndrome' in small cell lung carcinoma.

    PubMed

    Sharma, Chandramohan; Acharya, Mihir; Kumawat, Bansi Lal; Kochar, Abhishek

    2014-04-23

    A 60-year-old man presented with a 25-day history of acute onset instability of gait, tremulousness of limbs and involuntary eye movements. Examination revealed presence of opsoclonus, myoclonus and ataxia, without any loss of motor power in the limbs. Prompt investigations were directed towards identifying an underlying malignancy which is often associated with this type of clinical scenario. CT of the brain was normal and cerebrospinal fluid examination showed lymphocytic pleocytosis. A cavitatory lesion was found in the right lung base on the high-resolution CT of the chest and histopathological examination of this lung mass showed small cell lung carcinoma. The patient was managed symptomatically with levetiracetam and baclofen and referred to oncology department for resection of the lung mass.

  8. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  9. Role of plasmacytoid dendritic cells in lung-associated inflammation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Pinto, Aldo

    2010-06-01

    Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators. One of the most important features of pDCs is the high production of IFN type I that can promote the polarization of T cells towards a Th1 phenotype. Recent evidence has highlighted the relevance of pDCs in therapy for asthma, lung infections and cancer. However, it is to note that pDCs can also participate in suppressive networks via the recruitment of T regulatory cells. Further studies are needed to understand pDCs activity in the lung, not only to elucidate pathological mechanisms, but also to lead towards new therapeutic approaches for lung inflammatory-based diseases. The article also outlines recent patents on plasmacytoid DCs.

  10. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  11. Therapeutic Potential of Lung Epithelial Progenitor Cells Derived from Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Wetsel, Rick A.; Wang, Dachun; Calame, Daniel G.

    2015-01-01

    Embryonic stem (ES) cells derived from preimplantation blastocysts and induced pluripotent stem (iPS) cells generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide a possible unlimited source of cells that could be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. Because of inherent difficulties in deriving endodermal cells from undifferentiated cell cultures, applications using lung epithelial cells derived from ES and iPS cells have lagged behind similar efforts devoted to other tissues, such as the heart and spinal cord. However, during the past several years, significant advances in culture, differentiation, and purification protocols, as well as in bioengineering methodologies, have fueled enthusiasm for the development of stem cell–based lung therapeutics. This article provides an overview of recent research achievements and discusses future technical challenges that must be met before the promise of stem cell applications for lung disease can be realized. PMID:21226612

  12. Primary B-cell malignant lymphoma of the lung.

    PubMed

    Canver, C C

    1993-10-01

    A 52-year-old asymptomatic man was evaluated for two right lung lesions discovered on a chest roentgenogram during a routine physical examination. A computed tomographic scan revealed the absence of mediastinal nodal involvement. Guided-needle aspiration cytology was inconclusive. A subsequent right thoracotomy was necessary to perform biopsy of these masses, which proved to be B-cell malignant lymphomas of the lung. This case represents a rare example of a primary low-grade B-cell pulmonary lymphoma of mucosa-associated lymphoid tissue, with its distinct clinicopathologic features.

  13. Discrimination and quantification of autofluorescence spectra of human lung cells

    NASA Astrophysics Data System (ADS)

    Rahmani, Mahya; Khani, Mohammad Mehdi; Khazaei Koohpar, Zeinab; Molik, Paria

    2016-10-01

    To study laser-induced autofluorescence spectroscopy of the human lung cell line, we evaluated the native fluorescence properties of cancer QU-DB and normal MRC-5 human lung cells during continuous exposure to 405 nm laser light. Two emission bands centered at ~470 nm and ~560 nm were observed. These peaks are most likely attributable to mitochondrial fluorescent reduced nicotinamide adenine dinucleotide and riboflavin fluorophores, respectively. This article highlights lung cell autofluorescence characterization and signal discrimination by collective investigation of different spectral features. The absolute intensity, the spectral shape factor or redox ratio, the full width of half-maximum and the full width of quarter maximum was evaluated. Moreover, the intensity ratio, the area under the peak and the area ratio as a contrast factor for normal and cancerous cells were also calculated. Among all these features it seems that the contrast factor precisely and significantly discriminates the spectral differences of normal and cancerous lung cells. On the other hand, the relative quantum yield for both cell types were found by comparing the quantum yield of an unknown compound with known fluorescein sodium as a reference solution.

  14. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer

    PubMed Central

    Niederst, Matthew J.; Sequist, Lecia V.; Poirier, John T.; Mermel, Craig H.; Lockerman, Elizabeth L.; Garcia, Angel R.; Katayama, Ryohei; Costa, Carlotta; Ross, Kenneth N.; Moran, Teresa; Howe, Emily; Fulton, Linnea E.; Mulvey, Hillary E.; Bernardo, Lindsay A.; Mohamoud, Farhiya; Miyoshi, Norikatsu; VanderLaan, Paul A.; Costa, Daniel B.; Jänne, Pasi A.; Borger, Darrell R.; Ramaswamy, Sridhar; Shioda, Toshi; Iafrate, Anthony J.; Getz, Gad; Rudin, Charles M.; Mino-Kenudson, Mari; Engelman, Jeffrey A.

    2015-01-01

    Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC. PMID:25758528

  15. Decreased lung carcinoma cell density on select polymer nanometer surface features for lung replacement therapies.

    PubMed

    Zhang, Lijuan; Chun, Young Wook; Webster, Thomas J

    2010-05-13

    Poly(lactic-co-glycolic) acid (PLGA) has been widely used as a biomaterial in regenerative medicine because of its biocompatibility and biodegradability properties. Previous studies have shown that cells (such as bladder smooth muscle cells, chondrocytes, and osteoblasts) respond differently to nanostructured PLGA surfaces compared with nanosmooth surfaces. The purpose of the present in vitro research was to prepare PLGA films with various nanometer surface features and determine whether lung cancer epithelial cells respond differently to such topographies. To create nanosurface features on PLGA, different sized (190 nm, 300 nm, 400 nm, and 530 nm diameter) polystyrene beads were used to cast polydimethylsiloxane (PDMS) molds which were used as templates to create nanofeatured PLGA films. Atomic force microscopy (AFM) images and root mean square roughness (RMS) values indicated that the intended spherical surface nanotopographies on PLGA with RMS values of 2.23, 5.03, 5.42, and 36.90 nm were formed by employing 190, 300, 400, and 530 nm beads. A solution evaporation method was also utilized to modify PLGA surface features by using 8 wt% (to obtain an AFM RMS value of 0.62 nm) and 4 wt% (to obtain an AFM RMS value of 2.23 nm) PLGA in chloroform solutions. Most importantly, lung cancer epithelial cells adhered less on the PLGA surfaces with RMS values of 0.62, 2.23, and 5.42 nm after four hours of culture compared with any other PLGA surface created here. After three days, PLGA surfaces with an RMS value of 0.62 nm had much lower cell density than any other sample. In this manner, PLGA with specific nanometer surface features may inhibit lung cancer cell density which may provide an important biomaterial for the treatment of lung cancer (from drug delivery to regenerative medicine).

  16. Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury

    PubMed Central

    Miranda, Luis F.; Rodrigues, Claudia O.; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Klim, Jammie; Hehre, Dorothy; McNiece, Ian; Hare, Joshua M.; Suguihara, Cleide Y.; Young, Karen C.

    2016-01-01

    BACKGROUND Stem cell factor (SCF) and its receptor, c-kit, are modulators of angiogenesis. Neonatal hyperoxia-induced lung injury (HILI) is characterized by disordered angiogenesis. The objective of this study was to determine whether exogenous SCF improves recovery from neonatal HILI by improving angiogenesis. METHODS Newborn rats assigned to normoxia (RA: 20.9% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to 15, received daily injections of SCF 100 µg/kg or placebo (PL) from P15 to P21. Lung morphometry was performed at P28. Capillary tube formation in SCF-treated hyperoxia-exposed pulmonary microvascular endothelial cells (HPMECs) was determined by Matrigel assay. RESULTS As compared with RA, hyperoxic-PL pups had decrease in alveolarization and in lung vascular density, and this was associated with increased right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and vascular remodeling. In contrast, SCF-treated hyperoxic pups had increased angiogenesis, improved alveolarization, and attenuation of pulmonary hypertension as evidenced by decreased RVSP, right ventricular hypertrophy, and vascular remodeling. Moreover, in an in vitro model, SCF increased capillary tube formation in hyperoxia-exposed HPMECs. CONCLUSION Exogenous SCF restores alveolar and vascular structure in neonatal rats with HILI by promoting neoangiogenesis. These findings suggest a new strategy to treat lung diseases characterized by dysangiogenesis. PMID:24153399

  17. Emerging challenges of advanced squamous cell lung cancer

    PubMed Central

    Zhang, Yi-Chen; Zhou, Qing

    2016-01-01

    Squamous cell lung cancer (SQCLC) is an aggressive type of lung cancer and most are diagnosed at advanced stage. Patients with advanced SQCLC tend to be older, current or former smoker, with central type tumour located near large blood vessels and seldom with druggable genetic alternations. Consequently, progress of targeted therapy and antivascular agents available in lung adenocarcinoma could not be duplicated in this subset of patients. The treatment paradigms have long been dominant by cytotoxic agents and posed many therapeutic challenges. Until recent years, immune checkpoint inhibitors, other monoclonal antibodies and afatinib have been approved for treatment of advanced SQCLC, presenting a novel treatment landscape and initiating the era of precision medicine in this subset of patients. This review will summarise the recent treatment progresses in advanced SQCLC with a focus on checkpoint inhibitors of programmed cell death-1 receptor or its ligand, and discuss the emerging challenges in this new era. PMID:28255454

  18. Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation.

    PubMed

    Pijanka, Jacek K; Stone, Nicholas; Rutter, Abigail V; Forsyth, Nicholas; Sockalingum, Ganesh D; Yang, Ying; Sulé-Suso, Josep

    2013-09-07

    Raman spectroscopy has been widely used to study its possible clinical application in cancer diagnosis. However, in order to make it into clinical practice, it is important that this technique is able not only to identify cancer cells from their normal counterparts, but also from the array of cells present in human tissues. To this purpose, we used Raman spectroscopy to assess whether this technique was able to differentiate not only between lung cancer cells and lung epithelial cells but also from lung fibroblasts. Furthermore, we studied whether the differences were due to cell lineage (epithelial versus fibroblast) or to different proliferative characteristics of cells, and where in the cell compartment these differences might reside. To answer these questions we studied cell cytoplasm, cell nucleus and isolated whole cell nuclei. Our data suggests that Raman spectroscopy can differentiate between lung cancer, lung epithelial cells and lung fibroblasts. More important, it can also differentiate between 2 cells from the same lineage (fibroblast) but with one of them rendered immortal and with an increased proliferative activity. Finally, it seems that the main spectral differences reside in the cell nucleus and that the study of isolated nuclei strengthens the differences between cells.

  19. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  20. Maresin 1 Maintains the Permeability of Lung Epithelial Cells In Vitro and In Vivo.

    PubMed

    Chen, Lin; Liu, Hong; Wang, Yaxin; Xia, Haifa; Gong, Jie; Li, Bo; Yao, Shanglong; Shang, You

    2016-12-01

    Previous reports showed that Maresin 1 (MaR1) possessed organ protection effects and could attenuate acute lung injury. Here, we aim to figure out whether MaR1 can maintain the permeability of lung epithelial cells by regulating the expression of tight junction protein during lung injury. Monolayer of murine lung epithelial cells was stimulated by lipopolysaccharide (LPS) with or without MaR1 and the permeability was evaluated. The expression of Claudin-1 and ZO-1 in lung epithelial cells was analyzed by immunofluorescence staining and western blotting. MaR1 was given to the mice after LPS induced acute lung injury. The permeability of lung was assessed by Evans Blue extravasation, lung wet/dry ratio and protein concentration in bronchoalveolar lavage fluid. Lung injury score was also evaluated. The expression of Claudin-1 and ZO-1 in the lung was analyzed by immunofluorescence staining. Results showed that MaR1 maintained the permeability of lung epithelial cells and upregulated the expression of Claudin-1 and ZO-1 after LPS stimulation. In acute lung injury mice, MaR1 upregulated the expression of Claudin-1 and ZO-1, decreased lung permeability, and reduced lung injury. In summary, this study suggests that MaR1 can maintain the permeability of lung epithelial cells by upregulating the expression of Claudin-1 and ZO-1 in acute lung injury.

  1. Temporal Lung Tumor Volume Changes in Small-Cell Lung Cancer Patients Undergoing Chemoradiotherapy

    SciTech Connect

    Yee, Don; Rathee, Satyapal; Robinson, Don; Murray, Brad

    2011-05-01

    Purpose: Small-cell lung cancer is considered to be relatively chemosensitive and radiosensitive. Small-cell tumor volume changes during concurrent chemoradiotherapy have not been quantified. The purpose of this work is to quantify small-cell lung tumor volume variations in limited-stage patients undergoing chemoradiotherapy. Methods and Materials: Eligible patients had pathologically confirmed limited-stage small-cell lung cancer, underwent concurrent chemoradiotherapy, and signed study-specific consent forms. Patients underwent serial chest computed tomography (CT) scans on a CT simulator with images acquired at the same phase of patients' respiratory cycle. Computed tomography scans were obtained at the time of planning CT scan and 3 times a week during radiotherapy (RT). Gross tumor volumes (GTVs) were contoured on each CT scan. Gross tumor volumes defined on each CT scan were analyzed for volume changes relative to pre-RT scans. Results: We obtained 104 CT scans (median, 11.5 scans per patient). The median tumor dose was 50 Gy. The median pre-RT GTV was 98.9 cm{sup 3} (range, 57.8-412.4 cm{sup 3}). The median GTV at the final serial CT scan was 10.0 cm{sup 3} (range, 4.2-81.6 cm{sup 3}). The mean GTV relative to pre-RT volume at the end of each RT week was 53.0% for Week 1, 29.8% for Week 2, 22.9% for Week 3, 19.5% for Week 4, and 12.4% for Week 5. Conclusions: Dramatic shrinkage of small-cell lung tumors occurred in patients undergoing chemoradiotherapy in this trial. Most of the observed GTV shrinkage occurred during the first week of RT.

  2. Proteomics of lung cell biology and pulmonary disease.

    PubMed

    Levine, Stewart J

    2007-10-01

    Proteomics has the goal of defining the complete protein complement of biological systems, which can then be analyzed in a comparative fashion to generate informative data regarding protein expression and function. Proteomic analyses can also facilitate the discovery of biomarkers that can be used to diagnose and monitor disease severity, activity and therapeutic response, as well as to identify new targets for drug development. A major challenge for proteomics, however, has been detecting low-abundance proteins in complex biological fluids. This review summarizes how proteomic analyses have advanced lung cell biology and facilitated the identification of new mechanisms of disease pathogenesis in respiratory disorders, such as asthma, cystic fibrosis, lung cancer, acute lung injury and sarcoidosis. The impact of nanotechnology and microfluidics, as well as studies of post-translational modifications and protein-protein interactions (the interactome), are considered. Furthermore, the application of systems-biology approaches to organize and analyze data regarding the lung proteome, interactome, genome, transcriptome, metabolome, glycome and small RNAome (regulatory RNAs), should facilitate future conceptual advances regarding lung cell biology, disease pathogenesis, biomarker discovery and drug development.

  3. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  4. Radiosensitization of non-small cell lung cancer by kaempferol.

    PubMed

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  5. Substrate Stiffness Regulates Filopodial Activities in Lung Cancer Cells

    PubMed Central

    Liou, Yu-Ren; Torng, Wen; Kao, Yu-Chiu; Sung, Kung-Bin; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and should shed light

  6. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    PubMed

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  7. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  8. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling

    PubMed Central

    Heise, Rebecca L.; Link, Patrick A.; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  9. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells

    PubMed Central

    1990-01-01

    Dendritic cells (DC) are potent accessory cells (AC) for the initiation of primary immune responses. Although murine lymphoid DC and Langerhans cells have been extensively characterized, DC from murine lung have been incompletely described. We isolated cells from enzyme-digested murine lungs and bronchoalveolar lavages that were potent stimulators of a primary mixed lymphocyte response (MLR). The AC had a low buoyant density, were loosely adherent and nonphagocytic. AC function was unaffected by depletion of cells expressing the splenic DC marker, 33D1. In addition, antibody and complement depletion of cells bearing the macrophage marker F4/80, or removal of phagocytic cells with silica also failed to decrease AC activity. In contrast, AC function was decreased by depletion of cells expressing the markers J11d and the low affinity interleukin 2 receptor (IL-2R), both present on thymic and skin DC. AC function was approximately equal in FcR+ and FcR- subpopulations, indicating there was heterogeneity within the AC population. Consistent with the functional data, a combined two-color immunofluorescence and latex bead uptake technique revealed that lung cells high in AC activity were enriched in brightly Ia+ dendritic- shaped cells that (a) were nonphagocytic, (b) lacked specific T and B lymphocyte markers and the macrophage marker F4/80, but (c) frequently expressed C3biR, low affinity IL-2R, FcRII, and the markers NLDC-145 and J11d. Taken together, the functional and phenotypic data suggest the lung cells that stimulate resting T cells in an MLR and that might be important in local pulmonary immune responses are DC that bear functional and phenotypic similarity to other tissues DC, such as Langerhans cells and thymic DC. PMID:2162904

  10. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells.

    PubMed

    Wang, Fang-Wu; Wang, Sheng-Qing; Zhao, Bao-Xiang; Miao, Jun-Ying

    2014-05-21

    A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.

  11. Spontaneous Tumor Lysis Syndrome in Small Cell Lung Cancer

    PubMed Central

    Saladi, Swetha; Patolia, Setu; Stoeckel, David

    2017-01-01

    Tumor lysis syndrome (TLS) is a life-threatening oncologic complication caused by the lysis of a vast number of malignant cells resulting in metabolic derangements and organ dysfunction. TLS can occur spontaneously before initiation of any therapies often referred to as spontaneous tumor lysis syndrome (STLS), or shortly after the induction of chemotherapy, radiotherapy, or cytolytic antibody therapy. TLS is vastly seen in patients with hematological malignancies with high rapid cell turnover rates such as Burkitt lymphoma, acute myelogenous leukemia, and acute lymphocytic leukemia, and is rarely observed in solid tumors. However, TLS can occur in solid tumors, and there are multiple reports in the literature on the occurrence of TLS in various solid tumors. In this article, we report a case of STLS in small cell lung cancer followed by a brief review of the occurrence of TLS and STLS in small cell lung cancer. PMID:28344911

  12. Pneumopericardium as a non-small-cell lung carcinoma complication

    PubMed Central

    Kubisa, Anna; Dec, Paweł; Szewczak-Głodek, Małgorzata; Kochanowski, Leszek; Kubisa, Bartosz; Feledyk, Grzegorz; Czarnecka, Michalina; Wójcik, Janusz; Grodzki, Tomasz

    2016-01-01

    Below we present a case of a young man with symptoms of progressive weakness, fever, cough, rapid decrease in body weight and the presence of a tumor in the left axillary region. The chest radiography and echocardiography revealed gas bubbles in the pericardium. The more detailed diagnostics and computed tomography of the chest showed an infiltration of the left lung cavity and a fistula among the bronchus, pleural and pericardial cavities. Further diagnostics demonstrated that the pneumopericardium (diagnosed by means of chest radiograph and echocardiography) was a complication of a primary non-small-cell lung carcinoma. PMID:27785143

  13. Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness

    PubMed Central

    Ruiz de Garibay, Gorka; Herranz, Carmen; Llorente, Alicia; Boni, Jacopo; Serra-Musach, Jordi; Mateo, Francesca; Aguilar, Helena; Gómez-Baldó, Laia; Petit, Anna; Vidal, August; Climent, Fina; Hernández-Losa, Javier; Cordero, Álex; González-Suárez, Eva; Sánchez-Mut, José Vicente; Esteller, Manel; Llatjós, Roger; Varela, Mar; López, José Ignacio; García, Nadia; Extremera, Ana I.; Gumà, Anna; Ortega, Raúl; Plà, María Jesús; Fernández, Adela; Pernas, Sònia; Falo, Catalina; Morilla, Idoia; Campos, Miriam; Gil, Miguel; Román, Antonio; Molina-Molina, María; Ussetti, Piedad; Laporta, Rosalía; Valenzuela, Claudia; Ancochea, Julio; Xaubet, Antoni; Casanova, Álvaro; Pujana, Miguel Angel

    2015-01-01

    Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM. PMID:26167915

  14. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    PubMed Central

    Yaghi, Asma; Dolovich, Myrna B.

    2016-01-01

    Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations. PMID:27845721

  15. Multiple mutations of lung squamous cell carcinoma shared common mechanisms

    PubMed Central

    Hu, Zhaoyan; Gu, Biao; Shi, Yan

    2016-01-01

    Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancers which is the cause of 80% of all lung cancer deaths. The genes that highly mutated in patients with LUSC and their roles played in the tumorigenesis remains unknown. Data of patients with Lung squamous cell carcinoma (LUSC) were retrieved from The Cancer Genome Atlas (TCGA). Differentially expressed genes were identified between control and cancer samples. Patients and controls can be separated by mRNA expression level showing that the between-group variance and totally 1265 genes were differentially expressed between controls and patients. Top genes whose mutations highly occurred in patients with LUSC were identified, most of these genes were shown to be related with tumorigenesis in previous studies. All of the genes mostly mutated were independently correlated with expression levels of all genes. These mutations did not show the trend of co-occurrence. However, the influenced gene of these mutations had overlaps. After studying the intersection of these genes, a group of shared genes were identified. The shared pathways enriched which played critical role in LUSC were identified based on these shared genes. Different mutations had contribution to the progression of LUSC. Though these genes involved different specific mechanisms, most of them may share a common mechanism which is critical for LUSC. The results may suggest a neglected mechanism and also indicate a potential target for therapies. PMID:27835590

  16. Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.

    PubMed

    Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K

    2015-05-20

    In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.

  17. Lung B cells promote early pathogen dissemination and hasten death from inhalation anthrax.

    PubMed

    Rayamajhi, M; Delgado, C; Condon, T V; Riches, D W; Lenz, L L

    2012-07-01

    Sampling of mucosal antigens regulates immune responses but may also promote dissemination of mucosal pathogens. Lung dendritic cells (LDCs) capture antigens and traffic them to lung-draining lymph nodes (LDLNs) dependent on the chemokine receptor CCR7 (chemokine (C-C motif) receptor 7). LDCs also capture lung pathogens such as Bacillus anthracis (BA). However, we show here that the initial traffic of BA spores from lungs to LDLNs is largely independent of LDCs and CCR7, occurring instead in association with B cells. BA spores rapidly bound B cells in lungs and cultured mouse and human B cells. Binding was independent of the B-cell receptor (BCR). B cells instilled in the lungs trafficked to LDLNs and BA spore traffic to LDLNs was impaired by B-cell deficiency. Depletion of B cells also delayed death of mice receiving a lethal BA infection. These results suggest that mucosal B cells traffic BA, and possibly other antigens, from lungs to LDLNs.

  18. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    SciTech Connect

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  19. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-01-23

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  20. Palliative Care Intervention in Improving Symptom Control and Quality of Life in Patients With Stage II-IV Non-small Cell Lung Cancer and Their Family Caregivers

    ClinicalTrials.gov

    2016-10-13

    Caregiver; Psychological Impact of Cancer and Its Treatment; Recurrent Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  1. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

    PubMed Central

    Kim, Il-Jin; Quigley, David; To, Minh D.; Pham, Patrick; Lin, Kevin; Jo, Brian; Jen, Kuang-Yu; Raz, Dan; Kim, Jae; Mao, Jian-Hua; Jablons, David; Balmain, Allan

    2015-01-01

    Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes. PMID:23591868

  2. Cancer stem cells in lung cancer: Evidence and controversies.

    PubMed

    Alamgeer, Muhammad; Peacock, Craig D; Matsui, William; Ganju, Vinod; Watkins, D Neil

    2013-07-01

    The cancer stem cell (CSC) model is based on a myriad of experimental and clinical observations suggesting that the malignant phenotype is sustained by a subset of cells characterized by the capacity for self-renewal, differentiation and innate resistance to chemotherapy and radiation. CSC may be responsible for disease recurrence after definitive therapy and may therefore be functionally synonymous with minimal residual disease. Similar to other solid tumours, several putative surface markers for lung CSC have been identified, including CD133 and CD44. In addition, expression and/or activity of the cytoplasmic enzyme aldehyde dehydrogenase ALDH and capacity of cells to exclude membrane permeable dyes (known as the 'side population') correlate with stem-like function in vitro and in vivo. Embryonic stem cell pathways such as Hedgehog, Notch and WNT may also be active in lung cancers stem cells and therefore may be therapeutically targetable for maintenance therapy in patients achieving a complete response to surgery, radiotherapy or chemotherapy. This paper will review the evidence regarding the existence and function of lung CSC in the context of the experimental and clinical evidence and discuss some ongoing controversies regarding this model.

  3. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  4. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  5. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    PubMed

    Godin, Lindsay M; Sandri, Brian J; Wagner, Darcy E; Meyer, Carolyn M; Price, Andrew P; Akinnola, Ifeolu; Weiss, Daniel J; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  6. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury.

    PubMed

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-02-12

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs.

  7. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury

    PubMed Central

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J.; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-01-01

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs. PMID:26869337

  8. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    SciTech Connect

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  9. Squamous cell lung cancer: from tumor genomics to cancer therapeutics.

    PubMed

    Gandara, David R; Hammerman, Peter S; Sos, Martin L; Lara, Primo N; Hirsch, Fred R

    2015-05-15

    Squamous cell lung cancer (SCC) represents an area of unmet need in lung cancer research. For the past several years, therapeutic progress in SCC has lagged behind the now more common non-small cell lung cancer histologic subtype of adenocarcinoma. However, recent efforts to define the complex biology underlying SCC have begun to bear fruit in a multitude of ways, including characterization of previously unknown genomic and signaling pathways, delineation of new, potentially actionable molecular targets, and subsequent development of a large number of agents directed against unique SCC-associated molecular abnormalities. For the first time, SCC-specific prognostic gene signatures and predictive biomarkers of new therapeutic agents are emerging. In addition, recent and ongoing clinical trials, including the Lung-MAP master protocol, have been designed to facilitate approval of targeted therapy-biomarker combinations. In this comprehensive review, we describe the current status of SCC therapeutics, recent advances in the understanding of SCC biology and prognostic gene signatures, and the development of innovative new clinical trials, all of which offer new hope for patients with advanced SCC.

  10. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  11. Studies on quantitative analysis and automatic recognition of cell types of lung cancer.

    PubMed

    Chen, Yi-Chen; Hu, Kuang-Hu; Li, Fang-Zhen; Li, Shu-Yu; Su, Wan-Fang; Huang, Zhi-Ying; Hu, Ying-Xiong

    2006-01-01

    Recognition of lung cancer cells is very important to the clinical diagnosis of lung cancer. In this paper we present a novel method to extract the structure characteristics of lung cancer cells and automatically recognize their types. Firstly soft mathematical morphology methods are used to enhance the grayscale image, to improve the definition of images, and to eliminate most of disturbance, noise and information of subordinate images, so the contour of target lung cancer cell and biological shape characteristic parameters can be extracted accurately. Then the minimum distance classifier is introduced to realize the automatic recognition of different types of lung cancer cells. A software system named "CANCER.LUNG" is established to demonstrate the efficiency of this method. The clinical experiments show that this method can accurately and objectively recognize the type of lung cancer cells, which can significantly improve the pathology research on the pathological changes of lung cancer and clinical assistant diagnoses.

  12. Microenvironmental modulation of asymmetric cell division in human lung cancer cells.

    PubMed

    Pine, Sharon R; Ryan, Bríd M; Varticovski, Lyuba; Robles, Ana I; Harris, Curtis C

    2010-02-02

    Normal tissue homeostasis is maintained through asymmetric cell divisions that produce daughter cells with differing self-renewal and differentiation potentials. Certain tumor cell subfractions can self-renew and repopulate the heterogeneous tumor bulk, suggestive of asymmetric cell division, but an equally plausible explanation is that daughter cells of a symmetric division subsequently adopt differing cell fates. Cosegregation of template DNA during mitosis is one mechanism by which cellular components are segregated asymmetrically during cell division in fibroblast, muscle, mammary, intestinal, and neural cells. Asymmetric cell division of template DNA in tumor cells has remained elusive, however. Through pulse-chase experiments with halogenated thymidine analogs, we determined that a small population of cells within human lung cancer cell lines and primary tumor cell cultures asymmetrically divided their template DNA, which could be visualized in single cells and in real time. Template DNA cosegregation was enhanced by cell-cell contact. Its frequency was density-dependent and modulated by environmental changes, including serum deprivation and hypoxia. In addition, we found that isolated CD133(+) lung cancer cells were capable of tumor cell repopulation. Strikingly, during cell division, CD133 cosegregated with the template DNA, whereas the differentiation markers prosurfactant protein-C and pan-cytokeratins were passed to the opposing daughter cell, demonstrating that segregation of template DNA correlates with lung cancer cell fate. Our results demonstrate that human lung tumor cell fate decisions may be regulated during the cell division process. The characterization and modulation of asymmetric cell division in lung cancer can provide insight into tumor initiation, growth, and maintenance.

  13. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    SciTech Connect

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P.

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  14. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    SciTech Connect

    Chen, Na; Sato, Daisuke; Saiki, Yuriko; Sunamura, Makoto; Fukushige, Shinichi; Horii, Akira

    2014-05-09

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.

  15. Inhibition of Skp2 sensitizes lung cancer cells to paclitaxel

    PubMed Central

    Huang, Tonghai; Yang, Lin; Wang, Guangsuo; Ding, Guanggui; Peng, Bin; Wen, Yuxin; Wang, Zheng

    2017-01-01

    S-phase kinase-associated protein 2 (Skp2) is an E3 ubiquitin ligase and plays an important role in the control of cell cycle progression. Skp2 is upregulated in several cancers, including lung cancers, but the role of Skp2 in the tumorigenesis and anticancer drug resistance in human lung cancer remains to be determined. We report here that Skp2 positively regulated mitotic arrest deficient 2 (MAD2) expression and that inhibition of Skp2 sensitizes human lung cancer cells to paclitaxel. Knockdown of Skp2 by small interfering RNA (siRNA) decreased Mad2 messenger RNA (mRNA) and protein levels in A549 and NCI-H1975 cells, accompanied with upregulation of p27 but decrease of the phosphorylation of retinoblastoma (Rb). In contrast, ectopic overexpression of Skp2 increased Mad2 mRNA and protein levels and phosphorylation of Rb, while it decreased p27. Pharmacological inhibition of CDK1/2 by flavopiridol or E2F1 with HLM006474 led to downregulation of Mad2 expression and prevented the increase of Mad2 expression by Skp2. Most importantly, pharmacological inhibition of Skp2 sensitized A549 and NCI-H1299 cells to paclitaxel. Our results demonstrated that SKP2 positively regulates the gene expression of MAD2 through p27-CDKs-E2F1 signaling pathway and that inhibition of Skp2 sensitizes A549 and NCI-H1299 cells to paclitaxel, suggesting that small molecule inhibitors of Skp2 are potential agents for the treatment of lung cancer with upregulation of Skp2. PMID:28176922

  16. Cell Selection as Driving Force in Lung and Colon Carcinogenesis

    PubMed Central

    Schöllnberger, Helmut; Beerenwinkel, Niko; Hoogenveen, Rudolf; Vineis, Paolo

    2011-01-01

    Carcinogenesis is the result of mutations and subsequent clonal expansions of mutated, selectively advantageous cells. To investigate the relative contributions of mutation versus cell selection in tumorigenesis, we compared two mathematical models of carcinogenesis in two different cancer types: lung and colon. One approach is based on a population genetics model, the Wright-Fisher process, whereas the other approach is the two-stage clonal expansion model. We compared the dynamics of tumorigenesis predicted by the two models in terms of the time period until the first malignant cell appears, which will subsequently form a tumor. The mean waiting time to cancer has been calculated approximately for the evolutionary colon cancer model. Here, we derive new analytic approximations to the median waiting time for the two-stage lung cancer model and for a multistage approximation to the Wright-Fisher process. Both equations show that the waiting time to cancer is dominated by the selective advantage per mutation and the net clonal expansion rate, respectively, whereas the mutation rate has less effect. Our comparisons support the idea that the main driving force in lung and colon carcinogenesis is Darwinian cell selection. PMID:20656803

  17. Human lung small-cell carcinoma contains bombesin.

    PubMed Central

    Erisman, M D; Linnoila, R I; Hernandez, O; DiAugustine, R P; Lazarus, L H

    1982-01-01

    The presence of immunoreactive bombesin in a human lung small-cell carcinoma grown in nude mice was established by several criteria: (i) Radioimmunoassay of tissue extracts for bombesin revealed approximately 6.5 pmol/g of tissue; (ii) bombesin was found in 12-14% of the tumor cells by immunohistochemical localization; (iii) gel filtration of small-cell carcinoma extract on Sephadex G-75 and Bio-Gel P-4 gave only a single peak of immunoreactivity, which occurred at the elution volume of bombesin; and (iv) reverse-phase HPLC of acid-solubilized extracts separated the immunoreactive material into three discrete peaks, one of which eluted with a retention time identical to that of synthetic bombesin. The presence of bombesin may represent the ectopic expression of this peptide in small-cell carcinoma, because immunoreactive bombesin was found in human fetal and neonatal lung but apparently not in adult lung tissue [Wharton, J., Polak, J. M., Bloom, S. R., Ghatei, M. A., Solcia, E., Brown, M. R. & Pearse, A. G. E. (1978) Nature (London) 273, 769-770]. The immunoreactive bombesin previously found in mammalian tissues is considerably larger than amphibian bombesin; these data substantiate the presence of a mammalian form of bombesin in a human tumor that may have a structure similar to that of the amphibian peptide. Images PMID:6285381

  18. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  19. Neutrophils dominate the immune cell composition in non-small cell lung cancer

    PubMed Central

    Kargl, Julia; Busch, Stephanie E.; Yang, Grace H. Y.; Kim, Kyoung-Hee; Hanke, Mark L.; Metz, Heather E.; Hubbard, Jesse J.; Lee, Sylvia M.; Madtes, David K.; McIntosh, Martin W.; Houghton, A. McGarry

    2017-01-01

    The response rate to immune checkpoint inhibitor therapy for non-small-cell lung cancer (NSCLC) is just 20%. To improve this figure, several early phase clinical trials combining novel immunotherapeutics with immune checkpoint blockade have been initiated. Unfortunately, these trials have been designed without a strong foundational knowledge of the immune landscape present in NSCLC. Here, we use a flow cytometry panel capable of measuring 51 immune cell populations to comprehensively identify the immune cell composition and function in NSCLC. The results show that the immune cell composition is fundamentally different in lung adenocarcinoma as compared with lung squamous cell carcinoma, and that neutrophils are the most prevalent immune cell type. Using T-cell receptor-β sequencing and tumour reactivity assays, we predict that tumour reactive T cells are frequently present in NSCLC. These results should help to guide the design of clinical trials and the direction of future research in this area. PMID:28146145

  20. Monitoring of lung tumour cell growth in artificial membranes.

    PubMed

    Yang, Ying; Sulé-Suso, Josep; El Haj, Alicia J; Hoban, Paul R; Wang, Ruikang

    2004-10-15

    Morbidity of many tumour types is associated with invasion of tumour cells through the basement membrane and subsequent metastasis to vital organs. Tumour invasion is frequently detected late on as many patients present with advanced disease. The method of detecting invasion is through conventional histological staining techniques, which are time consuming and require processing of the sample. This can affect interpretation of the results. In this study, a new imaging technique, optical coherence tomography (OCT), was used to monitor lung tumour cell growth in two artificial membranes composed of either collagen type I or Matrigel. In parallel, standard histological section analysis was performed to validate the accuracy of the monitoring by OCT. Cross-sectional images from OCT revealed that lung tumour cells infiltrated only when low cell seeding density (5 x 10(5)) and low collagen concentration (1.5 mg/ml) were combined. The cells could be easily differentiated from the artificial membranes and appeared as either a brighter layer on the top of the membrane or brighter foci embedded within the darker membrane. These cell-membrane morphologies matched remarkably to the standard histological section images. Our results suggest that OCT has a great potential to become a useful tool for fast and robust imaging of cell growth in vivo and as a potential assessment of cell invasion.

