Science.gov

Sample records for adenoviral mediated gene

  1. Adenoviral-mediated gene transfer to rabbit synovium in vivo.

    PubMed Central

    Roessler, B J; Allen, E D; Wilson, J M; Hartman, J W; Davidson, B L

    1993-01-01

    Currently, treatment for rheumatoid arthritis and other inflammatory arthropathies is often ineffective in ameliorating the progression of the disease, particularly the invasive destruction of cartilage and bone by rheumatoid synovium. Multiple aspects of this inflammatory process are mediated by the synovial lining cells (synoviocytes). Genetic modification of these cells in vivo represents a potential method for the treatment of these conditions. In this report, we describe a novel technique for the genetic transduction of synovial lining cells in vivo using recombinant adenoviral vectors and intraarticular injection techniques. Purified high titer suspensions of a recombinant adenoviral vector containing the gene for Escherichia coli beta-galactosidase (AdCMVlacZ) were directly injected into the hind knees of New Zealand white rabbits. Synovial tissues were then examined for transgenic lacZ expression using a combination of in situ staining for beta-galactosidase activity, immunohistochemical staining, and transmission electron microscopy. High efficiency gene transfer and lacZ expression was observed in both type A and type B synoviocytes throughout the articular and periarticular synovium of the rabbit knee, with continued expression of transgenic lacZ detected for > or = 8 wk after infection. Images PMID:8349791

  2. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways.

    PubMed

    Kushwah, R; Oliver, J R; Cao, H; Hu, J

    2007-08-01

    Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors. PMID:17525704

  3. Adenoviral-mediated Gene Transfer into the Canine Brain In Vivo

    PubMed Central

    Candolfi, Marianela; Kroeger, Kurt M.; Pluhar, G. Elizabeth; Bergeron, Josee; Puntel, Mariana; Curtin, James F.; McNiel, Elizabeth A.; Freese, Andrew B.; Ohlfest, John R.; Moore, Peter; Lowenstein, Pedro R.; Castro, Maria G.

    2007-01-01

    OBJECTIVE: Glioblastoma multiforme (GBM) is a devastating brain tumor for which there is no cure. Adenoviral-mediated transfer of conditional cytotoxic (herpes simplex virus [HSV] 1-derived thymidine kinase [TK]) and immunostimulatory (Fms-like tyrosine kinase 3 ligand [Flt3L]) transgenes elicited immune-mediated long-term survival in a syngeneic intracranial GBM model in rodents. However, the lack of a large GBM animal model makes it difficult to predict the outcome of therapies in humans. Dogs develop spontaneous GBM that closely resemble the human disease; therefore, they constitute an excellent large animal model. We assayed the transduction efficiency of adenoviral vectors (Ads) encoding β-galactosidase (βGal), TK, and Flt3L in J3T dog GBM cells in vitro and in the dog brain in vivo. METHODS: J3T cells were infected with Ads (30 plaque-forming units/cell; 72 h) encoding βGal (Ad-βGal), TK (Ad-TK), or Flt3L (Ad-Flt3L). We determined transgene expression by immunocytochemistry, βGal activity, Flt3L enzyme-linked immunosorbent assay, and TK-induced cell death. Ads were also injected intracranially into the parietal cortex of healthy dogs. We determined cell-type specific transgene expression and immune cell infiltration. RESULTS: Adenoviral-mediated gene transfer of HSV1-TK, Flt3L, and βGal was detected in dog glioma cells in vitro (45% transduction efficiency) and in the dog brain in vivo (10-mm2 area transduced surrounding each injection site). T cells and macrophages/activated microglia infiltrated the injection sites. Importantly, no adverse clinical or neuropathological side effects were observed. CONCLUSION: We demonstrate effective adenoviral-mediated gene transfer into the brain of dogs in vivo and support the use of these vectors to develop an efficacy trial for canine GBM as a prelude to human trials. PMID:17228266

  4. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  5. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  6. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    PubMed

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury. PMID:15474356

  7. Neo-islet formation in liver of diabetic mice by helper-dependent adenoviral vector-mediated gene transfer.

    PubMed

    Li, Rongying; Oka, Kazuhiro; Yechoor, Vijay

    2012-01-01

    Type 1 diabetes is caused by T cell-mediated autoimmune destruction of insulin-producing cells in the pancreas. Until now insulin replacement is still the major therapy, because islet transplantation has been limited by donor availability and by the need for long-term immunosuppression. Induced islet neogenesis by gene transfer of Neuogenin3 (Ngn3), the islet lineage-defining specific transcription factor and Betacellulin (Btc), an islet growth factor has the potential to cure type 1 diabetes. Adenoviral vectors (Ads) are highly efficient gene transfer vector; however, early generation Ads have several disadvantages for in vivo use. Helper-dependent Ads (HDAds) are the most advanced Ads that were developed to improve the safety profile of early generation of Ads and to prolong transgene expression(1). They lack chronic toxicity because they lack viral coding sequences(2-5) and retain only Ad cis elements necessary for vector replication and packaging. This allows cloning of up to 36 kb genes. In this protocol, we describe the method to generate HDAd-Ngn3 and HDAd-Btc and to deliver these vectors into STZ-induced diabetic mice. Our results show that co-injection of HDAd-Ngn3 and HDAd-Btc induces 'neo islets' in the liver and reverses hyperglycemia in diabetic mice. PMID:23093064

  8. Neonatal helper-dependent adenoviral vector gene therapy mediates correction of hemophilia A and tolerance to human factor VIII

    PubMed Central

    Cela, Racel G.; Suzuki, Masataka; Lee, Brendan; Lipshutz, Gerald S.

    2011-01-01

    Neonatal gene therapy is a promising strategy for treating a number of congenital diseases diagnosed shortly after birth as expression of therapeutic proteins during postnatal life may limit the pathologic consequences and result in a potential “cure.” Hemophilia A is often complicated by the development of antibodies to recombinant protein resulting in treatment failure. Neonatal administration of vectors may avoid inhibitory antibody formation to factor VIII (FVIII) by taking advantage of immune immaturity. A helper-dependent adenoviral vector expressing human factor VIII was administered i.v. to neonatal hemophilia A knockout mice. Three days later, mice produced high levels of FVIII. Levels declined rapidly with animal growth to 5 wk of age with stable factor VIII expression thereafter to >1 y of age. Decline in factor VIII expression was not related to cell-mediated or humoral responses with lack of development of antibodies to capsid or human factor VIII proteins. Subsequent readministration and augmentation of expression was possible as operational tolerance was established to factor VIII without development of inhibitors; however, protective immunity to adenovirus remained. PMID:21245323

  9. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  10. Adenoviral Vectors for Hemophilia Gene Therapy

    PubMed Central

    Brunetti-Pierri, N; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review article focuses on those that use adenoviral vectors. PMID:24883229

  11. Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the

  12. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter. PMID:24243238

  13. STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation.

    PubMed

    Yang, Xuechao; van der Kraan, Peter M; van den Dolder, Juliette; Walboomers, X Frank; Bian, Zhuan; Fan, Mingwen; Jansen, John A

    2007-11-01

    Dental pulp stem cells harbor great potential for tissue-engineering purposes. However, previous studies have shown variable results, and some have reported only limited osteogenic and odontogenic potential.Because bone morphogenetic proteins (BMPs) are well-established agents to induce bone and dentin formation,in this study STRO-1-selected rat dental pulp-derived stem cells were transfected with the adenoviral mediated human BMP-2 gene. Subsequently, the cells were evaluated for their odontogenic differentiation ability in medium not containing dexamethasone or other stimuli. Cultures were investigated using light microscopy and scanning electron microscopy (SEM) and evaluated for cell proliferation, alkaline phosphatase(ALP) activity, and calcium content. Real-time polymerase chain reaction (PCR) was performed for gene expression of Alp, osteocalcin, collagen type I, bone sialoprotein, dentin sialophosphoprotein, and dentin matrix acidic phosphoprotein 1. Finally, an oligo-microarray was used to profile the expression of odontogenesis-related genes. Results of ALP activity, calcium content, and real-time PCR showed that only BMP2-transfected cells had the ability to differentiate into the odontoblast phenotype and to produce a calcified extracellular matrix. SEM and oligo-microarray confirmed these results. In contrast, the non-transfected cells represented a less differentiated cell phenotype. Based on our results, we concluded that the adenovirus can transfect STRO-1 selected cells with high efficacy. After BMP2 gene transfection, these cells had the ability to differentiate into odontoblast phenotype, even without the addition of odontogenic supplements to the medium. PMID:17824831

  14. Capsid-Modified Adenoviral Vectors for Improved Muscle-Directed Gene Therapy

    PubMed Central

    Guse, Kilian; Suzuki, Masataka; Sule, Gautam; Bertin, Terry K.; Tyynismaa, Henna; Ahola-Erkkilä, Sofia; Palmer, Donna; Suomalainen, Anu; Ng, Philip; Cerullo, Vincenzo; Hemminki, Akseli

    2012-01-01

    Abstract Skeletal muscle represents an attractive target tissue for adenoviral gene therapy to treat muscle disorders and as a production platform for systemic expression of therapeutic proteins. However, adenovirus serotype 5 vectors do not efficiently transduce adult muscle tissue. Here we evaluated whether capsid modifications on adenoviral vectors could improve transduction in mature murine muscle tissue. First-generation and helper-dependent serotype 5 adenoviral vectors featuring the serotype 3 knob (5/3) showed significantly increased transduction of skeletal muscle after intramuscular injection in adult mice. Furthermore, we showed that full-length dystrophin could be more efficiently transferred to muscles of mdx mice using a 5/3-modified helper-dependent adenoviral vector. In contrast to first-generation vectors, helper-dependent adenoviral vectors mediated stable marker gene expression for at least 1 year after intramuscular injection. In conclusion, 5/3 capsid-modified helper-dependent adenoviral vectors show enhanced transduction in adult murine muscle tissue and mediate long-term gene expression, suggesting the suitability of these vectors for muscle-directed gene therapy. PMID:22888960

  15. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  16. Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and ostectomy models.

    PubMed

    Ishihara, Akikazu; Shields, Kathleen M; Litsky, Alan S; Mattoon, John S; Weisbrode, Steven E; Bartlett, Jeffrey S; Bertone, Alicia L

    2008-06-01

    This study evaluated healing of equine metatarsal osteotomies and ostectomies in response to percutaneous injection of adenoviral (Ad) bone morphogenetic protein (BMP)-2, Ad-BMP-6, or beta-galactosidase protein vector control (Ad-LacZ) administered 14 days after surgery. Radiographic and quantitative computed tomographic assessment of bone formation indicated greater and earlier mineralized callus in both the osteotomies and ostectomies of the metatarsi injected with Ad-BMP-2 or Ad-BMP-6. Peak torque to failure and torsional stiffness were greater in osteotomies treated with Ad-BMP-2 than Ad-BMP-6, and both Ad-BMP-2- and Ad-BMP-6-treated osteotomies were greater than Ad-LacZ or untreated osteotomies. Gene expression of ostectomy mineralized callus 8 weeks after surgery indicated upregulation of genes related to osteogenesis compared to intact metatarsal bone. Expression of transforming growth factor beta-1, cathepsin H, and gelsolin-like capping protein were greater in Ad-BMP-2- and Ad-BMP-6-treated callus compared to Ad-LacZ-treated or untreated callus. Evidence of tissue biodistribution of adenovirus in distant organs was not identified by quantitative PCR, despite increased serum antiadenoviral vector antibody. This study demonstrated a greater relative potency of Ad-BMP-2 over Ad-BMP-6 in accelerating osteotomy healing when administered in this regimen, although both genes were effective at increasing bone at both osteotomy and ostectomy sites. PMID:18241059

  17. Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery

    PubMed Central

    2011-01-01

    Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430

  18. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  19. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors.

    PubMed

    Hanayama, Hiroyuki; Ohashi, Kazuo; Utoh, Rie; Shimizu, Hirofumi; Ise, Kazuya; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Tsuchiya, Hiroyuki; Okano, Teruo; Gotoh, Mitsukazu

    2015-12-17

    To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells. PMID:26858906

  20. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors

    PubMed Central

    Hanayama, Hiroyuki; Ohashi, Kazuo; Utoh, Rie; Shimizu, Hirofumi; Ise, Kazuya; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Tsuchiya, Hiroyuki; Okano, Teruo; Gotoh, Mitsukazu

    2015-01-01

    To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells. PMID:26858906

  1. Early osteoblastic differentiation induced by dexamethasone enhances adenoviral gene delivery to marrow stromal cells.

    PubMed

    Blum, Jeremy S; Parrott, M Brandon; Mikos, Antonios G; Barry, Michael A

    2004-03-01

    We investigated the implications of induced osteogenic differentiation on gene delivery in multipotent rat marrow stromal cells (MSCs). Prior to genetic manipulation cells were cultured with or without osteogenic supplements (5x10(-8) M dexamethasone, 160 microM l-ascorbic acid 2-phosphate, and 10 mM beta-glycerophosphate). Comparison of liposome, retroviral, and adenoviral vectors demonstrated that all three vectors could mediate gene delivery to primary rat MSCs. When these vectors were applied in the absence or presence of osteogenic supplements, we found that MSCs differentiated prior to transduction with adenovirus type 5 vectors produced a 300% increase in transgene expression compared to MSCs that were not exposed to osteogenic supplements. This differentiation effect appeared specific to adenoviral mediated gene delivery, since there was minimal increase in retroviral gene delivery and no increase in liposome gene delivery when MSCs were treated with osteogenic supplements. In addition, we also determined this increase in transgene production to occur at a higher concentration of dexamethasone (5x10(-8) M) in the culture medium of MSCs prior to adenoviral transduction. We found that this increased transgene production could be extended to the osteogenic protein, human bone morphogenetic protein 2 (hBMP-2). When delivered by an adenoviral vector, hBMP-2 transgene production could be increased from 1.4 ng/10(5) cells/3 days to 4.3 ng/10(5) cells/3 days by culture of MSCs with osteogenic supplements prior to transduction. These results indicate that the utility of MSCs as a therapeutic protein delivery mechanism through genetic manipulation can be enhanced by pre-culture of these cells with dexamethasone. PMID:15013104

  2. Adenoviral-Mediated Glial Cell Line–Derived Neurotrophic Factor Gene Transfer Has a Protective Effect on Sciatic Nerve Following Constriction-Induced Spinal Cord Injury

    PubMed Central

    Chou, An-Kuo; Yang, Ming-Chang; Tsai, Hung-Pei; Chai, Chee-Yin; Tai, Ming-Hong; Kwan, Aij-Li; Hong, Yi-Ren

    2014-01-01

    Neuropathic pain due to peripheral nerve injury may be associated with abnormal central nerve activity. Glial cell-line-derived neurotrophic factor (GDNF) can help attenuate neuropathic pain in different animal models of nerve injury. However, whether GDNF can ameliorate neuropathic pain in the spinal cord dorsal horn (SCDH) in constriction-induced peripheral nerve injury remains unknown. We investigated the therapeutic effects of adenoviral-mediated GDNF on neuropathic pain behaviors, microglial activation, pro-inflammatory cytokine expression and programmed cell death in a chronic constriction injury (CCI) nerve injury animal model. In this study, neuropathic pain was produced by CCI on the ipsilateral SCDH. Mechanical allodynia was examined with von Frey filaments and thermal sensitivity was tested using a plantar test apparatus post-operatively. Target proteins GDNF-1, GDNFRa-1, MMP2, MMP9, p38, phospho-p38, ED1, IL6, IL1β, AIF, caspase-9, cleaved caspase-9, caspase-3, cleaved caspase-3, PARP, cleaved PARP, SPECTRIN, cleaved SPECTRIN, Beclin-1, PKCσ, PKCγ, iNOS, eNOS and nNOS were detected. Microglial activity was measured by observing changes in immunoreactivity with OX-42. NeuN and TUNEL staining were used to reveal whether apoptosis was attenuated by GDNF. Results showed that administrating GDNF began to attenuate both allodynia and thermal hyperalgesia at day 7. CCI-rats were found to have lower GDNF and GDNFRa-1 expression compared to controls, and GDNF re-activated their expression. Also, GDNF significantly down-regulated CCI-induced protein expression except for MMP2, eNOS and nNOS, indicating that the protective action of GDNF might be associated with anti-inflammation and prohibition of microglia activation. Immunocytochemistry staining showed that GDNF reduced CCI-induced neuronal apoptosis. In sum, GDNF enhanced the neurotrophic effect by inhibiting microglia activation and cytokine production via p38 and PKC signaling. GDNF could be a good

  3. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Adamo, Richard F.; Chorny, Michael; Levy, Robert J.; Alferiev, Ivan S.

    2014-01-01

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  4. Surmounting limited gene delivery into primary immune cell populations: Efficient cell type-specific adenoviral transduction by CAR.

    PubMed

    Clausen, Björn E; Brand, Anna; Karram, Khalad

    2015-06-01

    Ectopic gene expression studies in primary immune cells have been notoriously difficult to perform due to the limitations in conventional transfection and viral transduction methods. Although replication-defective adenoviruses provide an attractive alternative for gene delivery, their use has been hampered by the limited susceptibility of murine leukocytes to adenoviral infection, due to insufficient expression of the human coxsackie/adenovirus receptor (CAR). In this issue of the European Journal of Immunology, Heger et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] report the generation of transgenic mice that enable conditional Cre/loxP-mediated expression of human CAR. The authors demonstrate that this R26/CAG-CAR∆1(StopF) mouse strain facilitates the faithful monitoring of Cre activity in situ as well as the specific and efficient adenoviral transduction of primary immune cell populations in vitro. Further tweaking of the system towards more efficient gene transfer in vivo remains a future challenge. PMID:25903647

  5. Magnetically Responsive Biodegradable Nanoparticles Enhance Adenoviral Gene Transfer in Cultured Smooth Muscle and Endothelial Cells

    PubMed Central

    Chorny, Michael; Fishbein, Ilia; Alferiev, Ivan; Levy, Robert J.

    2012-01-01

    Replication-defective adenoviral (Ad) vectors have shown promise as a tool for gene delivery-based therapeutic applications. Their clinical use is however limited by therapeutically suboptimal transduction levels in cell types expressing low levels of Coxsackie-Ad receptor (CAR), the primary receptor responsible for the cell entry of the virus, and by systemic adverse reactions. Targeted delivery achievable with Ad complexed with biodegradable magnetically responsive nanoparticles (MNP) may therefore be instrumental for improving both the safety and efficiency of these vectors. Our hypothesis was that magnetically driven delivery of Ad affinity-bound to biodegradable MNP can substantially increase transgene expression in CAR deficient vascular cells in culture. Fluorescently labeled MNP were formulated from polylactide with inclusion of iron oxide and surface-modified with the D1 domain of CAR as an affinity linker. MNP cellular uptake and GFP reporter transgene expression were assayed fluorimetrically in cultured endothelial and smooth muscle cells using λex/λem of 540 nm/575 nm and 485 nm/535 nm, respectively. Stable vector-specific association of Ad with MNP resulted in formation of MNP–Ad complexes displaying rapid cell binding kinetics following a brief exposure to a high gradient magnetic field with resultant gene transfer levels significantly increased compared to free vector or nonmagnetic control treatment. Multiple regression analysis suggested a mechanism of MNP–Ad mediated transduction distinct from that of free Ad, and confirmed the major contribution of the complexes to the gene transfer under magnetic conditions. The magnetically enhanced transduction was achieved without compromising the cell viability or growth kinetics. The enhancement of adenoviral gene delivery by affinity complexation with biodegradable MNP represents a promising approach with a potential to extend the applicability of the viral gene therapeutic strategies. PMID:19496618

  6. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases. PMID:27245510

  7. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    PubMed

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle. PMID:12960972

  8. Replication-deficient adenoviral vector for gene transfer potentiates airway neurogenic inflammation.

    PubMed

    Piedimonte, G; Pickles, R J; Lehmann, J R; McCarty, D; Costa, D L; Boucher, R C

    1997-03-01

    Human trials for the treatment of cystic fibrosis lung disease with adenoviral vectors have been complicated by acute inflammatory reactions of unknown etiology. Because replicating respiratory viruses can potentiate tachykinin-mediated neurogenic inflammatory responses in airways, we studied whether the endotracheal administration of a replication-deficient adenoviral vector potentiated this response. The vector Ad5CMVLacZ was administered endotracheally to rats and the leakage of Evans blue dye was used to measure the capsaicin-induced neurogenic albumin extravasation. These studies show that neurogenic albumin extravasation is significantly potentiated in the airways of rats after administration of Ad5CMVLacZ. This inflammatory response can be blocked by selective antagonists of the substance P receptor or by glucocorticoids. Therefore, (1) the acute airway inflammation observed in patients after exposure to adenoviral vectors may exhibit a neurogenic component, which can be blocked pharmacologically, and (2) preclinical adenoviral vector safety studies of other organs innervated by the tachykinin system, e.g., coronary arteries and gastrointestinal tract, should include assessment of neurogenic inflammation. PMID:9070609

  9. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  10. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

    PubMed Central

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-01-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. PMID:27274908

  11. Adenoviral Delivery of the EMX2 Gene Suppresses Growth in Human Gastric Cancer

    PubMed Central

    Li, Jie; Mo, Minli; Chen, Zhao; Chen, Zhe; Sheng, Qing; Mu, Hang; Zhang, Fang; Zhang, Yi; Zhi, Xiu-Yi; Li, Hui; He, Biao; Zhou, Hai-Meng

    2012-01-01

    Background EMX2 is a human orthologue of the Drosophila empty spiracles homeobox gene that has been implicated in embryogenesis. Recent studies suggest possible involvement of EMX2 in human cancers; however, the role of EMX2 in carcinogenesis needs further exploration. Results In this study, we reported that down-regulation of EMX2 expression was significantly correlated with EMX2 promoter hypermethylation in gastric cancer. Restoring EMX2 expression using an adenovirus delivery system in gastric cancer cell lines lacking endogenous EMX2 expression led to inhibition of cell proliferation and Wnt signaling pathway both in vitro and in a gastric cancer xenograft model in vivo. In addition, we observed that animals treated with the adenoviral EMX2 expression vector had significantly better survival than those treated with empty adenoviral vector. Conclusion Our study suggests that EMX2 is a putative tumor suppressor in human gastric cancer. The adenoviral-EMX2 may have potential as a novel gene therapy for the treatment of patients with gastric cancer. PMID:23029345

  12. Adenoviral vectors for prodrug activation-based gene therapy for cancer

    PubMed Central

    Doloff, Joshua C.; Waxman, David J.

    2013-01-01

    Cancer cell heterogeneity is a common feature - both between patients diagnosed with the same cancer and within an individual patient’s tumor - and leads to widely different response rates to cancer therapies and the potential for the emergence of drug resistance. Diverse therapeutic approaches have been developed to combat the complexity of cancer, including individual treatment modalities designed to target tumor heterogeneity. This review discusses adenoviral vectors and how they can be modified to replicate in a cancer-specific manner and deliver therapeutic genes under multi-tiered regulation to target tumor heterogeneity, including heterogeneity associated with cancer stem cell-like subpopulations. Strategies that allow for combination of prodrug-activation gene therapy with a novel replication-conditional, heterogeneous tumor-targeting adenovirus are discussed, as are the benefits of using adenoviral vectors as tumor-targeting oncolytic vectors. While the anticancer activity of many adenoviral vectors has been well established in preclinical studies, only limited successes have been achieved in the clinic, indicating a need for further improvements in activity, specificity, tumor cell delivery and avoidance of immunogenicity. PMID:23869779

  13. Adenoviral gene transfer of macrophage inflammatory protein-2 in rat lung.

    PubMed Central

    Foley, R.; Driscoll, K.; Wan, Y.; Braciak, T.; Howard, B.; Xing, Z.; Graham, F.; Gauldie, J.

    1996-01-01

    Replication-defective adenoviral vectors are capable of localized transfer and expression of incorporated gene product in lung tissue. We have constructed an adenoviral vector that expresses rat macrophage inflammatory protein (MIP)-2, a C-X-C chemokine specifically chemotactic for neutrophils, Supernatants from 293 cells, infected with the adenoviral MIP-2 (ADMIP-2) construct, showed potent chemotactic activity and the ability of the ADMIP-2 vector to transcribe and make functional protein was confirmed. In vivo analysis of bronchoalveolar lavage fluid from rats after intratracheal instillation of ADMIP-2 (10(9) plaque-forming units) showed a 10-fold increase in the absolute number of neutrophils in bronchoalveolar lavage fluid as opposed to rats treated with an equal titer of an E1-disabled control virus expressing firefly luciferase (ADCA-18). Neutrophils constituted 65% of total BAL cells with alveolar macrophages being the other major cell type recovered. Rat MIP-2 protein was increased (nanograms per milliliter) in bronchoalveolar lavage fluid over a period of 7 days in ADMIP-2-treated animals. MIP-2 mRNA was demonstrated by Northern blot analysis in lung tissue, and histological analysis confirmed the presence of massive localized tissue neutrophilia. Evidence of chronic tissue injury and repair (ie, fibrosis) was not detected up to 2 weeks after the neutrophil infiltrate had resolved, subsequent to decreased chemokine presence. Adenoviral gene transfer proved an effective tool for the assessment of lung tissue expression of this chemokine in vivo and is useful in developing rodent models of tissue neutrophilia. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:8863686

  14. Improved Gene Delivery to Intestinal Mucosa by Adenoviral Vectors Bearing Subgroup B and D Fibers

    PubMed Central

    Lecollinet, S.; Gavard, F.; Havenga, M. J. E.; Spiller, O. B.; Lemckert, A.; Goudsmit, J.; Eloit, M.; Richardson, J.

    2006-01-01

    A major obstacle to successful oral vaccination is the lack of antigen delivery systems that are both safe and highly efficient. Conventional replication-incompetent adenoviral vectors, derived from human adenoviruses of subgroup C, are poorly efficient in delivering genetic material to differentiated intestinal epithelia. To date, 51 human adenovirus serotypes have been identified and shown to recognize different cellular receptors with different tissue distributions. This natural diversity was exploited in the present study to identify suitable adenoviral vectors for efficient gene delivery to the human intestinal epithelium. In particular, we compared the capacities of a library of adenovirus type 5-based vectors pseudotyped with fibers of several human serotypes for transduction, binding, and translocation toward the basolateral pole in human and murine tissue culture models of differentiated intestinal epithelia. In addition, antibody-based inhibition was used to gain insight into the molecular interactions needed for efficient attachment. We found that vectors differing merely in their fiber proteins displayed vastly different capacities for gene transfer to differentiated human intestinal epithelium. Notably, vectors bearing fibers derived from subgroup B and subgroup D serotypes transduced the apical pole of human epithelium with considerably greater efficiency than a subgroup C vector. Such efficiency was correlated with the capacity to use CD46 or sialic acid-containing glycoconjugates as opposed to CAR as attachment receptors. These results suggest that substantial gains could be made in gene transfer to digestive epithelium by exploiting the tropism of existing serotypes of human adenoviruses. PMID:16501084

  15. The Effects of Adenoviral Transfection of the Keratinocyte Growth Factor Gene on Epidermal Stem Cells: an In Vitro Study

    PubMed Central

    Li, Xinping; Liang, Ling; Zhao, Pin; Uchida, Kenzo; Baba, Hisatoshi; Huang, Hong; Bai, Wenfang; Bai, Liming; Zhang, Mingsheng

    2013-01-01

    Epidermal stem cells (ESCs) are characterized as slow-cycling, multi-potent, and self-renewing cells that not only maintain somatic homeostasis but also participate in tissue regeneration and repair. To examine the feasibility of adenoviral vector-mediated keratinocyte growth factor (KGF) gene transfer into in vitro-expanded ESCs, ESCs were isolated from samples of human skin, cultured in vitro, and then transfected with recombinant adenovirus (Ad) carrying the human KGF gene (AdKGF) or green fluorescent protein gene (AdGFP). The effects of KGF gene transfer on cell proliferation, cell cycle arrest, cell surface antigen phenotype, and β-catenin expression were investigated. Compared to ESCs transfected with AdGFP, AdKGF-transfected ESCs grew well, maintained a high proliferative capacity in keratinocyte serum-free medium, and expressed high levels of β-catenin. AdKGF infection increased the number of ESCs in the G0/G1 phase and promoted ESCs entry into the G2/M phase, but had no effect on cell surface antigen phenotype (CD49f+/CD71−). The results suggest that KGF gene transfer can stimulate ESCs to grow and undergo cell division, which can be applied to enhance cutaneous wound healing. PMID:24170090

  16. INSM1 promoter-driven adenoviral herpes simplex virus thymidine kinase cancer gene therapy for the treatment of primitive neuroectodermal tumors.

    PubMed

    Wang, Hong-Wei; Breslin, Mary B; Chen, Chiachen; Akerstrom, Victoria; Zhong, Qiu; Lan, Michael S

    2009-11-01

    The INSM1 gene encodes a developmentally regulated zinc finger transcription factor. INSM1 expression is normally absent in adult tissues, but is reactivated in neuroendocrine tumor cells. In the present study, we analyzed the therapeutic potential of an adenoviral INSM1 promoter-driven herpes simplex virus thymidine kinase (HSV-tk) construct in primitive neuroectodermal tumors (PNETs). We constructed an adenoviral INSM1 promoter-driven HSV-tk gene for therapy in PNETs. The PNET-specific adeno-INSM1 promoter HSV-tk construct was tested both in vitro and in vivo in a nude mouse tumor model. Northern blot analysis and transient transfection of an INSM1 promoter-driven luciferase reporter gene indicated that the INSM1 promoter was active in neuroblastoma (IMR-32), retinoblastoma (Y79), and medulloblastoma (D283 Med) cells, but not in glioblastoma (U-87 MG) cells. After Ad-INSM1p-HSV-tk infection, the levels of HSV-tk protein expression were consistent with INSM1 promoter activities. Furthermore, in vitro multiplicity of infection and ganciclovir (GCV) sensitivity studies indicated that the INSM1 promoter could mediate specific expression of the HSV-tk gene and selective killing of INSM1-positive PNETs. In vivo intratumoral adenoviral delivery demonstrated that the INSM1 promoter could direct HSV-tk gene expression in a nude mouse tumor model and effectively repressed tumor growth in response to GCV treatment. Taken together, our data show that the INSM1 promoter is specific and effective for targeted cancer gene therapy in PNETs. PMID:19604042

  17. Helper-Dependent Adenoviral Vectors

    PubMed Central

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2012-01-01

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227

  18. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer.

    PubMed

    Salido, Eduardo C; Li, Xiao M; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J; Roy-Chowdhury, Jayanta

    2006-11-28

    Mutations in the alanine-glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt(-/-) mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  19. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1.

    PubMed

    Castello, R; Borzone, R; D'Aria, S; Annunziata, P; Piccolo, P; Brunetti-Pierri, N

    2016-02-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT), which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate that ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Toward this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared with saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with ethylene glycol, a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  20. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  1. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  2. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors

    PubMed Central

    Suzuki, Keiichiro; Mitsui, Kaoru; Aizawa, Emi; Hasegawa, Kouichi; Kawase, Eihachiro; Yamagishi, Toshiyuki; Shimizu, Yoshihiko; Suemori, Hirofumi; Nakatsuji, Norio; Mitani, Kohnosuke

    2008-01-01

    Human embryonic stem (hES) cells are regarded as a potentially unlimited source of cellular materials for regenerative medicine. For biological studies and clinical applications using primate ES cells, the development of a general strategy to obtain efficient gene delivery and genetic manipulation, especially gene targeting via homologous recombination (HR), would be of paramount importance. However, unlike mouse ES (mES) cells, efficient strategies for transient gene delivery and HR in hES cells have not been established. Here, we report that helper-dependent adenoviral vectors (HDAdVs) were able to transfer genes in hES and cynomolgus monkey (Macaca fasicularis) ES (cES) cells efficiently. Without losing the undifferentiated state of the ES cells, transient gene transfer efficiency was ≈100%. Using HDAdVs with homology arms, approximately one out of 10 chromosomal integrations of the vector was via HR, whereas the rate was only ≈1% with other gene delivery methods. Furthermore, in combination with negative selection, ≈45% of chromosomal integrations of the vector were targeted integrations, indicating that HDAdVs would be a powerful tool for genetic manipulation in hES cells and potentially in other types of human stem cells, such as induced pluripotent stem (iPS) cells. PMID:18768795

  3. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    PubMed Central

    Coughlan, Lynda; Alba, Raul; Parker, Alan L.; Bradshaw, Angela C.; McNeish, Iain A.; Nicklin, Stuart A.; Baker, Andrew H.

    2010-01-01

    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated

  4. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.

    PubMed

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A F V

    2016-02-18

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  5. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  6. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  7. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2

    PubMed Central

    Neumann, Alexander J.; Gardner, Oliver F. W.; Williams, Rebecca; Alini, Mauro; Archer, Charles W.; Stoddart, Martin J.

    2015-01-01

    Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a

  8. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy

    PubMed Central

    Weymann, Alexander; Arif, Rawa; Weber, Antje; Zaradzki, Marcin; Richter, Karsten; Ensminger, Stephan; Robinson, Peter Nicholas; Wagner, Andreas H.; Karck, Matthias; Kallenbach, Klaus

    2016-01-01

    Objectives Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis. Methods We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM). Results IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1

  9. Amelioration of carbon tetrachloride-induced cirrhosis and portal hypertension in rat using adenoviral gene transfer of Akt

    PubMed Central

    Deng, Gang; Huang, Xiang-Jun; Luo, Hong-Wu; Huang, Fei-Zhou; Liu, Xun-Yang; Wang, Yong-Heng

    2013-01-01

    AIM: To investigate whether a virus constitutively expressing active Akt is useful to prevent cirrhosis induced by carbon tetrachloride (CCl4). METHODS: Using cre-loxp technique, we created an Ad-myr-HA-Akt virus, in which Akt is labeled by a HA tag and its expression is driven by myr promoter. Further, through measuring enzyme levels and histological structure, we determined the efficacy of this Ad-myr-HA-Akt virus in inhibiting the development of cirrhosis induced by CCl4 in rats. Lastly, using western blotting, we examined the expression levels and/or phosphorylation status of Akt, apoptotic mediators, endothelial nitric oxide synthase (eNOS), and markers for hepatic stellate cells activation to understand the underlying mechanisms of protective role of this virus. RESULTS: The Ad-myr-HA-Akt virus was confirmed using polymerase chain reaction amplification of inserted Akt gene and sequencing for full length of inserted fragment, which was consistent with the sequence reported in the GenBank. The concentrations of Ad-myr-HA-Akt and adenoviral enhanced green fluorescent protein (Ad-EGFP) virus used in the current study were 5.5 × 1011 vp/mL. The portal vein diameter, peak velocity of blood flow, portal blood flow and congestion index were significantly increased in untreated, saline and Ad-EGFP cirrhosis groups when compared to normal control after the virus was introduced to animal through tail veil injection. In contrast, these parameters in the Akt cirrhosis group were comparable to normal control group. Compared to the normal control, the liver function (Alanine aminotransferase, Aspartate aminotransferase and Albumin) was significantly impaired in the untreated, saline and Ad-EGFP cirrhosis groups. The Akt cirrhosis group showed significant improvement of liver function when compared to the untreated, saline and Ad-EGFP cirrhosis groups. The Hyp level and portal vein pressure in Akt cirrhosis groups were also significantly lower than other cirrhosis groups

  10. Adenoviral p53 gene transfer and gemcitabine in three patients with liver metastases due to advanced pancreatic carcinoma

    PubMed Central

    Thiede, Christian; Fischer, Rainer; Ehninger, Gerhard; Haag, Cornelie

    2007-01-01

    Background. Current therapies for adenocarcinoma of the pancreas do not improve the life expectancy of patients. Methods. In a non-randomized pilot trail we tested whether a local therapy based upon an adenoviral gene transfer of wild type p53 in combination with gemcitabine administration would be safe in patients with liver metastases due to pancreatic carcinoma. We report on the clinical course of three patients with respect to safety, tolerability and tumor response. Results. Transient grade III toxicities occurred with fever, leucopenia, elevation of AP, ALT, AST, GGT, while grade IV toxicity occurred for bilirubin only. Laboratory tests suggested disseminated intravascular coagulation in all three patients, but fine needle biopsies of liver did not show any histological evidence of thrombus or clot formation. Progression of liver metastases was documented in one and stable disease in another patient two months after treatment. However, a major improvement with regression of the indexed lesion by 80% occurred in a third patient after a single administration of 7.5×1012 viral particles, and time to progression was extended to six months. Conclusion. The combination therapy of viral gene transfer and chemotherapy temporarily controls and diminishes tumor burden. Improvement of the toxicity profile is necessary. Further trials are warranted to improve treatment and life expectancy of patients suffering from fatal diseases such as pancreatic carcinoma. PMID:18333108

  11. Adenoviral delivery of the beta2-adrenoceptor gene in sepsis: a subcutaneous approach in rat for kidney protection.

    PubMed

    Nakamura, Akio; Imaizumi, Akira; Niimi, Ryo; Yanagawa, Yukishige; Kohsaka, Takao; Johns, Edward J

    2005-12-01

    Successful gene therapy requires gene delivery that is efficient, has an optimal route of administration and has biosafety. The aims of the present study were to evaluate the safety and applicability of the subcutaneous delivery route for adenoviral transgenes containing the human beta(2)-adrenoceptor (adeno-beta(2)-AR) and to investigate whether this approach prevented renal dysfunction in a rat model of endotoxaemic shock induced by LPS (lipopolysaccharide). Subcutaneous administration of adeno-beta(2)-AR (a total of 10(10) viral particles) significantly increased beta-AR density in the kidney, lung and liver, but was without effect on physiological and plasma biochemical parameters. Moreover, this dose of virus did not cause any of the potential toxic responses of viral administration, such as inflammation and tissue TNF (tumour necrosis factor)-alpha expression. Although the LPS challenge caused a decrease in glomerular filtration rate, fractional excretion of sodium and renal beta-AR density in all groups, the reduction in renal function was significantly less in the rats given adeno-beta(2)-AR compared with non-treated rats. Thus, although further evaluation will be required, this initial study demonstrated that the subcutaneous injection of adeno-beta(2)-AR was efficient, comparatively non-pathogenic and potentially therapeutic to deal with acute renal failure associated with sepsis. PMID:16076286

  12. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12.

    PubMed

    Cao, Linjie; Zeng, Qin; Xu, Chaoqun; Shi, Sanjun; Zhang, Zhirong; Sun, Xun

    2013-05-01

    It has been well-established that chemo-immunotherapy using cytotoxic drugs and appropriate cytokines offers a promising approach for the treatment of neoplastic diseases. In view of this, to improve melanoma treatment effect, our study developed a new codelivery system (AL/Ad5/PTX) that paclitaxel (PTX) and adenovirus encoding for murine interleukin-12 (Ad5-mIL-12) were incorporated into anionic liposomes (AL). First, AL/Ad5/PTX complexes were prepared by incorporating Ad5 into anionic PTX liposomes using calcium-induced phase change. Second, the size distribution and zeta potential of AL/Ad5/PTX were investigated. Third, the results of in vitro transduction assays showed that PTX introduced into AL/Ad-luc or AL/Ad5-mIL-12 highly enhanced gene transduction efficiency in B16 cells than naked Ad5 or AL/Ad complexes while it had no comparability in A549 cells. Finally, a melanoma-bearing mouse model was established to assess the antitumor effect. Tumor growth inhibition and prolonged survival time, accompanied by increased mIL-12 or interferon-γ (IFN-γ) expression levels in serum or tumor sites, were observed in mice treated with AL/Ad5-mIL-12/PTX, as compared with those treated with either AL/Ad5-mIL-12 or AL/PTX. In conclusion, these results suggested that codelivery of Ad5-mIL-12 and PTX incorporated into AL could be a relatively efficient strategy for the treatment of melanoma. PMID:23534449

  13. Peri- and Postnatal Effects of Prenatal Adenoviral VEGF Gene Therapy in Growth-Restricted Sheep.

    PubMed

    Carr, David J; Wallace, Jacqueline M; Aitken, Raymond P; Milne, John S; Martin, John F; Zachary, Ian C; Peebles, Donald M; David, Anna L

    2016-06-01

    Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period. PMID:27103444

  14. Comparison of the effect of adenoviral delivery of three superoxide dismutase genes against hepatic ischemia-reperfusion injury.

    PubMed

    Wheeler, M D; Katuna, M; Smutney, O M; Froh, M; Dikalova, A; Mason, R P; Samulski, R J; Thurman, R G

    2001-12-10

    The purpose of this study was to investigate the effectiveness of superoxide dismutase (SOD) overexpression in an acute model of hepatic oxidative stress. Oxidative stress was established using a warm ischemia-reperfusion model, where nearly 70% of the liver was made hypoxic by clamping the hepatic artery and a branch of the portal vein for 1 hr followed by restoration of blood flow. Animals were infected i.v. with 1 x 10(9) plaque-forming units (PFU) of adenovirus containing the transgene for cytosolic Cu/Zn-SOD (Ad.SOD1), mitochondrial Mn-SOD (Ad.SOD2), extracellular Cu/Zn-SOD (Ad.SOD3), or the bacterial reporter gene for beta-galactosidase (Ad.lacZ) 3 days prior to experiments. Ad.SOD1 and Ad.SOD2 caused a three-fold increase in SOD expression and activity in liver compared to Ad.lacZ-treated control animals. Intravenous administration of Ad.SOD3 increased SOD activity slightly in serum but not in liver. Increases in serum transaminases and pathology due to ischemia-reperfusion were blunted by Ad.SOD1 and Ad.SOD2; however, extracellular SOD had no significant effect. Moreover, lipid-derived free radical adducts (a(N) = 15.65 G and a(H)(beta) = 2.78 G) were increased by ischemia-reperfusion. This effect was blunted by about 60% in Ad.SOD1- and Ad.SOD2-infected animals, but was unaffected by Ad.SOD3. However, when high doses of Ad.SOD3 (3 x 10(10) PFU) were administered. serum SOD activity was elevated three-fold and was protective against hepatic ischemia-reperfusion injury under these conditions. These data demonstrate that adenoviral delivery of superoxide dismutase can effectively reduce hepatic oxidative stress. PMID:11779401

  15. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  16. Ultrasound mediated gene transfection

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  17. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  18. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting. PMID:14970588

  19. The Effect of Adenovirus-Mediated Gene Expression of FHIT in Small Cell Lung Cancer Cells

    PubMed Central

    Zandi, Roza; Xu, Kai; Poulsen, Hans S.; Roth, Jack A.; Ji, Lin

    2012-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone or in combination with the mutant p53-reactivating molecule, PRIMA-1Met/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1Met/APR-246, a synergistic cell growth inhibition was achieved. PMID:22085272

  20. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma.

    PubMed

    Wang, Yi-Gang; Huang, Pan-Pan; Zhang, Rong; Ma, Bu-Yun; Zhou, Xiu-Mei; Sun, Yan-Fang

    2016-01-01

    Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors. PMID:26755879

  1. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma

    PubMed Central

    Wang, Yi-Gang; Huang, Pan-Pan; Zhang, Rong; Ma, Bu-Yun; Zhou, Xiu-Mei; Sun, Yan-Fang

    2016-01-01

    Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors. PMID:26755879

  2. [Construction of recombinant adenoviral vector expressing genes of the conservative influenza proteins M2 and nucleoprotein].

    PubMed

    Esmagambetov, I B; Sedova, E S; Shcherbinin, D N; Lysenko, A A; Garas, M N; Shmarov, M M; Logunov, D Iu

    2014-01-01

    Influenza is a highly contagious and one of the most massive infection diseases. General epidemiological significance has a strain, which belongs to subtype A. A high degree of genetic variety leads to the permanent changes in the antigenic structure of the influenza virus. Therefore, the current influenza vaccines require periodic updating of the composition of strains. Presently, it is important to develop a universal vaccine that can protect against different strains of influenza A virus at the same time and is based on the conserved antigens of the influenza virus. The recombinant adenovirus vectors expressing genes of conserved viral antigenes may be a promising candidate vaccine against influenza A. Using the method of the homologous recombination, we developed in this study recombinant adenovirus of fifth serotype that expresses genes of the ion channel M2 and nucleoprotein NP of the influenza virus A. Genes of the consensus protein M2 and NP of human influenza A virus were included into the structure of the viral genome. The expression of the antigens M2 and NP using recombinant adenovirus vector was detected by a Western blot assay. The immunogenicity of the developed recombinant adenovirus vector was demonstrated by the intranasal immunization of laboratory mice. PMID:25080815

  3. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases. PMID:24955893

  4. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  5. Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system.

