Science.gov

Sample records for adenoviral sub-unit proteins

  1. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    SciTech Connect

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.; Freimuth, P.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  2. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  3. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  4. Avidin-Based Targeting and Purification of a Protein IX-Modified, Metabolically Biotinylated Adenoviral Vector

    PubMed Central

    Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.

    2014-01-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061

  5. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  6. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1

    SciTech Connect

    Ugai, Hideyo; Dobbins, George C.; Wang, Minghui; Le, Long P.; Matthews, David A.; Curiel, David T.

    2012-10-25

    Adenoviral infection induces nucleoplasmic redistribution of a nucleolar nucleophosmin 1/NPM1/B23.1. NPM1 is preferentially localized in the nucleoli of normal cells, whereas it is also present at the nuclear matrix in cancer cells. However, the biological roles of NPM1 during infection are unknown. Here, by analyzing a pV-deletion mutant, Ad5-dV/TSB, we demonstrate that pV promotes the NPM1 translocation from the nucleoli to the nucleoplasm in normal cells, and the NPM1 translocation is correlated with adenoviral replication. Lack of pV causes a dramatic reduction of adenoviral replication in normal cells, but not cancer cells, and Ad5-dV/TSB was defective in viral assembly in normal cells. NPM1 knockdown inhibits adenoviral replication, suggesting an involvement of NPM1 in adenoviral biology. Further, we show that NPM1 interacts with empty adenovirus particles which are an intermediate during virion maturation by immunoelectron microscopy. Collectively, these data implicate that pV participates in a process of viral assembly through NPM1.

  7. Differential Contribution of Adeno-Associated Virus Type 2 Rep Protein Expression and Nucleic Acid Elements to Inhibition of Adenoviral Replication in cis and in trans

    PubMed Central

    Hammer, Eva; Heilbronn, Regine

    2014-01-01

    ABSTRACT The helper-dependent adeno-associated virus type 2 (AAV-2) exhibits complex interactions with its helper adenovirus. Whereas AAV-2 is dependent on adenoviral functions for productive replication, it conversely inhibits adenoviral replication, both when its genome is present in trans after coinfection with both viruses and when it is present in cis, as in the production of recombinant adenovirus (rAd)/AAV-2 hybrid vectors. The notion that AAV-mediated inhibition of adenoviral replication is due predominantly to the expression of the AAV-2 Rep proteins was recently challenged by successful Rep78 expression in a rAd5 vector through recoding of the Rep open reading frame (ORF). We closely analyzed the relative contributions of AAV-2 nucleic acid elements and Rep protein expression to the inhibition of adenoviral replication in both of the above scenarios. When present in cis, a sequence element in the 3′ part of the rep gene, comprising only the AAV-2 p40 promoter and the AAV-2 intron sequence, which we termed the RIS-Ad, completely blocks adenoviral replication. p5/p19 promoter-driven Rep protein expression, on the other hand, only weakly inhibits rAd/AAV-2 vector propagation, and by inactivation of the RIS-Ad, it is feasible to generate first-generation rAd vectors expressing functional Rep proteins. The RIS-Ad plays no role in the inhibition of adenoviral replication in trans in a model closely mimicking AAV-2–Ad coinfection. In this case, expression of the Rep proteins is required, as well as the presence of an amplifiable inverted terminal repeat (ITR)-containing template. Thus, very different AAV-2 elements and mechanisms are involved in inhibition of adenoviral replication during rAd/AAV-2 vector propagation and after Ad-AAV coinfection. IMPORTANCE This is the first study to systematically compare the contributions of AAV-2 protein expression and AAV-2 nucleic acid elements to the inhibition of adenoviral replication in rAd/AAV-2 hybrid vector

  8. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  9. [Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi].

    PubMed

    García-Rico, Ramón O; Fierro, Francisco

    The phylum Ascomycota comprises about 75% of all the fungal species described, and includes species of medical, phytosanitary, agricultural, and biotechnological importance. The ability to spread, explore, and colonise new substrates is a feature of critical importance for this group of organisms. In this regard, basic processes such as conidial germination, the extension of hyphae and sporulation, make up the backbone of development in most filamentous fungi. These processes require specialised morphogenic machinery, coordinated and regulated by mechanisms that are still being elucidated. In recent years, substantial progress has been made in understanding the role of the signalling pathway mediated by heterotrimericG proteins in basic biological processes of many filamentous fungi. This review focuses on the role of the alpha subunits of heterotrimericG proteins in the morphogenic processes of filamentous Ascomycota. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. A novel CRM1-dependent nuclear export signal in adenoviral E1A protein regulated by phosphorylation.

    PubMed

    Jiang, Hong; Olson, Melissa V; Medrano, Diana R; Lee, Ok-Hee; Xu, Jing; Piao, Yuji; Alonso, Marta M; Gomez-Manzano, Candelaria; Hung, Mien-Chie; Yung, W K Alfred; Fueyo, Juan

    2006-12-01

    Adenoviral E1A is a versatile protein that can reprogram host cells for efficient viral replication. The nuclear import of E1A is mediated by a nuclear localization signal; however, whether E1A can be actively exported from the nucleus is unknown. We first reported a CRM1-dependent nuclear export signal (NES) in E1A that is conserved in the group C adenoviruses. We showed that CRM1 and E1A coimmunoprecipitated and that blockage of CRM1 function by leptomycin B or small interfering RNA resulted in the nuclear localization of E1A. Through mutational analyses, we identified an active canonical NES element within the E1A protein spanning amino acids 70-80. We further demonstrated that phosphorylation of adjacent serine (S)89 resulted in the cytoplasmic accumulation of E1A. Interestingly, coincident with the accumulation of cells in the S/G2/M phase and histone H1 phosphorylation, E1A was relocated to the cytoplasm at the late stage of the viral cycle, which was blocked by the CDC2/CDK2 inhibitor roscovitine. Importantly, titration of the progenies of the viruses in infected cells showed that the replication efficiency of the NES mutant adenovirus was up to 500-fold lower than that of the wild-type adenovirus. Collectively, our data demonstrate the existence of a NES in E1A that is modulated by the phosphorylation of the S89 residue and the NES plays a role for an efficient viral replication in the host cells.

  11. A soluble CAR-SCF fusion protein improves adenoviral vector-mediated gene transfer to c-Kit-positive hematopoietic cells.

    PubMed

    Itoh, Akira; Okada, Takashi; Mizuguchi, Hiroyuki; Hayakawa, Takao; Mizukami, Hiroaki; Kume, Akihiro; Takatoku, Masaaki; Komatsu, Norio; Hanazono, Yutaka; Ozawa, Keiya

    2003-11-01

    Although adenoviral vectors primarily derived from the adenovirus serotype 5 (Ad5) are widely used for many gene transfer applications, they cannot efficiently infect hematopoietic cells, since these cells do not express the coxsackie-adenoviral receptor (CAR). We have developed a soluble fusion protein that bridges adenoviral fibers and the c-Kit receptor to alter Ad5 tropism to immature hematopoietic cells. The CAR-SCF fusion protein consists of the extracellular domains of CAR and stem cell factor (SCF). The human megakaryoblastic leukemia cell lines UT-7 and M07e, human chronic myelogenous leukemia cell line K-562, and erythroleukemia cell line TF-1 were used to assess CAR-SCF-assisted Ad5-mediated gene transfer. Hematopoietic cell lines were infected with an Ad5 vector (Ad5-eGFP) or a fiber-mutant Ad5/F35 (Ad5/F35-eGFP) expressing the enhanced green fluorescent protein gene in the presence or absence of CAR-SCF. Twenty-four hours after infection, more than 80% of M07e cells infected in the presence of CAR-SCF were eGFP-positive, compared with very few eGFP-positive cells following Ad5-eGFP infection in the absence of CAR-SCF. The enhancement of Ad5-eGFP infection by CAR-SCF was greater than that caused by Ad5/F35-eGFP (50%). The ability of CAR-SCF to enhance Ad5-eGFP infectivity was highly dependent on cellular c-Kit expression levels. Furthermore, CAR-SCF also enhanced Ad5-mediated gene transfer into human primary CD34(+) cells. The CAR-SCF fusion protein assists Ad5-mediated transduction to c-Kit(+) CAR(-) hematopoietic cells. The use of this fusion protein would enhance a utility of Ad5-mediated hematopoietic cell transduction strategies. Copyright 2003 John Wiley & Sons, Ltd.

  12. Adenoviral E4orf3 and E4orf6 Proteins, But Not E1B55K, Increase Killing of Cancer Cells by Radiotherapy in vivo

    SciTech Connect

    Liikanen, Ilkka; Dias, Joao D.; Nokisalmi, Petri; Sloniecka, Marta; Kangasniemi, Lotta; Rajecki, Mari; Dobner, Thomas; Tenhunen, Mikko; Kanerva, Anna; Pesonen, Sari; Ahtiainen, Laura Ph.D.; Hemminki, Akseli

    2010-11-15

    Purpose: Radiotherapy is widely used for treatment of many tumor types, but it can damage normal tissues. It has been proposed that cancer cells can be selectively sensitized to radiation by adenovirus replication or by using radiosensitizing transgenes. Adenoviral proteins E1B55K, E4orf3, and E4orf6 play a role in radiosensitization, by targeting the Mre11, Rad50, and NBS1 complex (MRN) and inhibiting DNA double-strand break (DSB) repair. We hypothesize that combined with irradiation, these adenoviral proteins increase cell killing through the impairment of DSB repair. Methods and Materials: We assessed the radiosensitizing/additive potential of replication-deficient adenoviruses expressing E1B55K, E4orf3, and E4orf6 proteins. Combination treatments with low-dose external photon beam radiotherapy were studied in prostate cancer (PC-3MM2 and DU-145), breast cancer (M4A4-LM3), and head and neck cancer (UT-SCC8) cell lines. We further demonstrated radiosensitizing or additive effects in mice with PC-3MM2 tumors. Results: We show enhanced cell killing with adenovirus and radiation combination treatment. Co-infection with several of the viruses did not further increase cell killing, suggesting that both E4orf6 and E4orf3 are potent in MRN inhibition. Our results show that adenoviral proteins E4orf3 and E4orf6, but not E1B55K, are effective also in vivo. Enhanced cell killing was due to inhibition of DSB repair resulting in persistent double-strand DNA damage, indicated by elevated phospho-H2AX levels at 24 h after irradiation. Conclusions: This knowledge can be applied for improving the treatment of malignant tumors, such as prostate cancer, for development of more effective combination therapies and minimizing radiation doses and reducing side effects.

  13. In vivo, cardiac-specific knockdown of target protein, Malic Enzyme-1, in rat via adenoviral delivery of DNA for non-native miRNA

    PubMed Central

    O'Donnell, J. Michael; Kalichira, Asha; Bi, Jian; Lewandowski, E. Douglas

    2013-01-01

    This study examines the feasibility of using the adenoviral delivery of DNA for a non-native microRNA to suppress expression of a target protein (cytosolic NADP+-dependent malic-enzyme 1, ME1) in whole heart in vivo, via an isolated-heart coronary perfusion approach. Complementary DNA constructs for ME1 microRNA were inserted into adenoviral vectors. Viral gene transfer to neonatal rat cardiomyocytes yielded 65% suppression of ME1 protein. This viral package was delivered to rat hearts in vivo (Adv.miR_ME1, 1013 vp/ml PBS) via coronary perfusion, using a cardiac-specific isolation technique. ME1 mRNA was reduced by 73% at 2-6 days post-surgery in heart receiving the Adv.miR_ME1. Importantly, ME1 protein was reduced by 66% (p<0.0002) at 5-6 days relative to sham-operated control hearts. Non-target protein expression for GAPDH, calsequestrin, and mitochondrial malic enzyme, ME3, were all unchanged. The non-target isoform, ME2, was unchanged at 2-5 days and reduced at day 6. This new approach demonstrates for the first time significant and acute silencing of target RNA translation and protein content in whole heart, in vivo, via non-native microRNA expression. PMID:22974418

  14. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  15. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

  16. Recombinant Ad35 adenoviral proteins as potent modulators of human T-cell activation

    PubMed Central

    Hay, Joanne; Carter, Darrick; Lieber, André; Astier, Anne L

    2015-01-01

    The protein CD46 protects cells from complement attack by regulating cleavage of C3b and C3d. CD46 also regulates the adaptive immune response by controlling T-cell activation and differentiation. Co-engagement of the T-cell receptor and CD46 notably drives T-cell differentiation by switching production of interferon-γ to secretion of anti-inflammatory interleukin-10. This regulatory pathway is altered in several chronic inflammatory diseases, highlighting its key role for immune homeostasis. The manipulation of the CD46 pathway may therefore provide a powerful means to regulate immune responses. Herein, we investigated the effect of recombinant proteins derived from the fibre knob of the adenovirus serotype 35 (Ad35) that uses CD46 as its entry receptor, on human T-cell activation. We compared the effects of Ad35K++, engineered to exhibit enhanced affinity to CD46, and of Ad35K−, mutated in the binding site for CD46. Ad35K++ profoundly affects T-cell activation by decreasing the levels of CD46 at the surface of primary T cells, and impairing T-cell co-activation, shown by decreased CD25 expression, reduced proliferation and lower secretion of interleukin-10 and interferon-γ. In contrast, Ad35K− acts a potent co-activator of T cells, enhancing T-cell proliferation and cytokine production. These data show that recombinant Ad35 proteins are potent modulators of human T-cell activation, and support their further development as potential drugs targeting T-cell responses. PMID:25251258

  17. Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

    PubMed Central

    Del Papa, Joshua; Parks, Robin J.

    2017-01-01

    Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics. PMID:28106842

  18. Regulation of Human Adenovirus Alternative RNA Splicing by the Adenoviral L4-33K and L4-22K Proteins

    PubMed Central

    Biasiotto, Roberta; Akusjärvi, Göran

    2015-01-01

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins. PMID:25636034

  19. Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins.

    PubMed

    Biasiotto, Roberta; Akusjärvi, Göran

    2015-01-28

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.

  20. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques

  1. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs.

    PubMed

    Flint, S J; Huang, Wenying; Goodhouse, Joseph; Kyin, Saw

    2005-06-20

    The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.

  2. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs

    SciTech Connect

    Flint, S.J. . E-mail: sjflint@molbio.princeton.edu; Huang, Wenying; Goodhouse, Joseph; Kyin, Saw

    2005-06-20

    The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.

  3. Enhancement of Protective Efficacy through Adenoviral Vectored Vaccine Priming and Protein Boosting Strategy Encoding Triosephosphate Isomerase (SjTPI) against Schistosoma japonicum in Mice

    PubMed Central

    Dai, Yang; Wang, Xiaoting; Tang, Jianxia; Zhao, Song; Xing, Yuntian; Dai, Jianrong; Jin, Xiaolin; Zhu, Yinchang

    2015-01-01

    Background Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice. Methodology/Principal Findings Adenoviral vectored vaccine (rAdV-SjTPI.opt) and recombinant protein vaccine (rSjTPI) were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice. Conclusions/Significance The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China. PMID:25793406

  4. Adenoviral E4 34K protein interacts with virus packaging components and may serve as the putative portal.

    PubMed

    Ahi, Yadvinder S; Hassan, Ahmed O; Vemula, Sai V; Li, Kunpeng; Jiang, Wen; Zhang, Guang Jun; Mittal, Suresh K

    2017-08-08

    Studies on dsDNA bacteriophages have revealed that a DNA packaging complex assembles at a special vertex called the 'portal vertex' and consists of a portal, a DNA packaging ATPase and other components. AdV protein IVa2 is presumed to function as a DNA packaging ATPase. However, a protein that functions as a portal is not yet identified in AdVs. To identify the AdV portal, we performed secondary structure analysis on a set of AdV proteins and compared them with the clip region of the portal proteins of bacteriophages phi29, SPP1 and T4. Our analysis revealed that the E4 34K protein of HAdV-C5 contains a region of strong similarity with the clip region of the known portal proteins. E4 34K was found to be present in empty as well as mature AdV particles. In addition, E4 34K co-immunoprecipitates and colocalizes with AdV packaging proteins. Immunogold electron microscopy demonstrated that E4 34K is located at a single site on the virus surface. Finally, tertiary structure prediction of E4 34K and its comparison with that of single subunits of Phi29, SPP1 and T4 portal proteins revealed remarkable similarity. In conclusion, our results suggest that E4 34K is the putative AdV portal protein.

  5. Chondrogenesis of human bone marrow-derived mesenchymal stem cells is modulated by complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2.

    PubMed

    Neumann, Alexander J; Alini, Mauro; Archer, Charles W; Stoddart, Martin J

    2013-06-01

    Currently available methods to treat articular cartilage defects still fail to demonstrate satisfactory outcomes for many patients. Functional tissue engineering using human bone marrow-derived mesenchymal stem cells (hMSCs) is a promising alternative approach for the treatment of these defects. This study strived to investigate the combined effect of complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2) on hMSC chondrogenesis. hMSCs were encapsulated in a fibrin hydrogel and seeded into biodegradable polyurethane (PU) scaffolds. A novel three-dimensional transduction protocol was used to transduce cells with an adenovirus encoding for BMP-2 (Ad.BMP-2). Control cells were left untransduced. Cells were cultured for 7 or 28 days in a chondropermessive medium, which lacks any exogenous growth factors. Thereby, the in vivo situation is mimicked more precisely. hMSCs in fibrin-PU composite scaffolds were either left as free-swelling controls or mechanically stimulated using a custom-built bioreactor system that is able to generate joint-like forces. Outcome parameters measured were BMP-2 concentration within the culture medium, and biochemical and gene expression analysis. Mechanical stimulation resulted in an upregulation of chondrogenic genes. Further, glycosaminoglycan (GAG)/DNA ratios were elevated in mechanically stimulated groups. Transduction with Ad.BMP-2 led to a pronounced upregulation of the gene aggrecan and an upregulation of Sox9 message after 7 days. Furthermore, a synergistic effect in combination with mechanical stimulation on collagen 2 message was detected after 7 days. This synergistic increase was more than 8-fold if compared to the additive effect of the application of each stimulus on its own. However, BMP-2 overexpression consistently resulted in a trend toward decreased GAG/DNA ratios in both mechanical stimulated and unloaded groups.

  6. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2.

    PubMed

    Neumann, Alexander J; Gardner, Oliver F W; Williams, Rebecca; Alini, Mauro; Archer, Charles W; Stoddart, Martin J

    2015-01-01

    Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a

  7. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2

    PubMed Central

    Neumann, Alexander J.; Gardner, Oliver F. W.; Williams, Rebecca; Alini, Mauro; Archer, Charles W.; Stoddart, Martin J.