  1. Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012.

    PubMed

    Weiss, Daniel J

    2013-10-01

    A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.

  2. Genetic polymorphisms and non-small-cell lung cancer: future paradigms

    PubMed Central

    de Mello, Ramon Andrade Bezerra

    2014-01-01

    This article addresses some current issues about genetic polymorphisms studied in the non-small-cell lung cancer translational field. Furthermore, it discusses about new potential biomarkers regarding lung cancer risk and prognosis. PMID:25628210

  3. Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0234 TITLE: Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...single cell RNA sequencing on airway epithelial cells obtained from smokers with and without lung cancer to identify cell-type dependent gene expression

  4. Lung cancer stem cells, p53 mutations and MDM2.

    PubMed

    Gadepalli, Venkat Sundar; Deb, Swati Palit; Deb, Sumitra; Rao, Raj R

    2014-01-01

    Over the past few decades, advances in cancer research have enabled us to understand the different mechanisms that contribute to the aberrant proliferation of normal cells into abnormal cells that result in tumors. In the pursuit to find cures, researchers have primarily focused on various molecular level changes that are unique to cancerous cells. In humans, about 50 % or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Despite the identification of numerous triggers that causes lung cancer specific cure still remain elusive. One of the primary reasons attributed to this is due to the fact that the tumor tissue is heterogeneous and contains numerous sub-populations of cells. Studies have shown that a specific sub-population of cells termed as cancer stem cells (CSCs) drive the recurrence of cancer in response to standard chemotherapy. These CSCs are mutated cells with core properties similar to those of adult stem cells. They reside in a microenvironment within the tumor tissue that supports their growth and make them less susceptible to drug treatment. These cells possess properties of symmetric self-renewal and migration thus driving tumor formation and metastasis. Therefore, research specifically targeting these cells has gained prominence towards developing new therapeutic agents against cancer. This chapter focuses on lung cancer stem cells, p53 mutations noted in these cells, and importance of MDM2 interactions. Further, research approaches for better understanding of molecular mechanisms that drive CSC function and developing appropriate therapies are discussed.

  5. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    SciTech Connect

    Meng, Xue; Frey, Kirk; Matuszak, Martha; Paul, Stanton; Ten Haken, Randall; Yu, Jinming; Kong, Feng-Ming

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL) was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.

  6. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  7. Asymmetric cell division of stem cells in the lung and other systems.

    PubMed

    Berika, Mohamed; Elgayyar, Marwa E; El-Hashash, Ahmed H K

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms.

  8. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  9. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas

    PubMed Central

    Campbell, Joshua D.; Alexandrov, Anton; Kim, Jaegil; Wala, Jeremiah; Berger, Alice H.; Pedamallu, Chandra Sekhar; Shukla, Sachet A.; Guo, Guangwu; Brooks, Angela N.; Murray, Bradley A.; Imielinski, Marcin; Hu, Xin; Ling, Shiyun; Akbani, Rehan; Rosenberg, Mara; Cibulskis, Carrie; Ramachandran, Aruna; Collisson, Eric A.; Kwiatkowski, David J.; Lawrence, Michael S.; Weinstein, John N.; Verhaak, Roel G. W.; Wu, Catherine J.; Hammerman, Peter S.; Cherniack, Andrew D.; Getz, Gad; Artyomov, Maxim N.; Schreiber, Robert; Govindan, Ramaswamy; Meyerson, Matthew

    2016-01-01

    To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor/normal pairs. Recurrent alterations in lung SqCCs were more similar to other squamous carcinomas than to lung ADCs. Novel significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. Novel amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase/Ras/Raf alterations revealed mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least 5 predicted neoepitopes. While targeted therapies for lung ADC and lung SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes. PMID:27158780

  10. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    PubMed Central

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Lopez-Gonzalez, Jose Sullivan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer. PMID:23118782

  11. Tumor-induced CD8+ T-cell dysfunction in lung cancer patients.

    PubMed

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Lopez-Gonzalez, Jose Sullivan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  12. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    PubMed

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer.

  13. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    PubMed

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  14. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    PubMed Central

    Eisenmann, Kathryn M.

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy. PMID:28243603

  15. Integrative radiogenomic profiling of squamous cell lung cancer

    PubMed Central

    Abazeed, Mohamed E.; Adams, Drew J.; Hurov, Kristen E.; Tamayo, Pablo; Creighton, Chad J.; Sonkin, Dmitriy; Giacomelli, Andrew O.; Du, Charles; Fries, Daniel F.; Wong, Kwok-Kin; Mesirov, Jill P.; Loeffler, Jay S.; Schreiber, Stuart L.; Hammerman, Peter S.; Meyerson, Matthew

    2013-01-01

    Radiation therapy is one of the mainstays of anti-cancer treatment, but the relationship between the radiosensitivity of cancer cells and their genomic characteristics is still not well-defined. Here we report the development of a high-throughput platform for measuring radiation survival in vitro and its validation by comparison to conventional clonogenic radiation survival analysis. We combined results from this high-throughput assay with genomic parameters in cell lines from squamous cell lung carcinoma, which is standardly treated by radiation therapy, to identify parameters that predict radiation sensitivity. We showed that activation of NFE2L2, a frequent event in lung squamous cancers, confers radiation resistance. An expression-based, in silico screen nominated inhibitors of PI3K as NFE2L2 antagonists. We showed that the selective PI3K inhibitor, NVP-BKM120, both decreased NRF2 protein levels and sensitized NFE2L2 or KEAP1 mutant cells to radiation. We then combined results from this high-throughput assay with single-sample gene set enrichment analysis (ssGSEA) of gene expression data. The resulting analysis identified pathways implicated in cell survival, genotoxic stress, detoxification, and innate and adaptive immunity as key correlates of radiation sensitivity. The integrative, high-throughput methods shown here for large-scale profiling of radiation survival and genomic features of solid-tumor derived cell lines should facilitate tumor radiogenomics and the discovery of genotype-selective radiation sensitizers and protective agents. PMID:23980093

  16. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    PubMed

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. CYLD Promotes TNF-α-Induced Cell Necrosis Mediated by RIP-1 in Human Lung Cancer Cells

    PubMed Central

    Lin, Xing; Chen, Qianshun; Huang, Chen

    2016-01-01

    Lung cancer is one of the most common cancers in the world. Cylindromatosis (CYLD) is a deubiquitination enzyme and contributes to the degradation of ubiquitin chains on RIP1. The aim of the present study is to investigate the levels of CYLD in lung cancer patients and explore the molecular mechanism of CYLD in the lung cancer pathogenesis. The levels of CYLD were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis and necrosis were determined by FACS assay. The results demonstrated that low levels of CYLD were detected in clinical lung carcinoma specimens. Three pairs of siRNA were used to knock down the endogenous CYLD in lung cancer cells. Knockdown of CYLD promoted cell proliferation of lung cancer cells. Otherwise overexpression of CYLD induced TNF-α-induced cell death in A549 cells and H460 cells. Moreover, CYLD-overexpressed lung cancer cells were treated with 10 μM of z-VAD-fmk for 12 hours and the result revealed that TNF-α-induced cell necrosis was significantly enhanced. Additionally, TNF-α-induced cell necrosis in CYLD-overexpressed H460 cells was mediated by receptor-interacting protein 1 (RIP-1) kinase. Our findings suggested that CYLD was a potential target for the therapy of human lung cancers. PMID:27738385

  18. Group 2 innate lymphoid cells in the lung.

    PubMed

    Drake, Li Yin; Kita, Hirohito

    2014-01-01

    As the first line of defense, innate immunity plays an important role in protecting the host against pathogens. Innate lymphoid cells (ILCs) are emerging as important effector cells in the innate immune system and the cell type that regulate immune and tissue homeostases. Group 2 ILCs (ILC2s) are a subset of ILCs and are characterized by their capacity to produce large quantities of type 2 cytokines and certain tissue growth factors. In animal models, lung ILC2s are involved in allergic airway inflammation induced by exposure to allergens even in the absence of CD4(+) T cells and are likely responsible for tissue repair and recovery after respiratory virus infection. ILC2s are also identified in various organs in humans, and the numbers are increased in mucosal tissues from patients with allergic disorders. Further investigations of this novel cell type will provide major conceptual advances in our understanding of the mechanisms of asthma and allergic diseases.

  19. Targeted drugs in small-cell lung cancer

    PubMed Central

    Daffinà, Maria Grazia; Karachaliou, Niki; González-Cao, Maria; Lazzari, Chiara; Altavilla, Giuseppe; Rosell, Rafael

    2016-01-01

    In contrast to non-small-cell lung cancer (NSCLC), few advances have been made in systemic treatment of small-cell lung cancer (SCLC) in recent years. Most patients are diagnosed with extensive stage disease and are commonly treated with platinum-based chemotherapy which, although attaining high initial objective responses, has a limited impact on survival. Due to the dismal prognosis of SCLC, novel and more effective treatment strategies are urgently needed. A deeper characterization of the genomic landscape of SCLC has led to the development of rational and promising targeted agents. However, despite a large number of clinical trials, results have been disappointing and there are still no approved targeted drugs for SCLC. Recent comprehensive genomic studies suggest SCLC is a heterogeneous disease, characterized by genomic alterations targeting a broad variety of genes, including those involved in transcription regulation and chromatin modification which seem to be a hallmark of this specific lung cancer subtype. Current research efforts are focusing on further understanding of the cellular and molecular abnormalities underlying SCLC development, progression and resistance to chemotherapy. Unraveling the genomic complexity of SCLC could be the key to optimize existing treatments, including chemotherapy and radiotherapy, and for identifying those patients most likely to benefit from selected targeted therapeutic approaches. PMID:26958493

  20. Asbestosis and small cell lung cancer in a clutch refabricator

    PubMed Central

    Levin, J. L.; O'Sullivan, M. F.; Corn, C. J.; Williams, M. G.; Dodson, R. F.

    1999-01-01

    OBJECTIVES: To present a case of asbestosis and small cell lung cancer caused by asbestos in a clutch refabricator. METHODS: Exposed surfaces of used clutches similar to those refabricated in the worker's workplace were rinsed, and the filtrate analysed by analytical transmission electron microscopy. Tissue samples were also analysed by this technique. RESULTS: Numerous chrysotile fibres of respirable dimensions and sufficient length to form ferruginous bodies (FBs) were detected from rinsed filtrates of the clutch. Bronchoalveolar lavage fluid contained many FBs, characteristic of asbestos bodies. Necropsy lung tissue showed grade 4 asbestosis and a small cell carcinoma in the right pulmonary hilum. Tissue analysis by light and analytical electron microscopy showed tissue burdens of coated and uncoated asbestos fibres greatly exceeding reported environmental concentrations (3810 FBs/g dry weight and 2,080,000 structures > or = 0.5 micron/g dry weight respectively). 72% Of the cores were identified as chrysotile. CONCLUSIONS: Clutch refabrication may lead to exposure to asbestos of sufficient magnitude to cause asbestosis and lung cancer.   PMID:10615292

  1. Small cell lung cancer: where do we go from here?

    PubMed

    Byers, Lauren Averett; Rudin, Charles M

    2015-03-01

    Small cell lung cancer (SCLC) is an aggressive disease that accounts for approximately 14% of all lung cancers. In the United States, approximately 31,000 patients are diagnosed annually with SCLC. Despite numerous clinical trials, including at least 40 phase 3 trials since the 1970s, systemic treatment for patients with SCLC has not changed significantly in the past several decades. Consequently, the 5-year survival rate remains low at <7% overall, and most patients survive for only 1 year or less after diagnosis. Unlike nonsmall cell lung cancer (NSCLC), in which major advances have been made using targeted therapies, there are still no approved targeted drugs for SCLC. Significant barriers to progress in SCLC include 1) a lack of early detection modalities, 2) limited tumor tissue for translational research (eg, molecular profiling of DNA, RNA, and/or protein alterations) because of small diagnostic biopsies and the rare use of surgical resection in standard treatment, and 3) rapid disease progression with poor understanding of the mechanisms contributing to therapeutic resistance. In this report, the authors review the current state of SCLC treatment, recent advances in current understanding of the underlying disease biology, and opportunities to advance translational research and therapeutic approaches for patients with SCLC.

  2. Both gene amplification and allelic loss occur at 14q13.3 in lung cancer

    PubMed Central

    Harris, Thomas; Pan, Qiulu; Sironi, Juan; Lutz, Dionne; Tian, Jianmin; Sapkar, Jana; Perez-Soler, Roman; Keller, Steven; Locker, Joseph

    2010-01-01

    Purpose Because loss of Nkx2-8 increases lung cancer in the mouse, we studied suppressive mechanisms in human lung cancer. Experimental Design NKX2-8 is located within 14q13.3, adjacent to its close relative TTF1/NKX2-1. We first analyzed loss of heterozygosity (LOH) of 14q13.3 in 45 matched human lung cancer and control specimens. DNA from tumors with LOH was then analyzed with high-density SNP arrays. For correlation with this genetic analysis, we quantified expression of Nkx2-8 and TTF1 mRNA in tumors. Finally, suppressive function of Nkx2-8 was assessed via colony formation assays in 5 lung cancer cell lines. Results 13/45 (29%) tumors had LOH. In 6 tumors, most adenocarcinomas, LOH was caused by gene amplification. The 0.8 Mb common region of amplification included MBIP, SFTA, TTF1, NKX2-8, and PAX9. In 4 squamous or adenosquamous cancers, LOH was caused by deletion. In 3 other tumors, LOH resulted from whole chromosome mechanisms (14−, 14+, or aneuploidy). The 1.2 Mb common region of deletion included MBIP, SFTA, TTF1, NKX2-8, PAX9, SLC25A21, and MIPOL1. Most tumors had low expression of Nkx2-8. Nevertheless, sequencing did not show NKX2-8 mutations that could explain the low expression. TTF1 overexpression, in contrast, was common and usually independent of Nkx2-8 expression. Finally, stable transfection of Nkx2-8 selectively inhibited growth of H522 lung cancer cells. Conclusions 14q13.3, which contains NKX2-8, is subject to both amplification and deletion in lung cancer. Most tumors have low expression of NKX2-8, and its expression can inhibit growth of some lung cancer cells. PMID:21148747

  3. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research.

    PubMed

    Zhou, Xuan; Chen, Lisha; Wang, Anxin; Ma, Yufei; Zhang, Hailu; Zhu, Yimin

    2015-10-01

    In this paper, a multifunctional peptide-fluorescent-magnetic nanocomposites (Fe₃O₄@PEI@Cy5.5@PEG@HCBP-1 NPs) was synthesized via a layer-by-layer approach for potential application to cancer diagnoses. The multifunctional nanocomposites have great dispersibility and homogeneous particle sizes in aqueous solution. Meanwhile, it has perfect hemocompatibility and satisfying cytocompatibility in a relatively high concentration. Data from in vitro cytotoxicity assay indicated that the nanocomposites could recognize the lung cancer stem cells (CSCs) specifically and enrich the HCBP-1 positive CSCs from H460 tumor xenografts effectively. Additionally, the results of in vivo live fluorescent imaging and magnetic resonance imaging (MRI) showed that the nanocomposites could identify lung CSCs in tumor xenografts. These results suggested that the nanocomposites could be used as a potential cancer diagnostic agent through modifying diverse fluorescence dyes and targeting ligands on its surface.

  4. Liquid Biopsy in Non-Small Cell Lung Cancer

    PubMed Central

    Molina-Vila, Miguel A.; Mayo-de-las-Casas, Clara; Giménez-Capitán, Ana; Jordana-Ariza, Núria; Garzón, Mónica; Balada, Ariadna; Villatoro, Sergi; Teixidó, Cristina; García-Peláez, Beatriz; Aguado, Cristina; Catalán, María José; Campos, Raquel; Pérez-Rosado, Ana; Bertran-Alamillo, Jordi; Martínez-Bueno, Alejandro; Gil, María-de-los-Llanos; González-Cao, María; González, Xavier; Morales-Espinosa, Daniela; Viteri, Santiago; Karachaliou, Niki; Rosell, Rafael

    2016-01-01

    Liquid biopsy analyses are already incorporated in the routine clinical practice in many hospitals and oncology departments worldwide, improving the selection of treatments and monitoring of lung cancer patients. Although they have not yet reached its full potential, liquid biopsy-based tests will soon be as widespread as “standard” biopsies and imaging techniques, offering invaluable diagnostic, prognostic, and predictive information. This review summarizes the techniques available for the isolation and analysis of circulating free DNA and RNA, exosomes, tumor-educated platelets, and circulating tumor cells from the blood of cancer patients, presents the methodological challenges associated with each of these materials, and discusses the clinical applications of liquid biopsy testing in lung cancer. PMID:28066769

  5. Liquid Biopsy in Non-Small Cell Lung Cancer.

    PubMed

    Molina-Vila, Miguel A; Mayo-de-Las-Casas, Clara; Giménez-Capitán, Ana; Jordana-Ariza, Núria; Garzón, Mónica; Balada, Ariadna; Villatoro, Sergi; Teixidó, Cristina; García-Peláez, Beatriz; Aguado, Cristina; Catalán, María José; Campos, Raquel; Pérez-Rosado, Ana; Bertran-Alamillo, Jordi; Martínez-Bueno, Alejandro; Gil, María-de-Los-Llanos; González-Cao, María; González, Xavier; Morales-Espinosa, Daniela; Viteri, Santiago; Karachaliou, Niki; Rosell, Rafael

    2016-01-01

    Liquid biopsy analyses are already incorporated in the routine clinical practice in many hospitals and oncology departments worldwide, improving the selection of treatments and monitoring of lung cancer patients. Although they have not yet reached its full potential, liquid biopsy-based tests will soon be as widespread as "standard" biopsies and imaging techniques, offering invaluable diagnostic, prognostic, and predictive information. This review summarizes the techniques available for the isolation and analysis of circulating free DNA and RNA, exosomes, tumor-educated platelets, and circulating tumor cells from the blood of cancer patients, presents the methodological challenges associated with each of these materials, and discusses the clinical applications of liquid biopsy testing in lung cancer.

  6. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  7. Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia

    PubMed Central

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva

    2013-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection. PMID:23802100

  8. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.

    PubMed

    Campbell, Joshua D; Alexandrov, Anton; Kim, Jaegil; Wala, Jeremiah; Berger, Alice H; Pedamallu, Chandra Sekhar; Shukla, Sachet A; Guo, Guangwu; Brooks, Angela N; Murray, Bradley A; Imielinski, Marcin; Hu, Xin; Ling, Shiyun; Akbani, Rehan; Rosenberg, Mara; Cibulskis, Carrie; Ramachandran, Aruna; Collisson, Eric A; Kwiatkowski, David J; Lawrence, Michael S; Weinstein, John N; Verhaak, Roel G W; Wu, Catherine J; Hammerman, Peter S; Cherniack, Andrew D; Getz, Gad; Artyomov, Maxim N; Schreiber, Robert; Govindan, Ramaswamy; Meyerson, Matthew

    2016-06-01

    To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor-normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase-Ras-Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.

  9. The Biological Effects of Dickkopf1 on Small Cell Lung Cancer Cells and Bone Metastasis.

    PubMed

    Pang, Hailin; Ma, Ningqiang; Jiao, Mi; Shen, Weiwei; Xin, Bo; Wang, Tongfei; Zhang, Feng; Liu, Lili; Zhang, Helong

    2017-01-02

    The bone is among the most common sites of metastasis in patients with lung cancer. Over 30%-40% of lung cancers can develop bone metastasis, and no effective therapeutic methods exist in clinic cases. Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferentially metastasizes to the skeleton. However, the role of DKK1 in osteotropism of small cell lung cancer (SCLC) remains to be elucidated. This study aimed to define the role of DKK1 in SCLC bone metastasis and investigate the underlying mechanisms. Our results demonstrated that the expression level of DKK1 was dramatically higher in bone metastatic SCLC cells (SBC-5 cell line) compared with that in cells without bone metastatic ability (SBC-3 cell line). Therefore, we hypothesized that DKK1 was involved in the bone metastasis of SCLC. We then suppressed the DKK1 expression in SBC-5 cells by RNAi and found that downregulation of DKK1 can inhibit cell proliferation, colony formation, cell migration, and invasion, but increase the apoptosis rate. Downregulation of DKK1 did not affect the cell cycle progression of SBC-5 cells in vitro. In vivo, downregulated DKK1 in SBC-5 cells resulted in attenuated bone metastasis. These results indicated that DKK1 may be an important regulator in bone metastases of SCLC, and targeting DKK1 may be an effective method to prevent and treat skeleton metastases in SCLC cases.

  10. Clinical characteristics and response to tyrosine kinase inhibitors of patients with non-small cell lung cancer harboring uncommon epidermal growth factor receptor mutations

    PubMed Central

    Zhang, Yan; Wang, Zheng; Hao, Xuezhi; Hu, Xingsheng; Wang, Hongyu; Wang, Yan; Ying, Jianming

    2017-01-01

    Objective To investigate the clinical features of patients with non-small cell lung cancer (NSCLC) harboring uncommon epidermal growth factor receptor (EGFR) mutations, and the treatment outcomes of EGFR tyrosine kinase inhibitors (TKIs) in these patients. Methods We retrospectively analyzed the data of 128 NSCLC patients pathologically diagnosed with uncommon EGFR mutation in the Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College and Beijing Hospital from January 2010 to December 2015, including 40 advanced patients who received EGFR-TKI. Results Among the total 128 patients, 11 patients were non-adenocarcinoma, including squamous carcinoma (3.9%), adenosquamous carcinoma (2.3%), large cell carcinoma (0.8%), and composite neuroendocrine carcinoma (1.6%). Single mutations accounted for 75.0% (96/128), including G719X (29.7%), S768I (18.0%), 20 exon insertion (13.3%), L861Q (12.5%),De novo T790M (0.8%), and T725 (0.8%). Thirty-two patients harbored complex mutations. Forty advanced patients received EGFR-TKI, the objective response rate (ORR) was 20.0%, the disease control rate (DCR) was 85.0%, and the progression-free survival (PFS) was 6.4 [95% confidence interval (95% CI), 4.8–7.9] months. The exploratory analysis of tumor response and PFS in 33 patients with G719X/S768I/L861Q subtypes showed that ORR was 21.2% (7/33), the DCR was 93.9% (31/33), and PFS was 7.6 (95% CI, 5.8–9.4) months. Patients with exon 20 insertion mutation andDe novo T790M experienced rapid disease progression with PFS no more than 2.7 months. Conclusions Uncommon EGFR-mutant NSCLCs are heterogeneous, EGFR-TKIs can have different efficacy in this specific subtype, and thus further individual assessment is required for each case. PMID:28373750

  11. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  12. Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury

    PubMed Central

    Thomas, Karen C.; Roberts, Jessica K.; Deering-Rice, Cassandra E.; Romero, Erin G.; Dull, Randal O.; Lee, Jeewoo; Yost, Garold S.

    2012-01-01

    Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1−/− mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1−/− mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema. PMID:21949157

  13. IL-1β expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice.

    PubMed

    Hogmalm, Anna; Bry, Maija; Strandvik, Birgitta; Bry, Kristina

    2014-01-01

    Perinatal inflammation and the inflammatory cytokine IL-1 can modify lung morphogenesis. To examine the effects of antenatal expression of IL-1β in the distal airway epithelium on fetal lung morphogenesis, we studied lung development and surfactant expression in fetal mice expressing human IL-1β under the control of the surfactant protein (SP)-C promoter. IL-1β-expressing pups suffered respiratory failure and died shortly after birth. IL-1β caused fetal lung inflammation and enhanced the expression of keratinocyte-derived chemokine (KC/CXCL1) and monocyte chemoattractant protein 3 (MCP-3/CCL7), the calgranulins S100A8 and S100A9, the acute-phase protein serum amyloid A3, the chitinase-like proteins Ym1 and Ym2, and pendrin. IL-1β decreased the percentage of the total distal lung area made up of air saccules and the number of air saccules in the lungs of fetal mice. IL-1β inhibited the expression of VEGF-A and its receptors VEGFR-1 and VEGFR-2. The percentage of the cellular area of the distal lung made up of capillaries was decreased in IL-1β-expressing fetal mice. IL-1β suppressed the production of SP-B and pro-SP-C and decreased the amount of phosphatidylcholine and the percentage of palmitic acid in the phosphatidylcholine fraction of lung phospholipids, indicating that IL-1β prevented the differentiation of type II epithelial cells. The production of Clara cell secretory protein in the nonciliated bronchiolar (Clara) cells was likewise suppressed by IL-1β. In conclusion, expression of IL-1β in the epithelium of the distal airways disrupted the development of the airspaces and capillaries in the fetal lung and caused fatal respiratory failure at birth.

  14. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  15. Bronchoalveolar lavage cell pattern from healthy human lung

    PubMed Central

    Heron, M; Grutters, J C; ten Dam-Molenkamp, K M; Hijdra, D; van Heugten-Roeling, A; Claessen, A M E; Ruven, H J T; van den Bosch, J M M; van Velzen-Blad, H

    2012-01-01

    Bronchoalveolar lavage (BAL) is widely accepted as a key diagnostic procedure in interstitial lung diseases (ILD). We performed a study to obtain reference intervals of differential cell patterns in BAL fluid with special attention to the origin of lavage fluid, e.g. bronchial/alveolar, to atopy and smoking status and to age of the healthy people. We performed bronchoalveolar lavage in 55 healthy subjects with known atopy status (age: 18–64 years, non-smokers/smokers: 34/21) and determined differential cell counts and lymphocyte subsets in BAL fluid and blood. Moreover, in a subgroup of non-smoking healthy individuals we measured the expression of the regulatory T cell marker forkhead box protein 3 (FoxP3) on blood and BAL fluid lymphocytes in addition to a comprehensive set of activation markers. Differential cell counts from the alveolar lavage fraction differed significantly from calculated pooled fractions (n = 11). In contrast, marginal differences were found between atopic and non-atopic subjects. Interestingly, the BAL fluid CD4+/CD8+ ratio correlated strongly with age (r2 = 0·50, P < 0·0001). We consider the bronchial and alveolar fraction to be lavage fluid from fundamentally different compartments and recommend analysis of the alveolar fraction in diagnostic work-up of ILD. In addition, our data suggest that age corrected BAL fluid CD4+/CD8+ ratios should be used in the clinical evaluation of patients with interstitial lung diseases. PMID:22288596

  16. Retention of lung distension information in pump cell spike trains.

    PubMed

    Marchenko, Vitaliy; Rogers, Robert F

    2007-07-01

    Respiratory control requires feedback signals from the viscera, including mechanoreceptors and chemoreceptors. We previously showed that typical pulmonary stretch receptor (PSR) spike trains provide the central nervous system with approximately 31% of the theoretical maximum information regarding the amplitude of lung distension. However, it is unknown whether the spatiotemporal convergence of many PSR inputs onto second-order neurons (e.g., pump cells) results in more, or less, information about the stimulus carried by second-order cell spike trains. We recorded pump cell activity in adult, anesthetized, paralyzed, artificially ventilated rabbits during continuous manipulation of ventilator rate and volume to test the hypothesis that less information is carried by spike trains of individual pump cells than PSRs. Using previously developed analytic methods, we quantified the information carried by the pump cell spike trains and compared it with the same values derived from PSR data. Our results provide evidence that rejects our hypothesis: pump cells as a group did not carry significantly less information about the lung distension stimulus than PSRs, although that trend was implied by the data. By comparing the response variances with the theoretical minimum, we discovered that the trend toward information loss depends on response strength, with higher mean responses associated with larger response variances in pump cells than in PSRs. Thus spatiotemporal integration may result in information loss within certain analytic/stimulus parameters, but this is counterbalanced by the consistency of pump cell responses during brief integration times and/or low stimulus amplitudes, resulting in retention of total information.

  17. Pathology of lung cancer among asbestos insulation workers

    SciTech Connect

    Suzuki, Y.; Selikoff, I.J.

    1986-03-05

    Bronchogenic carcinoma presents the highest cancer risk for asbestos insulation workers. No complete agreement exists for its pathological characterization. They have investigated the problem by pathological review of 544 consecutive lung cancer cases among asbestos insulation workers in one cohort of workers being followed by us, with extensive demographic data known. All were males, and 90.4% were 51 and over. The pathological materials consisted of autopsied (47.7%), surgical (47.0%), autopsied and surgical (4.1%) and other (cell block or smear; 1.2%). Cigarette smoking history was available in 471 (86.6%); only 4 had no history of cigarette smoking. The primary site of the tumor could be established in 281 cases; lower lobes (47%) were highest in incidence followed by the upper lobes (38.0%), multiple foci (9.3%), right middle lobe (4.6%) and the lingula (1.1%). Cell types were clarified in 531 cases; in order of decreasing incidence were adenocarcinoma (31.3%), squamous cell (26.4%), small cell (24.7%), large cell (10.2%), adenosquamous (3.3%) and other (4.1%). They had material in 356 cases for evaluation of interstitial fibrosis and asbestos bodies. Histologically, all but a single case showed mild to severe interstitial fibrosis; indeed, 90.7% (323 cases) ranged between moderate to severe. Asbestos bodies were seen in slides of 344 (96.6%) cases.

  18. Differential HPV16 variant distribution in squamous cell carcinoma, adenocarcinoma and adenosquamous cell carcinoma.

    PubMed

    Nicolás-Párraga, S; Alemany, L; de Sanjosé, S; Bosch, F X; Bravo, I G

    2017-05-01

    Human Papillomavirus 16 (HPV16) causes 70% of invasive cervical cancers (ICC) worldwide. Interaction between HPV16 genetic diversity, host genetics and target tissue largely determine the chances to trigger carcinogenesis. We have analyzed the differential prevalence of viral variants in 233 HPV16-monoinfected squamous (SCC), glandular (ADC) and mixed (ADSC) ICCs from four continents, assessing the contribution of geographical origin and cancer histology. We have further quantified the contribution of viral variants and cancer histology to differences in age at tumor diagnosis. The model fitted to the data explained 97% of the total variance: the largest explanatory factors were differential abundance among HPV16 variants (78%) and their interaction with cancer histology (9.2%) and geography (10.1%). HPV16_A1-3 variants were more prevalent in SCC while HPV16_D variants were increased in glandular ICCs. We confirm further a non-random geographical structure of the viral variants distribution. ADCs were diagnosed at younger ages than SCCs, independently of the viral variant triggering carcinogenesis. HPV16 variants are differentially associated with histological ICCs types, and ADCs are systematically diagnosed in younger women. Our results have implications for the implementation of cervical cancer screening algorithms, to ensure proper early detection of elusive ADCs.