    PubMed

    Souza, Sandra C; Muliro, Kizito V; Liscum, Laura; Lien, Ping; Yamamoto, Mia T; Schaffer, Jean E; Dallal, Gerard E; Wang, Xinzhong; Kraemer, Fredric B; Obin, Martin; Greenberg, Andrew S

    2002-03-01

    Perilipin (Peri) A is a phosphoprotein located at the surface of intracellular lipid droplets in adipocytes. Activation of cyclic AMP-dependent protein kinase (PKA) results in the phosphorylation of Peri A and hormone-sensitive lipase (HSL), the predominant lipase in adipocytes, with concurrent stimulation of adipocyte lipolysis. To investigate the relative contributions of Peri A and HSL in basal and PKA-mediated lipolysis, we utilized NIH 3T3 fibroblasts lacking Peri A and HSL but stably overexpressing acyl-CoA synthetase 1 (ACS1) and fatty acid transport protein 1 (FATP1). When incubated with exogenous fatty acids, ACS1/FATP1 cells accumulated 5 times more triacylglycerol (TG) as compared with NIH 3T3 fibroblasts. Adenoviral-mediated expression of Peri A in ACS1/FATP1 cells enhanced TG accumulation and inhibited lipolysis, whereas expression of HSL fused to green fluorescent protein (GFPHSL) reduced TG accumulation and enhanced lipolysis. Forskolin treatment induced Peri A hyperphosphorylation and abrogated the inhibitory effect of Peri A on lipolysis. Expression of a mutated Peri A Delta 3 (Ser to Ala substitutions at PKA consensus sites Ser-81, Ser-222, and Ser-276) reduced Peri A hyperphosphorylation and blocked constitutive and forskolin-stimulated lipolysis. Thus, perilipin expression and phosphorylation state are critical regulators of lipid storage and hydrolysis in ACS1/FATP1 cells. PMID:11751901

  6. Adenoviral gene transfer of endothelial nitric-oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS-deficient mice

    PubMed Central

    Champion, Hunter C.; Bivalacqua, Trinity J.; Greenberg, Stanley S.; Giles, Thomas D.; Hyman, Albert L.; Kadowitz, Philip J.

    2002-01-01

    It has been shown that mice deficient in the gene coding for endothelial nitric-oxide synthase (eNOS) have increased pulmonary arterial pressure and pulmonary vascular resistance. In the present study, the effect of transfer to the lung of an adenoviral vector encoding the eNOS gene (AdCMVeNOS) on pulmonary arterial pressure and pulmonary vascular resistance was investigated in eNOS-deficient mice. One day after intratracheal administration of AdCMVeNOS to eNOS−/− mice, there was an increase in eNOS protein, cGMP levels, and calcium-dependent conversion of l-arginine to l-citrulline in the lung. The increase in eNOS protein and activity in eNOS−/− mice was associated with a reduction in mean pulmonary arterial pressure and pulmonary vascular resistance when compared with values in eNOS-deficient mice treated with vehicle or a control adenoviral vector coding for β-galactosidase, AdCMVβgal. These data suggest that in vivo gene transfer of eNOS to the lung in eNOS−/− mice can increase eNOS staining, eNOS protein, calcium-dependent NOS activity, and cGMP levels and partially restore pulmonary arterial pressure and pulmonary vascular resistance to near levels measured in eNOS+/+ mice. Thus, the major finding in this study is that in vivo gene transfer of eNOS to the lung in large part corrects a genetic deficiency resulting from eNOS deletion and may be a useful therapeutic intervention for the treatment of pulmonary hypertensive disorders in which eNOS activity is reduced. PMID:12237402

  7. Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis.

    PubMed

    Zhang, Xiong; Qi, Dong-Dong; Zhang, Ting-Ting; Chen, Qing-Xin; Wang, Guang-Zhi; Sui, Guang-Yu; Hao, Xue-Wei; Sun, Shouli; Song, Xue; Chen, Ying-Li

    2015-03-01

    The T42 peptide, generated from two active fragments of tumstatin, has been shown to have anti‑tumor activity. The adenoviral vector is the most frequently used vector in research and clinical trials for gene therapy. In the present study, the anti‑tumor activity of the T42 peptide and quadruple T42 (4xT42) peptide adenoviral vectors were elucidated for the first time, to the best of our knowledge. Human embryonic kidney 293 cells were infected with plasmid adenovirus (pAd)‑enhanced green fluorescent protein (EGFP)‑T42 or pAd‑EGFP‑4xT42 and the expression of the T42 and 4xT42 genes was confirmed by the identification of GFP expression and reverse transcription polymerase chain reaction experiments. The anti‑cancer effects of pAd‑EGFP‑T42 and pAd‑EGFP‑4xT42 on breast cancer cells in vivo and in vitro were subsequently investigated. The results indicated that the packaging of the recombinant adenoviruses with the viral titer was successful, following purification at 5x109 plaque forming units/ml. The results also revealed that the recombinant adenoviruses promoted apoptosis in MCF‑7 breast cancer cells and inhibited cancer growth. Through the analysis of caspase‑3, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein expression, it was demonstrated that the T42/4xT42 peptide may induce apoptosis via the mitochondrial pathway. In addition, mouse xenograft experiments confirmed that the T42 peptide inhibited tumor growth and reduced angiogenesis in vivo. In conclusion, the results of the present study indicated that the T42 and 4xT42 peptide genes, transfected by a recombinant adenovirus, may provide a potential novel strategy for the treatment of breast cancer. PMID:25384346

  8. Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference

    PubMed Central

    CAO, Huibi; WANG, Anan; MARTIN, Bernard; KOEHLER, David R.; ZEITLIN, Pamela L.; TANAWELL, A. Keith; HU, Jim

    2015-01-01

    Interleukin (IL)-8 is a potent neutrophil chemotactic factor and a crucial mediator in neutrophil-dependent inflammation. Various cell types produce IL-8, either in response to external stimuli such as cytokines or bacterial infection, or after malignant transformation. Anti-IL-8 strategies have been considered for anti-inflammatory therapy. In this paper we demonstrate that the RNA interference technique can be used to efficiently down-regulate IL-8 protein expression in airway epithelial cells. We used a helper-dependent adenoviral vector to express a small hairpin (sh)RNA targeting human IL-8 in cultured airway epithelial cells (IB3-1, Cftr−/−; C38, Cftr-corrected) stimulated with TNF-α, IL-1β or heat-inactivated Burkholderia cenocepacia. Stimulated IL-8 expression in IB3-1 and C38 cells was significantly reduced by shRNA expression. The shRNA targeting IL-8 had no effect on the activation of NF-κB, or on the protein levels of IκB or IL-6, suggesting that this anti-IL-8 strategy was highly specific, and therefore may offer potential for the treatment of inflammatory diseases. PMID:15740640

  9. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation.

    PubMed

    Gordon, Ashley; Kozin, Elliott D; Keswani, Sundeep G; Vaikunth, Sachin S; Katz, Anna B; Zoltick, Philip W; Favata, Michele; Radu, Antoneta P; Soslowsky, Louis J; Herlyn, Meenhard; Crombleholme, Timothy M

    2008-01-01

    Wound healing in the mid-gestation fetus is scarless with minimal inflammation and a unique extracellular matrix. We have previously documented the relative lack of inflammatory cytokines in this environment. We demonstrate that interleukin (IL)-10 is highly expressed in mid-gestation human fetal skin but is absent in postnatal human skin. We hypothesize that overexpression of IL-10 in postnatal skin may replicate a permissive environment for scarless healing. To study the mechanism underlying this process we performed immunohistochemistry for IL-10 in human mid-gestation fetal and postnatal skin. We also determined if adenoviral-mediated overexpression of IL-10 could allow for scarless wound healing in a murine incisional wound model. Wounds were analyzed at 1-90 days postwounding for effects on scar formation, inflammatory response, and biomechanical properties. Ad-IL-10 reconstitutes a permissive environment for scarless healing as shown by reconstitution of a normal dermal reticular collagen pattern and distribution of dermal elements. Compared with controls, Ad-IL-10 treated wounds showed reduced inflammatory response and no difference in biomechanical parameters. Therefore, overexpression of IL-10 in postnatal wounds results in a permissive environment for scarless wound repair, possibly by replicating a fetal wound environment. PMID:18086289

  10. Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-kappa B-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli.

    PubMed

    Henriksen, Peter A; Hitt, Mary; Xing, Zhou; Wang, Jun; Haslett, Chris; Riemersma, Rudolph A; Webb, David J; Kotelevtsev, Yuri V; Sallenave, Jean-Michel

    2004-04-01

    Atherosclerosis is a chronic inflammatory disease affecting arterial vessels. Strategies to reduce the inflammatory responses of endothelial cells and macrophages may slow lesion development and prevent complications such as plaque rupture. The human protease human neutrophil elastase (HNE), oxidized low density lipoprotein, LPS, and TNF-alpha were chosen as model stimuli of arterial wall inflammation and led to production of the chemokine IL-8 in endothelial cells. To counteract the activity of HNE, we have examined the effects of adenoviral gene delivery of the anti-elastases elafin, previously demonstrated within human atheroma, and murine secretory leukocyte protease inhibitor (SLPI), a related molecule, on the inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. We developed a technique of precomplexing adenovirus with cationic lipid to augment adenoviral infection efficiency in endothelial cells and to facilitate infection in macrophages. Elafin overexpression protected endothelial cells from HNE-induced IL-8 production and cytotoxicity. Elafin and murine SLPI also reduced endothelial IL-8 release in response to oxidized low density lipoprotein, LPS, and TNF-alpha and macrophage TNF-alpha production in response to LPS. This effect was associated with reduced activation of the inflammatory transcription factor NF-kappaB, through up-regulation of IkappaBalpha, in both cell types. Our work suggests a novel and extended anti-inflammatory role for these HNE inhibitors working as effectors of innate immunity to protect tissues against maladaptive inflammatory responses. Our findings indicate that elafin and SLPI may be gene therapy targets for the treatment of atheroma. PMID:15034071

  11. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    PubMed Central

    2010-01-01

    Background Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time. Methods Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis. Results We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed. Conclusions Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals. PMID:21176193

  12. Adenoviral gene transfer corrects the ion transport defect in the sinus epithelia of a porcine CF model.

    PubMed

    Potash, Andrea E; Wallen, Tanner J; Karp, Philip H; Ernst, Sarah; Moninger, Thomas O; Gansemer, Nicholas D; Stoltz, David A; Zabner, Joseph; Chang, Eugene H

    2013-05-01

    Cystic fibrosis (CF) pigs spontaneously develop sinus and lung disease resembling human CF. The CF pig presents a unique opportunity to use gene transfer to test hypotheses to further understand the pathogenesis of CF sinus disease. In this study, we investigated the ion transport defect in the CF sinus and found that CF porcine sinus epithelia lack cyclic AMP (cAMP)-stimulated anion transport. We asked whether we could restore CF transmembrane conductance regulator gene (CFTR) current in the porcine CF sinus epithelia by gene transfer. We quantified CFTR transduction using an adenovirus expressing CFTR and green fluorescent protein (GFP). We found that as little as 7% of transduced cells restored 6% of CFTR current with 17-28% of transduced cells increasing CFTR current to 50% of non-CF levels. We also found that we could overcorrect cAMP-mediated current in non-CF epithelia. Our findings indicate that CF porcine sinus epithelia lack anion transport, and a relatively small number of cells expressing CFTR are required to rescue the ion transport phenotype. These studies support the use of the CF pig as a preclinical model for future gene therapy trials in CF sinusitis. PMID:23511247

  13. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging

    PubMed Central

    Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L

    2009-01-01

    Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574

  14. Developing Adenoviral Vectors Encoding Therapeutic Genes Toxic to Host Cells: Comparing Binary and Single Inducible Vectors Expressing Truncated E2F-1

    PubMed Central

    Gomez-Gutierrez, Jorge G.; Rao, Xiao-Mei; Garcia-Garcia, Aracely; Hao, Hongying; McMasters, Kelly M.; Zhou, H. Sam

    2010-01-01

    Adenoviral vectors are highly efficient at transferring genes into cells and are broadly used in cancer gene therapy. However, many therapeutic genes are toxic to vector host cells and thus inhibit vector production. The truncated form of E2F-1 (E2Ftr), which lacks the transactivation domain, can significantly induce cancer cell apoptosis, but is also toxic to HEK-293 cells and inhibits adenovirus replication. To overcome this, we have developed binary- and single-vector systems with a modified tetracycline-off inducible promoter to control E2Ftr expression. We compared several vectors and found that the structure of expression cassettes in vectors significantly affects E2Ftr expression. One construct expresses high levels of inducible E2Ftr and efficiently causes apoptotic cancer cell death by activation of caspase-3. The approach developed in this study may be applied in other viral vectors for encoding therapeutic genes that are toxic to their host cells and/or inhibit vector propagation. PMID:20003994

  15. Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection.

    PubMed

    Simpson, A J; Wallace, W A; Marsden, M E; Govan, J R; Porteous, D J; Haslett, C; Sallenave, J M

    2001-08-01

    During acute pulmonary infection, tissue injury may be secondary to the effects of bacterial products or to the effects of the host inflammatory response. An attractive strategy for tissue protection in this setting would combine antimicrobial activity with inhibition of human neutrophil elastase (HNE), a key effector of neutrophil-mediated tissue injury. We postulated that genetic augmentation of elafin (an endogenous inhibitor of HNE with intrinsic antimicrobial activity) could protect the lung against acute inflammatory injury without detriment to host defense. A replication-deficient adenovirus encoding elafin cDNA significantly protected A549 cells against the injurious effects of both HNE and whole activated human neutrophils in vitro. Intratracheal replication-deficient adenovirus encoding elafin cDNA significantly protected murine lungs against injury mediated by Pseudomonas aeruginosa in vivo. Genetic augmentation of elafin therefore has the capacity to protect the lung against the injurious effects of both bacterial pathogens resistant to conventional antibiotics and activated neutrophils. PMID:11466403

  16. Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites.

    PubMed

    Hampl, M; Tanaka, T; Albert, P S; Lee, J; Ferrari, N; Fine, H A

    2001-09-20

    Malignant ascites is a common complication of advanced intraabdominal neoplasms for which standard treatments are suboptimal. Evidence suggests that tumor-mediated angiogenesis and enhanced vascular permeability in the peritoneal wall due to high levels of vascular endothelial growth factor play a fundamental role in the pathogenesis of malignant ascites. To explore the advantage of viral vector-mediated "targeted antiangiogenic therapy" in ascites formation, we constructed and administered adenoviral vectors encoding several different antiangiogenic proteins (angiostatin, endostatin, platelet factor 4, and a fusion protein between angiostatin and endostatin) alone or in combination intraperitoneally in mice with peritoneal carcinomatosis from breast cancer (TA3 cells) and ovarian cancer (SKOV-3 i.p. and ES-2 cell lines) to explore the potential of additive or synergistic activity. Our data demonstrated statistically significant downregulation of ascites formation, tumor growth, vascularity, and prolongation of animal survival after intraperitoneal treatment with antiangiogenic adenoviral vectors in three different ascites tumor models. Combined treatment proved to be more effective than treatment with one vector alone. Reduced ascites formation was accompanied by decreased microvascular density in the peritoneal wall and increased apoptosis of tumor cells after administration of antiangiogenic vectors in vivo. Of interest was the observation that AdPF4 caused a significant decrease in the level of VEGF secreted by tumor cells both in vitro and in TA3 ascites tumor-bearing animals in vivo. These data suggest that adenoviral vector-mediated delivery of genes encoding antiangiogenic proteins may represent a potentially new treatment modality for malignant ascites. PMID:11560766

  17. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    PubMed

    2003-01-01

    Introgen's adenoviral p53 gene therapy [INGN 201, ADVEXIN] is in clinical development for the treatment of various cancers. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. INGN 201 has been shown to kill cancer cells directly. In August 2002, Introgen announced plans to file an application for INGN 201 with the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of head and neck cancer; the European filing will be submitted simultaneously with the previously scheduled (planned for 2004) submission of a Biologics License Application (BLA) for ADVEXIN to the US FDA. On 20 February 2003, INGN 201 received orphan drug designation from the US FDA for head and neck cancer. INGN 201 is available for licensing although Introgen favours retaining partial or full rights to the therapy in the US. Introgen Therapeutics and its collaborative partner for the p53 programme, Aventis Gencell, have been developing p53 gene therapy products. The agreement was originally signed by Rhône-Poulenc Rorer's Gencell division, which became Aventis Gencell after Rhône-Poulenc Rorer merged with Hoechst Marion Roussel to form Aventis Pharma. According to the original agreement, Introgen was responsible for phase I and preclinical development in North America, while Aventis Gencell was responsible for clinical trials conducted in Europe and for clinical trials in North America beyond phase I. In April 2001, Aventis Gencell and Introgen restructured their existing collaboration agreement for p53 gene therapy products. Aventis Gencell indicated that p53 research had suffered from internal competition for resources and was pulling back from its development agreement with Introgen for p53 gene therapy products. Introgen will assume responsibility for worldwide development of all p53 programmes and will obtain exclusive worldwide commercial rights to p53-based gene therapy

  18. Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade.

    PubMed

    Romero, M I; Smith, G M

    1998-12-01

    This study characterized gene transfer into both normal and injured adult rat dorsal spinal cord using first (E1-/E3-) or second (E1-/E2A125/E3-, temperature-sensitive; ts) generation of replication-defective adenoviral (Ad) vectors. A novel immunosuppressive regimen aimed at blocking CD4/CD45 lymphocytic receptors was tested for improving transgene persistence. In addition, the effect of gene transfer on nociception was also evaluated. Seven days after treatment, numerous LacZ-positive cells were observed after transfection with either viral vector. By 21 days after transfection, beta-galactosidase staining was reduced and suggestive of ongoing cytopathology in both Ad-treated groups, despite the fact that the immunogenicity of LacZ/Adts appeared less when compared with that elicited by the LacZ/Ad vector. In contrast, immunosuppressed animals showed a significant (P < or = 0.05) increase in the number of LacZ-positive cells not displaying cytopathology. In these animals, a concomitant reduction in numbers of macrophages/microglia and CD4 and CD8 lymphocytes was observed. Only animals that received LacZ/Adts and immunosuppression showed transgene expression after 60 days. Similar results were observed in animals in which the L4-L5 dorsal roots were lesioned before transfection. Gene transfer into the dorsal spinal cord did not affect nociception, independent of the adenovirus vector. These results indicate that immune blockade of the CD4/CD45 lymphocytic receptors enhanced transgene stability in adult animals with normal or injured spinal cords and that persistent transgene expression in the spinal cord does not interfere with normal neural function. PMID:10023440

  19. Dystrophin expression in muscle following gene transfer with a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene products.

    PubMed

    Gilbert, R; Nalbantoglu, J; Howell, J M; Davies, L; Fletcher, S; Amalfitano, A; Petrof, B J; Kamen, A; Massie, B; Karpati, G

    2001-09-20

    Helper-dependent adenoviruses (HDAd) are Ad vectors lacking all or most viral genes. They hold great promise for gene therapy of diseases such as Duchenne muscular dystrophy (DMD), because they are less immunogenic than E1/E3-deleted Ad (first-generation Ad or FGAd) and can carry the full-length (Fl) dystrophin (dys) cDNA (12 kb). We have compared the transgene expression of a HDAd (HDAdCMVDysFl) and a FGAd (FGAdCMV-dys) in cell culture (HeLa, C2C12 myotubes) and in the muscle of mdx mice (the mouse model for DMD). Both vectors encoded dystrophin regulated by the same cytomegalovirus (CMV) promoter. We demonstrate that the amount of dystrophin expressed was significantly higher after gene transfer with FGAdCMV-dys compared to HDAdCMVDysFl both in vitro and in vivo. However, gene transfer with HDAdCMVDysFl in the presence of a FGAd resulted in a significant increase of dystrophin expression indicating that gene products synthesized by the FGAd increase, in trans, the amount of dystrophin produced. This enhancement occurred in cell culture and after gene transfer in the muscle of mdx mice and dystrophic golden retriever (GRMD) dogs, another animal model for DMD. The E4 region of Ad is required for the enhancement, because no increase of dystrophin expression from HDAdCMVDysFl was observed in the presence of an E1/E4-deleted Ad in vitro and in vivo. The characterization of these enhancing gene products followed by their inclusion into an HDAd may be required to produce sufficient dystrophin to mitigate the pathology of DMD by HDAd-mediated gene transfer. PMID:11560768

  20. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    SciTech Connect

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.; Freimuth, P.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  1. HIV-1 Adenoviral Vector Vaccines Expressing Multi-Trimeric BAFF and 4-1BBL Enhance T Cell Mediated Anti-Viral Immunity

    PubMed Central

    Gupta, Sachin; Raffa, Francesca N.; Fuller, Katherine A.; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S.; Stone, Geoffrey W.

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  2. Evaluation of the immune response to recombinant DNA vaccine and adenoviral vaccine co-expressing the M1 and HA genes of H5N1 influenza virus in mice.

    PubMed

    Guo, Jianqiang; Yao, Lihong; Chen, Aijun; Liu, Xiaoyu; Fu, Jinqi; Xu, Pengwei; Zhang, Zhiqing

    2011-06-01

    In order to evaluate the response to vector-expressed M1 and HA genes of influenza virus in mice, we prepared recombinant plasmid pStar-M1/HA and recombinant adenovirus Ad-M1/HA containing both the full-length matrix protein 1(M1) and hemagglutinin (HA) genes of human H5N1 influenza virus strain A/Anhui/1/2005. We then combined the DNA vaccine and adenoviral vaccine in immunization of BALB/c mice with a prime-boost regime. We immunized the mice with DNA vaccine at day 0 and 28 and with recombinant adenoviral vaccines at day 14 and 42. We took blood samples before each injection and 14 days after the final injection for detection of humoral immune responses. At day 56, we sacrificed the mice and collected splenocytes for detection of cellular immune responses. ELISA and hemagglutination inhibition (HI) assay showed that specific IgG Abs against H5N1 influenza virus was induced in serum of the immunized mice. ELISPOT results confirmed that the specific cellular immune responses were successfully induced against the M1 and HA proteins of H5N1 influenza virus. This study provides new strategy for development of novel influenza vaccines. PMID:22034816

  3. Induction of Specific Humoral and Cellular Immune Responses in a Mouse Model following Gene Fusion of HSP70C and Hantaan Virus Gn and S0.7 in an Adenoviral Vector

    PubMed Central

    Li, Kai; Wang, Fang; Zhang, Liang; Ye, Wei; Li, Puyuan; Zhang, Fanglin; Xu, Zhikai

    2014-01-01

    Heat shock proteins (HSPs) display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV) glycoprotein (GP) and nucleocapsid protein (NP) immunogenicity by heat shock protein 70 (HSP70), a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359–610 aa, HSP70C) to the Gn and 0.7 kb fragment of the NP (aa1–274-S0.7). C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7) and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV. PMID:24505421

  4. Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro.

    PubMed

    Candolfi, Marianela; Pluhar, G Elizabeth; Kroeger, Kurt; Puntel, Mariana; Curtin, James; Barcia, Carlos; Muhammad, A K M Ghulam; Xiong, Weidong; Liu, Chunyan; Mondkar, Sonali; Kuoy, William; Kang, Terry; McNeil, Elizabeth A; Freese, Andrew B; Ohlfest, John R; Moore, Peter; Palmer, Donna; Ng, Phillip; Young, John D; Lowenstein, Pedro R; Castro, Maria G

    2007-07-01

    Expression of the immune-stimulatory molecule Fms-like tyrosine kinase 3 ligand (Flt3L) and the conditional cytotoxic enzyme herpes simplex virus type 1 thymidine kinase (HSV1-TK) provides long-term immune-mediated survival of large glioblastoma multiforme (GBM) models in rodents. A limitation for predictive testing of novel antiglioma therapies has been the lack of a glioma model in a large animal. Dogs bearing spontaneous GBM may constitute an attractive large-animal model for GBM, which so far has remained underappreciated. In preparation for a clinical trial in dogs bearing spontaneous GBMs, we tested and optimized adenovirus-mediated transgene expression with negligible toxicity in the dog brain in vivo and in canine J3T glioma cells. Expression of the marker gene beta-galactosidase (beta-Gal) was higher when driven by the murine (m) than the human (h) cytomegalovirus (CMV) promoter in the dog brain in vivo, without enhanced inflammation. In the canine brain, beta-Gal was expressed mostly in astrocytes. beta-Gal activity in J3T cells was also higher with the mCMV than the hCMV promoter driving tetracycline-dependent (TetON) transgene expression within high-capacity adenovirus vectors (HC-Ads). Dog glioma cells were efficiently transduced by HC-Ads expressing mCMV-driven HSV1-TK, which induced 90% reduction in cell viability in the presence of ganciclovir. J3T cells were also effectively transduced with HC-Ads expressing Flt3L under the control of the regulatable TetON promoter system, and as predicted, Flt3L release was stringently inducer dependent. HC-Ads encoding therapeutic transgenes under the control of regulatory sequences driven by the mCMV promoter are excellent vectors for the treatment of spontaneous GBM in dogs, which constitute an ideal preclinical animal model. PMID:17522335

  5. Integrase-Deficient Lentiviral Vectors Mediate Efficient Gene Transfer to Human Vascular Smooth Muscle Cells with Minimal Genotoxic Risk

    PubMed Central

    Chick, Helen E.; Nowrouzi, Ali; Fronza, Raffaele; McDonald, Robert A.; Kane, Nicole M.; Alba, Raul; Delles, Christian; Sessa, William C.; Schmidt, Manfred; Thrasher, Adrian J.

    2012-01-01

    Abstract We have previously shown that injury-induced neointima formation was rescued by adenoviral-Nogo-B gene delivery. Integrase-competent lentiviral vectors (ICLV) are efficient at gene delivery to vascular cells but present a risk of insertional mutagenesis. Conversely, integrase-deficient lentiviral vectors (IDLV) offer additional benefits through reduced mutagenesis risk, but this has not been evaluated in the context of vascular gene transfer. Here, we have investigated the performance and genetic safety of both counterparts in primary human vascular smooth muscle cells (VSMC) and compared gene transfer efficiency and assessed the genotoxic potential of ICLVs and IDLVs based on their integration frequency and insertional profile in the human genome. Expression of enhanced green fluorescent protein (eGFP) mediated by IDLVs (IDLV-eGFP) demonstrated efficient transgene expression in VSMCs. IDLV gene transfer of Nogo-B mediated efficient overexpression of Nogo-B in VSMCs, leading to phenotypic effects on VSMC migration and proliferation, similar to its ICLV version and unlike its eGFP control and uninfected VSMCs. Large-scale integration site analyses in VSMCs indicated that IDLV-mediated gene transfer gave rise to a very low frequency of genomic integration compared to ICLVs, revealing a close-to-random genomic distribution in VSMCs. This study demonstrates for the first time the potential of IDLVs for safe and efficient vascular gene transfer. PMID:22931362

  6. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse.

    PubMed

    Guan, Yuting; Ma, Yanlin; Li, Qi; Sun, Zhenliang; Ma, Lie; Wu, Lijuan; Wang, Liren; Zeng, Li; Shao, Yanjiao; Chen, Yuting; Ma, Ning; Lu, Wenqing; Hu, Kewen; Han, Honghui; Yu, Yanhong; Huang, Yuanhua; Liu, Mingyao; Li, Dali

    2016-01-01

    The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. PMID:26964564

  7. SR-A and SREC-I Are Kupffer and Endothelial Cell Receptors for Helper-dependent Adenoviral Vectors

    PubMed Central

    Piccolo, Pasquale; Vetrini, Francesco; Mithbaokar, Pratibha; Grove, Nathan C; Bertin, Terry; Palmer, Donna; Ng, Philip; Brunetti-Pierri, Nicola

    2013-01-01

    Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes with no chronic toxicity. However, a toxic acute response with potentially lethal consequences has hindered their clinical applications. Liver sinusoidal endothelial cells (LSECs) and Kupffer cells are major barriers to efficient hepatocyte transduction. Understanding the mechanisms of adenoviral vector uptake by non-parenchymal cells may allow the development of strategies aimed at overcoming these important barriers and to achieve preferential hepatocyte gene transfer with reduced toxicity. Scavenger receptors on Kupffer cells bind adenoviral particles and remove them from the circulation, thus preventing hepatocyte transduction. In the present study, we show that HDAd particles interact in vitro and in vivo with scavenger receptor-A (SR-A) and with scavenger receptor expressed on endothelial cells-I (SREC-I) and we exploited this knowledge to increase the efficiency of hepatocyte transduction by HDAd vectors in vivo through blocking of SR-A and SREC-I with specific fragments antigen-binding (Fabs). PMID:23358188

  8. Gene transfer mediated by alpha2-macroglobulin.

    PubMed Central

    Schneider, H; Huse, K; Birkenmeier, G; Otto, A; Scholz, G H

    1996-01-01

    alpha2-Macroglobulin covalently linked to poly(L)-lysine can be used as a vehicle for receptor-mediated gene transfer. This modified alpha2-macroglobulin maintains its ability to bind to the alpha2-macroglobulin receptor, and was shown to introduce a luciferase reporter gene plasmid into HepG2 human hepatoma cells in vitro. The alpha2-macroglobulin receptor is a very large and multifunctional cell surface receptor, whose rapid and efficient internalization rate makes it attractive for gene therapy, e.g. for hepatic gene targeting via injection into the portal vein. PMID:8871570

  9. Adenovirus-Mediated Efficient Gene Transfer into Cultured Three-Dimensional Organoids

    PubMed Central

    Wang, Ning; Zhang, Hongyu; Zhang, Bing-Qiang; Liu, Wei; Zhang, Zhonglin; Qiao, Min; Zhang, Hongmei; Deng, Fang; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Liao, Zhan; Zhang, Qian; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Deng, Youlin; Luu, Hue H.; Haydon, Rex C.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids. PMID:24695466

  10. Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

    PubMed

    Wang, Ning; Zhang, Hongyu; Zhang, Bing-Qiang; Liu, Wei; Zhang, Zhonglin; Qiao, Min; Zhang, Hongmei; Deng, Fang; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Liao, Zhan; Zhang, Qian; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Deng, Youlin; Luu, Hue H; Haydon, Rex C; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell-based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured "mini-gut" organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D "mini-gut" organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids. PMID:24695466

  11. Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium

    PubMed Central

    Hooley, R P; Paterson, M; Brown, P; Kerr, K; Saunders, P T K

    2009-01-01

    Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. This paper describes a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems. PMID:18955374

  12. Hepatic Delivery of Artificial Micro RNAs Using Helper-Dependent Adenoviral Vectors.

    PubMed

    Crowther, Carol; Mowa, Betty; Arbuthnot, Patrick

    2016-01-01

    The potential of RNA interference (RNAi)-based gene therapy has been demonstrated in many studies. However, clinical application of this technology has been hampered by a paucity of efficient and safe methods of delivering the RNAi activators. Prolonged transgene expression and improved safety of helper-dependent adenoviral vectors (HD AdVs) makes them well suited to delivery of engineered artificial intermediates of the RNAi pathway. Also, AdVs' natural hepatotropism makes them potentially useful for liver-targeted gene delivery. HD AdVs may be used for efficient delivery of cassettes encoding short hairpin RNAs and artificial primary microRNAs to the mouse liver. Methods for the characterization of HD AdV-mediated delivery of hepatitis B virus-targeting RNAi activators are described here. PMID:26472456

  13. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma.

    PubMed Central

    Caruso, M; Pham-Nguyen, K; Kwong, Y L; Xu, B; Kosai, K I; Finegold, M; Woo, S L; Chen, S H

    1996-01-01

    Recombinant adenoviral mediated delivery of suicide and cytokine genes has been investigated as a treatment for hepatic metastases of colon carcinoma in mice. Liver tumors were established by intrahepatic implantation of a poorly immunogenic colon carcinoma cell line (MCA-26), which is syngeneic in BALB/c mice. Intratumoral transfer of the herpes simplex virus type 1 thymidine kinase (HSV-tk) and the murine interleukin (mIL)-2 genes resulted in substantial hepatic tumor regression, induced an effective systemic antitumoral immunity in the host and prolonged the median survival time of the treated animals from 22 to 35 days. The antitumoral immunity declined gradually, which led to tumor recurrence over time. A recombinant adenovirus expressing the mIL-12 gene was constructed and tested in the MCA-26 tumor model. Intratumoral administration of this cytokine vector alone increased significantly survival time of the animals with 25% of the treated animals still living over 70 days. These data indicate that local expression of IL-12 may also be an attractive treatment strategy for metastatic colon carcinoma. Images Fig. 5 PMID:8876130

  14. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart

    PubMed Central

    Ylä-Herttuala, Seppo; Betsholtz, Christer; Andrae, Johanna

    2016-01-01

    Platelet-derived growth factors (PDGFs) are key regulators of mesenchymal cells in vertebrate development. To what extent PDGFs also exert beneficial homeostatic or reparative roles in adult organs, as opposed to adverse fibrogenic responses in pathology, are unclear. PDGF signaling plays critical roles during heart development, during which forced overexpression of PDGFs induces detrimental cardiac fibrosis; other studies have implicated PDGF signaling in post-infarct myocardial repair. Different PDGFs may exert different effects mediated through the two PDGF receptors (PDGFRα and PDGFRβ) in different cell types. Here, we assessed responses induced by five known PDGF isoforms in the adult mouse heart in the context of adenovirus vector-mediated inflammation. Our results show that different PDGFs have different, in some cases even opposing, effects. Strikingly, whereas the major PDGFRα agonists (PDGF-A and -C) decreased the amount of scar tissue and increased the numbers of PDGFRα-positive fibroblasts, PDGFRβ agonists either induced large scars with extensive inflammation (PDGF-B) or dampened the adenovirus-induced inflammation and produced a small and dense scar (PDGF-D). These results provide evidence for PDGF isoform-specific inflammation-modulating functions that may have therapeutic implications. They also illustrate a surprising complexity in the PDGF-mediated pathophysiological responses. PMID:27513343

  15. Development of Adenoviral Delivery Systems to Target Hepatic Stellate Cells In Vivo

    PubMed Central

    Meier, Claudia; Kowtharapu, Bhavani S.; Timm, Franziska; Vollmar, Brigitte; Herchenröder, Ottmar; Abshagen, Kerstin; Pützer, Brigitte M.

    2013-01-01

    Hepatic stellate cells (HSCs) are known as initiator cells that induce liver fibrosis upon intoxication or other noxes. Deactivation of this ongoing remodeling process of liver parenchyma into fibrotic tissue induced by HSCs is an interesting goal to be achieved by targeted genetic modification of HSCs. The most widely applied approach in gene therapy is the utilization of specifically targeted vectors based on Adenovirus (Ad) serotype 5. To narrow down the otherwise ubiquitous tropism of parental Ad, two modifications are required: a) ablating the native tropism and b) redirecting the vector particles towards a specific entity solely present on the cells of interest. Therefore, we designed a peptide of the nerve growth factor (NGFp) with specific affinity for the p75 neurotrophin receptor (p75NTR) present on HSCs. Coupling of this NGFp to vector particles was done either via chemical conjugation using bifunctional polyethylene glycol (PEG) or, alternatively, by molecular bridging with a fusion protein specific for viral fiber knob and p75NTR. Both Ad vectors transmit the gene for the green fluorescent protein (GFP). GFP expression was monitored in vitro on primary murine HSCs as well as after systemic administration in mice with healthy and fibrotic livers using intravital fluorescence microscopy. Coupling of NGFp to Ad via S11 and/or PEGylation resulted in markedly reduced liver tropism and an enhanced adenoviral-mediated gene transfer to HSCs. Transduction efficiency of both specific Ads was uniformly higher in fibrotic livers, whereas Ad.GFP-S11-NGFp transduce activated HSCs better than Ad.GFP-PEG-NGFp. These experiments contribute to the development of a targeted gene transfer system to specifically deliver antifibrotic compounds into activated HSCs by systemically applied adenoviral vector modified with NGFp. PMID:23825626

  16. A reproducible and quantifiable model of choroidal neovascularization induced by VEGF A165 after subretinal adenoviral gene transfer in the rabbit

    PubMed Central

    Kreppel, Florian; Beck, Susanne; Heiduschka, Peter; Brito, Veronica; Schnichels, Sven; Kochanek, Stefan; Schraermeyer, Ulrich

    2008-01-01

    Purpose To determine the effects of the vascular endothelial growth factor (VEGF)-A165 delivered using a high capacity adenoviral vector (HC Ad.VEGF-A) on vascular growth and pathological changes in the rabbit eye. To combine different detection methods of VEGF-A165 overexpression-induced neovascularization in the rabbit. Methods HC Ad.VEGF-A165 was constructed and injected at 5x106 infectious units (iu) into the subretinal space of rabbit eyes. Two and four weeks postinjection, the development of neovascularization and the expression of HC Ad-transduced VEGF-A165 protein were followed up in vivo by scanning laser ophthalmoscopy, fluorescein and indocyanine green angiographies and ex vivo by electron microscopy and immunohistochemistry Results We observed a choroidal neovascularization (CNV) with leakage in 83% of the rabbit eyes. Our findings present clear indications that there is a significant effect on the endothelial cells of the choriocapillaris after subretinal transduction of the retinal pigment epithelium (RPE) with VEGF-A165 vector. The choroidal endothelial cells were activated, adherent junctions opened, and the fenestration was minimized, while the extracellular matrix localized between the RPE and the endothelium of the choriocapillaris was enlarged toward the lumen of the vessels, inducing a deep invagination of the endothelial cells into the vessel lumen. They also proliferated and formed pathological vessels in the subretinal space. Moreover,there was an increased expression of basic fibroblast growth factor and VEGF-A accompanied by macrophage stimulation, retinal edema, and photoreceptor loss. Conclusions This is the first model of VEGF-induced CNV in the rabbit in which the pathological events following overexpression of VEGF by RPE cells have been described in detail. Many of the features of our experimental CNV resemble those observed clinically in patients having wet age-related macular degeneration. PMID:18682809

  17. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma.

    PubMed

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Morshed, Ramin A; Miska, Jason; Ahmed, Atique U; Balyasnikova, Irina V; Han, Yu; Zhang, Lingjiao; Curiel, David T; Lesniak, Maciej S

    2015-09-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy. PMID:26058317

  18. Evaluation of recombinant adenovirus-mediated gene delivery for expression of tracer genes in catecholaminergic neurons

    PubMed Central

    Kim, Mi-La; Han, Shengjun; Lee, Sat-Byol; Kim, Jung Hye; Ahn, Hee Kyung

    2010-01-01

    Selective labeling of small populations of neurons of a given phenotype for conventional neuronal tracing is difficult because tracers can be taken up by all neurons at the injection site, resulting in nonspecific labeling of unrelated pathways. To overcome these problems, genetic approaches have been developed that introduce tracer proteins as transgenes under the control of cell-type-specific promoter elements for visualization of specific neuronal pathways. The aim of this study was to explore the use of tracer gene expression for neuroanatomical tracing to chart the complex interconnections of the central nervous system. Genetic tracing methods allow for expression of tracer molecules using cell-type-specific promoters to facilitate neuronal tracing. In this study, the rat tyrosine hydroxylase (TH) promoter and an adenoviral delivery system were used to express tracers specifically in dopaminergic and noradrenergic neurons. Region-specific expression of the transgenes was then analyzed. Initially, we characterized cell-type-specific expression of GFP or RFP in cultured cell lines. We then injected an adenovirus carrying the tracer transgene into several brain regions using a stereotaxic apparatus. Three days after injection, strong GFP expression was observed in the injected site of the brain. RFP and WGA were expressed in a cell-type-specific manner in the cerebellum, locus coeruleus, and ventral tegmental regions. Our results demonstrate that selective tracing of catecholaminergic neuronal circuits is possible in the rat brain using the TH promoter and adenoviral expression. PMID:21189997

  19. Torsion-Mediated Interaction between Adjacent Genes

    PubMed Central

    Meyer, Sam; Beslon, Guillaume

    2014-01-01

    DNA torsional stress is generated by virtually all biomolecular processes involving the double helix, in particular transcription where a significant level of stress propagates over several kilobases. If another promoter is located in this range, this stress may strongly modify its opening properties, and hence facilitate or hinder its transcription. This mechanism implies that transcribed genes distant of a few kilobases are not independent, but coupled by torsional stress, an effect for which we propose the first quantitative and systematic model. In contrast to previously proposed mechanisms of transcriptional interference, the suggested coupling is not mediated by the transcription machineries, but results from the universal mechanical features of the double-helix. The model shows that the effect likely affects prokaryotes as well as eukaryotes, but with different consequences owing to their different basal levels of torsion. It also depends crucially on the relative orientation of the genes, enhancing the expression of eukaryotic divergent pairs while reducing that of prokaryotic convergent ones. To test the in vivo influence of the torsional coupling, we analyze the expression of isolated gene pairs in the Drosophila melanogaster genome. Their orientation and distance dependence is fully consistent with the model, suggesting that torsional gene coupling may constitute a widespread mechanism of (co)regulation in eukaryotes. PMID:25188032

  20. The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications

    PubMed Central

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-01-01

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges. PMID:24549268

  1. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  2. Inhibition of rabies virus multiplication by siRNA delivered through adenoviral vector in vitro in BHK-21 cells and in vivo in mice.

    PubMed

    Sonwane, Arvind A; Dahiya, Shyam S; Saini, Mohini; Chaturvedi, V K; Singh, R P; Gupta, Praveen K

    2012-08-01

    To evaluate antiviral potential of adenoviral vector-delivered small interfering RNA (siRNA) against rabies, recombinant, replication-defective adenoviral vectors (rAdV) encoding siRNAs targeting rabies virus (RV) polymerase (L) and nucleoprotein (N) genes were developed. The siRNAs were delivered as small hairpin RNAs (shRNAs) through these vectors. Treatment of BHK-21 cells with rAdV expressing siRNA targeting L gene (rAdV-L) and N gene (rAdV-N) (100 MOI) and their subsequent infection with RV (0.001 MOI, RV PV-11), reduced RV fluorescent foci by 48.2% (mean±SEM; 48.17±0.6540, N=6) and 41.8% (mean±SEM; 41.83±0.3073, N=6), respectively, with respect to that of BHK-21 cells treated with rAdV expressing negative control siRNA (rAdV-Neg) indicating inhibition of multiplication of RV in BHK-21 cells in response to adenoviral vector mediated siRNA delivery. Also, the similar treatment of BHK-21 cells with rAdV-L and rAdV-N and similar subsequent infection of them with RV resulted in reduction in RV mRNA transcript levels for their respective targets (RV L gene for rAdV-L and N gene for rAdV-N). mRNA transcript level for RV L gene was reduced by 17.88-fold (mean±SEM; 17.88±0.06638, N=6) in cells treated with rAdV-L and that for RV N gene was reduced by 5.7-fold (mean±SEM; 5.7±0.04472, N=6), in cells treated with rAdV-N, in comparison with that in cells treated with rAdV-Neg, as analyzed by using real-time PCR. These in vitro studies showed that between these two, adenoviral vector mediated delivery of siRNA targeting RV L gene was comparatively more effective in inhibiting RV multiplication in BHK-21 cells than that of siRNA targeting RV N gene (p<0.0001). Localized treatment (intramuscular injection in masseter muscle) of mice with 10(7) plaque forming units of either rAdV-L or rAdV-N and subsequent lethal RV infection (15-20LD(50) of CVS-11) at the same site, through the same route, although resulted in 50% protection (3 out of 6 mice survived) against lethal

  3. Capsid modification strategies for detargeting adenoviral vectors.

    PubMed

    Parker, Alan L; Bradshaw, Angela C; Alba, Raul; Nicklin, Stuart A; Baker, Andrew H

    2014-01-01

    Adenoviral vectors hold immense potential for a wide variety of gene therapy based applications; however, their efficacy and toxicity is dictated by "off target" interactions that preclude cell specific targeting to sites of disease. A number of "off target" interactions have been described in the literature that occur between the three major capsid proteins (hexon, penton, and fiber) and components of the circulatory system, including cells such as erythrocytes, white blood cells, and platelets, as well as circulatory proteins including complement proteins, coagulation factors, von Willebrand Factor, p-selectin as well as neutralizing antibodies. Thus, to improve efficacious targeting to sites of disease and limit nonspecific uptake of virus to non-target tissues, specifically the liver and the spleen, it is necessary to develop suitable strategies for genetically modifying the capsid proteins to preclude these interactions. To this end we have developed versatile systems based on homologous recombination for modification of each of the major capsid proteins, which are described herein. PMID:24132476

  4. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    PubMed

    Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W K; Hsieh, Chia-Ling

    2016-01-01

    Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers. PMID:27054343

  5. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter–Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth

    PubMed Central

    Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W. K.; Hsieh, Chia-Ling

    2016-01-01

    Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor–promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter–driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers. PMID:27054343

  6. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    SciTech Connect

    Kanagawa, Naoko; Koretomo, Ryosuke; Murakami, Sayaka |; Sakurai, Fuminori; Mizuguchi, Hiroyuki |; Nakagawa, Shinsaku; Fujita, Takuya |; Yamamoto, Akira; Okada, Naoki |

    2008-05-10

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35{delta}RGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The {alpha}{sub v}-integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-{alpha}, and interferon-{alpha} in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of {alpha}{sub v}-integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes.