    2015-01-01

    Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a

  8. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription.

    PubMed

    Miller, Daniel L; Rickards, Brenden; Mashiba, Michael; Huang, Wenying; Flint, S J

    2009-04-01

    The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.

  9. Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modification of p53

    PubMed Central

    DeHart, Caroline J.; Perlman, David H.

    2015-01-01

    ABSTRACT Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1–17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076–1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3

  10. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch.

    PubMed

    Gaillet, Bruno; Gilbert, Rénald; Amziani, Rachid; Guilbault, Claire; Gadoury, Christine; Caron, Antoine W; Mullick, Alaka; Garnier, Alain; Massie, Bernard

    2007-01-01

    To facilitate and accelerate the production of eukaryotic proteins with correct post-translational modifications, we have developed a protein production system based on the transduction of Chinese hamster ovary (CHO) cells using adenovirus vectors (AdVs). We have engineered a CHO cell line (CHO-cTA) that stably expresses the transactivator (cTA) of our newly developed cumate gene-switch transcription system. This cell line is adapted to suspension culture and can grow in serum-free and protein-free medium. To increase the transduction level of AdVs, we have also generated a cell line (CHO-cTA-CAR) that expresses additional amounts of the coxackievirus and adenovirus receptor (CAR) on its surface. Recombinant protein production was tested using an AdV carrying the secreted alkaline phosphatase (SEAP) under the control of the CR5 promoter, which is strongly and specifically activated by binding to cTA. The SEAP expression was linked to the expression of the green fluorescent protein (GFP) through an internal ribosome entry site (IRES) to facilitate titration of the AdV. We monitored SEAP expression on a daily basis for 9 days after transduction of CHO-cTA and CHO-cTA-CAR using different quantities of AdVs at 37 and 30 degrees C. Incubation at the latter temperature increased the production of SEAP at least 10-fold, and the presence of CAR increased the transduction level of the AdV. Maximum SEAP production (63 mg/L) was achieved at 6-7 days post-infection at 30 degrees C by transducing CHO-cTA-CAR with 500 infectious particles/cell. Because numerous AdVs can now be generated within a few weeks and large-scale production of AdVs is now a routine procedure, this system could be used to produce rapidly milligram quantities of a battery of recombinant proteins as well as for large-scale protein production.

  11. Resistance of Adenoviral DNA Replication to Aphidicolin Is Dependent on the 72-Kilodalton DNA-Binding Protein

    PubMed Central

    Foster, David A.; Hantzopoulos, Petros; Zubay, Geoffrey

    1982-01-01

    Aphidicolin is a highly specific inhibitor of DNA polymerase α and has been most useful for assessing the role of this enzyme in various replication processes (J. A. Huberman, Cell 23:647-648, 1981). Both nuclear DNA replication and simian virus 40 DNA replication are highly sensitive to this drug (Krokan et al., Biochemistry 18:4431-4443, 1979), whereas mitochondrial DNA synthesis is completely insensitive (Zimmerman et al., J. Biol. Chem. 255:11847-11852, 1980). Adenovirus DNA replication is sensitive to aphidicolin, but only at much higher concentrations. These patterns of sensitivity are seen both in vivo and in vitro (Krokan et al., Biochemistry 18:4431-4443, 1979). A temperature-sensitive mutant of adenovirus type 5 known as H5ts125 is able to complete but not initiate new rounds of replication at nonpermissive temperatures (P. C. van der Vliet and J. S. Sussenbach, Virology 67:415-426, 1975). When cells infected with H5ts125 were shifted from permissive (33°C) to nonpermissive (41°C) conditions, the residual DNA synthesis (elongation) showed a striking increase in sensitivity to aphidicolin. The temperature-sensitive mutation of H5ts125 is in the gene for the 72-kilodalton single-stranded DNA-binding protein. This demonstrated that the increased resistance to aphidicolin shown by adenovirus DNA replication was dependent on that protein. It also supports an elongation role for both DNA polymerase α and the 72-kilodalton single-stranded DNA-binding protein in adenovirus DNA replication. Further support for an elongation role of DNA polymerase α came from experiments with permissive temperature conditions and inhibiting levels of aphidicolin in which it was shown that newly initiated strands failed to elongate to completion. Images PMID:6809958

  12. Adenoviral gene delivery for HIV-1 vaccination.

    PubMed

    Vanniasinkam, T; Ertl, H C J

    2005-04-01

    The AIDS epidemic continues to spread throughout nations of Africa and Asia and is by now threatening to undermine the already frail infrastructure of developing countries in Sub-Saharan Africa that are hit the hardest. The only option to stem this epidemic is through inexpensive and efficacious vaccines that prevent or at least blunt HIV-1 infections. Despite decades of pre-clinical and clinical research such vaccines remain elusive. Most anti-viral vaccines act by inducing protective levels of virus-neutralizing antibodies. The envelope protein of HIV-1, the sole target of neutralizing antibodies, is constantly changing due to mutations, B cell epitopes are masked by heavy glycosylation and the protein's structural unfolding upon binding to its CD4 receptor and chemokine co-receptors. Efforts to induce broadly cross-reactive virus-neutralizing antibodies able to induce sterilizing or near sterilizing immunity to HIV-1 have thus failed. Studies have indicated that cell-mediated immune responses and in particular CD8+ T cell responses to internal viral proteins may control HIV-1 infections without necessarily preventing them. Adenoviral vectors expressing antigens of HIV-1 are eminently suited to stimulate potent CD8+ T cell responses against transgene products, such as antigens of HIV-1. They performed well in pre-clinical studies in rodents and nonhuman primates and are currently in human clinical trials. This review summarizes the published literature on adenoviral vectors as vaccine carriers for HIV-1 and discusses advantages and disadvantages of this vaccine modality.

  13. High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper" Proteins.

    PubMed

    Gwiazda, Kamila S; Grier, Alexandra E; Sahni, Jaya; Burleigh, Stephen M; Martin, Unja; Yang, Julia G; Popp, Nicholas A; Krutein, Michelle C; Khan, Iram F; Jacoby, Kyle; Jensen, Michael C; Rawlings, David J; Scharenberg, Andrew M

    2016-09-29

    Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.

  14. Adenoviral vectors can impair adrenocortical steroidogenesis: Clinical implications for natural infections and gene therapy

    PubMed Central

    Alesci, Salvatore; Ramsey, Walter J.; Bornstein, Stefan R.; Chrousos, George P.; Hornsby, Peter J.; Benvenga, Salvatore; Trimarchi, Francesco; Ehrhart-Bornstein, Monika

    2002-01-01

    Recombinant adenoviral vectors are effective in transferring foreign genes to a variety of cells and tissue types, both in vitro and in vivo. However, during the gene transfer, they may alter the principal function and local environment of transfected cells. Increasing evidence exists for a selective adrenotropism of adenovirus during infections and gene transfer. Therefore, using bovine adrenocortical cells in primary culture, we analyzed the influence of different adenoviral deletion mutants on cell morphology and physiology. Transfection of cells with an E1/E3-deleted adenoviral vector, engineered to express a modified form of the Aequorea victoria green fluorescent protein, was highly efficient, as documented by fluorescent microscopy. Ultrastructural analysis, however, demonstrated nuclear fragmentation and mitochondrial alterations in addition to intranuclear viral particles. Basal secretion of 17-OH-progesterone, 11-deoxycortisol, and cortisol was significantly increased by E1/E3-deleted vectors; yet, the corticotropin-stimulated release of these steroids was decreased. Interestingly, neither purified viral capsids nor E3/E4-deleted adenoviral mutants altered basal and stimulated steroidogenesis of adrenocortical cells. An intact adrenal response is crucial for adaptation to stress and survival. Therefore, the implications of our findings need to be considered in patients with adenoviral infections and those undergoing clinical studies using adenoviral gene transfer. At the same time, the high level of transfection in adrenocortical cells might make appropriately modified adenoviral vectors suitable for gene therapy of adrenocortical carcinomas with poor prognosis. PMID:12032309

  15. Endothelial IL-33 Expression Is Augmented by Adenoviral Activation of the DNA Damage Machinery.

    PubMed

    Stav-Noraas, Tor Espen; Edelmann, Reidunn J; Poulsen, Lars La Cour; Sundnes, Olav; Phung, Danh; Küchler, Axel M; Müller, Fredrik; Kamen, Amine A; Haraldsen, Guttorm; Kaarbø, Mari; Hol, Johanna

    2017-04-15

    IL-33, required for viral clearance by cytotoxic T cells, is generally expressed in vascular endothelial cells in healthy human tissues. We discovered that endothelial IL-33 expression was stimulated as a response to adenoviral transduction. This response was dependent on MRE11, a sensor of DNA damage that can also be activated by adenoviral DNA, and on IRF1, a transcriptional regulator of cellular responses to viral invasion and DNA damage. Accordingly, we observed that endothelial cells responded to adenoviral DNA by phosphorylation of ATM and CHK2 and that depletion or inhibition of MRE11, but not depletion of ATM, abrogated IL-33 stimulation. In conclusion, we show that adenoviral transduction stimulates IL-33 expression in endothelial cells in a manner that is dependent on the DNA-binding protein MRE11 and the antiviral factor IRF1 but not on downstream DNA damage response signaling. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. pH shift assembly of adenoviral serotype 5 capsid protein nanosystems for enhanced delivery of nanoparticles, proteins and nucleic acids.

    PubMed

    Rao, Vidhya R; Upadhyay, Arun K; Kompella, Uday B

    2013-11-28

    Empty adenovirus serotype 5 (Ad5) capsids devoid of viral genome were developed as a novel delivery system for nanoparticles, proteins, and nucleic acids. Ad5 capsids of 110 nm diameter undergo an increase in particle size to 1637 nm in 1mM acetic acid at pH4.0 and then shrink to 60 nm, following pH reversal to 7.4. These pH shifts induced reversible changes in capsid zeta potential and secondary structure and irreversible changes in tertiary structure of capsid proteins. Using pH shift dependent changes in capsid size and structure, 20 nm fluorescent nanoparticles, FITC-BSA, and Alexa Fluor® 488 conjugated siRNA were encapsulated with high efficiency in Ad5 capsids, as confirmed by electron microscopy and/or flow cytometry. HEK cell uptake with capsid delivery system was 7.8-, 7.4-, and 2.9-fold greater for nanoparticles, FITC-BSA, and Alexa-siRNA, respectively, when compared to plain solutes. Physical mixtures of capsids and fluorescent solutes exhibited less capsid associated fluorescence intensity and cell uptake. Further, unlike physical mixture, pH shift assembled Ad5 capsids protected siRNA from RNase degradation. Ad5 capsids before and after pH shift exhibited endolysosomal escape. Thus, empty Ad5 capsids can encapsulate a variety of solutes based on pH shift assembly, resulting in enhanced cellular delivery. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Using multivalent adenoviral vectors for HIV vaccination.

    PubMed

    Gu, Linlin; Li, Zan C; Krendelchtchikov, Alexandre; Krendelchtchikova, Valentina; Wu, Hongju; Matthews, Qiana L

    2013-01-01

    Adenoviral vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. For effective vaccine development it is often necessary to express or present multiple antigens to the immune system to elicit an optimal vaccine as observed preclinically with mosaic/polyvalent HIV vaccines or malaria vaccines. Due to the wide flexibility of Ad vectors they are an ideal platform for expressing large amounts of antigen and/or polyvalent mosaic antigens. Ad vectors that display antigens on their capsid surface can elicit a robust humoral immune response, the "antigen capsid-incorporation" strategy. The adenoviral hexon protein has been utilized to display peptides in the majority of vaccine strategies involving capsid incorporation. Based on our abilities to manipulate hexon HVR2 and HVR5, we sought to manipulate HVR1 in the context of HIV antigen display for the first time ever. More importantly, peptide incorporation within HVR1 was utilized in combination with other HVRs, thus creating multivalent vectors. To date this is the first report where dual antigens are displayed within one Ad hexon particle. These vectors utilize HVR1 as an incorporation site for a seven amino acid region of the HIV glycoprotein 41, in combination with six Histidine incorporation within HVR2 or HVR5. Our study illustrates that these multivalent antigen vectors are viable and can present HIV antigen as well as His6 within one Ad virion particle. Furthermore, mouse immunizations with these vectors demonstrate that these vectors can elicit a HIV and His6 epitope-specific humoral immune response.

  18. Targeting different types of human meningioma and glioma cells using a novel adenoviral vector expressing GFP-TRAIL fusion protein from hTERT promoter

    PubMed Central

    2011-01-01

    Objective The objective of this study was to evaluate the anti-tumor effects of Ad/gTRAIL (an adenoviral vector in which expression of GFP and TRAIL is driven by a human telomerase reverse transcriptase promoter, hTERT) on malignant meningiomas and gliomas. Background Gliomas and meningiomas are the two most common types of human brain tumors. Currently there is no effective cure for recurrent malignant meningiomas or for gliomas. Ad/gTRAIL has been shown to be effective in killing selected lung, colon and breast cancer cells, but there have been no studies reporting its antitumor effects on malignant meningiomas. Therefore, we tested the antitumor effect of Ad/gTRAIL for the first time in human malignant meningioma and glioma cell lines, and in intracranial M6 and U87 xenografts. Methods Materials and Methods: Human malignant meningioma and glioma cells were infected with adenoviruses, Ad/gTRAIL and Ad/CMV-GFP. Cell viability was determined by proliferation assay. FACS analysis and quantification of TRAIL were used to measure apoptosis in these cells. We injected Ad/gTRAIL viruses in intracranial M6 and U87 xenografts, and measured the brain tumor volume, quantified apoptosis by TUNEL assay in the brain tumor tissue. Results Our studies demonstrate that in vitro/in vivo treatment with Ad/gTRAIL virus resulted in significant increase of TRAIL activity, and elicited a greater tumor cell apoptosis in malignant brain tumor cells as compared to treatment with the control, Ad/CMV-GFP virus without TRAIL activity. Conclusions We showed for the first time that adenovirus Ad/gTRAIL had significant antitumor effects against high grade malignant meningiomas as well as gliomas. Although more work needs to be done, our data suggests that Ad/gTRAIL has the potential to be useful as a tool against malignant brain tumors. PMID:22035360

  19. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  20. Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines.

    PubMed

    Navid, Fariba; Mischen, Blaine T; Helman, Lee J

    2004-01-01

    Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance adenoviral uptake in six rhabdomyosarcoma cell lines.Methods. Differences in adenoviral uptake in the presence and absence of depsipeptide (FR901228) were assessed using an adenoviral construct tagged with green fluorescent protein. Changes in CAR and alpha(v) integrin expression RMS in response to pretreatment with depsipeptide (FR901128) was determined using RT-PCR.Results. Pretreatment of five of six RMS cell lines with 0.5 ng/ml of depsipeptide (FR901228) for 72 h resulted in increased viral uptake as assessed by green fluorescent protein expression. RT-PCR analysis for CAR showed that in four of these five cell lines, CAR expression was increased 2.8-8.1-fold in cells treated with depsipeptide (FR901228) as compared to control. alpha(v) integrin expression was substantially increased in the one cell line, RH5, which showed increased GFP expression in response to depsipeptide (FR901228) pretreatment but a minimal increase in CAR expression.Conclusions. Depsipeptide (FR901228) can be used as a vehicle to enhance adenoviral transduction in a majority of RMS cells. The mechanism of increased viral uptake appears to mediate via upregulation of CAR.

  1. Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines

    PubMed Central

    Mischen, Blaine T.; Helman, Lee J.

    2004-01-01

    Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance adenoviral uptake in six rhabdomyosarcoma cell lines. Methods. Differences in adenoviral uptake in the presence and absence of depsipeptide (FR901228) were assessed using an adenoviral construct tagged with green fluorescent protein. Changes in CAR and αv integrin expression RMS in response to pretreatment with depsipeptide (FR901128) was determined using RT-PCR. Results. Pretreatment of five of six RMS cell lines with 0.5 ng/ml of depsipeptide (FR901228) for 72 h resulted in increased viral uptake as assessed by green fluorescent protein expression. RT-PCR analysis for CAR showed that in four of these five cell lines, CAR expression was increased 2.8–8.1-fold in cells treated with depsipeptide (FR901228) as compared to control. αv integrin expression was substantially increased in the one cell line, RH5, which showed increased GFP expression in response to depsipeptide (FR901228) pretreatment but a minimal increase in CAR expression. Conclusions. Depsipeptide (FR901228) can be used as a vehicle to enhance adenoviral transduction in a majority of RMS cells. The mechanism of increased viral uptake appears to mediate via upregulation of CAR. PMID:18521390

  2. Intramarrow cytokine gene transfer by adenoviral vectors in dogs.

    PubMed

    Foley, R; Ellis, R; Walker, I; Wan, Y; Carter, R; Boyle, M; Braciak, T; Addison, C; Graham, F; Gauldie, J

    1997-03-20

    Daily systemic administration of hematopoietic growth factors can be associated with dose-limiting systemic side effects. To overcome this, we have investigated hematopoietic cytokine gene transfer to the marrow cavity of dogs by direct intramarrow injection of adenoviral vectors. In marrow culture, replication-deficient (E1-deleted) adenoviral vectors were able to transduce marrow stromal cells, demonstrating 30-fold greater expression than from other marrow cell types. High-level (ng/ml) cytokine production from transduced stromal cells persisted for 14 days in culture. Because adenovectors could efficiently transduce marrow stromal cells in culture, we investigated if stromal cells could also be transduced in vivo following direct intramarrow vector injection. Adenovectors with genes for interleukin 6 (IL-6) and Lac Z (beta-galactosidase) were injected directly into the marrow cavity of dogs resulting in protein expression localized to within the treated marrow. To evaluate this approach further in dogs, we constructed a vector expressing biologically active canine granulocyte-macrophage colony stimulating factor (GM-CSF). 293 cells infected with ADGM-CSF demonstrated prevalent GM-CSF mRNA by Northern blot and 135 +/- 30 ng/ml of protein as measured by enzyme-linked immunosorbent assay (ELISA). In vitro bioactivity of protein expressed was confirmed by canine GM colony-forming assay (CFU-GM). In vivo high-level protein production was noted in supernatants of marrow aspirates 72 hr following direct intramarrow administration of ADGM-CSF (baseline mean +/- SEM, 27 +/- 22 ng/ml, 72-hr sample 921 +/- 461 ng/ml). A localized myeloid expansion of marrow and significant peripheral leukocytosis (neutrophilia) were noted in all ADGM-CSF-treated dogs. Peripheral blood changes lasted for up to 3 weeks in dogs following single intramarrow injection. Thus, adenoviral cytokine expression from the marrow of a single large bone (ilium) led to compartmentalized expression of

  3. Polymer-enhanced adenoviral transduction of CAR-negative bladder cancer cells.

    PubMed

    Kasman, Laura M; Barua, Sutapa; Lu, Ping; Rege, Kaushal; Voelkel-Johnson, Christina

    2009-01-01

    The application of adenoviral gene therapy for cancer is limited by immune clearance of the virus as well as poor transduction efficiency, since the protein used for viral entry (CAR) serves physiological functions in adhesion and is frequently decreased among cancer cells. Cationic polymers have been used to enhance adenoviral gene delivery, but novel polymers with low toxicity are needed to realize this approach. We recently identified polymers that were characterized by high transfection efficiency of plasmid DNA and a low toxicity profile. In this study we evaluated the novel cationic polymer EGDE-3,3' for its potential to increase adenoviral transduction of the CAR-negative bladder cancer cell line TCCSUP. The amount of adenovirus required to transduce 50-60% of the cells was reduced 100-fold when Ad.GFP was preincubated with the EGDE-3,3' polymer. Polyethyleneimine (pEI), a positively charged polymer currently used as a standard for enhancing adenoviral transduction, also increased infectivity, but transgene expression was consistently higher with EGDE-3,3'. In addition, EGDE-3,3'-supplemented transduction of an adenovirus expressing an apoptosis inducing transgene, Ad.GFP-TRAIL, significantly enhanced the amount of cell death. Thus, our results indicate that novel biocompatible polymers may be useful in improving the delivery of adenoviral gene therapy.