  19. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    SciTech Connect

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; Wang, Qin; Wen, Mingxin; Wang, Yuli; Yuan, Hongtu; Mao, Jian-Hua; Wei, Guangwei

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpression of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.

  20. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    DOE PAGES

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; ...

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpressionmore » of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.« less

  1. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    SciTech Connect

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S.; Mok, Tony S.K.; Warner, Timothy D.; Underwood, Malcolm J.; Chen, George G.

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  2. Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion

    DTIC Science & Technology

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0223 TITLE: Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion...COVERED 1Aug2014 - 31Jul2015 4. TITLE AND SUBTITLE Genetic and Epigenetic Determinants of Lung Cancer Subtype: 5a. CONTRACT NUMBER W81XWH-14-1-0223...histologies of lung cancer is made difficult in part because of the extensive genetic and epigenetic changes that occur in lung carcinogenesis, the

  3. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  4. Whole exome sequencing of independent lung adenocarcinoma, lung squamous cell carcinoma, and malignant peritoneal mesothelioma

    PubMed Central

    Vanni, Irene; Coco, Simona; Bonfiglio, Silvia; Cittaro, Davide; Genova, Carlo; Biello, Federica; Mora, Marco; Rossella, Valeria; Dal Bello, Maria Giovanna; Truini, Anna; Banelli, Barbara; Lazarevic, Dejan; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Grossi, Francesco

    2016-01-01

    Abstract The presence of multiple primary tumors (MPT) in a single patient has been identified with an increasing frequency. A critical issue is to establish if the second tumor represents an independent primary cancer or a metastasis. Therefore, the assessment of MPT clonal origin might help understand the disease behavior and improve the management/prognosis of the patient. Herein, we report a 73-year-old male smoker who developed 2 primary lung cancers (adenocarcinoma and squamous cell carcinoma) and a malignant peritoneal mesothelioma (PM). Whole exome sequencing (WES) of the 3 tumors and of germline DNA was performed to determine the clonal origin and identify genetic cancer susceptibility. Both lung cancers were characterized by a high mutational rate with distinct mutational profiles and activation of tumor-specific pathways. Conversely, the PM harbored a relative low number of genetic variants and a novel mutation in the WT1 gene that might be involved in the carcinogenesis of nonasbestos-related mesothelioma. Finally, WES of the germinal DNA displayed several single nucleotide polymorphisms in DNA repair genes likely conferring higher cancer susceptibility. Overall, WES did not disclose any somatic genetic variant shared across the 3 tumors, suggesting their clonal independency; however, the carcinogenic effect of smoke combined with a deficiency in DNA repair genes and the patient advanced age might have been responsible for the MPT development. This case highlights the WES importance to define the clonal origin of MPT and susceptibility to cancer. PMID:27902597

  5. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells

    PubMed Central

    Calero-Acuña, Carmen; Moreno-Mata, Nicolás; Gómez-Izquierdo, Lourdes; Sánchez-López, Verónica; López-Ramírez, Cecilia; Tobar, Daniela; López-Villalobos, José Luis; Gutiérrez, Cesar; Blanco-Orozco, Ana; López-Campos, José Luis

    2016-01-01

    Background Conflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer. Materials and Methods A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes—including BDCA1-positive myeloid DCs (mDCs), BDCA3-positive mDCs, and plasmacytoid DCs (pDCs)—and determine their maturation markers (CD40, CD80, CD83, and CD86) in all participants. We also identified follicular DCs (fDCs), Langerhans DCs (LDCs), and pDCs in 42 patients by immunohistochemistry. Results COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects. Conclusions Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung. PMID:27058955

  6. Lentivirus-Mediated Silencing of Myosin VI Inhibits Proliferation and Cell Cycle Progression in Human Lung Cancer Cells.

    PubMed

    Yu, Hui; Zhu, Zhenghong; Chang, Jianhua; Wang, Jialei; Shen, Xiaoyong

    2015-10-01

    Myosin VI (MYO6) is a unique actin motor, which moves toward the pointed ends of actin filaments. In this study, we found that MYO6 is overexpressed in lung cancer tissues and associated with lung cancer progression, particularly lymph node metastasis. To investigate its functions in lung cancer cells, we generated recombinant lentivirus taking shRNA of MYO6. Using two lung cancer cell lines, A549 and 95D, we found that Lv-shMYO6 could infect lung cancer cells with high efficiency and downregulate MYO6 on both mRNA and protein levels. After knockdown of MYO6, the proliferation rates of lung cancer cells were decreased significantly. The colony-formation ability of MYO6-silenced lung cancer cells was also impaired with reduced colony numbers and fewer cells per colony. Flow cytometry showed that cell cycle progression was stuck at the G0 /G1 phase, especially at the sub-G1 phase, which represents apoptotic cells. Moreover, knockdown of MYO6 downregulated the phosphorylation of ERK1/2. Further experiments using another shRNA of MYO6 confirmed the above results. These results suggest that MYO6 is crucial in maintaining cell cycle and cell growth of lung cancer cells. MYO6 may serve as a potential therapeutic target for lung cancer treatment.

  7. [Adaptive radiation therapy for non-small cell lung cancer].

    PubMed

    Bibault, J-E; Arsène-Henry, A; Durdux, C; Mornex, F; Hamza, S; Trouette, R; Thureau, S; Faivre, J-C; Boisselier, P; Lerouge, D; Paragios, N; Giraud, P

    2015-10-01

    Anatomical changes and tumor regression during thoracic radiotherapy may alter the treatment volumes. These modifications are not taken into account into set-up or motion margins used for treatment planning. Their dosimetric impact could be significant and a better understanding of the changes occurring during the 6 to 7 weeks of treatment could be useful in order to define quantitative thresholds before a new treatment planning is needed. Margins could also be reduced in order to better spare organs at risk and perform targeted dose escalation. This review assesses the potential of morphologic and metabolic imaging during treatment for adaptive radiotherapy in non-small cell lung cancer.

  8. Immune checkpoint modulation for non-small cell lung cancer.

    PubMed

    Soria, Jean-Charles; Marabelle, Aurélien; Brahmer, Julie R; Gettinger, Scott

    2015-05-15

    Therapies targeting immune checkpoints have recently shown encouraging activity in patients with heavily pretreated advanced non-small cell lung cancer (NSCLC), independently of NSCLC histology or mutational status, with low toxicity profiles when used as monotherapy. Objective response rates of approximately 20% have been reported in patients with advanced NSCLC treated with antagonist antibodies targeting the immune checkpoint, programmed death 1 (PD-1) on activated T cells, or its primary ligand, programmed death ligand 1 (PD-L1) expressed within the tumor microenvironment. Response rates appear to be higher in patients with tumor PD-L1 expression documented by immunohistochemistry, although responses have been appreciated in patients with reportedly PD-L1-negative tumor specimens. Antibodies directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), another immunosuppressive T-cell signaling molecule, are also being evaluated in clinical trials, with one randomized phase II trial demonstrating improved immune-related progression-free survival in lung cancer patients when added to standard chemotherapy. Additional clinical trials are combining anti-CTLA-4 antibodies with either anti-PD-1 or anti-PD-L1 antibodies. Combinations of other immune checkpoint antagonists or agonist antibodies with anti-PD-1 or anti-PD-L1 antibodies are also being pursued.

  9. Oncogenic mutation profiling in new lung cancer and mesothelioma cell lines

    PubMed Central

    Lam, David CL; Luo, Susan Y; Deng, Wen; Kwan, Johnny SH; Rodriguez-Canales, Jaime; Cheung, Annie LM; Cheng, Grace HW; Lin, Chi-Ho; Wistuba, Ignacio I; Sham, Pak C; Wan, Thomas SK; Tsao, Sai-Wah

    2015-01-01

    Background Thoracic tumor, especially lung cancer, ranks as the top cancer mortality in most parts of the world. Lung adenocarcinoma is the predominant subtype and there is increasing knowledge on therapeutic molecular targets, namely EGFR, ALK, KRAS, and ROS1, among lung cancers. Lung cancer cell lines established with known clinical characteristics and molecular profiling of oncogenic targets like ALK or KRAS could be useful tools for understanding the biology of known molecular targets as well as for drug testing and screening. Materials and methods Five new cancer cell lines were established from pleural fluid or biopsy tissues obtained from Chinese patients with primary lung adenocarcinomas or malignant pleural mesothelioma. They were characterized by immunohistochemistry, growth kinetics, tests for tumorigenicity, EGFR and KRAS gene mutations, ALK gene rearrangement and OncoSeq mutation profiling. Results These newly established lung adenocarcinoma and mesothelioma cell lines were maintained for over 100 passages and demonstrated morphological and immunohistochemical features as well as growth kinetics of tumor cell lines. One of these new cell lines bears EML4-ALK rearrangement variant 2, two lung cancer cell lines bear different KRAS mutations at codon 12, and known single nucleotide polymorphism variants were identified in these cell lines. Discussion Four new lung adenocarcinoma and one mesothelioma cell lines were established from patients with different clinical characteristics and oncogenic mutation profiles. These characterized cell lines and their mutation profiles will provide resources for exploration of lung cancer and mesothelioma biology with regard to the presence of known oncogenic mutations. PMID:25653542

  10. MicroRNA-221 promotes human non-small cell lung cancer cell H460 growth.

    PubMed

    Xu, Yiming; Zhong, Chongjun; Ding, Shengguang; Huang, Haitao; Shen, Zhenya

    2015-01-01

    MicroRNA (miRNA-221) has been reported to be a regulator of cell proliferation. Here we intended to investigate the role of miRNA-221 in regulating the growth of human non-small cell lung cancer cell line H460. H460 cells were transfected with miRNA-221 mimics/inhibitors or their respective negative controls. Real-time quantitative PCRs (qRT-PCRs) were used to confirm the effects of miRNA-221 mimics and inhibitors in H460 cells while Cell Counting Kit 8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to access the cell viability and proliferation. P27 and P57, as putative targets of miRNA-221, were determined by qRT-PCRs in H460 cells. We found that overexpression of miRNA-221 led to increased proliferative rate and cell viability in H460 cells while down-regulation of miRNA-221 decreased those effects. P27 but not P57 was identified as a potential target gene of miRNA-221 in H460 as P27 was negatively regulated by miRNA-221 in the protein level. In conclusion, this study suggests that miRNA-221 controls human non-small cell lung cancer cell H460 growth potentially by targeting P57. Inhibition of miRNA-221 represents a novel potential treatment for human non-small cell lung cancer.

  11. Lung Cancer Stem Cell: New Insights on Experimental Models and Preclinical Data

    PubMed Central

    Rivera, Caroline; Rivera, Sofia; Loriot, Yohann; Vozenin, Marie-Catherine; Deutsch, Eric

    2011-01-01

    Lung cancer remains the leading cause of cancer death. Understanding lung tumors physiopathology should provide opportunity to prevent tumor development or/and improve their therapeutic management. Cancer stem cell (CSC) theory refers to a subpopulation of cancer cells, also named tumor-initiating cells, that can drive cancer development. Cells presenting these characteristics have been identified and isolated from lung cancer. Exploring cell markers and signaling pathways specific to lung CSCs may lead to progress in therapy and improve the prognosis of patients with lung cancer. Continuous efforts in developing in vitro and in vivo models may yield reliable tools to better understand CSC abilities and to test new therapeutic targets. Preclinical data on putative CSC targets are emerging by now. These preliminary studies are critical for the next generation of lung cancer therapies. PMID:21209720

  12. Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Weiss, Daniel J.

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715

  13. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    PubMed

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases.

  14. Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1.

    PubMed

    Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin

    2009-10-09

    The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.

  15. Osimertinib and Navitoclax in Treating Patients With EGFR-Positive Previously Treated Advanced or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-01-31

    EGFR Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  16. Carcinomas of ovary and lung with clear cell features: can immunohistochemistry help in differential diagnosis?

    PubMed

    Howell, Nicole R; Zheng, Wenxin; Cheng, Liang; Tornos, Carmen; Kane, Philip; Pearl, Michael; Chalas, Eva; Liang, Sharon X

    2007-04-01

    Metastatic lung carcinomas with clear cell morphology can be confused with primary ovarian clear cell carcinomas. We performed immunohistochemical stains in 14 cases of non-small cell lung carcinomas with clear cell features and 14 cases of ovarian clear cell carcinomas using a panel of markers, including thyroid transcription factor 1 (TTF-1), carcinoembryonic antigen (CEA), Wilms tumor gene 1, octamer-binding transcription factor 4 (OCT-4), cancer antigen 125 (CA-125), estrogen receptor, and progesterone receptor. Among non-small cell lung carcinomas with clear cell features, 87.5% of adenocarcinomas (or 50% overall frequency in lung carcinomas) were positive for TTF-1, whereas none of the ovarian clear cell carcinomas were positive (P = 0.002). All 14 ovarian clear cell carcinomas stained for CA-125 as compared with 1 non-small cell lung carcinoma (P < 0.001). On the other hand, 85% of non-small cell lung carcinomas stained for CEA, whereas none of the ovarian clear cell carcinomas did (P < 0.001). Interestingly, 4 ovarian clear cell carcinomas (28%) showed positive staining for the germ cell marker OCT-4. Either lung or ovarian carcinomas stained for Wilms tumor gene 1, estrogen receptor, or progesterone receptor very infrequently; and the difference between the 2 groups was not statistically significant. Our results suggest that an immunohistochemical panel consisting of TTF-1, CEA, CA-125, and OCT-4 is helpful in distinguishing most pulmonary and ovarian carcinomas with clear cell features.

  17. FTIR characterization of animal lung cells: normal and precancerous modified e10 cell line

    NASA Astrophysics Data System (ADS)

    Zezell, D. M.; Pereira, T. M.; Mennecier, G.; Bachmann, L.; Govone, A. B.; Dagli, M. L. Z.

    2012-06-01

    The chemical carcinogens from tobacco are related to over 90% of lung cancers around the world. The risk of death of this kind of cancer is high because the diagnosis usually is made only in advanced stages. Therefore, it is necessary to develop new diagnostic methods for detecting the lung cancer in earlier stages. The Fourier Transform Infrared Spectroscopy (FTIR) can offer high sensibility and accuracy to detect the minimal chemical changes into the biological sample. The aim of this study is to evaluate the differences on infrared spectra between normal lung cells and precancerous lung cells transformed by NNK. Non-cancerous lung cell line e10 (ATCC) and NNK-transformed e10 cell lines were maintained in complete culture medium (1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 [DMEM/Ham's F12], supplemented with 100 ng/ml cholera enterotoxin, 10 lg/ml insulin, 0.5 lg/ml. hydrocortisol, 20 ng/ml epidermal growth factor, and 5% horse serum. The cultures were maintained in alcohol 70%. The infrared spectra were acquired on ATR-FTIR Nicolet 6700 spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 3 spectra recorded, 30 infrared spectra were obtained from each cell line. The second derivate of spectra indicates that there are displacement in 1646 cm-1 (amine I) and 1255 cm-1(DNA), allowing the possibility to differentiate the two king of cells, with accuracy of 89,9%. These preliminary results indicate that ATR-FTIR is useful to differentiate normal e10 lung cells from precancerous e10 transformed by NNK.

  18. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  19. Pleural mesothelial cells in pleural and lung diseases

    PubMed Central

    Antony, Veena B.

    2015-01-01

    During development, the mesoderm maintains a complex relationship with the developing endoderm giving rise to the mature lung. Pleural mesothelial cells (PMCs) derived from the mesoderm play a key role during the development of the lung. The pleural mesothelium differentiates to give rise to the endothelium and smooth muscle cells via epithelial-to-mesenchymal transition (EMT). An aberrant recapitulation of such developmental pathways can play an important role in the pathogenesis of disease processes such as idiopathic pulmonary fibrosis (IPF). The PMC is the central component of the immune responses of the pleura. When exposed to noxious stimuli, it demonstrates innate immune responses such as Toll-like receptor (TLR) recognition of pathogen associated molecular patterns as well as causes the release of several cytokines to activate adaptive immune responses. Development of pleural effusions occurs due to an imbalance in the dynamic interaction between junctional proteins, n-cadherin and β-catenin, and phosphorylation of adherens junctions between PMCs, which is caused in part by vascular endothelial growth factor (VEGF) released by PMCs. PMCs play an important role in defense mechanisms against bacterial and mycobacterial pleural infections, and in pathogenesis of malignant pleural effusion, asbestos related pleural disease and malignant pleural mesothelioma. PMCs also play a key role in the resolution of inflammation, which can occur with or without fibrosis. Fibrosis occurs as a result of disordered fibrin turnover and due to the effects of cytokines such as transforming growth factor-β, platelet-derived growth factor (PDGF), and basic fibroblast growth factor; which are released by PMCs. Recent studies have demonstrated a role for PMCs in the pathogenesis of IPF suggesting their potential as a cellular biomarker of disease activity and as a possible therapeutic target. Pleural-based therapies targeting PMCs for treatment of IPF and other lung diseases need

  20. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells.

    PubMed

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.

  1. Apoptotic Cell Death in Rat Lung Following Mustard Gas Inhalation.

    PubMed

    Andres, Devon Katherine; Keyser, Brian M; Melber, Ashley A; Benton, Betty Jean; Hamilton, Tracey A; Kniffin, Denise M; Martens, Magaret E; Ray, Radharaman

    2017-03-30

    To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3 and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 hr after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased 5-fold between 6 to 24 hr, decreasing to the unexposed-control level at 48 hr. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked (p<0.01) at 24 hr; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 hr. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L, mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. SFas-L increased significantly at 24 hr after SM exposure in both BALF cells (p<0.01) and BALF (p<0.05). However, mFas-L increased only in BALF cells between 24 to 48 hr (p<0.1, <0.001, respectively). Fas-R increased only in BALF cells by 6 hr (p<0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspse-3 and -9 antibodies and TUNEL staining as early as 6 hr in the proximal trachea and bronchi, but not before 48 hr in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals.

  2. Thoc1 inhibits cell growth via induction of cell cycle arrest and apoptosis in lung cancer cells.

    PubMed

    Wan, Jianmei; Zou, Shitao; Hu, Mengshang; Zhu, Ran; Xu, Jiaying; Jiao, Yang; Fan, Saijun

    2014-06-01

    THO complex 1 (Thoc1) is a human nuclear matrix protein that binds to the retinoblastoma tumor suppressor retinoblastoma protein (pRb). While some studies suggest that Thoc1 has characteristics of a tumor suppressor protein, whether Thoc1 can inhibit lung cancer cell growth is not clear. In the present study, we observed that Thoc1 is lowly expressed in the lung cancer cell lines SPC-A1 and NCI-H1975. Then, we investigated the potential effects of Thoc1 on lung cancer cell proliferation, cell cycle and apoptosis after stable transfection of these lines with a Thoc1 expression vector. We found that overexpression of Thoc1 can inhibit cell proliferation, induce G2/M cell cycle arrest and promote apoptosis. Further investigation indicated that overexpression of Thoc1 is involved in the inhibition of cell cycle-related proteins cyclin A1 and B1 and of pro-apoptotic factors Bax and caspase-3. In vivo experiments showed that tumors overexpressing Thoc1 display a slower growth rate than the control xenografts and show reduced expression of the protein Ki-67, which localized on the nuclear membrane. Taken together, our data show that in lung cancer cells, Thoc1 inhibits cell growth through induction of cell cycle arrest and apoptosis. These results indicate that Thoc1 may be used as a novel therapeutic target for human lung cancer treatment.

  3. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  4. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  5. Relationship between asbestos exposure and lung cancer cell type

    SciTech Connect

    Stewart, W.F.

    1984-01-01

    A nested case-control study was undertaken to investigate the relationship between asbestos exposure and lung cancer cell type. Cases were former employees of two Virginia shipyards, and were identified from the Virginia Tumor Registry. All cases were diagnosed with lung cancer between 1975-82. A stratified random sample of controls was selected from among former shipyard workers from the same two yards as the cases. Job histories were abstracted from shipyard personnel records on all cases and controls and were the primary source of data used to derive measures of asbestos exposure. Analyses were conducted using the conditional maximum likelihood estimate of the odds ratio an logistic regression. The results from the analysis showed that adenocarcinoma had the strongest association with asbestos exposure and the only case group to be associated with a multiplicative interaction effect between asbestos exposure and smoking. The most significant associations were found for adenocarcinoma cases employed before 1950. Strikingly negative dose-response relationships were found for the other three case groups. The results suggest indirectly that squamous and small cell cancer may have shorter latency from exposure to diagnosis and that proportionately more of these cases were not captured in this study. Problems which are related to a calendar time criteria for case ascertainment, i.e., diagnosis between 1975-82, limit the conclusiveness of these findings.

  6. Cetuximab in non-small-cell lung cancer.

    PubMed

    Carillio, Guido; Montanino, Agnese; Costanzo, Raffaele; Sandomenico, Claudia; Piccirillo, Maria Carmela; Di Maio, Massimo; Daniele, Gennaro; Giordano, Pasqualina; Bryce, Jane; Normanno, Nicola; Rocco, Gaetano; Perrone, Francesco; Morabito, Alessandro

    2012-02-01

    Cetuximab is a chimeric human-mouse anti-EGF receptor monoclonal antibody. In Phase I studies, no dose-limiting toxicities were observed with cetuximab as a single agent or combined with chemotherapy; pharmacokinetic and pharmacodynamic analyses supported 250 mg/m(2) weekly administration. Skin toxicity, diarrhea and fatigue were the most common toxicities. The positive results obtained in Phase II trials in patients with advanced non-small-cell lung cancer prompted two randomized Phase III trials evaluating cetuximab in addition to first-line chemotherapy. Both trials showed a small benefit in overall survival for the experimental treatment, which was considered insufficient by the EMA for marketing approval. However, a subgroup analysis of the FLEX Phase III trial recently demonstrated a larger survival benefit from the experimental treatment in patients with high immunohistochemical EGF receptor expression. This finding, if confirmed prospectively, could represent a new opportunity for positioning cetuximab into the standard treatment of advanced non-small-cell lung carcinoma.

  7. Advances in antiangiogenic treatment of small-cell lung cancer

    PubMed Central

    Lu, Hongyang; Jiang, Zhiming

    2017-01-01

    Small-cell lung cancer (SCLC), a poorly differentiated neuroendocrine malignancy, has a rapid growth rate, strong aggressiveness, early metastases, and poor prognosis. Angiogenesis greatly contributes to the metastatic process of SCLC, which has a higher vascularization compared with non-small-cell lung cancer (NSCLC). SCLC might constitute an ideal malignancy for assessing new antiangiogenic drugs and therapeutic strategies. Combining bevacizumab with paclitaxel has therapeutic benefits in chemoresistant, relapsed SCLC. The cisplatin–etoposide and bevacizumab combination, as the first-line treatment for extensive-stage SCLC, can improve progression-free survival (PFS), with an acceptable toxicity profile. Ziv-aflibercept combined with topotecan is promising for platinum-refractory SCLC. Chemotherapy combined with thalidomide cannot prolong survival. Maintenance sunitinib of 37.5 mg/day in extensive-stage SCLC patients following induction chemotherapy with platinum/etoposide improves median PFS by 1.6 months. Serum angiopoietin-2 concentrations and vascular endothelial growth factor levels correlate with poor prognosis. Bevacizumab, ziv-aflibercept, and sunitinib are worthy of further evaluation. Thalidomide, sorafenib, pomalidomide, and cediranib may not be suitable for SCLC. PMID:28138259

  8. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis.

    PubMed

    Marshall, Erin A; Ng, Kevin W; Kung, Sonia H Y; Conway, Emma M; Martinez, Victor D; Halvorsen, Elizabeth C; Rowbotham, David A; Vucic, Emily A; Plumb, Adam W; Becker-Santos, Daiana D; Enfield, Katey S S; Kennett, Jennifer Y; Bennewith, Kevin L; Lockwood, William W; Lam, Stephen; English, John C; Abraham, Ninan; Lam, Wan L

    2016-10-27

    Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4(+) T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4(+) T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.

  9. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    PubMed

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells.

  10. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad.

    PubMed

    Matsubara, Daisuke; Kanai, Yoshihiko; Ishikawa, Shumpei; Ohara, Shiori; Yoshimoto, Taichiro; Sakatani, Takashi; Oguni, Sachiko; Tamura, Tomoko; Kataoka, Hiroaki; Endo, Shunsuke; Murakami, Yoshinori; Aburatani, Hiroyuki; Fukayama, Masashi; Niki, Toshiro

    2012-12-01

    Rearranged during transfection (RET) fusions have been newly identified in approximately 1% of patients with primary lung tumors. However, patient-derived lung cancer cell lines harboring RET fusions have not yet been established or identified, and therefore, the effectiveness of an RET inhibitor on lung tumors with endogenous RET fusion has not yet been studied. In this study, we report identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line LC-2/ad. LC-2/ad showed distinctive sensitivity to the RET inhibitor, vandetanib, among 39 non-small lung cancer cell lines. The xenograft tumor of LC-2/ad showed cribriform acinar structures, a morphologic feature of primary RET fusion-positive lung adenocarcinomas. LC-2/ad cells could provide useful resources to analyze molecular functions of RET-fusion protein and its response to RET inhibitors.

  11. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells.

    PubMed

    Wang, Wenjie; Sheng, Wenjiong; Yu, Chenxiao; Cao, Jianping; Zhou, Jundong; Wu, Jinchang; Zhang, Huojun; Zhang, Shuyu

    2015-09-01

    Lung cancer remains the leading cause of cancer-related mortality worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all cases of lung cancer. Cisplatin plays a significant role in the management of human lung cancer. Translesion DNA synthesis (TLS) is involved in DNA damage repair. DNA polymerase ζ (Pol ζ) is able to mediate the DNA replication bypass of DNA damage, which is suggested to be involved in chemoresistance. REV3L is the catalytic subunit of Pol ζ. Due to its critical role in translesion DNA synthesis, whether REV3L modulates cisplatin response in NSCLC cells remains unknown. In this study, REV3L overexpression and silencing H1299 cell lines were established. The reports showed that cisplatin induced the expression of REV3L by recruiting Sp1 to its promoter. Similar results were obtained when the ability of the cells to express luciferase from a platinated plasmid was measured. Co-transfection of the reporter with the REV3L overexpression vector or REV3L plus REV7L significantly enhanced the reporter activity. Nuclear condensation and fragmentation of shRNA-REV3L H1299 cells were more pronounced than shRNA-NC H1299 cells after cisplatin exposure, indicating that REV3L overexpression abolished cisplatin-induced DNA damage. Moreover, a forced expression of REV3L conferred the resistance of H1299 cells to cisplatin, whereas the knockdown of REV3L sensitized cisplatin efficacy in H1299 cells. Taken together, we demonstrated that inhibition of REV3L sensitized lung cancer H1299 cells to cisplatin treatment. Thus, REV3L may be a novel target for the chemotherapy of NSCLC.

  12. miR-129b suppresses cell proliferation in the human lung cancer cell lines A549 and H1299.

    PubMed

    Zheng, L; Qi, Y X; Liu, S; Shi, M L; Yang, W P

    2016-10-17

    Lung cancer is one of the most prevalent malignant tumors, and is one of the primary causes of cancer-associated deaths. In 2002, an estimated 1.18 million lung cancer-associated deaths were recorded, accounting for 18% of cancer-related deaths and 2% of total mortality. Despite the great progress that has been made in lung cancer therapies, the mechanisms underlying lung cancer formation and development remain largely unknown. Meanwhile, the microRNA miR-129 has been shown to be involved in the formation of many types of cancer. Therefore, this study aims to investigate whether miR129b could suppress proliferation of lung cancer cell lines. NSCLC tissue samples were collected from the Department of Respiratory Medicine between April 2013 and December 2015. Ten normal health individuals were recruited as controls. Lung cancer cell lines A549 and H1299 were used to examine the suppressive effects of miR129b. Quantitative real-time PCR was used to detect miR129b expression. The MTT assay was used to analyze cell proliferation. Results indicated that miR-129b is down-regulated in lung cancer cell lines and NSCLC tissues. Furthermore, overexpression of miR-129b inhibited proliferation of lung cancer cells. In conclusion, miR-129b suppresses lung cancer cell proliferation, and can be a potential therapeutic target for treatment of lung cancers.

  13. Immunotherapy for small-cell lung cancer: emerging evidence.

    PubMed

    Reck, Martin; Heigener, David; Reinmuth, Niels

    2016-04-01

    Treatment for small-cell lung cancer (SCLC) has changed little over the past few decades; available therapies have failed to extend survival in advanced disease. In recent years, immunotherapy with treatments such as interferons, TNFs, vaccines and immune checkpoint inhibitors has advanced and shown promise in the treatment of several tumor types. Immune checkpoint inhibitors such as ipilimumab, nivolumab, pembrolizumab, durvalumab, tremelimumab and ulocuplumab are at the forefront of immunotherapy and have achieved approvals for certain cancer types, including melanoma (ipilimumab, nivolumab and pembrolizumab), non-SCLC (nivolumab and pembrolizumab) and renal cell carcinoma (nivolumab). Clinical trials are investigating different immunotherapies in patients with other solid and hematologic malignancies, including SCLC. We review emerging evidence supporting the use of immunotherapy in SCLC patients.

  14. Cell polarity and spindle orientation in the distal epithelium of embryonic lung.

    PubMed

    El-Hashash, Ahmed H; Warburton, David

    2011-02-01

    A proper balance between self-renewal and differentiation of lung-specific progenitors at the distal epithelial tips is absolutely required for normal lung morphogenesis. Cell polarity and mitotic spindle orientation play a critical role in the self-renewal/differentiation of epithelial cells and can impact normal physiological processes, including epithelial tissue branching and differentiation. Therefore, understanding the behavior of lung distal epithelial progenitors could identify innovative solutions to restoring normal lung morphogenesis. Yet little is known about cell polarity, spindle orientation, and segregation of cell fate determinant in the embryonic lung epithelium, which contains progenitor cells. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized and highly mitotic with characteristic perpendicular cell divisions. Consistent with these findings, mInsc, LGN, and NuMA polarity proteins, which control spindle orientation, are asymmetrically localized in mitotic distal epithelial progenitors of embryonic lungs. Furthermore, the cell fate determinant Numb is asymmetrically distributed at the apical side of distal epithelial progenitors and segregated to one daughter cell in most mitotic cells. These findings provide evidence for polarity in distal epithelial progenitors of embryonic lungs and provide a framework for future translationally oriented studies in this area.

  15. Hypercalcemia-leukocytosis syndrome in a patient with cavitating squamous cell carcinoma of the lung

    PubMed Central

    2009-01-01

    Introduction Lung cancer is the leading cause of death among the cancers seen in the United States. Hypercalcemia and leukocytosis are two common paraneoplastic syndromes associated with lung cancer. Unfortunately patients presenting with Hypercalcemia- leukocytosis syndrome has a worse prognosis than patients presenting with lung cancer alone. Case presentation We present a 67 yr old Caucasian male with a history of active smoking presenting as pneumonia being diagnosed as cavitating squamous cell carcinoma of the lung with hypercalcemia-leukocytosis syndrome Conclusion There should be a high degree of suspicion to diagnose lung cancer in patients presenting with symptoms of paraneoplastic syndrome. PMID:19183491

  16. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    PubMed

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines.

  17. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    PubMed

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients.

  18. T helper 17 cells play a critical pathogenic role in lung cancer

    PubMed Central

    Chang, Seon Hee; Mirabolfathinejad, Seyedeh Golsar; Katta, Harshadadevi; Cumpian, Amber M.; Gong, Lei; Caetano, Mauricio S.; Moghaddam, Seyed Javad; Dong, Chen

    2014-01-01

    Lung cancer development is associated with extensive pulmonary inflammation. In addition, the linkage between chronic obstructive pulmonary disease (COPD) and lung cancer has been demonstrated in population-based studies. IL-17–producing CD4 helper T cells (Th17 cells) play a critical role in promoting chronic tissue inflammation. Although Th17 cells are found in human COPD and lung cancer, their role is not understood. We have thus used a mouse model of lung cancer, in which an oncogenic form of K-ras (K-rasG12D), frequently found in human lung cancer, is restrictedly expressed in lung epithelial cells [via Clara cell secretory protein (CCSPcre)]. In this model, Th17 and Treg but not Th1 cells were found enriched at the tumor tissues. When CCSPcre/K-rasG12D mice were weekly challenged with a lysate of nontypeable Haemophilus influenza (NTHi), which induces COPD-type inflammation and accelerates the tumor growth, they showed greatly enhanced Th17 cell infiltration in the lung tissues. Lack of IL-17, but not IL-17F, resulted in a significant reduction in lung tumor numbers in CCSPcre/K-rasG12D mice and also those treated with NTHi. Absence of IL-17 not only resulted in reduction of tumor cell proliferation and angiogenesis, but also decreased the expression of proinflammatory mediators and reduced recruitment of myeloid cells. Depletion of Gr-1+CD11b+ myeloid cells in CCSPcre/K-rasG12D mice suppressed tumor growth in lung, indicating Gr-1+CD11b+ myeloid cells recruited by IL-17 play a protumor role. Taken together, our data demonstrate a critical role for Th17 cell-mediated inflammation in lung tumorigenesis and suggest a novel way for prevention and treatment of this disease. PMID:24706787

  19. Fibrocytes Regulate Wilms’ Tumor 1-Positive Cell Accumulation in Severe Fibrotic Lung Disease

    PubMed Central

    Sontake, Vishwaraj; Shanmukhappa, Shiva K.; DiPasquale, Betsy A.; Reddy, Geereddy B.; Medvedovic, Mario; Hardie, William D.; White, Eric S.; Madala, Satish K.