  7. Adenovirus-mediated delivery of interferon-γ gene inhibits the growth of nasopharyngeal carcinoma

    PubMed Central

    2012-01-01

    Background Interferon-γ (IFN-γ) is regarded as a potent antitumor agent, but its clinical application is limited by its short half-life and significant side effects. In this paper, we tried to develop IFN-γ gene therapy by a replication defective adenovirus encoding the human IFN-γ (Ad-IFNγ), and evaluate the antitumoral effects of Ad-IFNγ on nasopharyngeal carcinoma (NPC) cell lines in vitro and in xenografts model. Methods The mRNA levels of human IFN-γ in Ad-IFNγ-infected NPC cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), and IFN-γ protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in the culture supernatants of NPC cells and tumor tissues and bloods of nude mice treated with Ad-IFNγ. The effects of Ad-IFNγ on NPC cell proliferation was determined using MTT assay, cell cycle distribution was determined by flow cytometry analysis for DNA content, and cells apoptosis were analyzed by Annexin V-FITC/7-AAD binding assay and hoechst 33342/PI double staining. The anti-tumor effects and toxicity of Ad-IFNγ were evaluated in BALB/c nude mice carrying NPC xenografts. Results The results demonstrated that Ad-IFNγ efficiently expressed human IFN-γ protein in NPC cell lines in vitro and in vivo. Ad-IFNγ infection resulted in antiproliferative effects on NPC cells by inducing G1 phase arrest and cell apoptosis. Intratumoral administration of Ad-IFNγ significantly inhibited the growth of CNE-2 and C666-1 cell xenografts in nude mice, while no significant toxicity was observed. Conclusions These findings indicate IFN-γ gene therapy mediated by replication defective adenoviral vector is likely a promising approach in the treatment of nasopharyngeal carcinoma. PMID:23272637

  8. Adenoviral vector-based strategies against infectious disease and cancer

    PubMed Central

    Zhang, Chao; Zhou, Dongming

    2016-01-01

    ABSTRACT Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review, we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based vaccines are also discussed. PMID:27105067

  9. Adenoviral virotherapy for malignant brain tumors

    PubMed Central

    Nandi, Suvobroto; Lesniak, Maciej S

    2009-01-01

    Glioblastoma multiforme (GBM) is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors (CAR) on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are over-expressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor specific promoter (TSP) elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review looks at current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications. PMID:19456208

  10. Adenoviral virotherapy for malignant brain tumors.

    PubMed

    Nandi, Suvobroto; Lesniak, Maciej S

    2009-06-01

    Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications. PMID:19456208

  11. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  12. Interferon alpha2b gene delivery using adenoviral vector causes inhibition of tumor growth in xenograft models from a variety of cancers.

    PubMed

    Iqbal Ahmed, C M; Johnson, D E; Demers, G W; Engler, H; Howe, J A; Wills, K N; Wen, S F; Shinoda, J; Beltran, J; Nodelman, M; Machemer, T; Maneval, D C; Nagabhushan, T L; Sugarman, B J

    2001-10-01

    A recombinant adenovirus expressing human interferon alpha2b driven by the cytomegalovirus promoter, IACB, was shown to produce and secrete biologically active protein in vitro and in vivo. Intravenous administration of IACB in Buffalo rats resulted in circulating levels of biologically active human interferon at 70,000 international units/mL for up to 15 days. Distribution of interferon protein after IACB administration was different from that seen with the subcutaneous delivery of interferon protein. Higher levels of interferon protein were observed in liver and spleen after IACB delivery compared to protein delivery. The antitumor efficacy of IACB, as measured by suppression of tumor growth, was tested in athymic nude mice bearing established human tumor xenografts from different types of human cancer. Subcutaneous tumors most responsive to the intratumoral administration of IACB ranked as U87MG (glioblastoma) and K562 (chronic myelogenous leukemia), followed by Hep 3B (hepatocellular carcinoma) and LN229 cells (glioblastoma). Intravenous administration of IACB in animals bearing U87MG or Hep 3B xenografts was also effective in suppressing tumor growth, although to a lesser extent than the intratumoral administration. IACB was also tested in a metastatic model in beige/SCID mice generated with H69 (small cell lung carcinoma) cells and was found to prolong survival in tumor-bearing animals. This suggested that interferon gene delivery can be effective in suppressing tumor growth in a wide variety of cells. PMID:11687902

  13. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    PubMed Central

    Lee, Sang-Soo; George Priya Doss, C.; Yagihara, Shin; Kim, Do-Young

    2014-01-01

    Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole. PMID:25250340

  14. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon.

    PubMed

    Akbulut, Hakan; Zhang, Lixin; Tang, Yucheng; Deisseroth, Albert

    2003-05-01

    Prodrug activating transcription unit gene therapy is one of several promising approaches to cancer gene therapy. Combining that approach with conditionally replication-competent viral vectors that are truly tumor specific has been an important objective of recent work. In this study, we report the construction of a new conditionally replication-competent bicistronic adenoviral vector in which the cytosine deaminase (CD) gene and the E1a gene are driven by the L-plastin tumor-specific promoter (AdLpCDIRESE1a). A similar vector driven by the CMV promoter has also been constructed (AdCMVCDIRESE1a) as a control. We have carried out in vitro cytotoxicity in carcinomas of the breast, ovary and colon, and in vivo efficacy studies with these vectors in an animal model of colon cancer. While the addition of the AdLpCDIRESE1a vector to established cancer cell lines showed significant cytotoxicity in tumor cells derived from carcinomas of the breast (MCF-7), colon (HTB-38) and ovary (Ovcar 5), no significant toxicity was seen in explant cultures of normal human mammary epithelial cells (HMEC) exposed to this vector. The addition of 5-fluorocytosine (5FC) significantly increased the cytotoxicity in an additive fashion of both the AdLpCDIRESE1a and AdCMVCDIRESE1a vectors as well as that of the AdLpCD replication incompetent vector to established tumor cell lines. However, no significant cytotoxicity was observed with the addition of 5FC to explant cultures of normal human mammary epithelial cells that had been exposed to the L-plastin-driven vectors. Studies with mixtures of infected and uninfected tumor cell lines showed that the established cancer cell lines infected with the AdLpCDIRESE1a vector generated significant toxicity to surrounding uninfected cells (the "bystander effect") even at a ratio of 0.25 of infected cells to infected + uninfected cells in the presence of 5FC. The injection of the AdLpCDIRESE1a vector into subcutaneous deposits of human tumor nodules in the

  15. Intensive Pharmacological Immunosuppression Allows for Repetitive Liver Gene Transfer With Recombinant Adenovirus in Nonhuman Primates

    PubMed Central

    Fontanellas, Antonio; Hervás-Stubbs, Sandra; Mauleón, Itsaso; Dubrot, Juan; Mancheño, Uxua; Collantes, María; Sampedro, Ana; Unzu, Carmen; Alfaro, Carlos; Palazón, Asis; Smerdou, Cristian; Benito, Alberto; Prieto, Jesús; Peñuelas, Iván; Melero, Ignacio

    2010-01-01

    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector. PMID:20087317

  16. Immunocompromised Children with Severe Adenoviral Respiratory Infection

    PubMed Central

    Tylka, Joanna C.; McCrory, Michael C.; Gertz, Shira J.; Custer, Jason W.; Spaeder, Michael C.

    2016-01-01

    Purpose. To investigate the impact of severe respiratory adenoviral infection on morbidity and case fatality in immunocompromised children. Methods. Combined retrospective-prospective cohort study of patients admitted to the intensive care unit (ICU) in four children's hospitals with severe adenoviral respiratory infection and an immunocompromised state between August 2009 and October 2013. We performed a secondary case control analysis, matching our cohort 1 : 1 by age and severity of illness score with immunocompetent patients also with severe respiratory adenoviral infection. Results. Nineteen immunocompromised patients were included in our analysis. Eleven patients (58%) did not survive to hospital discharge. Case fatality was associated with cause of immunocompromised state (p = 0.015), multiple organ dysfunction syndrome (p = 0.001), requirement of renal replacement therapy (p = 0.01), ICU admission severity of illness score (p = 0.011), and treatment with cidofovir (p = 0.005). Immunocompromised patients were more likely than matched controls to have multiple organ dysfunction syndrome (p = 0.01), require renal replacement therapy (p = 0.02), and not survive to hospital discharge (p = 0.004). One year after infection, 43% of immunocompromised survivors required chronic mechanical ventilator support. Conclusions. There is substantial case fatality as well as short- and long-term morbidity associated with severe adenoviral respiratory infection in immunocompromised children. PMID:27242924

  17. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  18. Using a Commercial Ultrasound Contrast Agent for Viral-Mediated Gene Transfer In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Howard, Candace M.; Forsberg, Flemming; Liu, Ji-Bin; Merton, Daniel A.; Minimo, Corrado; Claudio, Pier P.

    2007-05-01

    This study evaluated the feasibility of site-specific gene delivery mediated by diagnostic ultrasound using genes encapsulated in commercially available ultrasound contrast agents in vitro and in vivo. Five different commercially available contrast agents were tested in vitro for their ability to enclose an adenoviral vector carrying GFP. Prostate cancer cells (DU 145) or non small cell lung cancer cells (H23) were plated in 80 culture wells and insonified at 207 or 535 kPa peak negative pressure for 1 min after administration of 0.1 ml of bubbles reconstituted with the viral vector. Experiments were repeated with the delivery vehicle incubated with complement to inactivate unenclosed Adeno-GFP and with controls. After 24 hours transduction efficiency was demonstrated by fluorescent microscopy. In vivo 15 nude mice with 21 melanoma tumors (DB-1) implanted received 0.1 ml injections of contrast. Mice were split into 3 control and 4 active groups and ultrasound was performed for 4 min at 4 MHz using an Aplio scanner (Toshiba America Medical Systems, Tustin, CA). Tumors, heart, lungs and liver were harvested 48 hours later. Specimens underwent regular and fluorescent microscopy and were stained using an antibody against GFP. In vitro all contrast agents produced more fluorescence at 207 kPa than at 535 kPa. However, only Imagent (IMCOR Pharmaceuticals, San Diego, CA) was able to induce marked gene transduction with the inactivating agent. In vivo systemic delivery of Adeno-GFP carrying microbubbles following pre-treatment with the inactivating agent resulted in specific transduction of the tumor cells only with no uptake in heart, lungs or liver (unlike the controls). In conclusion, specific viral gene transduction has been obtained in vitro and in vivo through the use of ultrasound and Imagent microbubbles as delivery vehicles.

  19. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  20. Balloon Catheter Delivery of Helper-dependent Adenoviral Vector Results in Sustained, Therapeutic hFIX Expression in Rhesus Macaques

    PubMed Central

    Brunetti-Pierri, Nicola; Liou, Aimee; Patel, Priti; Palmer, Donna; Grove, Nathan; Finegold, Milton; Piccolo, Pasquale; Donnachie, Elizabeth; Rice, Karen; Beaudet, Arthur; Mullins, Charles; Ng, Philip

    2012-01-01

    Hemophilia B is an excellent candidate for gene therapy because low levels of factor IX (FIX) (≥1%) result in clinically significant improvement of the bleeding diathesis. Helper-dependent adenoviral (HDAd) vectors can mediate long-term transgene expression without chronic toxicity. To determine the potential for HDAd-mediated liver-directed hemophilia B gene therapy, we administered an HDAd expressing hFIX into rhesus macaques through a novel and minimally invasive balloon occlusion catheter-based method that permits preferential, high-efficiency hepatocyte transduction with low, subtoxic vector doses. Animals given 1 × 1012 and 1 × 1011 virus particle (vp)/kg achieved therapeutic hFIX levels for the entire observation period (up to 1,029 days). At 3 × 1010 and 1 × 1010 vp/kg, only subtherapeutic hFIX levels were achieved which were not sustained long-term. Balloon occlusion administration of HDAd was well tolerated with negligible toxicity. Five of six animals developed inhibitors to hFIX. These results provide important information in assessing the clinical utility of HDAd for hemophilia B gene therapy. PMID:22828499

  1. Targeted gene knockout in chickens mediated by TALENs.

    PubMed

    Park, Tae Sub; Lee, Hong Jo; Kim, Ki Hyun; Kim, Jin-Soo; Han, Jae Yong

    2014-09-01

    Genetically modified animals are used for industrial applications as well as scientific research, and studies on these animals contribute to a better understanding of biological mechanisms. Gene targeting techniques have been developed to edit specific gene loci in the genome, but the conventional strategy of homologous recombination with a gene-targeted vector has low efficiency and many technical complications. Here, we generated specific gene knockout chickens through the use of transcription activator-like effector nuclease (TALEN)-mediated gene targeting. In this study, we accomplished targeted knockout of the ovalbumin (OV) gene in the chicken primordial germ cells, and OV gene mutant offspring were generated through test-cross analysis. TALENs successfully induced nucleotide deletion mutations of ORF shifts, resulting in loss of chicken OV gene function. Our results demonstrate that the TALEN technique used in the chicken primordial germ cell line is a powerful strategy to create specific genome-edited chickens safely for practical applications. PMID:25139993

  2. Targeted gene knockout in chickens mediated by TALENs

    PubMed Central

    Park, Tae Sub; Lee, Hong Jo; Kim, Ki Hyun; Kim, Jin-Soo; Han, Jae Yong

    2014-01-01

    Genetically modified animals are used for industrial applications as well as scientific research, and studies on these animals contribute to a better understanding of biological mechanisms. Gene targeting techniques have been developed to edit specific gene loci in the genome, but the conventional strategy of homologous recombination with a gene-targeted vector has low efficiency and many technical complications. Here, we generated specific gene knockout chickens through the use of transcription activator-like effector nuclease (TALEN)-mediated gene targeting. In this study, we accomplished targeted knockout of the ovalbumin (OV) gene in the chicken primordial germ cells, and OV gene mutant offspring were generated through test-cross analysis. TALENs successfully induced nucleotide deletion mutations of ORF shifts, resulting in loss of chicken OV gene function. Our results demonstrate that the TALEN technique used in the chicken primordial germ cell line is a powerful strategy to create specific genome-edited chickens safely for practical applications. PMID:25139993

  3. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  4. GSH depletion enhances adenoviral bax-induced apoptosis in lung cancer cells.

    PubMed

    Honda, Tsuyoshi; Coppola, Simona; Ghibelli, Lina; Cho, Song H; Kagawa, Shunsuke; Spurgers, Kevin B; Brisbay, Shawn M; Roth, Jack A; Meyn, Raymond E; Fang, Bingliang; McDonnell, Timothy J

    2004-04-01

    The utility of dominant acting proapoptotic molecules to induce cell death in cancer cells is being evaluated in preclinical studies and clinical trials. We recently developed a binary adenoviral expression system to enable the efficient gene transfer of Bax and other proapoptotic molecules. Using this system, overexpression of Bax protein in four non-small-cell lung cancer (NSCLC) cell lines, H1299, A549, H226 and H322, was evaluated. The H322 line exhibited significant resistance to Bax-induced cell death compared to the other cell lines. H322 cells had the highest level of glutathione (GSH). GSH levels were significantly decreased following buthionine sulfoximine treatment and this coincided with enhanced apoptosis induction by Ad-Bax in H322 cells. GSH depletion enhanced Bax protein translocation to mitochondrial membranes. These findings suggest that the redox status may be a determinant of Bax-mediated cell death and that manipulation of intracellular thiols may sensitize cells to apoptosis by facilitating Bax insertion into mitochondrial membranes. PMID:15002033

  5. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. PMID:24995995

  6. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  7. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    PubMed

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  8. Targeting of AID-mediated sequence diversification to immunoglobulin genes.

    PubMed

    Kothapalli, Naga Rama; Fugmann, Sebastian D

    2011-04-01

    Activation-induced cytidine deaminase (AID) is a key enzyme for antibody-mediated immune responses. Antibodies are encoded by the immunoglobulin genes and AID acts as a transcription-dependent DNA mutator on these genes to improve antibody affinity and effector functions. An emerging theme in field is that many transcribed genes are potential targets of AID, presenting an obvious danger to genomic integrity. Thus there are mechanisms in place to ensure that mutagenic outcomes of AID activity are specifically restricted to the immunoglobulin loci. Cis-regulatory targeting elements mediate this effect and their mode of action is probably a combination of immunoglobulin gene specific activation of AID and a perversion of faithful DNA repair towards error-prone outcomes. PMID:21295456

  9. Targeting of AID-mediated sequence diversification to immunoglobulin genes

    PubMed Central

    Kothapalli, Naga Rama; Fugmann, Sebastian D.

    2011-01-01

    Activation-induced cytidine deaminase (AID) is a key enzyme for antibody-mediated immune responses. Antibodies are encoded by the immunoglobulin genes and AID acts as a transcription-dependent DNA mutator on these genes to improve antibody affinity and effector functions. An emerging theme in field is that many transcribed genes are potential targets of AID, presenting an obvious danger to genomic integrity. Thus there are mechanisms in place to ensure that mutagenic outcomes of AID activity are specifically restricted to the immunoglobulin loci. Cis-regulatory targeting elements mediate this effect and their mode of action is likely a combination of immunoglobulin gene specific activation of AID and a perversion of faithful DNA repair towards error-prone outcomes. PMID:21295456

  10. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer.

    PubMed

    Binley, K; Iqball, S; Kingsman, A; Kingsman, S; Naylor, S

    1999-10-01

    Recombinant adenoviral vectors have a number of advantages for gene therapy, including transduction of a range of dividing and non-dividing cell types. However, this broad range may be a disadvantage if non-target cells are transduced and are adversely affected by expression of the transferred gene. Here we describe a novel adenoviral vector in which transcription of the transgene is restricted to the patho-physiological condition of low oxygen tension (hypoxia). Hypoxia activates the expression of a number of genes, principally via the stabilisation of members of the bHLH/PAS family of transcription factors that bind to a con- sensus DNA sequence, the hypoxia response element (HRE). We have configured an optimised HRE expression cassette into an adenoviral vector, AdOBHRE. A range of cell types, including primary human skeletal muscle, when transduced with AdOBHRE display a low basal level of transgene expression that is highly induced in hypoxia to levels equivalent to that obtained from the CMV promoter. The AdOBHRE vector could be exploited for transcriptionally targeted gene therapy for the treatment of diseases such as cancer, peripheral arterial disease, arthritis and anaemia where tissue hypoxia is a cardinal feature. PMID:10516721

  11. Transfection of Primary Hepatocytes with Liver-Enriched Transcription Factors Using Adenoviral Vectors.

    PubMed

    Benet, Marta; Jover, Ramiro; Bort, Roque

    2015-01-01

    Primary cultured hepatocytes are probably the best model to study endogenous metabolic pathways, toxicity, or drug metabolism. Many of these studies require expression of ectopic genes. It would be desirable to use a method of transfection that allows dose-response studies, high efficiency of transfection, and the possibility to express several genes at the same time. Adenoviral vectors fulfill these requirements, becoming a valuable tool for primary hepatocyte transfection. Moreover, they are easy to generate and do not require a high level of biocontainment. In the present chapter, we describe the generation, cloning, amplification, and purification of an adenoviral vector capable of infecting primary cultured hepatocytes. This recombinant adenovirus induces robust expression of the protein of interest in hepatocytes within a wide range of doses. PMID:26272145

  12. Recruitment of histone methyltransferase G9a mediates transcriptional repression of Fgf21 gene by E4BP4 protein.

    PubMed

    Tong, Xin; Zhang, Deqiang; Buelow, Katie; Guha, Anirvan; Arthurs, Blake; Brady, Hugh J M; Yin, Lei

    2013-02-22

    The liver responds to fasting-refeeding cycles by reprogramming expression of metabolic genes. Fasting potently induces one of the key hepatic hormones, fibroblast growth factor 21 (FGF21), to promote lipolysis, fatty acid oxidation, and ketogenesis, whereas refeeding suppresses its expression. We previously reported that the basic leucine zipper transcription factor E4BP4 (E4 binding protein 4) represses Fgf21 expression and disrupts its circadian oscillations in cultured hepatocytes. However, the epigenetic mechanism for E4BP4-dependent suppression of Fgf21 has not yet been addressed. Here we present evidence that histone methyltransferase G9a mediates E4BP4-dependent repression of Fgf21 during refeeding by promoting repressive histone modification. We find that Fgf21 expression is up-regulated in E4bp4 knock-out mouse liver. We demonstrate that the G9a-specific inhibitor BIX01294 abolishes suppression of the Fgf21 promoter activity by E4BP4, whereas overexpression of E4bp4 leads to increased levels of dimethylation of histone 3 lysine 9 (H3K9me2) around the Fgf21 promoter region. Furthermore, we also show that E4BP4 interacts with G9a, and knockdown of G9a blocks repression of Fgf21 promoter activity and expression in cells overexpressing E4bp4. A G9a mutant lacking catalytic activity, due to deletion of the SET domain, fails to inhibit the Fgf21 promoter activity. Importantly, acute hepatic knockdown by adenoviral shRNA targeting G9a abolishes Fgf21 repression by refeeding, concomitant with decreased levels of H3K9me2 around the Fgf21 promoter region. In summary, we show that G9a mediates E4BP4-dependent suppression of hepatic Fgf21 by enhancing histone methylation (H3K9me2) of the Fgf21 promoter. PMID:23283977

  13. Fibrin-mediated lentivirus gene transfer: implications for lentivirus microarrays

    PubMed Central

    Raut, Shruti; Lei, Pedro; Padmashali, Roshan; Andreadis, Stelios T.

    2010-01-01

    We employed fibrin hydrogel as bioactive matrix for lentivirus mediated gene transfer. Fibrin-mediated gene transfer was highly efficient and exhibited strong dependence on fibrinogen concentration. Efficient gene transfer was achieved with fibrinogen concentration between 3.75 – 7.5 mg/mL. Lower fibrinogen concentrations resulted in diffusion of virus out of the gel while higher concentrations led to ineffective fibrin degradation by target cells. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner suggesting that fibrin degradation by target cells may be necessary for successful gene delivery. Under these conditions transduction may be limited only to cells interacting with the matrix thereby providing a method for spatially localized gene delivery. Indeed, when lentivirus-containing fibrin microgels were spotted in an array format gene transfer was confined to virus-containing fibrin spots with minimal cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may provide an effective matrix for spatially-localized gene delivery with potential applications in high-throughput lentiviral microarrays and in regenerative medicine. PMID:20153386

  14. Prostate-specific expression of Bax delivered by an adenoviral vector induces apoptosis in LNCaP prostate cancer cells.

    PubMed

    Lowe, S L; Rubinchik, S; Honda, T; McDonnell, T J; Dong, J Y; Norris, J S

    2001-09-01

    In prostate carcinoma, overexpression of the anti-apoptotic gene Bcl-2 has been found to be associated with resistance to therapies including radiation and androgen ablation. Restoring the balance of Bcl-2 family members may result in the induction of apoptosis in prostate cancer cells previously resistant to treatment. To accomplish this, a strategy involving overexpression of the pro-apoptotic gene Bax was executed. The use of cytotoxic genes such as Bax require selective expression of the gene. In this study, we examined the ability of selective expression of Bax protein directed by a prostate-specific promoter to induce apoptosis in human prostate carcinoma. A second-generation adenoviral vector was constructed with the modified prostate-specific probasin promoter, ARR2PB, directing expression of an HA-tagged Bax gene and a green fluorescent protein reporter translated from an internal ribosome entry site (ARR2PB.Bax.GFP). ARR2PB promoter activity is tightly regulated and highly prostate specific and is responsive to androgens and glucocorticoids. The prostate-specific promoter-Bax-GFP transgene cassette was inserted into a cloning site near the right inverted terminal repeat of the adenoviral vector to retain specificity of the promoter. LNCaP cells infected with Ad/ARR(2)PB.Bax.GFP showed high levels of Bax expression 48 h after infection resulting in an 85% reduction in cell viability. Importantly, LNCaP cells stably transfected to overexpress Bcl-2 showed similar patterns of cell death when infected with Ad/ARR(2)PB.Bax.GFP, an 82% reduction in cell viability seen 48 h after infection. Apoptosis was confirmed by measuring caspase activation and using the TUNEL assay. Tissue specificity was evaluated using A549 cells (lung adenocarcinoma), SK-Hep-1 (liver cancer) cells, and Hela (cervical cancer) cells which did not show detectable expression of virally delivered Bax protein or any increase in cell death. Systemic administration of Ad/ARR2PB. Bax.GFP in nude

  15. Adenovirus-mediated gene delivery to cells of the magnocellular hypothalamo-neurohypophyseal system

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Haskell, R. E.; Johnson, R. F.; Meyrelles, S. S.; Davidson, B. L.; Johnson, A. K.

    2001-01-01

    The objective of the present study was to define the optimum conditions for using replication-defective adenovirus (Ad) to transfer the gene for the green fluorescent protein (GFP) to the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei and cells of the neurohypophysis (NH). As indicated by characterizing cell survival over 15 days in culture and in electrophysiological whole cell patch-clamp studies, viral concentrations up to 2 x 10(7) pfu/coverslip did not affect viability of transfected PVN and NH cultured cells from preweanling rats. At 2 x 10(7) pfu, GFP gene expression was higher (40% of GFP-positive cells) and more sustained (up to 15 days). Using a stereotaxic approach in adult rats, we were able to directly transduce the PVN, SON, and NH and visualize gene expression in coronal brain slices and in the pituitary 4 days after injection of Ad. In animals receiving NH injections of Ad, the virus was retrogradely transported to PVN and SON neurons as indicated by the appearance of GFP-positive neurons in cultures of dissociated cells from those brain nuclei and by polymerase chain reaction and Western blot analyses of PVN and SON tissues. Adenoviral concentrations of up to 8 x 10(6) pfu injected into the NH did not affect cell viability and did not cause inflammatory responses. Adenoviral injection into the pituitary enabled the selective delivery of genes to the soma of magnocellular neurons. The experimental approaches described here provide potentially useful strategies for the treatment of disordered expression of the hormones vasopressin or oxytocin. Copyright 2000 Academic Press.

  16. Viral mediated gene transfer to sprouting blood vessels during angiogenesis.

    PubMed

    Alian, Akram; Eldor, Amiram; Falk, Haya; Panet, Amos

    2002-08-01

    Several experimental systems have been applied to investigate the development of new blood vessels. Angiogenesis can be followed ex-vivo by culturing explants of rat aorta 'rings' in biomatrix gels. This angiogenesis system was modified for the study of viral vector mediated gene transfer, using adenovirus, vaccinia- and retroviral vectors. Two modifications were introduced to the model in order to facilitate efficient viral mediated gene transfer, (i) placing the aorta ring on top of a thin layer of collagen such that the angiogenic tissue will be accessible to the viral vector; and (ii) infection of the aorta rings prior to embedding them into the collagen matrix. While adenovirus and vaccinia vectors infected efficiently the aorta rings they induced cell death. Subsequent gene transfer experiments were, therefore, carried with retroviral vectors containing vascular endothelial growth factor (VEGF) and the beta-interferon (IFN) genes. Overexpression of VEGF enhanced significantly microvessel sprouting, while overexpression of IFN-beta induced an antiviral effect. The experimental system described in this study can facilitate the application of other viral vectors to the study of genes that may regulate the complex angiogenic process and thereby open new avenues for vascular gene therapy. PMID:12176137

  17. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  18. Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial.

    PubMed

    Mohler, Emile R; Rajagopalan, Sanjay; Olin, Jeffrey W; Trachtenberg, Jeffrey D; Rasmussen, Henrik; Pak, Raphael; Crystal, Ronald G

    2003-01-01

    Critical limb ischemia (CLI) is typified by rest pain and/or tissue necrosis secondary to advanced peripheral arterial disease (PAD) and is characterized by diminution in limb perfusion at rest. We tested the safety of an angiogenic strategy with CI-1023 (Ad(GV)VEGF121.10), a replication-deficient adenovirus encoding human vascular endothelial growth factor isoform 121 in patients with CLI as part of a phase I trial. Fifteen subjects >35 years of age with CLI and angiographic disease involving the infra-inguinal vessels underwent intramuscular injection of CI-1023 (4 x 10(8) to 4 x 10(10) particle units, n = 13) or placebo (n = 2). All of the patients tolerated the injection well and there were no serious complications related to the procedure. Transient edema was noted in one patient. A total of 79 adverse events were reported over the course of one year. One death (day 136) and one malignancy (day 332) occurred in the CI-1023 group. CI-1023 appears to be well tolerated and safe for single-dose administration in patients with critical limb ischemia due to PAD. Further studies are needed to determine the efficacy of this form of therapeutic angiogenesis. PMID:12866606

  19. Adenovirus serotype 5 hexon mediates liver gene transfer.

    PubMed

    Waddington, Simon N; McVey, John H; Bhella, David; Parker, Alan L; Barker, Kristeen; Atoda, Hideko; Pink, Rebecca; Buckley, Suzanne M K; Greig, Jenny A; Denby, Laura; Custers, Jerome; Morita, Takashi; Francischetti, Ivo M B; Monteiro, Robson Q; Barouch, Dan H; van Rooijen, Nico; Napoli, Claudio; Havenga, Menzo J E; Nicklin, Stuart A; Baker, Andrew H

    2008-02-01

    Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo. PMID:18267072

  20. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo.

    PubMed

    Saito, Y; Swanson, X; Mhashilkar, A M; Oida, Y; Schrock, R; Branch, C D; Chada, S; Zumstein, L; Ramesh, R

    2003-11-01

    The tumor-suppressor gene PTEN encodes a multifunctional phosphatase that is mutated in a variety of human cancers. PTEN inhibits the phosphatidylinositol 3-kinase pathway and downstream functions, including activation of Akt/protein kinase B (PKB), cell survival, and cell proliferation in tumor cells carrying mutant- or deletion-type PTEN. In such tumor cells, enforced expression of PTEN decreases cell proliferation through cell-cycle arrest at G1 phase accompanied, in some cases, by induction of apoptosis. More recently, the tumor-suppressive effect of PTEN has been reported in ovarian and thyroid tumors that are wild type for PTEN. In the present study, we examined the tumor-suppressive effect of PTEN in human colorectal cancer cells that are wild type for PTEN. Adenoviral-mediated transfer of PTEN (Ad-PTEN) suppressed cell growth and induced apoptosis significantly in colorectal cancer cells (DLD-1, HT29, and SW480) carrying wtPTEN than in normal colon fibroblast cells (CCD-18Co) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) and cell-cycle arrest at the G2/M phase, but not the G1 phase. Furthermore, treatment of human colorectal tumor xenografts (HT-29, and SW480) with Ad-PTEN resulted in significant (P=0.01) suppression of tumor growth. These results indicate that Ad-PTEN exerts its tumor-suppressive effect on colorectal cancer cells through inhibition of cell-cycle progression and induction of cell death. Thus Ad-PTEN may be a potential therapeutic for treatment of colorectal cancers. PMID:14528320

  1. CREB (cAMP response element binding protein) and C/EBPalpha (CCAAT/enhancer binding protein) are required for the superstimulation of phosphoenolpyruvate carboxykinase gene transcription by adenoviral E1a and cAMP.

    PubMed Central

    Routes, J M; Colton, L A; Ryan, S; Klemm, D J

    2000-01-01

    In the present study, we observed superstimulated levels of cAMP-stimulated transcription from the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter in cells infected with wild-type adenovirus expressing 12 S and 13 S E1a proteins, or in cells expressing 13 S E1a alone. cAMP-stimulated transcription was inhibited in cells expressing only 12 S E1a, but slightly elevated in cells expressing E1a proteins with mutations in conserved regions 1 or 2, leading us to conclude that the superstimulation was mediated by conserved region 3 of 13 S E1a. E1a failed to enhance cAMP-stimulated transcription from promoters containing mutations that abolish binding by cAMP response element binding protein (CREB) or CCAAT/enhancer binding proteins (C/EBPs). This result was supported by experiments in which expression of dominant-negative CREB and/or C/EBP proteins repressed E1a- and cAMP-stimulated transcription from the PEPCK gene promoter. In reconstitution experiments using a Gal4-responsive promoter, E1a enhanced cAMP-stimulated transcription when chimaeric Gal4-CREB and Gal4-C/EBPalpha were co-expressed. Phosphorylation of CREB on serine-133 was stimulated in cells treated with dibutyryl cAMP, whereas phosphorylation of C/EBPalpha was increased by E1a expression. Our data support a model in which cAMP agonists increase CREB activity and stimulate PEPCK gene transcription, a process that is enhanced by E1a through the phosphorylation of C/EBPalpha. PMID:11085926

  2. A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells

    PubMed Central

    Buo, Atum M; Williams, Mark S; Kerr, Jaclyn P; Stains, Joseph P

    2016-01-01

    We report here a method for the use of poly-l-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. PMID:27547486

  3. Cloning and Large-Scale Production of High-Capacity Adenoviral Vectors Based on the Human Adenovirus Type 5.

    PubMed

    Ehrke-Schulz, Eric; Zhang, Wenli; Schiwon, Maren; Bergmann, Thorsten; Solanki, Manish; Liu, Jing; Boehme, Philip; Leitner, Theo; Ehrhardt, Anja

    2016-01-01

    High-capacity adenoviral vectors (HCAdV) devoid of all viral coding sequences represent one of the most advanced gene delivery vectors due to their high packaging capacity (up to 35 kb), low immunogenicity and low toxicity. However, for many laboratories the use of HCAdV is hampered by the complicated procedure for vector genome construction and virus production. Here, a detailed protocol for efficient cloning and production of HCAdV based on the plasmid pAdFTC containing the HCAdV genome is described. The construction of HCAdV genomes is based on a cloning vector system utilizing homing endonucleases (I-CeuI and PI-SceI). Any gene of interest of up to 14 kb can be subcloned into the shuttle vector pHM5, which contains a multiple cloning site flanked by I-CeuI and PI-SceI. After I-CeuI and PI-SceI-mediated release of the transgene from the shuttle vector the transgene can be inserted into the HCAdV cloning vector pAdFTC. Because of the large size of the pAdFTC plasmid and the long recognition sites of the used enzymes associated with strong DNA binding, careful handling of the cloning fragments is needed. For virus production, the HCAdV genome is released by NotI digest and transfected into a HEK293 based producer cell line stably expressing Cre recombinase. To provide all adenoviral genes for adenovirus amplification, co-infection with a helper virus containing a packing signal flanked by loxP sites is required. Pre-amplification of the vector is performed in producer cells grown on surfaces and large-scale amplification of the vector is conducted in spinner flasks with producer cells grown in suspension. For virus purification, two ultracentrifugation steps based on cesium chloride gradients are performed followed by dialysis. Here tips, tricks and shortcuts developed over the past years working with this HCAdV vector system are presented. PMID:26863087

  4. Hypoxia-mediated regulation of gene expression in mammalian cells

    PubMed Central

    Shih, Shu-Ching; Claffey, Kevin P.

    1998-01-01

    The molecular mechanism underlying oxygen sensing in mammalian cells has been extensively investigated in the areas of glucose transport, glycolysis, erythropoiesis, angiogenesis and catecholamine metabolism. Expression of functionally operative representative proteins in these specific areas, such as the glucose transporter 1, glycolytic enzymes, erythropoietin, vascular endothelial growth factor and tyrosine hydroxylase are all induced by hypoxia. Recent studies demonstrated that both transcriptional activation and post-transcriptional mechanisms are important to the hypoxia-mediated regulation of gene expression. In this article, the cis-acting elements and trans-acting factors involved in the transcriptional activation of gene expression will be reviewed. In addition, the mechanisms of post-transcriptional mRNA stabilization will also be addressed. We will discuss whether these two processes of regulation of hypoxia-responsive genes are mechanistically linked and co-operative in nature. PMID:10319016

  5. AAV-mediated gene transfer to the mouse CNS

    PubMed Central

    Stoica, Lorelei; Ahmed, Seemin S.

    2013-01-01

    Recombinant adeno associated virus (rAAV) vectors are great tools for gene transfer due to their ability to mediate long-term gene expression. Recombinant AAVs have been used at various ages of development with no apparent toxicity. There are multiple ways of delivering AAV vectors to the CNS, depending on the stage of development of the mouse. In neonates, intravascular injections into the facial vein are often used. In adults, direct injections into target regions of the brain are achieved with great spatiotemporal control through stereotaxic surgeries. Recently, discoveries of new AAV vectors with the ability to cross the blood brain barrier have made it possible to also target the adult CNS by intravascular injections. rAAVs have been successfully used as gene transfer vehicles in multiple animal models of CNS disorders, and several clinical trials are currently underway. PMID:23686825

  6. Chimeric smooth muscle-specific enhancer/promoters: valuable tools for adenovirus-mediated cardiovascular gene therapy.

    PubMed

    Ribault, S; Neuville, P; Méchine-Neuville, A; Augé, F; Parlakian, A; Gabbiani, G; Paulin, D; Calenda, V

    2001-03-16

    Gene transfer with adenoviral vectors is an attractive approach for the treatment of atherosclerosis and restenosis. However, because expression of a therapeutic gene in nontarget tissues may have deleterious effects, artery-specific expression is desirable. Although expression vectors containing transcriptional regulatory elements of genes expressed solely in smooth muscle cells (SMCs) have proved efficient to restrict expression of the transgene, their use in the clinical setting can be limited by their reduced strength. In the present study, we show that low levels of transgene expression are obtained with the smooth muscle (SM)-specific SM22alpha promoter compared with the viral cytomegalovirus (CMV) enhancer/promoter. We have generated chimeric transcriptional cassettes containing either a SM (SM-myosin heavy chain) or a skeletal muscle (creatine kinase) enhancer combined with the SM22alpha promoter. With both constructs we observed significantly stronger expression that remains SM-specific. In vivo, reporter gene expression was restricted to arterial SMCs with no detectable signal at remote sites. Moreover, when interferon-gamma expression was driven by one of these two chimeras, SMC growth was inhibited as efficiently as with the CMV promoter. Finally, we demonstrate that neointima formation in the rat carotid balloon injury model was reduced to the same extent by adenoviral gene transfer of interferon-gamma driven either by the SM-myosin heavy chain enhancer/SM22alpha promoter or the CMV promoter. These results indicate that such vectors can be useful for the treatment of hyperproliferative vascular disorders. PMID:11249869

  7. Recombinant adenoviral microRNA-206 induces myogenesis in C2C12 cells

    PubMed Central

    Zhang, Weiwei; Wang, Tao; Su, Yongping; Li, Wang; Frame, Lynn T.; Ai, Guoping

    2011-01-01

    Summary Background The expression of microRNA-206 (miR-206) is high in skeletal muscle but low in most other tissues. The expression of miR-206 is increased in muscular dystrophy, suggesting its involvement in the pathogenesis of muscle diseases. To determine the role of miR-206 in muscle cell differentiation and explore a possible gene therapy vector, we constructed a miR-206 adenoviral expression vector (AdvmiR-206) and tested for transfection into C2C12 stem cells. Material/Methods A 355-bp PCR amplicon from C57B6 mouse skeletal muscle genomic DNA was inserted into the adenoviral shuttle vector pAdTrack-CMV, which was then co-transformed with the adenoviral backbone plasmid pAdEasy-1 into competent E. coli BJ5183 bacteria. The specificity and function of this recombinant adenoviral MiR-206 were studied in C2C12 cells by Northern blot, immunofluorescence, Western blot, and flow cytometry. Results Increased expression of miR-206 in AdvmiR-206 transfected C2C12 cells (P<0.001) and resulted in morphological and biochemical changes over time that were similar to serum deprivation, including elongated cells and increased myosin heavy chain proteins. Even in the absence of serum deprivation, miR-206 overexpression accounted for a 50% reduction of S-phase cells (P<0.01). Moreover, in untransfected C2C12 cells, the introduction of miR-206-specific antisense oligoribonucleotides inhibited the normal response to serum deprivation. Twenty-four hours after lipofection of antisense oligoribonucleotides, the number of elongated cells was reduced by half (P<0.01). Conclusions Collectively, these data support a role for miR-206 in myoblast differentiation. We foresee potential applications for the AdvmiR-206 vector in research and therapy. PMID:22129894

  8. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector

    PubMed Central

    Damjanovic, Daniela; Zhang, Xizhong; Mu, Jingyu; Fe Medina, Maria; Xing, Zhou

    2008-01-01

    It is believed that respiratory mucosal immunization triggers more effective immune protection than parenteral immunization against respiratory infection caused by viruses and intracellular bacteria. Such understanding has led to the successful implementation of intranasal immunization in humans with a live cold-adapted flu virus vaccine. Furthermore there has been an interest in developing effective mucosal-deliverable genetic vaccines against other infectious diseases. However, there is a concern that intranasally delivered recombinant viral-based vaccines may disseminate to the CNS via the olfactory tissue. Initial experimental evidence suggests that intranasally delivered recombinant adenoviral gene transfer vector may transport to the olfactory bulb. However, there is a lack of quantitative studies to compare the relative amounts of transgene products in the respiratory tract, lung, olfactory bulb and brain after intranasal mucosal delivery of viral gene transfer vector. To address this issue, we have used fluorescence macroscopic imaging, luciferase quantification and PCR approaches to compare the relative distribution of transgene products or adenoviral gene sequences in the respiratory tract, lung, draining lymph nodes, olfactory bulb, brain and spleen. Intranasal mucosal delivery of replication-defective recombinant adenoviral vector results in gene transfer predominantly in the respiratory system including the lung while it does lead to a moderate level of gene transfer in the olfactory bulb. However, intranasal inoculation of adenoviral vector leads to little or no viral dissemination to the major region of the CNS, the brain. These experimental findings support the efficaciousness of intranasal adenoviral-mediated gene transfer for the purpose of mucosal immunization and suggest that it may not be of significant safety concern. PMID:18261231

  9. PVX-Cre-mediated marker gene elimination from transgenic plants.

    PubMed

    Kopertekh, L; Jüttner, G; Schiemann, J

    2004-07-01

    Cre recombinase gene from bacteriophage P1 was transiently expressed by a Potato Virus X (PVX)-based vector in transgenic lox -target Nicotiana benthamiana plants to remove the selectable marker gene. The target construct consisted of two directly oriented lox sites flanking a bar gene located between a gfp coding region and an upstream CaMV 35S promoter. The Cre-mediated excision of intervening sequence placed the gfp coding region under the transcriptional control of the CaMV 35S promoter. GFP activity was observed in PVX-Cre systemically infected leaves, regenerants from PVX-Cre infected explants and T1 progeny of these regenerants. PVX-Cre was removed efficiently from the regenerants by adding the nucleoside analogue ribavirin to the culture medium. Molecular data proved a correlation between gfp expression and precise site-specific excision of the bar gene in all examined transgenic lines. The frequency of recombination expressed as a percentage of regenerated plants exhibiting marker gene excision varied from 48% to 82%. These results demonstrate that a plant virus vector can be used efficiently to express cre recombinase in vivo providing an alternative method for the production of transgenic plants without marker genes. PMID:15604695

  10. The Challenge for Gene Therapy: Innate Immune Response to Adenoviruses

    PubMed Central

    Thaci, Bart; Ulasov, Ilya V.; Wainwright, Derek A.; Lesniak, Maciej S.