  4. A World History Sub-Unit: Teaching about Turkey.

    ERIC Educational Resources Information Center

    Lynn, Karen

    This document is a sub-unit teaching plan for world history teachers who want to use multicultural concepts in the world history curriculum. The objective explored includes a student response to the Turkish question of "Who are we"? Teacher preparation involves defining social and cultural roots and outlining periods of Turkish history.…

  5. Intrapleural Adenoviral-mediated Endothelial Cell Protein C Receptor Gene Transfer Suppresses the Progression of Malignant Pleural Mesothelioma in a Mouse Model

    PubMed Central

    Keshava, Shiva; Rao, L. Vijaya Mohan; Pendurthi, Usha R.

    2016-01-01

    Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer with a high mortality rate as it responds poorly to standard therapeutic interventions. Our recent studies showed that expression of endothelial cell protein C receptor (EPCR) in MPM cells suppresses tumorigenicity. The present study was aimed to investigate the mechanism by which EPCR suppresses MPM tumor growth and evaluate whether EPCR gene therapy could suppress the progression of MPM in a mouse model of MPM. Measurement of cytokines from the pleural lavage showed that mice implanted with MPM cells expressing EPCR had elevated levels of IFNγ and TNFα compared to mice implanted with MPM cells lacking EPCR. In vitro studies demonstrated that EPCR expression renders MPM cells highly susceptible to IFNγ + TNFα-induced apoptosis. Intrapleural injection of Ad.EPCR into mice with an established MPM originating from MPM cells lacking EPCR reduced the progression of tumor growth. Ad.EPCR treatment elicited recruitment of macrophages and NK cells into the tumor microenvironment and increased IFNγ and TNFα levels in the pleural space. Ad.EPCR treatment resulted in a marked increase in tumor cell apoptosis. In summary, our data show that EPCR expression in MPM cells promotes tumor cell apoptosis, and intrapleural EPCR gene therapy suppresses MPM progression. PMID:27833109

  6. Immunocompromised Children with Severe Adenoviral Respiratory Infection

    PubMed Central

    Tylka, Joanna C.; McCrory, Michael C.; Gertz, Shira J.; Custer, Jason W.; Spaeder, Michael C.

    2016-01-01

    Purpose. To investigate the impact of severe respiratory adenoviral infection on morbidity and case fatality in immunocompromised children. Methods. Combined retrospective-prospective cohort study of patients admitted to the intensive care unit (ICU) in four children's hospitals with severe adenoviral respiratory infection and an immunocompromised state between August 2009 and October 2013. We performed a secondary case control analysis, matching our cohort 1 : 1 by age and severity of illness score with immunocompetent patients also with severe respiratory adenoviral infection. Results. Nineteen immunocompromised patients were included in our analysis. Eleven patients (58%) did not survive to hospital discharge. Case fatality was associated with cause of immunocompromised state (p = 0.015), multiple organ dysfunction syndrome (p = 0.001), requirement of renal replacement therapy (p = 0.01), ICU admission severity of illness score (p = 0.011), and treatment with cidofovir (p = 0.005). Immunocompromised patients were more likely than matched controls to have multiple organ dysfunction syndrome (p = 0.01), require renal replacement therapy (p = 0.02), and not survive to hospital discharge (p = 0.004). One year after infection, 43% of immunocompromised survivors required chronic mechanical ventilator support. Conclusions. There is substantial case fatality as well as short- and long-term morbidity associated with severe adenoviral respiratory infection in immunocompromised children. PMID:27242924

  7. Adenoviral delivery of human and viral IL-10 in murine sepsis.

    PubMed

    Minter, R M; Ferry, M A; Murday, M E; Tannahill, C L; Bahjat, F R; Oberholzer, C; Oberholzer, A; LaFace, D; Hutchins, B; Wen, S; Shinoda, J; Copeland, E M; Moldawer, L L

    2001-07-15

    Adenovirus (Ad) gene therapy has been proposed as a drug-delivery system for the targeted administration of protein-based therapies, including growth factors and biological response modifiers. However, inflammation associated with Ad transduction has raised concern about its safety and efficacy in acute inflammatory diseases. In the present report, intratracheal and i.v. administration of a first-generation adenoviral recombinant (E1,E3 deleted) either containing an empty cassette or expressing the anti-inflammatory cytokines viral or human IL-10 (IL-10) was administered to mice subjected to zymosan-induced multisystem organ failure or to acute necrotizing pancreatitis. Pretreatment of mice with the intratracheal instillation of Ad expressing human IL-10 or viral IL-10 reduced weight loss, attenuated the proinflammatory cytokine response, and reduced mortality in the zymosan-induced model, whereas pretreatment with a control adenoviral recombinant did not significantly exacerbate the response. Pretreatment of mice with pancreatitis using adenoviral vectors expressing IL-10 significantly reduced the degree of pancreatic and liver injury and liver inflammation when administered systemically, but not intratracheally. We conclude that adenoviral vectors can be administered prophylactically in acute inflammatory syndromes, and expression of the anti-inflammatory protein IL-10 can be used to suppress the underlying inflammatory process.

  8. Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.

    PubMed

    Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B

    2012-09-01

    The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.

  9. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  10. Peptide targeting of adenoviral vectors to augment tumor gene transfer.

    PubMed

    Ballard, E N; Trinh, V T; Hogg, R T; Gerard, R D

    2012-07-01

    Adenovirus serotype 5 remains one of the most promising vectors for delivering genetic material to cancer cells for imaging or therapy, but optimization of these agents to selectively promote tumor cell infection is needed to further their clinical development. Peptide sequences that bind to specific cell surface receptors have been inserted into adenoviral capsid proteins to improve tumor targeting, often in the background of mutations designed to ablate normal ligand:receptor interactions and thereby reduce off target effects and toxicities in non-target tissues. Different tumor types also express highly variable complements of cell surface receptors, so a customized targeting strategy using a particular peptide in the context of specific adenoviral mutations may be needed to achieve optimal efficacy. To further investigate peptide targeting strategies in adenoviral vectors, we used a set of peptide motifs originally isolated using phage display technology that evince tumor specificity in vivo. To demonstrate their abilities as targeting motifs, we genetically incorporated these peptides into a surface loop of the fiber capsid protein to construct targeted adenovirus vectors. We then systematically evaluated the ability of these peptide targeted vectors to infect several tumor cell types, both in vitro and in vivo, in a variety of mutational backgrounds designed to reduce CAR and/or HSG-mediated binding. Results from this study support previous observations that peptide insertions in the HI loop of the fiber knob domain are generally ineffective when used in combination with HSG detargeting mutations. The evidence also suggests that this strategy can attenuate other fiber knob interactions, such as CAR-mediated binding, and reduce overall viral infectivity. The insertion of peptides into fiber proved more effective for targeting tumor cell types expressing low levels of CAR receptor, as this strategy can partially compensate for the very low infectivity of wild

  11. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  12. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    PubMed

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+) T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+) T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+) T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  13. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells

    SciTech Connect

    Cardoso, F.M.; Kato, Sayuri E.M.; Huang Wenying; Flint, S. Jane; Gonzalez, Ramon A.

    2008-09-01

    It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.

  14. Extensions to the D-Cam sub-unit architecture

    NASA Astrophysics Data System (ADS)

    Ryan, Padraig; Connell, Joseph

    2005-06-01

    Multispectral imaging produces large amounts of data which extend processing, transmission and storage systems to their upper limits. Although there are several interface standards specific to image data acquisition, such as CameraLink, it is Firewire which provides a high-speed data bus, integrated control capability, without loss of flexibility, and which is commonly available as a low cost solution. The class of multispectral imaging requires a different treatment of the processing principals than standard imaging. The same spatial region is captured multiple times using different optical wavelengths. This technique finds application in such diverse areas as coastal monitoring, fruit sorting and automated agriculture. Modifications and additional features to the camera operating and configuration parameters are therefore required which are not generally present with conventional imaging sensors. This paper describes extensions to the IIDC Digital Camera (D-Cam) specification in the development of a Firewire technology platform for transmitting the data structures described and for providing real-time, online control of spectral information acquisition. Additionally, it describes how a set of registers in the sub-unit architecture of the Firewire protocol is augmented to accommodate the demands of a multispectral system. The extensions are specification conformant and do not alter underlining compliance with the base standard. The paper also describes the implementation of the extended D-Cam in the Firewire subsystem of a smart multispectral camera used in commercial applications.

  15. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells.

    PubMed

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-04-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.

  16. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

    PubMed Central

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-01-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. PMID:27274908

  17. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers

    SciTech Connect

    Oestberg, Sara; Toermaenen Persson, Heidi; Akusjaervi, Goeran

    2012-11-25

    The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which is critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.

  18. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers.

    PubMed

    Östberg, Sara; Törmänen Persson, Heidi; Akusjärvi, Göran

    2012-11-25

    The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3' splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which is critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.

  19. A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells

    PubMed Central

    Buo, Atum M; Williams, Mark S; Kerr, Jaclyn P; Stains, Joseph P

    2016-01-01

    We report here a method for the use of poly-l-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. PMID:27547486

  20. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  1. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy

    PubMed Central

    Zhang, L; Hedjran, F; Larson, C; Perez, G L; Reid, T

    2015-01-01

    Oncolytic adenoviruses are under investigation as a promising novel strategy for cancer immunotherapeutics. Unfortunately, there is no immunocompetent mouse cancer model to test oncolytic adenovirus because murine cancer cells are generally unable to produce infectious viral progeny from human adenoviruses. We find that the murine K-ras-induced lung adenocarcinoma cell line ADS-12 supports adenoviral infection and generates infectious viral progeny. ADS-12 cells express the coxsackie and adenovirus receptor and infected ADS-12 cells express the viral protein E1A. We find that our previously described oncolytic virus, adenovirus TAV-255 (AdTAV-255), kills ADS-12 cells in a dose- and time-dependent manner. We investigated ADS-12 cells as an in-vivo model system for replicating oncolytic adenoviruses. Subcutaneous injection of ADS-12 cells into immunocompetent 129 mice led to tumor formation in all injected mice. Intratumoral injection of AdTAV-255 in established tumors causes a significant reduction in tumor growth. This model system represents the first fully immunocompetent mouse model for cancer treatment with replicating oncolytic adenoviruses, and therefore will be useful to study the therapeutic effect of oncolytic adenoviruses in general and particularly immunostimulatory viruses designed to evoke an antitumor immune response. PMID:25525035

  2. Clinical adenoviral gene therapy for prostate cancer.

    PubMed

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  3. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    PubMed

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Emerging adenoviral vectors for stable correction of genetic disorders.

    PubMed

    Jager, Lorenz; Ehrhardt, Anja

    2007-08-01

    Recent drawbacks in treating patients with severe combined immunodeficiency disorders with retroviral vectors underline the importance of generating novel tools for stable transduction of mammalian cells. Substantial progress has been made over the recent years which may offer important steps towards stable and more importantly safer correction of genetic diseases. This article discusses recent advances for stable transduction of target cells based on adenoviral gene transfer. There is accumulating evidence that recombinant adenoviral vectors (AdVs) based on various human serotypes with a broad cellular tropism and adenoviruses (Ads) from different species will play an important role in future gene therapy applications. In combination with recombinant AdVs for somatic integration these gene transfer vectors offer high transduction efficiencies with potentially safer integration patterns. Other approaches for persistent transgene expression include excision of stable episomes from the adenoviral vector genome, but also long-term persistence of the complete adenoviral vector genome as an episomal DNA molecule was demonstrated and exemplified by the treatment of various genetic diseases in small and large animal models. This review displays advantages but also limitations of these Ad based vector systems. This is the perfect time to pursue such approaches because alternative strategies for stable transduction of mammalian cells undergoing many cell divisions are urgently needed. Looking into the future, we believe that a combination of different components from different viral vectors in concert with non-viral vector systems will be successful in designing significantly optimized transfer vehicles for a broad range of different genetic diseases.

  5. Altered hyaluronic acid content in tear fluid of patients with adenoviral conjunctivitis.

    PubMed

    Dreyfuss, Juliana L; Regatieri, Caio V; Coelho, Bruno; Barbosa, José B; De Freitas, Denise; Nader, Helena B; Martins, João R

    2015-03-01

    The adenoviral conjunctivitis is one of the biggest causes of conjunctival infection in the world. Conjunctivitis causes relatively nonspecific symptoms, as hyperaemia and chemosis. Even after biomicroscopy, complex laboratory tests, such as viral culture, are necessary to identify the pathogen or its etiology. To contribute to the better understanding of the pathobiology of the adenoviral conjunctivitis, the tear fluids of patients with unilateral acute adenovirus conjunctivitis (UAAC), normal donors (control) and patients with allergic conjunctivitis were analyzed. Tear samples were collected with Schirmer strips from control, allergic conjunctivitis and UAAC patients, diagnosed by clinical signs. UAAC tears were tested positive in viral cultures. After the elution, HA was quantified using an ELISA-like fluorometric assay and the protein profile was determined by SDS-PAGE. A profound increase in the HA tear content in UAAC patients was found when compared to control and ALC. This HA increase in UAAC tears remarkably was not observed in tears from contralateral eyes without clinical signs, nor in allergic conjunctivitis. In addition a distinct profile of UAAC tear proteins was observed in patients with UAAC. The quantification of HA in the tear fluid is a rapid, sensitive and specific test. This molecule might be a biomarker candidate for acute conjunctivitis.

  6. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice.

    PubMed

    Guidotti, J E; Mignon, A; Haase, G; Caillaud, C; McDonell, N; Kahn, A; Poenaru, L

    1999-05-01

    The severe neurodegenerative disorder, Tays-Sachs disease, is caused by a beta-hexosaminidase alpha-subunit deficiency which prevents the formation of lysosomal heterodimeric alpha-beta enzyme, hexosaminidase A (HexA). No treatment is available for this fatal disease; however, gene therapy could represent a therapeutic approach. We previously have constructed and characterized, in vitro, adenoviral and retroviral vectors coding for alpha- and beta-subunits of the human beta-hexosaminidases. Here, we have determined the in vivo strategy which leads to the highest HexA activity in the maximum number of tissues in hexA -deficient knock-out mice. We demonstrated that intravenous co-administration of adenoviral vectors coding for both alpha- and beta-subunits, resulting in preferential liver transduction, was essential to obtain the most successful results. Only the supply of both subunits allowed for HexA overexpression leading to massive secretion of the enzyme in serum, and full or partial enzymatic activity restoration in all peripheral tissues tested. The enzymatic correction was likely to be due to direct cellular transduction by adenoviral vectors and/or uptake of secreted HexA by different organs. These results confirmed that the liver was the preferential target organ to deliver a large amount of secreted proteins. In addition, the need to overexpress both subunits of heterodimeric proteins in order to obtain a high level of secretion in animals defective in only one subunit is emphasized. The endogenous non-defective subunit is otherwise limiting.

  7. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. PED/PEA-15 modulates coxsackievirus-adenovirus receptor expression and adenoviral infectivity via ERK-mediated signals in glioma cells.

    PubMed

    Botta, Ginevra; Perruolo, Giuseppe; Libertini, Silvana; Cassese, Angela; Abagnale, Antonella; Beguinot, Francesco; Formisano, Pietro; Portella, Giuseppe

    2010-09-01

    Glioblastoma multiforme (GBM) is the most aggressive human brain tumor, and is highly resistant to chemo- and radiotherapy. Selectively replicating oncolytic viruses represent a novel approach for the treatment of neoplastic diseases. Coxsackievirus-adenovirus receptor (CAR) is the primary receptor for adenoviruses, and loss or reduction of CAR greatly decreases adenoviral entry. Understanding the mechanisms regulating CAR expression and localization will contribute to increase the efficacy of oncolytic adenoviruses. Two glioma cell lines (U343MG and U373MG) were infected with the oncolytic adenovirus dl922-947. U373MG cells were more susceptible to cell death after viral infection, compared with U343MG cells. The enhanced sensitivity was paralleled by increased adenoviral entry and CAR mRNA and protein levels in U373MG cells. In addition, U373MG cells displayed a decreased ERK1/2 (extracellular signal-regulated kinase-1/2) nuclear-to-cytosolic ratio, compared with U343MG cells. Intracellular content of PED/PEA-15, an ERK1/2-interacting protein, was also augmented in these cells. Both ERK2 overexpression and genetic silencing of PED/PEA-15 by antisense oligonucleotides increased ERK nuclear accumulation and reduced CAR expression and adenoviral entry. Our data indicate that dl922-947 could represent an useful tool for the treatment of GBM and that PED/PEA-15 modulates CAR expression and adenoviral entry, by sequestering ERK1/2.