    2015-01-01

    Collagen-producing myofibroblast transdifferentiation is considered a crucial determinant in the formation of scar tissue in the lungs of patients with idiopathic pulmonary fibrosis (IPF). Multiple resident pulmonary cell types and bone marrow-derived fibrocytes have been implicated as contributors to fibrotic lesions due to the transdifferentiation potential of these cells into myofibroblasts. In this study, we assessed the expression of Wilms’ tumor 1 (WT1), a known marker of mesothelial cells, in various cell types in normal and fibrotic lungs. We demonstrate that WT1 is expressed by both mesothelial and mesenchymal cells in IPF lungs, but has limited or no expression in normal human lungs. We also demonstrate that WT1-positive cells accumulate in fibrotic lung lesions, using two different mouse models of pulmonary fibrosis and WT1 promoter-driven fluorescent reporter mice. Reconstitution of bone-marrow cells into a transforming growth factor-α transgenic-mouse model demonstrated that fibrocytes do not transform into WT1-positive mesenchymal cells, but do augment accumulation of WT1-positive cells in severe fibrotic lung disease. Importantly, the number of WT1-positive cells in fibrotic lesions were correlated with severity of lung disease as assessed by changes in lung function, histology, and hydroxyproline levels in mice. Finally, inhibition of WT1 expression was sufficient to attenuate collagen and other extracellular-matrix gene production by mesenchymal cells from both murine and human fibrotic lungs. Thus, the results of this study demonstrate a novel association between fibrocyte-driven WT1-positive cell accumulation and severe fibrotic lung disease. PMID:26371248

  20. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines

    SciTech Connect

    Crawford, M.; Brawner, E.; Batte, K.; Yu, L.; Hunter, M.G.; Otterson, G.A.; Nuovo, G.; Marsh, C.B.; Nana-Sinkam, S.P.

    2008-09-05

    Crk is a member of a family of adaptor proteins that are involved in intracellular signal pathways altering cell adhesion, proliferation, and migration. Increased expression of Crk has been described in lung cancer and associated with increased tumor invasiveness. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) that are capable of targeting genes for either degradation of mRNA or inhibition of translation. Crk is a predicted putative target gene for miR-126. Over-expression of miR126 in a lung cancer cell line resulted in a decrease in Crk protein without any alteration in the associated mRNA. These lung cancer cells exhibit a decrease in adhesion, migration, and invasion. Decreased cancer cell invasion was also evident following targeted knockdown of Crk. MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, migration, and invasion and the effects on invasion may be partially mediated through Crk regulation.

  1. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanis...

  2. Advanced sickle cell associated interstitial lung disease presenting with cor pulmonale in a Nigerian.

    PubMed

    Fawibe, Ademola Emmanuel; Kolo, Philip Manman; Ogunmodede, James Ayodele; Desalu, Olufemi Olumuyiwa; Salami, Kazeem Alakija

    2012-04-01

    Previous studies have reported abnormal pulmonary function and pulmonary hypertension among Nigerians with sickle cell disease, but there is no report of interstitial lung disease among them. We report a Nigerian sickle cell patient who presented with computed tomography proven interstitial lung disease complicated by pulmonary hypertension and cor pulmonale.

  3. Natural Killers Are Made Not Born: How to Exploit NK Cells in Lung Malignancies

    PubMed Central

    Carrega, Paolo; Ferlazzo, Guido

    2017-01-01

    In recent years, progress has been made in the characterization of natural killer (NK) cells in lung malignancies, and we have now gained a better understanding of the frequency, localization, phenotype, and functional status of NK cells infiltrating these tumors. NK cell subset recruited in lung cancer is mainly capable of producing relevant cytokines rather than exerting direct cancer cell killing. Thus, the relevance of NK cells in tumor microenvironment might also go beyond the killing of tumor cells, being NK cells endowed with regulatory functions toward an ample array of immune effectors. Nevertheless, boosting their cytotoxic functions and redirecting the migration of cytotoxic NK cell subset to the tumor site might open new therapeutic avenues for lung cancer. Also, we believe that a deeper investigation into the impact of both conventional (e.g., chemotherapy) or new therapies (e.g., anti-immune checkpoints mAbs) on NK cell homeostasis in lung cancer patients is now required. PMID:28348567

  4. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  5. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  6. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  7. Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells

    PubMed Central

    Morrison, Brian J.

    2012-01-01

    Cancer initiating cells (CICs) represent a unique cell population essential for the maintenance and growth of tumors. Most in vivo studies of CICs utilize human tumor xenografts in immunodeficient mice. These models provide limited information on the interaction of CICs with the host immune system and are of limited value in assessing therapies targeting CICs, especially immune-based therapies. To assess this, a syngeneic cancer model is needed. We examined the sphere-forming capacity of thirteen murine lung cancer cell lines and identified TC-1 and a metastatic subclone of Lewis lung carcinoma (HM-LLC) as cell lines that readily formed and maintained spheres over multiple passages. TC-1 tumorspheres were not enriched for expression of CD133 or CD44, putative CIC markers, nor did they demonstrate Hoechst 33342 side population staining or Aldefluor activity compared to adherent TC-1 cells. However, in tumorsphere culture, these cells exhibited self-renewal and long-term symmetric division capacity and expressed more Oct-4 compared to adherent cells. HM-LLC sphere-derived cells exhibited increased Oct-4, CD133, and CD44 expression, demonstrated a Hoechst 33342 side population and Aldefluor activity compared to adherent cells or a low metastatic subclone of LLC (LM-LLC). In syngeneic mice, HM-LLC sphere-derived cells required fewer cells to initiate tumorigenesis compared to adherent or LM-LLC cells. Similarly TC-1 sphere-derived cells were more tumorigenic than adherent cells in syngeneic mice. In contrast, in immunocompromised mice, less than 500 sphere or adherent TC-1 cells and less than 1,000 sphere or adherent LLC cells were required to initiate a tumor. We suggest that no single phenotypic marker can identify CICs in murine lung cancer cell lines. Tumorsphere culture may provide an alternative approach to identify and enrich for murine lung CICs. Furthermore, we propose that assessing tumorigenicity of murine lung CICs in syngeneic mice better models the

  8. Bromodomain and hedgehog pathway targets in small cell lung cancer.

    PubMed

    Kaur, Gurmeet; Reinhart, Russell A; Monks, Anne; Evans, David; Morris, Joel; Polley, Eric; Teicher, Beverly A

    2016-02-28

    Small cell lung cancer (SCLC) is an extremely aggressive cancer that frequently recurs. Twenty-three human SCLC lines were selected representing varied Myc status. Gene expression of lung cancer, stem-like, hedgehog pathway, and notch pathway genes were determined by RT(2)-PCR array and Exon 1.0 ST array. Etoposide and topotecan concentration response was examined. The IC50's for etoposide and topotecan ranged over nearly 3 logs upon 96 hrs exposure to the drugs. Myc status, TOP2A, TOP2B and TOP1 mRNA expression or topoisomerase 1 and topoisomerase 2 protein did not account for the range in the sensitivity to the drugs. γ-secretase inhibitors, RO429097 and PF-03084014, had little activity in the SCLC lines over ranges covering the clinical Cmax concentrations. MYC amplified lines tended to be more sensitive to the bromodomain inhibitor JQ1. The Smo antagonists, erismodegib and vismodegib and the Gli antagonists, HPI1 and SEN-450 had a trend toward greater sensitivity of the MYC amplified line. Recurrent SCLC is among the most recalcitrant cancers and drug development efforts in this cancer are a high priority.

  9. Research progress in the treatment of small cell lung cancer

    PubMed Central

    Qiu, Yan-fang; Liu, Zhi-gang; Yang, Wen-juan; Zhao, Yu; Tang, Jiao; Tang, Wei-zhi; Jin, Yi; Li, Fang; Zhong, Rui; Wang, Hui

    2017-01-01

    Small cell lung cancer (SCLC) accounts for approximately 10-15% of all lung cancers. No significant improvement has been made for patients with SCLC in the past several decades. The main progresses were the thoracic radiation and prophylactic cranial irradiation (PCI) that improved the patient survival rate. For patients with limited disease and good performance status (PS), concurrent chemoradiotherapy (CCRT) followed by PCI should be considered. For extensive disease, the combination of etoposide and platinum-based chemotherapy remains the standard treatment and consolidative thoracic radiotherapy is beneficial for patients who have a significant respond to initial chemotherapy. However, the prognosis still remains poor. Recently, efforts have been focused on molecular targets and immunotherapy. But numerous molecular targets methods have failed to show a significant clinical benefit in patients with SCLC. It is anticipated that further development of research will depend on the on-going trials for molecular targeted therapy and immunotherapy which are promising and may improve the outcomes for SCLC in the next decade. PMID:28123595

  10. Inferring RBP-Mediated Regulation in Lung Squamous Cell Carcinoma

    PubMed Central

    Lafzi, Atefeh; Kazan, Hilal

    2016-01-01

    RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation of mRNAs. Dysregulations in RBP-mediated mechanisms have been found to be associated with many steps of cancer initiation and progression. Despite this, previous studies of gene expression in cancer have ignored the effect of RBPs. To this end, we developed a lasso regression model that predicts gene expression in cancer by incorporating RBP-mediated regulation as well as the effects of other well-studied factors such as copy-number variation, DNA methylation, TFs and miRNAs. As a case study, we applied our model to Lung squamous cell carcinoma (LUSC) data as we found that there are several RBPs differentially expressed in LUSC. Including RBP-mediated regulatory effects in addition to the other features significantly increased the Spearman rank correlation between predicted and measured expression of held-out genes. Using a feature selection procedure that accounts for the adaptive search employed by lasso regularization, we identified the candidate regulators in LUSC. Remarkably, several of these candidate regulators are RBPs. Furthermore, majority of the candidate regulators have been previously found to be associated with lung cancer. To investigate the mechanisms that are controlled by these regulators, we predicted their target gene sets based on our model. We validated the target gene sets by comparing against experimentally verified targets. Our results suggest that the future studies of gene expression in cancer must consider the effect of RBP-mediated regulation. PMID:27186987

  11. Stages of Non-Small Cell Lung Cancer

    MedlinePlus

    ... lung cancer include a cough that doesn't go away and shortness of breath. Sometimes lung cancer ... discomfort or pain. A cough that doesn’t go away or gets worse over time. Trouble breathing. ...

  12. Treatment Option Overview (Non-Small Cell Lung Cancer)

    MedlinePlus

    ... lung cancer include a cough that doesn't go away and shortness of breath. Sometimes lung cancer ... discomfort or pain. A cough that doesn’t go away or gets worse over time. Trouble breathing. ...

  13. Bevacizumab in non-small cell lung cancer.

    PubMed

    Di Costanzo, Francesco; Mazzoni, Francesca; Micol Mela, Marinella; Antonuzzo, Lorenzo; Checcacci, Daniele; Saggese, Matilde; Di Costanzo, Federica

    2008-01-01

    Lung cancer continues to be the leading cause of cancer death in Western countries. The median survival time for advanced non-small cell lung cancer (NSCLC) remains poor and chemotherapy is the treatment of choice for most patients with metastatic NSCLC. Platinum-based chemotherapy has long been the standard of care for advanced NSCLC. The formation of new blood vessels (angiogenesis) is needed for the growth and invasiveness of primary tumours, and plays an important role in metastatic growth. Vascular endothelial growth factor (VEGF) has emerged as a key potential target for the pharmacological inhibition of tumour angiogenesis. This review discusses current data and the future potential of bevacizumab, a recombinant humanized monoclonal antibody that binds VEGF, in the treatment of NSCLC. Results from a phase II study showed that the addition of bevacizumab to the first-line chemotherapy with paclitaxel and carboplatin (CP) may increase the overall survival (OS) and the time to progression in advanced NSCLC. Based on these promising results, a randomized phase III trial compared the combination of bevacizumab with CP versus CP alone in the treatment of advanced non-squamous NSCLC. The combination of CP plus bevacizumab led to a statistically significant increase in median OS and progression-free survival (PFS) compared with CP alone, with a response rate (RR) in the CP arm of 15% compared with 35% in the bevacizumab plus CP arm (p < 0.001). More recently, the randomized AVAIL (Avastin in Lung Cancer) study, which evaluated cisplatin with gemcitabine plus bevacizumab in two different dosages versus chemotherapy alone in 1043 patients with recurrent or advanced non-squamous NSCLC, reported a significant increase of PFS, RR and duration of response for both of the bevacizumab-containing arms. Bevacizumab has also been investigated in combination with erlitonib as second-line treatment in two small early phase trials, with interesting results. Bevacizumab was

  14. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice.

    PubMed

    Eldredge, Laurie C; Treuting, Piper M; Manicone, Anne M; Ziegler, Steven F; Parks, William C; McGuire, John K

    2016-02-01

    Bronchopulmonary dysplasia (BPD) is a common consequence of life-saving interventions for infants born with immature lungs. Resident tissue myeloid cells regulate lung pathology, but their role in BPD is poorly understood. To determine the role of lung interstitial myeloid cells in neonatal responses to lung injury, we exposed newborn mice to hyperoxia, a neonatal mouse lung injury model with features of human BPD. In newborn mice raised in normoxia, we identified a CD45(+) F4/80(+) CD11b(+), Ly6G(lo-int) CD71(+) population of cells in lungs of neonatal mice present in significantly greater percentages than in adult mice. In response to hyperoxia, surface marker and gene expression in whole lung macrophages/monocytes was biased to an alternatively activated phenotype. Partial depletion of these CD11b(+) mononuclear cells using CD11b-diphtheria toxin (DT) receptor transgenic mice resulted in 60% mortality by 40 hours of hyperoxia exposure with more severe lung injury, perivascular edema, and alveolar hemorrhage compared with DT-treated CD11b-DT receptor-negative controls, which displayed no mortality. These results identify an antiinflammatory population of CD11b(+) mononuclear cells that are protective in hyperoxia-induced neonatal lung injury in mice, and suggest that enhancing their beneficial functions may be a treatment strategy in infants at risk for BPD.

  15. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    PubMed

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  16. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  17. Airway basal cells of healthy smokers express an embryonic stem cell signature relevant to lung cancer.

    PubMed

    Shaykhiev, Renat; Wang, Rui; Zwick, Rachel K; Hackett, Neil R; Leung, Roland; Moore, Malcolm A S; Sima, Camelia S; Chao, Ion Wa; Downey, Robert J; Strulovici-Barel, Yael; Salit, Jacqueline; Crystal, Ronald G

    2013-09-01

    Activation of the human embryonic stem cell (hESC) signature genes has been observed in various epithelial cancers. In this study, we found that the hESC signature is selectively induced in the airway basal stem/progenitor cell population of healthy smokers (BC-S), with a pattern similar to that activated in all major types of human lung cancer. We further identified a subset of 6 BC-S hESC genes, whose coherent overexpression in lung adenocarcinoma (AdCa) was associated with reduced lung function, poorer differentiation grade, more advanced tumor stage, remarkably shorter survival, and higher frequency of TP53 mutations. BC-S shared with hESC and a considerable subset of lung carcinomas a common TP53 inactivation molecular pattern which strongly correlated with the BC-S hESC gene expression. These data provide transcriptome-based evidence that smoking-induced reprogramming of airway BC toward the hESC-like phenotype might represent a common early molecular event in the development of aggressive lung carcinomas in humans.

  18. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury.

    PubMed

    Heyob, Kathryn M; Rogers, Lynette K; Welty, Stephen E

    2008-12-01

    Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury.

  19. Stereotactic Body Radiation Therapy in Treating Patients With Metastatic Breast Cancer, Non-small Cell Lung Cancer, or Prostate Cancer

    ClinicalTrials.gov

    2016-06-17

    Male Breast Carcinoma; Prostate Adenocarcinoma; Recurrent Breast Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Prostate Carcinoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Prostate Cancer

  20. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  1. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future.

  2. Decreased Level of Klotho Contributes to Drug Resistance in Lung Cancer Cells: Involving in Klotho-Mediated Cell Autophagy.

    PubMed

    Chen, TianJun; Ren, Hui; Thakur, Asmitanand; Yang, Tian; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, MingWei

    2016-12-01

    Klotho is originally discovered as an anti-aging gene and recently identified as a tumor suppressor in various human cancers. Drug resistance is a major obstacle to affect the treatment of chemotherapy. In the present study, we explore the role of klotho on drug resistance in human lung cancers and investigate the mechanism of klotho on drug resistance in lung cancer cells. First, we detected a panel of six human lung cancer cell lines, including H460, SK-MES-1, cisplatin (DDP)-resistant A549/DDP, its parental subline A549, docetaxel (DTX)-resistant SPC-A-1/DTX, and SPC-A-1 by western blotting analysis. The results showed that klotho level was significantly decreased in chemotherapeutic drug-resistant lung cancer cells. Next, klotho was overexpressed in drug-resistant cancer cell lines and the results showed that overexpression of klotho significantly inhibited cell proliferation of A549/DDP and SPC-A-1/DTX. Conversely, knockdown of the expression of klotho significantly promoted cell growth of lung cancer cells. Furthermore, overexpression of klotho had synergistic effects with cisplatin to inhibit the proliferation of drug-resistant lung cancer cells in a dose- and time-dependent manner. The molecular mechanism was explored by western blotting analysis and the results revealed that the levels of beclin 1 and LC3-II were obviously increased, suggesting cell autophagy enhanced in drug-resistant cancer cells. Importantly, overexpression of klotho would inhibit cell autophagy in A549/DDP cells. All the results demonstrated that the levels of klotho were significantly decreased, which was accompanied by the increased cell autophagy in drug-resistant lung cancer cells. Overexpression of klotho would inhibit cell autophagy in drug-resistant lung cancers, which may probably contribute to reverse drug resistance in lung cancer cells.

  3. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  4. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells

    PubMed Central

    Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J. Jack; Wistuba, Ignacio I.; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. PMID:27666821

  5. Mechanisms of Ionizing Radiation-Induced Cell Death in Primary Lung Cells

    DTIC Science & Technology

    2013-03-05

    journal of radiation biology:epublished ahead of print 35. Coggle JE, Lambert BE, Moores SR. 1986. Radiation effects in the lung. Environmental health...caspases and mitochondria. Cell Death Differ 8:829-40 46. Dimri GP, Lee X, Basile G, Acosta M, Scott G, et al. 1995. A biomarker that identifies senescent

  6. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.

    PubMed

    Chen, Li; Zhang, Lishan; Xian, Guozhe; Lv, Yinping; Lin, Yanliang; Wang, Yibing

    2017-03-18

    25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes, including lipid metabolism, inflammation and the immune response. However, the role of 25-HC in the migration and invasion of lung adenocarcinoma (ADC) cells remains largely unknown. In this study, we demonstrated that 0.1 μM 25-HC promoted ADC cell migration and invasion without affecting cell proliferation, especially after coculture with THP1-derived macrophages. Further investigation showed that 0.1 μM 25-HC significantly stimulated interleukin-1β (IL-1β) secretion in a coculture system and increased the expression of LXR and Snail. IL-1β also mimicked the effect of 25-HC. LXR knockdown notably blocked the 25-HC-induced Snail expression, migration and invasion in both the monoculture system and the coculture system, but it did not impact the effect of IL-1β, which suggested that IL-1β functioned in an LXR-independent manner. These results suggested that 25-HC promoted ADC cell migration and invasion in an LXR-dependent manner in the monoculture system but that in the coculture system, the 25-HC-induced IL-1β secretion enhanced the effect of 25-HC in an LXR-independent manner.

  7. Bone Marrow-Derived c-kit+ Cells Attenuate Neonatal Hyperoxia-Induced Lung Injury

    PubMed Central

    Ramachandran, Shalini; Suguihara, Cleide; Drummond, Shelley; Chatzistergos, Konstantinos; Klim, Jammie; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Rodrigues, Claudia O.; McNiece, Ian K.; Hare, Joshua M.; Young, Karen C.

    2016-01-01

    Recent studies suggest that bone marrow (BM)-derived stem cells have therapeutic efficacy in neonatal hyperoxia-induced lung injury (HILI). c-kit, a tyrosine kinase receptor that regulates angiogenesis, is expressed on several populations of BM-derived cells. Preterm infants exposed to hyperoxia have decreased lung angiogenesis. Here we tested the hypothesis that administration of BM-derived c-kit+ cells would improve angiogenesis in neonatal rats with HILI. To determine whether intratracheal (IT) administration of BM-derived c-kit+ cells attenuates neonatal HILI, rat pups exposed to either normobaric normoxia (21% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to P15 were randomly assigned to receive either IT BM-derived green fluorescent protein (GFP)+ c-kit− cells (PL) or BM-derived GFP+ c-kit+ cells on P8. The effect of cell therapy on lung angiogenesis, alveolarization, pulmonary hypertension, vascular remodeling, cell proliferation, and apoptosis was determined at P15. Cell engraftment was determined by GFP immunostaining. Compared to PL, the IT administration of BM-derived c-kit+ cells to neonatal rodents with HILI improved alveolarization as evidenced by increased lung septation and decreased mean linear intercept. This was accompanied by an increase in lung vascular density, a decrease in lung apoptosis, and an increase in the secretion of proangiogenic factors. There was no difference in pulmonary vascular remodeling or the degree of pulmonary hypertension. Confocal microscopy demonstrated that 1% of total lung cells were GFP+ cells. IT administration of BM-derived c-kit+ cells improves lung alveolarization and angiogenesis in neonatal HILI, and this may be secondary to an improvement in the lung angiogenic milieu. PMID:23759597

  8. Elastase induces lung epithelial cell autophagy through placental growth factor

    PubMed Central

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  9. Effectiveness of maintenance treatments for nonsmall cell lung cancer

    PubMed Central

    Eadens, Matthew J; Robinson, Steven I; Price, Katharine AR

    2011-01-01

    Maintenance therapy for advanced nonsmall cell lung cancer has shown some clinical benefit for patients by improving progression-free survival and, to a lesser extent, overall survival. Two main strategies exist for maintenance therapy, ie, continuation and switch maintenance. Continuation maintenance involves the continued use of one of the induction drugs beyond 4–6 cycles of initial treatment. Switch maintenance utilizes a third agent initiated after first-line chemotherapy. Both cytotoxic agents and targeted agents have been studied. Switch maintenance therapy with pemetrexed in nonsquamous tumors and erlotinib appear to show the most clear clinical benefit. Continuation maintenance with bevacizumab has shown improvement in progression-free survival. Data concerning the role of cetuximab for maintenance is conflicting. Toxicity, quality of life, and cost are important confounding issues that need to be considered. Several ongoing Phase III trials are investigating strategies to improve on the current agents as well as testing promising new therapies. PMID:28210116

  10. [Non-small cell lung cancer irradiation in elderly].

    PubMed

    Dupic, G; Bellière-Calandry, A

    2016-06-01

    People over the age of 65 are often excluded from participation in oncological clinical trials. However, more than half of patients diagnosed with non-small-cell lung cancer are older than 65 years. Any therapeutic strategy must be discussed in multidisciplinary meetings after adapted geriatric assessment. Patients who benefit from the comprehensive geriatric assessment (CGA) of Balducci and Extermann are those whose G8 screening tool score is less than or equal to 14. Age itself does not contraindicate a curative therapeutic approach. Stereotactic radiotherapy is an alternative to surgery for early stages in elderly patients who are medically inoperable or who refuse surgery, because it significantly increases overall survival. Mostly sequential (rarely concomitant) chemoradiotherapy can be proposed to elderly patients with locally advanced stages in good general state of health. For the others, an exclusive palliative radiotherapy, a single or dual agent of chemotherapy, a targeted drug or best supportive care only may be discussed.

  11. Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids.

    PubMed Central

    Komminoth, P.; Roth, J.; Lackie, P. M.; Bitter-Suermann, D.; Heitz, P. U.

    1991-01-01

    The neural cell adhesion molecule (NCAM) exists in various types of neuroendocrine cells and their tumors. A typical feature of NCAM is polysialic acid, of which the chain length is developmentally regulated. The authors have performed a comparative immunohistochemical study on small cell lung carcinomas and bronchial as well as gastrointestinal carcinoids with the monoclonal antibody (MAb) 735 reactive with the long-chain form of polysialic acid. The small cell lung carcinomas, irrespective of their histological type, were positive for polysialic acid. Metastatic tumor cell complexes also exhibited immunostaining. The tumor cell-surface-associated immunostaining for polysialic acid was sensitive to endoneuraminidase. The mature and atypical bronchial and gastrointestinal carcinoids were not immunoreactive for polysialic acid. Cytoplasmic staining in groups of cells of carcinoids (2 of 28 cases) was due to nonspecific antibody binding, which could be prevented by increased ion strength. These data indicate that neuroendocrine tumors of the lung can be distinguished by their content of highly sialylated NCAM. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1651057

  12. Non-small cell lung carcinoma metastasis to the anus.

    PubMed

    Dhandapani, Ramya Gowri; Anosike, Chinedum; Ganguly, Akash

    2016-04-29

    A 70-year-old man presenting with a lung mass was investigated and treated with pneumonectomy for adenocarcinoma of the lung. He re-presented 3 months later with a large perianal abscess and mass. Subsequent investigations and biopsies showed disseminated metastases from the lung primary. Immunohistochemical staining confirmed the nature of the anal metastasis from the lung adenocarcinoma. Lung cancer is notorious for metastases, hence it is important to be aware of the uncommon modes of spread, which will help obtain early diagnosis and optimise treatment.

  13. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  14. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  15. Circadian Timing in the Lung; A Specific Role for Bronchiolar Epithelial Cells

    PubMed Central

    Gibbs, J. E.; Beesley, S.; Plumb, J.; Singh, D.; Farrow, S.; Ray, D. W.; Loudon, A. S. I.

    2015-01-01

    In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology. PMID:18787022

  16. Migration of CD11b+ accessory cells during murine lung regeneration.

    PubMed

    Chamoto, Kenji; Gibney, Barry C; Lee, Grace S; Ackermann, Maximilian; Konerding, Moritz A; Tsuda, Akira; Mentzer, Steven J

    2013-05-01

    In many mammalian species, the removal of one lung leads to growth of the remaining lung to near-baseline levels. In studying post-pneumonectomy mice, we used morphometric measures to demonstrate neoalveolarization within 21 days of pneumonectomy. Of note, the detailed histology during this period demonstrated no significant pulmonary inflammation. To identify occult blood-borne cells, we used a parabiotic model (wild-type/GFP) of post-pneumonectomy lung growth. Flow cytometry of post-pneumonectomy lung digests demonstrated a rapid increase in the number of cells expressing the hematopoietic membrane molecule CD11b; 64.5% of the entire GFP(+) population were CD11b(+). Fluorescence microscopy demonstrated that the CD11b(+) peripheral blood cells migrated into both the interstitial tissue and alveolar airspace compartments. Pneumonectomy in mice deficient in CD11b (CD18(-/-) mutants) demonstrated near-absent leukocyte migration into the airspace compartment (p<.001) and impaired lung growth as demonstrated by lung weight (p<.05) and lung volume (p<.05). Transcriptional activity of the partitioned CD11b(+) cells demonstrated significantly increased transcription of Angpt1, Il1b, and Mmp8, Mmp9, Ncam1, Sele, Sell, Selp in the alveolar airspace and Adamts2, Ecm1, Egf, Mmp7, Npr1, Tgfb2 in the interstitial tissue (>4-fold regulation; p<.05). These data suggest that blood-borne CD11b(+) cells represent a population of accessory cells contributing to post-pneumonectomy lung growth.

  17. Importance of Molecular Features of Non–Small Cell Lung Cancer for Choice of Treatment

    PubMed Central

    Moran, Cesar

    2011-01-01

    Lung cancer is the leading cause of cancer-related deaths in the United States. Approximately 85% of lung cancer is categorized as non–small cell lung cancer, and traditionally, non–small cell lung cancer has been treated with surgery, radiation, and chemotherapy. Targeted agents that inhibit the epidermal growth factor receptor pathway have been developed and integrated into the treatment regimens in non–small cell lung cancer. Currently, approved epidermal growth factor receptor inhibitors include the tyrosine kinase inhibitors erlotinib and gefitinib. Molecular determinants, such as epidermal growth factor receptor–activating mutations, have been associated with response to epidermal growth factor receptor tyrosine kinase inhibitors and may be used to guide treatment choices in patients with non–small cell lung cancer. Thus, treatment choice for patients with non–small cell lung cancer depends on molecular features of tumors; however, improved techniques are required to increase the specificity and efficiency of molecular profiling so that these methods can be incorporated into routine clinical practice. This review provides an overview of how genetic analysis is currently used to direct treatment choices in non–small cell lung cancer. PMID:21514411

  18. Adaptive responses to dasatinib-treated lung squamous cell cancer cells harboring DDR2 mutations.

    PubMed

    Bai, Yun; Kim, Jae-Young; Watters, January M; Fang, Bin; Kinose, Fumi; Song, Lanxi; Koomen, John M; Teer, Jamie K; Fisher, Kate; Chen, Yian Ann; Rix, Uwe; Haura, Eric B

    2014-12-15

    DDR2 mutations occur in approximately 4% of lung squamous cell cancer (SCC) where the tyrosine kinase inhibitor dasatinib has emerged as a new therapeutic option. We found that ERK and AKT phosphorylation was weakly inhibited by dasatinib in DDR2-mutant lung SCC cells, suggesting that dasatinib inhibits survival signals distinct from other oncogenic receptor tyrosine kinases (RTK) and/or compensatory signals exist that dampen dasatinib activity. To gain better insight into dasatinib's action in these cells, we assessed altered global tyrosine phosphorylation (pY) after dasatinib exposure using a mass spectrometry-based quantitative phosphoproteomics approach. Overlaying protein-protein interaction relationships upon this dasatinib-regulated pY network revealed decreased phosphorylation of Src family kinases and their targets. Conversely, dasatinib enhanced tyrosine phosphorylation in a panel of RTK and their signaling adaptor complexes, including EGFR, MET/GAB1, and IGF1R/IRS2, implicating a RTK-driven adaptive response associated with dasatinib. To address the significance of this observation, these results were further integrated with results from a small-molecule chemical library screen. We found that dasatinib combined with MET and insulin-like growth factor receptor (IGF1R) inhibitors had a synergistic effect, and ligand stimulation of EGFR and MET rescued DDR2-mutant lung SCC cells from dasatinib-induced loss of cell viability. Importantly, we observed high levels of tyrosine-phosphorylated EGFR and MET in a panel of human lung SCC tissues harboring DDR2 mutations. Our results highlight potential RTK-driven adaptive-resistant mechanisms upon DDR2 targeting, and they suggest new, rationale cotargeting strategies for DDR2-mutant lung SCC.

  19. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma

    PubMed Central

    Ganesan, Anusha-Preethi; Johansson, Magnus; Ruffell, Brian; Beltran, Adam; Lau, Jonathan; Jablons, David M.; Coussens, Lisa M.

    2013-01-01

    Immune cells comprise a substantial proportion of the tumor mass in human non-small cell lung cancers (NSCLC), but the precise composition and significance of this infiltration is unclear. Herein we examined immune complexity of human NSCLC as well as NSCLC developing in CC10-TAg transgenic mice, and revealed that CD4+ T lymphocytes represent the dominant population of CD45+ immune cells, and relative to normal lung tissue, CD4+FoxP3+ regulatory T cells (Tregs) were significantly increased as a proportion of total CD4+ cells. To assess the functional significance of increased Treg cells, we evaluated CD8+ T cell-deficient/CC10-TAg mice and revealed that CD8+ T cells significantly controlled tumor growth with anti-tumor activity that was partially repressed by Treg cells. However, while treatment with anti-CD25 depleting mAb as monotherapy preferentially depleted Tregs and improved CD8+ T cell-mediated control of tumor progression during early tumor development, similar monotherapy was ineffective at later stages. Since mice bearing early NSCLC treated with anti-CD25 mAb exhibited increased tumor cell death associated with infiltration by CD8+ T cells expressing elevated levels of granzyme A, granzyme B, perforin and interferon-γ, we therefore evaluated carboplatin combination therapy resulting in a significantly extended survival beyond that observed with chemotherapy alone, indicating that Treg depletion in combination with cytotoxic therapy may be beneficial as a treatment strategy for advanced NSCLC. PMID:23851682

  20. Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer.