    2011-01-01

    Adenoviruses are the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in clinical trials, the efficacy of using adenoviruses for gene therapy is poor. A major hurdle to adenoviral-mediated gene therapy is the innate immune system. Cell-mediated recognition of viruses via capsid components or nucleic acids has received significant attention, principally thought to be regulated by the toll-like receptors (TLRs). Antiviral innate immune responses are initiated by the infected cell, which activates the interferon (IFN) response to block viral replication, while simultaneously releasing chemokines to attract neutrophils, mononuclear- and natural killer-cells. While the IFN and cellular recruitment pathways are activated and regulated independently of each other, both are required to overcome immune escape mechanisms by adenoviruses. Recent work has shown that the generation of adenoviral vectors lacking specific transcriptionally-active regions decreases immune system activation and increases the chance for immune escape. In this review, we elucidate how adenoviral vector modifications alter the IFN and innate inflammatory pathway response and propose future targets with clinically-translational relevance. PMID:21399236

  11. Problems of Subject Mediator Development for Gene Expression Regulation Domain

    NASA Astrophysics Data System (ADS)

    Kalinichenko, L. A.; Briukhov, D. O.; Zakharov, V. N.; Podkolodnaja, O. A.; Podkolodny, N. L.

    For efficient organization of research in the domain of bioinformatics it is required to organize properly the relevant information in specific research areas. One of the important outcomes of such organization would be provision of access to and querying of a large number of distributed information sources including various data on the primary and spatial structure of DNA and RNA macromolecules, proteins and their complexes as well as data on peculiarities of their interactions with each other. To provide for semantic integration of nonsystematic population of autonomous information sources kept by different information providers into a well-structured information collection it is required to create the global unified representation of the existing information sources and services. To reach that it is proposed to form a special middleware consisting of the subject mediators. For each subject mediator, the application domain model is to be defined by the experts in the field. This model may include specifications of data structures, terminologies (thesauri), concepts (ontologies), methods applicable to data, processes (workflows), characteristic for the domain. The mediators provide a uniform query interface to the multiple data and procedure service sources, thereby freeing the users from having to locate the relevant sources, query each one in isolation, and combine manually the information from them. In the paper we discuss an approach for development of the mediator for integration of heterogeneous molecular-genetic data in the gene expression regulation domain.

  12. Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier

    PubMed Central

    Zamora, Genesis; Wang, Frederick; Sun, Chung-Ho; Trinidad, Anthony; Kwon, Young Jik; Cho, Soo Kyung; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-01-01

    Abstract. The overall objective of the research was to investigate the utility of photochemical internalization (PCI) for the enhanced nonviral transfection of genes into glioma cells. The PCI-mediated introduction of the tumor suppressor gene phosphatase and tensin homolog (PTEN) or the cytosine deaminase (CD) pro-drug activating gene into U87 or U251 glioma cell monolayers and multicell tumor spheroids were evaluated. In the study reported here, polyamine-DNA gene polyplexes were encapsulated in a nanoparticle (NP) with an acid degradable polyketal outer shell. These NP synthetically mimic the roles of viral capsid and envelope, which transport and release the gene, respectively. The effects of PCI-mediated suppressor and suicide genes transfection efficiency employing either “naked” polyplex cores alone or as NP-shelled cores were compared. PCI was performed with the photosensitizer AlPcS2a and λ=670-nm laser irradiance. The results clearly demonstrated that the PCI can enhance the delivery of both the PTEN or CD genes in human glioma cell monolayers and multicell tumor spheroids. The transfection efficiency, as measured by cell survival and inhibition of spheroid growth, was found to be significantly greater at suboptimal light and DNA levels for shelled NPs compared with polyamine-DNA polyplexes alone. PMID:25341069

  13. Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier

    NASA Astrophysics Data System (ADS)

    Zamora, Genesis; Wang, Frederick; Sun, Chung-Ho; Trinidad, Anthony; Kwon, Young Jik; Cho, Soo Kyung; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-10-01

    The overall objective of the research was to investigate the utility of photochemical internalization (PCI) for the enhanced nonviral transfection of genes into glioma cells. The PCI-mediated introduction of the tumor suppressor gene phosphatase and tensin homolog (PTEN) or the cytosine deaminase (CD) pro-drug activating gene into U87 or U251 glioma cell monolayers and multicell tumor spheroids were evaluated. In the study reported here, polyamine-DNA gene polyplexes were encapsulated in a nanoparticle (NP) with an acid degradable polyketal outer shell. These NP synthetically mimic the roles of viral capsid and envelope, which transport and release the gene, respectively. The effects of PCI-mediated suppressor and suicide genes transfection efficiency employing either "naked" polyplex cores alone or as NP-shelled cores were compared. PCI was performed with the photosensitizer AlPcS2a and λ=670-nm laser irradiance. The results clearly demonstrated that the PCI can enhance the delivery of both the PTEN or CD genes in human glioma cell monolayers and multicell tumor spheroids. The transfection efficiency, as measured by cell survival and inhibition of spheroid growth, was found to be significantly greater at suboptimal light and DNA levels for shelled NPs compared with polyamine-DNA polyplexes alone.

  14. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  15. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    SciTech Connect

    Mann, David George James; McKnight, Timothy E; Mcpherson, Jackson; Hoyt, Peter R; Melechko, Anatoli Vasilievich; Simpson, Michael L; Sayler, Gary Steven

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and introduced alongside the yfp marker gene into Chinese hamster ovary cells using spatially indexed vertically aligned carbon nanofiber arrays (VACNFs) in a gene delivery process termed impalefection. The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. 24 hours after nanofiber-mediated delivery, 53.1% 10.4% of the cells that expressed the yfp marker gene were also fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  16. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    PubMed Central

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  17. BRCA1-mediated repression of select X chromosome genes.

    PubMed

    Jazaeri, Amir A; Chandramouli, Gadisetti VR; Aprelikova, Olga; Nuber, Ulrike A; Sotiriou, Christos; Liu, Edison T; Ropers, H Hilger; Yee, Cindy J; Boyd, Jeff; Barrett, J Carl

    2004-09-21

    Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling). Significance was determined using parametric statistics with P < 0.005 as a cutoff. Forty of 178 total X-chromosome transcripts were differentially expressed between the BRCA1-associated tumors and sporadic cancers with a BRCA2-like molecular profile. Thirty of these 40 genes showed higher mean expression in the BRCA1-associated samples including all 11 transcripts that mapped to Xp11. In contrast, four of 178 total X chromosome transcripts showed significant differential expression between BRCA1-associated and sporadic tumors with a BRCA1-like molecular profile. All four mapped to Xp11 and showed higher mean expression in BRCA1-associated tumors. Re-expression of BRCA1 in HCC1937 BRCA1-deficient breast cancer cell resulted in the repression of 21 transcripts. Eleven of the 21 (54.5%) transcripts mapped to Xp11. However, there was no significant overlap between these Xp11 genes and those found to be differentially expressed between BRCA1-associated and sporadic ovarian cancer samples. These results demonstrate that BRCA1 mediates the repression of several X chromosome genes, many of which map to the Xp11 locus. PMID:15383145

  18. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    PubMed Central

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  19. Target Gene Abundance Contributes to the Efficiency of siRNA-Mediated Gene Silencing

    PubMed Central

    Hong, Sun Woo; Jiang, Yuanyuan; Kim, Soyoun; Li, Chiang J.

    2014-01-01

    The gene-silencing activity of a small interfering RNA (siRNA) is determined by various factors. Considering that RNA interference (RNAi) is an unparalleled technology in both basic research and therapeutic applications, thorough understanding of the factors determining RNAi activity is critical. This report presents observations that siRNAs targeting KRT7 show cell-line-dependent activity, which correlates with the expression level of KRT7 mRNA. By modulating the target mRNA level, it was confirmed that highly expressed genes are more susceptible to siRNA-mediated gene silencing. Finally, several genes that show different expression levels in a cell-line dependent manner were tested, which verified the expression-level-dependent siRNA activities. These results strongly suggest that the abundance of target mRNA is a critical factor that determines the efficiency of the siRNA-mediated gene silencing in a given cellular context. This report should provide practical guidelines for designing RNAi experiments and for selecting targetable genes in RNAi therapeutics studies. PMID:24527979

  20. Regulation of amino acid transporters by adenoviral-mediated human insulin-like growth factor-1 in a mouse model of placental insufficiency in vivo and the human trophoblast line BeWo in vitro

    PubMed Central

    Jones, H.; Crombleholme, T.; Habli, M.

    2014-01-01

    amino acid isoform transporter expression and relocalization to the membrane may be an important mechanism contributing to Ad-hIGF-1 mediated correction of placental insufficiency. PMID:24360522

  1. Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun.

    PubMed

    Gao, Caixia; Nielsen, Klaus K

    2013-01-01

    Agrobacterium-mediated transformation and direct gene transfer using the gene gun (microparticle -bombardment) are the two most widely used methods for plant genetic modification. The Agrobacterium method has been successfully practiced in dicots for many years, but only recently have efficient protocols been developed for grasses. Microparticle bombardment has evolved as a method delivering exogenous nucleic acids into plant genome and is a commonly employed technique in plant science. Here these two systems are compared for transformation efficiency, transgene integration, and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The tall fescue transformation protocols lead to the production of large numbers of fertile, independent transgenic lines. PMID:23104329

  2. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system.

    PubMed

    Rubinchik, S; Ding, R; Qiu, A J; Zhang, F; Dong, J

    2000-05-01

    Fas ligand (FasL) is a member of the tumor necrosis family and when bound to its receptor, Fas, induces apoptosis. It plays important roles in immune response, degenerative and lymphoproliferative diseases, development and tumorigenesis. It is also involved in generation of immune privilege sites in the eye and testis. Harnessing the power of this molecule is expected to lead to a powerful chemotherapeutic. We describe the construction and characterization of replication-deficient adenoviral vectors that express a fusion of murine FasL and green fluorescent protein (GFP). FasL-GFP retains full activity of wild-type FasL, at the same time allowing for easy visualization and quantification in both living and fixed cells. The fusion protein is under the control of a tetracycline-regulated gene expression system. Tight control of expression is achieved by creating a novel 'double recombinant' Ad vector, in which the tet-responsive element and the transactivator element are built into the opposite ends of the same vector to avoid enhancer interference. Expression can be conveniently regulated by tetracycline or its derivatives in a dose-dependent manner. The vector was able to deliver FasL-GFP gene to cells in vitro efficiently, and the expression level and function of the fusion protein was modulated by the concentration of doxycycline. This regulation allows us to produce high titers of the vector by inhibiting FasL expression in an apoptosis-resistant cell line. Induction of apoptosis was demonstrated in all cell lines tested. These results indicate that our vector is a potentially valuable tool for FasL-based gene therapy of cancer and for the study of FasL/Fas-mediated apoptosis and immune privilege. PMID:10845726

  3. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs. PMID:26026665

  4. Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis.

    PubMed

    Qian, Zhongqing; Lv, Jingzhu; Kelly, Gabriel T; Wang, Hongtao; Zhang, Xiaojie; Gu, Wanjun; Yin, Xiaofeng; Wang, Ting; Zhou, Tong

    2016-07-01

    During infection and host defense, nuclear factor, erythroid 2-like 2 (Nrf2) dependent signaling is an efficient antioxidant defensive mechanism used by host cells to control the destructive effects of reactive oxygen species. This allows for effective defense responses against microbes while minimizing oxidative injury to the host cell itself. As a central regulator of antioxidant genes, Nrf2 has gained great attention in its pivotal role in infection, especially in tuberculosis (TB), the top infectious disease killer worldwide. To elucidate the genes potentially regulated by Nrf2 in TB, we conducted a meta-analysis on published gene expression datasets. Firstly, we compared the global gene expression profiles between control and Nrf2-deficient human cells. The differentially expressed genes were deemed as "Nrf2-mediated genes". Next, the whole blood gene expression pattern of TB patients was compared with that of healthy controls, pneumonia patients, and lung cancer patients. We found that the genes deregulated in TB significantly overlap with the Nrf2-mediated genes. Based on the intersection of Nrf2-mediated and TB-regulated genes, we identified an Nrf2-mediated 17-gene signature, which reflects a cluster of gene ontology terms highly related to TB physiology. We demonstrated that the 17-gene signature can be used to distinguish TB patients from healthy controls and patients with latent TB infection, pneumonia, or lung cancer. Also, the Nrf2-mediated gene signature can be used as an indicator of the anti-TB therapeutic response. More importantly, we confirmed that the predictive power of the Nrf2-mediated 17-gene signature is significantly better than the random gene sets selected from the human transcriptome. Also, the 17-gene signature performs even better than the random gene signatures selected from TB-associated genes. Our study confirms the central role of Nrf2 in TB pathogenesis and provides a novel and useful diagnostic method to differentiate TB

  5. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

    PubMed Central

    Peng, Duo; Kurup, Samarchith P.; Yao, Phil Y.; Minning, Todd A.

    2014-01-01

    ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. PMID:25550322

  6. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    PubMed Central

    Aoki, Christopher A.; Dawson, Kevin; Kenny, Thomas P.; Gershwin, M. Eric; Bowlus, Christopher L.

    2006-01-01

    Primary sclerosing cholangitis (PSC) is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA) from peripheral blood mononuclear cells (PBMC) was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6) and membrane-spanning 4-domains, subfamily A (ms4a) were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5) was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated. PMID:17162367

  7. Induction of AhR-Mediated Gene Transcription by Coffee

    PubMed Central

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health. PMID:25007155

  8. Efficient TALEN-mediated gene knockout in livestock

    PubMed Central

    Carlson, Daniel F.; Tan, Wenfang; Lillico, Simon G.; Stverakova, Dana; Proudfoot, Chris; Christian, Michelle; Voytas, Daniel F.; Long, Charles R.; Whitelaw, C. Bruce A.; Fahrenkrug, Scott C.

    2012-01-01

    Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications. PMID:23027955

  9. Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing.

    PubMed

    Narvaiza, Iñigo; Aparicio, Oscar; Vera, María; Razquin, Nerea; Bortolanza, Sergia; Prieto, Jesús; Fortes, Puri

    2006-12-01

    RNA interference with viral vectors that express short hairpin RNAs (shRNAs) has emerged as a powerful tool for functional genomics and therapeutic purposes. However, little is known about shRNA in vivo processing, accumulation, functional kinetics, and side effects related to shRNA saturation of the cellular gene silencing machinery. Therefore, we constructed first-generation recombinant adenoviruses encoding different shRNAs against murine ATP-binding cassette multidrug resistance protein 2 (Abcc2), which is involved in liver transport of bilirubin to bile, and analyzed Abcc2 silencing kinetics. C57/BL6 mice injected with these viruses showed significant impairment of Abcc2 function for up to 3 weeks, as reflected by increased serum bilirubin levels. The lack of Abcc2 function correlated with a specific reduction of Abcc2 mRNA and with high levels of processed shRNAs targeting Abcc2. Inhibition was lost at longer times postinfection, correlating with a decrease in the accumulation of processed shRNAs. This finding suggests that a minimal amount of processed shRNAs is required for efficient silencing in vivo. This system was also used to evaluate the effect of shRNA expression on the saturation of silencing factors. Saturation of the cellular silencing processing machinery alters the accumulation and functionality of endogenous microRNAs (miRNAs) and pre-miRNAs. However, expression of functional exogenous shRNAs did not change the levels of endogenous miRNAs or their precursors. In summary, this work shows that adenoviral vectors can deliver sufficient shRNAs to mediate inhibition of gene expression without saturating the silencing machinery. PMID:17020948

  10. A novel Cre recombinase reporter mouse strain facilitates selective and efficient infection of primary immune cells with adenoviral vectors.

    PubMed

    Heger, Klaus; Kober, Maike; Rieß, David; Drees, Christoph; de Vries, Ingrid; Bertossi, Arianna; Roers, Axel; Sixt, Michael; Schmidt-Supprian, Marc

    2015-06-01

    Replication-deficient recombinant adenoviruses are potent vectors for the efficient transient expression of exogenous genes in resting immune cells. However, most leukocytes are refractory to efficient adenoviral transduction as they lack expression of the coxsackie/adenovirus receptor (CAR). To circumvent this obstacle, we generated the R26/CAG-CARΔ1(StopF) (where R26 is ROSA26 and CAG is CMV early enhancer/chicken β actin promoter) knock-in mouse line. This strain allows monitoring of in situ Cre recombinase activity through expression of CARΔ1. Simultaneously, CARΔ1 expression permits selective and highly efficient adenoviral transduction of immune cell populations, such as mast cells or T cells, directly ex vivo in bulk cultures without prior cell purification or activation. Furthermore, we show that CARΔ1 expression dramatically improves adenoviral infection of in vitro differentiated conventional and plasmacytoid dendritic cells (DCs), basophils, mast cells, as well as Hoxb8-immortalized hematopoietic progenitor cells. This novel dual function mouse strain will hence be a valuable tool to rapidly dissect the function of specific genes in leukocyte physiology. PMID:25787118

  11. Adenoviral infection or deferoxamine? Two approaches to overexpress VEGF in beta-cell lines.

    PubMed

    Langlois, Allan; Bietiger, William; Sencier, Marie-Christine; Maillard, Elisa; Pinget, Michel; Kessler, Laurence; Sigrist, Severine

    2009-07-01

    Rapid and adequate revascularization of transplanted islets is important for their survival and function during transplantation. Vascular endothelial growth factor (VEGF) could play a critical role with respect to islet revascularization. The aim of this study was to compare two strategies that are used to overexpress VEGF in beta-cells: (1) gene therapy through adenoviral infection and (2) a pharmacological approach using deferoxamine (DFO). beta-Cell lines from rat insulinoma (RINm5F) were either infected using an adenovirus encoding the gene of human VEGF 165 or incubated with DFO. One day after treatment, the viability of RINm5F cells was preserved with 10 micromol/L of DFO (103.95 +/- 5.66% toward control; n = 4). In addition, adenoviral infection maintained the viability of cells for all the concentrations used. In both treatments, overexpression of VEGF was in a comparable level. Finally, the ratio of Bax/Bcl-2 indicated that the apoptosis increased in infected beta-cells whereas treatment with DFO seems to be antiapoptotic. Our results suggest that the use of DFO could be a realistic approach to improve the vascularization of islets during transplantation. PMID:19527112

  12. Mismatch-mediated error prone repair at the Immunoglobulin genes

    PubMed Central

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-01-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood. PMID:22100214

  13. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    PubMed Central

    Thapar, Roopa

    2015-01-01

    The peptidyl-prolyl cis-trans isomerases (PPIases) that include immunophilins (cyclophilins and FKBPs) and parvulins (Pin1, Par14, Par17) participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo. PMID:25992900

  14. RNAi mediated Tiam1 gene knockdown inhibits invasion of retinoblastoma.

    PubMed

    Subramanian, Nithya; Navaneethakrishnan, Saranya; Biswas, Jyotirmay; Kanwar, Rupinder K; Kanwar, Jagat R; Krishnakumar, Subramanian

    2013-01-01

    T lymphoma invasion and metastasis protein (Tiam1) is up-regulated in variety of cancers and its expression level is related to metastatic potential of the type of cancer. Earlier, Tiam1 was shown to be overexpressed in retinoblastoma (RB) and we hypothesized that it was involved in invasiveness of RB. This was tested by silencing Tiam1 in RB cell lines (Y79 and Weri-Rb1) using siRNA pool, targeting different regions of Tiam1 mRNA. The cDNA microarray of Tiam1 silenced cells showed gene regulations altered by Tiam1 were predominantly on the actin cytoskeleton interacting proteins, apoptotic initiators and tumorogenic potential targets. The silenced phenotype resulted in decreased growth and increased apoptosis with non-invasive characteristics. Transfection of full length and N-terminal truncated construct (C1199) clearly revealed membrane localization of Tiam1 and not in the case of C580 construct. F-actin staining showed the interaction of Tiam1 with actin in the membrane edges that leads to ruffling, and also imparts varying invasive potential to the cell. The results obtained from our study show for the first time that Tiam1 modulates the cell invasion, mediated by actin cytoskeleton remodeling in RB. PMID:23950931

  15. Identification of the class I genes of the mouse major histocompatibility complex by DNA-mediated gene transfer.

    PubMed

    Goodenow, R S; McMillan, M; Nicolson, M; Sher, B T; Eakle, K; Davidson, N; Hood, L

    1982-11-18

    DNA-mediated gene transfer was used to identify cloned class I genes from the major histocompatibility complex of the BALB/c mouse. Three genes encoding the transplantation antigens H-2 Kd, Dd and Ld were identified as well as genes encoding the Qa-2,3 and two TL differentiation antigens. As many as 10 putative novel class I genes were detected by the association of their gene products with beta 2-microglobulin. Alloantiserum prepared to one of the novel antigens was used to demonstrate the expression of the previously undetected antigen on spleen cells of various inbred, congeneic, and recombinant congeneic strains of mice. PMID:6815535

  16. In vitro efficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatin A-mediated restoration of CAR expression and downregulation of cFLIP and Bcl-XL.

    PubMed

    El-Zawahry, A; Lu, P; White, S J; Voelkel-Johnson, C

    2006-03-01

    Current therapies for bladder cancer are suboptimal and adenoviral gene therapy has been explored as an alternative treatment. In this study, we evaluated the in vitro efficacy of an adenovirus expressing TNF-related apoptosis-inducing ligand (AdTRAIL). At low concentrations of virus, T24 cells were more resistant to AdTRAIL-induced apoptosis than 5637 bladder carcinoma cells. Resistance in T24 cells correlated with poor infectivity and lack of surface expression of coxsackie and adenovirus receptor (CAR). Pretreatment with low concentrations of the histone deacetylase inhibitor trichostatin A, restored CAR expression in T24 cells, which facilitated viral infection and resulted in apoptosis at low concentrations of AdTRAIL. In addition, trichostatin A reduced the expression of Bcl-X(L) and cFLIP resulting in increased sensitivity to recombinant TRAIL. Overexpression of cFLIP inhibited TRAIL-mediated killing in trichostatin A pretreated cells, indicating that downregulation of this antiapoptotic protein is required for sensitization. Therefore, trichostatin A can enhance the efficacy of AdTRAIL by restoring CAR expression and by generating a more pro-apoptotic phenotype that would facilitate bystander activity of TRAIL. Combination of histone deacetylase inhibitors with intravesical AdTRAIL gene therapy may be a novel treatment strategy for bladder cancer. PMID:16167063

  17. An adenoviral vector for probing promoter activity in primary immune cells

    PubMed Central

    Tripathi, Pulak; Madan, Rajat; Chougnet, Claire; Divanovic, Senad; Ma, Xiaojing; Wahl, Larry M.; Gajewski, Thomas; Karp, Christopher L.; Hildeman, David A.

    2010-01-01

    Functional analysis of the DNA regulatory regions that control gene expression has largely been performed through transient transfection of promoter–reporter constructs into transformed cells. However, transformed cells are often poor models of primary cells. To directly analyze DNA regulatory regions in primary cells, we generated a novel adenoviral luciferase reporter vector, pShuttle-luciferase-GFP (pSLUG) that contains a promoterless luciferase cassette (with an upstream cloning site) for probing promoter activity, and a GFP expression cassette that allows for the identification of transduced cells. Recombinant adenoviruses generated from this vector can transduce a wide range of primary immune cells with high efficiency, including human macrophages, dendritic cells and T cells; and mouse T cells transgenic for the coxsackie and adenoviral receptor (CAR). In primary T cells, we show inducible nuclear factor of activated T cells (NF-AT) activity using a recombinant pSLUG adenovirus containing a consensus NF-AT promoter. We further show inducible IL-12/23 p40 promoter activity in primary macrophages and dendritic cells using a recombinant pSLUG adenovirus containing the proximal human IL-12/23 p40 promoter. The pSLUG system promises to be a powerful tool for the analysis of DNA regulatory regions in diverse types of primary immune cells. PMID:16563424

  18. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  19. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  20. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  1. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  2. Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting

    PubMed Central

    Campos, Samuel K.; Barry, Michael A.

    2008-01-01

    Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting. PMID:17584037

  3. Dexamethasone-mediated transcriptional regulation of rat carboxylesterase 2 gene.

    PubMed

    Hori, Takeshi; Jin, Liangjing; Fujii, Ayako; Furihata, Tomomi; Nagahara, Yuko; Chiba, Kan; Hosokawa, Masakiyo

    2012-07-01

    Rat carboxylesterase 2 (rCES2), which was previously identified as a methylprednisolone 21-hemisuccinate hydrolase, is highly inducible by dexamethasone in the liver. In the present study, we investigated the molecular mechanisms by which this induction occurs. Injection of dexamethasone (1 mg/kg weight) into rats resulted in increases in the expression of rCES2 mRNA in a time-dependent manner with a peak at 12 h after injection. In primary rat hepatocytes, the expression level of rCES2 mRNA was increased by treatment with 100 nM dexamethasone, and the increase was completely blocked in the presence of 10 µM mifepristone (RU-486), a potent inhibitor of glucocorticoid receptor (GR), or 10 µg/mL cycloheximide, a translation inhibitor. Luciferase assays revealed that 100 nM dexamethasone increased rCES2 promoter activities, although the effect of dexamethasone on the promoter activity was smaller than that on rCES2 mRNA expression. The increased activities were completely inhibited by treatment of the hepatocytes with 10 µM RU-486. Based on these results, it is concluded that dexamethasone enhances transcription of the rCES2 gene via GR in the rat liver and that the dexamethasone-mediated induction of rCES2 mRNA may be dependent on de novo protein synthesis. Our results provide clues to understanding what compounds induce rCES2. PMID:22235919

  4. Identification of genes that mediate protection against soybean pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last twenty years, over 40 resistance genes (R-genes) have been cloned and characterized from plants. Of these, only three have been cloned in soybean. Cloning of resistance genes in soybean has been hampered by a complex, duplicated genome, clustering of R-genes, and lack of tools to charac...

  5. Adenovirus type 7 penton purification of soluble pentamers from Escherichia coli and development of an integrin-dependent gene delivery system.

    PubMed

    Bal, H P; Chroboczek, J; Schoehn, G; Ruigrok, R W; Dewhurst, S

    2000-10-01

    Adenoviral gene therapy vectors suffer from the disadvantages of toxicity and immunogenicity associated with the expression of adenoviral genes from the vector backbone. We report here an alternative strategy for gene delivery that utilizes a single component of the adenoviral type 7 capsid, the penton base (Ad7PB). The Ad7PB gene was sequenced and its amino-acid composition was deduced from its nucleotide sequence. The penton was expressed in Escherichia coli as a soluble C-terminal fusion with glutathione S-transferase (GST-Ad7PB) and was purified by single-step affinity chromatography. Both GST-Ad7PB and cleaved (GST-free) Ad7PB retained the ability to fold into pentamers as observed by electron microscopy. GST-Ad7PB was able to bind a synthetic peptide (FK20) derived from the Ad type 7 fiber and retard DNA through a polylysine chain present at the C-terminus of this linker peptide. GST-Ad7PB was an effective cell transfecting agent when assayed on 293 cells. Transfection was not dependent upon the presence of lysosomotropic agents indicating efficient endosome escape capability. Excess of an RGD-containing peptide derived from Ad7PB was able to inhibit transfection indicating specific integrin-mediated uptake of the GST-Ad7PB-FK20-DNA complexes. We propose that Ad7 pentons can be developed into integrin-specific gene delivery agents. PMID:10998069

  6. Cotransfer of linked eukaryotic genes and efficient transfer of hypoxanthine phosphoribosyltransferase by DNA-mediated gene transfer.

    PubMed Central

    Peterson, J L; McBride, O W

    1980-01-01

    The efficiency of DNA-mediated transfer of the gene (hprt) for hypoxanthine phosphoribosyltransferase (HPRT; IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) is dependent upon the recipient cell used. hprt has been transferred into mouse TG8 or Chinese hamster CHTG49 cells at a high frequency, similar to the frequency of the gene (tk) for thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) transfer into mouse LMTK- cells (i.e., 10(-6)). In contrast, the frequency of transfer of hprt into mouse A9 cells was about two orders of magnitude less. The identification of efficient recipient cells for hprt transfer permits the use of DNA-mediated transfer as a bioassay for the gene. Cotransfer of the linked tk gene and the gene (galk) for galactokinase (ATP: D-galactose 1-phosphotransferase, EC 2.7.1.6) to LMTK- cells has been detected once among 87 tk transferrents. This suggests that the distance between the tk and galk genes in the Chinese hamster genome may be smaller than was previously thought. Significant differences between chromosome-mediated and DNA-mediated gene transfer were observed with respect to both the size of the transferred functional genetic fragment and the recipient cell specificity. Images PMID:6929511

  7. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells.

    PubMed

    Min, Hyehyun; Kong, Kyoung-Ah; Lee, Ji-Yeon; Hong, Chang-Pyo; Seo, Seong-Hye; Roh, Tae-Young; Bae, Sun Sik; Kim, Myoung Hee

    2016-06-01

    Modulation of chromatin structure has been proposed as a molecular mechanism underlying the spatiotemporal collinear expression of Hox genes during development. CCCTC-binding factor (CTCF)-mediated chromatin organization is now recognized as a crucial epigenetic mechanism for transcriptional regulation. Thus, we examined whether CTCF-mediated chromosomal conformation is involved in Hoxc gene expression by comparing wild-type mouse embryonic fibroblast (MEF) cells expressing anterior Hoxc genes with Akt1 null MEFs expressing anterior as well as posterior Hoxc genes. We found that CTCF binding between Hoxc11 and -c12 is important for CTCF-mediated chromosomal loop formation and concomitant posterior Hoxc gene expression. Hypomethylation at this site increased CTCF binding and recapitulated the chromosomal conformation and posterior Hoxc gene expression patterns observed in Akt1 null MEFs. From this work we found that CTCF at the C12|11 does not function as a barrier/boundary, instead let the posterior Hoxc genes switch their interaction from inactive centromeric to active telomeric genomic niche, and concomitant posterior Hoxc gene expression. Although it is not clear whether CTCF affects Hoxc gene expression solely through its looping activity, CTCF-mediated chromatin structural modulation could be an another tier of Hox gene regulation during development. © 2016 IUBMB Life, 68(6):436-444, 2016. PMID:27080371

  8. Analysis of the Flavobacterium columnare transcriptome reveals gene expression signatures mediating virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater cultured fish species. Despite its importance, a broader understanding of the genes and their protein products that mediate virulence is urgently needed. Therefore, in t...

  9. Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport

    PubMed Central

    Xiong, Fu; Xiao, Shaobo; Yu, Meijuan; Li, Wanyi; Zheng, Hui; Shang, Yanchang; Peng, Funing; Zhao, Cuiping; Zhou, Wenliang; Chen, Huanchun; Fang, Liurong; Chamberlain, Jeffrey S; Zhang, Cheng

    2007-01-01

    Background Duchenne musclar dystrophy (DMD) is an X-linked recessive disease caused by mutations of dystrophin gene, there is no effective treatment for this disorder at present. Plasmid-mediated gene therapy is a promising therapeutical approach for the treatment of DMD. One of the major issues with plasmid-mediated gene therapy for DMD is poor transfection efficiency and distribution. The herpes simplex virus protein VP22 has the capacity to spread from a primary transduced cell to surrounding cells and improve the outcome of gene transfer. To improve the efficiency of plasmid-mediated gene therapy and investigate the utility of the intercellular trafficking properties of VP22-linked protein for the treatment for DMD, expression vectors for C-terminal versions of VP22-microdystrophin fusion protein was constructed and the VP22-mediated shuttle effect was evaluated both in vitro and in vivo. Results Our results clearly demonstrate that the VP22-microdystrophin fusion protein could transport into C2C12 cells from 3T3 cells, moreover, the VP22-microdystrophin fusion protein enhanced greatly the amount of microdystrophin that accumulated following microdystrophin gene transfer in both transfected 3T3 cells and in the muscles of dystrophin-deficient (mdx) mice. Conclusion These results highlight the efficiency of the VP22-mediated intercellular protein delivery for potential therapy of DMD and suggested that protein transduction may be a potential and versatile tool to enhance the effects of gene delivery for somatic gene therapy of DMD. PMID:17617925

  10. Genes Encoding Phospholipases A2 Mediate Insect Nodulation Reactions to Bacterial Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis...

  11. Differential Type I Interferon-dependent Transgene Silencing of Helper-dependent Adenoviral vs. Adeno-associated Viral Vectors In Vivo

    PubMed Central

    Suzuki, Masataka; Bertin, Terry K; Rogers, Geoffrey L; Cela, Racel G; Zolotukhin, Irene; Palmer, Donna J; Ng, Philip; Herzog, Roland W; Lee, Brendan

    2013-01-01

    We previously dissected the components of the innate immune response to Helper-dependent adenoviral vectors (HDAds) using genetic models, and demonstrated that multiple pattern recognition receptor signaling pathways contribute to this host response to HDAds in vivo. Based on analysis of cytokine expression profiles, type I interferon (IFN) mRNA is induced in host mouse livers at 1 hour post-injection. This type I IFN signaling amplifies cytokine expression in liver independent of the nature of vector DNA sequences after 3 hours post-injection. This type I IFN signaling in response to HDAds administration contributes to transcriptional silencing of both HDAd prokaryotic and eukaryotic DNA in liver. This silencing occurs early and is mediated by epigenetic modification as shown by in vivo chromatin immunoprecipitation (ChIP) with anti-histone deacetylase (HDAC) and promyelocytic leukemia protein (PML). In contrast, self-complementary adeno-associated viral vectors (scAAVs) showed significantly lower induction of type I IFN mRNA in liver compared to HDAds at both early and late time points. These results show that the type I IFN signaling dependent transgene silencing differs between AAV and HDAd vectors after liver-directed gene transfer. PMID:23319058

  12. Molecular epidemiology of adenoviral keratoconjunctivitis in Saudi Arabia

    PubMed Central

    Omar, Nazri; Hammouda, Ehab; Akanuma, Masataka; Ohguchi, Takeshi; Ariga, Toshihide; Tagawa, Yoshitsugu; Kitaichi, Nobuyoshi; Ishida, Susumu; Aoki, Koki; Ishiko, Hiroaki; Ohno, Shigeaki

    2010-01-01

    Purpose Adenoviral keratoconjunctivitis is a major cause of ocular morbidity and may lead to visual loss. Adenovirus types 8, 19, and 37 may cause epidemic keratoconjunctivitis. The main objective of this study was to determine the types of adenoviruses causing keratoconjunctivitis in Saudi Arabia. Methods We conducted a non-interventional observational clinical study. Seventy three eyes from 65 patients who presented to The Eye Center in Riyadh, Saudi Arabia with clinical features of acute adenoviral keratoconjunctivitis were included. Each patient underwent complete clinical examination and features such as membranous reaction, conjunctival hemorrhage, subepithelial corneal infiltrates, and preauricular lymph node enlargement were recorded. Conjunctival swabs were obtained from patients with presumed acute viral conjunctivitis. Immunochromatography (IC) and restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) were performed on the conjunctival swabs obtained from each eye. Serotype identification was performed using direct sequencing technique. Results Forty-nine (67.1%) were adenovirus type 8, 8 (11.0%) were adenovirus type 3, 6 (8.2%) type 37, 5 (6.8%) were adenovirus type 4, and 2 (2.3%) type 19. The remaining 5 were types 14, 19, and 22. The prevalence of membranous conjunctivitis was highest (83%) among eyes with adenovirus type 37 while subepithelial corneal opacities were most commonly seen among eyes with adenovirus type 8 (47%). Immunochromatography tests were positive for adenovirus in 48 (65.7%) out of 73 eyes. Conclusions This study determined the types of adenoviruses causing keratoconjunctivitis at one center in Saudi Arabia. Direct sequencing techniques is an efficient, accurate, and rapid means of diagnosing adenoviral keratoconjunctivitis. The most common causes of adenoviral keratoconjunctivitis in Saudi Arabia were adenovirus types 8, 3, and 37. Membranous conjunctivitis and subepithelial opacities had the highest

  13. Chicken STING Mediates Activation of the IFN Gene Independently of the RIG-I Gene.

    PubMed

    Cheng, Yuqiang; Sun, Yingjie; Wang, Hengan; Yan, Yaxian; Ding, Chan; Sun, Jianhe

    2015-10-15

    Stimulator of IFN genes (STING) is an adaptor that functions downstream of retinoic acid-inducible gene I (RIG-I) in mammalian cells; however, RIG-I is absent in chickens. We identified chicken STING (chSTING) as a critical mediator of virus-triggered type I IFN signaling in RIG-I-null chicken cells. Overexpression of chSTING in DF-1 cells inhibited Newcastle disease virus and avian influenza virus (AIV) viral replication and activated IRF-7 and NF-κB to induce expression of type I IFNs. Knockdown of endogenous chSTING abolished virus-triggered activation of IRF-7 and IFN-β and increased viral yield. chSTING was a critical component in the virus-triggered IRF-7 activation pathway and the cellular antiviral response. chSTING predominantly localized to the outer membrane of the endoplasmic reticulum and was also found in the mitochondrial membrane. Furthermore, knockdown of chSTING blocked polyinosinic-polycytidylic acid-, poly(deoxyadenylic-deoxythymidylic) acid-, and melanoma differentiation-associated gene 5 (MDA5)-stimulated induction of IFN-β. Coimmunoprecipitation experiments indicated that chicken MDA5 could interact with chSTING, and this interaction was enhanced by ectopically expressed chicken mitochondrial antiviral-signaling protein. Together, these results indicated that chSTING is an important regulator of chicken innate immune signaling and might be involved in the MDA5 signaling pathway in chicken cells. These results help with understanding the biological role of STING in innate immunity during evolution. PMID:26392466

  14. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants. PMID:23821951

  15. Expression Profiling of R Gene-Mediated Host Defense Against Aphid Feeding in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of wheat in the southern High Plains of the U.S. The single dominant gene, Gb3 confers consistent and durable resistance against prevailing greenbug biotypes in wheat fields. However, molecular mechanisms of R gene mediated host...

  16. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  17. Biomaterial-Mediated Retroviral Gene Transfer Using Self-Assembled Monolayers

    PubMed Central

    Gersbach, Charles A.; Coyer, Sean R.; Le Doux, Joseph M.; García, Andrés J.

    2007-01-01

    Biomaterial-mediated gene delivery has recently emerged as a promising alternative to conventional gene transfer technologies that focus on direct delivery of viral vectors or DNA-polymer/matrix complexes. However, biomaterial-based strategies have primarily targeted transient gene expression vehicles, including plasmid DNA and adenovirus particles. This study expands on this work by characterizing biomaterial properties conducive to the surface immobilization of retroviral particles and subsequent transduction of mammalian cells at the cell-material interface. Self-assembled monolayers (SAMs) of functionally-terminated alkanethiols on gold were used to establish biomaterial surfaces of defined chemical composition. Gene transfer was observed to be greater than 90% on NH2-terminated surfaces, approximately 50% on COOH-functionalized surfaces, and undetectable on CH3-terminated SAMs, similar to controls of tissue culture-treated polystyrene. Gene delivery via the NH2-SAM was further characterized as a function of coating time, virus concentration, and cell seeding density. Finally, SAM-mediated gene delivery was comparable to fibronectin- and poly-L-lysine-based methods for gene transfer. This work is significant to establishing safe and effective gene therapy strategies, developing efficient methods for gene delivery, and supporting recent progress in the field of biomaterial-mediated gene transfer. PMID:17698189

  18. Protective role of adenovirus vector-mediated interleukin-10 gene therapy on endogenous islet β-cells in recent-onset type 1 diabetes in NOD mice

    PubMed Central

    LI, CHENG; ZHANG, LIJUAN; CHEN, YANYAN; LIN, XIAOJIE; LI, TANG

    2016-01-01

    The aim of the present study was to provide an animal experimental basis for the protective effect of the adenoviral vector-mediated interleukin-10 (Ad-mIL-10) gene on islet β-cells during the early stages of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. A total of 24 female NOD mice at the onset of diabetes were allocated at random into three groups (n=8 per group): Group 1, intraperitoneally injected with 0.1 ml Ad-mIL-10; group 2, intraperitoneally injected with 0.1 ml adenovirus vector; and group 3, was a diabetic control. In addition to groups 1, 2 and 3, 8 age- and gender-matched NOD mice were intraperitoneally injected with 0.1 ml PBS and assigned to group 4 as a normal control. All mice were examined weekly for body weight, urine glucose and blood glucose values prior to onset of diabetes, and at 1, 2 and 3 weeks after that, and all mice were sacrificed 3 weeks after injection. Serum levels of interleukin (IL)-10, interferon (IFN)-γ, IL-4, insulin and C-peptide were evaluated, and in addition the degree of insulitis and the local expression of IL-10 gene in the pancreas were detected. The apoptosis rate of pancreatic β-cells was determined using a TUNEL assay. Compared with groups 2 and 3, IL-10 levels in the serum and pancreas were elevated in group 1. Serum IFN-γ levels were decreased while serum IL-4 levels and IFN-γ/IL-4 ratio were significantly increased in group 1 (P<0.01). C-peptide and insulin levels were higher in group 1 compared with groups 2 and 3, (P<0.01). Furthermore, compared with groups 2 and 3, the degree of insulitis, islet β-cell apoptosis rate and blood glucose values did not change significantly (P>0.05). The administration of the Ad-mIL-10 gene induced limited immune regulatory and protective effects on islet β-cell function in NOD mice with early T1D, while no significant reduction in insulitis, islet β-cell apoptosis rate and blood glucose was observed. PMID:27168782

  19. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis

    PubMed Central

    Hu, Yao Fei; Caron, Marc G; Sieber-Blum, Maya

    2009-01-01

    Background We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD). NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE) transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE) transport. Results We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO) mouse neural crest cells using long serial analysis of gene expression (LongSAGE). Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP) signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (Dbh), tyrosine hydroxylase (Th), the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart), and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression of key genes not

  20. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    PubMed

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms. PMID:22287521

  1. [Classification and prevalence of plasmid-mediated quinolone resistance qnr genes in China--A review].

    PubMed

    Yan, Lei; Xu, Hai

    2016-02-01

    Quinolone antibacterial drugs, developing from the treatment of urinary tract infection in early time and now from the treatment of intestinal infection and respiratory infection, have been widely used in clinical, animal husbandry and aquaculture. Bacteria gradually become resistant to them and resistance mechanism is more and more complicated. Quinolone resistance mechanism is mainly divided into chromosome mediated resistance and plasmid mediated resistance, the latter plays an important role in spreading of antibiotic resistance. In 1998, plasmid mediated quinolone resistance mechanism was reported for the first time, namely the qnr gene mediated fluoroquinolone resistance mechanism. qnr genes can spread rapidly in different bacteria, which causes the infection difficult to control, makes the nosocomial infection popular in a wide range. In addition, qnr genes are usually associated with β-lactamase resistance gene. They exist in complex integron and integrate with the other varieties of resistance genes, which narrows the space of clinical medicine choose or drug combinations use to treat related bacterial infection and brings us a serious challenge. In this review, we provide a detailed overview for the historical discovery, classification, the resistance mechanisms of qnr genes, and the prevalence of those genes in China. PMID:27373065

  2. Microarray analysis of R-gene-mediated resistance to viruses.

    PubMed

    Ishihara, Takeaki; Sato, Yukiyo; Takahashi, Hideki

    2015-01-01

    The complex process for host-plant resistance to viruses is precisely regulated by a number of genes and signaling compounds. Thus, global gene expression analysis can provide a powerful tool to grasp the complex molecular network for resistance to viruses. The procedures for comparative global gene expression profiling of virus-resistant and control plants by microarray analysis include RNA extraction, cDNA synthesis, cRNA labeling, hybridization, array scanning, and data mining steps. There are several platforms for the microarray analysis. Commercial services for the steps from cDNA synthesis to array scanning are now widely available; however, the data manipulation step is highly dependent on the experimental design and research focus. The protocols presented here are optimized for analyzing global gene expression during the R gene-conferred defense response using commercial oligonucleotide-based arrays. We also demonstrate a technique to screen for differentially expressed genes using Excel software and a simple Internet tool-based data mining approach for characterizing the identified genes. PMID:25287505

  3. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  4. Gene looping facilitates TFIIH kinase-mediated termination of transcription

    PubMed Central

    Medler, Scott; Ansari, Athar

    2015-01-01

    TFIIH is a general transcription factor with kinase and helicase activities. The kinase activity resides in the Kin28 subunit of TFIIH. The role of Kin28 kinase in the early steps of transcription is well established. Here we report a novel role of Kin28 in the termination of transcription. We show that RNAPII reads through a termination signal upon kinase inhibition. Furthermore, the recruitment of termination factors towards the 3′ end of a gene was compromised in the kinase mutant, thus confirming the termination defect. A concomitant decrease in crosslinking of termination factors near the 5′ end of genes was also observed in the kinase-defective mutant. Simultaneous presence of termination factors towards both the ends of a gene is indicative of gene looping; while the loss of termination factor occupancy from the distal ends suggest the abolition of a looped gene conformation. Accordingly, CCC analysis revealed that the looped architecture of genes was severely compromised in the Kin28 kinase mutant. In a looping defective sua7-1 mutant, even the enzymatically active Kin28 kinase could not rescue the termination defect. These results strongly suggest a crucial role of Kin28 kinase-dependent gene looping in the termination of transcription in budding yeast. PMID:26286112

  5. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    PubMed

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases. PMID:27280971

  6. Baculovirus-mediated Gene Delivery and RNAi Applications

    PubMed Central

    Makkonen, Kaisa-Emilia; Airenne, Kari; Ylä-Herttulala, Seppo

    2015-01-01

    Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism. PMID:25912715

  7. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene.