  9. Accelerated evolution and coevolution drove the evolutionary history of AGPase sub-units during angiosperm radiation

    PubMed Central

    Corbi, Jonathan; Dutheil, Julien Y.; Damerval, Catherine; Tenaillon, Maud I.; Manicacci, Domenica

    2012-01-01

    Background and Aims ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch biosynthesis. In the green plant lineage, it is composed of two large (LSU) and two small (SSU) sub-units encoded by paralogous genes, as a consequence of several rounds of duplication. First, our aim was to detect specific patterns of molecular evolution following duplication events and the divergence between monocotyledons and dicotyledons. Secondly, we investigated coevolution between amino acids both within and between sub-units. Methods A phylogeny of each AGPase sub-unit was built using all gymnosperm and angiosperm sequences available in databases. Accelerated evolution along specific branches was tested using the ratio of the non-synonymous to the synonymous substitution rate. Coevolution between amino acids was investigated taking into account compensatory changes between co-substitutions. Key Results We showed that SSU paralogues evolved under high functional constraints during angiosperm radiation, with a significant level of coevolution between amino acids that participate in SSU major functions. In contrast, in the LSU paralogues, we identified residues under positive selection (1) following the first LSU duplication that gave rise to two paralogues mainly expressed in angiosperm source and sink tissues, respectively; and (2) following the emergence of grass-specific paralogues expressed in the endosperm. Finally, we found coevolution between residues that belong to the interaction domains of both sub-units. Conclusions Our results support the view that coevolution among amino acid residues, especially those lying in the interaction domain of each sub-unit, played an important role in AGPase evolution. First, within SSU, coevolution allowed compensating mutations in a highly constrained context. Secondly, the LSU paralogues probably acquired tissue-specific expression and regulatory properties via the coevolution between sub-unit interacting domains. Finally, the

  10. Accelerated evolution and coevolution drove the evolutionary history of AGPase sub-units during angiosperm radiation.

    PubMed

    Corbi, Jonathan; Dutheil, Julien Y; Damerval, Catherine; Tenaillon, Maud I; Manicacci, Domenica

    2012-03-01

    ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch biosynthesis. In the green plant lineage, it is composed of two large (LSU) and two small (SSU) sub-units encoded by paralogous genes, as a consequence of several rounds of duplication. First, our aim was to detect specific patterns of molecular evolution following duplication events and the divergence between monocotyledons and dicotyledons. Secondly, we investigated coevolution between amino acids both within and between sub-units. A phylogeny of each AGPase sub-unit was built using all gymnosperm and angiosperm sequences available in databases. Accelerated evolution along specific branches was tested using the ratio of the non-synonymous to the synonymous substitution rate. Coevolution between amino acids was investigated taking into account compensatory changes between co-substitutions. We showed that SSU paralogues evolved under high functional constraints during angiosperm radiation, with a significant level of coevolution between amino acids that participate in SSU major functions. In contrast, in the LSU paralogues, we identified residues under positive selection (1) following the first LSU duplication that gave rise to two paralogues mainly expressed in angiosperm source and sink tissues, respectively; and (2) following the emergence of grass-specific paralogues expressed in the endosperm. Finally, we found coevolution between residues that belong to the interaction domains of both sub-units. Our results support the view that coevolution among amino acid residues, especially those lying in the interaction domain of each sub-unit, played an important role in AGPase evolution. First, within SSU, coevolution allowed compensating mutations in a highly constrained context. Secondly, the LSU paralogues probably acquired tissue-specific expression and regulatory properties via the coevolution between sub-unit interacting domains. Finally, the pattern we observed during LSU evolution is consistent

  11. Oral Immunization of Rhesus Macaques with Adenoviral HIV Vaccines Using Enteric-coated Capsules

    PubMed Central

    Mercier, George T.; Nehete, Pramod N.; Passeri, Marco F.; Nehete, Bharti N.; Weaver, Eric A.; Templeton, Nancy Smyth; Schluns, Kimberly; Buchl, Stephanie S.; Sastry, K. Jagannadha; Barry, Michael A.

    2007-01-01

    Targeted delivery of vaccine candidates to the gastrointestinal (GI) tract holds potential for mucosal immunization, particularly against mucosal pathogens like the human immunodeficiency virus (HIV). Among the different strategies for achieving targeted release in the GI tract, namely the small intestine, pH sensitive enteric coating polymers have been shown to protect solid oral dosage forms from the harsh digestive environment of the stomach and dissolve relatively rapidly in the small intestine by taking advantage of the luminal pH gradient. We developed an enteric polymethacrylate formulation for coating hydroxy-propyl-methyl-cellulose (HPMC) capsules containing lyophilized Adenoviral type 5 (Ad5) vectors expressing HIV-1 gag and a string of six highly-conserved HIV-1 envelope peptides representing broadly cross-reactive CD4+ and CD8+ T cell epitopes. Oral immunization of rhesus macaques with these capsules primed antigen-specific mucosal and systemic immune responses and subsequent intranasal delivery of the envelope peptide cocktail using a mutant cholera toxin adjuvant boosted cellular immune responses including, antigen-specific intracellular IFN-γ-producing CD4+ and CD8+ effector memory T cells in the intestine. These results suggest that the combination of oral adenoviral vector priming followed by intranasal protein/peptide boosting may be an effective mucosal HIV vaccination strategy for targeting viral antigens to the GI tract and priming systemic and mucosal immunity. PMID:18063450

  12. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives

    PubMed Central

    Chen, Guang-xia; Zhang, Shu; He, Xiao-hua; Liu, Shi-yu; Ma, Chao; Zou, Xiao-Ping

    2014-01-01

    Gene therapy has promised to be a highly effective antitumor treatment by introducing a tumor suppressor gene or the abrogation of an oncogene. Among the potential therapeutic transgenes, the tumor suppressor gene p53 serves as an attractive target. Restoration of wild-type p53 function in tumors can be achieved by introduction of an intact complementary deoxyribonucleic acid copy of the p53 gene using a suitable viral vector, in most cases an adenoviral vector (Adp53). Preclinical in vitro and in vivo studies have shown that Adp53 triggers a dramatic tumor regression response in various cancers. These viruses are engineered to lack certain early proteins and are thus replication defective, including Gendicine, SCH-58500, and Advexin. Several types of tumor-specific p53-expressing conditionally replicating adenovirus vectors (known as replication-competent CRAdp53 vectors) have been developed, such as ONYX 015, AdDelta24-p53, SG600-p53, OBP-702, and H101. Various clinical trials have been conducted to investigate the safety and efficiency of these adenoviral vectors. In this review we will talk about the biological mechanisms, clinical utility, and therapeutic potentials of the replication-deficient Adp53-based and replication-competent CRAdp53-based gene therapy. PMID:25364261

  13. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures.

    PubMed

    Gáspár, Tamás; Domoki, Ferenc; Lenti, Laura; Institoris, Adám; Snipes, James A; Bari, Ferenc; Busija, David W

    2009-05-13

    Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol. To induce catalase overexpression, cultured rat cortical neurons were infected with the adenoviral vector Ad5CMVcatalase and control cells were incubated with Ad5CMVntLacZ for 24 h. Gene transfer effectively increased catalase protein levels and activity, but did not influence other antioxidants tested. Ad5CMVcatalase, with up to 10 plaque forming units (pfu) per neuron, did not affect cell viability under control conditions and did not protect against glutamate excitotoxicity or oxygen-glucose deprivation. In contrast, catalase overexpression conferred a dose-dependent protection against exposure to hydrogen peroxide (viability: control, 33.02+/-1.09%; LacZ 10 pfu/cell, 32.85+/-1.51%; catalase 1 pfu/cell, 62.09+/-4.17%*; catalase 2 pfu/cell, 98.71+/-3.35%*; catalase 10 pfu/cell, 99.68+/-1.99%*; *p<0.05 vs. control; mean+/-SEM). Finally, the protection could be antagonized using the catalase inhibitor 3-aminotriazole. Our results support the view that enhancing cellular antioxidant capacity may play a crucial role in neuroprotective strategies.

  14. Effects of an adenoviral vector containing a suicide gene fusion on growth characteristics of breast cancer cells.

    PubMed

    Kong, Heng; Liu, Chunli; Zhu, Ting; Huang, Zonghai; Yang, Liucheng; Li, Qiang

    2014-12-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV‑TK/GCV) and the cytosine deaminase/5‑fluorocytosine (CD/5‑FC) systems have been widely applied in suicide gene therapy for cancer. Although suicide gene therapy has been successfully used in vitro and in vivo studies, the number of studies on the effects of recombinant adenoviruses (Ads) containing suicide genes on target cancer cells is limited. The aim of this study was to examine whether recombinant Ads containing the CD/TK fusion gene affect cell proliferation of breast cancer cells in vitro. In the present study, we explored the use of a recombinant adenoviral vector to deliver the CD/TK fusion gene to the breast cancer cell line MCF‑7. We found that the recombinant adenoviral vector efficiently infected MCF‑7 cells. Western blot analysis revealed that CD and TK proteins are expressed in the infected cells. The infected breast cancer cells did not show any significant changes in morphology, ultrastructure, cell growth, and cell‑cycle distribution compared to the uninfected cells. This study revealed that the Ad‑vascular endothelial growth factor promoter (VEGFp)‑CD/TK vector is non‑toxic to MCF‑7 cells at the appropriate titer. Our results indicate that it is feasible to use a recombinant adenoviral vector containing the CD/TK fusion gene in suicide gene therapy to target breast cancer cells.

  15. 7 CFR 275.7 - Selection of sub-units for review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designated as an issuance office. (3) Data management unit (DMU). Any sub-unit which has the responsibility... AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING SYSTEM Management Evaluation (ME... eligibility, maintaining (or having easy access to) casefiles, and transmitting information to the...

  16. 7 CFR 275.7 - Selection of sub-units for review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designated as an issuance office. (3) Data management unit (DMU). Any sub-unit which has the responsibility... AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING SYSTEM Management Evaluation (ME... eligibility, maintaining (or having easy access to) casefiles, and transmitting information to the...

  17. 7 CFR 275.7 - Selection of sub-units for review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designated as an issuance office. (3) Data management unit (DMU). Any sub-unit which has the responsibility... AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING SYSTEM Management Evaluation (ME... eligibility, maintaining (or having easy access to) casefiles, and transmitting information to the...

  18. 7 CFR 275.7 - Selection of sub-units for review.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designated as an issuance office. (3) Data management unit (DMU). Any sub-unit which has the responsibility... AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING SYSTEM Management Evaluation (ME... eligibility, maintaining (or having easy access to) casefiles, and transmitting information to the...

  19. 7 CFR 275.7 - Selection of sub-units for review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designated as an issuance office. (3) Data management unit (DMU). Any sub-unit which has the responsibility... AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING SYSTEM Management Evaluation (ME... eligibility, maintaining (or having easy access to) casefiles, and transmitting information to the...

  20. Investigation of a sub-unit vaccine using an animal model of herpes simplex keratitis.

    PubMed

    Harney, B A; Easty, D L; Skinner, G R

    1983-01-01

    A rabbit and a mouse model of herpes simplex eye disease have been used to evaluate a sub-unit herpes simplex vaccine. Various immunization schedules were investigated. The vaccine was found to stimulate humoral and cellular immune responses and to offer protection against corneal infection with liver herpes simplex virus.

  1. Healing after death: antitumor immunity induced by oncolytic adenoviral therapy

    PubMed Central

    Jiang, Hong; Fueyo, Juan

    2014-01-01

    We recently evaluated the capacity of Delta-24-RGD oncolytic adenovirus to trigger an antitumor immune response in a syngeneic mouse glioma model. This virotherapy elicited immunity against both tumor-associated antigens and viral antigens. An immunogenic cell death accompanied by pathogen- or damage- associated patterns (PAMPs and DAMPs) induced by the virus may be responsible for the adenoviral-mediated antitumor effect. PMID:25954598

  2. Enhanced Peptide of Prostate Cancer Using Targeted Adenoviral Vectors

    DTIC Science & Technology

    2005-06-01

    greater than that observed in tumors injected with control adenovirus (1.4 - 1..6% ID/g). Another adenovirus encoding for both SSTR2 and cytosine deaminase ...for treating prostate cancer xenografts which involves the use of an adenoviral vector encoding for both SSTR2 and the cytosine deaminase (CD) enzyme...SSTR2 and bacterial cytosine deaminase (CD) was performed in a manner similar to that previously described. The AdEasy system was used to generate the

  3. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain.

    PubMed

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard

    2011-02-15

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b) to the MHC class II chaperone protein invariant chain (Ii). We found that, after a single vaccination of C57BL/6 or BALB/c mice with Ad-IiNS3, the HCV NS3-specific CD8(+) T cell responses were significantly enhanced, accelerated, and prolonged compared with the vaccine encoding NS3 alone. The AdIiNS3 vaccination induced polyfunctional CD8(+) T cells characterized by coproduction of IFN-γ, TNF-α and IL-2, and this cell phenotype is associated with good viral control. The memory CD8(+) T cells also expressed high levels of CD27 and CD127, which are markers of long-term survival and maintenance of T cell memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice demonstrated that this protection was mediated primarily through IFN-γ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model.

  4. Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection.

    PubMed

    Samrat, Subodh Kumar; Vedi, Satish; Singh, Shakti; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2015-01-01

    Multispecific, broad, and potent T cell responses have been correlated with viral clearance in hepatitis C virus (HCV) infection. However, the majority of infected patients develop chronic infection, suggesting that natural infection mostly leads to development of inefficient T cell immunity. Multiple mechanisms of immune modulation and evasion have been shown in HCV infection through various investigations. This study examined the generation and modulation of T cell responses against core and frameshift (F) proteins of HCV. A single immunization of mice with replication incompetent recombinant adenovirus vectors encoding for F or core antigens induces poor T cell responses and leads to generation of CD4+ and CD8+ T cells with low granzyme B (GrB) expression. These T cells have impaired GrB enzyme activity and are unable to kill peptide loaded target cells. The low intracellular expression of GrB is not due to degranulation of cytotoxic granules containing cytotoxic T cells. Addition of exogenous IL-2 in in vitro cultures leads to partial recovery of GrB production, whereas immunization with the Toll-like receptor (TLR) agonist poly I:C leads to complete restoration of GrB expression in both CD4+ and CD8+ T cells. Thus, a possible new strategy of T cell modulation is recognized wherein effector T cells are caused to be dysfunctional by HCV-derived antigens F or core, and strategies are also delineated to overcome this dysfunction. These studies are important in the investigation of prophylactic vaccine and immunotherapy strategies for HCV infection.

  5. Culture and adenoviral infection of sinoatrial node myocytes from adult mice

    PubMed Central

    St. Clair, Joshua R.; Sharpe, Emily J.

    2015-01-01

    Pacemaker myocytes in the sinoatrial node of the heart initiate each heartbeat by firing spontaneous action potentials. However, the molecular processes that underlie pacemaking are incompletely understood, in part because of our limited ability to manipulate protein expression within the native cellular context of sinoatrial node myocytes (SAMs). Here we describe a new method for the culture of fully differentiated SAMs from adult mice, and we demonstrate that robust expression of introduced proteins can be achieved within 24–48 h in vitro via adenoviral gene transfer. Comparison of morphological and electrophysiological characteristics of 48 h-cultured versus acutely isolated SAMs revealed only minor changes in vitro. Specifically, we found that cells tended to flatten in culture but retained an overall normal morphology, with no significant changes in cellular dimensions or membrane capacitance. Cultured cells beat spontaneously and, in patch-clamp recordings, the spontaneous action potential firing rate did not differ between cultured and acutely isolated cells, despite modest changes in a subset of action potential waveform parameters. The biophysical properties of two membrane currents that are critical for pacemaker activity in SAMs, the “funny current” (If) and voltage-gated Ca2+ currents (ICa), were also indistinguishable between cultured and acutely isolated cells. This new method for culture and adenoviral infection of fully-differentiated SAMs from the adult mouse heart expands the range of experimental techniques that can be applied to study the molecular physiology of cardiac pacemaking because it will enable studies in which protein expression levels can be modified or genetically encoded reporter molecules expressed within SAMs. PMID:26001410

  6. Survival after prolonged pediatric extracorporeal membrane oxygenation support for adenoviral pneumonia.

    PubMed

    Allibhai, Taslim F; Spinella, Philip C; Meyer, Michael T; Hall, Brian H; Kofos, Daniel; DiGeronimo, Robert J

    2008-08-01

    Adenoviral pneumonia can cause significant pulmonary morbidity leading to extracorporeal membrane oxygenation (ECMO) rescue. Reported survival of adenoviral pneumonia requiring ECMO has been poor, and prolonged time on ECMO is associated with increased mortality. We present 2 pediatric cases of adenoviral pneumonia in patients who survived after greater than 30 days on ECMO and review the Extracorporeal Life Support Organization (ELSO) registry to describe the collective experience of children with viral pneumonia requiring prolonged ECMO. Although survival has improved over the past decade for pediatric adenoviral pneumonia, the ELSO database previously has had no surviving children reported with a primary diagnosis of adenovirus after more than 4 weeks on ECMO. Our experience suggests that there may be use for prolonged ECMO support in children despite severe adenoviral pneumonia.

  7. Adenoviral vector-based strategies against infectious disease and cancer

    PubMed Central

    Zhang, Chao; Zhou, Dongming

    2016-01-01

    ABSTRACT Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review, we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based vaccines are also discussed. PMID:27105067

  8. Chromatography purification of canine adenoviral vectors.

    PubMed

    Segura, María Mercedes; Puig, Meritxell; Monfar, Mercè; Chillón, Miguel

    2012-06-01

    Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ultracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarification and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contaminating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58-69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks.

  9. A formalism for scattering of complex composite structures. I. Applications to branched structures of asymmetric sub-units.

    PubMed

    Svaneborg, Carsten; Pedersen, Jan Skov

    2012-03-14

    We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three equations expressing the structural scattering in terms of three equations expressing the sub-unit scattering. The structural scattering expressions allow composite structures to be used as sub-units within the formalism itself. This allows the scattering expressions for complex hierarchical structures to be derived with great ease. The formalism is generic in the sense that the scattering due to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement, we derive the pair distributions of an ideal flexible polymer sub-unit. We illustrate the formalism by deriving generic scattering expressions for branched structures such as stars, pom-poms, bottle-brushes, and dendrimers build out of asymmetric two-functional sub-units.