    PubMed

    Davidson, Shawn M; Papagiannakopoulos, Thales; Olenchock, Benjamin A; Heyman, Julia E; Keibler, Mark A; Luengo, Alba; Bauer, Matthew R; Jha, Abhishek K; O'Brien, James P; Pierce, Kerry A; Gui, Dan Y; Sullivan, Lucas B; Wasylenko, Thomas M; Subbaraj, Lakshmipriya; Chin, Christopher R; Stephanopolous, Gregory; Mott, Bryan T; Jacks, Tyler; Clish, Clary B; Vander Heiden, Matthew G

    2016-03-08

    Cultured cells convert glucose to lactate, and glutamine is the major source of tricarboxylic acid (TCA)-cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells.

  1. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer

    PubMed Central

    Davidson, Shawn M.; Papagiannakopoulos, Thales; Olenchock, Benjamin A.; Heyman, Julia E.; Keibler, Mark A.; Luengo, Alba; Bauer, Matthew R.; Jha, Abhishek K.; O’Brien, James P.; Pierce, Kerry A.; Gui, Dan Y.; Sullivan, Lucas B.; Wasylenko, Thomas M.; Subbaraj, Lakshmipriya; Chin, Christopher R.; Stephanopolous, Gregory; Mott, Bryan T.; Jacks, Tyler; Clish, Clary B.; Vander Heiden, Matthew G.

    2016-01-01

    SUMMARY Cultured cells convert glucose to lactate and glutamine is the major source of tricarboxylic acid (TCA) cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells. PMID:26853747

  2. Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway.

    PubMed

    García Campelo, María Rosario; Alonso Curbera, Guillermo; Aparicio Gallego, Guadalupe; Grande Pulido, Enrique; Antón Aparicio, Luis Miguel

    2011-02-01

    Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartments. However the origins of the different histological types of primary lung cancer are not well understood. Stem cells are believed to be crucial players in tumour development and there is much interest in identifying those compartments that harbour stem cells involved in lung cancer. Although the role of stem cells in carcinogenesis is not well characterised, emerging evidence is providing new insights into this process. Numerous studies have indicated that lung cancer is not a result of a sudden transforming event but a multistep process in which a sequence of molecular changes result in genetic and morphological aberrations. The exact sequence of molecular events involved in lung carcinogenesis is not yet well understood, therefore deeper knowledge of the aberrant stem cell fate signalling pathway could be crucial in the development of new drugs against the advanced setting.

  3. A role for cell adhesion in beryllium-mediated lung disease

    SciTech Connect

    Hong-geller, Elizabeth

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  4. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  5. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model.

    PubMed

    Rutter, Abigail V; Chippendale, Thomas W E; Yang, Ying; Španěl, Patrik; Smith, David; Sulé-Suso, Josep

    2013-01-07

    Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.

  6. Non–Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship

    PubMed Central

    Molina, Julian R.; Yang, Ping; Cassivi, Stephen D.; Schild, Steven E.; Adjei, Alex A.

    2009-01-01

    Lung cancer is the leading cause of cancer-related mortality not only in the United States but also around the world. In North America, lung cancer has become more predominant among former than current smokers. Yet in some countries, such as China, which has experienced a dramatic increase in the cigarette smoking rate during the past 2 decades, a peak in lung cancer incidence is still expected. Approximately two-thirds of adult Chinese men are smokers, representing one-third of all smokers worldwide. Non–small cell lung cancer accounts for 85% of all lung cancer cases in the United States. After the initial diagnosis, accurate staging of non–small cell lung cancer using computed tomography or positron emission tomography is crucial for determining appropriate therapy. When feasible, surgical resection remains the single most consistent and successful option for cure. However, close to 70% of patients with lung cancer present with locally advanced or metastatic disease at the time of diagnosis. Chemotherapy is beneficial for patients with metastatic disease, and the administration of concurrent chemotherapy and radiation is indicated for stage III lung cancer. The introduction of angiogenesis, epidermal growth factor receptor inhibitors, and other new anticancer agents is changing the present and future of this disease and will certainly increase the number of lung cancer survivors. We identified studies for this review by searching the MEDLINE and PubMed databases for English-language articles published from January 1, 1980, through January 31, 2008. Key terms used for this search included non–small cell lung cancer, adenocarcinoma, squamous cell carcinoma, bronchioalveolar cell carcinoma, large cell carcinoma, lung cancer epidemiology, genetics, survivorship, surgery, radiation therapy, chemotherapy, targeted therapy, bevacizumab, erlotinib, and epidermal growth factor receptor. PMID:18452692

  7. PDGFR-{beta} expression in small cell lung cancer patients

    SciTech Connect

    Shinohara, Eric T.; Gonzalez, Adriana; Massion, Pierre P.; Olson, Sandra J.; Albert, Jeffrey M.; Shyr, Yu; Carbone, David P.; Johnson, David H.; Hallahan, Dennis E.; Lu Bo . E-mail: bo.lu@vanderbilt.edu

    2007-02-01

    Background: Platelet derived growth factor (PDGF) and PDGFR-{beta} are expressed and have been found to have prognostic value in several human cancers. Data in non-small-cell cancer cell lines have suggested that PDGFR is a therapeutic target for drug development. In the current study PDGFR-{beta} expression and prognostic value in small cell lung cancer (SCLC) was investigated. Methods and Materials: Paraffin-embedded tissue blocks from 53 patients with limited and extensive stage SCLC were obtained for immunohistochemical staining. Tumors from each patient were sampled 3 times and stained with PDGFR-{beta} specific antibody. Patients were divided into low and high staining groups based on intensity. Results: There was high intensity PDGFR-{beta} staining in 20 patients with SCLC. Another 29 expressed low intensity PDGFR-{beta} staining, with only 4 patients showing no PDGFR-{beta} staining. There was no statistically significant difference in 5 year overall survival between patients with low levels of PDGFR-{beta} staining vs. those with high level staining SCLC tumors (p = 0.538). Conclusions: The present study found that the majority of SCLC patients express, at least, a low level of PDGF-{beta}. However, the level of PDGFR-{beta} expression was not a statistically significant predictor of 5 year overall survival in SCLC.

  8. Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer

    DTIC Science & Technology

    2015-07-01

    injury” throughout the respiratory tract. We have previously shown that gene expression from bronchial epithelial cells reflects the physiologic...of lung cancer, creates a “field of injury” throughout the respiratory tract. We have previously shown that gene expression from bronchial epithelial...for lung cancer.   INTRODUCTION:   Cigarette smoking, the major cause of lung cancer, creates a “field of injury” throughout the respiratory tract

  9. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance.

    PubMed

    Singh, Anju; Bodas, Manish; Wakabayashi, Nobunao; Bunz, Fred; Biswal, Shyam

    2010-12-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2), a redox-sensitive transcription factor, regulates the expression of antioxidant enzymes and several anti-apoptotic proteins, which confer cytoprotection against oxidative stress and apoptosis. Constitutive activation of Nrf2 in lung cancer cells promotes tumorigenicity and contributes to chemoresistance by upregulation of glutathione, thioredoxin, and the drug efflux pathways involved in detoxification of electrophiles and broad spectrum of drugs. In this study, we show that RNAi-mediated lowering of Nrf2 levels in non-small-cell lung cancer (NSCLC) cell lines (A549 and H460) led to a dramatic increase in endogenous reactive oxygen species (ROS) levels. Similarly, γ-irradiation-induced formation of protein carbonyls were significantly higher in Nrf2-depleted lung cancer cells, suggesting increased lethality of ionizing radiation in the absence of Nrf2. Radiation-induced protein oxidation in Nrf2shRNA cells correlated with reduced survival as measured by clonogenic assay. Radiation-induced cell death was abrogated by pretreatment with antioxidants such as N-acetyl-L-cysteine, glutathione, and vitamin-E, highlighting the importance of antioxidants in conferring protection against radiation injury. Using genetically-modified gain and loss of function models of Nrf2, in mouse embryonic fibroblasts, we establish that constitutive activation of Nrf2 protects against ionizing radiation toxicity and confers radioresistance. Thus, targeting Nrf2 activity in radioresistant tumors could be a promising strategy to circumvent radioresistance.

  10. Gain of Nrf2 Function in Non-Small-Cell Lung Cancer Cells Confers Radioresistance

    PubMed Central

    Singh, Anju; Bodas, Manish; Wakabayashi, Nobunao; Bunz, Fred

    2010-01-01

    Abstract Nuclear factor erythroid-2 related factor 2 (Nrf2), a redox-sensitive transcription factor, regulates the expression of antioxidant enzymes and several anti-apoptotic proteins, which confer cytoprotection against oxidative stress and apoptosis. Constitutive activation of Nrf2 in lung cancer cells promotes tumorigenicity and contributes to chemoresistance by upregulation of glutathione, thioredoxin, and the drug efflux pathways involved in detoxification of electrophiles and broad spectrum of drugs. In this study, we show that RNAi-mediated lowering of Nrf2 levels in non-small-cell lung cancer (NSCLC) cell lines (A549 and H460) led to a dramatic increase in endogenous reactive oxygen species (ROS) levels. Similarly, γ-irradiation-induced formation of protein carbonyls were significantly higher in Nrf2-depleted lung cancer cells, suggesting increased lethality of ionizing radiation in the absence of Nrf2. Radiation-induced protein oxidation in Nrf2shRNA cells correlated with reduced survival as measured by clonogenic assay. Radiation-induced cell death was abrogated by pretreatment with antioxidants such as N-acetyl-L-cysteine, glutathione, and vitamin-E, highlighting the importance of antioxidants in conferring protection against radiation injury. Using genetically-modified gain and loss of function models of Nrf2, in mouse embryonic fibroblasts, we establish that constitutive activation of Nrf2 protects against ionizing radiation toxicity and confers radioresistance. Thus, targeting Nrf2 activity in radioresistant tumors could be a promising strategy to circumvent radioresistance. Antioxid. Redox Signal. 13, 1627–1637. PMID:20446773

  11. NK Cells Alleviate Lung Inflammation by Negatively Regulating Group 2 Innate Lymphoid Cells.

    PubMed

    Bi, Jiacheng; Cui, Lulu; Yu, Guang; Yang, Xiaolu; Chen, Youhai; Wan, Xiaochun

    2017-03-08

    Group 2 innate lymphoid cells (ILC2s) play an important role in orchestrating type II immune responses. However, the cellular mechanisms of group 2 innate lymphoid cell regulation remain poorly understood. In this study, we found that activated NK cells inhibited the proliferation of, as well as IL-5 and IL-13 production by, ILC2s in vitro via IFN-γ. In addition, in a murine model of ILC2 expansion in the liver, polyinosinic-polycytidylic acid, an NK cell-activating agent, inhibited ILC2 proliferation, IL-5 and IL-13 production, and eosinophil recruitment. Such effects of polyinosinic-polycytidylic acid were abrogated in NK cell-depleted mice and in IFN-γ-deficient mice. Adoptively transferring wild-type NK cells into NK cell-depleted mice resulted in fewer ILC2s induced by IL-33 compared with the transfer of IFN-γ-deficient NK cells. Importantly, during the early stage of papain- or bleomycin-induced lung inflammation, depletion of NK cells resulted in increased ILC2 numbers and enhanced cytokine production by ILC2s, as well as aggravated eosinophilia and goblet cell hyperplasia. Collectively, these data show that NK cells negatively regulate ILC2s during the early stage of lung inflammation, which represents the novel cellular interaction between two family members of ILCs.

  12. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    PubMed

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  13. Radiation-induced lung fibrosis after treatment of small cell carcinoma of the lung with very high-dose cyclophosphamide

    SciTech Connect

    Trask, C.W.; Joannides, T.; Harper, P.G.; Tobias, J.S.; Spiro, S.G.; Geddes, D.M.; Souhami, R.L.; Beverly, P.C.

    1985-01-01

    Twenty-five previously untreated patients with small cell carcinoma of the lung were treated with cyclophosphamide 160 to 200 mg/kg (with autologous bone marrow support) followed by radiotherapy (4000 cGy) to the primary site and mediastinum. No other treatment was given until relapse occurred. Nineteen patients were assessable at least 4 months after radiotherapy; of these, 15 (79%) developed radiologic evidence of fibrosis, which was symptomatic in 14 (74%). The time of onset of fibrosis was related to the volume of lung irradiated. A retrospective analysis was made of 20 consecutive patients treated with multiple-drug chemotherapy and an identical radiotherapy regimen as part of a randomized trial. Radiologic and symptomatic fibrosis was one half as frequent (35%) as in the high-dose cyclophosphamide group. Very high-dose cyclophosphamide appears to sensitize the lung to radiotherapy and promotes the production of fibrosis.

  14. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells

    PubMed Central

    Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614

  15. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  16. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues

    PubMed Central

    Yu, Yen-Rei A.; Hotten, Danielle F.; Malakhau, Yuryi; Volker, Ellen; Ghio, Andrew J.; Noble, Paul W.; Kraft, Monica; Hollingsworth, John W.; Gunn, Michael D.

    2016-01-01

    Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined flow cytometry panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue is currently lacking. The objective of this study was to develop a flow cytometry–based panel for human BAL and lung tissue. We obtained and performed flow cytometry/sorting on human BAL cells and lung tissue. Confocal images were obtained from lung tissue using antibodies for cluster of differentiation (CD)206, CD169, and E cadherin. We defined a multicolor flow panel for human BAL and lung tissue that identifies major leukocyte populations. These include macrophage (CD206+) subsets and other CD206− leukocytes. The CD206− cells include: (1) three monocyte (CD14+) subsets, (2) CD11c+ dendritic cells (CD14−, CD11c+, HLA-DR+), (3) plasmacytoid dendritic cells (CD14−, CD11c−, HLA-DR+, CD123+), and (4) other granulocytes (neutrophils, mast cells, eosinophils, and basophils). Using this panel on human lung tissue, we defined two populations of pulmonary macrophages: CD169+ and CD169− macrophages. In lung tissue, CD169− macrophages were a prominent cell type. Using confocal microscopy, CD169+ macrophages were located in the alveolar space/airway, defining them as alveolar macrophages. In contrast, CD169− macrophages were associated with airway/alveolar epithelium, consistent with interstitial-associated macrophages. We defined a flow cytometry panel in human BAL and lung tissue that allows identification of multiple immune cell types and delineates alveolar from interstitial-associated macrophages. This study has important implications for defining myeloid cells in human lung samples. PMID:26267148

  17. Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer.

    PubMed

    Linxweiler, Maximilian; Linxweiler, Johannes; Barth, Monika; Benedix, Julia; Jung, Volker; Kim, Yoo-Jin; Bohle, Rainer M; Zimmermann, Richard; Greiner, Markus

    2012-02-01

    The molecular carcinogenesis of lung cancer has yet to be clearly elucidated. We investigated the possible oncogenic function of SEC62 in lung cancer, which was predicted based on our previous findings that lung and thyroid cancer tissue samples exhibited increased Sec62 protein levels. The SEC62 gene locus is at 3q26.2, and 3q amplification is reportedly the most common genomic alteration in non-small cell lung cancer. We analyzed SEC62 mRNA and protein levels in tissue samples from lung cancer patients by real-time quantitative PCR, Western blot, and IHC and found significantly increased SEC62 mRNA and protein levels in tumors compared with tumor-free tissue samples from the same patients. Correlation analyses revealed significantly higher Sec62 levels in tumors with lymph node metastases compared with nonmetastatic tumors, as well as in poorly compared with moderately differentiated tumors. On the basis of these promising results, we examined the role of Sec62 in cancer cell biology in vitro. Cell migration assays with lung and thyroid cancer cells showed distinct stimulation of migration in SEC62-overexpressing cells and inhibition of migration in Sec62-depleted cells. Moreover, we found that SEC62 silencing sensitized the cells to thapsigargin-induced endoplasmic reticulum stress. Thus, our results indicate that SEC62 represents a potential candidate oncogene in the amplified 3q region in cases of non-small cell lung cancer and harbors various functions in cancer cell biology.

  18. Induction of Premature Senescence by Hsp90 Inhibition in Small Cell Lung Cancer

    PubMed Central

    Restall, Ian J.; Lorimer, Ian A. J.

    2010-01-01

    Background The molecular chaperone Hsp90 is a promising new target in cancer therapy and selective Hsp90 inhibitors are currently in clinical trials. Previously these inhibitors have been reported to induce either cell cycle arrest or cell death in cancer cells. Whether the cell cycle arrest is reversible or irreversible has not generally been assessed. Here we have examined in detail the cell cycle arrest and cell death responses of human small cell lung cancer cell lines to Hsp90 inhibition. Methodology/Principal Findings In MTT assays, small cell lung cancer cells showed a biphasic response to the Hsp90 inhibitors geldanamycin and radicicol, with low concentrations causing proliferation arrest and high concentrations causing cell death. Assessment of Hsp90 intracellular activity using loss of client protein expression showed that geldanamycin concentrations that inhibited Hsp90 correlated closely with those causing proliferation arrest but not cell death. The proliferation arrest induced by low concentrations of geldanamycin was not reversed for a period of over thirty days following drug removal and showed features of senescence. Rare populations of variant small cell lung cancer cells could be isolated that had additional genetic alterations and no longer underwent irreversible proliferation arrest in response to Hsp90 inhibitors. Conclusions/Significance We conclude that: (1) Hsp90 inhibition primarily induces premature senescence, rather than cell death, in small cell lung cancer cells; (2) small cell lung cancer cells can bypass this senescence through further genetic alterations; (3) Hsp90 inhibitor-induced cell death in small cell lung cancer cells is due to inhibition of a target other than cytosolic Hsp90. These results have implications with regard to how these inhibitors will behave in clinical trials and for the design of future inhibitors in this class. PMID:20552022

  19. The mast cell - B-cell axis in lung vascular remodeling and pulmonary hypertension.

    PubMed

    Breitling, Siegfried; Hui, Zhang; Zabini, Diana; Hu, Yijie; Hoffmann, Julia; Goldenberg, Neil M; Tabuchi, Arata; Buelow, Roland; Dos Santos, Claudia; Kuebler, Wolfgang Michael

    2017-02-24

    Over the past years, a critical role for the immune system and in particular, for mast cells, in the pathogenesis of pulmonary hypertension (PH) has emerged. However, the way in which mast cells promote PH is still poorly understood. Here, we investigated the mechanisms by which mast cells may contribute to PH, specifically focusing on the interaction between the innate and adaptive immune response and the role of B-cells and autoimmunity. Experiments were performed in Sprague Dawley rats and B-cell deficient JH-KO rats in the monocrotaline, sugen-hypoxia and the aortic banding model of PH. Hemodynamics, cell infiltration, IL-6 expression, and vascular remodeling were analyzed. Gene array analyses revealed constituents of immunoglobulins as most prominently regulated mast cell dependent genes in the lung in experimental PH. IL-6 was shown to link mast cells to B-cells, as a) IL-6 was upregulated and colocalized with mast cells and was reduced by mast cell stabilizers, and b) IL-6 or mast cell blockade reduced B-cells in lungs of monocrotaline-treated rats. A functional role for B-cells in PH was demonstrated, in that either blocking B-cells by an anti-CD20 antibody or B-cell deficiency in JH-KO rats attenuated right ventricular systolic pressure and vascular remodeling in experimental PH. We here identify a mast cell - B-cell axis driven by IL-6 as critical immune pathway in the pathophysiology of PH. Our results provide novel insights into the role of the immune system in PH, which may be therapeutically exploited by targeted immunotherapy.

  20. An official American Thoracic Society workshop report: stem cells and cell therapies in lung biology and diseases.

    PubMed

    Weiss, Daniel J; Chambers, Daniel; Giangreco, Adam; Keating, Armand; Kotton, Darrell; Lelkes, Peter I; Wagner, Darcy E; Prockop, Darwin J

    2015-04-01

    The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.

  1. Matrix modulation of compensatory lung regrowth and progenitor cell proliferation in mice

    PubMed Central

    Shifren, A.; Mazan, M. R.; Gruntman, A. M.; Lascola, K. M.; Nolen-Walston, R. D.; Kim, C. F.; Tsai, L.; Pierce, R. A.; Mecham, R. P.; Ingenito, E. P.

    2010-01-01

    Mechanical stress is an important modulator of lung morphogenesis, postnatal lung development, and compensatory lung regrowth. The effect of mechanical stress on stem or progenitor cells is unclear. We examined whether proliferative responses of epithelial progenitor cells, including dually immunoreactive (CCSP and proSP-C) progenitor cells (CCSP+/SP-C+) and type II alveolar epithelial cells (ATII), are affected by physical factors found in the lung of emphysematics, including loss of elastic recoil, reduced elastin content, and alveolar destruction. Mice underwent single lung pneumonectomy (PNY) to modulate transpulmonary pressure (mechanical stress) and to stimulate lung regeneration. Control mice underwent sham thoracotomy. Plombage of different levels was employed to partially or completely abolish this mechanical stress. Responses to graded changes in transpulmonary pressure were assessed in elastin-insufficient mice (elastin +/−, ELN+/−) and elastase-treated mice with elastase-induced emphysema. Physiological regrowth, morphometry (linear mean intercept; Lmi), and the proliferative responses of CCSP+/SP-C+, Clara cells, and ATII were evaluated. Plombage following PNY significantly reduced transpulmonary pressure, regrowth, and CCSP+/SP-C+, Clara cell, and ATII proliferation following PNY. In the ELN+/− group, CCSP+/SP-C+ and ATII proliferation responses were completely abolished, although compensatory lung regrowth was not significantly altered. In contrast, in elastase-injured mice, compensatory lung regrowth was significantly reduced, and ATII but not CCSP+/SP-C+ proliferation responses were impaired. Elastase injury also reduced the baseline abundance of CCSP+/SP-C+, and CCSP+/SP-C+ were found to be displaced from the bronchioalveolar duct junction. These data suggest that qualities of the extracellular matrix including elastin content, mechanical stress, and alveolar integrity strongly influence the regenerative capacity of the lung, and the

  2. Pinus massoniana bark extract inhibits migration of the lung cancer A549 cell line

    PubMed Central

    Mao, Ping; Zhang, Ershao; Chen, Yang; Liu, Likun; Rong, Daqing; Liu, Qingfeng; Li, Weiling

    2017-01-01

    The bark of Pinus massoniana is a traditional Chinese medicine for the treatment of various health disorders. Previous studies have demonstrated that P. massoniana bark extract (PMBE) may induce the apoptosis of hepatoma and cervical cancer cells. However, whether PMBE is able to inhibit the migration of lung cancer cells requires further investigation. In the current study, the effects of PMBE on the viability of human lung cancer A549 cells were detected using an MTT assay. The migration of lung cancer cells following exposure to PMBE were quantified using wound healing and Transwell assays, respectively. The expression levels of matrix metalloproteinase (MMP)-9 were determined using western blotting. The results revealed that PMBE significantly inhibited the growth of the lung cancer cells. In addition, the wound closure rate and the migration of the lung cancer cells were suppressed by PMBE. Furthermore, the expression levels of MMP-9 were reduced. These findings indicated that PMBE is able to restrict the migration and invasion of lung cancer cells, and that PMBE may serve as a novel therapeutic agent for patients with metastatic lung cancer in the future. PMID:28356994

  3. Treatment of Stage IV Non-small Cell Lung Cancer

    PubMed Central

    Evans, Tracey; Gettinger, Scott; Hensing, Thomas A.; VanDam Sequist, Lecia; Ireland, Belinda; Stinchcombe, Thomas E.

    2013-01-01

    Background: Stage IV non-small cell lung cancer (NSCLC) is a treatable, but not curable, clinical entity in patients given the diagnosis at a time when their performance status (PS) remains good. Methods: A systematic literature review was performed to update the previous edition of the American College of Chest Physicians Lung Cancer Guidelines. Results: The use of pemetrexed should be restricted to patients with nonsquamous histology. Similarly, bevacizumab in combination with chemotherapy (and as continuation maintenance) should be restricted to patients with nonsquamous histology and an Eastern Cooperative Oncology Group (ECOG) PS of 0 to 1; however, the data now suggest it is safe to use in those patients with treated and controlled brain metastases. Data at this time are insufficient regarding the safety of bevacizumab in patients receiving therapeutic anticoagulation who have an ECOG PS of 2. The role of cetuximab added to chemotherapy remains uncertain and its routine use cannot be recommended. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors as first-line therapy are the recommended treatment of those patients identified as having an EGFR mutation. The use of maintenance therapy with either pemetrexed or erlotinib should be considered after four cycles of first-line therapy in those patients without evidence of disease progression. The use of second- and third-line therapy in stage IV NSCLC is recommended in those patients retaining a good PS; however, the benefit of therapy beyond the third-line setting has not been demonstrated. In the elderly and in patients with a poor PS, the use of two-drug, platinum-based regimens is preferred. Palliative care should be initiated early in the course of therapy for stage IV NSCLC. Conclusions: Significant advances continue to be made, and the treatment of stage IV NSCLC has become nuanced and specific for particular histologic subtypes and clinical patient characteristics and according to the

  4. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  5. Nedaplatin sensitization of cisplatin-resistant human non-small cell lung cancer cells

    PubMed Central

    WANG, HUAN; ZHU, XIAOLI; HUANG, JING; CHEN, PINGSHENG; HAN, SHUHUA; YAN, XING

    2016-01-01

    Cisplatin (DDP) has been one of the most widely used chemotherapy drugs for advanced non-small cell lung cancer. However, the increase in the number of DDP-resistant cancer cells has become a major impediment in the clinical management of cancer. In the present study, for the first time, the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay was used to demonstrate that nedaplatin (NDP) could have a stronger inhibitory effect than DDP alone in DDP-resistant A549 (A549DDP) cells and that it could attenuate the resistance of these cells. Additionally, flow cytometry analysis showed that the apoptosis rate of these resistant cells when exposed to NDP was markedly increased and the number of cells in the G2 stage of the cell cycle was significantly increased. Furthermore, western blot analysis indicated that NDP decreased the protein expression of P-glycoprotein, tumor protein p53 and B-cell lymphoma 2, and increased the expression of Bcl-2-associated X protein, all of which could possibly improve the NDP intracellular drug concentration and promote cell apoptosis. These observations suggested that NDP could have higher efficacy in DDP-resistant lung cancer cells, and further studies applying more detailed analyses are warranted to elucidate the mechanism(s) behind this effect. PMID:27073518

  6. IMAGING DIAGNOSIS: COMPUTED TOMOGRAPHIC FINDINGS IN A CASE OF ADENOSQUAMOUS CARCINOMA OF THE HEAD AND NECK IN A CAT.

    PubMed

    Chow, Kathleen Ella; Krockenberger, Mark; Collins, David

    2016-01-01

    A 15-year-old female spayed domestic long-haired cat was referred for trismus, hypersalivation, and bilateral ocular discharge. On examination, the cat showed pain on palpation of the left zygomatic arch, palpable crepitus of the frontal region, and limited retropulsion of both globes. A contrast-enhanced sinonasal computed tomographic study was performed, showing facial distortion and extensive osteolysis of the skull, extending beyond the confines of the sinonasal and paranasal cavities. Additionally, soft tissue and fluid accumulation were observed in the nasal cavities and paranasal sinuses. Postmortem biopsy samples acquired from the calvarium yielded a histologic diagnosis of sinonasal adenosquamous carcinoma, a rare and particularly aggressive neoplasm previously only reported in the esophagus of one cat.

  7. GPR171 expression enhances proliferation and metastasis of lung cancer cells.

    PubMed

    Dho, So Hee; Lee, Kwang-Pyo; Jeong, Dongjun; Kim, Chang-Jin; Chung, Kyung-Sook; Kim, Ji Young; Park, Bum-Chan; Park, Sung Sup; Kim, Seon-Young; Kwon, Ki-Sun

    2016-02-16

    G protein-coupled receptors (GPCRs) are among the most significant therapeutic targets and some of them promote the growth and metastasis of cancer. Here, we show that an increase in the levels of GPR171 is crucial for lung cancer tumor progression in vitro and in vivo. Immunostaining of clinical samples indicated that GPR171 was overexpressed in 46.8% of lung carcinoma tissues. Depletion of GPR171 with an anti-GPR171 antibody decreased proliferation of lung carcinoma cells and attenuated tumor progression in a mouse xenograft model. Knockdown of GPR171 also inhibited migration and invasion of the lung cancer cell lines. Notably, inhibition of GPR171 synergistically enhanced the tumoricidal activity of an epidermal growth factor receptor (EGFR) inhibitor in lung cancer cells. These results indicate that GPR171 blockade is a promising antineoplastic strategy and provide a preclinical rationale for combined inhibition of GPR171 and EGFR.

  8. Biomarkers and Targeted Systemic Therapies in Advanced Non-Small Cell Lung Cancer

    PubMed Central

    Kumar, Mukesh; Vinicius, Ernani; Owonikoko, Taofeek K.

    2015-01-01

    The last decade has witnessed significant growth in therapeutic options for patients diagnosed with lung cancer. This is due in major part to our improved technological ability to interrogate the genomics of cancer cells, which has enabled the development of biologically rational anticancer agents. The recognition that lung cancer is not a single disease entity dates back many decades to the histological subclassification of malignant neoplasms of the lung into subcategories of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). While SCLC continues to be regarded as a single histologic and therapeutic category, the NSCLC subset has undergone additional subcategorizations with distinct management algorithms for specific histologic and molecular subtypes. The defining characteristics of these NSCLC subtypes have evolved into important tools for prognosis and for predicting the likelihood of benefit when patients are treated with anticancer agents. PMID:26187108

  9. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: Implications for hyperoxic lung injury

    SciTech Connect

    Bhakta, Kushal Y. Jiang, Weiwu; Couroucli, Xanthi I.; Fazili, Inayat S.; Muthiah, Kathirvel; Moorthy, Bhagavatula

    2008-12-01

    Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD.

  10. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  11. Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells.

    PubMed Central

    Leung, K B; Flint, K C; Brostoff, J; Hudspith, B N; Johnson, N M; Lau, H Y; Liu, W L; Pearce, F L

    1988-01-01

    Sodium cromoglycate and nedocromil sodium produced a dose dependent inhibition of histamine secretion from human pulmonary mast cells obtained by bronchoalveolar lavage and by enzymatic dissociation of lung parenchyma. Both compounds were significantly more active against the lavage cells than against the dispersed lung cells, and nedocromil sodium was an order of magnitude more effective than sodium cromoglycate against both cell types. Tachyphylaxis was observed with the parenchymal cells but not with the lavage cells. Nedocromil sodium and sodium cromoglycate also inhibited histamine release from the lavage cells of patients with sarcoidosis and extrinsic asthma. PMID:2462755

  12. Pneumonia carcinomatosa from small cell undifferentiated carcinoma of the lung presenting as reverse radiation pneumonitis

    SciTech Connect

    Adelstein, D.J.; Padhya, T.; Tomashefski, J.F. Jr.; Park, C.

    1988-01-01

    We describe a patient with recurrent small cell undifferentiated lung carcinoma after chemotherapy and mediastinal radiation therapy who presented with peripheral pulmonary infiltrates on chest radiograph. At autopsy the patient was found to have carcinomatous pneumonia confined to the radiographically abnormal lung. The descriptive term reverse radiation pneumonitis is applied in view of the striking nonsegmental distribution of these pulmonary infiltrates, which occurred only outside the irradiated field. In this patient, radiation therapy successfully controlled disease in the treated lung parenchyma, thus accounting for this unusual radiologic and histologic picture. Pneumonia carcinomatosa, occurring after lung irradiation, can therefore be added to the differential diagnosis of radiographic peripheral pulmonary infiltrates.

  13. Treatment Algorithms for Patients with Metastatic Non-Small Cell, Non-Squamous Lung Cancer

    PubMed Central

    Melosky, Barbara

    2014-01-01

    A number of developments have altered the treatment paradigm for metastatic non-small cell, non-squamous lung cancer. These include increasing knowledge of molecular signal pathways, as well as the outcomes of several large-scale trials. As a result, treatments are becoming more efficacious and more personalized, and are changing the management and prognosis of non-small cell lung cancer patients. This is resulting in increased survival in select patient groups. In this paper, a simplified algorithm for treating patients with metastatic non-small cell, non-squamous lung cancer is presented. PMID:25325013

  14. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    SciTech Connect

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang Yang, Xinghai Xiao, Jianru

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  15. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases. Comprehensive Review of the Recent Literature 2010–2012

    PubMed Central

    2013-01-01

    A conference, “Stem Cells and Cell Therapies in Lung Biology and Lung Diseases,” was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012. PMID:23869446

  16. Small-Cell Lung Cancer: Clinical Management and Unmet Needs New Perspectives for an Old Problem.

    PubMed

    Lo Russo, Giuseppe; Macerelli, Marianna; Platania, Marco; Zilembo, Nicoletta; Vitali, Milena; Signorelli, Diego; Proto, Claudia; Ganzinelli, Monica; Gallucci, Rosaria; Agustoni, Francesco; Fasola, Gianpiero; de Braud, Filippo; Garassino, Marina Chiara

    2017-01-01

    Small cell lung cancer is a highly aggressive, difficult to treat neoplasm. Among all lung tumors, small cell lung cancers account for about 20%. Patients typically include heavy smokers in 70s age group, presenting with symptoms such as intrathoracic tumors growth, distant spread or paraneoplastic syndromes at the time of diagnosis. A useful and functional classification divides small cell lung cancers into limited disease and extensive disease. Concurrent chemo-radiotherapy is the standard treatment for limited disease, with improved survival when combined with prophylactic cranial irradiation. Platinum compounds (cisplatin/carboplatin) plus etoposide remain the cornerstone for extensive disease. Nevertheless, despite high chemo- and radio-sensitivity of this cancer, nearly all patients relapse within the first two years and the prognosis is extremely poor. A deeper understanding about small cell lung cancer carcinogenesis led to develop and test a considerable number of new and targeted agents but the results are currently weak or insufficient. To date, small cell lung cancer is still a challenge for researchers. In this review, key aspects of small cell lung cancer management and controversial points of standard and new treatments will be discussed.