    PubMed

    Qin, Li-Na; Cai, Fu-Rong; Dong, Xin-Rui; Huang, Zhen-Bang; Tao, Yong; Huang, Jian-Zhong; Dong, Zhi-Yang

    2012-04-01

    A lipase gene (Lip) of the Aspergillus niger was de novo synthesized and expressed in the Trichoderma reesei under the promoter of the cellobiohydrolase I gene (cbh1). RNAi-mediated gene silencing was successfully used to further improve the recombinant lipase production via down-regulation of CBHI which comprised more than 60% of the total extracellular proteins in T. reesei. The gene and protein expression of CBHI and recombinant lipase were analyzed by real-time PCR, SDS-PAGE and activity assay. The results demonstrated that RNAi-mediated gene silencing could effectively suppress cbh1 gene expression and the reduction of CBHI could result in obvious improvement of heterologous lipase production. The reconstructed strains with decreased CBHI production exhibited 1.8- to 3.2-fold increase in lipase activity than that of parental strain. The study herein provided a feasible and advantageous method of increasing heterologous target gene expression in T. reesei through preventing the high expression of a specific endogenenous gene by RNA interference. PMID:22305540

  8. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    PubMed

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  9. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions.

    PubMed

    Dreyer, Jean-Luc

    2011-02-01

    Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animals models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect non-dividing cells, thereby allowing stable gene transfer in post-mitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition. PMID:20862616

  10. Transcription mediated insulation and interference direct gene cluster expression switches

    PubMed Central

    Nguyen, Tania; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-01-01

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI: http://dx.doi.org/10.7554/eLife.03635.001 PMID:25407679

  11. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway.

    PubMed

    Nagai, Y; Limberis, M P; Zhang, H

    2014-02-01

    Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (T(reg)) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway. PMID:24385144

  12. Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex.

    PubMed Central

    Cristiano, R J; Smith, L C; Kay, M A; Brinkley, B R; Woo, S L

    1993-01-01

    Receptor-mediated endocytosis is an effective method for gene delivery into target cells. We have previously shown that DNA molecules complexed with asialoglycoprotein can be efficiently endocytosed by primary hepatocytes and the internalized DNA can be released from endosomes by the use of a replication-defective adenovirus. Because the DNA and virus enter target cells independently, activity enhancement requires high concentrations of adenoviral particles. In this study, adenoviral particles were chemically conjugated to poly(L-lysine) and bound ionically to DNA molecules. Quantitative delivery to primary hepatocytes was achieved with significantly reduced viral titer when the asialoorosomucoid-poly(L-lysine) conjugate was included in the complex. The conjugated adenovirus was used to deliver a DNA vector containing canine factor IX to mouse hepatocytes, resulting in the expression of significant concentrations of canine factor IX in the culture medium. The results suggest that receptor-mediated endocytosis coupled with an efficient endosomal lysis vector should permit the application of targeted and efficient gene delivery into the liver for gene therapy of hepatic deficiencies. Images Fig. 2 Fig. 4 PMID:8265587

  13. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    PubMed

    Srikhanta, Yogitha N; Gorrell, Rebecca J; Steen, Jason A; Gawthorne, Jayde A; Kwok, Terry; Grimmond, Sean M; Robins-Browne, Roy M; Jennings, Michael P

    2011-01-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis. PMID:22162751

  14. Efficient Gene Silencing Mediated by Tobacco Rattle Virus in an Emerging Model Plant Physalis

    PubMed Central

    Zhang, Shaohua; He, Chaoying

    2014-01-01

    The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the ‘Chinese lantern’). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and

  15. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    PubMed

    Zhang, Ji-Si; Zhao, Jing; Zhang, Shaohua; He, Chaoying

    2014-01-01

    The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and development

  16. Mediator Kinase Inhibition Further Activates Super-Enhancer Associated Genes in AML

    PubMed Central

    Nitulescu, Ioana I.; Tangpeerachaikul, Anupong; Poss, Zachary C.; Da Silva, Diogo H.; Caruso, Brittany T.; Arefolov, Alexander; Fadeyi, Olugbeminiyi; Christie, Amanda L.; Du, Karrie; Banka, Deepti; Schneider, Elisabeth V.; Jestel, Anja; Zou, Ge; Si, Chong; Ebmeier, Christopher C.; Bronson, Roderick T.; Krivtsov, Andrei V.; Myers, Andrew G.; Kohl, Nancy E.; Kung, Andrew L.; Armstrong, Scott A.; Lemieux, Madeleine E.; Taatjes, Dylan J.; Shair, Matthew D.

    2015-01-01

    Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors (TFs), and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling TFs and oncogenes 1, 2. BRD4 and CDK7 are positive regulators of SE-mediated transcription3,4,5. In contrast, negative regulators of SE-associated genes have not been well described. Here we report that Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We determined that the natural product cortistatin A (CA) selectively inhibited Mediator kinases, had antileukaemic activity in vitro and in vivo, and disproportionately induced upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the TFs CEBPA, IRF8, IRF1 and ETV6 6, 7, 8. The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has antileukaemic activity. Individually increasing or decreasing expression of these TFs suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types and can be pharmacologically targeted as a therapeutic approach to AML. PMID:26416749

  17. Mediator kinase inhibition further activates super-enhancer-associated genes in AML.

    PubMed

    Pelish, Henry E; Liau, Brian B; Nitulescu, Ioana I; Tangpeerachaikul, Anupong; Poss, Zachary C; Da Silva, Diogo H; Caruso, Brittany T; Arefolov, Alexander; Fadeyi, Olugbeminiyi; Christie, Amanda L; Du, Karrie; Banka, Deepti; Schneider, Elisabeth V; Jestel, Anja; Zou, Ge; Si, Chong; Ebmeier, Christopher C; Bronson, Roderick T; Krivtsov, Andrei V; Myers, Andrew G; Kohl, Nancy E; Kung, Andrew L; Armstrong, Scott A; Lemieux, Madeleine E; Taatjes, Dylan J; Shair, Matthew D

    2015-10-01

    Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6 (refs 6-8). The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML. PMID:26416749

  18. Electroporation-Mediated Gene Transfer Directly to the Swine Heart

    PubMed Central

    Hargrave, Barbara; Downey, Harre; Strange, Robert; Murray, Len; Cinnamond, Cade; Lundberg, Cathryn; Israel, Annelise; Chen, Yeong-Jer; Marshall, William; Heller, Richard

    2012-01-01

    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using 3 different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the ECG were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were euthanized 48 hours after injection and electroporation and gene expression was determined. Results were compared to sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared to injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo. PMID:22456328

  19. Screening Strategies for TALEN-Mediated Gene Disruption.

    PubMed

    Reljić, Boris; Stroud, David A

    2016-01-01

    Targeted gene disruption has rapidly become the tool of choice for the analysis of gene and protein function in routinely cultured mammalian cells. Three main technologies capable of irreversibly disrupting gene-expression exist: zinc-finger nucleases, transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system. The desired outcome of the use of any of these technologies is targeted insertions and/or deletions (indels) that result in either a nonsense frame shift or splicing error that disrupts protein expression. Many excellent do-it-yourself systems for TALEN construct assembly are now available at low or no cost to academic researchers. However, for new users, screening for successful gene disruption is still a hurdle. Here, we describe efficient and cost-effective strategies for the generation of gene-disrupted cell lines. Although the focus of this chapter is on the use of TALENs, these strategies can be applied to the use of all three technologies. PMID:27108443

  20. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae.

    PubMed

    Mao, Jianjun; Zeng, Fanrong

    2014-02-01

    Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi. PMID:23949691

  1. slo K+ channel gene regulation mediates rapid drug tolerance

    NASA Astrophysics Data System (ADS)

    Ghezzi, Alfredo; Al-Hasan, Yazan M.; Larios, Leo E.; Bohm, Rudolf A.; Atkinson, Nigel S.

    2004-12-01

    Changes in neural activity caused by exposure to drugs may trigger homeostatic mechanisms that attempt to restore normal neural excitability. In Drosophila, a single sedation with the anesthetic benzyl alcohol changes the expression of the slo K+ channel gene and induces rapid drug tolerance. We demonstrate linkage between these two phenomena by using a mutation and a transgene. A mutation that eliminates slo expression prevents tolerance, whereas expression from an inducible slo transgene mimics tolerance in naïve animals. The behavioral response to benzyl alcohol can be separated into an initial phase of hyperkinesis and a subsequent phase of sedation. The hyperkinetic phase causes a drop in slo gene expression and makes animals more sensitive to benzyl alcohol. It is the sedative phase that stimulates slo gene expression and induces tolerance. We demonstrate that the expression level of slo is a predictor of drug sensitivity. drug abuse | potassium channel | transcription regulation

  2. Electroporation-mediated Delivery of Genes in Rodent Models of Lung Contusion

    PubMed Central

    Machado-Aranda, David; Raghavendran, Krishnan

    2015-01-01

    Several of the biological processes involved in the pathogenesis of acute lung injury and acute respiratory distress syndrome after lung contusion are regulated at a genetic and epigenetic level. Thus, strategies to manipulate gene expression in this context are highly desirable not only to elucidate the mechanisms involved but also to look for potential therapies. In the present chapter, we describe mouse and rat models of inducing blunt thoracic injury followed by electroporation-mediated gene delivery to the lung. Electroporation is a highly efficient and easily reproducible technique that allows circumvention of several of lung gene delivery challenges and safety issues present with other forms of lung gene therapy. PMID:24510825

  3. Long-Term Reduction of Cocaine Self-Administration in Rats Treated with Adenoviral Vector-Delivered Cocaine Hydrolase: Evidence for Enzymatic Activity

    PubMed Central

    Zlebnik, Natalie E; Brimijoin, Stephen; Gao, Yang; Saykao, Amy T; Parks, Robin J; Carroll, Marilyn E

    2014-01-01

    A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decrease ongoing intravenous cocaine (0.4 mg/kg) self-administration. The hdAD-CocH vector was injected into self-administering rats, and after accumulation of plasma CocH, there was a dramatic reduction in cocaine infusions earned under a fixed ratio 1 schedule of reinforcement that lasted for the length of the study (>2 months). Pretreatment with the selective BChE and CocH inhibitor iso-OMPA (1.5 mg/kg) restored cocaine intake; therefore, the decline in self-administration was likely due to rapid CocH-mediated cocaine metabolism. Direct measurements of cocaine levels in plasma and brain samples taken after the conclusion of behavioral studies provided strong support for this conclusion. Further, rats injected with hdAD-CocH did not experience a deficit in operant responding for drug reinforcement and self-administered methamphetamine (0.05 mg/kg) at control levels. Overall, these outcomes suggest that viral gene transfer can yield plasma CocH levels that effectively diminish long-term cocaine intake and may have potential treatment implications for cocaine-dependent individuals seeking to become and remain abstinent. PMID:24407266

  4. Efficacy of Topical Immunoglobulins against Experimental Adenoviral Ocular Infection

    PubMed Central

    Nwanegbo, Edward C.; Romanowski, Eric G.; Gordon, Y. Jerold; Gambotto, Andrea

    2007-01-01

    Purpose Presently, there is no U.S. Federal Drug Administration (FDA)–approved antiviral therapy for the treatment of adenoviral (Ad) ocular infections. The goal of the present study was to determine the antiviral efficacy of human immunoglobulin (Ig), a preparation of highly purified and concentrated immunoglobulin (IgG) antibodies isolated from a large pool of human plasma donors, in vitro and on acute Ad replication in the Ad5 New Zealand White (NZW) rabbit ocular model. Methods The antiviral activity of human Ig against multiple wild-type and human ocular isolates of adenovirus serotypes was investigated in vitro by using neutralizing assays in different human epithelial cell lines. In vivo bilateral topical ocular toxicity and antiviral efficacy were evaluated with established Ad5/NZW rabbit ocular models. In vivo Ig antiviral results were compared with those obtained with topical 0.5% cidofovir and saline. Results In three different epithelial cell lines, ≤6.25 mg/mL of the Ig neutralized several wild-type adenoviral serotypes that cause ocular infections. A dose of ≤10 mg/mL neutralized 88% of ocular isolates of the adenovirus serotypes. After treatment of infected animals, adenovirus-positive cultures per total cultures (days 1–14; P = 0.021), the duration of Ad5 shedding, (P = 0.008), and the mean combined ocular viral titer during the early (days 1–5; P = 0.0001) and the late (days 7–14; P = 0.013) phases of infection were significantly lower in Ig-treated animals than in saline-treated animals and were similar to those in cidofovir-treated animals. Conclusions Ig demonstrated antiviral properties against multiple adenoviral serotypes in vitro and in the Ad5/NZW rabbit ocular model. Further studies are needed to advance topical immunoglobulin for treatment and prophylaxis of ocular infections. PMID:17724203

  5. RNAi-Mediated Inactivation of Autophagy Genes in Caenorhabditis elegans.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-02-01

    RNA interference (RNAi) is a process that results in the sequence-specific silencing of endogenous mRNA through the introduction of double-stranded RNA (dsRNA). In the nematode Caenorhabditis elegans, RNA inactivation can be used at any specific developmental stage or during adulthood to inhibit a given target gene. Investigators can take advantage of the fact that, in C. elegans, RNAi is unusual in that it is systemic, meaning that dsRNA can spread throughout the animal and can affect virtually all tissues except neurons. Here, we describe a protocol for the most common method to achieve RNAi in C. elegans, which is to feed them bacteria that express dsRNA complementary to a specific target gene. This method has various advantages, including the availability of libraries that essentially cover the whole genome, the ability to treat animals at any developmental stage, and that it is relatively cost effective. We also discuss how RNAi specific to autophagy genes has proven to be an excellent method to study the role of these genes in autophagy, as well as other cellular and developmental processes, while also highlighting the caveats that must be applied. PMID:26832686

  6. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    EPA Science Inventory

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  7. Homologous recombination is required for AAV-mediated gene targeting

    PubMed Central

    Vasileva, Ana; Linden, R. Michael; Jessberger, Rolf

    2006-01-01

    High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ∼5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR. PMID:16822856

  8. Bistability in a stochastic RNA-mediated gene network

    NASA Astrophysics Data System (ADS)

    Lloyd-Price, Jason; Ribeiro, Andre S.

    2013-09-01

    Small regulatory RNAs (srRNAs) are important regulators of gene expression in eukaryotes and prokaryotes. A common motif containing srRNA is a bistable two-gene motif where one gene codes for a transcription factor (TF) which represses the transcription of the second gene, whose transcript is a srRNA which targets the first gene's transcript. Here, we investigate the properties of this motif in a stochastic model which takes the low copy numbers of the RNA components into account. First, we examine the conditions for stability of the two “noisy attractors.” We find that for realistic low copy numbers, extreme, but within realistic intervals, mutual repression strengths are required to compensate for the variability of the RNA numbers and thus, achieve long-term bistability. Second, the promoter initiation kinetics is found to strongly influence the bistability of the switch. Super-Poissonian RNA production disrupts the ability of the srRNA to silence its target, though sub-Poissonian RNA production does not rule out the need for strong mutual repression. Finally, we show that asymmetry between the two interactions forming the switch allows an external input to induce the transition from “high srRNA” to “‘high TF” more easily (i.e., with a shorter input) than in the opposite direction. We hypothesize that this asymmetric switching property allows these circuits to be more sensitive to one external input, without sacrificing the stability of one of the noisy attractors.

  9. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells.

    PubMed

    Hyland, Kendra A; Olson, Erik R; McIvor, R Scott

    2015-10-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  10. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    SciTech Connect

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  11. Induction of a Protective Heterosubtypic Immune Response Against the Influenza Virus by using Recombinant Adenoviral Vectors Expressing Hemagglutinin of the Influenza H5 Virus.

    PubMed

    Shmarov, M M; Sedova, E S; Verkhovskaya, L V; Rudneva, I A; Bogacheva, E A; Barykova, Yu A; Shcherbinin, D N; Lysenko, A A; Tutykhina, I L; Logunov, D Y; Smirnov, Yu A; Naroditsky, B S; Gintsburg, A L

    2010-04-01

    Influenza viruses are characterized by a high degree of antigenic variability, which causes the annual emergence of flu epidemics and irregularly timed pandemics caused by viruses with new antigenic and biological traits. Novel approaches to vaccination can help circumvent this problem. One of these new methods incorporates genetic vaccines based on adenoviral vectors. Recombinant adenoviral vectors which contain hemagglutinin-encoding genes from avian H5N1 and H5N2 (Ad-HA5-1 and Ad-HA5-2) influenza viruses were obtained using the AdEasy Adenoviral Vector System (Stratagene). Laboratory mice received a double intranasal vaccination with Ad-HA5-1 and Ad-HA5-2. This study demonstrates that immunization with recombinant adenoviruses bearing the Н 5 influenza virus hemagglutinin gene induces a immune response which protects immunized mice from a lethal dose of the H5 influenza virus. Moreover, it also protects the host from a lethal dose of the H1 virus, which belongs to the same clade as H5, but does not confer protection from the subtype H3 influenza virus, which belongs to a different clade. PMID:22649637

  12. Group I Metabotropic Glutamate Receptor-Mediated Gene Transcription and Implications for Synaptic Plasticity and Diseases

    PubMed Central

    Wang, Hansen; Zhuo, Min

    2012-01-01

    Stimulation of group I metabotropic glutamate receptors (mGluRs) initiates a wide variety of signaling pathways. Group I mGluR activation can regulate gene expression at both translational and transcriptional levels, and induces translation or transcription-dependent synaptic plastic changes in neurons. The group I mGluR-mediated translation-dependent neural plasticity has been well reviewed. In this review, we will highlight group I mGluR-induced gene transcription and its role in synaptic plasticity. The signaling pathways (PKA, CaMKs, and MAPKs) which have been shown to link group I mGluRs to gene transcription, the relevant transcription factors (CREB and NF-κB), and target proteins (FMRP and ARC) will be documented. The significance and future direction for characterizing group I mGluR-mediated gene transcription in fragile X syndrome, schizophrenia, drug addiction, and other neurological disorders will also be discussed. PMID:23125836

  13. AAV-mediated gene targeting methods for human cells

    PubMed Central

    Khan, Iram F; Hirata, Roli K; Russell, David W

    2013-01-01

    Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10−5 to 10−2 per infected cell. these targeting frequencies are 1–4 logs higher than those obtained by conventional transfection or electroporation approaches. a wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by southern blots. this protocol (from vector design through a single round of targeting and screening) can be completed in ~10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks. PMID:21455185

  14. Ultrasound mediated delivery of drugs and genes to solid tumors

    PubMed Central

    Frenkel, Victor

    2008-01-01

    It has long been shown that therapeutic ultrasound can be used effectively to ablate solid tumors, and a variety of cancers are presently being treated in the clinic using these types of ultrasound exposures. There is, however, an ever-increasing body of preclinical literature that demonstrates how ultrasound energy can also be used non-destructively for increasing the efficacy of drugs and genes for improving cancer treatment. In this review, a summary of the most important ultrasound mechanisms will be given with a detailed description of how each one can be employed for a variety of applications. This includes the manner by which acoustic energy deposition can be used to create changes in tissue permeability for enhancing the delivery of conventional agents, as well as for deploying and activating drugs and genes via specially tailored vehicles and formulations. PMID:18474406

  15. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-01

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases. PMID:25634573

  16. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  17. Identifying genes that mediate anthracyline toxicity in immune cells

    PubMed Central

    Frick, Amber; Suzuki, Oscar T.; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L.; Thomas, Russell S.; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10−8). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies. PMID:25926793

  18. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.

    PubMed

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D; Dupuy, Bruno; Fralick, Joe A

    2009-12-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  19. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    SciTech Connect

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  20. Bacteriophage-Mediated Toxin Gene Regulation in Clostridium difficile▿

    PubMed Central

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D.; Dupuy, Bruno; Fralick, Joe A.

    2009-01-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by ΦCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in ΦCD119 lysogens. During this study we found that repR, a putative repressor gene of ΦCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in ΦCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  1. Novel strategies for gene trapping and insertional mutagenesis mediated by Sleeping Beauty transposon

    PubMed Central

    Song, Guili; Cui, Zongbin

    2013-01-01

    Gene and poly(A) trappings are high-throughput approaches to capture and interrupt the expression of endogenous genes within a target genome. Although a number of trapping vectors have been developed for investigation of gene functions in cells and vertebrate models, there is still room for the improvement of their efficiency and sensitivity. Recently, two novel trapping vectors mediated by Sleeping Beauty (SB) transposon have been generated by the combination of three functional cassettes that are required for finding endogenous genes, disrupting the expression of trapped genes, and inducing the excision of integrated traps from their original insertion sites and then inserting into another gene. In addition, several other strategies are utilized to improve the activities of two trapping vectors. First, activities of all components were examined in vitro before the generation of two vectors. Second, the inducible promoter from the tilapia Hsp70 gene was used to drive the expression of SB gene, which can mediate the excision of integrated transposons upon induction at 37 °C. Third, the Cre/LoxP system was introduced to delete the SB expression cassette for stabilization of gene interruption and bio-safety. Fourth, three stop codons in different reading frames were introduced downstream of a strong splice acceptor (SA) in the gene trapping vector to effectively terminate the translation of trapped endogenous genes. Fifth, the strong splicing donor (SD) and AU-rich RNA-destabilizing element exhibited no obvious insertion bias and markedly reduced SD read-through events, and the combination of an enhanced SA, a poly(A) signal and a transcript terminator in the poly(A) trapping vector efficiently disrupted the transcription of trapped genes. Thus, these two trapping vectors are alternative and effective tools for large-scale identification and disruption of endogenous genes in vertebrate cells and animals. PMID:24251071

  2. Differentiation of Xylella fastidiosa Strains via Multilocus Sequence Analysis of Environmentally Mediated Genes (MLSA-E)

    PubMed Central

    Parker, Jennifer K.; Havird, Justin C.

    2012-01-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing

  3. Genes That Mediate Arsenic and Heavy Metal Detoxification in Plants

    SciTech Connect

    Lee, David A.; Gong, Ji-Ming; Schroeder, Julian I.

    2003-03-26

    To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of ars1, a novel mutant with significantly increased tolerance to arsenate. ars1 accumulates similar levels of arsenic as wild type plants, but ars1 tolerance does not appear to be phytochelatin or glutathione dependent. ars1 plants do have a higher rate of phosphate uptake than wild type plants and plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and, consequently, the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 is due to a new mechanism mediated by increased phosphate uptake in ars1. Results exploring increased metal tolerance through engineered phytochelatin expression will also be discussed.

  4. Efficient gene silencing in mesenchymal stem cells by substrate-mediated RNA interference.

    PubMed

    Hsu, Shan-Hui; Huang, Guo-Shiang; Ho, Tung-Tso; Feng, Fuh

    2014-11-01

    We described a novel substrate-mediated RNA interference (RNAi) technology to investigate the effect of neural crest marker expression on the multipotency of human gingival fibroblasts (HGFs). HGFs showed significantly higher neural and chondrogenic differentiation potentials compared with adult bone-marrow-derived mesenchymal stem cells and stem cells from human exfoliated deciduous teeth. By sending target-specific RNAi agents with the conventional vehicle (PolyFect), we observed that the multipotency of HGFs was closely associated with the expression of neural crest marker gene Forkhead box D3 (FoxD3). Using the novel chitosan substrate-mediated method, we successfully delivered short-hairpin RNA constructs to HGFs grown on chitosan without the use of conventional vehicles. The delivery efficiency measured by flow cytometry showed a 10-fold increase for HGFs on chitosan versus those on culture dish, and the cell viability was >95%. Moreover, HGFs with FoxD3 gene knockdown did not form spheroids on chitosan. Based on this working principle, we further selected the gene-silenced population from HGFs. The nonsilenced HGFs showed much higher neural differentiation ability with the nestin expression 40-fold greater than FoxD3-silenced population after induction, suggesting the feasibility of the method to silence genes. The new substrate-mediated gene silencing platform that combines the use of substrate and RNAi can be used to clarify the functions of important genes without suffering the toxicity. PMID:24624901

  5. Master transcription factors and mediator establish super-enhancers at key cell identity genes.

    PubMed

    Whyte, Warren A; Orlando, David A; Hnisz, Denes; Abraham, Brian J; Lin, Charles Y; Kagey, Michael H; Rahl, Peter B; Lee, Tong Ihn; Young, Richard A

    2013-04-11

    Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity. PMID:23582322

  6. Chromatography purification of canine adenoviral vectors.

    PubMed

    Segura, María Mercedes; Puig, Meritxell; Monfar, Mercè; Chillón, Miguel

    2012-06-01

    Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ultracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarification and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contaminating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58-69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks. PMID:22799886

  7. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    SciTech Connect

    Mu, Haixi; Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu; Li, Lili; Ren, Guosheng; Xu, Yongzhu; Zhou, Xiangyang; Xiang, Tingxiu

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  8. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression

    PubMed Central

    Lamontagne, Jason; Mell, Joshua C.; Bouchard, Michael J.

    2016-01-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication. PMID:26891448

  9. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  10. IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes.

    PubMed

    Harmer, Christopher J; Hall, Ruth M

    2016-01-01

    The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel

  11. IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes

    PubMed Central

    Harmer, Christopher J.

    2016-01-01

    ABSTRACT The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA+ cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a

  12. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  13. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?

    PubMed Central

    Marzin, Stephan; Hanemann, Anja; Sharma, Shailendra; Hensel, Götz; Kumlehn, Jochen; Schweizer, Günther; Röder, Marion S.

    2016-01-01

    A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar ‘Morex’. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar ‘Morex’ or the full resistance reaction requires the presence of several PEI genes. PMID:26937960

  14. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  15. T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex.

    PubMed

    Hertweck, Arnulf; Evans, Catherine M; Eskandarpour, Malihe; Lau, Jonathan C H; Oleinika, Kristine; Jackson, Ian; Kelly, Audrey; Ambrose, John; Adamson, Peter; Cousins, David J; Lavender, Paul; Calder, Virginia L; Lord, Graham M; Jenner, Richard G

    2016-06-21

    The transcription factor T-bet directs Th1 cell differentiation, but the molecular mechanisms that underlie this lineage-specific gene regulation are not completely understood. Here, we show that T-bet acts through enhancers to allow the recruitment of Mediator and P-TEFb in the form of the super elongation complex (SEC). Th1 genes are occupied by H3K4me3 and RNA polymerase II in Th2 cells, while T-bet-mediated recruitment of P-TEFb in Th1 cells activates transcriptional elongation. P-TEFb is recruited to both genes and enhancers, where it activates enhancer RNA transcription. P-TEFb inhibition and Mediator and SEC knockdown selectively block activation of T-bet target genes, and P-TEFb inhibition abrogates Th1-associated experimental autoimmune uveitis. T-bet activity is independent of changes in NF-κB RelA and Brd4 binding, with T-bet- and NF-κB-mediated pathways instead converging to allow P-TEFb recruitment. These data provide insight into the mechanism through which lineage-specifying factors promote differentiation of alternative T cell fates. PMID:27292648

  16. Estrogenic status modulates aryl hydrocarbon receptor - mediated hepatic gene expression and carcinogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...

  17. ESTROGENIC STATUS MODULATES DMBA-MEDIATED HEPATIC GENE EXPRESSION: MICROARRAY-BASED ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status in women influences the metabolism and toxicity of polycyclic aromatic hydrocarbons (PAH). The objective of this study was to examine the influence of estradiol (E2) on 7,12 dimethylbenz(a)anthracene (DMBA), a ligand for aryl hydrocarbon receptor, mediated changes on gene expressio...

  18. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    ERIC Educational Resources Information Center

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  19. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    PubMed Central

    Ruan, Merry ZC; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan HL

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  20. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes.

    PubMed

    Ruan, Merry Zc; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan Hl

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  1. Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time.

    PubMed Central

    Zabner, J; Zeiher, B G; Friedman, E; Welsh, M J

    1996-01-01

    The efficiency of adenovirus-mediated gene transfer to airway epithelia will be an important factor in determining whether recombinant adenoviruses can be developed as vectors for transferring cystic fibrosis transmembrane conductance regulator (CFTR) cDNA to patients with cystic fibrosis. Current understanding of the biology of CF lung disease suggests that vectors should express transgene in mature, ciliated airway epithelia. We evaluated the efficiency of adenovirus-mediated gene transfer to primary cultures of normal and CF human airway epithelia. Our studies showed that the airway cells developed from an undifferentiated epithelium with markers characteristic of basal cells and a surface covered by short microvilli 3 days after seeding to a mature epithelium whose apical surface was covered with cilia by 10 to 14 days. The ability of adenovirus vectors to express a reporter gene and to correct defective cyclic AMP-stimulated Cl- transport in CF epithelia was correlated inversely with the state of differentiation. However, the inefficiency of adenovirus-mediated gene transfer could be partially corrected when the contact time between vector and epithelium was prolonged. After prolonged contact, we observed complete correction of the CF Cl- transport defect in differentiated CF airway epithelia in culture and of the Cl- transport defect in the nasal epithelia of mice homozygous for the deltaF508 mutation. The fact that gene transfer to airway epithelia required prolonged incubation with vector contrasts with the rapid infection observed in cell models such as 293 and HeLa cells, which are commonly used to study adenovirus infection. Gene transfer observed after prolonged incubation may result from mechanisms different from those that mediate infection of 293 cells. These observations suggest that interventions that either increase the contact time or alter the epithelium or the vector may be required to facilitate gene transfer to ciliated respiratory epithelia

  2. Adenovirus-mediated HIF-1α gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection.

    PubMed

    Jiang, Xinguo; Khan, Mohammad A; Tian, Wen; Beilke, Joshua; Natarajan, Ramesh; Kosek, Jon; Yoder, Mervin C; Semenza, Gregg L; Nicolls, Mark R

    2011-06-01

    Chronic rejection, manifested as small airway fibrosis (obliterative bronchiolitis [OB]), is the main obstacle to long-term survival in lung transplantation. Recent studies demonstrate that the airways involved in a lung transplant are relatively hypoxic at baseline and that OB pathogenesis may be linked to ischemia induced by a transient loss of airway microvasculature. Here, we show that HIF-1α mediates airway microvascular repair in a model of orthotopic tracheal transplantation. Grafts with a conditional knockout of Hif1a demonstrated diminished recruitment of recipient-derived Tie2⁺ angiogenic cells to the allograft, impaired repair of damaged microvasculature, accelerated loss of microvascular perfusion, and hastened denudation of epithelial cells. In contrast, graft HIF-1α overexpression induced via an adenoviral vector prolonged airway microvascular perfusion, preserved epithelial integrity, extended the time window for the graft to be rescued from chronic rejection, and attenuated airway fibrotic remodeling. HIF-1α overexpression induced the expression of proangiogenic factors such as Sdf1, Plgf, and Vegf, and promoted the recruitment of vasoreparative Tie2⁺ cells. This study demonstrates that a therapy that enhances vascular integrity during acute rejection may promote graft health and prevent chronic rejection. PMID:21606594

  3. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    PubMed

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-01

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower. PMID:25729995

  4. Genes Mediating Environment Interactions in Type 1 Diabetes

    PubMed Central

    Biros, Erik; Jordan, Margaret A.; Baxter, Alan G.

    2005-01-01

    The relative risk of type 1 (autoimmune) diabetes mellitus for a sibling of an affected patient is fifteen times that of the general population, indicating a strong genetic contribution to the disease. Yet, the incidence of diabetes in most Western communities has doubled every fifteen years since the Second World War - a rate of increase that can only possibly be explained by a major etiological effect of environment. Here, the authors provide a selective review of risk factors identified to date. Recent reports of linkage of type 1 diabetes to genes encoding pathogen pattern recognition molecules, such as toll-like receptors, are discussed, providing a testable hypothesis regarding a mechanism by which genetic and environmental influences on disease progress are integrated. PMID:17491695

  5. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    PubMed

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth. PMID:25842264

  6. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    SciTech Connect

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-05-30

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway.

  7. Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene.

    PubMed

    Rep, M; Meijer, M; Houterman, P M; van der Does, H C; Cornelissen, B J C

    2005-01-01

    I-3-Mediated resistance of tomato against Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici depends on Six1, a protein that is secreted by the fungus during colonization of the xylem. Among natural isolates of F. oxysporum f. sp. lycopersici are several that are virulent on a tomato line carrying only the I-3 resistance gene. However, evasion of I-3-mediated resistance by these isolates is not correlated with mutation of the SIX1 gene. Moreover, the SIX1 gene of an I-3-virulent isolate was shown to be fully functional in that i) the gene product is secreted in xylem sap, ii) deletion leads to a further increase in virulence on the I-3 line as well as reduced virulence on susceptible lines, and iii) the gene confers full avirulence on the I-3 line when transferred to another genetic background. Remarkably, all I-3-virulent isolates were of race 1, suggesting a link between the presence of AVR1 and evasion of I-3-mediated resistance. PMID:15672814

  8. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications.

    PubMed

    Wong, Liang-Fong; Goodhead, Lucy; Prat, Christine; Mitrophanous, Kyriacos A; Kingsman, Susan M; Mazarakis, Nicholas D

    2006-01-01

    The management of disorders of the nervous system remains a medical challenge. The key goals are to understand disease mechanisms, to validate therapeutic targets, and to develop new therapeutic strategies. Viral vector-mediated gene transfer can meet these goals and vectors based on lentiviruses have particularly useful features. Lentiviral vectors can deliver 8 kb of sequence, they mediate gene transfer into any neuronal cell type, expression and therapy are sustained, and normal cellular functions in vitro and in vivo are not compromised. After delivery into the nervous system they induce no significant immune responses, there are no unwanted side effects of the vectors per se to date, and manufacturing and safety testing for clinical applications are well advanced. There are now numerous examples of effective long-term treatment of animal models of neurological disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, motor neuron diseases, lysosomal storage diseases, and spinal injury, using a range of therapeutic genes expressed in lentiviral vectors. Significant issues remain in some areas of neural gene therapy including defining the optimum therapeutic gene(s), increasing the specificity of delivery, regulating expression of potentially toxic genes, and designing clinically relevant strategies. We discuss the applications of lentiviral vectors in therapy and research and highlight the essential features that will ensure their translation to the clinic in the near future. PMID:16409120

  9. Understanding microRNA-mediated gene regulatory networks through mathematical modelling.

    PubMed

    Lai, Xin; Wolkenhauer, Olaf; Vera, Julio

    2016-07-27

    The discovery of microRNAs (miRNAs) has added a new player to the regulation of gene expression. With the increasing number of molecular species involved in gene regulatory networks, it is hard to obtain an intuitive understanding of network dynamics. Mathematical modelling can help dissecting the role of miRNAs in gene regulatory networks, and we shall here review the most recent developments that utilise different mathematical modelling approaches to provide quantitative insights into the function of miRNAs in the regulation of gene expression. Key miRNA regulation features that have been elucidated via modelling include: (i) the role of miRNA-mediated feedback and feedforward loops in fine-tuning of gene expression; (ii) the miRNA-target interaction properties determining the effectiveness of miRNA-mediated gene repression; and (iii) the competition for shared miRNAs leading to the cross-regulation of genes. However, there is still lack of mechanistic understanding of many other properties of miRNA regulation like unconventional miRNA-target interactions, miRNA regulation at different sub-cellular locations and functional miRNA variant, which will need future modelling efforts to deal with. This review provides an overview of recent developments and challenges in this field. PMID:27317695

  10. Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses

    PubMed Central

    Gasmi, Laila; Boulain, Helene; Gauthier, Jeremy; Hua-Van, Aurelie; Musset, Karine; Jakubowska, Agata K.; Aury, Jean-Marc; Volkoff, Anne-Nathalie; Huguet, Elisabeth

    2015-01-01

    Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens. PMID:26379286

  11. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors.

    PubMed

    Boviatsis, E J; Chase, M; Wei, M X; Tamiya, T; Hurford, R K; Kowall, N W; Tepper, R I; Breakefield, X O; Chiocca, E A

    1994-02-01

    Three vectors derived from retrovirus, herpes simplex virus type 1 (HSV), and adenovirus were compared in cultured rat 9L gliosarcoma cells for gene transfer efficiency and in a 9L rat brain tumor model for histologic pattern and distribution of foreign gene delivery, as well as for associated tumor necrosis and inflammation. At a multiplicity of infection of 1, in vitro transfer of a foreign gene (lacZ from Escherichia coli) into cells was more efficient with either the replication-defective retrovirus vector or the replication-conditional thymidine kinase (TK)-deficient HSV vector than with the replication-defective adenovirus vector. In vivo, stereotactic injections of each vector into rat brain tumors revealed three main histopathologic findings: (i) retrovirus and HSV vector-mediated gene transfer was relatively selective for cells within the tumor, whereas adenovirus vector-mediated gene transfer occurred into several types of endogenous neural cells, as well as into cells within the tumor; (ii) gene transfer to multiple infiltrating tumor deposits without apparent gene transfer to intervening normal brain tissue occurred uniquely in one animal inoculated with the HSV vector, and (iii) extensive necrosis and selective inflammation in the tumor were evident with the HSV vector, whereas there was minimal evidence of tumor necrosis and inflammation with either the retrovirus or adenovirus vectors. PMID:8186298

  12. Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses.

    PubMed

    Gasmi, Laila; Boulain, Helene; Gauthier, Jeremy; Hua-Van, Aurelie; Musset, Karine; Jakubowska, Agata K; Aury, Jean-Marc; Volkoff, Anne-Nathalie; Huguet, Elisabeth; Herrero, Salvador; Drezen, Jean-Michel

    2015-09-01

    Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens. PMID:26379286

  13. Human gene transfer: Characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man

    SciTech Connect

    Kasid, A.; Morecki, S.; Aebersold, P.; Cornetta, K.; Culver, K.; Freeman, S.; Director, E.; Lotze, M.T.; Blaese, R.M.; Anderson, W.F.; Rosenberg, S.A. )

    1990-01-01

    Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (Neo{sup R}) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact Neo{sup R} gene integration and expressed high levels of neomycin phosphotransferase activity. The Neo{sup R} gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for {beta}- and {gamma}-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the {beta} and {gamma} chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors ({alpha} and {beta}) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs.

  14. The transcription factor E2F-1 mediates the autoregulation of RB gene expression.

    PubMed Central

    Shan, B; Chang, C Y; Jones, D; Lee, W H

    1994-01-01

    The retinoblastoma (RB) gene is the prototype tumor suppressor gene. Mutations in this gene are often associated with the occurrence of various tumors. Several mutations have been found in the promoter region of the gene, suggesting that inappropriate transcriptional regulation of the RB gene contributes to tumorigenesis. Sequence analysis of the RB promoter has revealed a potential E2F recognition site within a region critical for RB gene transcription. By using the cloned E2F-1 gene, here we report that (i) RB expression is negatively regulated by its own gene product, (ii) E2F-1 binds specifically to an E2F recognition sequence in the RB promoter and transactivates the RB promoter, (iii) overexpression of RB suppresses E2F-1-mediated stimulation of RB promoter activity, and (iv) the expression of the RB gene is paralleled by the expression of the E2F-1 gene during cell cycle progression. These results demonstrate that expression of RB is negatively autoregulated through E2F-1. Images PMID:8264596

  15. Comparative Analysis of Cluster Validity Indices in Identifying Some Possible Genes Mediating Certain Cancers.

    PubMed

    Ghosh, Anupam; Dhara, Bibhas Chandra; De, Rajat K

    2013-04-01

    In this article, we compare the performance of 19 cluster validity indices, in identifying some possible genes mediating certain cancers, based on gene expression data. For the purpose of this comparison, we have developed a method. The proposed method involves cluster generation, selection of the best k-value or c-values, cluster identification, identifying the altered gene cluster, scoring an altered gene cluster and determining the best k-value or c-value exploring through biological repositories. The effectiveness of the method has been demonstrated on three gene expression data sets dealing with human lung cancer, colon cancer, and leukemia. Here, we have used three clustering algorithms, i.e., k-means, PAM and fuzzy c-means. We have used biochemical pathways related to these cancers and p-value statistics for validating the study. PMID:27481591

  16. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment.

    PubMed

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-05-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  17. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment

    PubMed Central

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-01-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  18. Kidney-specific Sonoporation-mediated Gene Transfer

    PubMed Central

    Ishida, Ryo; Kami, Daisuke; Kusaba, Tetsuro; Kirita, Yuhei; Kishida, Tsunao; Mazda, Osam; Adachi, Takaomi; Gojo, Satoshi

    2016-01-01

    Sonoporation can deliver agents to target local organs by systemic administration, while decreasing the associated risk of adverse effects. Sonoporation has been used for a variety of materials and in a variety of organs. Herein, we demonstrated that local sonoporation to the kidney can offer highly efficient transfer of oligonucleotides, which were systemically administrated to the tubular epithelium with high specificity. Ultrasonic wave irradiation to the kidney collapsed the microbubbles and transiently affected the glomerular filtration barrier and increased glomerular permeability. Oligonucleotides were passed through the barrier all at once and were absorbed throughout the tubular epithelium. Tumor necrosis factor alpha (TNFα), which plays a central role in renal ischemia–reperfusion injury, was targeted using small interfering RNA (siRNA) with renal sonoporation in a murine model. The reduction of TNFα expression after single gene transfer significantly inhibited the expression of kidney injury markers, suggesting that systemic administration of siRNA under temporary and local sonoporation could be applicable in the clinical setting of ischemic acute kidney injury. PMID:26419704

  19. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  20. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    PubMed Central

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  1. Inducible and Reversible Lentiviral and Recombination Mediated Cassette Exchange (RMCE) Systems for Controlling Gene Expression

    PubMed Central

    Bersten, David C.; Sullivan, Adrienne E.; Li, Dian; Bhakti, Veronica; Bent, Stephen J.; Whitelaw, Murray L.