  10. Adenoviral Gene Transfer in Bovine Adrenomedullary and Murine Pheochromocytoma Cells: Potential Clinical and Therapeutic Relevance

    PubMed Central

    Alesci, Salvatore; Perera, Shiromi M.; Lai, Edwin W.; Kukura, Christina; Abu-Asab, Mones; Tsokos, Maria; Morris, John C.; Pacak, Karel

    2008-01-01

    Recombinant adenoviruses (rAd) have been widely used as gene transfer vectors both in the laboratory and in human clinical trials. In the present study, we investigated the effects of adenoviral-mediated gene transfer in primary bovine adrenal chromaffin cells (BACC) and a murine pheochromocytoma cell line (MPC). Cells were infected with one of three nonreplicating E1/E3-deleted (E1-/E3-) rAd vectors: Ad.GFP, expressing a green fluorescent protein (GFP); Ad.null, expressing no transgene; or Ad.C2.TK, expressing the herpes simplex virus-1 thymidine kinase gene (TK). Forty-eight hours after exposure to Ad.GFP, the percentage of GFP-expressing BACC ranged from 23.5-97% in a dose-dependent manner and similarly from 1.06 - 84.4% in the MPC, indicating that adrenomedullary cells are a potentially valuable target for adenoviral-mediated gene transfer. Ultrastructural analysis, however, revealed profound changes in the nucleus and mitochondria of cells infected with rAd. Furthermore, infection of BACC with Ad.null was accompanied by a time- and dose-dependent decrease in cell survival due to the vector alone. Specific whole-cell norepinephrine uptake was also decreased in a time- and dose-dependent fashion in BACC. Infection of MPC cells with the Ad.C2.TK vector sensitized them to the cytotoxic effect of the antiviral drug ganciclovir, in direct proportion to the fraction of cells infected with the virus. We conclude that rAd may alter the structural and functional integrity of adrenomedullary cells, potentially interfering with the normal stress response. At the same time, in light of their ability to effectively deliver and express genes in pheochromocytoma cells, they may be applicable to the gene therapy of adrenomedullary tumors. PMID:17525127

  11. Adenoviral gene transfer in bovine adrenomedullary and murine pheochromocytoma cells: potential clinical and therapeutic relevance.

    PubMed

    Alesci, Salvatore; Perera, Shiromi M; Lai, Edwin W; Kukura, Christina; Abu-Asab, Mones; Tsokos, Maria; Morris, John C; Pacak, Karel

    2007-08-01

    Recombinant adenoviruses (rAd) have been widely used as gene transfer vectors both in the laboratory and in human clinical trials. In the present study, we investigated the effects of adenoviral-mediated gene transfer in primary bovine adrenal chromaffin cells (BACC) and a murine pheochromocytoma cell line (MPC). Cells were infected with one of three nonreplicating E1/E3-deleted (E1(-)/E3(-)) rAd vectors: Ad.GFP, expressing a green fluorescent protein (GFP); Ad.null, expressing no transgene; or Ad.C2.TK, expressing the herpes simplex virus-1 thymidine kinase gene (TK). Forty-eight hours after exposure to Ad.GFP, the percentage of GFP-expressing BACC ranged from 23.5-97% in a dose-dependent manner and similarly from 1.06-84.4% in the MPC, indicating that adrenomedullary cells are a potentially valuable target for adenoviral-mediated gene transfer. Ultrastructural analysis, however, revealed profound changes in the nucleus and mitochondria of cells infected with rAd. Furthermore, infection of BACC with Ad.null was accompanied by a time- and dose-dependent decrease in cell survival due to the vector alone. Specific whole-cell norepinephrine uptake was also decreased in a time- and dose-dependent fashion in BACC. Infection of MPC cells with the Ad.C2.TK vector sensitized them to the cytotoxic effect of the antiviral drug ganciclovir, in direct proportion to the fraction of cells infected with the virus. We conclude that rAd may alter the structural and functional integrity of adrenomedullary cells, potentially interfering with the normal stress response. At the same time, in light of their ability to effectively deliver and express genes in pheochromocytoma cells, they may be applicable to the gene therapy of adrenomedullary tumors.

  12. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures

    PubMed Central

    Gáspár, Tamás; Domoki, Ferenc; Lenti, Laura; Institoris, Ádám; Snipes, James A; Bari, Ferenc; Busija, David W

    2009-01-01

    Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol. To induce catalase overexpression, cultured rat cortical neurons were infected with the adenoviral vector Ad5CMVcatalase and control cells were incubated with Ad5CMVntLacZ for 24h. Gene transfer effectively increased catalase protein levels and activity, but did not influence other antioxidants tested. Ad5CMVcatalase, with up to 10 plaque forming units (pfu) per neuron, did not affect cell viability under control conditions and did not protect against glutamate excitotoxicity or oxygen-glucose deprivation. In contrast, catalase overexpression conferred a dose-dependent protection against exposure to hydrogen peroxide (viability: control, 33.02±1.09%; LacZ 10 pfu/cell, 32.85±1.51%; catalase 1 pfu/cell, 62.09±4.17%*; catalase 2 pfu/cell, 98.71±3.35%*; catalase 10 pfu/cell, 99.68±1.99%*; *p<0.05 vs. control; mean±SEM). Finally, the protection could be antagonized using the catalase inhibitor 3-aminotriazole. Our results support the view that enhancing cellular antioxidant capacity may play a crucial role in neuroprotective strategies. PMID:19302986

  13. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  14. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  15. Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids.

    PubMed

    Choi, Samjin; Moon, Sung Woon; Shin, Jae-Ho; Park, Hun-Kuk; Jin, Kyung-Hyun

    2014-11-18

    Cell culture and polymerase chain reaction are currently regarded as the gold standard for adenoviral conjunctivitis diagnosis. They maximize sensitivity and specificity but require several days to 3 weeks to get the results. The aim of this study is to determine the potential of Raman spectroscopy as a stand-alone analytical tool for clinical diagnosis of adenoviral conjunctivitis using human tear fluids. A drop-coating deposition surface enhanced Raman scattering (DCD-SERS) method was identified as the most effective method of proteomic analysis in tear biofluids. The proposed DCD-SERS method (using a 2-μL sample) led to Raman spectra with high reproducibility, noise-independence, and uniformity. Additionally, the spectra were independent of the volume of biofluids used and detection zones, including the ring, middle, and central zone, with the exception of the outer layer of the ring zone. Assessments with an intensity ratio of 1242-1342 cm(-1) achieved 100% sensitivity and 100% specificity in the central zone. Principal component analysis assessments achieved 0.9453 in the area under the receiver operating characteristic curve (AUC) as well as 93.3% sensitivity and 94.5% specificity in the central zone. Multi-Gaussian peak assessments showed that the differences between these two groups resulted from the reduction of the amide III α-helix structures of the proteins. The presence of adenovirus in tear fluids could be detected more accurately in the center of the sample than in the periphery. The DCD-SERS technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of adenoviral conjunctivitis. Therefore, we are hopeful that the DCD-SERS method will be approved for use in ophthalmological clinics in the near future.

  16. A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo.

    PubMed

    Gu, Jian; Zhang, Lidong; Huang, Xuefeng; Lin, Tongyu; Yin, Min; Xu, Kai; Ji, Lin; Roth, Jack A; Fang, Bingliang

    2002-07-18

    Using a binary adenoviral system, we recently showed that the human telomerase reverse transcriptase (hTERT) promoter induces tumor-specific Bax gene expression. However, the strong cytotoxicity of Bax and other pro-apoptotic genes to packaging 293 cells has so far hindered construction of the desired single adenoviral vectors expressing toxic genes. We report here the construction of a single bicistronic adenoviral vector for tumor-specific Bax expression. The vector (Ad/gBax) utilizes the Tet-Off system and expresses a GFP/Bax fusion protein for easy detection. The hTERT promoter drives the expression of tTA, a transactivator capable of binding to TRE (tetracycline-responsive element) in the absence of tetracycline, which in turn induces expression of the GFP-Bax gene. The addition of tetracycline in 293 cells blocks the binding of tTA to TRE and substantially inhibits GFP-Bax expression and toxicity, thus allowing the packaging and production of Ad/gBax. Our data show that Ad/gBax could drive the high expression of GFP-Bax in tumor cells but not in normal cells and mouse tissues. Furthermore, the expression of GFP-Bax fusion protein elicited tumor-specific apoptosis in a variety of human cancer cells in vitro and in vivo at a level comparable to that induced by the binary system. Thus, Ad/gBax may become a potent therapeutic agent for the treatment of cancers.

  17. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Fang, Yu; Citra, Fudiman; Wang, Dong-An

    2015-09-01

    Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered - the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.

  18. The Use of Bandage Contact Lenses in Adenoviral Keratoconjunctivitis.

    PubMed

    Uçakhan, Ömür; Yanik, Özge

    2016-11-01

    To evaluate the safety and efficacy of the use of the bandage contact lenses (BCLs) in adenoviral keratoconjunctivitis-related ocular surface problems. Fifteen eyes of 15 consecutive patients presenting at the Ankara University Medical Center, Cornea and Contact Lens Service, and requiring BCL use for adenoviral keratoconjunctivitis-related ocular surface problems were enrolled. Visual acuity, slitlamp examination findings, indication and duration of the BCL use, the total follow-up, and any adjuvant medication were recorded. All patients were followed regarding the success of treatment and adverse effects associated with BCL use. The average age at the time of presentation was 26.8±15.5 years. The major reasons for BCL use included epithelial defect (7 eyes), filamentous keratopathy (5 eyes), epithelial edema (1 eyes), and filamentous keratopathy together with epithelial defect (2 eyes). After the first appearance of conjunctivitis symptoms, the mean time to BCL application was 9.0±3.9 days. The mean duration of contact lens wear was 9.9±6.5 days, and the mean follow-up was 26.4±15.8 days. Preservative-free artificial tears and topical antibiotics were used in all cases. Besides, topical ganciclovir 0.15% gel (8 eyes), topical 0.4% povidone-iodine solution (9 eyes), and topical steroids (11 eyes) were used in various combinations. At the end of the follow-up period, the mean visual acuity improved from 0.23±0.32 logMAR units (∼0.6 Snellen line) to 0.0l±0.04 logMAR units (∼1.0 Snellen line) (P=0.042). No sight-threatening complication related to contact lens wear was encountered. Adjuvant use of BCLs seems to be safe and effective in the treatment of adenoviral keratoconjunctivitis-related ocular surface problems. Close follow-up and prophylactic use of topical antibiotics are rationalistic for prevention of secondary infections.

  19. Derivation of Design Loads and Random Vibration specifications for Spacecraft Instruments and Sub-Units

    NASA Astrophysics Data System (ADS)

    Fransen, S.; Yamawaki, T.; Akagi, H.; Eggens, M.; van Baren, C.

    2014-06-01

    After a first estimation based on statistics, the design loads for instruments are generally estimated by coupled spacecraft/instrument sine analysis once an FE-model of the spacecraft is available. When the design loads for the instrument have been derived, the next step in the process is to estimate the random vibration environment at the instrument base and to compute the RMS load at the centre of gravity of the instrument by means of vibro-acoustic analysis. Finally the design loads of the light-weight sub-units of the instrument can be estimated through random vibration analysis at instrument level, taking into account the notches required to protect the instrument interfaces in the hard- mounted random vibration test. This paper presents the aforementioned steps of instrument and sub-units loads derivation in the preliminary design phase of the spacecraft and identifies the problems that may be encountered in terms of design load consistency between low-frequency and high-frequency environments. The SpicA FAR-infrared Instrument (SAFARI) which is currently developed for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be used as a guiding example.

  20. An Adenoviral Vector Based Vaccine for Rhodococcus equi

    PubMed Central

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D.; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  1. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    PubMed

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  2. Selective transduction of murine myelomonocytic leukemia cells (WEHI-3B) with regular and RGD-adenoviral vectors.

    PubMed

    García-Castro, J; Segovia, J C; García-Sánchez, F; Lillo, R; Gómez-Navarro, J; Curiel, D T; Bueren, J A

    2001-01-01

    On the basis of the susceptibility of normal myelomonocytic cells to adenoviral vectors, we have studied the possibility of selectively transducing myelomonocytic murine leukemic cells (WEHI-3B) with regular (Reg-Ad) and genetically modified (RGD-Ad) adenoviral vectors. An 8-h incubation of WEHI-3B cells with 100 pfu of Reg-Ad vectors/cell resulted in the whole population becoming positive for transgene expression. Under identical conditions of infection, 20-30% of mouse bone marrow (BM) cells were positive for the transgene. When RGD-Ad vectors were used, a brief exposure (10 min) of WEHI-3B cells to 150 pfu of the virus/cell was enough for 100% of the leukemia cells to become positive for the marker transgene (EGFP). Under these conditions, only 15-20% of BM cells and of primitive hematopoietic progenitors (Lin(-)Sca-1(+) cells) became EGFP(+), indicating an improved selectivity of the vectors for the leukemic cells. The incubation of WEHI-3B but not normal BM cells with soluble fiber protein (FP) inhibited the infection with Reg-Ad. The use of the RGD-Ad bypassed the FP-CAR interaction required for the transduction of WEHI-3B cells with Reg-Ad, suggesting that the abrogation of this requirement accounts for the improved infectivity of these leukemic cells and for the selectivity of RGD-Ad in targeting WEHI-3B leukemia cells.

  3. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    PubMed Central

    2011-01-01

    Background Type I interferons (IFNs) exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV) or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines. PMID:21943056

  4. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs

    PubMed Central

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude. PMID:23127366

  5. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    PubMed

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  6. Novel mechanism of JNK pathway activation by adenoviral E1A.

    PubMed

    Romanov, Vasily S; Brichkina, Anna I; Morrison, Helen; Pospelova, Tatiana V; Pospelov, Valery A; Herrlich, Peter

    2014-04-30

    The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action.

  7. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways.

    PubMed

    Kushwah, R; Oliver, J R; Cao, H; Hu, J

    2007-08-01

    Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors.

  8. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    PubMed Central

    Ruan, Merry ZC; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan HL

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  9. Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors

    PubMed Central

    SUN, Q.F.; ZHAO, X.N.; PENG, C.L.; HAO, Y.T.; ZHAO, Y.P.; JIANG, N.; XUE, H.; GUO, J.Z.; YUN, C.H.; CONG, B.; ZHAO, X.G.

    2015-01-01

    Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor-specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd-CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy. PMID:26323510

  10. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  11. Circumventing Antivector Immunity: Potential Use of Nonhuman Adenoviral Vectors

    PubMed Central

    Podgorski, Iva I.; Downes, Nicholas; Alemany, Ramon

    2014-01-01

    Abstract Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles. PMID:24499174

  12. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors.

    PubMed

    Lopez-Gordo, Estrella; Podgorski, Iva I; Downes, Nicholas; Alemany, Ramon

    2014-04-01

    Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.

  13. Adenoviral vector-based strategies for cancer therapy

    PubMed Central

    Sharma, Anurag; Tandon, Manish; Bangari, Dinesh S.; Mittal, Suresh K.

    2009-01-01

    Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy. PMID:20160875

  14. Topical Tacrolimus for Corneal Subepithelial Infiltrates Secondary to Adenoviral Keratoconjunctivitis.

    PubMed

    Prado, Silvia Berisa; Riestra Ayora, Ana C; Fernández, Carlos Lisa; Rodríguez, Manuel Chacón; Merayo-Lloves, Jesús; Alfonso Sánchez, José F

    2017-09-01

    The objective of this study was to determine the efficacy and safety of topical tacrolimus compounded in the Pharmacy Service for the treatment of subepithelial corneal infiltrates (SEIs) secondary to adenoviral keratoconjunctivitis. This retrospective study included patients who had been dispensed topical tacrolimus for the treatment of SEIs during the previous year. Patients were treated with tacrolimus 0.03% eye drops twice daily or tacrolimus 0.02% ointment once daily. The following data were recorded: length of treatment, visual acuity before and after treatment, intraocular pressure before, during, and at the end of treatment, previous treatments, and the presence of SEIs after treatment. The subjective symptoms of the patients were also assessed. Fifty-five patients (85 eyes) were included, 54.5% with bilateral involvement. A total of 31 (36.5%) eyes were treated with tacrolimus ointment and 54 eyes (63.5%) with tacrolimus eye drops. The median length of treatment was 185 days (p25-75: 93.5-426), and the mean follow-up duration was 363 days (p25-75: 148-540). In 62.35% of the eyes, the SEIs were reduced in number and size, and in 31.76%, they were eliminated. The patients had better visual acuity after treatment with highly statistically significant differences. Tolerance was good overall, being better in the eye drops group. Topical tacrolimus, compounded in the pharmacy, seems to be an effective and safe alternative for the treatment of SEIs secondary to adenovirus keratoconjunctivitis.

  15. Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting

    PubMed Central

    Khare, Reeti; Chen, Christopher Y; Weaver, Eric A; Barry, Michael A

    2011-01-01

    Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral “sinks” must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect. PMID:21453281

  16. Antitumor effects of murine bone marrow-derived dendritic cells infected with xenogeneic livin alpha recombinant adenoviral vectors against Lewis lung carcinoma.

    PubMed

    Xie, Junping; Xiong, Liang; Tao, Xiaonan; Li, Xiao; Su, Yuan; Hou, Xiaohua; Shi, Huanzhong

    2010-06-01

    Transduction with recombinant, replication-defective adenoviral (rAd) vectors encoding a transgene is an efficient method for gene transfer into dendritic cells (DCs). Livin is a member of the inhibitor of apoptosis protein family. Lung cancer and many other tumors express livin at high levels; whereas, normal fully differentiated cells generally do not. Therefore, livin represents a tumor-specific target for cancer vaccine therapy. Self proteins like livin may not stimulate potent antitumor immune responses due to central immunologic tolerance. Small variations in protein sequence that may exist between homologous proteins of different species can break tolerance to the native antigen. To study immunogenicity of a xenogeneic livin protein, we constructed an recombinant adenoviral vectors containing the human livin alpha genes (rAd-hlivin alpha) and vaccinated C57BL/6 mice with mouse bone marrow dendritic cells (BMDCs) transfected with rAd-hlivin alpha gave rise to potent livin-specific cytotoxic T lymphocyte (CTL) capable of lysing Lewis lung carcinoma (LLC) cells. Moreover, vaccination of mice with rAd-hlivin alpha-transduced DCs (rAd-hlivin alpha DCs) induced a potent protective and therapeutic anti-tumor immunity to LLC in a subcutaneous model along with prolonged survival compared to mice vaccinated with control recombinant adenovirus-transduced DCs(rAd-c DCs) or DCs alone. Therefore, xenogeneic differences between human and murine sequences might be exploited to develop immunogenic tumor vaccines. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria.