  17. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    PubMed Central

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  18. Ezh2 represses the basal cell lineage during lung endoderm development.

    PubMed

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation.

  19. Current and future molecular diagnostics in non-small-cell lung cancer.

    PubMed

    Li, Chun Man; Chu, Wing Ying; Wong, Di Lun; Tsang, Hin Fung; Tsui, Nancy Bo Yin; Chan, Charles Ming Lok; Xue, Vivian Wei Wen; Siu, Parco Ming Fai; Yung, Benjamin Yat Ming; Chan, Lawrence Wing Chi; Wong, Sze Chuen Cesar

    2015-01-01

    The molecular investigation of lung cancer has opened up an advanced area for the diagnosis and therapeutic management of lung cancer patients. Gene alterations in cancer initiation and progression provide not only information on molecular changes in lung cancer but also opportunities in advanced therapeutic regime by personalized targeted therapy. EGFR mutations and ALK rearrangement are important predictive biomarkers for the efficiency of tyrosine kinase inhibitor treatment in lung cancer patients. Moreover, epigenetic aberration and microRNA dysregulation are recent advances in the early detection and monitoring of lung cancer. Although a wide range of molecular tests are available, standardization and validation of assay protocols are essential for the quality of the test outcome. In this review, current and new advancements of molecular biomarkers for non-small-cell lung cancer will be discussed. Recommendations on future development of molecular diagnostic services will also be explored.

  20. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    PubMed

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E; Shay, Jerry W

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  1. CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation

    PubMed Central

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E.; Shay, Jerry W.

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients. PMID:25536195

  2. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    PubMed Central

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  3. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues.

    PubMed

    Foronjy, Robert F; Majka, Susan M

    2012-12-01

    Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.

  4. Epigenetic Regulation of EMT in Non-Small Cell Lung Cancer.

    PubMed

    O'Leary, Karen; Shia, Alice; Schmid, Peter

    2017-02-03

    Lung cancer remains the most diagnosed cancer in the world, with a high mortality rate and fewer therapeutic options. The most common lung cancer is non-small cell, which can consist of adenocarcinoma, squamous cell carcinoma and large cell lung carcinoma. As per all solid tumours, the changes that occur for the initiation and metastasis of lung cancer can be described using the EMT (epithelial mesenchymal transition). Cells progressing through EMT lose their epithelial cell characteristics, expressing more mesenchymal markers and are phenotypically different. The transition can be controlled by changes in various pathways, such as TGF-β, PI3K, MAPK, Hedgehog and Wnt. The changes in those pathways can be controlled epigenetically, via DNA methylation, histone modifications or changes in small/non-coding RNA. We will describe the epigenetic changes that occur in these pathways and how we can consider novel methods to generate a synthetic lethality target in an epigenetically regulated pathway in EMT.

  5. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells.

    PubMed

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  6. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer

    PubMed Central

    Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-01-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer. PMID:27689025

  7. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  8. Antibodies against Apoptotic Cells Present in End-stage Lung Disease Patients Do Not Correlate with Clinical Outcome after Lung Transplantation

    PubMed Central

    Budding, Kevin; van de Graaf, Eduard A.; Kardol-Hoefnagel, Tineke; Oudijk, Erik-Jan D.; Kwakkel-van Erp, Johanna M.; Hack, C. Erik; Otten, Henny G.

    2017-01-01

    Antibodies against HLA and non-HLA are associated with transplantation outcome. Recently, pretransplant serum IgG antibody levels against apoptotic cells were found to correlate with kidney allograft loss. We investigated the presence of these antibodies in lung transplantation (LTx) patients and evaluated the correlation of pre-LTx serum levels of IgG antibodies against apoptotic cells with LTx outcome. These cells included donor lung endothelial cells (ECs) obtained from lung perfusion fluid collected during LTx procedure. Cells were isolated, expanded in vitro, and analyzed as targets for antiapoptotic cell reactivity. Cultured cells exhibited EC morphology and were CD31+, CD13+, and vWF+. End-stage lung disease patients showed elevated serum IgG levels against apoptotic lung EC (p = 0.0018) compared to healthy controls. Interestingly, the levels of circulating antibodies directed against either apoptotic Jurkat cells or apoptotic lung ECs did not correlate, suggesting a target cell specificity. We observed no correlation between chronic or acute rejection and pre-LTx serum levels of antiapoptotic antibodies. Also, these levels did not differ between matched patients developing chronic rejection or not during follow-up or at the time of diagnosis, as they remained as high as prior to transplantation. Thus, circulating levels of antiapoptotic cell antibodies are elevated in end-stage lung disease patients, but our data do not correlate with outcome after LTx. PMID:28377770

  9. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells.

    PubMed

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W Michael; Das, Mita

    2014-04-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases.

  10. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells

    PubMed Central

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W. Michael

    2014-01-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases. PMID:24500281

  11. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells.

    PubMed

    Babar, Imran A; Czochor, Jennifer; Steinmetz, Allison; Weidhaas, Joanne B; Glazer, Peter M; Slack, Frank J

    2011-11-15

    miR-155 is a prominent microRNA (miRNA) that regulates genes involved in immunity and cancer-related pathways. miR-155 is overexpressed in lung cancer, which correlates with poor patient prognosis. It is unclear how miR-155 becomes increased in lung cancers and how this increase contributes to reduced patient survival. Here, we show that hypoxic conditions induce miR-155 expression in lung cancer cells and trigger a corresponding decrease in a validated target, FOXO3A. Furthermore, we find that increased levels of miR-155 radioprotects lung cancer cells, while inhibition of miR-155 radiosensitizes these cells. Moreover, we reveal a therapeutically important link between miR-155 expression, hypoxia, and irradiation by demonstrating that anti-miR-155 molecules also sensitize hypoxic lung cancer cells to irradiation. Our study helps explain how miR-155 becomes elevated in lung cancers, which contain extensive hypoxic microenvironments, and demonstrates that inhibition of miR-155 may have important therapeutic potential as a means to radiosensitize hypoxic lung cancer cells.

  12. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways.

    PubMed

    Zhu, Jian-Yun; Yang, Xue; Chen, Yue; Jiang, Ye; Wang, Shi-Jia; Li, Yuan; Wang, Xiao-Qian; Meng, Yu; Zhu, Ming-Ming; Ma, Xiao; Huang, Cong; Wu, Rui; Xie, Chun-Feng; Li, Xiao-Ting; Geng, Shan-Shan; Wu, Jie-Shu; Zhong, Cai-Yun; Han, Hong-Yu

    2017-02-15

    Cancer stem cells (CSCs) are highly implicated in the progression of human cancers. Thus, targeting CSCs may be a promising strategy for cancer therapy. Wnt/β-catenin and Sonic Hedgehog pathways play an important regulatory role in maintaining CSC characteristics. Natural compounds, such as curcumin, possess chemopreventive properties. However, the interventional effect of curcumin on lung CSCs has not been clarified. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We showed that the levels of lung CSC markers (CD133, CD44, ALDHA1, Nanog and Oct4) and the number of CD133-positive cells were significantly elevated in the sphere-forming cells. We further illustrated that curcumin efficiently abolished lung CSC traits, as evidenced by reduced tumorsphere formation, reduced number of CD133-positive cells, decreased expression levels of lung CSC markers, as well as proliferation inhibition and apoptosis induction. Moreover, we demonstrated that curcumin suppressed the activation of both Wnt/β-catenin and Sonic Hedgehog pathways. Taken together, our data suggested that curcumin exhibited its interventional effect on lung CSCs via inhibition of Wnt/β-catenin and Sonic Hedgehog pathways. These novel findings could provide new insights into the potential therapeutic application of curcumin in lung CSC elimination and cancer intervention. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Inflammatory cytokines, goblet cell hyperplasia and altered lung mechanics in Lgl1+/- mice

    PubMed Central

    2009-01-01

    Background Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned Lgl1, a developmentally regulated secreted glycoprotein in the lung. In rat, O2 toxicity caused reduced levels of Lgl1, which normalized during recovery. We report here on the generation of an Lgl1 knockout mouse in order to determine whether deficiency of Lgl1 is associated with arrested alveolarization and contributes to neonatal lung injury. Methods An Lgl1 knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the Lgl1 gene. To evaluate the pulmonary phenotype of Lgl1+/- mice, we assessed lung morphology, Lgl1 RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation. Results Absence of Lgl1 was lethal prior to lung formation. Postnatal Lgl1+/- lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of TH2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of Lgl1 was associated with elevated tropoelastin expression and altered pulmonary mechanics. Conclusion Our findings confirm that Lgl1 is essential for viability and is required for developmental processes that precede lung formation. Lgl1+/- mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. Lgl1 haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease. PMID:19772569

  14. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    PubMed

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p < 0.0001), and tumor size (p = 0.0116) in non-small-cell lung cancer patients. In lung adenocarcinoma patients, overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p < 0.0001), higher DNA ploidy level (p < 0.0001), and poor prognosis (hazard ratio = 2.39, confidence interval: 1.87-3.05, p < 0.0001). However, in lung squamous cell carcinoma patients, no significant association of cell division cycle 20 expression was observed with any clinical parameter or prognosis. Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  15. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model.

    PubMed

    Neuhaus, Winfried; Samwer, Fabian; Kunzmann, Steffen; Muellenbach, Ralf M; Wirth, Michael; Speer, Christian P; Roewer, Norbert; Förster, Carola Y

    2012-11-01

    The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.

  16. Innate lymphoid cells promote lung tissue homeostasis following acute influenza virus infection

    PubMed Central

    Monticelli, Laurel A.; Sonnenberg, Gregory F.; Abt, Michael C.; Alenghat, Theresa; Ziegler, Carly G.K.; Doering, Travis A.; Angelosanto, Jill M.; Laidlaw, Brian J.; Yang, Cliff Y.; Sathaliyawala, Taheri; Kubota, Masaru; Turner, Damian; Diamond, Joshua M.; Goldrath, Ananda W.; Farber, Donna L.; Collman, Ronald G.; Wherry, E. John; Artis, David

    2012-01-01

    Innate lymphoid cells (ILCs), a recently identified heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine but whether ILCs can influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed CD90, CD25, CD127 and T1-ST2. Strikingly, mouse ILCs accumulated in the lung following influenza virus infection and depletion of ILCs resulted in loss of airway epithelial integrity, decreased lung function and impaired airway remodeling. These defects could be restored by administration of the lung ILC product amphiregulin. Collectively, these results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis following influenza virus infection. PMID:21946417

  17. Pluripotent allospecific CD8+ effector T cells traffic to lung in murine obliterative airway disease.

    PubMed

    West, Erin E; Lavoie, Tera L; Orens, Jonathan B; Chen, Edward S; Ye, Shui Q; Finkelman, Fred D; Garcia, Joe G N; McDyer, John F

    2006-01-01

    Long-term success in lung transplantation is limited by obliterative bronchiolitis, whereas T cell effector mechanisms in this process remain incompletely understood. Using the mouse heterotopic allogeneic airway transplant model, we studied T cell effector responses during obliterative airways disease (OAD). Allospecific CD8+ IFN-gamma+ T cells were detected in airway allografts, with significant coexpression of TNF-alpha and granzyme B. Therefore, using IFN-gamma as a surrogate marker, we assessed the distribution and kinetics of extragraft allo-specific T cells during OAD. Robust allospecific IFN-gamma was produced by draining the lymph nodes, spleen, and lung mononuclear cells from allograft, but not isograft recipients by Day 14, and significantly decreased by Day 28. Although the majority of allospecific T cells were CD8+, allospecific CD4+ T cells were also detected in these compartments, with each employing distinct allorecognition pathways. An influx of pluripotent CD8+ effector cells with a memory phenotype were detected in the lung during OAD similar to those seen in the allografts and secondary lymphoid tissue. Antibody depletion of CD8+ T cells markedly reduced airway lumen obliteration and fibrosis at Day 28. Together, these data demonstrate that allospecific CD8+ effector T cells play an important role in OAD and traffic to the lung after heterotopic airway transplant, suggesting that the lung is an important immunologic site, and perhaps a reservoir, for effector cells during the rejection process.

  18. Spatiotemporal quantification of cell dynamics in the lung following influenza virus infection

    NASA Astrophysics Data System (ADS)

    Yin, Lu; Xu, Shuoyu; Cheng, Jierong; Zheng, Dahai; Limmon, Gino V.; Leung, Nicola H. N.; Rajapakse, Jagath C.; Chow, Vincent T. K.; Chen, Jianzhu; Yu, Hanry

    2013-04-01

    Lung injury caused by influenza virus infection is widespread. Understanding lung damage and repair progression post infection requires quantitative spatiotemporal information on various cell types mapping into the tissue structure. Based on high content images acquired from an automatic slide scanner, we have developed algorithms to quantify cell infiltration in the lung, loss and recovery of Clara cells in the damaged bronchioles and alveolar type II cells (AT2s) in the damaged alveolar areas, and induction of pro-surfactant protein C (pro-SPC)-expressing bronchiolar epithelial cells (SBECs). These quantitative analyses reveal: prolonged immune cell infiltration into the lung that persisted long after the influenza virus was cleared and paralleled with Clara cell recovery; more rapid loss and recovery of Clara cells as compared to AT2s; and two stages of SBECs from Scgb1a1+ to Scgb1a1-. These results provide evidence supporting a new mechanism of alveolar repair where Clara cells give rise to AT2s through the SBEC intermediates and shed light on the understanding of the lung damage and repair process. The approach and algorithms in quantifying cell-level changes in the tissue context (cell-based tissue informatics) to gain mechanistic insights into the damage and repair process can be expanded and adapted in studying other disease models.

  19. Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium.

    PubMed

    El-Hashash, Ahmed H K; Turcatel, Gianluca; Al Alam, Denise; Buckley, Sue; Tokumitsu, Hiroshi; Bellusci, Saverio; Warburton, David

    2011-04-01

    Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.

  20. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  1. Novel Systemic Therapies for Small Cell Lung Cancer

    PubMed Central

    Rudin, Charles M.; Hann, Christine L.; Peacock, Craig D.; Watkins, D. Neil

    2014-01-01

    A diagnosis of small cell lung cancer (SCLC) today confers essentially the same terrible prognosis that it did 25 years ago, when common use of cisplatin-based chemotherapy began for this disease. In contrast to past decades of research on many other solid tumors, studies of combination chemotherapy using later generation cytotoxics and targeted kinase inhibitors have not had a significant impact on standard care for SCLC. The past few years have seen suggestions of incrementally improved outcomes using standard cytotoxics, including cisplatin-based combination studies of irinotecan and amrubicin by Japanese research consortia. Confirmatory phase III studies of these agents are ongoing in the United States. Antiangiogenic strategies are also of primary interest and are in late-phase testing. Several novel therapeutics, including high-potency small molecule inhibitors of Bcl-2 and the Hedgehog signaling pathway, and a recently discovered replication-competent picornavirus, have shown remarkable activity against SCLC in preclinical models and are currently in simultaneous phase I clinical development. Novel therapeutic approaches based on advances in understanding of the biology of SCLC have the potential to radically change the outlook for patients with this disease. PMID:18377849

  2. Oligometastatic non-small-cell lung cancer: current treatment strategies

    PubMed Central

    Richard, Patrick J; Rengan, Ramesh

    2016-01-01

    The oligometastatic disease theory was initially described in 1995 by Heilman and Weichselbaum. Since then, much work has been performed to investigate its existence in many solid tumors. This has led to subclassifications of stage IV cancer, which could redefine our treatment approaches and the therapeutic outcomes for this historically “incurable” entity. With a high incidence of stage IV disease, non-small-cell lung cancer (NSCLC) remains a difficult cancer to treat and cure. Recent work has proven the existence of an oligometastatic state in NSCLC in terms of properly selecting patients who may benefit from aggressive therapy and experience long-term overall survival. This review discusses the current treatment approaches used in oligometastatic NSCLC and provides the evidence and rationale for each approach. The prognostic factors of many trials are discussed, which can be used to properly select patients for aggressive treatment regimens. Future advances in both molecular profiling of NSCLC to find targetable mutations and investigating patient selection may increase the number of patients diagnosed with oligometastatic NSCLC. As this disease entity increases, it is of utmost importance for oncologists treating NSCLC to be aware of the current treatment strategies that exist and the potential advantages/disadvantages of each. PMID:28210169

  3. Gemcitabine for the treatment of advanced nonsmall cell lung cancer.

    PubMed

    Toschi, Luca; Cappuzzo, Federico

    2009-02-18

    Gemcitabine is a pyrimidine nucleoside antimetabolite agent which is active in several human malignancies, including nonsmall cell lung cancer (NSCLC). Because of its acceptable toxicity profile, with myelosuppression being the most common adverse event, gemcitabine can be safely combined with a number of cytotoxic agents, including platinum derivatives and new-generation anticancer compounds. In fact, the combination of gemcitabine and cisplatin is a first-line treatment for patients with advanced NSCLC, pharmacoeconomic data indicating that it represents the most cost-effective regimen among platinum-based combinations with third-generation cytotoxic drugs. The drug has been investigated in the context of nonplatinum-based regimens in a number of prospective clinical trials, and might provide a suitable alternative for patients with contraindications to platinum. Recently, gemcitabine-based doublets have been successfully tested in association with novel targeted agents with encouraging results, providing further evidence for the role of the drug in the treatment of NSCLC. In the last few years several attempts have been pursued in order to identify molecular predictors of gemcitabine activity, and recent data support the feasibility of genomic-based approaches to customize treatment with the ultimate goal of improving patient outcome.

  4. TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers

    PubMed Central

    Leithner, Katharina; Hirschmugl, Birgit; Li, Yingji; Tang, Bi; Papp, Rita; Nagaraj, Chandran; Stacher, Elvira; Stiegler, Philipp; Lindenmann, Jörg; Olschewski, Andrea; Olschewski, Horst; Hrzenjak, Andelko

    2016-01-01

    Lung cancer is the leading cause of cancer deaths worldwide; survival times are poor despite therapy. The role of the two-pore domain K+ (K2P) channel TASK-1 (KCNK3) in lung cancer is at present unknown. We found that TASK-1 is expressed in non-small cell lung cancer (NSCLC) cell lines at variable levels. In a highly TASK-1 expressing NSCLC cell line, A549, a characteristic pH- and hypoxia-sensitive non-inactivating K+ current was measured, indicating the presence of functional TASK-1 channels. Inhibition of TASK-1 led to significant depolarization in these cells. Knockdown of TASK-1 by siRNA significantly enhanced apoptosis and reduced proliferation in A549 cells, but not in weakly TASK-1 expressing NCI-H358 cells. Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels, thus TASK-1 may potentially influence Na+-coupled nutrient transport. In contrast to TASK-1, which was not differentially expressed in lung cancer vs. normal lung tissue, we found the Na+-coupled nutrient transporters, SLC5A3, SLC5A6, and SLC38A1, transporters for myo-inositol, biotin and glutamine, respectively, to be significantly overexpressed in lung adenocarcinomas. In summary, we show for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC. PMID:27294516

  5. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  6. Increased T cell glucose uptake reflects acute rejection in lung grafts

    PubMed Central

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [18F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [18F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow-cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8+ T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients PMID:23927673

  7. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  8. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  9. CDO, an Hh-coreceptor, mediates lung cancer cell proliferation and tumorigenicity through Hedgehog signaling.

    PubMed

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.

  10. Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development.

    PubMed

    Van Lommel, A

    2001-06-01

    The airway and alveolar epithelia contain pulmonary neuroendocrine cells whose structure indicates an endocrine function. They are also in contact with sensory nerve fibres. These cells often aggregate into distinct corpuscles-neuroepithelial bodies-and carry membrane receptors sensitive to a number of stimuli, including hypoxia and nicotine. They synthesise, store and release a number of bioactive substances such as serotonin, calcitonin gene-related peptide and the mitogen bombesin. When these are released they contribute to redistribution of pulmonary blood flow, regulation of bronchomotor tone, modulation of the immune response, stimulation of sensory nerve fibres and regulation of lung growth and development. Pulmonary neuroendocrine cells and neuroepithelial bodies seem to be most important in the fetal and neonatal lung as regulators of airway development and hypoxia-sensitive chemoreceptors. There is a link between these cells and specific types of lung cancer and their involvement in lung and paediatric pathology may be profound.

  11. CDO, an Hh-Coreceptor, Mediates Lung Cancer Cell Proliferation and Tumorigenicity through Hedgehog Signaling

    PubMed Central

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling. PMID:25369201

  12. Circulating tumor cells in lung cancer: detection methods and clinical applications.

    PubMed

    Yu, Na; Zhou, Jia; Cui, Fang; Tang, Xiaokui

    2015-04-01

    Circulating tumor cells (CTCs) are tumor cells that have disseminated from primary and metastatic sites, and circulate in the bloodstream. Advanced immunological and molecular-based methods can be used to detect and analyze the cells with the characteristics of tumor cells, and can be detected and analyzed in the blood of cancer patients. The most commonly used methods in lung cancer combine the processes of immunomagnetic enrichment and immunocytochemical detection, morphology-based enrichment coupled with reverse transcriptase polymerase chain reaction (RT-PCR), and RT-PCR alone. CTC analysis is considered a liquid biopsy approach for early diagnosis, risk stratification, evaluation of curative efficacy, and early detection of lung cancer relapse. In this review, we discuss the present techniques for analyzing CTCs, and the restrictions of using these methods in lung cancer. We also review the clinical studies in lung cancer and discuss the underlying associations between these studies and their future applications to this disease.

  13. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    PubMed

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC.

  14. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  15. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action

    PubMed Central

    Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah

    2012-01-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971

  16. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer.

    PubMed Central

    Stone, J P; Wagner, D D

    1993-01-01

    Activated platelets and stimulated endothelial cells express P-selectin, an integral membrane protein receptor that binds monocytes and neutrophils. P-selectin mediates adhesion to glycoproteins with carbohydrate structures containing sialyl-Lewis X. Since many carcinoma cells also express these carbohydrate structures and are known to interact with platelets, we asked whether P-selectin may mediate this interaction. Both small cell lung cancer and neuroblastoma cell lines bound to activated platelets, and this interaction was blocked with inhibitory anti-P-selectin antibodies and by pretreatment of these cancer cells with neuraminidase or trypsin. Platelet binding to the small cell lung cancer cells was not inhibited with anti-GP IIb-IIIa antibody or Arg-Gly-Asp-Ser peptide. Pretreatment of the neuroblastoma cells with inhibitors of N-linked carbohydrate biosynthesis had little effect on binding to P-selectin, indicating that relevant carbohydrate ligand(s) may be O-linked. In addition, lipospheres containing P-selectin specifically bound to cryostat sections derived from a small cell lung tumor and two neuroblastoma tumors, but not to sections of normal lung. These observations demonstrate that P-selectin mediates binding of platelets to small cell lung cancer and to neuroblastoma and suggest a possible role for this lectin in metastasis. Images PMID:7688763

  17. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells.

    PubMed

    Sakuma, Yuji; Matsukuma, Shoichi; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Koizume, Shiro; Sekiguchi, Hironobu; Saito, Haruhiro; Nakayama, Haruhiko; Kameda, Yoichi; Yokose, Tomoyuki; Oguni, Sachiko; Niki, Toshiro; Miyagi, Yohei

    2013-10-01

    Lung cancers harboring epidermal growth factor receptor (EGFR) mutations depend on constitutive activation of the kinase for survival. Although most EGFR-mutant lung cancers are sensitive to EGFR tyrosine kinase inhibitors (TKIs) and shrink in response to treatment, acquired resistance to TKI therapy is common. We demonstrate here that two EGFR-mutated lung adenocarcinoma cell lines, HCC827 and HCC4006, contain a subpopulation of cells that have undergone epithelial-to-mesenchymal transition and survive independent of activated EGFR. These EGFR-independent cancer cells, herein termed gefitinib-resistant (GR) cells, demonstrate higher levels of basal autophagy than their parental cells and thrive under hypoxic, reduced-serum conditions in vitro; this somewhat simulates the hypoxic environment common to cancerous tissues. We show that depletion of the essential autophagy gene, ATG5, by small interfering RNA (siRNA) or chloroquine, an autophagy inhibitor, markedly reduces GR cell viability under hypoxic conditions. Moreover, we show a significant elevation in caspase activity in GR cells following knockdown of ATG5. These results suggest that GR cells can evade apoptosis and survive in hostile, hypoxic environments with constant autophagic flux. We also show the presence of autophagosomes in some cancer cells from patient samples, even in untreated EGFR-mutant lung cancer tissue samples. Together, our results indicate that autophagy inhibitors alone or in combination with EGFR TKIs may be an effective approach for the treatment of EGFR-mutant lung cancers, where basal autophagy of some cancer cells is upregulated.

  18. Cell death in cancer therapy of lung adenocarcinoma.

    PubMed

    Zagryazhskaya, Anna; Gyuraszova, Katarina; Zhivotovsky, Boris

    2015-01-01

    Lung cancer is the main cause of all cancer-related deaths in the world, with lung adenocarcinoma (ADC) being the most common subtype of this fatal disease. Lung ADC is often diagnosed at advanced stages involving disseminated metastatic tumors. This is particularly important for the successful development of new cancer therapy approaches. The high resistance of lung ADC to conventional radio- and chemotherapies represents a major challenge to treatment effectiveness. Here we discuss recent progress in understanding the mechanisms of ADC's broad resistance to treatment and its possible therapeutic implications. A number of driving oncogenic alterations were identified in a subset of lung ADCs, making them suitable for targeted therapies directed towards specific cancer-associated molecular changes. In addition, we discuss the molecular aberrations common in lung ADC that are currently being exploited or are potentially important for targeted cancer therapy, as well as limitations of this type of therapy. Furthermore, we highlight possible treatment modalities that hold promise for overcoming resistance to targeted therapies as well as alternative treatment options such as immunotherapies that are potentially promising for improving the clinical outcome of lung ADC patients.

  19. Detection of a novel stem cell probably involved in normal turnover of the lung airway epithelium.

    PubMed

    Ortega-Martínez, Marta; Rodríguez-Flores, Laura E; de-la-Garza-González, Carlos; Ancer-Rodríguez, Jesús; Jaramillo-Rangel, Gilberto

    2015-11-01

    Regeneration of the lung airway epithelium after injury has been extensively studied. In contrast, analysis of its turnover in healthy adulthood has received little attention. In the classical view, this epithelium is maintained in the steady-state by the infrequent proliferation of basal or Clara cells. The intermediate filament protein nestin was initially identified as a marker for neural stem cells, but its expression has also been detected in other stem cells. Lungs from CD1 mice at the age of 2, 6, 12, 18 or 24 months were fixed in neutral-buffered formalin and paraffin-embedded. Nestin expression was examined by an immunohistochemical peroxidase-based method. Nestin-positive cells were detected in perivascular areas and in connective tissue that were in close proximity of the airway epithelium. Also, nestin-positive cells were found among the cells lining the airway epithelium. These findings suggest that nestin-positive stem cells circulate in the bloodstream, transmigrate through blood vessels and localize in the lung airway epithelium to participate in its turnover. We previously reported the existence of similar cells able to differentiate into lung chondrocytes. Thus, the stem cell reported here might be a bone marrow-derived mesenchymal stem cell (BMDMSC) able to generate several types of lung tissues. In conclusion, our findings indicate that there exist a BMDMSC in healthy adulthood that participates in the turnover of the lung airway epithelium. These findings may improve our knowledge about the lung stem cell biology and also provide novel approaches to therapy for devastating pulmonary diseases.

  20. Poloxamer 188 Facilitates the Repair of Alveolus Resident Cells in Ventilator-injured Lungs

    PubMed Central

    Plataki, Maria; Lee, Yang D.; Rasmussen, Deborah L.

    2011-01-01

    Rationale: Wounded alveolus resident cells are identified in human and experimental acute respiratory distress syndrome models. Poloxamer 188 (P188) is an amphiphilic macromolecule shown to have plasma membrane–sealing properties in various cell types. Objectives: To investigate whether P188 (1) protects alveolus resident cells from necrosis and (2) is associated with reduced ventilator-induced lung injury in live rats, isolated perfused rat lungs, and scratch and stretch–wounded alveolar epithelial cells. Methods: Seventy-four live rats and 18 isolated perfused rat lungs were ventilated with injurious or protective strategies while infused with P188 or control solution. Alveolar epithelial cell monolayers were subjected to scratch or stretch wounding in the presence or absence of P188. Measurements and Main Results: P188 was associated with fewer mortally wounded alveolar cells in live rats and isolated perfused lungs. In vitro, P188 reduced the number of injured and necrotic cells, suggesting that P188 promotes cell repair and renders plasma membranes more resilient to deforming stress. The enhanced cell survival was accompanied by improvement in conventional measures of lung injury (peak airway pressure, wet-to-dry weight ratio) only in the ex vivo–perfused lung preparation and not in the live animal model. Conclusions: P188 facilitates plasma membrane repair in alveolus resident cells, but has no salutary effects on lung mechanics or vascular barrier properties in live animals. This discordance may have pathophysiological significance for the interdependence of different injury mechanisms and therapeutic implications regarding the benefits of prolonging the life of stress-activated cells. PMID:21778295

  1. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  2. Circulating Aneuploid Cells Detected in the Blood of Patients with Infectious Lung Diseases

    PubMed Central

    Kim, Hongsun; Cho, Jong Ho; Sonn, Chung-Hee; Kim, Jae-Won; Choi, Yul; Lee, Jinseon; Kim, Jhingook

    2017-01-01

    The identification of circulating tumor cells (CTCs) is clinically important for diagnosing cancer. We have previously developed a size-based filtration platform followed by epithelial cell adhesion molecule immunofluorescence staining for detecting CTCs. To characterize CTCs independently of cell surface protein expression, we incorporated a chromosomal fluorescence in situ hybridization (FISH) assay to detect abnormal copy numbers of chromosomes in cells collected from peripheral blood samples by the size-based filtration platform. Aneuploid cells were detected in the peripheral blood of patients with lung cancer. Unexpectedly, aneuploid cells were also detected in the control group, which consisted of peripheral blood samples from patients with benign lung diseases, such as empyema necessitatis and non-tuberculous mycobacterial lung disease. These findings suggest that chromosomal abnormalities are observed not only in tumor cells, but also in benign infectious diseases. Thus, our findings present new considerations and bring into light the possibility of false positives when using FISH for cancer diagnosis. PMID:28382274

  3. An Official American Thoracic Society Workshop Report 2015. Stem Cells and Cell Therapies in Lung Biology and Diseases.

    PubMed

    Wagner, Darcy E; Cardoso, Wellington V; Gilpin, Sarah E; Majka, Susan; Ott, Harald; Randell, Scott H; Thébaud, Bernard; Waddell, Thomas; Weiss, Daniel J

    2016-08-01

    The University of Vermont College of Medicine, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, Cystic Fibrosis Foundation, European Respiratory Society, International Society for Cellular Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 27 to 30, 2015, at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This 10th anniversary conference was a follow up to five previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, 2011, and 2013. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and respiratory disease foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.

  4. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  5. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  6. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  7. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  8. Surfactant treatment effects on lung structure and type II cells of preterm ventilated lambs.

    PubMed

    Pinkerton, K E; Ikegami, M; Dillard, L M; Jobe, A H

    2000-05-01

    We evaluated surfactant treatment effects on lung morphology and alveolar type II cells of preterm ventilated lambs. Lambs were ventilated for 10 h following treatment of the right lung with natural surfactant. Lung parenchyma from the surfactant-treated right and the untreated left lung was compared morphometrically. Mechanical ventilation without surfactant resulted in distention of alveolar ducts accompanied by shallowing and loss of well-defined alveoli without disruption of collagen or elastin fibers. Surfactant treatment almost completely prevented these changes. The percent of normal parenchyma was 82 +/- 7% in surfactant-treated lobes and 26 +/- 5% in the nontreated lobes (p < 0.05). Type II cells became flatter in lungs ventilated without surfactant, and cell shape was preserved by surfactant treatment. The volume densities of lamellar bodies and multivesicular bodies in alveolar type II cells were not changed by surfactant treatment. With or without surfactant treatment, mechanical ventilation was associated with a shift in lamellar body distribution to a smaller size and a decrease in glycogen content of type II cells. Surfactant treatment of the preterm lung prevents alveolar distortion and atelectasis, but does not result in changes in subcellular organelles in immature type II cells.

  9. Alternative splicing isoform of T cell factor 4K suppresses the proliferation and metastasis of non-small cell lung cancer cells.