    2015-01-01

    Manipulation of gene expression to invoke loss of function (LoF) or gain of function (GoF) phenotypes is important for interrogating complex biological questions both in vitro and in vivo. Doxycycline (Dox)-inducible gene expression systems are commonly used although success is often limited by high background and insufficient sensitivity to Dox. Here we develop broadly applicable platforms for reliable, tightly controlled and reversible Dox-inducible systems for lentiviral mediated generation of cell lines or FLP Recombination-Mediated Cassette Exchange (RMCE) into the Collagen 1a1 (Col1a1) locus (FLP-In Col1a1) in mouse embryonic stem cells. We significantly improve the flexibility, usefulness and robustness of the Dox-inducible system by using Tetracycline (Tet) activator (Tet-On) variants which are more sensitive to Dox, have no background activity and are expressed from single Gateway-compatible constructs. We demonstrate the usefulness of these platforms in ectopic gene expression or gene knockdown in multiple cell lines, primary neurons and in FLP-In Col1a1 mouse embryonic stem cells. We also improve the flexibility of RMCE Dox-inducible systems by generating constructs that allow for tissue or cell type-specific Dox-inducible expression and generate a shRNA selection algorithm that can effectively predict potent shRNA sequences able to knockdown gene expression from single integrant constructs. These platforms provide flexible, reliable and broadly applicable inducible expression systems for studying gene function. PMID:25768837

  2. Application of GFAT as a Novel Selection Marker to Mediate Gene Expression

    PubMed Central

    Wu, Guogan; Sun, Yu; Qu, Wei; Huang, Ying; Lu, Ling; Li, Lun; Shao, Weilan

    2011-01-01

    The enzyme glutamine: fructose-6-phosphate aminotransferase (GFAT), also known as glucosamine synthase (GlmS), catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. For the first time, the GFAT gene was proven to possess a function as an effective selection marker for genetically modified (GM) microorganisms. This was shown by construction and analysis of two GFAT deficient strains, E. coli ΔglmS and S. pombe Δgfa1, and the ability of the GFAT encoding gene to mediate plasmid selection. The gfa1 gene of the fission yeast Schizosaccharomyces pombe was deleted by KanMX6-mediated gene disruption and the Cre-loxP marker removal system, and the glmS gene of Escherichia coli was deleted by using λ-Red mediated recombinase system. Both E. coli ΔglmS and S. pombe Δgfa1 could not grow normally in the media without addition of glucosamine. However, the deficiency was complemented by transforming the plasmids that expressed GFAT genes. The xylanase encoding gene, xynA2 from Thermomyces lanuginosus was successfully expressed and secreted by using GFAT as selection marker in S. pombe. Optimal glucosamine concentration for E. coli ΔglmS and S. pombe Δgfa1 growth was determined respectively. These findings provide an effective technique for the construction of GM bacteria without an antibiotic resistant marker, and the construction of GM yeasts to be applied to complex media. PMID:21340036

  3. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    SciTech Connect

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  4. Nipbl and Mediator Cooperatively Regulate Gene Expression to Control Limb Development

    PubMed Central

    Muto, Akihiko; Ikeda, Shingo; Lopez-Burks, Martha E.

    2014-01-01

    Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS), the most common “cohesinopathy”. It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb), knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions. PMID:25255084

  5. Inflammatory mediators release calcitonin gene-related peptide from dorsal root ganglion neurons of the rat.

    PubMed

    Averbeck, B; Izydorczyk, I; Kress, M

    2000-01-01

    The interactions between the inflammatory mediators bradykinin, serotonin, prostaglandin E(2) and acid pH were studied in rat dorsal root ganglion neurons in culture. For this purpose, the cultures were stimulated by inflammatory mediators (bradykinin, serotonin, prostaglandin E(2), 10(-5)M each) or acid solution (pH 6.1) for 5 min and the content of calcitonin gene-related peptide was determined in the supernatant before, during and after stimulation, using an enzyme immunoassay. Acid solution resulted in a threefold increase of the basal calcitonin gene-related peptide release which was entirely dependent on the presence of extracellular calcium. The release could not be blocked by the addition of the capsaicin antagonist capsazepine (10(-5)M). Bradykinin (10(-5)M) caused a 50% increase of the basal calcitonin gene-related peptide release which was again dependent on the presence of extracellular calcium, whereas serotonin and prostaglandin E(2) were each ineffective at 10(-5)M concentration. The combination of bradykinin, serotonin and prostaglandin E(2) led to a fivefold increase of the calcitonin gene-related peptide release which could not be further enhanced by acidification. The competitive capsaicin receptor antagonist capsazepine (10(-5)M) significantly reduced the release induced by the combination of bradykinin, serotonin and prostaglandin E(2). It is suggested that the inflammatory mediators co-operate and together may act as endogenous agonists at the capsaicin receptor to cause calcium influx and consecutive neuropeptide release. PMID:10858619

  6. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    SciTech Connect

    Olszewski, Pawel K.; Fredriksson, Robert; Eriksson, Jenny D.; Mitra, Anaya; Radomska, Katarzyna J.; Gosnell, Blake A.; Solvang, Maria N.; Levine, Allen S.; Schioeth, Helgi B.

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  7. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    PubMed Central

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium. PMID:25520733

  8. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2

    PubMed Central

    Kim, Joo Yong; Kwon, Ye Jin; Kim, Sung-Il; Kim, Do Youn; Song, Jong Tae; Seo, Hak Soo

    2016-01-01

    Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammonium had no effect on CMT3 methylation, indicating that ammonium negatively regulates CMT3-mediated NIA2 methylation without affecting CMT3 methylation. Ammonium upregulated NIA2 mRNA expression, which was consistent with the repression of NIA2 methylation by ammonium. Ammonium treatment also reduced the overall genome methylation level of wild-type Arabidopsis. Moreover, CMT3 bound to specific promoter and intragenic regions of NIA2. These combined results indicate that ammonium inhibits CMT3-mediated methylation of NIA2 and that of other target genes, and CMT3 selectively binds to target DNA sequences for methylation. PMID:26834755

  9. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression.

    PubMed

    Saha, Tusar T; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S

    2016-02-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box-like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  10. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression

    PubMed Central

    Saha, Tusar T.; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S.

    2016-01-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box–like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  11. An Adenoviral Vector Based Vaccine for Rhodococcus equi

    PubMed Central

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D.; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  12. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    PubMed

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  13. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse. PMID:26968195

  14. In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.

    PubMed

    Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj

    2014-12-01

    Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels. PMID:25060099

  15. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  16. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    PubMed

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans. PMID:24629900

  17. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    PubMed

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. PMID:27457990

  18. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.

    PubMed

    Latysheva, Natasha S; Oates, Matt E; Maddox, Louis; Flock, Tilman; Gough, Julian; Buljan, Marija; Weatheritt, Robert J; Babu, M Madan

    2016-08-18

    Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer. PMID:27540857

  19. Expression of Tumor Necrosis Factor-Alpha-Mediated Genes Predicts Recurrence-Free Survival in Lung Cancer

    PubMed Central

    Zhou, Lianya; Zhang, Helin; Duan, Lin; He, Wenshu; Zhu, Yihua; Bai, Yunfei; Zhu, Miao

    2014-01-01

    In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence. PMID:25548907

  20. Transgene-mediated co-suppression of DNA topoisomerase-1 gene in Caenorhabditis elegans

    PubMed Central

    Lee, Myon-Hee; Cha, Dong Seok; Mamillapalli, Srivalli Swathi; Kwon, Young Chul; Koo, Hyeon-Sook

    2014-01-01

    Ectopic expression of multi-transgenic copies can result in reduced expression of the transgene and can induce silence of endogenous gene; this process is called as co-suppression. Using a transgene-mediated co-suppression technique, we demonstrated the biological function of DNA topoisomerase-1 (top-1) in C. elegans development. Introduction of full-length top-1 transgene sufficiently induced the co-suppression of endogenous top-1 gene, causing embryonic lethality and abnormal germline development. We also found that the co-suppression of top-1 gene affected morphogenesis, lifespan and larval growth that were not observed in top-1 (RNAi) animals. Strikingly, co-suppression effects were significantly reduced by the elimination of top-1 introns, suggesting that efficient co-suppression may require intron(s) in C. elegans. Sequence analysis revealed that the introns 1 and 2 of top-1 gene possess consensus binding sites for several transcription factors, including MAB-3, LIN-14, TTX-3/CEH-10, CEH-1, and CEH-22. Among them, we examined a genetic link between ceh-22 and top-1. The ceh-22 is partially required for the specification of distal tip cells (DTC), which functions as a stem cell niche in the C. elegans gonad. Intriguingly, top-1 (RNAi) significantly enhanced DTC loss in ceh-22 mutant gonads, indicating that top-1 may play an important role in CEH-22-mediated DTC fate specification. Therefore, our findings suggest that transgene-mediated co-suppression facilitates the silencing of the specific genes and the study of gene function in vivo. PMID:24955284

  1. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    SciTech Connect

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  2. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality

    PubMed Central

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J.

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting “hot spots”. The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model. PMID:26061033

  3. An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice

    PubMed Central

    Malik, Naveen; Dwivedi, Nidhi; Singh, Ashok K.; Parida, Swarup K.; Agarwal, Pinky; Thakur, Jitendra K.; Tyagi, Akhilesh K.

    2016-01-01

    The present study deployed a Mediator (MED) genes-mediated integrated genomic strategy for understanding the complex genetic architecture of grain size/weight quantitative trait in rice. The targeted multiplex amplicon resequencing of 55 MED genes annotated from whole rice genome in 384 accessions discovered 3971 SNPs, which were structurally and functionally annotated in diverse coding and non-coding sequence-components of genes. Association analysis, using the genotyping information of 3971 SNPs in a structured population of 384 accessions (with 50–100 kb linkage disequilibrium decay), detected 10 MED gene-derived SNPs significantly associated (46% combined phenotypic variation explained) with grain length, width and weight in rice. Of these, one strong grain weight-associated non-synonymous SNP (G/A)-carrying OsMED4_2 gene was validated successfully in low- and high-grain weight parental accessions and homozygous individuals of a rice mapping population. The seed-specific expression, including differential up/down-regulation of three grain size/weight-associated MED genes (including OsMED4_2) in six low and high-grain weight rice accessions was evident. Altogether, combinatorial genomic approach involving haplotype-based association analysis delineated diverse functionally relevant natural SNP-allelic variants in 10 MED genes, including three potential novel SNP haplotypes in an OsMED4_2 gene governing grain size/weight differentiation in rice. These molecular tags have potential to accelerate genomics-assisted crop improvement in rice. PMID:27000976

  4. [Genetic transformation of OSISAP1 gene to onion (Allium cepa L.) mediated by amicroprojectile bombardment].

    PubMed

    Xu, Qi-Jiang; Cui, Cheng-Ri

    2007-06-01

    Microprojectile bombardment-mediated transformation method has been developed for onion (Allium cepa L.) using embryogenic calli, induced from stem discs, as target tissue. Zinc-finger protein gene OSISAP1 (Oryza sative subspecies indica stress-associated protein gene) was introduced into the open-pollinated onion cultivar (subs.) 'HG400B'. Bombardment parameters were optimized as: the pressure is 1,100 psi, the distance is 6 cm, two times, the ratio of mass between plasmid DNA and golden particles is 1:320. An efficient microprojectile bombardment-mediated transformation system of onion (Allium cepa L.) callus has been established. The binary vector used carried the nptII gene for kanamycin resistance and the GUS reporter gene. Transgenic cultures were screened for their ability to express the GUS reporter gene and to grow in the presence of kanamycin (150 mg/L). Transient expression of GUS reporter gene was observed through histochemical staining of embryogenic callus transformed by microprojectile bombardment. The putative transgenic plants were analysed at the molecular level using PCR, southern hybridization, and RT-PCR. The results confirmed that the OSISAP1 gene was integrated as one copy into the genome of onion and expression. Transgenic plants were produced efficiently with a transformation frequency of about 10%. Test of salinity-alkali stress showed that sodium chloride and sodium bicarbonate at 200 mmol/L effectively killed non-transgenic plants within 1 week of irrigation, while the transgenic plants were completely unaffected by salinity of 400 mmol/L. So transformation with the OSISAP1 gene raised the salinity-alkali-tolerance of the transgenic plants to a high level. PMID:17556805

  5. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  6. First knockdown gene expression in bat (Hipposideros armiger) brain mediated by lentivirus.

    PubMed

    Chen, Qi; Zhu, Tengteng; Jones, Gareth; Zhang, Junpeng; Sun, Yi

    2013-06-01

    Lentivirus-mediated RNA interference (RNAi) is a potent experimental tool for investigating gene functions in vitro and in vivo. It has advantages that transgenic technology lacks. However, in vivo applications are difficult to apply in the central nervous system of non-model organisms due to the lack of a standard brain atlas and genetic information. Here, we report the development of an in vivo gene delivery system used in bat brain tissue for the first time, based on lentivirus (LV) vectors expressing short hairpin RNA (shRNA) targeting Hipposideros armiger forkhead box P2 (FoxP2). In vitro transfection into HEK 293T cell with the vector bearing the cassettes encoding FoxP2 shRNA verified the knockdown efficiency. Pseudovirus particles were administered via stereotactic intracerebral microinjection into the anterior cingulate cortex of H. armiger. FoxP2 is of major interest because of its role in sensorimotor coordination and probably in echolocation. Subsequent in situ hybridization validated the in vivo silencing of the target gene. This report demonstrates that LV-mediated expression of RNAi could achieve effective gene silencing in bats, a non-model organism, and will assist in elucidating the functions of bat genes. PMID:22965420

  7. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  8. Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision

    PubMed Central

    Nishizawa-Yokoi, Ayako; Endo, Masaki; Ohtsuki, Namie; Saika, Hiroaki; Toki, Seiichi

    2015-01-01

    Precise genome engineering via homologous recombination (HR)-mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR-mediated GT is an extremely rare event, positive–negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re-integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)-tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants. PMID:25284193

  9. Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies

    PubMed Central

    Ball, Alexander R.; Chen, Yen-Yun; Yokomori, Kyoko

    2014-01-01

    Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin’s subunits and its regulator proteins in human developmental disorders, so-called “cohesinopathies,” reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin’s functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. PMID:24269489

  10. Role of cell signaling in poxvirus-mediated foreign gene expression in mammalian cells

    PubMed Central

    Hu, Ningjie; Yu, Richard; Shikuma, Cecilia; Shiramizu, Bruce; Ostrwoski, Mario A.; Yu, Qigui

    2011-01-01

    Poxviruses have been extensively used as a promising vehicle to efficiently deliver a variety of antigens in mammalian hosts to induce immune responses against infectious diseases and cancer. Using recombinant vaccinia virus (VV) and canarypox virus (ALVAC) expressing enhanced green fluorescent protein (EGFP) or multiple HIV-1 gene products, we studied the role of four cellular signaling pathways, the phosphoinositide-3-OH kinase (PI3K), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), and c-Jun N-terminal kinase (JNK), in poxvirus-mediated foreign gene expression in mammalian cells. In nonpermissive infection (human monocytes), activation of PI3K, ERK, p38 MAPK, and JNK was observed both VV and ALVAC and blocking PI3K, p38 MAKP, and JNK pathways with their specific inhibitors significantly reduced viral and vaccine antigen gene expression. Whereas, blocking the ERK pathway had no significant effect. Among these cellular signaling pathways studied, PI3K was the most critical pathway involved in gene expression by VV- or ALVAC-infected monocytes. The important role of PI3K in poxvirus-mediated gene expression was further confirmed in mouse epidermal cells stably transfected with dominant-negative PI3K mutant, as poxvirus-mediated targeted gene expression was significantly decreased in these cells when compared with their parental cells. Signaling pathway activation was influenced gene expression at the mRNA level rather than virus binding. In permissive mammalian cells, however, VV DNA copies were also significantly decreased in the absence of normal function of PI3K pathway. Poxvirus-triggered activation of PI3K pathway could be completely abolished by atazanavir, a new generation of antiretroviral protease inhibitors (PIs). As a consequence, ALVAC-mediated EGFP or HIV-1 gag gene expression in infected primary human monocytes was significantly reduced in the presence of atazanavir. These findings implicate that

  11. Ultrasound-Mediated Gene Transfection In vitro: Enhanced Efficiency by Complexation of Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwei; Tachibana, Rie; Okamoto, Akio; Azuma, Takashi; Sasaki, Akira; Yoshinaka, Kiyoshi; Osada, Kensuke; Kataoka, Kazunori; Takagi, Shu; Matsumoto, Yoichiro

    2012-07-01

    Ultrasound-mediated gene transfection in the presence of microbubbles is a recently developed promising nonviral gene delivery method. The main obstacle towards its clinical application is its low transfection efficiency. In this work, we investigate the effect of the complexation of plasmid DNA (pDNA) into polyplex micelles on the transfection efficiency. Complexation changes the structure of pDNA and results in the condensation in size and enhanced stability. Both naked and complexed pDNAs were transfected into cultured cells using ultrasound in the presence of microbubbles. The transfection rate using complexed pDNA is considerably enhanced (from ˜0.92 to ˜1.67%, by ˜82%) compared with the rate using naked pDNA. Our method provides an alternative for the improvement of the transfection efficiency of the ultrasound-mediated method.

  12. Towards liver-directed gene therapy: retrovirus-mediated gene transfer into human hepatocytes.

    PubMed

    Grossman, M; Raper, S E; Wilson, J M

    1991-11-01

    Liver-directed gene therapy is being considered in the treatment of inherited metabolic diseases. One approach we are considering is the transplantation of autologous hepatocytes that have been genetically modified with recombinant retroviruses ex vivo. We describe, in this report, techniques for isolating human hepatocytes and efficiently transducing recombinant genes into primary cultures. Hepatocytes were isolated from tissue of four different donors, plated in primary culture, and exposed to recombinant retroviruses expressing either the LacZ reporter gene or the cDNA for rabbit LDL receptor. The efficiency of gene transfer under optimal conditions, as determined by Southern blot analysis, varied from a maximum of one proviral copy per cell to a minimum of 0.1 proviral copy per cell. Cytochemical assays were used to detect expression of the recombinant derived proteins, E. coli beta-galactosidase and rabbit LDL receptor. Hepatocytes transduced with the LDL receptor gene expressed levels of receptor protein that exceeded the normal endogenous levels. The ability to isolate and genetically modify human hepatocytes, as described in this report, is an important step towards the development of liver-directed gene therapies in humans. PMID:1767337

  13. Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene.

    PubMed

    Arora, D; Gross, T; Brueggeman, R

    2013-11-01

    A highly virulent form of the wheat stem rust pathogen Puccinia graminis f. sp. tritici race TTKSK is virulent on both wheat and barley, presenting a major threat to world food security. The recessive and temperature-sensitive rpg4 gene is the only effective source of resistance identified in barley (Hordeum vulgare) against P. graminis f. sp. tritici race TTKSK. Efforts to position clone rpg4 localized resistance to a small interval on barley chromosome 5HL, tightly linked to the rye stem rust (P. graminis f. sp. secalis) resistance (R) gene Rpg5. High-resolution genetic analysis and post-transcriptional gene silencing of the genes at the rpg4/Rpg5 locus determined that three tightly linked genes (Rpg5, HvRga1, and HvAdf3) are required together for rpg4-mediated wheat stem rust resistance. Alleles of the three genes were analyzed from a diverse set of 14 domesticated barley lines (H. vulgare) and 8 wild barley accessions (H. vulgare subsp. spontaneum) to characterize diversity that may determine incompatibility (resistance). The analysis determined that HvAdf3 and HvRga1 code for predicted functional proteins that do not appear to contain polymorphisms determining the compatible (susceptible) interactions with the wheat stem rust pathogen and were expressed at the transcriptional level from both resistant and susceptible barley lines. The HvAdf3 alleles shared 100% amino acid identity among all 22 genotypes examined. The P. graminis f. sp. tritici race QCCJ-susceptible barley lines with HvRga1 alleles containing the limited amino acid substitutions unique to the susceptible varieties also contained predicted nonfunctional rpg5 alleles. Thus, susceptibility in these lines is likely due to the nonfunctional RPG5 proteins. The Rpg5 allele analysis determined that 9 of the 13 P. graminis f. sp. tritici race QCCJ-susceptible barley lines contain alleles that either code for predicted truncated proteins as the result of a single nucleotide substitution, resulting in a

  14. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  15. Thymidine Kinase Suicide Gene-mediated Ganciclovir Ablation of Autologous Gene-modified Rhesus Hematopoiesis

    PubMed Central

    Barese, Cecilia N; Krouse, Allen E; Metzger, Mark E; King, Connor A; Traversari, Catia; Marini, Frank C; Donahue, Robert E; Dunbar, Cynthia E

    2012-01-01

    Despite the genotoxic complications encountered in clinical gene therapy trials for primary immunodeficiency diseases targeting hematopoietic cells with integrating vectors; this strategy holds promise for the cure of several monogenic blood, metabolic and neurodegenerative diseases. In this study, we asked whether the inclusion of a suicide gene in a standard retrovirus vector would allow elimination of vector-containing stem and progenitor cells and their progeny in vivo following transplantation, using our rhesus macaque transplantation model. Following stable engraftment with autologous CD34+ cells transduced with a retrovirus vector encoding a highly sensitive modified Herpes simplex virus thymidine kinase SR39, the administration of the antiviral prodrug ganciclovir (GCV) was effective in completely eliminating vector-containing cells in all hematopoietic lineages in vivo. The sustained absence of vector-containing cells over time, without additional GCV administration, suggests that the ablation of TkSR39 GCV-sensitive cells occurred in the most primitive hematopoietic long-term repopulating stem or progenitor cell compartment. These results are a proof-of-concept that the inclusion of a suicide gene in integrating vectors, in addition to a therapeutic gene, can provide a mechanism for later elimination of vector-containing cells, thereby increasing the safety of gene transfer. PMID:22910293

  16. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    PubMed Central

    Figueiredo, Marxa; Esenaliev, Rinat

    2012-01-01

    This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed either of polymers (PLGA, polystyrene) or other contrast agent materials (Optison, SonoVue microbubbles). The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a) echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b) PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery. PMID:22506124

  17. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH)

    PubMed Central

    Chaudhuri, Roy R; Allen, Andrew G; Owen, Paul J; Shalom, Gil; Stone, Karl; Harrison, Marcus; Burgis, Timothy A; Lockyer, Michael; Garcia-Lara, Jorge; Foster, Simon J; Pleasance, Stephen J; Peters, Sarah E; Maskell, Duncan J; Charles, Ian G

    2009-01-01

    Background In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. Results We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH), that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. Conclusion We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens. PMID:19570206

  18. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa.

    PubMed

    Arimoto, Yukiko; Nagata, Hiroshi; Isegawa, Naohisa; Kumahara, Keiichiro; Isoyama, Kyoko; Konno, Akiyoshi; Shirasawa, Hiroshi

    2002-09-01

    Adenovirus is a good tool for transferring exogenous genes into various organs because the virus has a wide spectrum of infection. In this report, we demonstrate that a recombinant adenovirus, Ax1CAlacZ, can transfer an exogenous lacZ gene into murine nasal mucosa in vivo. The efficiency of the exogenous gene expression varied for different cell types and was improved by optimizing the method of administration. In the olfactory region, the olfactory epithelia, sustentacular cells and olfactory nerve efficiently expressed lacZ gene transferred by Ax1CAlacZ using either of two administration methods, dripping or injecting. In contrast, in the respiratory region, the respiratory epithelia but not the subepithelial tissues expressed lacZ gene transferred by Ax1CAlacZ, and the efficiency of the gene transfer, which was low when the virus was administered by nasal drops, was improved when the virus was administered by injection. Our study demonstrated that gene transfer mediated by adenovirus is more efficient in the olfactory epithelia than in the respiratory epithelia, and may be applicable to nasal or paranasal diseases such as olfactory epithelial disturbances. PMID:12403125

  19. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    SciTech Connect

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki; Fujiwara, Hironori; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Degawa, Masakuni

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  20. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella

    PubMed Central

    Bearson, Bradley L.; Allen, Heather K.; Brunelle, Brian W.; Lee, In Soo; Casjens, Sherwood R.; Stanton, Thaddeus B.

    2013-01-01

    Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the

  1. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    SciTech Connect

    Mann, David George James; McKnight, Timothy E; Mcpherson, Jackson; Hoyt, Peter R; Melechko, Anatoli Vasilievich; Simpson, Michael L; Sayler, Gary Steven

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and delivered alongside the yfp marker gene into Chinese hamster ovary cells using impalefection on spatially indexed vertically aligned carbon nanofiber arrays (VACNFs). The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. Following impalefection and tetracycline induction, 53.1% 10.4% of impalefected cells were fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  2. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.

    PubMed

    Sherwood, Anna V; Henkin, Tina M

    2016-09-01

    Riboswitches are RNA elements that act on the mRNA with which they are cotranscribed to modulate expression of that mRNA. These elements are widely found in bacteria, where they have a broad impact on gene expression. The defining feature of riboswitches is that they directly recognize a physiological signal, and the resulting shift in RNA structure affects gene regulation. The majority of riboswitches respond to cellular metabolites, often in a feedback loop to repress synthesis of the enzymes used to produce the metabolite. Related elements respond to the aminoacylation status of a specific tRNA or to a physical parameter, such as temperature or pH. Recent studies have identified new classes of riboswitches and have revealed new insights into the molecular mechanisms of signal recognition and gene regulation. Application of structural and biophysical approaches has complemented previous genetic and biochemical studies, yielding new information about how different riboswitches operate. PMID:27607554

  3. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor1[OPEN

    PubMed Central

    Kim, Mi Jung

    2016-01-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15. However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. PMID:27246098

  4. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    PubMed Central

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E.; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-01-01

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  5. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    PubMed

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  6. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  7. Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes

    PubMed Central

    Meier, Daniel; Lopez, Martin; Franken, Paul; Fontana, Adriano

    2015-01-01

    Background Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of clock genes. In the present study we have assessed the two E-box binding transcriptional regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. Methods The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siRNAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a 3xPer1 E-box or a Dbp E-box. Quantitative chromatin immunoprecipitation (ChIP) was performed using antibodies to TWIST1 and CLOCK, and the E-box consensus sequences of Dbp (CATGTG) and Per1 E-box (CACGTG). Results We report here that siRNA against Twist1 protects NIH-3T3 cells and HT22 cells from down-regulation of Period and Dbp by TNF and IL-1β. Overexpression of Twist1, but not of Twist2, mimics the effect of the cytokines. TNF down-regulates the activation of Per1-3xE-box-luc, the effect being prevented by siRNA against Twist1. Overexpression of Twist1, but not of Twist2, inhibits Per1-3xE-box-luc or Dbp-E-Box-luc activity. ChIP experiments show TWIST1 induction by TNF to compete with CLOCK binding to the E-box of Period genes and Dbp. Conclusion Twist1 plays a pivotal role in the TNF mediated suppression of E-box dependent transactivation of Period genes and Dbp. Thereby Twist1 may provide a link between the immune system and the circadian timing system. PMID:26361389

  8. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing

    PubMed Central

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars. PMID:24401541

  9. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera

    PubMed Central

    Qiu, Zhigang; Yu, Yunmei; Chen, Zhaoli; Jin, Min; Yang, Dong; Zhao, Zuguo; Wang, Jingfeng; Shen, Zhiqiang; Wang, Xinwei; Qian, Di; Huang, Aihua; Zhang, Buchang; Li, Jun-Wen

    2012-01-01

    Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment. PMID:22411796

  10. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications

    PubMed Central

    Di Gioia, Sante; Conese, Massimo

    2008-01-01

    Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI) has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane) and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies. PMID:19920904

  11. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation

    PubMed Central

    Shinmyo, Yohei; Tanaka, Satoshi; Tsunoda, Shinichi; Hosomichi, Kazuyoshi; Tajima, Atsushi; Kawasaki, Hiroshi

    2016-01-01

    The CRISPR/Cas9 system has recently been adapted for generating knockout mice to investigate physiological functions and pathological mechanisms. Here, we report a highly efficient procedure for brain-specific disruption of genes of interest in vivo. We constructed pX330 plasmids expressing humanized Cas9 and single-guide RNAs (sgRNAs) against the Satb2 gene, which encodes an AT-rich DNA-binding transcription factor and is responsible for callosal axon projections in the developing mouse brain. We first confirmed that these constructs efficiently induced double-strand breaks (DSBs) in target sites of exogenous plasmids both in vitro and in vivo. We then found that the introduction of pX330-Satb2 into the developing mouse brain using in utero electroporation led to a dramatic reduction of Satb2 expression in the transfected cerebral cortex, suggesting DSBs had occurred in the Satb2 gene with high efficiency. Furthermore, we found that Cas9-mediated targeting of the Satb2 gene induced abnormalities in axonal projection patterns, which is consistent with the phenotypes previously observed in Satb2 mutant mice. Introduction of pX330-NeuN using our procedure also resulted in the efficient disruption of the NeuN gene. Thus, our procedure combining the CRISPR/Cas9 system and in utero electroporation is an effective and rapid approach to achieve brain-specific gene knockout in vivo. PMID:26857612

  12. Detection of Clostridium perfringens alpha toxin gene in lambs by loop mediated isothermal amplification

    PubMed Central

    Radhika, B.; Kumar, N. Vinod; Sreenivasulu, D.

    2016-01-01

    Aim: The loop mediated isothermal amplification (LAMP) was standardized for rapid detection of Clostridium perfringens. Materials and Methods: A total of 120 fecal samples were collected from enterotoxemia suspected lambs were used for screening of C. perfringens cpa gene by LAMP. The specificity of the LAMP amplified products was tested by digesting with restriction enzyme XmnI for alpha toxin gene. Results: Out of 120 samples screened 112 (93.3%) samples were positive by both LAMP and polymerase chain reaction (PCR) for detection of cpa gene which indicated the equal sensitivity of both the tests. The enzyme produced single cut in 162 base pair amplified product of alpha toxin gene at 81 base pair resulting in a single band in gel electrophoresis. Conclusion: Both LAMP and PCR for detection of cpa gene indicated the equal sensitivity of both the tests. Standardization of LAMP reaction for amplification of epsilon and beta toxin genes will help to identify the C. perfringens toxin types from the clinical samples. The test could be a suitable alternative to the PCR in detection of toxin types without the help of sophisticated machinery like thermal cycler. Considering its simplicity in operation and high sensitivity, there is the potential use of this technique in clinical diagnosis and surveillance of infectious diseases. PMID:27051186

  13. A sumoylation-dependent pathway mediating transrepression of inflammatory response genes by PPARγ

    PubMed Central

    Pascual, Gabriel; Fong, Amy L.; Ogawa, Sumito; Gamliel, Amir; Li, Andrew C.; Perissi, Valentina; Rose, David W.; Willson, Timothy; Rosenfeld, Michael G.; Glass, Christopher K.

    2005-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) plays essential roles in adipogenesis and glucose homeostasis and is a molecular target of insulin-sensitizing drugs1–3. Although the ability of PPARγ agonists to antagonize inflammatory responses by transrepression of nuclear factor kappaB (NF-κB) target genes is linked to anti-diabetic4 and antiatherogenic actions5, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPARγ represses transcriptional activation of inflammatory response genes in macrophages. The initial step of this pathway involves ligand-dependent sumoylation of the PPARγ ligand-binding domain, which targets PPARγ to nuclear receptor co-repressor (NCoR)/histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-κB target genes that regulate immunity and homeostasis. PMID:16127449

  14. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

    PubMed Central

    Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S.

    2012-01-01

    Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes. PMID:22127866

  15. Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration.

    PubMed

    Armendáriz-Borunda, Juan; Bastidas-Ramírez, Blanca Estela; Sandoval-Rodríguez, Ana; González-Cuevas, Jaime; Gómez-Meda, Belinda; García-Bañuelos, Jesús

    2011-11-01

    Gene therapy represents a promising approach in the treatment of several diseases. Currently, the ideal vector has yet to be designed; though, adenoviral vectors (Ad-v) have provided the most utilized tool for gene transfer due principally to their simple production, among other specific characteristics. Ad-v viability represents a critical variable that may be affected by storage or shipping conditions and therefore it is advisable to be assessed previously to protocol performance. The present work is unique in this matter, as the complete detailed process to obtain Ad-v of preclinical grade is explained. Amplification in permissive HEK-293 cells, purification in CsCl gradients in a period of 10 h, spectrophotometric titration of viral particles (VP) and titration of infectious units (IU), yielding batches of AdβGal, AdGFP, AdHuPA and AdMMP8, of approximately 10¹³-10¹⁴ VP and 10¹²-10¹³ IU were carried out. In vivo functionality of therapeutic AdHuPA and AdMMP8 was evidenced in rats presenting CCl₄-induced fibrosis, as more than 60% of fibrosis was eliminated in livers after systemic delivery through iliac vein in comparison with irrelevant AdβGal. Time required to accomplish the whole Ad-v production steps, including IU titration was 20 to 30 days. We conclude that production of Ad-v following standard operating procedures assuring vector functionality and the possibility to effectively evaluate experimental gene therapy results, leaving aside the use of high-cost commercial kits or sophisticated instrumentation, can be performed in a conventional laboratory of cell culture. PMID:21856222

  16. Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation.

    PubMed

    Papadopoulou, Thaleia; Kaymak, Aysegül; Sayols, Sergi; Richly, Holger

    2016-06-01

    Mediator is considered an enhancer of RNA-Polymerase II dependent transcription but its function and regulation in pluripotent mouse embryonic stem cells (mESCs) remains unresolved. One means of controlling the function of Mediator is provided by the binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to the core Mediator. Here we report that Med12 operates together with PRC1 to silence key developmental genes in pluripotency. At the molecular level, while PRC1 represses genes it is also required to assemble ncRNA containing Med12-Mediator complexes. In the course of cellular differentiation the H2A ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the association of Cdk8 with Mediator. This remodeling of Mediator-associated protein complexes converts Mediator from a transcriptional repressor to a transcriptional enhancer, which then mediates ncRNA-dependent activation of Polycomb target genes. Altogether, our data reveal how the interplay of PRC1, ncRNA and Mediator complexes controls pluripotency and cellular differentiation. PMID:27096886

  17. Suppressive Effect of Insulin on the Gene Expression and Plasma Concentrations of Mediators of Asthmatic Inflammation

    PubMed Central

    Ghanim, Husam; Abuaysheh, Sanaa; Batra, Manav; Kuhadiya, Nitesh D.; Patel, Reema; Makdissi, Antoine; Dhindsa, Sandeep; Chaudhuri, Ajay; Dandona, Paresh

    2015-01-01

    Background and Hypothesis. Following our recent demonstration that the chronic inflammatory and insulin resistant state of obesity is associated with an increase in the expression of mediators known to contribute to the pathogenesis of asthma and that weight loss after gastric bypass surgery results in the reduction of these genes, we have now hypothesized that insulin suppresses the cellular expression and plasma concentrations of these mediators. Methods. The expression of IL-4, LIGHT, LTBR, ADAM-33, and TSLP in MNC and plasma concentrations of LIGHT, TGF-β1, MMP-9, MCP-1, TSLP, and NOM in obese patients with T2DM were measured before, during, and after the infusion of a low dose (2 U/h) infusion of insulin for 4 hours. The patients were also infused with dextrose or saline for 4 hours on two separate visits and served as controls. Results. Following insulin infusion, the mRNA expression of IL-4, ADAM-33, LIGHT, and LTBR mRNA expression fell significantly (P < 0.05 for all). There was also a concomitant reduction in plasma NOM, LIGHT, TGF-β1, MCP-1, and MMP-9 concentrations. Conclusions. Insulin suppresses the expression of these genes and mediators related to asthma and may, therefore, have a potential role in the treatment of asthma. PMID:25642424

  18. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    PubMed

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  19. Comparison of Lentiviral and Sleeping Beauty Mediated αβ T Cell Receptor Gene Transfer

    PubMed Central

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  20. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana

    PubMed Central

    Krishnaswamy, Sowmya S; Srivastava, Sanjeeva; Mohammadi, Mohsen; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat NV

    2008-01-01

    responsive genes, as well as those related to plant growth and development. Our results also suggest that ABR17 may mediate stress tolerance through the modulation of many ABA- and CK-responsive genes and may further our understanding of the role of ABR17 in mediating plant stress responses. PMID:18783601

  1. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery

    PubMed Central

    Chapel, Alain; Deas, Olivier; Bensidhoum, Morad; François, Sabine; Mouiseddine, Moubarak; Poncet, Pascal; Dürrbach, Antoine; Aigueperse, Jocelyne; Gourmelon, Patrick; Gorin, Norbert C; Hirsch, François; Thierry, Dominique

    2004-01-01

    Background Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. Methods Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. Results By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. Conclusions These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures. PMID:15509303

  2. Efficient Gene Transfection into Mammalian Cells Mediated by Cross-linked Polyethylenimine

    PubMed Central

    Dong, Wei; Li, Shufeng; Jin, Guanghui; Sun, Qiming; Ma, Dingyuan; Hua, Zichun

    2007-01-01

    25 kDa branched polyethylenimine (PEI) has successfully been used for in vitro and in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimize cytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds by reacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanediol diacrylate or ethyleneglycol dimethacrylate) for 2–6 hours. The efficiency of the cross-linked PEIs during in vitro delivering plasmid containing enhanced green fluorescent protein (EGFP) gene reporter and their cytotoxicity were assessed in melanoma B16F10 cell and other cell lines. In vivo gene delivery efficiency was evaluated by direct injection delivery of the EGFP plasmid/cross-linked PEI complexes into mice and by estimating the EGFP expression in animal muscles. Compared to commercially available 25-kDa branched PEI, the cross-linked PEIs reported here could mediate more efficient expression of reporter gene than the 25-kDa PEI control, 19-fold more efficiently in B16F10 cells, 17-fold in 293T cells, 2.3-fold in 3T3 cells, and they exhibited essentially nontoxic at their optimized condition for gene delivery. Furthermore the transfection activity of polyplexs was preserved in the presence of serum proteins. The muscle transfected with the cross-linked PEI prepared here exhibited normal morphology and excellent gene expression. The cross-linked PEIs reported here were evidently more efficient than the commercial 25-kD PEI control and had less cytotoxicity in gene delivery in vitro and in vivo.

  3. Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe.

    PubMed

    Literak, Ivan; Micudova, Maria; Tausova, Dagmar; Cizek, Alois; Dolejska, Monika; Papousek, Ivo; Prochazka, Jakub; Vojtech, Jiri; Borleis, Frank; Guardone, Lisa; Guenther, Sebastian; Hordowski, Jozef; Lejas, Cyrille; Meissner, Wlodzimierz; Marcos, Benito Fuertes; Tucakov, Marko

    2012-12-01

    This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination. PMID:22731858

  4. Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria.

    PubMed

    Zhang, Qingfeng; Siegel, T Nicolai; Martins, Rafael M; Wang, Fei; Cao, Jun; Gao, Qi; Cheng, Xiu; Jiang, Lubin; Hon, Chung-Chau; Scheidig-Benatar, Christine; Sakamoto, Hiroshi; Turner, Louise; Jensen, Anja T R; Claes, Aurelie; Guizetti, Julien; Malmquist, Nicholas A; Scherf, Artur

    2014-09-18

    Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality. PMID:25043062

  5. Probing the Limits to MicroRNA-Mediated Control of Gene Expression.

    PubMed

    Martirosyan, Araks; Figliuzzi, Matteo; Marinari, Enzo; De Martino, Andrea

    2016-01-01

    According to the 'ceRNA hypothesis', microRNAs (miRNAs) may act as mediators of an effective positive interaction between long coding or non-coding RNA molecules, carrying significant potential implications for a variety of biological processes. Here, inspired by recent work providing a quantitative description of small regulatory elements as information-conveying channels, we characterize the effectiveness of miRNA-mediated regulation in terms of the optimal information flow achievable between modulator (transcription factors) and target nodes (long RNAs). Our findings show that, while a sufficiently large degree of target derepression is needed to activate miRNA-mediated transmission, (a) in case of differential mechanisms of complex processing and/or transcriptional capabilities, regulation by a post-transcriptional miRNA-channel can outperform that achieved through direct transcriptional control; moreover, (b) in the presence of large populations of weakly interacting miRNA molecules the extra noise coming from titration disappears, allowing the miRNA-channel to process information as effectively as the direct channel. These observations establish the limits of miRNA-mediated post-transcriptional cross-talk and suggest that, besides providing a degree of noise buffering, this type of control may be effectively employed in cells both as a failsafe mechanism and as a preferential fine tuner of gene expression, pointing to the specific situations in which each of these functionalities is maximized. PMID:26812364

  6. Probing the Limits to MicroRNA-Mediated Control of Gene Expression

    PubMed Central

    Martirosyan, Araks; Figliuzzi, Matteo

    2016-01-01

    According to the ‘ceRNA hypothesis’, microRNAs (miRNAs) may act as mediators of an effective positive interaction between long coding or non-coding RNA molecules, carrying significant potential implications for a variety of biological processes. Here, inspired by recent work providing a quantitative description of small regulatory elements as information-conveying channels, we characterize the effectiveness of miRNA-mediated regulation in terms of the optimal information flow achievable between modulator (transcription factors) and target nodes (long RNAs). Our findings show that, while a sufficiently large degree of target derepression is needed to activate miRNA-mediated transmission, (a) in case of differential mechanisms of complex processing and/or transcriptional capabilities, regulation by a post-transcriptional miRNA-channel can outperform that achieved through direct transcriptional control; moreover, (b) in the presence of large populations of weakly interacting miRNA molecules the extra noise coming from titration disappears, allowing the miRNA-channel to process information as effectively as the direct channel. These observations establish the limits of miRNA-mediated post-transcriptional cross-talk and suggest that, besides providing a degree of noise buffering, this type of control may be effectively employed in cells both as a failsafe mechanism and as a preferential fine tuner of gene expression, pointing to the specific situations in which each of these functionalities is maximized. PMID:26812364

  7. The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression

    PubMed Central

    Jelicic, Branka; Lo, Tricia L.; Beaurepaire, Cecile; Bantun, Farkad; Quenault, Tara; Boag, Peter R.; Ramm, Georg; Callaghan, Judy; Beilharz, Traude H.; Nantel, André; Peleg, Anton Y.; Traven, Ana

    2012-01-01

    The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species. PMID:22496666

  8. AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice.

    PubMed

    Heckmann, M B; Bauer, R; Jungmann, A; Winter, L; Rapti, K; Strucksberg, K-H; Clemen, C S; Li, Z; Schröder, R; Katus, H A; Müller, O J

    2016-08-01

    Mutations of the human desmin (DES) gene cause autosomal dominant and recessive myopathies affecting skeletal and cardiac muscle tissue. Desmin knockout mice (DES-KO), which develop progressive myopathy and cardiomyopathy, mirror rare human recessive desminopathies in which mutations on both DES alleles lead to a complete ablation of desmin protein expression. Here, we investigated whether an adeno-associated virus-mediated gene transfer of wild-type desmin cDNA (AAV-DES) attenuates cardiomyopathy in these mice. Our approach leads to a partial reconstitution of desmin protein expression and the de novo formation of the extrasarcomeric desmin-syncoilin network in cardiomyocytes of treated animals. This finding was accompanied by reduced fibrosis and heart weights and improved systolic left-ventricular function when compared with control vector-treated DES-KO mice. Since the re-expression of desmin protein in cardiomyocytes of DES-KO mice restores the extrasarcomeric desmin-syncoilin cytoskeleton, attenuates the degree of cardiac hypertrophy and fibrosis, and improves contractile function, AAV-mediated desmin gene transfer may be a novel and promising therapeutic approach for patients with cardiomyopathy due to the complete lack of desmin protein expression. PMID:27101257

  9. Development of an intein-mediated split–Cas9 system for gene therapy

    PubMed Central

    Truong, Dong-Jiunn Jeffery; Kühner, Karin; Kühn, Ralf; Werfel, Stanislas; Engelhardt, Stefan; Wurst, Wolfgang; Ortiz, Oskar

    2015-01-01

    Using CRISPR/Cas9, it is possible to target virtually any gene in any organism. A major limitation to its application in gene therapy is the size of Cas9 (>4 kb), impeding its efficient delivery via recombinant adeno-associated virus (rAAV). Therefore, we developed a split–Cas9 system, bypassing the packaging limit using split-inteins. Each Cas9 half was fused to the corresponding split-intein moiety and, only upon co-expression, the intein-mediated trans-splicing occurs and the full Cas9 protein is reconstituted. We demonstrated that the nuclease activity of our split-intein system is comparable to wild-type Cas9, shown by a genome-integrated surrogate reporter and by targeting three different endogenous genes. An analogously designed split-Cas9D10A nickase version showed similar activity as Cas9D10A. Moreover, we showed that the double nick strategy increased the homologous directed recombination (HDR). In addition, we explored the possibility of delivering the repair template accommodated on the same dual-plasmid system, by transient transfection, showing an efficient HDR. Most importantly, we revealed for the first time that intein-mediated split–Cas9 can be packaged, delivered and its nuclease activity reconstituted efficiently, in cells via rAAV. PMID:26082496

  10. Mechanism by which calcium phosphate coprecipitation enhances adenovirus-mediated gene transfer.

    PubMed

    Walters, R; Welsh, M

    1999-11-01

    Delivery of a normal copy of CFTR cDNA to airway epithelia may provide a novel treatment for cystic fibrosis lung disease. Unfortunately, current vectors are inefficient because of limited binding to the apical surface of airway epithelia. We recently reported that incorporation of adenovirus in a calcium phosphate coprecipitate (Ad:CaPi) improves adenovirus-mediated gene transfer to airway epithelia in vitro and in vivo. To understand better how coprecipitation improves gene transfer, we tested the hypothesis that incorporation in a CaPi coprecipitate increases the binding of adenovirus to the apical surface of differentiated human airway epithelia. When a Cy3-labelled adenovirus was delivered in a coprecipitate, binding increased 54-fold as compared with adenovirus alone. Moreover, infection by Ad:CaPi was independent of fiber knob-CAR and penton base-integrin interactions. After binding to the cell surface, the virus must enter the cell in order to infect. We hypothesized that Ad:CaPi may stimulate fluid phase endocytosis, thereby facilitating entry. However, we found that neither adenovirus nor Ad:CaPi coprecipitates altered fluid phase endocytosis. Nevertheless, Ad:CaPi preferentially infected cells showing endocytosis. Thus, CaPi coprecipitation improves adenovirus-mediated gene transfer by coating the epithelial surface with a layer of virus which enters cells during the normal process of endocytosis. PMID:10602380

  11. Effect of ultrasound irradiation on bacterial internalization and bacteria-mediated gene transfer to cancer cells.

    PubMed

    Ninomiya, Kazuaki; Yamada, Ryuji; Meisaku, Hitomi; Shimizu, Nobuaki

    2014-05-01

    The present study demonstrates that ultrasound irradiation can facilitate bacteria-mediated gene delivery (bactofection). Escherichia coli modified with avidin were employed as a vehicle for delivery of the green fluorescent protein (GFP) gene, a model heterologous gene, into the breast cancer cell line MCF-7. Avidin-mediated binding of E. coli to MCF-7 cells enhanced the internalization of E. coli by approximately 17%, irrespective of the use of ultrasound irradiation. Furthermore, the use of ultrasound irradiation increased the internalization by approximately 5%, irrespective of the presence of avidin on the E. coli cell surface. The percentages of GFP-expressing MCF-7 cells at 24h after bactofection were below 0.5% and 2% for the case with only avidin-modification of E. coli cell surface and only ultrasound irradiation, respectively. However, combining avidin modification with the ultrasound treatment increased this value to 8%. Thus, the use of avidin-modified bacteria in conjunction with ultrasound irradiation has potential as an effective strategy for tumor-targeted bactofection. PMID:24373691

  12. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding

    PubMed Central

    Victoria-Acosta, Georgina; Vazquez-Santillan, Karla; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Maldonado, Vilma; Martinez-Ruiz, Gustavo Ulises; Melendez-Zajgla, Jorge

    2015-01-01

    XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding. PMID:26443201

  13. Development of an intein-mediated split-Cas9 system for gene therapy.

    PubMed

    Truong, Dong-Jiunn Jeffery; Kühner, Karin; Kühn, Ralf; Werfel, Stanislas; Engelhardt, Stefan; Wurst, Wolfgang; Ortiz, Oskar

    2015-07-27

    Using CRISPR/Cas9, it is possible to target virtually any gene in any organism. A major limitation to its application in gene therapy is the size of Cas9 (>4 kb), impeding its efficient delivery via recombinant adeno-associated virus (rAAV). Therefore, we developed a split-Cas9 system, bypassing the packaging limit using split-inteins. Each Cas9 half was fused to the corresponding split-intein moiety and, only upon co-expression, the intein-mediated trans-splicing occurs and the full Cas9 protein is reconstituted. We demonstrated that the nuclease activity of our split-intein system is comparable to wild-type Cas9, shown by a genome-integrated surrogate reporter and by targeting three different endogenous genes. An analogously designed split-Cas9D10A nickase version showed similar activity as Cas9D10A. Moreover, we showed that the double nick strategy increased the homologous directed recombination (HDR). In addition, we explored the possibility of delivering the repair template accommodated on the same dual-plasmid system, by transient transfection, showing an efficient HDR. Most importantly, we revealed for the first time that intein-mediated split-Cas9 can be packaged, delivered and its nuclease activity reconstituted efficiently, in cells via rAAV. PMID:26082496

  14. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly.