    PubMed

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-28

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.

  18. Isolation and Characterization of Anti-Adenoviral Secondary Metabolites from Marine Actinobacteria

    PubMed Central

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-01

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure. PMID:24477283

  19. Process and structure: resource management and the development of sub-unit organisational structure.

    PubMed

    Packwood, T; Keen, J; Buxton, M

    1992-03-01

    Resource Management (RM) requires hospital units to manage their work in new ways, and the new management processes affect, and are affected by, organisation structure. This paper is concerned with these effects, reporting on the basis of a three-year evaluation of the national RM experiment that was commissioned by the DH. After briefly indicating some of the major characteristics of the RM process, the two main types of unit structures existing in the pilot sites at the beginning of the experiment, unit disciplinary structure and clinical directorates, are analysed. At the end of the experiment, while clinical directorates had become more popular, another variant, clinical grouping, had replaced the unit disciplinary structure. Both types of structure represent a movement towards sub-unit organisation, bringing the work and interests of the service providers and unit managers closer together. Their properties are likewise analysed and their implications, particularly in terms of training and organisational development (OD), are then considered. The paper concludes by considering the causes for these structural changes, which, in the immediate time-scale, appear to owe as much to the NHS Review as to RM.

  20. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  1. Effect of adenoviral delivery of prodynorphin gene on experimental inflammatory pain induced by formalin in rats

    PubMed Central

    Chen, Xionggang; Wang, Tingting; Lin, Caizhu; Chen, Baihong

    2014-01-01

    Circumstantial evidences suggest that dynorphins and their common precursor prodynorphin (PDYN) are involved in antinociception and neuroendocrine signaling. DREAM knockout mice had increased levels of PDYN and dynorphin expression, and reduced sensitivity to painful stimuli. However, some data support the notion that the up-regulation of spinal dynorphin expression is a common critical feature in neuropathic pain. It is not clear whether the production of dynorphin A can be increased when more PDYN is present. In this study we investigated the changes in pain behaviors, spinal PDYN mRNA expression and dynorphin A production on formalin-induced pain in rats receiving the pretreatment of adenoviral delivery of PDYN. Our results showed that the adenoviral transfer of PDYN gene was sufficient to reduce pain behaviors resulting from formalin injection, and the antinociceptive effect after receiving the pretreatment of adenoviral delivery of PDYN was mediated at the level of the spinal cord via KOR. PMID:25663984

  2. Treatment of Adenoviral Acute Respiratory Distress Syndrome Using Cidofovir With Extracorporeal Membrane Oxygenation.

    PubMed

    Lee, Minhyeok; Kim, Seulgi; Kwon, Oh Jung; Kim, Ji Hye; Jeong, Inbeom; Son, Ji Woong; Na, Moon Jun; Yoon, Yoo Sang; Park, Hyun Woong; Kwon, Sun Jung

    2017-03-01

    Adenovirus infections are associated with respiratory (especially upper respiratory) infection and gastrointestinal disease and occur primarily in infants and children. Although rare in adults, severe lower respiratory adenovirus infections including pneumonia are reported in specific populations, such as military recruits and immunocompromised patients. Antiviral treatment is challenging due to limited clinical experience and lack of well-controlled randomized trials. Several previously reported cases of adenoviral pneumonia showed promising efficacy of cidofovir. However, few reports discussed the efficacy of cidofovir in acute respiratory distress syndrome (ARDS). We experienced 3 cases of adenoviral pneumonia associated with ARDS and treated with cidofovir and respiratory support, including extracorporeal membrane oxygenation (ECMO). All 3 patients showed a positive clinical response to cidofovir and survival at 28 days. Cidofovir with early ECMO therapy may be a therapeutic option in adenoviral ARDS. A literature review identified 15 cases of adenovirus pneumonia associated with ARDS.

  3. The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications

    PubMed Central

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-01-01

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges. PMID:24549268

  4. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development.

  5. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    PubMed Central

    Coughlan, Lynda; Alba, Raul; Parker, Alan L.; Bradshaw, Angela C.; McNeish, Iain A.; Nicklin, Stuart A.; Baker, Andrew H.

    2010-01-01

    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated

  6. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  7. Human coxsackie adenovirus receptor (CAR) expression in transgenic mouse prostate tumors enhances adenoviral delivery of genes.

    PubMed

    Bao, Yunhua; Peng, Weidan; Verbitsky, Amy; Chen, Jiping; Wu, Lily; Rauen, Katherine A; Sawicki, Janet A

    2005-09-01

    Transgenic mice that recapitulate the progression of human diseases are potentially useful models for testing the effectiveness of new therapeutic strategies. Their use in pre-clinical testing of adenovirally-delivered gene therapies, however, is limited because of restricted cell surface expression of Coxsackie adenovirus receptor (CAR) in mice. To develop a more suitable transgenic mouse model for testing adenoviral-based gene therapies for prostate cancer, we generated prostate specific antigen/human CAR (PSA/hCAR) transgenic mice in which a chimeric enhancer/promoter sequence of the human PSA gene drives expression of a functional hCAR coding sequence. Expression of an adenovirally-delivered luciferase reporter gene in prostate tumor cells in bigenic mice (PSA/hCAR + TRAMP) was enhanced compared to the level in tumor cells lacking the PSA/hCAR transgene. Breeding PSA/hCAR mice to existing transgenic mouse models for prostate cancer (e.g., TRAMP) results in improved mouse models for testing adenovirally-delivered therapeutic genes. Copyright 2005 Wiley-Liss, Inc.

  8. The effects of povidone iodine (pH 4.2) on patients with adenoviral conjunctivitis.

    PubMed

    Yazar, Hayrullah; Yarbag, Abdulhekim; Balci, Mehmet; Teker, Bahri; Tanyeri, Pelin

    2016-08-01

    To compare the efficacy of classical treatment and povidone-iodine treatment for adenoviral conjunctivitis. This retrospective study was conducted at the Centre of Marmara Eye Health, Sakarya, Turkey, between January 2011 and February 2014, and comprised adult patients suffering from adenoviral conjunctivitis. The participants were randomly divided into two groups. Group I was given povidone-iodine solution while Group II was given the classical treatment and was taken as control. Povidone-iodine treatment was administered as three drops three times per day. The classical treatment comprised three drops of trifluorothymidine three times per day. Treatment were continued for two weeks. The patients who had not recovered in this time frame were defined as 'late recovering' patients. SPSS 23 was used for data analysis. Of the 112 participants, there were 56(50%) in each group. In Group I, 54(96.4%) patients recovered in two weeks, while 2(3.6%) took more time. In Group II, 33(58.9%) patients recovered in two weeks while 23(41.1%) took more time (p<0.001). Overall, 92(82.1%) patients had familial transmission-contamination. A new treatment protocol of povidone-iodine was used safely in patients with adenoviral conjunctivitis. Familial transmission was found very important to adenoviral conjunctivitis infection.

  9. The prevalence of adenoviral conjunctivitis at the Clinical Hospital of the State University of Campinas, Brazil.

    PubMed

    Pinto, Roberto Damian Pacheco; Lira, Rodrigo Pessoa Cavalcanti; Arieta, Carlos Eduardo Leite; Castro, Rosane Silvestre de; Bonon, Sandra Helena Alves

    2015-11-01

    Viral conjunctivitis is a common, highly contagious disease that is often caused by an adenovirus. The aim of this study was to evaluate the prevalence of adenoviral conjunctivitis by analyzing data from a prospective clinical study of 122 consecutively enrolled patients who were treated at the Clinical Hospital of the State University of Campinas (UNICAMP) after a clinical diagnosis of infectious conjunctivitis between November 2011 and June 2012. Polymerase chain reaction was used to evaluate all cases of clinically diagnosed infectious conjunctivitis and based on the laboratory findings, the prevalence of adenoviral infections was determined. The incidence of subepithelial corneal infiltrates was also investigated. Of the 122 patients with acute infectious conjunctivitis included, 72 had positive polymerase chain reaction results for adenoviruses and 17 patients developed subepithelial corneal infiltrates (13.93%). The polymerase chain reaction revealed that the prevalence of adenoviral conjunctivitis was 59% in all patients who presented with a clinical diagnosis of infectious conjunctivitis from November 2011 to June 2012. The prevalence of adenoviral conjunctivitis in the study population was similar to its prevalence in other regions of the world.

  10. The prevalence of adenoviral conjunctivitis at the Clinical Hospital of the State University of Campinas, Brazil

    PubMed Central

    Pinto, Roberto Damian Pacheco; Lira, Rodrigo Pessoa Cavalcanti; Arieta, Carlos Eduardo Leite; de Castro, Rosane Silvestre; Bonon, Sandra Helena Alves

    2015-01-01

    OBJECTIVES: Viral conjunctivitis is a common, highly contagious disease that is often caused by an adenovirus. The aim of this study was to evaluate the prevalence of adenoviral conjunctivitis by analyzing data from a prospective clinical study of 122 consecutively enrolled patients who were treated at the Clinical Hospital of the State University of Campinas (UNICAMP) after a clinical diagnosis of infectious conjunctivitis between November 2011 and June 2012. METHODS: Polymerase chain reaction was used to evaluate all cases of clinically diagnosed infectious conjunctivitis and based on the laboratory findings, the prevalence of adenoviral infections was determined. The incidence of subepithelial corneal infiltrates was also investigated. RESULTS: Of the 122 patients with acute infectious conjunctivitis included, 72 had positive polymerase chain reaction results for adenoviruses and 17 patients developed subepithelial corneal infiltrates (13.93%). CONCLUSIONS: The polymerase chain reaction revealed that the prevalence of adenoviral conjunctivitis was 59% in all patients who presented with a clinical diagnosis of infectious conjunctivitis from November 2011 to June 2012. The prevalence of adenoviral conjunctivitis in the study population was similar to its prevalence in other regions of the world. PMID:26602522

  11. Identification of a Novel Immunodominant HLA-B*07: 02-restricted Adenoviral Peptide Epitope and Its Potential in Adoptive Transfer Immunotherapy.

    PubMed

    Günther, Patrick S; Peper, Janet K; Faist, Benjamin; Kayser, Simone; Hartl, Lena; Feuchtinger, Tobias; Jahn, Gerhard; Neuenhahn, Michael; Busch, Dirk H; Stevanović, Stefan; Dennehy, Kevin M

    2015-09-01

    Adenovirus infections of immunocompromised patients, particularly following allogeneic hematopoietic stem cell transplantation, are associated with morbidity and mortality. Immunotherapy by adoptive transfer of hexon-specific and penton-specific T cells has been successfully applied, but many approaches are impeded by the low number of HLA class I-restricted adenoviral peptide epitopes described to date. We use a novel method to identify naturally presented adenoviral peptide epitopes from infected human cells, ectopically expressing defined HLA, using peptide elution and liquid chromatography-mass spectrometry analysis. We show that the previously described HLA-A*01:01-restricted peptide epitope LTDLGQNLLY from hexon protein is naturally presented, and demonstrate the functionality of LTDLGQNLLY-specific T cells. We further identify a novel immunodominant HLA-B*07:02-restricted peptide epitope VPATGRTLVL from protein 13.6 K, and demonstrate the high proliferative, cytotoxic, and IFN-γ-producing capacity of peptide-specific T cells. Lastly, LTDLGQNLLY-specific T cells can be detected ex vivo following adoptive transfer therapy, and LTDLGQNLLY-specific and VPATGRTLVL-specific T cells have memory phenotypes ex vivo. Given their proliferative and cytotoxic capacity, such epitope-specific T cells are promising candidates for adoptive T-cell transfer therapy of adenovirus infection.

  12. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors

    PubMed Central

    Hanayama, Hiroyuki; Ohashi, Kazuo; Utoh, Rie; Shimizu, Hirofumi; Ise, Kazuya; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Tsuchiya, Hiroyuki; Okano, Teruo; Gotoh, Mitsukazu

    2015-01-01

    To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells. PMID:26858906

  13. Adenoviral-mediated gene transfer into bone marrow: an effective surgical technique in rat.

    PubMed

    Rodriguez-Lecompte, J C; Romero-Perez, G A; Ramirez-Yañez, G; Ask, K; Gauldie, J

    2013-01-01

    The role of transforming growth factor-beta 1 (TGF-β₁) in the onset of bone marrow fibrosis has been confirmed in some animal models. To further understand the genetic expression of some myeloproliferative disorders affecting marrow stem cells, however, it is necessary to develop a specific and reliable procedure to deliver modified adenoviral vectors into the bone marrow cavity. The aim of this paper is to report a surgical technique designed to deliver an adenoviral vector-mediated gene expressing TGF-β₁ into the bone marrow of rat femurs. Forty-two Sprague-Dawley rats were used in the study. Rat femurs were exposed and the compact and trabecular bones at the proximal head removed. An intrabone marrow injection of a mutated TGF-β₁ adenoviral vector, a null adenoviral vector, or PBS was delivered into the bone. Three groups were accounted (n = 14 per group): fibrogenic and positive and negative controls. The quality of the surgical entrance was assessed by means of computerized tomography and histological changes were assessed by histochemistry. The concentration of TGF-β₁ in the bone marrow was determined by ELISA. The surgical technique was conducted under ideal timing (approx. 10 min) and no surgical or postsurgical complications were observed. Computerized tomography revealed no changes in the bone tissue and a clean entrance was delimited through the bone to the bone marrow. HE and Masson's trichrome staining indicated highly fibrotic areas in the profibrotic group and bone marrow lavage reported a significantly higher concentration of TGF-β₁ (p < 0.05) in that same group. The present study confirmed that the proposed surgical technique is an effective method to deliver adenoviral vectors into the femoral bone marrow to investigate the physiopathology of bone marrow fibrosis in rats. Copyright © 2013 S. Karger AG, Basel.

  14. Efficient adenoviral-mediated gene delivery into porcine mesenchymal stem cells.

    PubMed

    Bosch, P; Fouletier-Dilling, C; Olmsted-Davis, E A; Davis, A R; Stice, S L

    2006-11-01

    Mesenchymal stem cell (MSC) mediated gene therapy research has been conducted predominantly on rodents. Appropriate large animal models may provide additional safety and efficacy information prior to human clinical trials. The objectives of this study were: (a) to optimize adenoviral transduction efficiency of porcine bone marrow MSCs using a commercial polyamine-based transfection reagent (GeneJammer, Stratagene, La Jolla, CA), and (b) to determine whether transduced MSCs retain the ability to differentiate into mesodermal lineages. Porcine MSCs (pMSCs) were infected under varying conditions, with replication-defective adenoviral vectors carrying the GFP gene and GFP expression analyzed. Transduced cells were induced to differentiate in vitro into adipogenic, chondrogenic, and osteogenic lineages. We observed a 5.5-fold increase in the percentage of GFP-expressing pMSCs when adenovirus type 5 carrying the adenovirus type 35 fiber (Ad5F35eGFP) was used in conjunction with GeneJammer. Transduction of pMSCs at 10.3-13.8 MOI (1,500-2,000 vp/cell) in the presence of Gene Jammer yielded the highest percentage of GFP-expressing cells ( approximately 90%) without affecting cell viability. A similar positive effect was detected when pMSCs were infected with an Ad5eGFP vector. Presence of fetal bovine serum (FBS) during adenoviral transduction enhanced vector-encoded transgene expression in both GeneJammer-treated and control groups. pMSCs transduced with adenovirus vector in the presence of GeneJammer underwent lipogenic, chondrogenic, and osteogenic differentiation. Addition of GeneJammer during adenoviral infection of pMSCs can revert the poor transduction efficiency of pMSCs while retaining their pluripotent differentiation capacity. GeneJammer-enhanced transduction will facilitate the use of adenoviral vectors in MSC-mediated gene therapy models and therapies.

  15. Neonatal helper-dependent adenoviral vector gene therapy mediates correction of hemophilia A and tolerance to human factor VIII.

    PubMed

    Hu, Chuhong; Cela, Racel G; Suzuki, Masataka; Lee, Brendan; Lipshutz, Gerald S

    2011-02-01

    Neonatal gene therapy is a promising strategy for treating a number of congenital diseases diagnosed shortly after birth as expression of therapeutic proteins during postnatal life may limit the pathologic consequences and result in a potential "cure." Hemophilia A is often complicated by the development of antibodies to recombinant protein resulting in treatment failure. Neonatal administration of vectors may avoid inhibitory antibody formation to factor VIII (FVIII) by taking advantage of immune immaturity. A helper-dependent adenoviral vector expressing human factor VIII was administered i.v. to neonatal hemophilia A knockout mice. Three days later, mice produced high levels of FVIII. Levels declined rapidly with animal growth to 5 wk of age with stable factor VIII expression thereafter to >1 y of age. Decline in factor VIII expression was not related to cell-mediated or humoral responses with lack of development of antibodies to capsid or human factor VIII proteins. Subsequent readministration and augmentation of expression was possible as operational tolerance was established to factor VIII without development of inhibitors; however, protective immunity to adenovirus remained.

  16. Adenoviral gene vector tethering to nanoparticle surfaces results in receptor-independent cell entry and increased transgene expression.

    PubMed

    Chorny, Michael; Fishbein, Ilia; Alferiev, Ivan S; Nyanguile, Origene; Gaster, Richard; Levy, Robert J

    2006-09-01

    The present studies investigated the hypothesis that affinity immobilization of replication-defective adenoviruses (Ad) on the surfaces of biodegradable nanoparticles (NP) can improve transduction through uncoupling cellular uptake from the coxsackie-adenovirus receptor (CAR). Ad was tethered to the surfaces of polylactide-based NP that were surface-activated using a photoreactive polyallylamine-benzophenone-pyridyldithiocarboxylate polymer, which enabled (via thiol chemistry) the covalent attachment of Ad-binding proteins, either the recombinant D1 domain of CAR or an adenoviral knob-specific monoclonal antibody. Gene transfer by NP-Ad complexes was studied in relation to cellular uptake as a function of cell type and the character of NP-Ad binding. NP-Ad complexes, but not Ad applied with or without control nonimmune IgG-modified NP, significantly increased green fluorescent protein reporter expression in endothelioma and endothelial and arterial smooth muscle cells (SMC) in direct correlation to the extent of NP-Ad internalization. CAR-independent uptake of NP-Ad was confirmed by demonstrating inhibition of free Ad- but not NP-Ad complex-mediated transduction by knob protein. Complexes formulated with an Ad encoding inducible nitric oxide synthase inhibited growth of cultured SMC to a significantly greater extent than those with (GFP)Ad or (NULL)Ad or free vector. It is concluded that Ad-specific affinity tethering to biodegradable NP can significantly increase the level of gene expression via a CAR-independent uptake mechanism.