    PubMed

    Fan, Y C; Min, L; Chen, H; Liu, Y L

    2015-10-30

    The Wnt pathway has been implicated in the initiation, progression, and metastasis of lung cancer. T cell factor 4, a member of TCF/LEF family, acts as a transcriptional factor for Wnt pathways in lung cancer. Increasing amounts of evidence have shown that TCF-4 has multiple alternative splicing isoforms with transactivation or transrepression activity toward the Wnt pathway. Here, we found the presence of multiple TCF-4 isoforms in lung cancer cell lines and in normal bronchial epithelial cells. TCF-4K isoform expression was significantly decreased in lung cancer cells compared with normal bronchial epithelial cells and was identified as a transcriptional suppressor of the Wnt pathway in non-small cell lung carcinoma (NSCLC). Overexpression of TCF-4K significantly inhibited the proliferation and migration of NSCLC cells. Collectively, our data indicate that TCF-4K functions as a tumor suppressor in NSCLC by down-regulating the Wnt pathway.

  10. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells.

    PubMed

    Hooda, Jagmohan; Cadinu, Daniela; Alam, Md Maksudul; Shah, Ajit; Cao, Thai M; Sullivan, Laura A; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  11. Effect of clarythromycin on the distant metastases of human lung cancer cells in SCID mice.

    PubMed

    Parajuli, P; Yano, S; Hanibuchi, M; Nokihara, H; Shinohara, T; Sone, S

    1998-02-01

    Recently, the use of macrolides is suggested to be therapeutically effective in prolonging the survival of patients with inoperable non-small cell lung cancer. The purpose of this study was to examine therapeutic effects of a macrolide, clarythromycin (CAM) on the metastastic developments of two different human non-small cell lung cancers (squamous cell lung carcinoma RERF-LC-AI, and adenocarcinoma PC-14) in severe combined immunodeficient (SCID) mice depleted or undepleted of natural killer (NK) cells, respectively. CAM, injected subcutaneously at doses of 5 and 10 mg/kg body weight/day from day 7 to 41 after i.v. inoculation of human lung cancer cells, was not effective in inhibiting their distant organ metastases in SCID mice. CAM at concentrations of less than 10 micrograms/ml did not have a direct influence on the proliferation of these tumor cells in vitro. Although CAM alone was not effective in augmenting NK activity, it augmented the IL-2-induced killer (LAK) activity against Daudi cells in vitro. These results suggest that CAM alone may not be enough to control the spread of non-small cell lung cancer in the patient with T cell dysfunction.

  12. Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells.

    PubMed

    Hung, Jen-Yu; Wen, Ching-Wen; Hsu, Ya-Ling; Lin, En-Shyh; Huang, Ming-Shyan; Chen, Chung-Yi; Kuo, Po-Lin

    2013-01-01

    This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.

  13. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer.

    PubMed

    Nakano, Tetsuhiro; Shimizu, Kimihiro; Kawashima, Osamu; Kamiyoshihara, Mitsuhiro; Kakegawa, Seiichi; Sugano, Masayuki; Ibe, Takashi; Nagashima, Toshiteru; Kaira, Kyoichi; Sunaga, Noriaki; Ohtaki, Youichi; Atsumi, Jun; Takeyoshi, Izumi

    2012-11-01

    Convenient and reliable multiple organ metastasis model systems might contribute to understanding the mechanism(s) of metastasis of lung cancer, which may lead to overcoming metastasis and improvement in the treatment outcome of lung cancer. We isolated a highly metastatic subline, PC14HM, from the human pulmonary adenocarcinoma cell line, PC14, using an in vivo selection method. The expression of 34,580 genes was compared between PC14HM and parental PC14 by cDNA microarray analysis. Among the differentially expressed genes, expression of four genes in human lung cancer tissues and adjacent normal lung tissues were compared using real-time reverse transcription polymerase chain reaction. Although BALB/c nude mice inoculated with parental PC14 cells had few metastases, almost all mice inoculated with PC14HM cells developed metastases in multiple organs, including the lung, bone and adrenal gland, the same progression seen in human lung cancer. cDNA microarray analysis revealed that 981 genes were differentially (more than 3-fold) expressed between the two cell lines. Functional classification revealed that many of those genes were associated with cell growth, cell communication, development and transcription. Expression of three upregulated genes (HRB-2, HS3ST3A1 and RAB7) was higher in human cancer tissue compared to normal lung tissue, while expression of EDG1, which was downregulated, was lower in the cancer tissue compared to the normal lung. These results suggest that the newly established PC14HM cell line may provide a mouse model of widespread metastasis of lung cancer. This model system may provide insights into the key genetic determinants of widespread metastasis of lung cancer.

  14. CAR mediates efficient tumor engraftment of mesenchymal type lung cancer cells.

    PubMed

    Veena, Mysore S; Qin, Min; Andersson, Asa; Sharma, Sherven; Batra, Raj K

    2009-08-01

    The coxsackie-adenovirus receptor (CAR) is a developmentally regulated intercellular adhesion molecule that was previously observed to be required for efficient tumor formation. To confirm that observation, we compared the tumorigenicity of clonally derived test and control cell subsets that were genetically modified for CAR. Silencing CAR in lung cancer cells with high constitutive expression reduced engraftment efficiency. Conversely, overexpressing CAR in lung cancer cells with low constitutive expression did not affect tumor formation or growth kinetics. A blocking antibody to the extracellular domain of CAR inhibited tumor engraftment, implicating that domain as being important to this process. However, differences in adhesion properties attributable to this domain (barrier function and aggregation) could not be distinguished in the test groups in vitro, and the mechanisms underlying CAR's contribution to tumor engraftment remain elusive. Because high CAR cells displayed a spindle-shaped morphology at baseline, we considered whether this expression was an accompaniment of other mesenchymal features in these lung cancer cells. Molecular correlates of CAR were compared in model epithelial and mesenchymal type lung cancer cells. CAR expression is associated with an absence of E-cadherin, diminished expression of alpha- and gamma-catenin, and increased Zeb1, Snail, and vimentin expression in lung cancer cells. In contrast, epithelial type (NCI-H292, Calu3) lung cancer cells show comparatively low CAR expression. These data suggest that if the mesenchymal cell phenotype is an accurate measure of an undifferentiated and invasive state, then CAR expression may be more closely aligned with this phenotype of lung cancer cells.

  15. Influenza Infection in Mice Induces Accumulation of Lung Mast Cells through the Recruitment and Maturation of Mast Cell Progenitors

    PubMed Central

    Zarnegar, Behdad; Mendez-Enriquez, Erika; Westin, Annika; Söderberg, Cecilia; Dahlin, Joakim S.; Grönvik, Kjell-Olov; Hallgren, Jenny

    2017-01-01

    Mast cells (MCs) are powerful immune cells that mature in the peripheral tissues from bone marrow (BM)-derived mast cell progenitors (MCp). Accumulation of MCs in lung compartments where they are normally absent is thought to enhance symptoms in asthma. The enrichment of lung MCs is also observed in mice subjected to models of allergic airway inflammation. However, whether other types of lung inflammation trigger increased number of MCp, which give rise to MCs, is unknown. Here, mouse-adapted H1N1 influenza A was used as a model of respiratory virus infection. Intranasal administration of the virus induced expression of VCAM-1 on the lung vascular endothelium and an extensive increase in integrin β7hi lung MCp. Experiments were performed to distinguish whether the influenza-induced increase in the number of lung MCp was triggered mainly by recruitment or in situ cell proliferation. A similar proportion of lung MCp from influenza-infected and PBS control mice were found to be in a proliferative state. Furthermore, BM chimeric mice were used in which the possibility of influenza-induced in situ cell proliferation of host MCp was prevented. Influenza infection in the chimeric mice induced a similar number of lung MCp as in normal mice. These experiments demonstrated that recruitment of MCp to the lung is the major mechanism behind the influenza-induced increase in lung MCp. Fifteen days post-infection, the influenza infection had elicited an immature MC population expressing intermediate levels of integrin β7, which was absent in controls. At the same time point, an increased number of toluidine blue+ MCs was detected in the upper central airways. When the inflammation was resolved, the MCs that accumulated in the lung upon influenza infection were gradually lost. In summary, our study reveals that influenza infection induces a transient accumulation of lung MCs through the recruitment and maturation of MCp. We speculate that temporary augmented numbers of lung MCs

  16. Lung Radiofrequency Ablation for the Treatment of Unresectable Recurrent Non-Small-Cell Lung Cancer After Surgical Intervention

    SciTech Connect

    Kodama, Hiroshi Yamakado, Koichiro; Takaki, Haruyuki; Kashima, Masataka; Uraki, Junji; Nakatsuka, Atsuhiro; Takao, Motoshi; Taguchi, Osamu; Yamada, Tomomi; Takeda, Kan

    2012-06-15

    Purpose: A retrospective evaluation was done of clinical utility of lung radiofrequency (RF) ablation in recurrent non-small-cell lung cancer (NSCLC) after surgical intervention. Methods: During May 2003 to October 2010, 44 consecutive patients (26 male and 18 female) received curative lung RF ablation for 51 recurrent NSCLC (mean diameter 1.7 {+-} 0.9 cm, range 0.6 to 4.0) after surgical intervention. Safety, tumor progression rate, overall survival, and recurrence-free survival were evaluated. Prognostic factors were evaluated in multivariate analysis. Results: A total of 55 lung RF sessions were performed. Pneumothorax requiring pluerosclerosis (n = 2) and surgical suture (n = 1) were the only grade 3 or 4 adverse events (5.5%, 3 of 55). During mean follow-up of 28.6 {+-} 20.3 months (range 1 to 98), local tumor progression was found in 5 patients (11.4%, 5 of 44). The 1-, 3-, and 5-year overall survival rates were 97.7, 72.9, and 55.7%, respectively. The 1- and 3-year recurrence-free survival rates were 76.7 and 41.1%, respectively. Tumor size and sex were independent significant prognostic factors in multivariate analysis. The 5-year survival rates were 73.3% in 18 women and 60.5% in 38 patients who had small tumors measuring {<=}3 cm. Conclusion: Our results suggest that lung RF ablation is a safe and useful therapeutic option for obtaining long-term survival in treated patients.

  17. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  18. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy.

    PubMed

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.

  19. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  20. Crizotinib for Advanced Non-Small Cell Lung Cancer

    Cancer.gov

    A summary of results from an international phase III clinical trial that compared crizotinib versus chemotherapy in previously treated patients with advanced lung cancer whose tumors have an EML4-ALK fusion gene.

  1. Knockdown of Aurora-B inhibits the growth of non-small cell lung cancer A549 cells.

    PubMed

    Yu, Jing Jing; Zhou, Long Dian; Zhao, Tian Tian; Bai, Wei; Zhou, Jing; Zhang, Wei

    2015-09-01

    Elevated expression of Aurora-B affects cell apoptosis and proliferation in a variety of solid tumors. However, the role of Aurora-B has been poorly evaluated in non-small cell lung cancer (NSCLC). In the present study, it was found that Aurora-B was overexpressed in tissue specimens obtained from 174 patients with lung cancer. It was also demonstrated that knockdown of Aurora-B induces apoptosis and inhibits the growth of lung cancer A549 cells in vitro and in vivo. Furthermore, it was found that silencing Aurora-B decreased the activity of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Therefore, it was concluded that knockdown of Aurora-B induces apoptosis and inhibits growth in NSCLC A549 cells, in addition to inhibiting the activity of the PI3K/AKT signaling pathway. Targeting Aurora-B may provide a novel target for lung cancer therapy.

  2. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung

    PubMed Central

    Marconett, Crystal N.; Juul, Nicholas; Wang, Hongjun; Liu, Yixin; Flodby, Per; Laird-Offringa, Ite A.; Minoo, Parviz

    2015-01-01

    Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼20–30% of NKX2.1+ (or thyroid transcription factor 1+) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1+ cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX+ cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5+ cells were NKX2.1+. HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung. PMID:26545903

  3. Radiation Therapy and MK-3475 for Patients With Recurrent/Metastatic Head and Neck Cancer, Renal Cell Cancer, Melanoma, and Lung Cancer

    ClinicalTrials.gov

    2016-10-18

    Head and Neck Squamous Cell Carcinoma; Metastatic Renal Cell Cancer; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IV Lung Cancer; Stage IV Skin Melanoma

  4. Photodynamic therapy for the treatment of non-small cell lung cancer

    PubMed Central

    Simone, Charles B; Friedberg, Joseph S; Glatstein, Eli; Stevenson, James P; Sterman, Daniel H; Hahn, Stephen M; Cengel, Keith A

    2012-01-01

    Photodynamic therapy is increasingly being utilized to treat thoracic malignancies. For patients with early-stage non-small cell lung cancer, photodynamic therapy is primarily employed as an endobronchial therapy to definitely treat endobronchial, roentgenographically occult, or synchronous primary carcinomas. As definitive monotherapy, photodynamic therapy is most effective in treating bronchoscopically visible lung cancers ≤1 cm with no extracartilaginous invasion. For patients with advanced-stage non-small cell lung cancer, photodynamic therapy can be used to palliate obstructing endobronchial lesions, as a component of definitive multi-modality therapy, or to increase operability or reduce the extent of operation required. A review of the available medical literature detailing all published studies utilizing photodynamic therapy to treat at least 10 patients with non-small cell lung cancer is performed, and treatment recommendations and summaries for photodynamic therapy applications are described. PMID:22295169

  5. Photodynamic therapy for the treatment of non-small cell lung cancer.

    PubMed

    Simone, Charles B; Friedberg, Joseph S; Glatstein, Eli; Stevenson, James P; Sterman, Daniel H; Hahn, Stephen M; Cengel, Keith A

    2012-02-01

    Photodynamic therapy is increasingly being utilized to treat thoracic malignancies. For patients with early-stage non-small cell lung cancer, photodynamic therapy is primarily employed as an endobronchial therapy to definitely treat endobronchial, roentgenographically occult, or synchronous primary carcinomas. As definitive monotherapy, photodynamic therapy is most effective in treating bronchoscopically visible lung cancers ≤1 cm with no extracartilaginous invasion. For patients with advanced-stage non-small cell lung cancer, photodynamic therapy can be used to palliate obstructing endobronchial lesions, as a component of definitive multi-modality therapy, or to increase operability or reduce the extent of operation required. A review of the available medical literature detailing all published studies utilizing photodynamic therapy to treat at least 10 patients with non-small cell lung cancer is performed, and treatment recommendations and summaries for photodynamic therapy applications are described.

  6. Jejunal intussusception caused by metastasis of a giant cell carcinoma of the lung

    PubMed Central

    Fujii, Yuki; Homma, Shigenori; Yoshida, Tadashi; Taketomi, Akinobu

    2016-01-01

    A 55-year-old woman was admitted to our hospital reporting of nausea, vomiting and anorexia. One month before admission, she had been diagnosed with lung cancer with intestinal metastasis. A CT scan confirmed intussusception due to intestinal metastasis and she underwent emergency laparoscopic surgery followed by resection of the primary lung cancer. Histopathological findings of the intestinal specimen suggested the metastasis was from a giant cell carcinoma of the lung, which had extensive necrosis. She was still alive without recurrence 11 months after the first surgery. Giant cell carcinoma of the lung is a rare type of non-small cell carcinoma and intestinal metastasis is one of the unique features. This type of tumour has such aggressive characteristics that oncological prognosis is reported to be extremely poor. In our case, however, complete surgical resection of both primary and metastatic tumours might result in a better outcome than has been reported. PMID:27485876

  7. Silencing Receptor EphA2 Enhanced Sensitivity to Lipoplatin™ in Lung Tumor and MPM Cells.

    PubMed

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Najmunnisa, Nasreen

    2016-08-08

    Receptor EphA2 is overexpressed in lung cancer and malignant pleural mesothelioma (MPM) which promote tumorogenesis. Lipoplatin™, a new liposomal cisplatin formulation, is used against resistant tumors. Use of cisplatin-based drugs leads to unacceptable toxicities. To improve the effectiveness of Lipoplatin, enhancing the cellular sensitivity of lung tumor and MPM cells is critical. Therefore, we targeted receptor EphA2 by silencing interference RNA (siRNA) and treated tumor cells with Lipoplatin. The combined effects of siRNA-EphA2 and Lipoplatin were determined. We report that silencing EphA2 significantly enhanced the cellular sensitivity of lung tumor and MPM cells to Lipoplatin and maybe a potential therapy for lung cancer.

  8. Differential expression of Dickkopf-1 among non-small cell lung cancer cells.

    PubMed

    Xiang, Xiao Jun; Liu, Ya Wen; Chen, Dian Dian; Yu, Shuang

    2015-08-01

    Dickkopf-1 (DKK1) is a negative regulator of the Wnt/β-catenin signaling pathway, which is expressed in various human cancers. It was hypothesized that DKK1 was oncogenic and involved in invasive growth in non-small cell lung cancer (NSCLC) cells. The present study aimed to investigate whether DKK1 gene expression levels differ among various NSCLC cells. The DKK1 expression pattern was analyzed in various human NSCLC cell lines and tissues. The DKK1 protein and gene expression levels were quantified using immunoblotting, polymerase chain reaction analysis and immunohistochemistry. The majority of the lung cancer cell lines analyzed revealed increased expression levels of DKK1. Furthermore, DKK1 expression was highly transactivated in the majority of these cancer cell lines. Clinical samples were obtained from 98 NSCLC patients for immunohistochemical analysis. Of the 98 samples analyzed, 62 (63.3%) demonstrated positive staining for DKK1, whereas the remaining 36 (37%) exhibited negative staining. However, no immunohistopathological staining was detected in normal tissues. The relative effects of DKK1 were assessed in a high-expression cell line (LTEP-a-2) and a low-expression cell line (95D). The differential expression of genes involved in cell cycle, apoptosis, signaling pathway, invasion and metastasis were evaluated, relative to DKK1 levels. In conclusion, the results of the present study indicated that DKK1 functioned as a key regulator in the progression of NSCLC. The results confirmed the differential expression of DKK1 in NSCLC cells, which may present a potential therapeutic target for cancer prevention.

  9. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.

    PubMed

    Sullivan, James P; Spinola, Monica; Dodge, Michael; Raso, Maria G; Behrens, Carmen; Gao, Boning; Schuster, Katja; Shao, Chunli; Larsen, Jill E; Sullivan, Laura A; Honorio, Sofia; Xie, Yang; Scaglioni, Pier P; DiMaio, J Michael; Gazdar, Adi F; Shay, Jerry W; Wistuba, Ignacio I; Minna, John D

    2010-12-01

    Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.

  10. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance

    PubMed Central

    Soroosh, Pejman; Doherty, Taylor A.; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H.

    2013-01-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3+ iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3+ Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  11. Zinc transporters are differentially expressed in human non-small cell lung cancer

    PubMed Central

    Yang, Jingxuan; Li, Min

    2016-01-01

    Lung cancer is one of the most common human malignancies worldwide, but its oncogenesis process remains unclear. Recent studies demonstrated that zinc (Zn) and Zn transporters were associated with the development and progression of human cancers. The role of Zn transporters including ZIPs and ZnTs in lung cancer, however, has never been evaluated. Thus, we aimed to investigate the expression levels of all human Zn transporters, including 14 ZIPs and 10 ZnTs, in eight different lung cancer cell lines and paired human tumor tissues. We observed great variations in ZIPs and ZnTs mRNA levels across cell lines and human lung cancer specimens. ZIPs showed a tendency to be upregulated, while ZnTs exhibited a downward expression trend. ZIP4 was overexpressed in six lung cancer cell lines and 59% (26/44) of tumor tissues, which was consistent with results from lung cancer datasets including TCGA database. Our results indicated that the dysregulation of Zn transporters may contribute to lung tumorigenesis. PMID:27611948

  12. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS

    PubMed Central

    Yang, Jie; Zhao, Yanfeng; Zhang, Peng; Li, Yuehua; Yang, Yong; Yang, Yang; Zhu, Junjie; Song, Xiao; Jiang, Gening; Fan, Jie

    2016-01-01

    Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI. PMID:27607578

  13. Regulation of IL-33 by Oncostatin M in Mouse Lung Epithelial Cells

    PubMed Central

    Izakelian, Laura; Dubey, Anisha; Zhang, Grace; Wong, Steven; Kwofie, Karen; Qureshi, Aatif; Botelho, Fernando

    2016-01-01

    IL-33 modulates both innate and adaptive immune responses at tissue sites including lung and may play critical roles in inflammatory lung disease. Although IL-33 expression can be altered upon NF-Kappa B activation, here we examine regulation by Oncostatin M, a gp130 cytokine family member, in mouse lung tissue. Responses were assessed in BALB/c mouse lung at day 7 of transient overexpression using endotracheally administered adenovirus encoding OSM (AdOSM) or empty vector (AdDel70). Whole lung extracts showed induction of IL-33 mRNA (>20-fold) and protein (10-fold increase in immunoblots) by AdOSM relative to AdDel70. Immunohistochemistry for IL-33 indicated a marked induction of nuclear staining in alveolar epithelial cells in vivo. Oncostatin M stimulated IL-33 mRNA and IL-33 full length protein in C10 mouse type 2 alveolar epithelial cells in culture in time-dependent and dose-dependent fashion, whereas IL-6, LIF, IL-31, IL-4, or IL-13 did not, and TGFβ repressed IL-33. IL-33 induction was associated with activation of STAT3, and pharmacological inhibition of STAT3 ameliorated IL-33 levels. These results indicate Oncostatin M as a potent inducer of IL-33 in mouse lung epithelial cells and suggest that an OSM/IL-33 axis may participate in innate immunity and inflammatory conditions in lung. PMID:27703303

  14. Infrared spectroscopy characterization of normal and lung cancer cells originated from epithelium

    PubMed Central

    Lee, So Yeong; Yoon, Kyong-Ah; Jang, Soo Hwa; Ganbold, Erdene Ochir; Uuriintuya, Dembereldorj; Shin, Sang-Mo; Ryu, Pan Dong

    2009-01-01

    The vibrational spectral differences of normal and lung cancer cells were studied for the development of effective cancer cell screening by means of attenuated total reflection infrared spectroscopy. The phosphate monoester symmetric stretching νs(PO32-) band intensity at ~970 cm-1 and the phosphodiester symmetric stretching νs(PO2-) band intensity at ~1,085 cm-1 in nucleic acids and phospholipids appeared to be significantly strengthened in lung cancer cells with respect to the other vibrational bands compared to normal cells. This finding suggests that more extensive phosphorylation occur in cancer cells. These results demonstrate that lung cancer cells may be prescreened using infrared spectroscopy tools. PMID:19934594

  15. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    PubMed Central

    Zienolddiny, Shanbeh; Skaug, Vidar

    2012-01-01

    Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung), lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC), 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes), detoxification (glutathione S-transferases), adduct removal (DNA repair genes), cell growth/apoptosis (TP53/MDM2), the immune system (cytokines/chemokines), and membrane receptors (nicotinic acetylcholine and dopaminergic receptors). Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most important single nucleotide polymorphisms in the metabolic pathways that may modulate susceptibility, prognosis, and therapy in NSCLC. PMID:28210120

  16. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung

    PubMed Central

    Galvis, Laura A.; Holik, Aliaksei Z.; Short, Kieran M.; Pasquet, Julie; Lun, Aaron T. L.; Blewitt, Marnie E.; Smyth, Ian M.; Ritchie, Matthew E.; Asselin-Labat, Marie-Liesse

    2015-01-01

    Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. PMID:25790853

  17. Next-generation regeneration: the hope and hype of lung stem cell research.

    PubMed

    Kotton, Darrell N

    2012-06-15

    Research discoveries in the fields of stem cell biology and regenerative medicine are beginning to advance and refine our understanding of lung injury and repair. Although these emerging studies offer unprecedented opportunities to develop novel therapies for a variety of lung diseases, the quickening pace of work in this nascent field also makes it difficult to discern hope from hype when addressing the pleas of patients eager for clinical translation or when seeking information on the risk versus reward of participation in clinical trials. This perspective provides an overview of the latest advances in lung-related stem cell research and places the new discoveries in a historical context. Established, lineage-restricted epithelial progenitors of the conducting airways and gas-exchanging alveoli are briefly reviewed, and controversial, newly proposed tissue-specific candidate lung stem/progenitor cells with broader differentiation repertoire are introduced. Exogenous derivation of lung epithelia from embryonic stem cells or induced pluripotent stem cells is also presented as an alternative method for engineering lung tissue de novo in culture.

  18. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and T regulatory cells

    PubMed Central

    Olkhanud, Purevdorj B.; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L.; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-01-01

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we demonstrate that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4 mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by NK cells. Lung metastasis required CCR4+ Tregs which directly killed NK cells utilizing beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4+ cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  19. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    SciTech Connect

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  20. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion

    PubMed Central

    Lu, Xiao-Yu; Yan, Yan; Zhai, Yu-Jia; Bao, Qing; Doetsch, Paul W.; Deng, Xingming; Thai, Tiffany L.; Alli, Abdel A.; Eaton, Douglas C.; Shen, Bao-Zhong; Ma, He-Ping

    2017-01-01

    Recent studies indicate that the transient receptor potential canonical 6 (TRPC6) channel is highly expressed in several types of cancer cells. However, it remains unclear whether TRPC6 contributes to the malignancy of human non-small cell lung cancer (NSCLC). We used a human NSCLC A549 cell line as a model and found that pharmacological blockade or molecular knockdown of TRPC6 channel inhibited A549 cell proliferation by arresting cell cycle at the S-G2M phase and caused a significant portion of cells detached and rounded-up, but did not induce any types of cell death. Western blot and cell cycle analysis show that the detached round cells at the S-G2M phase expressed more TRPC6 than the still attached polygon cells at the G1 phase. Patch-clamp data also show that TRPC whole-cell currents in the detached cells were significantly higher than in the still attached cells. Inhibition of Ca2+-permeable TRPC6 channels significantly reduced intracellular Ca2+ in A549 cells. Interestingly, either blockade or knockdown of TRPC6 strongly reduced the invasion of this NSCLC cell line and decreased the expression of an adherent protein, fibronectin, and a tight junction protein, zonula occluden protein-1 (ZO-1). These data suggest that TRPC6-mediated elevation of intracellular Ca2+ stimulates NSCLC cell proliferation by promoting cell cycle progression and that inhibition of TRPC6 attenuates cell proliferation and invasion. Therefore, further in vivo studies may lead to a consideration of using a specific TRPC6 blocker as a complement to treat NSCLC. PMID:28030826

  1. Targeted therapies and immunotherapy in non-small-cell lung cancer

    PubMed Central

    Cortinovis, D; Abbate, M; Bidoli, P; Capici, S; Canova, S

    2016-01-01

    Non-small-cell lung cancer is still considered a difficult disease to manage because of its aggressiveness and resistance to common therapies. Chemotherapy remains the gold standard in nearly 80% of lung cancers, but clinical outcomes are discouraging, and the impact on median overall survival (OS) barely reaches 12 months. At the end of the last century, the discovery of oncogene-driven tumours completely changed the therapeutic landscape in lung cancers, harbouring specific gene mutations/translocations. Epidermal growth factors receptor (EGFR) common mutations first and anaplastic lymphoma kinase (ALK) translocations later led new insights in lung cancer biology knowledge. The use of specific tyrosine kinases inhibitors overturned the biological behaviour of EGFR mutation positive tumours and became a preclinical model to understand the heterogeneity of lung cancers and the mechanisms of drug resistance. In this review, we summarise the employment of targeted agents against the most representative biomolecular alterations and provide some criticisms of the therapeutic strategies. PMID:27433281

  2. 2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer.

    PubMed

    Eberhardt, W E E; De Ruysscher, D; Weder, W; Le Péchoux, C; De Leyn, P; Hoffmann, H; Westeel, V; Stahel, R; Felip, E; Peters, S

    2015-08-01

    To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines of treatment in advanced disease, early-stage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on locally advanced disease.

  3. Effects of Internalized Gold Nanoparticles with Respect to Cytotoxicity and Invasion Activity in Lung Cancer Cells

    PubMed Central

    Guo, Zhirui; Liu, Ying; Shen, Yujie; Zhou, Ping; Lu, Xiang

    2014-01-01

    The effect of gold nanoparticles on lung cancer cells is not yet clear. In this study, we investigated the cytotoxicity and cell invasion activity of lung cancer cells after treatment with gold nanoparticles and showed that small gold nanoparticles can be endocytosed by lung cancer cells and that they facilitate cell invasion. The growth of A549 cells was inhibited after treatment with 5-nm gold nanoparticles, but cell invasion increased. Endocytosed gold nanoparticles (size, 10 nm) notably promoted the invasion activity of 95D cells. All these effects of gold nanoparticles were not seen after treatment with larger particles (20 and 40 nm). The enhanced invasion activity may be associated with the increased expression of matrix metalloproteinase 9 and intercellular adhesion molecule-1. In this study, we obtained evidence for the effect of gold nanoparticles on lung cancer cell invasion activity in vitro. Moreover, matrix metalloproteinase 9 and intercellular adhesion molecule-1, key modulators of cell invasion, were found to be regulated by gold nanoparticles. These data also demonstrate that the responses of the A549 and 95D cells to gold nanoparticles have a remarkable relationship with their unique size-dependent physiochemical properties. Therefore, this study provides a new perspective for cell biology research in nanomedicine. PMID:24901215

  4. Migration and invasion of drug-resistant lung adenocarcinoma cells are dependent on mitochondrial activity

    PubMed Central

    Jeon, Ji Hoon; Kim, Dong Keon; Shin, Youngmi; Kim, Hee Yeon; Song, Bomin; Lee, Eun Young; Kim, Jong Kwang; You, Hye Jin; Cheong, Heesun; Shin, Dong Hoon; Kim, Seong-Tae; Cheong, Jae-Ho; Kim, Soo Youl; Jang, Hyonchol

    2016-01-01

    A small proportion of cancer cells have stem-cell-like properties, are resistant to standard therapy and are associated with a poor prognosis. The metabolism of such drug-resistant cells differs from that of nearby non-resistant cells. In this study, the metabolism of drug-resistant lung adenocarcinoma cells was investigated. The expression of genes associated with oxidative phosphorylation in the mitochondrial membrane was negatively correlated with the prognosis of lung adenocarcinoma. Because the mitochondrial membrane potential (MMP) reflects the functional status of mitochondria and metastasis is the principal cause of death due to cancer, the relationship between MMP and metastasis was evaluated. Cells with a higher MMP exhibited greater migration and invasion than those with a lower MMP. Cells that survived treatment with cisplatin, a standard chemotherapeutic drug for lung adenocarcinoma, exhibited increased MMP and enhanced migration and invasion compared with parental cells. Consistent with these findings, inhibition of mitochondrial activity significantly impeded the migration and invasion of cisplatin-resistant cells. RNA-sequencing analysis indicated that the expression of mitochondrial complex genes was upregulated in cisplatin-resistant cells. These results suggested that drug-resistant cells have a greater MMP and that inhibition of mitochondrial activity could be used to prevent metastasis of drug-resistant lung adenocarcinoma cells. PMID:27932791

  5. Relapsed small cell lung cancer: treatment options and latest developments

    PubMed Central

    Ohkuni, Yoshihiro; Kaneko, Norihiro; Yamaguchi, Etsuro; Kubo, Akihito

    2014-01-01

    According to recent analyses, there was a modest yet significant improvement in median survival time and 5-year survival rate of limited stage small cell lung cancer (SCLC) in North America, Europe, Japan and other countries over the last 30 years. The median survival time of limited stage SCLC is 15–20 months and 5-year survival rate is 15% or less. In terms of extensive stage SCLC, a median survival time of 9.4–12.8 months and 2-year survival of 5.2–19.5% are still disappointing. Despite being highly sensitive to first-line chemotherapy and radiotherapy treatments, most patients with SCLC experience relapse within 2 years and die from systemic metastasis. While several clinical trials of cytotoxic chemotherapies and molecular targeting agents have been investigated in the treatment of relapsed SCLC, none showed a significant clinical activity to be able to exceed topotecan as second-line chemotherapy. There are problematic issues to address for relapsed SCLC, such as standardizing the treatment for third-line chemotherapy. Topotecan alone was the first approved therapy for second-line treatment for relapsed SCLC. Amrubicin is a promising drug and a variety of trials evaluating its efficacy have been carried out. Amrubicin has shown superiority to topotecan in a Japanese population, but was not superior in a study of western patients. There are some controversial issues for relapsed SCLC, such as treatment for older patients, third-line chemotherapy and efficacy of molecular targeting therapy. This article reviews current standard treatment, recent clinical trials and other topics on relapsed SCLC. PMID:24587832

  6. GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway.

    PubMed

    Dong, Dan-Dan; Zhou, Hui; Li, Gao

    2016-11-01

    GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of Gαq-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer. [BMB Reports 2016; 49(11): 623-628].