    PubMed

    Sawamura, N; Ando, T; Maruyama, Y; Fujimuro, M; Mochizuki, H; Honjo, K; Shimoda, M; Toda, H; Sawamura-Yamamoto, T; Makuch, L A; Hayashi, A; Ishizuka, K; Cascella, N G; Kamiya, A; Ishida, N; Tomoda, T; Hai, T; Furukubo-Tokunaga, K; Sawa, A

    2008-12-01

    Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription. PMID:18762802

  15. CRISPR/Cas9-Mediated Gene Knock-Down in Post-Mitotic Neurons

    PubMed Central

    Saulnier, Jessica L.; Sabatini, Bernardo L.

    2014-01-01

    The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits. PMID:25140704

  16. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    PubMed Central

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  17. RNA-Mediated Silencing in Algae: Biological Roles and Tools for Analysis of Gene Function ▿

    PubMed Central

    Cerutti, Heriberto; Ma, Xinrong; Msanne, Joseph; Repas, Timothy

    2011-01-01

    Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level “omics” approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes. PMID:21803865

  18. Recent Advances in Research of Plant Virus Movement Mediated by Triple Gene Block

    PubMed Central

    Solovyev, Andrey G.; Kalinina, Natalia O.; Morozov, Sergey Y.

    2012-01-01

    The aim of this short review was to summarize recent advances in the field of viral cell-to-cell movement mediated by the triple gene block (TGB). The growing body of new research has uncovered links between virus cell-to-cell trafficking and replication, silencing suppression, virus spread over the plant, as well as suggested the roles of nucleus/nucleolus in plant virus transport and revealed protein-membrane associations occurring during subcellular targeting and cell-to-cell movement. In this context, our review briefly summarized current views on several potentially important functions of TGB proteins and on the development of new experimental systems that improved understanding of the molecular events during TGB-mediated virus movement. PMID:23248633

  19. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System

    PubMed Central

    Molina-Cruz, Alvaro; Garver, Lindsey S.; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C. L.; Sauerwein, Robert W.; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-01-01

    Summary The surface protein Pfs47 mediates Plasmodium falciparum evasion of the Anopheles gambiae complement-like immune system. Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  20. Control of adenovirus early gene expression: Posttranscriptional control mediated by both viral and cellular gene products

    SciTech Connect

    Katze, M.G.; Persson, H.; Philipson, L.

    1981-09-01

    An adenovirus type 5 host range mutant (hr-1) located in region E1A and phenotypically defective in expressing viral messenger ribonucleic acid (RNA) from other early regions was analyzed for accumulation of viral RNA in the presence of protein synthesis inhibitors. Nuclear RNA was transcribed from all early regions at the same rate, regardless of whether the drug was present or absent. As expected, low or undetectable levels of RNA were found in the cytoplasm of hr-1-infected cells compared with the wild-type adenovirus type 5 in the absence of drug. When anisomycin was added 30 min before hr-1 infection, cytoplasmic RNA was abundant from early regions E3 and E4 when assayed by filter hybridization. In accordance, early regions E3 and E4 viral messenger RNA species were detected by the S1 endonuclease mapping technique only in hr-1-infected cells that were treated with the drug. Similar results were obtained by in vitro translation studies. Together, these results suggest that this adenovirus type 5 mutant lacks a viral gene product necessary for accumulation of viral messenger RNA, but not for transcription. It is proposed that a cellular gene product serves as a negative regulator of viral messenger RNA accumulation at the posttranscriptional level.

  1. Identification of certain cancer-mediating genes using Gaussian fuzzy cluster validity index.

    PubMed

    Ghosh, Anupam; De, Rajat K

    2015-10-01

    In this article, we have used an index, called Gaussian fuzzy index (GFI), recently developed by the authors, based on the notion of fuzzy set theory, for validating the clusters obtained by a clustering algorithm applied on cancer gene expression data. GFI is then used for the identification of genes that have altered quite significantly from normal state to carcinogenic state with respect to their mRNA expression patterns. The effectiveness of the methodology has been demonstrated on three gene expression cancer datasets dealing with human lung, colon and leukemia. The performance of GFI is compared with 19 exiting cluster validity indices. The results are appropriately validated biologically and statistically. In this context, we have used biochemical pathways, p-value statistics of GO attributes, t-test and zscore for the validation of the results. It has been reported that GFI is capable of identifying high-quality enriched clusters of genes, and thereby is able to select more cancer-mediating genes. PMID:26564976

  2. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption

    PubMed Central

    Ha, Jong Seong; Byun, Juyoung; Ahn, Dae-Ro

    2016-01-01

    In this study, Cas9 system was employed to down-regulate mdr1 gene for overcoming multidrug resistance of cancer cells. Disruption of the MDR1 gene was achieved by delivery of the Cas9-sgRNA plasmid or the Cas9-sgRNA ribonucleoprotein complex using a conventional gene transfection agent and protein transduction domain (PTD). Doxorubicin showed considerable cytotoxicity to the drug-resistant breast cancer cells pre-treated with the RNA-guided endonuclease (RGEN) systems, whereas virtually non-toxic to the untreated cells. The potency of drug was enhanced in the cells treated with the protein-RNA complex as well as in those treated with plasmids, suggesting that mutation of the mdr1 gene by intracellular delivery of Cas9-sgRNA complex using proper protein delivery platforms could recover the drug susceptibility. Therefore, Cas9-mediated disruption of the drug resistance-related gene can be considered as a promising way to overcome multidrug resistance in cancer cells. PMID:26961701

  3. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation.

    PubMed

    Li, LiQi; Freudenberg, Johannes; Cui, Kairong; Dale, Ryan; Song, Sang-Hyun; Dean, Ann; Zhao, Keji; Jothi, Raja; Love, Paul E

    2013-05-30

    Erythropoiesis is dependent on the lineage-specific transcription factors Gata1, Tal1, and Klf1. Several erythroid genes have been shown to require all 3 factors for their expression, suggesting that they function synergistically; however, there is little direct evidence for widespread cooperation. Gata1 and Tal1 can assemble within higher-order protein complexes (Ldb1 complexes) that include the adapter molecules Lmo2 and Ldb1. Ldb1 proteins are capable of coassociation, and long-range Ldb1-mediated oligomerization of enhancer- and promoter-bound Ldb1 complexes has been shown to be required for β-globin gene expression. In this study, we generated a genomewide map of Ldb1 complex binding sites that revealed widespread binding at erythroid genes and at known erythroid enhancer elements. Ldb1 complex binding sites frequently colocalized with Klf1 binding sites and with consensus binding motifs for other erythroid transcription factors. Transcriptomic analysis demonstrated a strong correlation between Ldb1 complex binding and Ldb1 dependency for gene expression and identified a large cohort of genes coregulated by Ldb1 complexes and Klf1. Together, these results provide a foundation for defining the mechanism and scope of Ldb1 complex activity during erythropoiesis. PMID:23610375

  4. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation.

    PubMed

    Li, Zhenfei; Nie, Fen; Wang, Sheng; Li, Lin

    2011-02-22

    Histone methylation has an important role in transcriptional regulation. However, unlike H3K4 and H3K9 methylation, the role of H4K20 monomethylation (H4K20me-1) in transcriptional regulation remains unclear. Here, we show that Wnt3a specifically stimulates H4K20 monomethylation at the T cell factor (TCF)-binding element through the histone methylase SET8. Additionally, SET8 is crucial for activation of the Wnt reporter gene and target genes in both mammalian cells and zebrafish. Furthermore, SET8 interacts with lymphoid enhancing factor-1 (LEF1)/TCF4 directly, and this interaction is regulated by Wnt3a. Therefore, we conclude that SET8 is a Wnt signaling mediator and is recruited by LEF1/TCF4 to regulate the transcription of Wnt-activated genes, possibly through H4K20 monomethylation at the target gene promoters. Our findings also indicate that H4K20me-1 is a marker for gene transcription activation, at least in canonical Wnt signaling. PMID:21282610

  5. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    PubMed Central

    Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin

    2015-01-01

    The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications. PMID:26670247

  6. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus.

    PubMed

    Tingting, Liu; Di, Fan; Lingyu, Ran; Yuanzhong, Jiang; Rui, Liu; Keming, Luo

    2015-10-01

    The typeⅡCRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9) has been widely used in bacteria, yeast, animals and plants as a targeted genome editing technique. In previous work, we have successfully knocked out the endogenous phytoene dehydrogenase (PDS) gene in Populus tomentosa Carr. using this system. To study the effect of target design on the efficiency of CRISPR/Cas9-mediated gene knockout in Populus, we analyzed the efficiency of mutagenesis using different single-guide RNA (sgRNA) that target PDS DNA sequence. We found that mismatches between the sgRNA and the target DNA resulted in decreased efficiency of mutagenesis and even failed mutagenesis. Moreover, complementarity between the 3' end nucleotide of sgRNA and target DNA is especially crucial for efficient mutagenesis. Further sequencing analysis showed that two PDS homologs in Populus, PtPDS1 and PtPDS2, could be knocked out simultaneously using this system with 86.4% and 50% efficiency, respectively. These results indicated the possibility of introducing mutations in two or more endogenous genes efficiently and obtaining multi-mutant strains of Populus using this system. We have indeed generated several knockout mutants of transcription factors and structural genes in Populus, which establishes a foundation for future studies of gene function and genetic improvement of Populus. PMID:26496757

  7. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. PMID:21925121

  8. Inhibition of choroidal neovascularization by lentivirus-mediated PEDF gene transfer in rats

    PubMed Central

    Yu, Ya-Jie; Mo, Bin; Liu, Lu; Yue, Yan-Kun; Yue, Chang-Li; Liu, Wu

    2016-01-01

    AIM To evaluate the effects of lentivirus-mediated pigment epithelium-derived factor (PEDF) gene transfer performed in treatment of rats with established choroidal neovascularization (CNV), and investigates the mechanism by which PEDF inhibits CNV in rats. METHODS Brown Norway (BN) rats (n=204) were induced by exposure to a laser, and then randomly assigned to 3 groups: no treatment; treatments with intravitreal injection of lentivirus-PEDF-green fluorescent protein (GFP) or lentivirus-control GFP (free fluorescent protein). Following induction and treatment, the CNV tissue was assessed for form, size and vessel leakage by fluorescein fundus angiography (FFA), optical coherence tomography (OCT), histopathology, and examination of choroidal flat mounts. VEGF, Flk-1, and PEDF expression were evaluated by real-time polymerase chain reaction (PCR) and Western blot. RESULTS A stable laser-induced rat model of CNV was successfully established, and used to demonstrate lentivirus-mediated PEDG gene transfer by intravitreal injection. Expression of green fluorescence labelled PEDF was observed in the retina up to 28d after injection. An intravitreal injection of lentivirus-PEDF-GFP at 7d led to a significant reduction in the size, thickness and area of CNV showed by FFA, OCT and choroidal flat mounts. PEDF was up-regulated while VEGF and Flk-1 were down-regulated in the lentivirus-PEDF-GFP group. The differences in VEGF and Flk-1 expression in the control and lentivirus-PEDF groups at 7, 14, 21 and 28d after laser induction were all statistically significant. CONCLUSION Lentivirus-mediated PEDF gene transfer is effective for use in treatment of laser-induced CNV, and PEDF exerts its therapeutic effects by inhibiting expression of VEGF and Flk-1. PMID:27588264

  9. Glycine N-methyltransferase is a mediator of cytochrome P4501A1 gene expression.

    PubMed

    Raha, A; Joyce, T; Gusky, S; Bresnick, E

    1995-10-01

    Cytochrome P4501A1, the isozyme most closely approximating aryl hydrocarbon hydroxylase activity under conditions of induction, is thought to be regulated by several trans-acting factors, including the 4S polycyclic aromatic hydrocarbon-binding protein; this protein has recently been identified as glycine N-methyltransferase (Raha et al. (1994) J. Biol. Chem. 269, 5750-5756). Previous studies had shown that partially purified liver preparations containing the 4S binding protein interacted with 5'-flanking regions of the cytochrome P4501A1 gene. Consequently, the ability of the 4S binding protein to serve as a mediator in the regulation of the cytochrome P4501A1 gene was investigated further. Introduction of an antisense 24-mer oligonucleotide to glycine N-methyltransferase cDNA into rat hepatoma H4IIE cells by lipofectin resulted in a 60% reduction in the benzo(a)pyrene-mediated induction of ethoxyresorufin-O-deethylase activity and protein over the sense and scrambled antisense oligonucleotide controls. In addition, the antisense oligonucleotide caused a marked reduction in the steady-state level of cytochrome P4501A1 mRNA; no such effect was observed with the sense oligonucleotide. Introduction of GNMT polyclonal antibodies into H4IIE cells by a streptolysin-O permeabilization technique markedly reduced both benzo(a)pyrene-binding and benzo(a)-pyrene-induced ethoxyresorufin-O-deethylase activities, but had no effect on 2,3,7,8-tetrachlorodibenzo-p-dioxin induction. Collectively, these findings suggest that, in addition to the Ah (dioxin) receptor, glycine N-methyltransferase appears to be both a polycyclic aromatic hydrocarbon-binding protein and a mediator of the induction of the cytochrome P4501A1 gene by polycyclic hydrocarbons such as benzo(a)pyrene. PMID:7574713

  10. Isolation and Characterization of Anti-Adenoviral Secondary Metabolites from Marine Actinobacteria

    PubMed Central

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-01

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure. PMID:24477283

  11. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1

    SciTech Connect

    Ugai, Hideyo; Dobbins, George C.; Wang, Minghui; Le, Long P.; Matthews, David A.; Curiel, David T.

    2012-10-25

    Adenoviral infection induces nucleoplasmic redistribution of a nucleolar nucleophosmin 1/NPM1/B23.1. NPM1 is preferentially localized in the nucleoli of normal cells, whereas it is also present at the nuclear matrix in cancer cells. However, the biological roles of NPM1 during infection are unknown. Here, by analyzing a pV-deletion mutant, Ad5-dV/TSB, we demonstrate that pV promotes the NPM1 translocation from the nucleoli to the nucleoplasm in normal cells, and the NPM1 translocation is correlated with adenoviral replication. Lack of pV causes a dramatic reduction of adenoviral replication in normal cells, but not cancer cells, and Ad5-dV/TSB was defective in viral assembly in normal cells. NPM1 knockdown inhibits adenoviral replication, suggesting an involvement of NPM1 in adenoviral biology. Further, we show that NPM1 interacts with empty adenovirus particles which are an intermediate during virion maturation by immunoelectron microscopy. Collectively, these data implicate that pV participates in a process of viral assembly through NPM1.

  12. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  13. Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles

    PubMed Central

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K.; Champaneri, Shivam A.; Taylor, Sarah; Davidson, Brian P.; Zhao, Yan; Klibanov, Alexander L.; Kuliszewski, Michael A.; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R.

    2013-01-01

    OBJECTIVES Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. BACKGROUND Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. METHODS Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)–stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. RESULTS Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm2). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1–targeted microbubbles and by ultrasound molecular imaging of P-selectin–targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin–targeted microbubbles but was associated with

  14. Phage-mediated transfer of a dextranase gene in Lactobacillus sanfranciscensis and characterization of the enzyme.

    PubMed

    Picozzi, Claudia; Meissner, Daniel; Chierici, Margherita; Ehrmann, Matthias A; Vigentini, Ileana; Foschino, Roberto; Vogel, Rudi F

    2015-06-01

    While phages of lactobacilli are extensively studied with respect to their structure and role in the dairy environment, knowledge about phages in bacteria residing in sourdough fermentation is limited. Based on the previous finding that the Lactobacillus sanfranciscensis phage EV3 carries a putative dextranase gene (dex), we have investigated the distribution of similar dex(+) phages in L. sanfranciscensis, the chance of gene transfer and the properties of the dextranase encoded by phage EV3. L. sanfranciscensis H2A (dex(-)), originally isolated from a wheat sourdough, expressed a Dex(+) phenotype upon infection with EV3. The dextranase gene was isolated from the transductant and heterologously expressed in Escherichia coli. The gene encoded a protein of 801 amino acids with a calculated molecular weight (Mw) of 89.09 kDa and a calculated pI of 5.62. Upon purification aided by a 6-His tag, enzyme kinetic parameters were determined. The Km value was 370 mM, and the Vmax was calculated in about 16 μmol of glucose released from dextran by 1 mg of enzyme in 1 min in a buffer solution at pH 5.0. The optimum conditions were 60 °C and pH 4.5. The enzyme retained its activity for >3h at 60 °C and exhibited only 40% activity at 30 °C; the highest homology of 72% was found to a dextranase gene from Lactobacillus fermentum phage φPYB5. Within 25 L. sanfransiscensis isolates tested, the strain 4B5 carried a similar prophage encoding a dextranase gene. Our data suggest a phage-mediated transfer of dextranase genes in the sourdough environment resulting in superinfection-resistant L. sanfranciscensis Dex(+) strains with a possible ecological advantage in dextran-containing sourdoughs. PMID:25771219

  15. Agrobacterium-mediated transformation of potato using PLRV-rep and PVY CP genes and assessment of replicase mediated resistance against natural infection of PLRV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicase-and coat protein gene-mediated resistances against potato leafroll virus (PLRV) and potato virus Y (PVY), respectively, demonstrated to be an effective way of protecting potato against two major virus problems (PLRV & PVY) world-wide. Potato cultivar Desiree was transformed using Agrobacte...

  16. Gene Therapy for Type I Glycogen Storage Diseases

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2008-01-01

    The type I glycogen storage diseases (GSD-I) are a group of related diseases caused by a deficiency in the glucose-6-phosphatase-α (G6Pase-α) system, a key enzyme complex that is essential for the maintenance of blood glucose homeostasis between meals. The complex consists of a glucose-6-phosphate transporter (G6PT) that translocates glucose-6-phosphate from the cytoplasm into the lumen of the endoplasmic reticulum, and a G6Pase-α catalytic unit that hydrolyses the glucose-6-phosphate into glucose and phosphate. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6PT causes GSD type Ib (GSD-Ib). Both GSD-Ia and GSD-Ib patients manifest a disturbed glucose homeostasis, while GSD-Ib patients also suffer symptoms of neutropenia and myeloid dysfunctions. G6Pase-α and G6PT are both hydrophobic endoplasmic reticulum-associated transmembrane proteins that can not expressed in soluble active forms. Therefore protein replacement therapy of GSD-I is not an option. Animal models of GSD-Ia and GSD-Ib that mimic the human disorders are available. Both adenovirus- and adeno-associated virus (AAV)-mediated gene therapies have been evaluated for GSD-Ia in these model systems. While adenoviral therapy produces only short term corrections and only impacts liver expression of the gene, AAV-mediated therapy delivers the transgene to both the liver and kidney, achieving longer term correction of the GSD-Ia disorder, although there are substantial differences in efficacy depending on the AAV serotype used. Gene therapy for GSD-Ib in the animal model is still in its infancy, although an adenoviral construct has improved the metabolic profile and myeloid function. Taken together further refinements in gene therapy may hold long term benefits for the treatment of type I GSD disorders. PMID:17430128

  17. Protocol for In Vitro Stacked Molecules Compatible with In Vivo Recombinase-Mediated Gene Stacking.

    PubMed

    Chen, Weiqiang; Ow, David W

    2016-01-01

    Previously, we described a method for a recombinase-directed stacking of new DNA to an existing transgenic locus. Here, we describe how we can similarly stack DNA molecules in vitro and that the in vitro derived gene stack can be incorporated into an Agrobacterium transformation vector by in vitro recombination. After transfer to the chromosome by Agroinfection, the transgenic locus harbors a new target site that can be used for the subsequent in vivo stacking of new DNA. Alternatively, the in vitro derived gene stack has the potential to be integrated directly into the plant genome in vivo at a preexisting chromosomal target. Being able to stack DNA in vitro as well as in vivo, and with compatibility between the two systems, brings new flexibility for using the recombinase-mediated approach for transgene stacking. PMID:27557684

  18. Invertebrate eggs can fly: Evidence of waterfowl-mediated gene flow in aquatic invertebrates

    USGS Publications Warehouse

    Figuerola, J.; Green, A.J.; Michot, T.C.

    2005-01-01

    Waterfowl often have been assumed to disperse freshwater aquatic organisms between isolated wetlands, but no one has analyzed the impact of this transport on the population structure of aquatic organisms. For three cladocerans (Daphnia ambigua, Daphnia laevis, and Sida crystallina) and one bryozoan (Cristatella mucedo), we estimated the genetic distances between populations across North America using sequences of several mitochondrial DNA genes and genotypic frequencies at allozyme and microsatellite loci. Waterfowl movements across North America (estimated from band recovery data) explained a significant proportion of the gene flow occurring between populations across the continent for three of the four species, even after controlling for geographic distances between localities. The fourth species, S. crystallina, has propagules less likely to survive desiccation or ingestion by birds. Differences in the capacity to exploit bird-mediated transport are likely to have important consequences for the ecology of aquatic communities and the spread of invasive species.

  19. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  20. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L.

    PubMed Central

    Ishizaki, Kimitsune; Johzuka-Hisatomi, Yasuyo; Ishida, Sakiko; Iida, Shigeru; Kohchi, Takayuki

    2013-01-01

    The liverwort Marchantia polymorpha is an emerging model organism on account of its ideal characteristics for molecular genetics in addition to occupying a crucial position in the evolution of land plants. Here we describe a method for gene targeting by applying a positive/negative selection system for reduction of non-homologous random integration to an efficient Agrobacterium-mediated transformation system using M. polymorpha sporelings. The targeting efficiency was evaluated by knocking out the NOP1 gene, which impaired air-chamber formation. Homologous recombination was observed in about 2% of the thalli that passed the positive/negative selection. With the advantage of utilizing the haploid gametophytic generation, this strategy should facilitate further molecular genetic analysis of M. polymorpha, in which many of the mechanisms found in land plants are conserved, yet in a less complex form. PMID:23524944

  1. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells

    PubMed Central

    Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H.; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley; van de Lavoir, Marie-Cecile; Leighton, Philip A.

    2016-01-01

    The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds. PMID:27099923

  2. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells.

    PubMed

    Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H; Yi, Henry; Collarini, Ellen J; Izquierdo, Shelley; van de Lavoir, Marie-Cecile; Leighton, Philip A

    2016-01-01

    The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds. PMID:27099923

  3. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis.

    PubMed

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  4. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    PubMed Central

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-01-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  5. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  6. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  7. Construction and evaluation of replication-defective recombinant optimized triosephosphate isomerase adenoviral vaccination in Schistosoma japonicum challenged mice.

    PubMed

    Dai, Yang; Wang, Xiaoting; Zhao, Song; Tang, Jianxia; Zhang, Lu; Dai, Jianrong; Zeng, Mingtao; Lu, Shan; Zhu, Yinchang; Su, Chuan

    2014-02-01

    Schistosomiasis is an endemic, zoonotic parasitic disease that remains a public health concern in China. Development of transmission blocking veterinary vaccines against Schistosoma japonicum infection is urgently needed. Replication-defective adenoviral vector is an efficient vaccine delivery system that has been widely used. Its use is associated with high levels of gene insertion and expression. It is easy to construct and prepare, and is safe. It is not known whether this delivery system can improve the protective effect of schistosome vaccination. Triosephosphate isomerase from S. japonicum (SjTPI) is a promising vaccine candidate. Thus far it has induced only partial protection in animal models and needs to be further enhanced to be effective. We constructed a replication-defective adenoviral vector-based vaccine with optimized SjTPI (rAdV-SjTPI.opt). The specific immune responses and protective efficiency in mice were evaluated. Results showed that intramuscular rAdV-SjTPI.opt induced Th1 biased immune responses in the host, while subcutaneous rAdV-SjTPI.opt induced Th2 predominant immune responses. Oral rAdV-SjTPI.opt induced low levels of immune responses and no significant protection. Intramuscular rAdV-SjTPI.opt provided a consistent and repeatable higher protective effect in mice (more than 50%). These findings may be due to the associated higher levels of specific Th1, antibody responses and partially lower level of IL-17A. This report provides a foundation for developing transmission-blocking veterinary vaccines in larger animals. PMID:24397904

  8. Intranasal vaccination with a helper-dependent adenoviral vector enhances transgene-specific immune responses in BALB/c mice.

    PubMed

    Fu, Yuan-hui; He, Jin-sheng; Zheng, Xian-xian; Wang, Xiao-bo; Xie, Can; Shi, Chang-xin; Zhang, Mei; Tang, Qian; Wei, Wei; Qu, Jian-guo; Hong, Tao

    2010-01-01

    Helper-dependent adenoviral (HDAd) vectors were developed primarily for genetic disease therapy by deleting all coding regions for attenuating the host cellular immune response to adenovirus (Ad) and long-lasting gene expression. Recently Harui et al. reported that HDAd vaccine could stimulate superior transgene-specific cytotoxic T lymphocyte (CTL) and antibody responses via the intraperitoneal route, compared to first-generation adenoviral (FGAd) vaccine. This prompted us to explore the potential of HDAd as a vaccine vector administrated intranasally. In this study, we prepared HDAd and FGAd vectors expressing enhanced green fluorescent protein (EGFP), respectively, and compared their efficacy in mice. Mice were immunized intranasally with 5x10(9) vp HDAd or FGAd vector particles. Despite stimulating similar anti-Ad antibody responses with FGAd vaccine in the prime/boost strategy, HDAd vector expressing EGFP displayed superior transgene-specific serum IgG, mucosal IgA and cellular immune response, with the characterization of balanced or mixed Th1/Th2 CD4+ T-cell responses. Meanwhile, a single dose of intranasal (i.n.) vaccine of HDAd-EGFP induced a serum IgG response with more efficacy than FGAd-EGFP. In addition, i.n. boost immunization enhanced transgene-specific humoral and cellular responses, compared to single i.n. HDAd-EGFP immunization. Our results suggest that HDAd has potential for a mucosal vaccine vector via i.n. route, which will be useful for the development of vaccines against respiratory viruses, such as respiratory syncytial virus and influenza virus. PMID:19945423

  9. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes.

    PubMed

    Atilano, Shari R; Malik, Deepika; Chwa, Marilyn; Cáceres-Del-Carpio, Javier; Nesburn, Anthony B; Boyer, David S; Kuppermann, Baruch D; Jazwinski, S Michal; Miceli, Michael V; Wallace, Douglas C; Udar, Nitin; Kenney, M Cristina

    2015-08-15

    Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2'-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases. PMID:25964427

  10. Role of a COP1 interactive protein in mediating light-regulated gene expression in arabidopsis.

    PubMed Central

    Yamamoto, Y Y; Matsui, M; Ang, L H; Deng, X W

    1998-01-01

    Arabidopsis seedlings display distinct patterns of gene expression and morphogenesis according to the ambient light condition. An Arabidopsis nuclear protein, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), acts to repress photomorphogenesis in the absence of light. The Arabidopsis CIP7 protein was identified by its capability to interact with COP1. CIP7 is a novel nuclear protein that contains transcriptional activation activity without a recognizable DNA binding motif. CIP7 requires light for its high level of expression, and COP1 seems to play a role in repressing its expression in darkness. Decreasing CIP7 expression by introducing antisense CIP7 RNA resulted in defects in light-dependent anthocyanin and chlorophyll accumulation. Antisense plants also displayed reduced expression of light-inducible genes for anthocyanin biosynthesis and photosynthesis. However, no defect was observed in light-dependent inhibition of hypocotyl elongation. Taken together, our data indicate that CIP7 acts as a positive regulator of light-regulated genes and is a potential direct downstream target of COP1 for mediating light control of gene expression. PMID:9668129

  11. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells.

    PubMed Central

    Hahlbrock, K; Scheel, D; Logemann, E; Nürnberger, T; Parniske, M; Reinold, S; Sacks, W R; Schmelzer, E

    1995-01-01

    We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:7753777

  12. The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex

    PubMed Central

    Zhang, Lin; Wan, Yufeng; Huang, Guobin; Wang, Dongni; Yu, Xinyang; Huang, Guocun; Guo, Jinhu

    2015-01-01

    The exosome is a complex with exoribonuclease activity that regulates RNA surveillance and turnover. The exosome also plays a role in regulating the degradation of precursor mRNAs to maintain the expression of splicing variants. In Neurospora, the silencing of rrp44, which encodes the catalytic subunit of the exosome, changed the expression of a set of spliceosomal snRNA, snRNP genes and SR protein related genes. The knockdown of rrp44 also affected the assembly of the spliceosome. RNA-seq analysis revealed a global change in bulk splicing events. Exosome-mediated splicing may regulate alternative splicing of NCU05290, NCU07421 and the circadian clock gene frequency (frq). The knockdown of rrp44 led to an increased ratio of splicing variants without intron 6 (I-6) and shorter protein isoform small FRQ (s-FRQ) as a consequence. These findings suggest that the exosome controls splicing events by regulating the degradation of precursor mRNAs and the gene expression, assembly and function of the spliceosome. PMID:26306464

  13. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura.

    PubMed

    Bi, Hong-Lun; Xu, Jun; Tan, An-Jiang; Huang, Yong-Ping

    2016-06-01

    Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura. PMID:27061764

  14. Adenoassociated Virus Serotype 9-Mediated Gene Therapy for X-Linked Adrenoleukodystrophy

    PubMed Central

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1−/− mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1−/− mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD. PMID:25592337

  15. Adenoassociated virus serotype 9-mediated gene therapy for x-linked adrenoleukodystrophy.

    PubMed

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-05-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1-/- mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1-/- mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD. PMID:25592337

  16. Surface polyethylene glycol enhances substrate-mediated gene delivery by nonspecifically immobilized complexes

    PubMed Central

    Pannier, Angela K.; Wieland, Julie A.; Shea, Lonnie D.

    2007-01-01

    Substrate-mediated gene delivery describes the immobilization of gene therapy vectors to a biomaterial, which enhances gene transfer by exposing adhered cells to elevated DNA concentrations within the local microenvironment. Surface chemistry has been shown to affect transfection by nonspecifically immobilized complexes using self-assembled monolayers (SAMs) of alkanethiols on gold. In this report, SAMs were again used to provide a controlled surface to investigate whether the presence of oligo(ethylene glycol) (EG) groups in a SAM could affect complex morphology and enhance transfection. EG groups were included at percentages that did not affect cell adhesion. Nonspecific complex immobilization to SAMs containing combinations of EG- and carboxylic acid-terminated alkanethiols resulted in substantially greater transfection than surfaces containing no EG groups or SAMs composed of EG groups combined with other functional groups. Enhancement in transfection levels could not be attributed to complex binding densities or release profiles. Atomic force microscopy imaging of immobilized complexes revealed that EG groups within SAMs affected complex size and appearance and could indicate the ability of these surfaces to preserve complex morphology upon binding. The ability to control the morphology of the immobilized complexes and influence transfection levels through surface chemistry could be translated to scaffolds for gene delivery in tissue engineering and diagnostic applications. PMID:17920004

  17. Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene.

    PubMed Central

    Chiaramello, A; Neuman, K; Palm, K; Metsis, M; Neuman, T

    1995-01-01

    Sequence analysis of rat and human low-affinity nerve growth factor receptor p75LNGFR gene promoter regions revealed a single E-box cis-acting element, located upstream of the major transcription start sites. Deletion analysis of the E-box sequence demonstrated that it significantly contributes to p75LNGFR promoter activity. This E box has a dual function; it mediates either activation or repression of the p75LNGFR promoter activity, depending on the interacting transcription factors. We showed that the two isoforms of the class A basic helix-loop-helix (bHLH) transcription factor ME1 (ME1a and ME1b), the murine homolog of the human HEB transcription factor, specifically repress p75LNGFR promoter activity. This repression can be released by coexpression of the HLH Id2 transcriptional regulator. In vitro analyses demonstrated that ME1a forms a stable complex with the p75LNGFR E box and likely competes with activating E-box-binding proteins. By using ME1a-overexpressing PC12 cells, we showed that the endogenous p75LNGFR gene is a target of ME1a repression. Together, these data demonstrate that the p75LNGFR E box and the interacting bHLH transcription factors are involved in the regulation of p75LNGFR gene expression. These results also show that class A bHLH transcription factors can repress and Id-like negative regulators can stimulate gene expression. PMID:7565756

  18. Anesthesia-induced hypothermia mediates decreased ARC gene and protein expression through ERK/MAPK inactivation

    PubMed Central

    Whittington, Robert A.; Bretteville, Alexis; Virág, László; Emala, Charles W.; Maurin, Thomas O.; Marcouiller, François; Julien, Carl; Petry, Franck R.; El-Khoury, Noura B.; Morin, Françoise; Charron, Jean; Planel, Emmanuel

    2013-01-01

    Several anesthetics have been reported to suppress the transcription of a number of genes, including Arc, also known as Arg3.1, an immediate early gene that plays a significant role in memory consolidation. The purpose of this study was to explore the mechanism of anesthesia-mediated depression in Arc gene and protein expression. Here, we demonstrate that isoflurane or propofol anesthesia decreases hippocampal Arc protein expression in rats and mice. Surprisingly, this change was secondary to anesthesia-induced hypothermia. Furthermore, we confirm in vivo and in vitro that hypothermia per se is directly responsible for decreased Arc protein levels. This effect was the result of the decline of Arc mRNA basal levels following inhibition of ERK/MAPK by hypothermia. Overall, our results suggest that anesthesia-induced hypothermia leads to ERK inhibition, which in turns decreases Arc levels. These data give new mechanistic insights on the regulation of immediate early genes by anesthesia and hypothermia. PMID:24045785

  19. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    PubMed

    Zhao, Chunli; Farruggio, Alfonso P; Bjornson, Christopher R R; Chavez, Christopher L; Geisinger, Jonathan M; Neal, Tawny L; Karow, Marisa; Calos, Michele P

    2014-01-01

    A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies. PMID:24781921

  20. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation

    PubMed Central

    Liu, Honglei; Wei, Zheng; Dominguez, Antonia; Li, Yanda; Wang, Xiaowo; Qi, Lei S.

    2015-01-01

    Summary: The CRISPR/Cas9 system was recently developed as a powerful and flexible technology for targeted genome engineering, including genome editing (altering the genetic sequence) and gene regulation (without altering the genetic sequence). These applications require the design of single guide RNAs (sgRNAs) that are efficient and specific. However, this remains challenging, as it requires the consideration of many criteria. Several sgRNA design tools have been developed for gene editing, but currently there is no tool for the design of sgRNAs for gene regulation. With accumulating experimental data on the use of CRISPR/Cas9 for gene editing and regulation, we implement a comprehensive computational tool based on a set of sgRNA design rules summarized from these published reports. We report a genome-wide sgRNA design tool and provide an online website for predicting sgRNAs that are efficient and specific. We name the tool CRISPR-ERA, for clustered regularly interspaced short palindromic repeat-mediated editing, repression, and activation (ERA). Availability and implementation: http://CRISPR-ERA.stanford.edu. Contact: stanley.qi@stanford.edu or xwwang@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26209430

  1. Perturbation analysis of heterochromatin-mediated gene silencing and somatic inheritance.

    PubMed

    Schneiderman, Jonathan I; Goldstein, Sara; Ahmad, Kami

    2010-09-01

    Repetitive sequences in eukaryotic genomes induce chromatin-mediated gene-silencing of juxtaposed genes. Many components that promote or antagonize silencing have been identified, but how heterochromatin causes variegated and heritable changes in gene expression remains mysterious. We have used inducible mis-expression in the Drosophila eye to recover new factors that alter silencing caused by the bw(D) allele, an insertion of repetitive satellite DNA that silences a bw(+) allele on the homologous chromosome. Inducible modifiers allow perturbation of silencing at different times in development, and distinguish factors that affect establishment or maintenance of silencing. We find that diverse chromatin and RNA processing factors can de-repress silencing. Most factors are effective even in differentiated cells, implying that silent chromatin remains plastic. However, over-expression of the bantam microRNA or the crooked-legs (crol) zinc-finger protein only de-repress silencing when expressed in cycling cells. Over-expression of crol accelerates the cell cycle, and this is required for de-repression of silencing. Strikingly, continual over-expression of crol converts the speckled variegation pattern of bw(D) into sectored variegation, where de-repression is stably inherited through mitotic divisions. Over-expression of crol establishes an open chromatin state, but the factor is not needed to maintain this state. Our analysis reveals that active chromatin states can be efficiently inherited through cell divisions, with implications for the stable maintenance of gene expression patterns through development. PMID:20838586

  2. Development of Therapeutic Microbubbles for Enhancing Ultrasound-Mediated Gene Delivery

    PubMed Central

    Sun, Ryan R.; Noble, Misty L.; Sun, Samuel S.; Song, Shuxian; Miao, Carol H.

    2014-01-01

    Ultrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent. These modifications are 1) increased MB shell acyl chain length (RN18) for elevated stability and 2) addition of positive charge on MB (RC5K) for greater DNA associability. The MB types were compared in their ability to facilitate transfection of luciferase and GFP reporter plasmid DNA in vitro and in vivo under various conditions of US intensity, MB dosage, and pretreatment MB-DNA incubation. The results indicated that both RN18 and RC5K were more efficient than Definity®, and that the cationic RC5K can induce even greater transgene expression by increasing payload capacity with prior DNA incubation without compromising cell viability. These findings could be applied to enhance MB functions in a wide range of therapeutic US/MB gene and drug delivery approach. With further designs, MB customizations have the potential to advance this technology closer to clinical application. PMID:24650644

  3. Differential effects of STAT proteins on growth hormone-mediated IGF-I gene expression.

    PubMed

    Varco-Merth, Ben; Rotwein, Peter

    2014-11-01

    Growth hormone (GH) plays a key role regulating somatic growth and in controlling metabolism and other physiological processes in humans and other animal species. GH acts by binding to the extracellular part of its transmembrane receptor, leading to induction of multiple intracellular signal transduction pathways that culminate in changes in gene and protein expression. A key agent in GH-stimulated growth is the latent transcription factor signal transducer and activator of transcription (STAT) 5B, one of four STAT proteins induced by the GH receptor in cultured cells and in vivo. As shown by genetic and biochemical studies, GH-activated STAT5B promotes transcription of the gene encoding the critical growth peptide, insulin-like growth factor-I (IGF-I), and natural null mutations of STAT5B in humans lead to growth failure accompanied by diminished IGF-I expression. Here we have examined the possibility that other GH-activated STATs can enhance IGF-I gene transcription, and thus potentially contribute to GH-regulated somatic growth. We find that human STAT5A is nearly identical to STAT5B in its biochemical and functional responses to GH but that STAT1 and STAT3 show a weaker profile of in vitro binding to STAT DNA elements from the IGF-I gene than STAT5B, and are less potent inducers of gene transcription through these elements. Taken together, our results offer a molecular explanation for why STAT5B is a key in vivo mediator of GH-activated IGF-I gene transcription and thus of GH-regulated somatic growth. PMID:25205818

  4. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    PubMed

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine. PMID:26683492

  5. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum

    PubMed Central

    Loureiro, Iñigo; Escorial, María-Concepción; Chueca, María-Cristina

    2016-01-01

    The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation. PMID:27336441

  6. A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation

    PubMed Central

    George, Amee J.; Purdue, Brooke W.; Gould, Cathryn M.; Thomas, Daniel W.; Handoko, Yanny; Qian, Hongwei; Quaife-Ryan, Gregory A.; Morgan, Kylie A.; Simpson, Kaylene J.; Thomas, Walter G.; Hannan, Ross D.

    2013-01-01

    Summary The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R–EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R–EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R–EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR–EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer. PMID:24046455

  7. A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation.

    PubMed

    George, Amee J; Purdue, Brooke W; Gould, Cathryn M; Thomas, Daniel W; Handoko, Yanny; Qian, Hongwei; Quaife-Ryan, Gregory A; Morgan, Kylie A; Simpson, Kaylene J; Thomas, Walter G; Hannan, Ross D

    2013-12-01

    The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer. PMID:24046455

  8. Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut.