  17. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis.

    PubMed

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-09-06

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis

    PubMed Central

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-01-01

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. PMID:27193996

  19. Prime/boost immunization with DNA and adenoviral vectors protects from hepatitis D virus (HDV) infection after simultaneous infection with HDV and woodchuck hepatitis virus.

    PubMed

    Fiedler, Melanie; Kosinska, Anna; Schumann, Alexandra; Brovko, Olena; Walker, Andreas; Lu, Mengji; Johrden, Lena; Mayer, Anja; Wildner, Oliver; Roggendorf, Michael

    2013-07-01

    Hepatitis D virus (HDV) superinfection of hepatitis B virus (HBV) carriers causes severe liver disease and a high rate of chronicity. Therefore, a vaccine protecting HBV carriers from HDV superinfection is needed. To protect from HDV infection an induction of virus-specific T cells is required, as antibodies to the two proteins of HDV, p24 and p27, do not neutralize the HBV-derived envelope of HDV. In mice, HDV-specific CD8(+) and CD4(+) T cell responses were induced by a DNA vaccine expressing HDV p27. In subsequent experiments, seven naive woodchucks were immunized with a DNA prime and adenoviral boost regimen prior to simultaneous woodchuck hepatitis virus (WHV) and HDV infection. Five of seven HDV-immunized woodchucks were protected against HDV infection, while acute self-limiting WHV infection occurred as expected. The two animals with the breakthrough had a shorter HDV viremia than the unvaccinated controls. The DNA prime and adenoviral vector boost vaccination protected woodchucks against HDV infection in the setting of simultaneous infection with WHV and HDV. In future experiments, the efficacy of this protocol to protect from HDV infection in the setting of HDV superinfection will need to be proven.

  20. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig.

    PubMed

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-06-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function.

  1. Genetic modification of human embryonic stem cells with adenoviral vectors: differences of infectability between lines and correlation of infectability with expression of the coxsackie and adenovirus receptor.

    PubMed

    Brokhman, Irina; Pomp, Oz; Fishman, Lital; Tennenbaum, Tamar; Amit, Michal; Itzkovitz-Eldor, Joseph; Goldstein, Ronald S

    2009-04-01

    Adenovirus is an efficient vector for expression of transgenes in dividing and nondividing cells. However, very few studies of human embryonic stem cells (hESCs) have utilized adenoviral vectors. We examine here the ability of adenovirus to infect naive hESCs and the differentiated derivatives of multiple hESC lines. We found a striking variation in adenovirus infection rates between lines. The variability in infection rates was positively correlated with the expression of the coxsackievirus and adenovirus receptor, but not that of alpha(nu)-integrin. Adenoviral infection did not interfere with the expression of pluripotency markers, even after passaging. In addition, infection did not affect differentiation of hESC-derived neural precursors in vitro. We also found that green fluorescent protein expression mediated by adenovirus can be a useful marker for tracking hESC in xenografts. We conclude that adenovirus is a practical vector for genetic modification of naive hESC from most, but not all lines, but may be more generally useful for gene transfer into differentiated derivatives of hESC lines.

  2. Clinical Trials Using Adenoviral Transduced hIL-12-expressing Autologous Dendritic Cells INXN-3001 Plus Activator Ligand INXN-1001

    Cancer.gov

    NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying adenoviral transduced hil-12-expressing autologous dendritic cells inxn-3001 plus activator ligand inxn-1001.

  3. Targeting Adenoviral Vectors by Using the Extracellular Domain of the Coxsackie-Adenovirus Receptor: Improved Potency via Trimerization

    PubMed Central

    Kim, Jin; Smith,*, Theodore; Idamakanti, Neeraja; Mulgrew, Kathy; Kaloss, Michele; Kylefjord, Helen; Ryan, Patricia C.; Kaleko, Michael; Stevenson, Susan C.

    2002-01-01

    Adenovirus binds to mammalian cells via interaction of fiber with the coxsackie-adenovirus receptor (CAR). Redirecting adenoviral vectors to enter target cells via new receptors has the advantage of increasing the efficiency of gene delivery and reducing nonspecific transduction of untargeted tissues. In an attempt to reach this goal, we have produced bifunctional molecules with soluble CAR (sCAR), which is the extracellular domain of CAR fused to peptide-targeting ligands. Two peptide-targeting ligands have been evaluated: a cyclic RGD peptide (cRGD) and the receptor-binding domain of apolipoprotein E (ApoE). Human diploid fibroblasts (HDF) are poorly transduced by adenovirus due to a lack of CAR on the surface. Addition of the sCAR-cRGD or sCAR-ApoE targeting protein to adenovirus redirected binding to the appropriate receptor on HDF. However, a large excess of the monomeric protein was needed for maximal transduction, indicating a suboptimal interaction. To improve interaction of sCAR with the fiber knob, an isoleucine GCN4 trimerization domain was introduced, and trimerization was verified by cross-linking analysis. Trimerized sCAR proteins were significantly better at interacting with fiber and inhibiting binding to HeLa cells. Trimeric sCAR proteins containing cRGD and ApoE were more efficient at transducing HDF in vitro than the monomeric proteins. In addition, the trimerized sCAR protein without targeting ligands efficiently blocked liver gene transfer in normal C57BL/6 mice. However, addition of either ligand failed to retarget the liver in vivo. One explanation may be the large complex size, which serves to decrease the bioavailability of the trimeric sCAR-adenovirus complexes. In summary, we have demonstrated that trimerization of sCAR proteins can significantly improve the potency of this targeting approach in altering vector tropism in vitro and allow the efficient blocking of liver gene transfer in vivo. PMID:11799184

  4. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and

  5. Oncolytic adenoviral vectors which employ the survivin promoter induce glioma oncolysis via a process of beclin-dependent autophagy

    PubMed Central

    ULASOV, ILYA V.; TYLER, MATHEW A.; ZHU, ZENG B.; HAN, YU; HE, TONG-CHUAN; LESNIAK, MACIEJ S.

    2009-01-01

    Survivin has gained attention as a tumor-specific marker which is upregulated in a variety of neoplasms. Although the survivin protein is implicated in anti-apoptotic tumor pathways, little is known about the function of the survivin promoter. In this study, we constructed a conditionally replicative adenoviral vector (CRAd) that utilizes the survivin promoter and examined the mechanism of CRAd induced cell death in malignant glioma. Our results indicate that CRAd vectors which utilize the survivin promoter effectively replicate in glioma cells and exhibit a high oncolytic effect. The survivin-mediated CRAd appeared to induce apoptosis as measured by Annexin/7-AAD. Caspase-3 and BAX mRNAs were upregulated based on microarray data, however, Western blot analysis of infected cells showed no evidence of elevated caspase-3, BAX, or p53 protein expression. Of note, at each time point infected glioma cells showed no evidence of activated BAD or AKT. The inhibition of AKT signaling led us to examine autophagy in infected cells. Electron micrographs of virally infected glioma cells suggested autophagosomal-mediated cell death and selective blocking of beclin with siRNA prevented autophagy. These results indicate that the survivin promoter enhances viral replication and induces autophagy of infected glioma cells via a beclin-dependent mechanism. PMID:19212678

  6. Treatment for Retinopathy of Prematurity in an Infant with Adenoviral Conjunctivitis

    PubMed Central

    Gunay, Murat; Celik, Gokhan; Con, Rahim

    2015-01-01

    Retinopathy of prematurity (ROP) has been a major problematic disorder during childhood. Laser photocoagulation (LPC) has been proven to be effective in most of the ROP cases. Adenoviral conjunctivitis (AVC) is responsible for epidemics among adult and pediatric population. It has also been reported to be a cause of outbreaks in neonatal intensive care units (NICU) several times. We herein demonstrate a case with AVC who underwent LPC for ROP. And we discuss the treatment methodology in such cases. PMID:25874149

  7. Vascular gene transfer from metallic stent surfaces using adenoviral vectors tethered through hydrolysable cross-linkers.

    PubMed

    Fishbein, Ilia; Forbes, Scott P; Adamo, Richard F; Chorny, Michael; Levy, Robert J; Alferiev, Ivan S

    2014-08-12

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  8. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates.

    PubMed

    Swaminathan, Gokul; Thoryk, Elizabeth A; Cox, Kara S; Smith, Jeffrey S; Wolf, Jayanthi J; Gindy, Marian E; Casimiro, Danilo R; Bett, Andrew J

    2016-10-05

    Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in Rhesus macaques, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP's ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.

  9. Optimization of radiation controlled gene expression by adenoviral vectors in vitro.

    PubMed

    Anton, Martina; Gomaa, Iman E O; von Lukowicz, Tobias; Molls, Michael; Gansbacher, Bernd; Würschmidt, Florian

    2005-07-01

    The radiation-inducible EGR-1-promoter has been used in different gene therapy approaches in order to enhance and locally restrict therapeutic efficacy. The aim of this study was to reduce nonspecific gene expression in the absence of irradiation (IR) in an adenoviral vector. Rat rhabdomyosarcoma R1H tumor cells were infected with adenoviral vectors expressing either EGFP or HSV-TK under control of the murine EGR-1 promoter/enhancer. Cells were irradiated at 0-6 Gy. Gene expression was determined by FACS-analysis (EGFP), or crystal violet staining (HSV-TK). The bovine growth hormone polyadenylation signal (BGH pA) was used as insulating sequence and was introduced upstream or upstream and downstream of the expression cassette. Infected R1H cells displayed IR dose-dependent EGFP expression. Cells treated with IR, AdEGR.TK and ganciclovir displayed a survival of 17.3% (6 Gy). However, significant gene expression was observed in the absence of IR with EGR.TK and EGR.EGFP constructs. Introduction of BGHpA upstream or upstream and downstream of expression cassette resulted in decreased nonspecific cytotoxicity by a factor of 1.6-2.3 with minor influence on the induced level of cytotoxicity. Introduction of insulating sequences in adenoviral vectors might allow tighter temporospatial control of gene expression by the radiation-inducible EGR-1 promoter.

  10. Adenoviral infection in a collection of juvenile inland bearded dragons (Pogona vitticeps).

    PubMed

    Doneley, R J T; Buckle, K N; Hulse, L

    2014-01-01

    Juvenile inland bearded dragons (Pogona vitticeps) from a breeding collection in south-east Queensland were presented at age 6-10 weeks with neurological signs, poor growth and occasional deaths. Histopathological examination revealed that six of eight lizards had multifocal non-suppurative hepatitis associated with 5-10 μm diameter, smudgy, basophilic, hyaline intranuclear inclusion bodies that marginated the nuclear chromatin. These histological lesions were considered consistent with adenoviral hepatitis. Infection with adenovirus was confirmed positive in one of the eight dragons by PCR for adenoviral DNA. DNA was extracted from formalin-fixed paraffin-embedded pooled tissues of the juvenile inland bearded dragons and tested using a nested-PCR protocol with primers specific for identification of adenovirus. Sequencing of the one PCR-positive dragon showed 95% nucleotide sequence alignment with agamid atadenovirus 1. Further investigation involved testing the breeding population, including the parents of the affected juveniles. Blood and cloacal samples were collected from the adult population, DNA was extracted and tested by PCR for adenovirus. There was a high percentage of positive results from the samples collected from the breeding population. This is the first reported group outbreak of adenoviral disease in bearded dragons in Australia. © 2014 Australian Veterinary Association.

  11. Adenoviral and adeno-associated viral vectors-mediated neuronal gene transfer to cardiovascular control regions of the rat brain.

    PubMed

    Zhang, Yanling; Gao, Yongxin; Speth, Robert C; Jiang, Nan; Mao, Yingying; Sumners, Colin; Li, Hongwei

    2013-01-01

    Viral vectors have been utilized extensively to introduce genetic material into the central nervous system. In order to investigate gene functions in cardiovascular control regions of rat brain, we applied WPRE (woodchuck hepatitis virus post-transcriptional regulatory element) enhanced-adenoviral (Ad) and adeno-assoicated virus (AAV) type 2 vectors to mediate neuronal gene delivery to the paraventricular nucleus of the hypothalamus, the nucleus tractus solitarius and the rostral ventrolateral medulla, three important cardiovascular control regions known to express renin-angiotensin system (RAS) genes. Ad or AAV2 harboring an enhanced green fluorescent protein (EGFP) reporter gene or the angiotensin type 2 receptor gene were microinjected into these brain regions in adult rats. Our results demonstrated that both AAV2 and Ad vectors elicited long-term neuronal transduction in these regions. Interestingly, we found that the WPRE caused expression of GFP driven by the synapsin1 promoter in pure glial cultures or co-cultures of neurons and glia derived from rat hypothalamus and brainstem. However, in rat paraventricular nucleus WPRE did not cause expression of GFP in glia. This demonstrates the potential use of these vectors in studies of physiological functions of certain genes in the cardiovascular control regions of the brain.

  12. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells

    PubMed Central

    Maggio, Ignazio; Liu, Jin; Janssen, Josephine M.; Chen, Xiaoyu; Gonçalves, Manuel A. F. V.

    2016-01-01

    Mutations disrupting the reading frame of the ~2.4 Mb dystrophin-encoding DMD gene cause a fatal X-linked muscle-wasting disorder called Duchenne muscular dystrophy (DMD). Genome editing based on paired RNA-guided nucleases (RGNs) from CRISPR/Cas9 systems has been proposed for permanently repairing faulty DMD loci. However, such multiplexing strategies require the development and testing of delivery systems capable of introducing the various gene editing tools into target cells. Here, we investigated the suitability of adenoviral vectors (AdVs) for multiplexed DMD editing by packaging in single vector particles expression units encoding the Streptococcus pyogenes Cas9 nuclease and sequence-specific gRNA pairs. These RGN components were customized to trigger short- and long-range intragenic DMD excisions encompassing reading frame-disrupting exons in patient-derived muscle progenitor cells. By allowing synchronous and stoichiometric expression of the various RGN components, we demonstrate that dual RGN-encoding AdVs can correct over 10% of target DMD alleles, readily leading to the detection of Becker-like dystrophin proteins in unselected muscle cell populations. Moreover, we report that AdV-based gene editing can be tailored for removing mutations located within the over 500-kb major DMD mutational hotspot. Hence, this single DMD editing strategy can in principle tackle a broad spectrum of mutations present in more than 60% of patients with DMD. PMID:27845387

  13. Transcriptional Targeting of Mature Dendritic Cells with Adenoviral Vectors via a Modular Promoter System for Antigen Expression and Functional Manipulation

    PubMed Central

    Deinzer, Andrea

    2016-01-01

    To specifically target dendritic cells (DCs) to simultaneously express different therapeutic transgenes for inducing immune responses against tumors, we used a combined promoter system of adenoviral vectors. We selected a 216 bp short Hsp70B′ core promoter induced by a mutated, constitutively active heat shock factor (mHSF) 1 to drive strong gene expression of therapeutic transgenes MelanA, BclxL, and IL-12p70 in HeLa cells, as well as in mature DCs (mDCs). As this involves overexpressing mHSF1, we first evaluated the resulting effects on DCs regarding upregulation of heat shock proteins and maturation markers, toxicity, cytokine profile, and capacity to induce antigen-specific CD8+ T cells. Second, we generated the two-vector-based “modular promoter” system, where one vector contains the mHSF1 under the control of the human CD83 promoter, which is specifically active only in DCs and after maturation. mHSF1, in turn, activates the Hsp70B′ core promotor-driven expression of transgenes MelanA and IL-12p70 in the DC-like cell line XS52 and in human mature and hence immunogenic DCs, but not in tolerogenic immature DCs. These in vitro experiments provide the basis for an in vivo targeting of mature DCs for the expression of multiple transgenes. Therefore, this modular promoter system represents a promising tool for future DC-based immunotherapies in vivo. PMID:27446966

  14. Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer

    PubMed Central

    Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta

    2006-01-01

    Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  15. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3

    PubMed Central

    Suchanek, Amanda L.; Salati, Lisa M.

    2015-01-01

    Serine/arginine-rich splicing factor-3 (SRSF3), alternatively known as SRp20, is a member of the highly-conserved SR protein family of mRNA splicing factors. SRSF3 generally functions as an enhancer of mRNA splicing by binding to transcripts in a sequence-specific manner to both recruit and stabilize the binding of spliceosomal components to the mRNA. In liver, expression of SRSF3 is relatively low and its activity is increased in response to insulin and feeding a high carbohydrate diet. We sought to over-express SRSF3 in primary rat hepatocytes to identify regulatory targets. A standard adenoviral shuttle vector system containing an epitope-tagged SRSF3 under the transcriptional control of the CMV promoter could not be used to produce infectious adenoviral particles. SRSF3 over-expression in the packaging cell line prevented the production of infectious adenovirus particles by interfering with the viral splicing program. To circumvent this issue, SRSF3 expression from the shuttle vector was blocked by placing its expression under the control of the liver-specific albumin promoter. In this system, the FLAG-SRSF3 transgene is only expressed in the target cells (hepatocytes) but not in the packaging cell line. An additional benefit of the albumin promoter is that expression of the transgene does not require the addition of hormones or antibiotics to drive SRSF3 expression in the hepatocytes. Robust expression of FLAG-SRSF3 protein is detected in both HepG2 cells and primary rat hepatocytes infected with adenovirus prepared from this new shuttle vector. Furthermore, abundances of several known and suspected mRNA targets of SRSF3 action are increased in response to over-expression using this virus. This report details the construction of the albumin promoter-driven adenoviral shuttle vector, termed pmAlbAd5-FLAG.SRSF3, that can be used to generate functional adenovirus to express FLAG-SRSF3 specifically in liver. This vector would be suitable for over-expression of

  16. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    PubMed

    Kanagavelu, Saravana; Termini, James M; Gupta, Sachin; Raffa, Francesca N; Fuller, Katherine A; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S; Stone, Geoffrey W

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  17. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia

    PubMed Central

    Koehler, David R.; Sajjan, Umadevi; Chow, Yu-Hua; Martin, Bernard; Kent, Geraldine; Tanswell, A. Keith; McKerlie, Colin; Forstner, Janet F.; Hu, Jim

    2003-01-01

    We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice. Cftr RNA and protein were present in whole lung and bronchioles, respectively, for 28 days after a vector dose. Acute inflammation was minimal to moderate. To test the therapeutic potential of the vector, we challenged mice with a clinical strain of Burkholderia cepacia complex (Bcc). Cftr knockout mice (but not Cftr+/+ littermates) challenged with Bcc developed severe lung histopathology and had high lung bacteria counts. Cftr knockout mice receiving gene therapy 7 days before Bcc challenge had less severe histopathology, and the number of lung bacteria was reduced to the level seen in Cftr+/+ littermates. These data suggest that gene therapy could benefit cystic fibrosis patients by reducing susceptibility to opportunistic pathogens. PMID:14673110

  18. Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis.