  7. GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway

    PubMed Central

    Dong, Dan-Dan; Zhou, Hui; Li, Gao

    2016-01-01

    GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of Gαq-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer. PMID:27697106

  8. Outcomes of Major Lung Resection After Induction Therapy for Non-Small Cell Lung Cancer in Elderly Patients

    PubMed Central

    Yang, Chi-Fu Jeffrey; Mayne, Nicholas R.; Wang, Hanghang; Meyerhoff, Ryan R.; Hirji, Sameer; Tong, Betty C.; Hartwig, Matthew; Harpole, David; D’Amico, Thomas A.; Berry, Mark

    2016-01-01

    Background This study analyzes the impact of age on perioperative outcomes and long-term survival of patients undergoing surgery after induction chemotherapy for non-small cell lung cancer. Methods Short- and long-term outcomes of patients with non-small cell lung cancer who were at least 70 years and received induction chemotherapy followed by major lung resection (lobectomy or pneumonectomy) from 1996 to 2012 were assessed using multivariable logistic regression, Kaplan-Meier, and Cox proportional hazard analysis. The outcomes of these elderly patients were compared with those of patients younger than 70 years who underwent the same treatment from 1996 to 2012. Results Of the 317 patients who met the study criteria, 53 patients were at least 70 years. The median age was 74 years (range, 70 to 82 years) in the elderly group, and induction chemoradiation was used in 24 (45%) patients. Thirty-day mortality was similar between the younger (n = 12) and elderly (n = 3) patients (5% versus 6%; p = 0.52). There were no significant differences in the incidence of postoperative complications between younger and elderly patients (49% versus 57%; p = 0.30). Patients younger than 70 years had a median overall survival (30 months; 95% confidence interval [CI], 24 to 43) and a 5-year survival (39%; 95% CI, 33 to 45) that was not significantly different from patients at least 70 years (median overall survival, 30 months; 95% CI, 18 to 68; and 5-year overall survival, 36%; 95% CI, 21 to 51). However, there was a trend toward worse survival in the elderly group after multivariable adjustment (hazard ratio, 1.43; 95% CI, 0.97 to 2.12; p = 0.071). Conclusions Major lung resection after induction chemotherapy can be performed with acceptable short-and long-term results in appropriately selected patients at least 70 years, with outcomes that are comparable to those of younger patients. PMID:27234579

  9. Best immunohistochemical panel in distinguishing adenocarcinoma from squamous cell carcinoma of lung: tissue microarray assay in resected lung cancer specimens.

    PubMed

    Kim, Mi Jin; Shin, Hyeong Chan; Shin, Kyeong Cheol; Ro, Jae Y

    2013-02-01

    The emergence of the targeted therapies for non-small cell lung carcinoma (NSCLC) has generated a need for accurate histologic subtyping of NSCLC. In this study, we assessed the utility of immunohistochemical markers that could be helpful in distinction between adenocarcinoma (ADC) and squamous cell carcinoma (SCC). We performed a battery of immunohistochemistry using tissue microarray for napsin-A, Thyroid transcription factor 1 (TTF-1), p63, cytokeratin (CK) 5/6, thrombomodulin (CD141), Epithelial-related antigen (MOC-31), carcinoembryonic antigen (CEA), Cyclooxygenase 2 (COX-2), high-molecular-weight CK (HMWCK), p27kip1 (p27), and Rb protein in 129 resected primary NSCLC with 81 ADCs and 48 SCCs and 10 metastatic ADC to the lung (primary in colon, 7 cases; stomach, 2 cases; vagina, 1 case). Cases of ADC and SCC were morphologically unequivocal and solid tumors with no definite squamous or glandular differentiation were excluded for this analysis. Napsin-A and TTF-1 were positive in 81% and 70% of ADC and in 0% and 2% of SCC, respectively, whereas P63 and CK5/6 were positive in 91% and 90% of SCC and in 9% and 4% of ADC, respectively (P < .001). CD141 stained significantly higher in SCC over ADC (positive in 2% of ADC and 46% of SCC. MOC-31, CEA, COX-2, HMWCK, p27, and Rb appeared to be not useful markers in distinction between ADC and SCC because of their low specificity. None of metastatic ADC to the lung showed positive for napsin-A and TTF-1. It was evident that combination of napsin-A, TTF-1, CK5/6, and p63 was the best immunohistochemical panel in differentiating ADC from SCC of the lung in this study. CD141 appeared to be a potential new marker for SCC with high specificity. Cyclooxygenase 2, MOC-31, CEA, HMWCK, p27, and Rb showed less specificity for differentiation ADC from SCC.

  10. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  11. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers

    PubMed Central

    Min, Kyoung Ah; Rosania, Gus R.; Kim, Chong-Kook; Shin, Meong Cheol

    2016-01-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641

  12. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells.

    PubMed

    Hua, Peiyan; Sun, Mei; Zhang, Guangxin; Zhang, Yifan; Tian, Xin; Li, Xin; Cui, Ranji; Zhang, Xingyi

    2015-05-01

    Cepharanthine is a medicinal plant-derived natural compound which possesses potent anti-cancer properties. However, there is little report about its effects on lung cancer cells. In this study, we investigated the effects of cepharanthine on the cell viability and apoptosis in human non-small-cell lung cancer H1299 and A549 cells. It was found that cepharanthine inhibited the growth of H1299 and A549 cells in a dose-dependent manner which was associated with the generation of reactive oxygen species(ROS) and the dissipation of mitochondrial membrane potential (Δψm). These effects were markedly abrogated when cells were pretreated with N-acetylcysteine (NAC), a specific ROS inhibitor, indicating that the apoptosis-inducing effect of cepharanthine in lung cancer cells was mediated by ROS. In addition, cepharanthine triggered apoptosis in non-small lung cancer cells via the upregulation of Bax, downregulation of Bcl-2 and significant activation of caspase-3 and PARP. These results provide the rationale for further research and preclinical investigation of cepharanthine's anti-tumor effect against human non-small-cell lung cancer.

  13. Autophagy inhibition enhances isorhamnetin-induced mitochondria-dependent apoptosis in non-small cell lung cancer cells

    PubMed Central

    RUAN, YUSHU; HU, KE; CHEN, HONGBO

    2015-01-01

    Isorhamnetin (ISO) is a flavonoid from plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. To date, the anti-tumor effects of ISO and the underlying mechanisms have not been elucidated in lung cancer cells. The present study investigated the inhibitory effects of ISO on the growth of human lung cancer A549 cells. Treatment of the lung cancer cells with ISO significantly suppressed cell proliferation and colony formation. ISO treatment also resulted in a significant increase in apoptotic cell death of A549 cells in a time- and dose-dependent manner. Further investigation showed that the apoptosis proceeded via the mitochondria-dependent pathway as indicated by alteration of the mitochondrial membrane potential, the release of cytochrome C and caspase activation. Of note, treatment with ISO also induced the formation of autophagosomes and light chain 3-II protein in A549 cells. Furthermore, co-treatment with autophagy inhibitors 3-methyladenine and hydroxychloroquine significantly inhibited the ISO-induced autophagy and enhanced the ISO-induced apoptotic cell death in vitro as well as in vivo. Thus, the results of the present study suggested that ISO is a potential anti-lung cancer agent. In addition, the results indicated that the inhibition of autophagy may be a useful strategy for enhancing the chemotherapeutic effect of ISO on lung cancer cells. PMID:26238746

  14. Assessment of Metal Contaminants in Non-Small Cell Lung Cancer by EDX Microanalysis

    PubMed Central

    Scimeca, M.; Orlandi, A.; Terrenato, I.; Bischetti, S.

    2014-01-01

    Human cardio-respiratory diseases are strongly correlated to concentrations of atmospheric elements. Bioaccumulation of heavy metals is strictly monitored, because of its possible toxic effects. In this work, we utilized the EDX microanalysis in order to identify the potential heavy metal accumulation in the lung tissue. To this aim, we enrolled 45 human lung biopsies: 15 non-small cell lung cancers, 15 lung benign lesions and 15 control biopsies. Lung samples were both paraffin embedded for light microscopy study and epon-epoxid embedded for transmission electron microscopy. EDX microanalysis was performed on 100 nm thick unstained ultrathin-sections placed on specific copper grids. Our results demonstrated that the EDX technology was particularly efficient in the study of elemental composition of lung tissues, where we found heavy metals, such as Cobalt (Co), Chromium (Cr), Manganese (Mn) and Lead (Pb). Furthermore, in malignant lesions we demonstrated the presence of multiple bio-accumulated elements. In fact, a high rate of lung cancers was associated with the presence of 3 or more bio-accumulated elements compared to benign lesions and control tissue (91.7%, 0%, 8.3%, respectively). The environmental impact on pulmonary carcinogenesis could be better clarified by demonstrating the presence of polluting agents in lung tissues. The application of EDX microanalysis on biological tissues could shed new light in the study of the possible bioaccumulation of polluting agents in different human organs and systems. PMID:25308844

  15. Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis.

    PubMed

    Scimeca, M; Orlandi, A; Terrenato, I; Bischetti, S; Bonanno, E

    2014-09-12

    Human cardio-respiratory diseases are strongly correlated to concentrations of atmospheric elements. Bioaccumulation of heavy metals is strictly monitored, because of its possible toxic effects. In this work, we utilized the EDX microanalysis in order to identify the potential heavy metal accumulation in the lung tissue.  To this aim, we enrolled 45 human lung biopsies: 15 non-small cell lung cancers, 15 lung benign lesions and 15 control biopsies. Lung samples were both paraffin embedded for light microscopy study and eponepoxid embedded for transmission electron microscopy. EDX microanalysis was performed on 100 nm thick unstained ultrathin-sections placed on specific copper grids. Our results demonstrated that the EDX technology was particularly efficient in the study of elemental composition of lung tissues, where we found heavy metals, such as Cobalt (Co), Chromium (Cr), Manganese (Mn) and Lead (Pb). Furthermore, in malignant lesions we demonstrated the presence of multiple bio-accumulated elements. In fact, a high rate of lung cancers was associated with the presence of 3 or more bio-accumulated elements compared to benign lesions and control tissue (91.7%, 0%, 8.3%, respectively). The environmental impact on pulmonary carcinogenesis could be better clarified by demonstrating the presence of polluting agents in lung tissues. The application of EDX microanalysis on biological tissuescould shed new light in the study of the possible bioaccumulation of polluting agents in different human organs and systems.

  16. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells.

    PubMed

    Anselmo, Aaron C; Gupta, Vivek; Zern, Blaine J; Pan, Daniel; Zakrewsky, Michael; Muzykantov, Vladimir; Mitragotri, Samir

    2013-12-23

    Nanoparticulate drug delivery systems are one of the most widely investigated approaches for developing novel therapies for a variety of diseases. However, rapid clearance and poor targeting limit their clinical utility. Here, we describe an approach to harness the flexibility, circulation, and vascular mobility of red blood cells (RBCs) to simultaneously overcome these limitations (cellular hitchhiking). A noncovalent attachment of nanoparticles to RBCs simultaneously increases their level in blood over a 24 h period and allows transient accumulation in the lungs, while reducing their uptake by liver and spleen. RBC-adsorbed nanoparticles exhibited ∼3-fold increase in blood persistence and ∼7-fold higher accumulation in lungs. RBC-adsorbed nanoparticles improved lung/liver and lung/spleen nanoparticle accumulation by over 15-fold and 10-fold, respectively. Accumulation in lungs is attributed to mechanical transfer of particles from the RBC surface to lung endothelium. Independent tracing of both nanoparticles and RBCs in vivo confirmed that RBCs themselves do not accumulate in lungs. Attachment of anti-ICAM-1 antibody to the exposed surface of NPs that were attached to RBCs led to further increase in lung targeting and retention over 24 h. Cellular hitchhiking onto RBCs provides a new platform for improving the blood pharmacokinetics and vascular delivery of nanoparticles while simultaneously avoiding uptake by liver and spleen, thus opening the door for new applications.

  17. Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione

    NASA Astrophysics Data System (ADS)

    Liu, Min; Gu, Xiaohu; Zhang, Ke; Ding, Yi; Wei, Xinbing; Zhang, Xiumei; Zhao, Yunxue

    2013-08-01

    Previously 13 nm gold nanoparticles (GNPs) have been shown to display cytotoxicity to lung cancer cells when l-buthionine-sulfoximine (BSO) was used to decrease the expression of intracellular glutathione (GSH). In this study, we investigated how the GNPs induced cell death at the molecular level. Dual staining with fluorescent annexin V, and propidium iodide was used to discriminate apoptotic and necrotic cell death. We found that GNPs induced apoptosis and necrosis in lung cancer cells with low level of intracellular GSH. The disruption of F-actin and phosphorylation of H2AX induced by GNPs were both associated with apoptosis. The ER stress was caused, mitochondrial membrane potential was disrupted, intracellular calcium was elevated and intracellular caspase-3 was activated by GNPs in lung cancer cells with low intracellular GSH, while cell death could not be prevented by the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. The cells were further examined for caspase-independent death. After GNPs and BSO exposure, apoptosis inducing factor, endonuclease G, and glyceraldehyde-3-phosphate dehydrogenase translocated into the nuclei of apoptotic cells. Receptor-interacting protein 1 kinase inhibitor necrostatin-1 significantly decreased the PI positive cells that were induced by GNPs and BSO. Taken together, our results suggest that multiple modes of cell death are concurrently induced in GNPs-exposed lung cancer cells with low intracellular GSH, including apoptosis and necrosis. These results have important implications for GNPs in anticancer applications.

  18. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John

    2013-09-01

    Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45-CD54+CD157+ lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.

  19. Sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC‐05

    PubMed Central

    Zhou, Lan; Yao, Qian; Huang, Yun‐chao; Jiang, Hua; Wang, Chuan‐qiong; Fan, Lei

    2016-01-01

    Background Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non‐smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL‐05) to explore the value of sulforaphane in lung cancer prevention and treatment. Methods Cell growth inhibition was determined by methyl thiazolyl tetrazolium assay; cell morphology and apoptosis were observed under transmission electron microscope; cell cycle and apoptosis rates were detected using flow cytometry; B‐cell lymphoma 2 (Bcl‐2) and Bcl‐2‐like protein 4 (Bax) messenger RNA expression were determined by quantitative PCR; and p53, p73, p53 upregulated modulator of apoptosis (PUMA), Bax, Bcl‐2, and caspase‐9 protein expression were detected by Western blotting. Results Sulforaphane inhibited XWLC‐05 cell growth with inhibitory concentration (IC)50 of 4.04, 3.38, and 3.02 μg/mL at 24, 48, and 72 hours, respectively. Sulforaphane affected the XWLC‐05 cell cycle as cells accumulated in the G2/M phase. The proportion of apoptotic cells observed was 27.6%. Compared with the control, the sulforaphane group showed decreased Bcl‐2 and p53 expression, and significantly increased p73, PUMA, Bax, and caspase‐9 protein expression (P < 0.05). Conclusion Sulforaphane induces Xuanwei lung adenocarcinoma cell apoptosis. Its possible mechanism may involve the upregulation of p73 expression and its effector target genes PUMA and Bax in lung cancer cells, downregulation of the anti‐apoptotic gene B cl ‐2, and activation of caspase‐9. It may also involve downregulation of the mutant p53 protein. PMID:27878984

  20. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro.

    PubMed

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the highly metastatic NSCLC cell lines H1299/M and PA/M and further treated these cells with amygdalin. We found that the in vitro proliferability of H1299/M and PA/M was inhibited, but such inhibition required higher concentration of amygdalin. When lower concentration of amygdalin was used for the experiments, we observed that the in vitro invasive and migration capacities of H1299/M and PA/M were significantly inhibited. These results strongly suggested that amygdalin was likely to have anti-metastatic NSCLC effect. This study offers information of the role of amygdalin that may be useful as a therapeutic target in lung tumors.

  1. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract.

    PubMed

    Ruane, Darren; Brane, Lucas; Reis, Bernardo Sgarbi; Cheong, Cheolho; Poles, Jordan; Do, Yoonkyung; Zhu, Hongfa; Velinzon, Klara; Choi, Jae-Hoon; Studt, Natalie; Mayer, Lloyd; Lavelle, Ed C; Steinman, Ralph M; Mucida, Daniel; Mehandru, Saurabh

    2013-08-26

    Developing efficacious vaccines against enteric diseases is a global challenge that requires a better understanding of cellular recruitment dynamics at the mucosal surfaces. The current paradigm of T cell homing to the gastrointestinal (GI) tract involves the induction of α4β7 and CCR9 by Peyer's patch and mesenteric lymph node (MLN) dendritic cells (DCs) in a retinoic acid-dependent manner. This paradigm, however, cannot be reconciled with reports of GI T cell responses after intranasal (i.n.) delivery of antigens that do not directly target the GI lymphoid tissue. To explore alternative pathways of cellular migration, we have investigated the ability of DCs from mucosal and nonmucosal tissues to recruit lymphocytes to the GI tract. Unexpectedly, we found that lung DCs, like CD103(+) MLN DCs, up-regulate the gut-homing integrin α4β7 in vitro and in vivo, and induce T cell migration to the GI tract in vivo. Consistent with a role for this pathway in generating mucosal immune responses, lung DC targeting by i.n. immunization induced protective immunity against enteric challenge with a highly pathogenic strain of Salmonella. The present report demonstrates novel functional evidence of mucosal cross talk mediated by DCs, which has the potential to inform the design of novel vaccines against mucosal pathogens.

  2. A bacterial cell to cell signal in the lungs of cystic fibrosis patients.

    PubMed

    Collier, David N; Anderson, Lisa; McKnight, Susan L; Noah, Terry L; Knowles, Michael; Boucher, Richard; Schwab, Ute; Gilligan, Peter; Pesci, Everett C

    2002-09-24

    Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of mortality in cystic fibrosis (CF) patients. This bacterium has numerous genes controlled by cell to cell signaling, which occurs through a complex circuitry of interconnected regulatory systems. One of the signals is the Pseudomonas Quinolone Signal (PQS), which was identified as 2-heptyl-3-hydroxy-4-quinolone. This intercellular signal controls the expression of multiple virulence factors and is required for virulence in an insect model of P. aeruginosa infection. Previous studies have implied that the intercellular signals of P. aeruginosa are important for human disease, and our goal was to determine whether PQS was produced during human infections. In this report, three types of samples from CF patients infected with P. aeruginosa were analyzed for the presence of PQS. Sputum, bronchoalveolar lavage fluid, and mucopurulent fluid from distal airways of end-stage lungs removed at transplant, all contained PQS, indicating that this cell to cell signal is produced in vivo by P. aeruginosa infecting the lungs of CF patients.

  3. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells.

    PubMed

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng; Liu, Bing

    2017-02-11

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H2O2 enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H2O2 level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC.

  4. TUCAN/CARDINAL/CARD8 and apoptosis resistance in non-small cell lung cancer cells

    PubMed Central

    Checinska, Agnieszka; Giaccone, Giuseppe; Hoogeland, Bas SJ; Ferreira, Carlos G; Rodriguez, Jose A; Kruyt, Frank AE

    2006-01-01

    Background Activation of caspase-9 in response to treatment with cytotoxic drugs is inhibited in NSCLC cells, which may contribute to the clinical resistance to chemotherapy shown in this type of tumor. The aim of the present study was to investigate the mechanism of caspase-9 inhibition, with a focus on a possible role of TUCAN as caspase-9 inhibitor and a determinant of chemosensitivity in NSCLC cells. Methods Caspase-9 processing and activation were investigated by Western blot and by measuring the cleavage of the fluorogenic substrate LEHD-AFC. Proteins interaction assays, and RNA interference in combination with cell viability and apoptosis assays were used to investigate the involvement of TUCAN in inhibition of caspase-9 and chemosensitivity NSCLC. Results Analysis of the components of the caspase-9 activation pathway in a panel of NSCLC and SCLC cells revealed no intrinsic defects. In fact, exogenously added cytochrome c and dATP triggered procaspase-9 cleavage and activation in lung cancer cell lysates, suggesting the presence of an inhibitor. The reported inhibitor of caspase-9, TUCAN, was exclusively expressed in NSCLC cells. However, interactions between TUCAN and procaspase-9 could not be demonstrated by any of the assays used. Furthermore, RNA interference-mediated down-regulation of TUCAN did not restore cisplatin-induced caspase-9 activation or affect cisplatin sensitivity in NSCLC cells. Conclusion These results indicate that procaspase-9 is functional and can undergo activation and full processing in lung cancer cell extracts in the presence of additional cytochrome c/dATP. However, the inhibitory protein TUCAN does not play a role in inhibition of procaspase-9 and in determining the sensitivity to cisplatin in NSCLC. PMID:16796750

  5. Treatment of advanced squamous cell carcinoma of the lung: a review

    PubMed Central

    Mileham, Kathryn F.; Bonomi, Philip D.; Batus, Marta; Fidler, Mary J.

    2015-01-01

    Lung cancer remains the single deadliest cancer both in the US and worldwide. The great majority of squamous cell carcinoma (SCC) is attributed to cigarette smoking, which fortunately is declining alongside cancer incidence. While we have been at a therapeutic plateau for advanced squamous cell lung cancer patients for several decades, recent observations suggest that we are on the verge of seeing incremental survival improvements for this relatively large group of patients. Current studies have confirmed an expanding role for immunotherapy [including programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibition], a potential opportunity for VEGFR inhibition, and even future targets in fibroblast growth factor receptor (FGFR) and PI3K-AKT that collectively should improve survival as well as quality of life for those affected by squamous cell lung cancer over the next decade. PMID:26629421

  6. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway

    PubMed Central

    Murai, Fumihiko; Koinuma, Daizo; Shinozaki-Ushiku, Aya; Fukayama, Masashi; Miyaozono, Kohei; Ehata, Shogo

    2015-01-01

    Transforming growth factor-β (TGF-β) induces apoptosis in many types of cancer cells and acts as a tumor suppressor. We performed a functional analysis of TGF-β signaling to identify a molecular mechanism that regulated survival in small cell lung cancer cells. Here, we found low expression of TGF-β type II receptor (TβRII) in most small cell lung cancer cells and tissues compared to normal lung epithelial cells and normal lung tissues, respectively. When wild-type TβRII was overexpressed in small cell lung cancer cells, TGF-β suppressed cell growth in vitro and tumor formation in vivo through induction of apoptosis. Components of polycomb repressive complex 2, including enhancer of zeste 2 (EZH2), were highly expressed in small cell lung cancer cells; this led to epigenetic silencing of TβRII expression and suppression of TGF-β-mediated apoptosis. Achaete-scute family bHLH transcription factor 1 (ASCL1; also known as ASH1), a Smad-dependent target of TGF-β, was found to induce survival in small cell lung cancer cells. Thus, EZH2 promoted small cell lung cancer progression by suppressing the TGF-β-Smad-ASCL1 pathway. PMID:27462425

  7. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.

    PubMed

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-03-24

    (1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  8. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    PubMed Central

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-01-01

    (1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i). Flow cytometry was used to analyze cell cycle; (3) Results: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC. PMID:27023518

  9. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer

    PubMed Central

    Tasaki, M; Shimada, K; Kimura, H; Tsujikawa, K; Konishi, N

    2011-01-01

    Background: We have demonstrated for the first time that a novel human AlkB homologue, ALKBH3, contributes to prostate cancer development, but its clinical and biological roles in lung cancer remain unclear. Methods: Expression of both mRNA and protein of PCA-1 was examined by RT–PCR and western blotting. We also assessed association with senescence and in vivo ALKBH3 treatment on orthotopic tumour cell inoculation, and analysed it clinicopathologically. Results: We have since found novel biological roles for ALKBH3 in human lung cancers, particularly in adenocarcinoma. Our immunohistochemical analysis of human adenocarcinomas and squamous cell carcinomas of the lung not only showed overexpression of ALKBH3 in these tumours but the percentage of cells positive for ALKBH3 also correlated statistically to recurrence-free survival in adenocarcinoma. Knockdown of ALKBH3 by siRNA transfection induced expression of p21WAF1/Cip1 and p27Kip1 in the human lung adenocarcinoma cell line A549, resulting in cell cycle arrest, senescence and strong suppression of cell growth in vitro. In vivo, peritoneal tumour growth and dissemination was inhibited in nude mice, previously inoculated with the A549 cell line, by intraperitoneal injection of ALKBH3 siRNA + atelocollagen, as demonstrated by the reduction in both number and diameter of tumours developing in the peritoneum. Conclusion: We suggest that ALKBH3 contributes significantly to cancer cell survival and may be a therapeutic target for human adenocarcinoma of the lung. PMID:21285982

  10. Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance

    PubMed Central

    Cherfils-Vicini, Julien; Platonova, Sophia; Gillard, Mélanie; Laurans, Ludivine; Validire, Pierre; Caliandro, Rafaele; Magdeleinat, Pierre; Mami-Chouaib, Fathia; Dieu-Nosjean, Marie-Caroline; Fridman, Wolf-Herman; Damotte, Diane; Sautès-Fridman, Catherine; Cremer, Isabelle

    2010-01-01

    Compelling evidence suggests that inflammation, cell survival, and cancer are linked, with a central role played by NF-κB. Recent studies implicate some TLRs in tumor development based on their ability to facilitate tumor growth; however, to our knowledge, involvement of neither TLR7 nor TLR78 has yet been demonstrated. Here we have demonstrated expression of TLR7 and TLR8, the natural receptors for single-stranded RNA, by tumor cells in human lung cancer in situ and in human lung tumor cell lines. Stimulation with TLR7 or TLR8 agonists led to activated NF-κB, upregulated expression of the antiapoptotic protein Bcl-2, increased tumor cell survival, and chemoresistance. Transcriptional analysis performed on human primary lung tumor cells and TLR7- or TLR8-stimulated human lung tumor cell lines revealed a gene expression signature suggestive of chronic stimulation of tumor cells by TLR ligands in situ. Together, these data emphasize that TLR signaling can directly favor tumor development and further suggest that researchers developing anticancer immunotherapy using TLR7 or TLR8 agonists as adjuvants should take into account the expression of these TLRs in lung tumor cells. PMID:20237413

  11. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    SciTech Connect

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  12. Regulation of miRNAs Affects Radiobiological Response of Lung Cancer Stem Cells

    PubMed Central

    Xu, Yan-mei; Liao, Xing-yun; Chen, Xie-wan; Li, De-zhi; Sun, Jian-guo; Liao, Rong-xia

    2015-01-01

    Radiotherapy (RT) is a key therapeutic strategy for lung cancer, the most common cause of cancer-related deaths worldwide, but radioresistance often occurs and leads to failure of RT. It is therefore important to clarify the mechanism underlying radioresistance in lung cancer. Cancer stem cells (CSCs) are considered the fundamental reason for radioresistance. MicroRNAs (miRNAs) have been regarded as important regulatory molecules of CSCs, carcinogenesis, and treatment response of cancers. It is crucial to clarify how regulation of miRNAs affects repair of DNA damage, redistribution, repopulation, reoxygenation, and radiosensitivity (5R) of lung cancer stem cells (LCSCs). A thorough understanding of the regulation of miRNAs affecting 5R of LCSCs has potential impact on identifying novel targets and thus may improve the efficacy of lung cancer radiotherapy. PMID:25815339

  13. Duodeno-colic fistula as a rare presentation of lung cancer — surgical treatment of a stage IV oligometastatic lung disease

    PubMed Central

    Nunes, Vitor; Santiago, Inês; Marinho, Rui; Pires, David; Theias, Rita; Gomes, António; Pignatelli, Nuno

    2015-01-01

    Introduction Rare adenosquamous carcinomas have no defined standard approach given their low incidence. They present with nonspecific imaging characteristics and are described as having worse prognosis than other lung malignancies, with greater likelihood of local invasion and early metastasis. Presentation of case Male caucasian patient, 43 years, 26 pack-year smoking history, presented with watery diarrhea, early emesis and loss of 25% body weight (20 kg) in four weeks. Colonoscopy identified a left colonic mass. Abdominal CT/ultrasound showed a large fistulous lesion between the 4th portion of the duodenum and left colon. CT showed a solid mass in the right upper lung lobe. Endoscopy and transthoracic biopsy were inconclusive. En bloc D3 and D4 duodenectomy, proximal enterectomy and left hemicolectomy were performed, with inconclusive histology of the specimen. Three months later, a right upper lung lobectomy with lymphadenectomy was performed, revealing an adenosquamous carcinoma of lung origin, R0, staged as pT2pN0pM1b. Six months later, a single dural metastasis in the left cerebellopontine angle was detected and resected, with subsequent holocranial radiotherapy and systemic adjuvant chemotherapy. Patient is currently with 18 months follow-up, in good general health and with no evidence of recurrent disease. Discussion There are no specific guidelines to treat oligometastatic adenosquamous lung carcinoma. Our approach was abdominal surgery as a life-saving procedure and, months later, oncological resection of primary lung tumor and metachronous metastasis to the brain. Conclusion A systematic, patient-oriented, patient-shared, multidisciplinary approach is particularly relevant when dealing with atypical presentations of rare diseases in young patients. PMID:26197095

  14. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties

    PubMed Central

    Little, A C; Sham, D; Hristova, M; Danyal, K; Heppner, D E; Bauer, R A; Sipsey, L M; Habibovic, A; van der Vliet, A

    2016-01-01

    Dual oxidase 1 (DUOX1) is an oxidant-generating enzyme within the airway epithelium that participates in innate airway host defense and epithelial homeostasis. Recent studies indicate that DUOX1 is suppressed in lung cancers by epigenetic silencing, although the importance of DUOX1 silencing in lung cancer development or progression is unknown. Here we show that loss of DUOX1 expression in a panel of lung cancer cell lines is strongly associated with loss of the epithelial marker E-cadherin. Moreover, RNAi-mediated DUOX1 silencing in lung epithelial cells and the cancer cell line NCI-H292 was found to result in loss of epithelial characteristics/molecular features (altered morphology, reduced barrier function and loss of E-cadherin) and increased mesenchymal features (increased migration, anchorage-independent growth and gain of vimentin/collagen), suggesting a direct contribution of DUOX1 silencing to epithelial-to-mesenchymal transition (EMT), an important feature of metastatic cancer. Conversely, overexpression of DUOX1 in A549 cells was capable of reversing EMT features. DUOX1 silencing in H292 cells also led to enhanced resistance to epidermal growth factor receptor tyrosine kinase inhibitors such as erlotinib, and enhanced levels of cancer stem cell (CSC) markers CD133 and ALDH1. Furthermore, acquired resistance of H292 cells to erlotinib resulted in enhanced EMT and CSC features, as well as loss of DUOX1. Finally, compared with control H292 cells, H292-shDUOX1 cells displayed enhanced invasive features in vitro and in vivo. Collectively, our findings indicate that DUOX1 silencing in lung epithelial cancer cells promotes features of EMT, and may be strongly associated with invasive and metastatic lung cancer. PMID:27694834

  15. Cell migration microfluidics for electrotaxis-based heterogeneity study of lung cancer cells.

    PubMed

    Li, Yaping; Xu, Tao; Zou, Heng; Chen, Xiaomei; Sun, Dong; Yang, Mengsu

    2017-03-15

    Tumor metastasis involves the migration of cells from primary site to a distant location. Recently, it was established that cancer cells from the same tumor were heterogeneous in migratory ability. Numerous studies have demonstrated that cancer cells undergo reorientation and migration directionally under physiological electric field (EF), which has potential implications in metastasis. Microfluidic devices with channel structures of defined dimensions provide controllable microenvironments to enable real-time observation of cell migration. In this study, we developed two polydimethylsiloxane (PDMS)-based microfluidic devices for long-term electrotaxis study. In the first chip, three different intensities of EFs were generated in a single channel to study cell electrotactic behavior with high efficiency. We observed that the lung adenocarcinoma H1975 cells underwent cathodal migration with changing cellular orientation. To address the issue of cell electrotactic heterogeneity, we also developed a cell isolation device integrating cell immobilization structure, stable EF generator and cell retrieval module in one microfluidic chip to sort out different cell subpopulations based on electrotactic ability. High electrotactic and low electrotactic cells were harvested separately for colony formation assay and transcriptional analysis of migration-related genes. The results showed that H1975 cell motility was related to EGFR expression in the absence of EF stimulation, while in the presence of EF it was associated with PTEN expression. Up-regulation of RhoA was observed in cells with high motility, regardless of EF. The easy cell manipulation and precise field control of the microfluidic devices may enable further study of tumor heterogeneity in complex electrotactic environments.

  16. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.

    PubMed

    Treutlein, Barbara; Brownfield, Doug G; Wu, Angela R; Neff, Norma F; Mantalas, Gary L; Espinoza, F Hernan; Desai, Tushar J; Krasnow, Mark A; Quake, Stephen R

    2014-05-15

    The mammalian lung is a highly branched network in which the distal regions of the bronchial tree transform during development into a densely packed honeycomb of alveolar air sacs that mediate gas exchange. Although this transformation has been studied by marker expression analysis and fate-mapping, the mechanisms that control the progression of lung progenitors along distinct lineages into mature alveolar cell types are still incompletely known, in part because of the limited number of lineage markers and the effects of ensemble averaging in conventional transcriptome analysis experiments on cell populations. Here we show that single-cell transcriptome analysis circumvents these problems and enables direct measurement of the various cell types and hierarchies in the developing lung. We used microfluidic single-cell RNA sequencing (RNA-seq) on 198 individual cells at four different stages encompassing alveolar differentiation to measure the transcriptional states which define the developmental and cellular hierarchy of the distal mouse lung epithelium. We empirically classified cells into distinct groups by using an unbiased genome-wide approach that did not require a priori knowledge of the underlying cell types or the previous purification of cell populations. The results confirmed the basic outlines of the classical model of epithelial cell-type diversity in the distal lung and led to the discovery of many previously unknown cell-type mark