    PubMed

    Schneider, Katja; Schiermeyer, Andreas; Dolls, Anja; Koch, Natalie; Herwartz, Denise; Kirchhoff, Janina; Fischer, Rainer; Russell, Sean M; Cao, Zehui; Corbin, David R; Sastry-Dent, Lakshmi; Ainley, W Michael; Webb, Steven R; Schinkel, Helga; Schillberg, Stefan

    2016-04-01

    Genome modification by homology-directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR-mediated gene exchange of expression cassettes in tobacco BY-2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7-kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4-kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR-mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin-resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN-based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants. PMID:26426390

  9. Genome-wide signatures of male-mediated migration shaping the Indian gene pool.

    PubMed

    ArunKumar, GaneshPrasad; Tatarinova, Tatiana V; Duty, Jeff; Rollo, Debra; Syama, Adhikarla; Arun, Varatharajan Santhakumari; Kavitha, Valampuri John; Triska, Petr; Greenspan, Bennett; Wells, R Spencer; Pitchappan, Ramasamy

    2015-09-01

    Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India. PMID:25994871

  10. Glucose availability is a decisive factor for Nrf2-mediated gene expression.

    PubMed

    Heiss, Elke H; Schachner, Daniel; Zimmermann, Kristin; Dirsch, Verena M

    2013-01-01

    Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells. PMID:24024172

  11. Agrobacterium tumefaciens mediated transformation of ChiV gene to Trichoderma harzianum.

    PubMed

    Yang, Liming; Yang, Qian; Sun, Kening; Tian, Ye; Li, Hulun

    2011-04-01

    As a soil-borne filamentous fungus, Trichoderma harzianum exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. In this study, the vectors pBI121 and pCAMBIA1301 and cloning vector pUC18 were used to successfully construct expression vector pCA-GChiV for filamentous fungi transformation mediated by Agrobacterium tumefaciens.The ChiV gene was successfully transferred into the biocontrol fungus T. harzianum with an efficiency of 90-110 transformants per 10(7) spores using A. tumefaciens-mediated transformation. Putative transformants were analyzed to test the transformation by the southern blot, and the expression of ChiV was detected by reverse transcription PCR. The transformants were co-cultured to assay antifungal activities with Rhizoctonia solani. The inhibition rates of the transformants and no ChiV gene transferred T. harzianum were 98.56% and 82.42%, respectively, on the fourth day.The results showed that the ChiV transformants had significantly higher inhibition activity. PMID:20936373

  12. Gene expression profiling of dengue infected human primary cells identifies secreted mediators in vivo

    PubMed Central

    Becerra, Aniuska; Warke, Rajas V.; Martin, Katherine; Xhaja, Kris; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2009-01-01

    We used gene expression profiling of human primary cells infected in vitro with dengue virus (DENV) as a tool to identify secreted mediators induced in response to the acute infection. Affymetrix Genechip analysis of human primary monocytes, B cells and dendritic cells infected with DENV in vitro revealed a strong induction of monocyte chemotactic protein 2 (MCP-2/CCL8), interferon gamma-induced protein 10 (IP-10/CXCL10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/TNFSF10). The expression of these genes was confirmed in dendritic cells infected with DENV in vitro at mRNA and protein levels. A prospectively enrolled cohort of DENV-infected Venezuelan patients was used to measure the levels of these proteins in serum during three different periods of the disease. Results showed significant increase of MCP-2, IP-10 and TRAIL levels in DENV-infected patients during the febrile period, when compared to healthy donors and patients with other febrile illnesses. MCP-2 and IP-10 levels were still elevated during the post-febrile period while TRAIL levels dropped close to normal after defervescense. Patients with primary infections had higher TRAIL levels than patients with secondary infections during the febrile period of the disease. Increased levels of IP-10, TRAIL and MCP-2 in acute DENV infections suggest a role for these mediators in the immune response to the infection. PMID:19551822

  13. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells.

    PubMed

    Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor

    2012-01-01

    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621

  14. Glucose availability is a decisive factor for Nrf2-mediated gene expression☆

    PubMed Central

    Heiss, Elke H.; Schachner, Daniel; Zimmermann, Kristin; Dirsch, Verena M.

    2013-01-01

    Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells. PMID:24024172

  15. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. PMID:26514419

  16. Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.).

    PubMed

    Hüsken, Alexandra; Dietz-Pfeilstetter, Antje

    2007-10-01

    The cultivation of genetically modified (GM) herbicide resistant oilseed rape (Brassica napus) has increased over the past few years. The transfer of herbicide resistance genes via pollen (gene flow) from GM crops to non-GM crops is of relevance for the realisation of co-existence of different agricultural cultivation forms as well as for weed management. Therefore the likelihood of pollen-mediated gene flow has been investigated in numerous studies. Despite the difficulty to compare different experiments with varying levels of outcrossing, we performed a literature search for world-wide studies on cross-fertilisation in fully fertile oilseed rape. The occurrence and frequency of pollen-mediated intraspecific gene flow (outcrossing rate) can vary according to cultivar, experimental design, local topography and environmental conditions. The outcrossing rate from one field to another depends also on the size and arrangement of donor and recipient populations and on the ratio between donor and recipient plot size. The outcrossing levels specified in the presented studies are derived mostly from experiments where the recipient field is either surrounding the donor field (continuous design) or is located as a patch at different distances from the donor field (discontinuous design). Reports of gene flow in Brassica napus generally show that the amount of cross-fertilisation decreases as the distance from the pollen source increases. The evidence given in various studies reveals that the bulk of GM cross-fertilisation occurs within the first 10 m of the recipient field. The removal of the first 10 m of a non-transgenic field facing a GM crop might therefore be more efficient for reducing the total level of cross-fertilisation in a recipient sink population than to recommend separation distances. Future experiments should investigate cross-fertilisation with multiple adjacent donor fields at the landscape level under different spatial distributions of rapeseed cultivars

  17. Tissue Inhibitor of Metalloproteinase-2 Gene Delivery Ameliorates Post-Infarction Cardiac Remodeling

    PubMed Central

    Ramani, Ravi; Nilles, Kathleen; Gibson, Gregory; Burkhead, Benjamin; Mathier, Michael; McNamara, Dennis; McTiernan, Charles F.

    2011-01-01

    Hypothesis Adenoviral-mediated (AdV-T2) overexpression of TIMP-2 would blunt ventricular remodeling and improve survival in a murine model of chronic ischemic injury. Methods Male mice (n=124) aged 10–14 weeks underwent either 1) left coronary artery ligation to induce myocardial infarction (MI group, n=36), 2) myocardial injection of 6×1010 viral particles of AdV-T2 immediately post-MI (MI+T2 group, n=30), 3) myocardial injection of 6×1010 viral particles of a control adenovirus (MI+Ct, n=38), or 4) received no intervention (controls, n=20). On post-MI day 7, surviving mice (n=79) underwent echocardiographic, immunohistochemical and biochemical analysis. Results In infarcted animals, the MI+T2 group demonstrated improved survival (p< 0.02), better preservation of developed pressure and ventricular diameter (p<0.04), and the lowest expression and activity of MMP-2 and MMP-9 (P<0.04) compared with MI and MI+Ct groups.. All infarcted hearts displayed significantly increased inflammatory cell infiltration (p<0.04 versus control, MI, or MI+T2), with infiltration highest in the MI+Ct group and lowest in the MI+T2 group (p<0.04). Conclusions Adenoviral mediated myocardial delivery of the TIMP-2 gene improves post-MI survival and limits adverse remodeling in a murine model of myocardial infarction. PMID:21348952

  18. Bone formation in vivo induced by Cbfa1-carrying adenoviral vectors released from a biodegradable porous β-tricalcium phosphate (β-TCP) material

    NASA Astrophysics Data System (ADS)

    Uemura, Toshimasa; Kojima, Hiroko

    2011-06-01

    Overexpression of Cbfa1 (a transcription factor indispensable for osteoblastic differentiation) is expected to induce the formation of bone directly and indirectly in vivo by accelerating osteoblastic differentiation. Adenoviral vectors carrying the cDNA of Cbfa1/til-1(Adv-Cbf1) were allowed to be adsorbed onto porous blocks of β-tricalcium phosphate (β-TCP), a biodegradable ceramic, which were then implanted subcutaneously and orthotopically into bone defects. The adenoviral vectors were released sustainingly by biodegradation, providing long-term expression of the genes. Results of the subcutaneous implantation of Adv-Cbfa1-adsorbed β-TCP/osteoprogenitor cells suggest that a larger amount of bone formed in the pores of the implant than in the control material. Regarding orthotopic implantation into bone defects, the released Adv-Cbfa1 accelerated regeneration in the cortical bone, whereas it induced bone resorption in the marrow cavity. A safer gene transfer using a smaller amount of the vector was achieved using biodegradable porous β-TCP as a carrier.

  19. Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers

    PubMed Central

    Yazaki, Yushin; Oyane, Ayako; Sogo, Yu; Ito, Atsuo; Yamazaki, Atsushi; Tsurushima, Hideo

    2015-01-01

    Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP)-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap) layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications. PMID:25874757

  20. Hypoxia-derived oxidative stress mediates epigenetic repression of PKCɛ gene in foetal rat hearts

    PubMed Central

    Patterson, Andrew J.; Xiao, Daliao; Xiong, Fuxia; Dixon, Brandon; Zhang, Lubo

    2012-01-01

    Aims Hypoxia causes protein kinase C epsilon (PKCɛ) gene repression in foetal hearts, resulting in heightened cardiac susceptibility to ischaemic injury in offspring. We tested the hypothesis that hypoxia inducible factor 1 (HIF-1) and/or reactive oxygen species (ROS) mediate hypoxia-induced PKCɛ gene repression. Methods and results Hypoxia induced in vivo to pregnant rats, ex vivo to isolated foetal rat hearts, and in vitro in the rat embryonic ventricular myocyte cell line H9c2 resulted in a comparable decrease in PKCɛ protein and mRNA abundance in foetal hearts and H9c2 cells, which was associated with a significant increase in CpG methylation of the SP1-binding sites at the PKCɛ promoter. In H9c2 cells and foetal hearts, hypoxia caused nuclear accumulation of HIF-1α, which was inhibited by 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole and 2-methoxy estradiol. The HIF-1α inhibitors had no significant effect on hypoxia-induced PKCɛ mRNA repression. Hypoxia produced a time-dependent increase in ROS production in H9c2 cells and foetal hearts that was blocked by ROS scavengers N-acetyl-cysteine or tempol. In accordance, N-acetyl-cysteine and tempol, but not apocynin, inhibited the hypoxic effect and restored PKCɛ protein and mRNA expression to the control values in foetal hearts and H9c2 cells. The ROS scavengers blocked hypoxia-induced CpG methylation of the SP1-binding sites, restored SP1 binding to the PKCɛ promoter, and abrogated the hypoxia-induced increase in the susceptibility of the heart to ischaemic injury in offspring. Conclusions The results demonstrate that hypoxia induces epigenetic repression of the PKCɛ gene through a NADPH oxidase-independent ROS-mediated pathway in the foetal heart, leading to heightened heart vulnerability to ischaemic injury in offspring. PMID:22139554

  1. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system

    PubMed Central

    Eroglu, Erdal; Tiwari, Pooja M; Waffo, Alain B; Miller, Michael E; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2013-01-01

    The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs), which consisted of poly(2-hydroxyethyl methacrylate) nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV)-F gene construct (a model for a DNA vaccine). The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM), fluorescence activated cell sorting (FACS), and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR), we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo. PMID:23610520

  2. GATA2 Mediates Thyrotropin-Releasing Hormone-Induced Transcriptional Activation of the Thyrotropin β Gene

    PubMed Central

    Ohba, Kenji; Sasaki, Shigekazu; Matsushita, Akio; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Misawa, Hiroko; Oki, Yutaka; Nakamura, Hirotoshi

    2011-01-01

    Thyrotropin-releasing hormone (TRH) activates not only the secretion of thyrotropin (TSH) but also the transcription of TSHβ and α-glycoprotein (αGSU) subunit genes. TSHβ expression is maintained by two transcription factors, Pit1 and GATA2, and is negatively regulated by thyroid hormone (T3). Our prior studies suggest that the main activator of the TSHβ gene is GATA2, not Pit1 or unliganded T3 receptor (TR). In previous studies on the mechanism of TRH-induced activation of the TSHβ gene, the involvements of Pit1 and TR have been investigated, but the role of GATA2 has not been clarified. Using kidney-derived CV1 cells and pituitary-derived GH3 and TαT1 cells, we demonstrate here that TRH signaling enhances GATA2-dependent activation of the TSHβ promoter and that TRH-induced activity is abolished by amino acid substitution in the GATA2-Zn finger domain or mutation of GATA-responsive element in the TSHβ gene. In CV1 cells transfected with TRH receptor expression plasmid, GATA2-dependent transactivation of αGSU and endothelin-1 promoters was enhanced by TRH. In the gel shift assay, TRH signal potentiated the DNA-binding capacity of GATA2. While inhibition by T3 is dominant over TRH-induced activation, unliganded TR or the putative negative T3-responsive element are not required for TRH-induced stimulation. Studies using GH3 cells showed that TRH-induced activity of the TSHβ promoter depends on protein kinase C but not the mitogen-activated protein kinase, suggesting that the signaling pathway is different from that in the prolactin gene. These results indicate that GATA2 is the principal mediator of the TRH signaling pathway in TSHβ expression. PMID:21533184

  3. Oncolytic adenoviral vectors which employ the survivin promoter induce glioma oncolysis via a process of beclin-dependent autophagy

    PubMed Central

    ULASOV, ILYA V.; TYLER, MATHEW A.; ZHU, ZENG B.; HAN, YU; HE, TONG-CHUAN; LESNIAK, MACIEJ S.

    2009-01-01

    Survivin has gained attention as a tumor-specific marker which is upregulated in a variety of neoplasms. Although the survivin protein is implicated in anti-apoptotic tumor pathways, little is known about the function of the survivin promoter. In this study, we constructed a conditionally replicative adenoviral vector (CRAd) that utilizes the survivin promoter and examined the mechanism of CRAd induced cell death in malignant glioma. Our results indicate that CRAd vectors which utilize the survivin promoter effectively replicate in glioma cells and exhibit a high oncolytic effect. The survivin-mediated CRAd appeared to induce apoptosis as measured by Annexin/7-AAD. Caspase-3 and BAX mRNAs were upregulated based on microarray data, however, Western blot analysis of infected cells showed no evidence of elevated caspase-3, BAX, or p53 protein expression. Of note, at each time point infected glioma cells showed no evidence of activated BAD or AKT. The inhibition of AKT signaling led us to examine autophagy in infected cells. Electron micrographs of virally infected glioma cells suggested autophagosomal-mediated cell death and selective blocking of beclin with siRNA prevented autophagy. These results indicate that the survivin promoter enhances viral replication and induces autophagy of infected glioma cells via a beclin-dependent mechanism. PMID:19212678

  4. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout.

    PubMed

    Sandhu, Navdeep; Vijayan, Mathilakath M

    2011-05-01

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000nM) for 4h either in the presence or absence of ACTH (0.5IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  5. p53 mediated apoptosis in osteosarcoma MG-63 cells by inhibition of FANCD2 gene expression

    PubMed Central

    Xia, Peng; Sun, Yifu; Zheng, Changjun; Hou, Tingting; Kang, Mingyang; Yang, Xiaoyu

    2015-01-01

    Purpose: The aim of this study was to investigate the association between osteosarcoma (OS) and Fanconi anemia (FA) related pathways and the molecular mechanisms. Methods: siRNA for Fanconi anemia complementation group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. Expression of TP53INP1, p53, p21, caspase-9, and caspase-3 mRNA in MG-63 cells were examined by real-time fluorescence quantitative PCR, and the protein levels were also determined by western blot. Results: After silence of the FANCD2 gene in MG-63 cells, cell proliferation was inhibited, cell cycle was arrested and cell apoptosis was induced. The apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene expression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell cycle arrested in G1, finally resulted in caspase-dependent cell apoptosis. Conclusions: Inhibition of FANCD2 gene expression can induce apoptosis of osteosarcoma cells, which indicated that FANCD2 played an important role in the development of osteosarcoma and it might be a potential target for treatment of osteosarcoma. PMID:26379910

  6. Extensive female-mediated gene flow from sub-Saharan Africa into near eastern Arab populations.

    PubMed

    Richards, Martin; Rengo, Chiara; Cruciani, Fulvio; Gratrix, Fiona; Wilson, James F; Scozzari, Rosaria; Macaulay, Vincent; Torroni, Antonio

    2003-04-01

    We have analyzed and compared mitochondrial DNA variation of populations from the Near East and Africa and found a very high frequency of African lineages present in the Yemen Hadramawt: more than a third were of clear sub-Saharan origin. Other Arab populations carried approximately 10% lineages of sub-Saharan origin, whereas non-Arab Near Eastern populations, by contrast, carried few or no such lineages, suggesting that gene flow has been preferentially into Arab populations. Several lines of evidence suggest that most of this gene flow probably occurred within the past approximately 2,500 years. In contrast, there is little evidence for male-mediated gene flow from sub-Saharan Africa in Y-chromosome haplotypes in Arab populations, including the Hadramawt. Taken together, these results are consistent with substantial migration from eastern Africa into Arabia, at least in part as a result of the Arab slave trade, and mainly female assimilation into the Arabian population as a result of miscegenation and manumission. PMID:12629598

  7. Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation

    PubMed Central

    Gao, Wei-wei; Xiao, Rong-quan; Peng, Bing-ling; Xu, Huan-teng; Shen, Hai-feng; Huang, Ming-feng; Shi, Tao-tao; Yi, Jia; Zhang, Wen-juan; Wu, Xiao-nan; Gao, Xiang; Lin, Xiang-zhi; Dorrestein, Pieter C.; Rosenfeld, Michael G.; Liu, Wen

    2015-01-01

    Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. PMID:26080448

  8. Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC

    PubMed Central

    Wong, Jeffrey V.; Yao, Guang; Nevins, Joseph R.; You, Lingchong

    2011-01-01

    Gene expression mediated by viral vectors is subject to cell-to-cell variability, which limits the accuracy of gene delivery. When coupled with single-cell measurements, however, such variability provides an efficient means to quantify signaling dynamics in mammalian cells. Here, we illustrate the utility of this approach by mapping the E2f1 response to MYC, serum stimulation, or both. Our results revealed an underappreciated mode of gene regulation: E2f1 expression first increased then decreased as MYC input increased. This biphasic pattern was also reflected in other nodes of the network including the miR-17-92 micro RNA cluster and p19Arf. A mathematical model of the network successfully predicted modulation of the biphasic E2F response by serum and a CDK inhibitor. In addition to demonstrating how noise can be exploited to probe signaling dynamics, our results reveal how coordination of the MYC/RB/E2F pathway enables dynamic discrimination of aberrant and normal levels of growth stimulation. PMID:21292160

  9. Understanding oligonucleotide-mediated inhibition of gene expression in Xenopus laevis oocytes

    PubMed Central

    Bailey, Cheryl; Weeks, Daniel L.

    2000-01-01

    Triplex-forming oligonucleotides (TFOs) modified with N,N-diethylethylenediamine can inhibit the expression of a reporter plasmid in Xenopus oocytes if the triplex is preformed prior to injection while unmodified oligonucleotides cannot. Here we show that merely forming a triplex in a reporter plasmid does not disrupt transcription, but when TFOs are targeted to sites within the transcribed region of a reporter gene then gene activity is inhibited. TFO-based inhibition did not lead to large scale degradation or mutation of the reporter plasmid, but dramatically lowered mRNA levels. Finally, we investigated the accessibility of a triplex target site on a reporter plasmid after injection into nuclei. We found that the site used for our previous studies was inaccessible to restriction endonuclease after injection into nuclei. This observation may explain why inhibition was dependent on forming the triplex before injection into oocytes. Based on the assumption that oligonucleotide association, like restriction enzyme access, was excluded by nucleosome formation, additional target sites were inserted so that all sites could not simultaneously be associated with the octamer core of a nucleosome. With multiple target sites prior association of the plasmid with nuclear proteins does not prevent oligonucleotide-mediated inhibition of gene activity. PMID:10666457

  10. TALEN‐mediated gene editing of the thrombospondin‐1 locus in axolotl

    PubMed Central

    Kuo, Tzu‐Hsing; Kowalko, Johanna E.; DiTommaso, Tia; Nyambi, Mandi; Montoro, Daniel T.; Essner, Jeffrey J.

    2015-01-01

    Abstract Loss‐of‐function genetics provides strong evidence for a gene's function in a wild‐type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long‐standing questions. Here we demonstrate targeted modification of the thrombospondin‐1 (tsp‐1) locus using transcription‐activator‐like effector nucleases (TALENs) and identify a role of tsp‐1 in recruitment of myeloid cells during limb regeneration. We find that while tsp‐1‐edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN‐mediated gene edits.

  11. Oligonucleotide-mediated gene modification and its promise for animal agriculture.

    PubMed

    Laible, Götz; Wagner, Stefan; Alderson, Jon

    2006-01-17

    One of the great aspirations in modern biology is the ability to utilise the expanding knowledge of the genetic basis of phenotypic diversity through the purposeful tailoring of the mammalian genome. A number of technologies are emerging which have the capacity to modify genes in their chromosomal context. Not surprisingly, the major thrust in this area has come from the evaluation of gene therapy applications to correct mutations implicated in human genetic diseases. The recent development of somatic cell nuclear transfer (SCNT) provides access to these technologies for the purposeful modification of livestock animals. The enormous phenotypic variety existent in contemporary livestock animals has in many cases been linked to quantitative trait loci (QTL) and their underlying point mutations, often referred to as single-nucleotide polymorphisms (SNPs). Thus, the ability for the targeted genetic modification of livestock animals constitutes an attractive opportunity for future agricultural applications. In this review, we will summarize attempts and approaches for oligonucleotide-mediated gene modification (OGM) strategies for the site-specific modification of the genome, with an emphasis on chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligonucletides (ssODNs). The potential of this approach for the directed genetic improvement of livestock animals is illustrated through examples, outlining the effects of point mutations on important traits, including meat and milk production, reproductive performance, disease resistance and superior models of human diseases. Current technological hurdles and potential strategies that might remove these barriers in the future are discussed. PMID:16330159

  12. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  13. Global Emergence of Trimethoprim/Sulfamethoxazole Resistance in Stenotrophomonas maltophilia Mediated by Acquisition of sul Genes

    PubMed Central

    Toleman, Mark A.; Bennett, Peter M.; Bennett, David M.C.; Jones, Ronald N.

    2007-01-01

    Trimethoprim/sulfamethoxazole (TMP/SMX) resistance remains a serious threat in the treatment of Stenotrophomonas maltophilia infections. We analyzed an international collection of 55 S. maltophilia TMP/SMX-sensitive (S) (n = 30) and -resistant (R) (n = 25) strains for integrons; sul1, sul2 and dhfr genes; and insertion element common region (ISCR) elements. sul1, as part of a class 1 integron, was detected in 17 of 25 TMP/SMX-R. Nine TMP/SMX-R strains carried sul2; 7 were on large plasmids. Five TMP/SMX-R isolates were positive for ISCR2, and 4 were linked to sul2; 2 others possessed ISCR3. Two ISCR2s were adjacent to floR. Six TMP/SMX-S isolates harbored novel ISCR elements, ISCR9 and ISCR10. Linkage of ISCR3, ISCR9, and ISCR10 to sul2 and dhfr genes was not demonstrated. The data from this study indicate that class 1 integrons and ISCR elements linked to sul2 genes can mediate TMP/SMX resistance in S. maltophilia and are geographically widespread, findings that reinforce the need for ongoing resistance surveillance. PMID:17553270

  14. Dual Function of NAC072 in ABF3-Mediated ABA-Responsive Gene Regulation in Arabidopsis

    PubMed Central

    Li, Xiaoyun; Li, Xiaoling; Li, Meijuan; Yan, Youcheng; Liu, Xu; Li, Ling

    2016-01-01

    The NAM, ATAF1/2, and CUC2 (NAC) domain proteins play various roles in plant growth and stress responses. Arabidopsis NAC transcription factor NAC072 has been reported as a transcriptional activator in Abscisic acid (ABA)-responsive gene expression. However, the exact function of NAC072 in ABA signaling is still elusive. In this study, we present evidence for the interrelation between NAC072 and ABA-responsive element binding factor 3 (ABF3) that act as a positive regulator of ABA-responsive gene expression in Arabidopsis. The transcript of NAC072 is up-regulated by ABF3 in ABA response, and NAC072 protein interacts with ABF3. Enhanced ABA sensitivity occurs in nac072 mutant plants that overexpressed ABF3. However, overexpression of NAC072 weakened the ABA sensitivity in the abf3 mutant plants, but instead of recovering the ABA sensitivity of abf3. NAC072 and ABF3 cooperate to regulate RD29A expression, but are antagonistic when regulating RD29B expression. Therefore, NAC072 displays a dual function in ABF3-mediated ABA-responsive gene regulation. PMID:27486475

  15. Microprocessor mediates transcriptional termination in long noncoding microRNA genes

    PubMed Central

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J.; Jopling, Catherine L.

    2015-01-01

    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway, but instead use Microprocessor cleavage to terminate transcription. This Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells. PMID:25730776

  16. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia

    PubMed Central

    Koehler, David R.; Sajjan, Umadevi; Chow, Yu-Hua; Martin, Bernard; Kent, Geraldine; Tanswell, A. Keith; McKerlie, Colin; Forstner, Janet F.; Hu, Jim

    2003-01-01

    We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice. Cftr RNA and protein were present in whole lung and bronchioles, respectively, for 28 days after a vector dose. Acute inflammation was minimal to moderate. To test the therapeutic potential of the vector, we challenged mice with a clinical strain of Burkholderia cepacia complex (Bcc). Cftr knockout mice (but not Cftr+/+ littermates) challenged with Bcc developed severe lung histopathology and had high lung bacteria counts. Cftr knockout mice receiving gene therapy 7 days before Bcc challenge had less severe histopathology, and the number of lung bacteria was reduced to the level seen in Cftr+/+ littermates. These data suggest that gene therapy could benefit cystic fibrosis patients by reducing susceptibility to opportunistic pathogens. PMID:14673110

  17. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia.

    PubMed

    Koehler, David R; Sajjan, Umadevi; Chow, Yu-Hua; Martin, Bernard; Kent, Geraldine; Tanswell, A Keith; McKerlie, Colin; Forstner, Janet F; Hu, Jim

    2003-12-23

    We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice. Cftr RNA and protein were present in whole lung and bronchioles, respectively, for 28 days after a vector dose. Acute inflammation was minimal to moderate. To test the therapeutic potential of the vector, we challenged mice with a clinical strain of Burkholderia cepacia complex (Bcc). Cftr knockout mice (but not Cftr+/+ littermates) challenged with Bcc developed severe lung histopathology and had high lung bacteria counts. Cftr knockout mice receiving gene therapy 7 days before Bcc challenge had less severe histopathology, and the number of lung bacteria was reduced to the level seen in Cftr+/+ littermates. These data suggest that gene therapy could benefit cystic fibrosis patients by reducing susceptibility to opportunistic pathogens. PMID:14673110

  18. Ability of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species.

    PubMed

    Matthews, J B; Fertuck, K C; Celius, T; Huang, Y-W; Fong, C J; Zacharewski, T R

    2002-10-01

    The ability of 14 structurally diverse estrogenic compounds to induce reporter gene expression mediated by estrogen receptors (ERs) from different species was examined. MCF-7 cells were transiently transfected with a Gal4-regulated luciferase reporter gene (17m5-G-Luc) and Gal4-ER chimeric receptors containing the D, E and F domains of the human alpha (Gal4-hERalphadef), mouse alpha (Gal4-mERalphadef), mouse beta (Gal4-mERbetadef), chicken (Gal4-cERalphadef), green anole (Gal4-aERalphadef), Xenopus (Gal4-xERdef) or rainbow trout alpha ERs (Gal4-rtERalphadef). The efficacy of 17beta-estradiol (E2) in inducing reporter gene expression was similar among the different constructs overall, with EC(50) values ranging from 0.05 to 0.7nM. However, Gal4-rtERalphadef had an EC(50) value at 37 degrees C of 28nM, though at 20 degrees C an EC(50) value of 1nM was observed. Despite a similar response to E2 treatment among the ERs, many differences were observed in the magnitude of the response to other structurally diverse chemicals. For example, coumestrol induced Gal4-mERbetadef- and Gal4-aERdef-mediated reporter gene expression 164- and 8-fold greater, respectively, than mediated with the other Gal4-ERs. As well, in contrast to results with other Gal4-ERs, alpha-zearalenol consistently induced Gal4-rtERalphadef-mediated reporter gene activity at lower concentrations than did E2. Overall, the results demonstrate that selected estrogenic compounds exhibit a differential ability to induce reporter gene activity mediated by ERs from different vertebrate species. These data also highlight the importance of incubation temperature when examining rtERalpha-mediated activity. PMID:12477484

  19. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    PubMed Central

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  20. Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana.

    PubMed

    Tran, Phu-Tri; Choi, Hoseong; Choi, Doil; Kim, Kook-Hyung

    2016-08-01

    Resistance to pathogens mediated by plant resistance (R) proteins requires different signaling transduction components and pathways. Our previous studies revealed that a potyvirus resistance gene in pepper, Pvr9, confers a hypersensitive response (HR) to pepper mottle virus in Nicotiana benthamiana. Our results show that the Pvr9-mediated HR against pepper mottle virus infection requires HSP90, SGT1, NDR1, but not EDS1. These results suggest that the Pvr9-mediated HR is possibly related to the SA pathway but not the ET, JA, ROS or NO pathways. PMID:27236305

  1. AP-2-mediated regulation of human NAD(P)H: quinone oxidoreductase 1 (NQO1) gene expression.

    PubMed

    Xie, T; Jaiswal, A K

    1996-03-22

    NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes two-electron reduction and detoxification of quinones. We have shown previously that twenty-four base pairs of the human Antioxidant Response Element (hARE) mediate basal and xenobiotic-induced expression of the NQO1 gene [Li and Jaiswal, J Biol Chem 267: 15097-15104, 1992]. In the present report, we have characterized a second cis-element, AP-2, at nucleotide position -157 of the human NQO1 gene promotor that regulates basal and cAMP-induced transcription of the NQO1 gene. The NQO1 gene AP-2 mediated expression of the chloramphenicol acetyl transferase (CAT) gene and the binding of nuclear proteins to the AP-2 element were observed in HeLa (AP-2 positive) cells but not in human hepatoblastoma Hep-G2 (AP-2 deficient) cells, indicating the involvement of transcription factors AP-2 in the regulation of NQO1 gene expression. Affinity purification of nuclear protein that binds to the NQO1 gene AP-2 DNA element and western analysis revealed that AP-2 indeed binds to the NQO1 gene AP-2 element and regulates its expression HeLa cells. The involvement of AP-2 in the regulation of NQO1 gene expression was confirmed by the observation that cDNA-derived AP-2 protein in Hep-G2 cells increased in NQO1 gene AP-2 but not mutant AP-2 mediated expression of CAT gene in Hep-G2 cells. PMID:8602872

  2. Controllably local gene delivery mediated by polyelectrolyte multilayer films assembled from gene-loaded nanopolymersomes and hyaluronic acid

    PubMed Central

    Teng, Wei; Wang, Qinmei; Chen, Ying; Huang, Hongzhang

    2014-01-01

    To explore a spatiotemporally controllable gene delivery system with high efficiency and safety, polyelectrolyte multilayer (PEM) films were constructed on titanium or quartz substrates via layer-by-layer self-assembly technique by using plasmid deoxyribonucleic acid-loaded lipopolysaccharide–amine nanopolymersomes (pNPs) as polycations and hyaluronic acid (HA) as polyanions. pNPs were chosen because they have high transfection efficiency (>95%) in mesenchymal stem cells (MSCs) and induce significant angiogenesis in zebrafish in conventional bolus transfection. The assembly process of PEM films was confirmed by analyses of quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, infrared, contact angle, and zeta potential along with atomic force microscopy observation. Quartz crystal microbalance with dissipation analysis reveals that this film grows in an exponential mode, pNPs are the main contributor to the film mass, and the film mass can be modulated in a relatively wide range (1.0–29 μg/cm2) by adjusting the deposition layer number. Atomic force microscopy observation shows that the assembly leads to the formation of a patterned film with three-dimensional tree-like nanostructure, where the branches are composed of beaded chains (pNP beads are strung on HA molecular chains), and the incorporated pNPs keep structure intact. In vitro release experiment shows that plasmid deoxyribonucleic acid can be gradually released from films over 14 days, and the released plasmid deoxyribonucleic acid exists in a complex form. In vitro cell experiments demonstrate that PEM films can enhance the adhesion and proliferation of MSCs and efficiently transfect MSCs in situ in vitro for at least 4 days. Our results suggest that a (pNPs/HA)n system can mediate efficient transfection in stem cells in a spatially and temporally controllable pattern, highlighting its huge potential in local gene therapy. PMID:25378927

  3. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae

    PubMed Central

    Zhang, Xin; Mysore, Keshava; Flannery, Ellen; Michel, Kristin; Severson, David W.; Zhu, Kun Yan

    2015-01-01

    SHORT ABSTRACT Here we describe a procedure for inhibiting gene function in disease vector mosquitoes through the use of chitosan/interfering RNA nanoparticles that are ingested by larvae. LONG ABSTRACT Vector mosquitoes inflict more human suffering than any other organism—and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field. PMID:25867635

  4. Control of Pollen-Mediated Gene Flow in Transgenic Trees[W][OA

    PubMed Central

    Zhang, Chunsheng; Norris-Caneda, Kim H.; Rottmann, William H.; Gulledge, Jon E.; Chang, Shujun; Kwan, Brian Yow-Hui; Thomas, Anita M.; Mandel, Lydia C.; Kothera, Ronald T.; Victor, Aditi D.; Pearson, Leslie; Hinchee, Maud A.W.

    2012-01-01

    Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees. PMID:22723085

  5. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide.

    PubMed Central

    Lowenstein, C J; Alley, E W; Raval, P; Snowman, A M; Snyder, S H; Russell, S W; Murphy, W J

    1993-01-01

    The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS. Images Fig. 2 PMID:7692452

  6. Mycobacterium tuberculosis Infection Induces HDAC1-Mediated Suppression of IL-12B Gene Expression in Macrophages.

    PubMed

    Chandran, Aneesh; Antony, Cecil; Jose, Leny; Mundayoor, Sathish; Natarajan, Krishnamurthy; Kumar, R Ajay

    2015-01-01

    Downregulation of host gene expression is one of the many strategies employed by intracellular pathogens such as Mycobacterium tuberculosis (MTB) to survive inside the macrophages and cause disease. The underlying molecular mechanism behind the downregulation of host defense gene expression is largely unknown. In this study we explored the role of histone deacetylation in macrophages in response to infection by virulent MTB H37Rv in manipulating host gene expression. We show a significant increase in the levels of HDAC1 with a concomitant and marked reduction in the levels of histone H3-acetylation in macrophages containing live, but not killed, virulent MTB. Additionally, we show that HDAC1 is recruited to the promoter of IL-12B in macrophages infected with live, virulent MTB, and the subsequent hypoacetylation of histone H3 suppresses the expression of this gene which plays a key role in initiating Th1 responses. By inhibiting immunologically relevant kinases, and by knockdown of crucial transcriptional regulators, we demonstrate that protein kinase-A (PKA), CREB, and c-Jun play an important role in regulating HDAC1 level in live MTB-infected macrophages. By chromatin immunoprecipitation (ChIP) analysis, we prove that HDAC1 expression is positively regulated by the recruitment of c-Jun to its promoter. Knockdown of HDAC1 in macrophages significantly reduced the survival of intracellular MTB. These observations indicate a novel HDAC1-mediated epigenetic modification induced by live, virulent MTB to subvert the immune system to survive and replicate in the host. PMID:26697414

  7. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways.

    PubMed

    Orlov, Sergei N; Hamet, Pavel

    2015-03-01

    Our review focuses on the recent data showing that gene transcription and translation are under the control of signaling pathways triggered by modulation of the intracellular sodium/potassium ratio ([Na+]i/[K+]i). Side-by-side with sensing of osmolality elevation by tonicity enhancer-binding protein (TonEBP, NFAT5), [Na+]i/[K+]i-mediated excitation-transcription coupling may contribute to the transcriptomic changes evoked by high salt consumption. This novel mechanism includes the sensing of heightened Na+ concentration in the plasma, interstitial, and cerebrospinal fluids via augmented Na+ influx in the endothelium, immune system cells, and the subfornical organ, respectively. In these cells, [Na+]i/[K+]i ratio elevation, triggered by augmented Na+ influx, is further potentiated by increased production of endogenous Na+,K+-ATPase inhibitors documented in salt-sensitive hypertension. PMID:25479826

  8. The role of GW182 proteins in miRNA-mediated gene silencing.

    PubMed

    Braun, Joerg E; Huntzinger, Eric; Izaurralde, Elisa

    2013-01-01

    GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets. PMID:23224969

  9. Gene-mediated Restoration of Normal Myofiber Elasticity in Dystrophic Muscles

    PubMed Central

    Puttini, Stefania; Lekka, Małgorzata; Dorchies, Olivier M; Saugy, Damien; Incitti, Tania; Ruegg, Urs T; Bozzoni, Irene; Kulik, Andrzej J; Mermod, Nicolas

    2008-01-01

    Dystrophin mediates a physical link between the cytoskeleton of muscle fibers and the extracellular matrix, and its absence leads to muscle degeneration and dystrophy. In this article, we show that the lack of dystrophin affects the elasticity of individual fibers within muscle tissue explants, as probed using atomic force microscopy (AFM), providing a sensitive and quantitative description of the properties of normal and dystrophic myofibers. The rescue of dystrophin expression by exon skipping or by the ectopic expression of the utrophin analogue normalized the elasticity of dystrophic muscles, and these effects were commensurate to the functional recovery of whole muscle strength. However, a more homogeneous and widespread restoration of normal elasticity was obtained by the exon-skipping approach when comparing individual myofibers. AFM may thus provide a quantification of the functional benefit of gene therapies from live tissues coupled to single-cell resolution. PMID:19002166

  10. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae.

    PubMed

    Metzger, Lisa C; Blokesch, Melanie

    2016-04-01

    The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae. PMID:26615332

  11. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells.

    PubMed

    Li, Le; Muñoz-Culla, Maider; Carmona, Unai; Lopez, Maria Paz; Yang, Fan; Trigueros, Cesar; Otaegui, David; Zhang, Lianbing; Knez, Mato

    2016-08-01

    We demonstrate a straightforward method to encapsulate siRNA into naturally available and unmodified human apoferritin. The encapsulation into apoferritin is independent of the sequence of the siRNA and provides superior protection for those sensitive molecules. High efficiency in transfection can be achieved in human tumorigenic cells, human primary mesenchymal stem cells (hMSC) and peripheral blood mononuclear cells (PBMCs). In contrast to Lipofectamine, highly effective gene silencing can be achieved with ferritin as the delivery agent in both tumor cells and PBMCs at low siRNA concentrations (10 nM). As an endogenous delivery agent, apoferritin does not induce immune activation of T- and B-cells in human PBMCs. Apoferritin shows intrinsic anti-inflammatory effects and apoferritin-mediated delivery shows a preference for immune-activated T- and B-cells, a natural selectivity which may turn useful for drug delivery in case of infections or inflammatory diseases. PMID:27187278

  12. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  13. Competence of Immature Maize Embryos for Agrobacterium-Mediated Gene Transfer.

    PubMed Central

    Schlappi, M; Hohn, B

    1992-01-01

    Agrobacterium-mediated transfer of viral sequences to plant cells (agroinfection) was applied to study the susceptibility of immature maize embryos to the pathogen. The shoot apical meristem of immature embryos 10 to 20 days after pollination from four different maize genotypes was investigated for competence for agroinfection. There was a direct correlation between different morphological stages of the unwounded immature embryos and their competence for agroinfection. Agroinfection frequency was highest in the embryogenic line A188. All developmental stages tested showed Agrobacterium virulence gene-inducing activity, whereas bacteriocidal substances were produced at stages of the immature embryos competent for agroinfection. The results suggested that Agrobacterium may require differentiated tissue in the maize shoot apical meristem before wounding for successful T-DNA transfer. This requirement for the young maize embryo has implications for the possible use of Agrobacterium for maize transformation. PMID:12297627

  14. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system.

    PubMed

    Molina-Cruz, Alvaro; Garver, Lindsey S; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C L; Sauerwein, Robert W; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-05-24

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito, and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  15. Amplification of inflammation in emphysema and its association with latent adenoviral infection.

    PubMed

    Retamales, I; Elliott, W M; Meshi, B; Coxson, H O; Pare, P D; Sciurba, F C; Rogers, R M; Hayashi, S; Hogg, J C

    2001-08-01

    This study examines the hypothesis that the cigarette smoke-induced inflammatory process is amplified in severe emphysema and explores the association of this response with latent adenoviral infection. Lung tissue from patients with similar smoking histories and either no (n = 7), mild (n = 7), or severe emphysema (n = 7) was obtained by lung resection. Numbers of polymorphonuclear cells (PMN), macrophages, B cells, CD4, CD8 lymphocytes, and eosinophils present in tissue and airspaces and of epithelial cells expressing adenoviral E1A protein were determined using quantitative techniques. Severe emphysema was associated with an absolute increase in the total number of inflammatory cells in the lung tissue and airspaces. The computed tomography (CT) determined extent of lung destruction was related to the number of cells/m(2) surface area by R(2) values that ranged from 0.858 (CD8 cells) to 0.483 (B cells) in the tissue and 0.630 (CD4 cells) to 0.198 (B cells) in the airspaces. These changes were associated with a 5- to 40-fold increase in the number of alveolar epithelial cells expressing adenoviral E1A protein in mild and severe disease, respectively. We conclude that cigarette smoke-induced lung inflammation is amplified in severe emphysema and that latent expression of the adenoviral E1A protein expressed by alveolar epithelial cells influenced this amplification process. PMID:11500352

  16. AN UPDATE OF ADENOVIRAL HEMORRHAGIC DISEASE IN MULE DEER IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the summer and fall of 1993, a newly recognized disease, adenoviral hemorrhagic disease, caused widespread mortality in black-tailed (Odocoileus hemionus columbianus) and California mule deer (Odocoileus hemionus californicus) in northern California. Greater than a thousand deer were estimated t...

  17. Effect of 6-azacytidine on the course of experimental adenoviral infection in newborn Syrian hamsters.

    PubMed

    Zarubalev, V V; Slita, A V; Sukhinin, V P; Nosach, L N; Dyachenko, N S; Povnitsa, O Y; Zhovnovataya, V L; Alexeeva, I V; Palchikovskaya, L I

    2007-02-01

    Adenoviral infection is a serious human pathology leading to respiratory, gastrointestinal and ocular disorders and epidemic outbreaks, especially in children's groups. Here we present the results from an investigation of anti- adenoviral effect of 6-azacytidine (6-AC) both in vitro and in vivo. The selectivity index of 6-AC for adenovirus type 5 in HEp-2 cells was 374, the 50% effective concentration was 0.5 mg/ml. For in vivo investigations we developed a model of disseminated adenoviral infection in newborn Syrian hamsters. The infectious virus was recovered from the liver, kidney, lungs and heart. Application of 6-AC led to a reduced period of the virus presence (7 days in the liver and 4 days in the kidney and heart) and lowered virus titers on day 3 post-inoculation (p.i.) (liver - 2.7 and 4.1, heart - 0 and 3.2, kidney - 0 and 2.4 log(10 )CPD(50)/mg tissue weight, in the presence and absence of 6-AC, respectively). Application of 6-AC to newborn Syrian hamsters led to partial destruction of their splenocytes. The results obtained suggest that 6-AC or 6-ACbased drugs with lower toxicity or applied topically may be suitable for therapy and prevention of adenoviral infection in humans. PMID:17309850

  18. The prevalence of adenoviral conjunctivitis at the Clinical Hospital of the State University of Campinas, Brazil

    PubMed Central

    Pinto, Roberto Damian Pacheco; Lira, Rodrigo Pessoa Cavalcanti; Arieta, Carlos Eduardo Leite; de Castro, Rosane Silvestre; Bonon, Sandra Helena Alves

    2015-01-01

    OBJECTIVES: Viral conjunctivitis is a common, highly contagious disease that is often caused by an adenovirus. The aim of this study was to evaluate the prevalence of adenoviral conjunctivitis by analyzing data from a prospective cli