    PubMed

    Zhang, Xiong; Qi, Dong-Dong; Zhang, Ting-Ting; Chen, Qing-Xin; Wang, Guang-Zhi; Sui, Guang-Yu; Hao, Xue-Wei; Sun, Shouli; Song, Xue; Chen, Ying-Li

    2015-03-01

    The T42 peptide, generated from two active fragments of tumstatin, has been shown to have anti‑tumor activity. The adenoviral vector is the most frequently used vector in research and clinical trials for gene therapy. In the present study, the anti‑tumor activity of the T42 peptide and quadruple T42 (4xT42) peptide adenoviral vectors were elucidated for the first time, to the best of our knowledge. Human embryonic kidney 293 cells were infected with plasmid adenovirus (pAd)‑enhanced green fluorescent protein (EGFP)‑T42 or pAd‑EGFP‑4xT42 and the expression of the T42 and 4xT42 genes was confirmed by the identification of GFP expression and reverse transcription polymerase chain reaction experiments. The anti‑cancer effects of pAd‑EGFP‑T42 and pAd‑EGFP‑4xT42 on breast cancer cells in vivo and in vitro were subsequently investigated. The results indicated that the packaging of the recombinant adenoviruses with the viral titer was successful, following purification at 5x109 plaque forming units/ml. The results also revealed that the recombinant adenoviruses promoted apoptosis in MCF‑7 breast cancer cells and inhibited cancer growth. Through the analysis of caspase‑3, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein expression, it was demonstrated that the T42/4xT42 peptide may induce apoptosis via the mitochondrial pathway. In addition, mouse xenograft experiments confirmed that the T42 peptide inhibited tumor growth and reduced angiogenesis in vivo. In conclusion, the results of the present study indicated that the T42 and 4xT42 peptide genes, transfected by a recombinant adenovirus, may provide a potential novel strategy for the treatment of breast cancer.

  19. Induction of Specific Humoral and Cellular Immune Responses in a Mouse Model following Gene Fusion of HSP70C and Hantaan Virus Gn and S0.7 in an Adenoviral Vector

    PubMed Central

    Li, Kai; Wang, Fang; Zhang, Liang; Ye, Wei; Li, Puyuan; Zhang, Fanglin; Xu, Zhikai

    2014-01-01

    Heat shock proteins (HSPs) display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV) glycoprotein (GP) and nucleocapsid protein (NP) immunogenicity by heat shock protein 70 (HSP70), a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359–610 aa, HSP70C) to the Gn and 0.7 kb fragment of the NP (aa1–274-S0.7). C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7) and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV. PMID:24505421

  20. Sensitivity and specificity of the AdenoPlus test for diagnosing adenoviral conjunctivitis.

    PubMed

    Sambursky, Robert; Trattler, William; Tauber, Shachar; Starr, Christopher; Friedberg, Murray; Boland, Thomas; McDonald, Marguerite; DellaVecchia, Michael; Luchs, Jodi

    2013-01-01

    To compare the clinical sensitivity and specificity of the AdenoPlus test with those of both viral cell culture (CC) with confirmatory immunofluorescence assay (IFA) and polymerase chain reaction (PCR) at detecting the presence of adenovirus in tear fluid. A prospective, sequential, masked, multicenter clinical trial enrolled 128 patients presenting with a clinical diagnosis of acute viral conjunctivitis from a combination of 8 private ophthalmology practices and academic centers. Patients were tested with AdenoPlus, CC-IFA, and PCR to detect the presence of adenovirus. The sensitivity and specificity of AdenoPlus were assessed for identifying cases of adenoviral conjunctivitis. Of the 128 patients enrolled, 36 patients' results were found to be positive by either CC-IFA or PCR and 29 patients' results were found to be positive by both CC-IFA and PCR. When compared only with CC-IFA, AdenoPlus showed a sensitivity of 90% (28/31) and specificity of 96% (93/97). When compared only with PCR, AdenoPlus showed a sensitivity of 85% (29/34) and specificity of 98% (89/91). When compared with both CC-IFA and PCR, AdenoPlus showed a sensitivity of 93% (27/29) and specificity of 98% (88/90). When compared with PCR, CC-IFA showed a sensitivity of 85% (29/34) and specificity of 99% (90/91). AdenoPlus is sensitive and specific at detecting adenoviral conjunctivitis. An accurate and rapid in-office test can prevent the misdiagnosis of adenoviral conjunctivitis that leads to the spread of disease, unnecessary antibiotic use, and increased health care costs. Additionally, AdenoPlus may help a clinician make a more informed treatment decision regarding the use of novel therapeutics. clinicaltrials.gov Identifier: NCT00921895.

  1. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    PubMed Central

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L.; Bellamy, Scarlett L.; Betts, Michael R.

    2014-01-01

    ABSTRACT The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4+ T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4+ T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4+ T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4+ T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination. IMPORTANCE The possibility that vaccination with a human adenovirus 5 vector increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of human immunodeficiency virus (HIV) acquisition within the Step trial. In this study, we tested whether vaccination with a rhesus macaque-derived adenoviral vector in rhesus macaques enhances mucosal CD4+ T cell activation, the main cell target of simian immunodeficiency virus (SIV)/HIV. The results showed that vaccination with an adenoviral vector indeed increases activation of mucosal CD4+ T cells and potentially increases susceptibility to SIV

  2. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  3. Encapsulation of adenoviral vectors into chitosan-bile salt microparticles for mucosal vaccination.

    PubMed

    Lameiro, Maria Helena; Malpique, Rita; Silva, Ana Carina; Alves, Paula M; Melo, Eurico

    2006-11-01

    The objective of this study is the incorporation of adenoviral vectors into a microparticulate system adequate for mucosal delivery. Microencapsulation of the vectors was accomplished by ionotropic coacervation of chitosan, using bile salts as counter-anion. The process was optimized in order to promote high encapsulation efficiency, with a minimal loss of viral infectivity. The maintenance of sterility during all the encapsulation procedure was also taken into account. The principle relies on the simple addition of a solution containing adenoviral vectors to a solution of neutralized chitosan, under stirring. Some surfactants were added to the chitosan solution, to improve the efficiency of this process, such as Tween 80, and Pluronic F68 at 1% (w/v). Encapsulation efficiency higher than 84% was achieved with formulations containing sodium deoxycholate as counter-anion and Pluronic F68 as dispersant agent. The infectivity of the adenoviral vectors incorporated into microparticles was assessed by release assays in PBS and by direct inoculation in 293 and Caco-2 cells. The release in aqueous media was negligible but, when in contact with monolayers of the cells, an effective release of bioactive adenovirus was obtained. Our work shows that encapsulation in microparticles, not only appear to protect the adenovirus from the external medium, namely from low pH, but can also delay their release that is fully dependent on cell contact, an advantage for mucosal vaccination purposes. The formulations developed are able to maintain AdV infectivity and permit a delayed release of the bioactives that is promoted by digestion in situ of the microparticles by the cell monolayers. The onset of delivery is, that way, host-controlled. In view of these results, these formulations showed good properties for mucosal adenovirus delivery.

  4. Vertical transmission and clinical signs in broiler breeders and broilers experiencing adenoviral gizzard erosion.

    PubMed

    Grafl, Beatrice; Aigner, Franz; Liebhart, Dieter; Marek, Ana; Prokofieva, Irina; Bachmeier, Josef; Hess, Michael

    2012-12-01

    The present report documents an outbreak of adenoviral gizzard erosion in 22 broiler flocks in Germany. The clinical picture was characterized by uneven growth of affected broilers that resulted in considerably lower than average weight at slaughtering. Fowl adenovirus serotype 1 (FAdV-1) was isolated from gizzard lesions and histological examinations demonstrated FAdV-1-positive intranuclear inclusion bodies in gizzard epithelial cells of affected broilers by in-situ hybridization. Birds from all affected flocks originated from one broiler breeder farm. During production of affected birds, broiler breeders were between 27 and 32 weeks old. Enzyme-linked immunosorbent assay and specific virus neutralization assay of sera from parent birds demonstrated an acute FAdV-1 infection within the first 5 weeks of the production cycle. Clinically, broiler breeders exhibited a moderate fall in the hatchability of their chicks, while egg production remained normal. No further clinical signs could be observed. Genetically identical FAdV-1 strains were isolated from gizzards of embryos at the lowest point of hatchability and from affected broiler flocks raised on independent farms. For the first time, direct detection of viable FAdV-1 from gizzards of embryos and progenies of one FAdV-1-seropositive broiler breeder farm in the course of an outbreak of adenoviral gizzard erosion could be demonstrated, highlighting the importance of vertical transmission of this disease. Additionally, growth retardation and subsequent reduced average weight at the time of slaughter of broiler chickens underline the economic impact of adenoviral gizzard erosion for poultry production.

  5. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector

    PubMed Central

    Sasaki, Makoto; Mathis, J Michael; Jennings, Merilyn H; Jordan, Paul; Wang, Yuping; Ando, Tomoaki; Joh, Takashi; Alexander, J Steven

    2005-01-01

    Genetic deficiency in the expression of interleukin-10 (IL-10) is associated with the onset and progression of experimental inflammatory bowel disease (IBD). The clinical significance of IL-10 expression is supported by studies showing that immune-augmentation of IL-10 prevents inflammation and mucosal damage in animal models of colitis and in human colitis. Interleukin-10 (IL-10), an endogenous anti-inflammatory and immunomodulating cytokine, has been shown to prevent some inflammation and injury in animal and clinical studies, but the efficacy of IL-10 treatment remains unsatisfactory. We found that intra-peritoneal administration of adenoviral IL-10 to mice significantly reversed colitis induced by administration of 3% DSS (dextran sulfate), a common model of colitis. Adenoviral IL-10 (Ad-IL10) transfected mice developed high levels of IL-10 (394 +/- 136 pg/ml) within the peritoneal cavity where the adenovirus was expressed. Importantly, when given on day 4 (after the induction of colitis w/DSS), Ad-IL10 significantly reduced disease activity and weight loss and completely prevented histopathologic injury to the colon at day 10. Mechanistically, compared to Ad-null and DSS treated mice, Ad-IL10 and DSS-treated mice were able to suppress the expression of MAdCAM-1, an endothelial adhesion molecule associated with IBD. Our results suggest that Ad-IL10 (adenoviral IL-10) gene therapy of the intestine or peritoneum may be useful in the clinical treatment of IBD, since we demonstrated that this vector can reverse the course of an existing gut inflammation and markers of inflammation. PMID:16259632

  6. Transcriptional targeting of primary and metastatic tumor neovasculature by an adenoviral type 5 roundabout4 vector in mice.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E; Kaliberova, Lyudmila; Curiel, David T; Arbeit, Jeffrey M

    2013-01-01

    New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies.

  7. Transcriptional Targeting of Primary and Metastatic Tumor Neovasculature by an Adenoviral Type 5 Roundabout4 Vector in Mice

    PubMed Central

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E.; Kaliberova, Lyudmila; Curiel, David T.; Arbeit, Jeffrey M.

    2013-01-01

    New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies. PMID:24376772

  8. Construction of a targeting adenoviral vector carrying AFP promoter for expressing EGFP gene in AFP producing hepatocarcinoma cell

    PubMed Central

    Shi, Yu-Jun; Gong, Jian-Ping; Liu, Chang-An; Li, Xu-Hong; Mei, Ying; Mi, Can; Huo, Yan-Ying

    2004-01-01

    AIM: To construct a recombinant adenoviral vector carrying AFP promoter and EGFP gene for specific expression of EGFP gene in AFP producing hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Based on the Adeno-XTM expression system, the human immediate early cytomegalovirus promoter (PCMV IE) was removed from the plasmid, pshuttle, and replaced by a 0.3 kb α-fetoprotein (AFP) promoter that was synthesized by polymerase chain reaction (PCR). The enhanced green fluorescent protein (EGFP) gene was inserted into the multi-clone site (MCS), and then the recombinant adenovirus vector carrying the 0.3 kb AFP promoter and EGFP gene was constructed. Cells of a normal liver cell line (LO2), a hepatocarcinoma cell line (HepG2) and a cervical cancer cell line (HeLa) were transfected with the adenovirus. Northern blot and fluorescence microscopy were used to detect the expression of the EGFP gene at mRNA or protein level in three different cell lines. RESULTS: The 0.3 kb AFP promoter was synthesized through PCR from the human genome. The AFP promoter and EGFP gene were directly inserted into the plasmid pshuttle as confirmed by restriction digestion and DNA sequencing. Northern blot showed that EGFP gene was markedly transcribed in HepG2 cells, but only slightly in LO2 and HeLa cells. In addition, strong green fluorescence was observed in HepG2 cells under a fluorescence microscopy, but fluorescence was very weak LO2 and HeLa cells. CONCLUSION: Under control of the 0.3 kb human AFP promoter, the recombinant adenovirus vector carrying EGFP gene can be specially expressed in AFP-producing HepG2 cells. Therefore, this adenovirus system can be used as a novel, potent and specific tool for gene-targeting therapy for the AFP positive primary hepatocellular carcinoma. PMID:14716819

  9. Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors.

    PubMed

    Brunetti-Pierri, N; Ng, P

    2008-04-01

    Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field.

  10. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Adamo, Richard F.; Chorny, Michael; Levy, Robert J.; Alferiev, Ivan S.

    2014-01-01

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  11. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory.

    PubMed

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D; Brown, Anthony; Richardson, Rachel; Newell, Evan W; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Del Sorbo, Mariarosaria; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2014-11-05

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.

  12. A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory*

    PubMed Central

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D.; Brown, Anthony; Richardson, Rachel; Newell, Evan W.; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2015-01-01

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b. Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost. We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine. PMID:25378645

  13. An efficient and scalable process for helper-dependent adenoviral vector production using polyethylenimine-adenofection.

    PubMed

    Dormond, E; Meneses-Acosta, A; Jacob, D; Durocher, Y; Gilbert, R; Perrier, M; Kamen, A

    2009-02-15

    Safety requirements for adenoviral gene therapy protocols have led to the development of the third generation of vectors commonly called helper-dependent adenoviral vectors (HDVs). HDVs have demonstrated a high therapeutic potential; however, the poor efficiency and reliability of the actual production process hampers further large-scale clinical evaluation of this new vector. The current HDV production methods involve a preliminary rescue step through transfection of adherent cell cultures by an HDV plasmid followed by a helper adenovirus (HV) infection. Amplification by serial co-infection of complementary cells allows an increase in the HDV titer. Using a HEK293 FLP/frt cell system in suspension culture, an alternative protocol to the current transfection/infection procedure was evaluated. In this work, the adenofection uses the HDV plasmid linked to the HV with the help of polyethylenimine (PEI) and has shown to outperform standard protocols by producing higher HDV yield. The influence of complex composition on the HDV production was examined by a statistical design. The optimized adenofection and amplification conditions were successively performed to generate HDV at the 3 L bioreactor scale. Following only two serial co-infection passages, up to 1.44 x 10(8) HDV infectious units/mL of culture were generated, which corresponded to 26% of the total particles produced. This production strategy, realized in cell suspension culture, reduced process duration and therefore the probability of vector recombination by introducing a cost-effective transfection protocol, ensuring production of high-quality vector stock.

  14. Adenoviral Vector-Mediated Gene Therapy for Gliomas: Coming of Age

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Wilson, Thomas J.; Calinescu, Alexandra; Paran, Christopher; Kamran, Neha; Koschmann, Carl; Moreno-Ayala, Mariela A.; Assi, Hikmat; Lowenstein, Pedro R.

    2014-01-01

    Introduction Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults; it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates’ brain. Importantly Ads have been safely administered within the tumor resection cavity in humans. Areas Covered Background on GBM and Ad vectors; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally we discuss the results of the human clinical trials for GBM that have used adenoviral vectors. Expert Opinion The transduction characteristics of Ad vectors, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases, encourages the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although it is large randomized phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM. PMID:24773178

  15. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  16. Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents.

    PubMed

    Howard, Candace M; Forsberg, Flemming; Minimo, Corrado; Liu, Ji-Bin; Merton, Daniel A; Claudio, Pier Paolo

    2006-11-01

    We have evaluated if ultrasound imaging (US) and various commercially available contrast microbubbles can serve as a non-invasive systemically administered delivery vehicle for site-specific adenoviral-mediated gene transfer in vitro and in vivo. The contrast agents were tested for their ability to enclose and to protect an adenoviral vector carrying the GFP marker gene (Ad-GFP) into the microbubbles. We have also evaluated the ability of the innate immune system to inactivate free adenoviruses as well as unenclosed viruses adsorbed on the surface of the contrast agents and in turn the ability of the microbubbles to enclose and to protect the viral vectors from such agents. In vitro as well as in vivo, innate components of the immune system were able to serve as inactivating agents to clear free viral particles and unenclosed adenoviruses adsorbed on the microbubbles' surface. Systemic delivery of Ad-GFP enclosed into microbubbles in the tail vein of nude mice resulted in specific targeting of the GFP transgene. Both fluorescence microscopy and GFP immunohistochemistry demonstrated US guided specific transduction in the targeted cells only, with no uptake in either heart, lungs or liver using complement-pretreated Ad-GFP microbubbles. This approach enhances target specificity of US microbubble destruction as a delivery vehicle for viral-mediated gene transfer.

  17. Disseminated adenoviral infection masquerading as lower urinary tract voiding dysfunction in a kidney transplant recipient.

    PubMed

    Aboumohamed, Ahmed; Flechner, Stuart M; Chiesa-Vottero, Andres; Srinivas, Titte R; Mossad, Sherif B

    2014-11-01

    Viral infections continue to cause significant morbidity in immunosuppressed kidney transplant patients. Although cytomegalovirus, Epstein-Barr virus and polyoma "BK" virus are more frequently encountered, the Adenovirus can cause multi-organ system infections, and may be difficult to diagnose because it is not often considered in the initial work up in kidney transplant recipients. We present an unusual case of a kidney recipient 1 year post-transplant with disseminated adenoviral infection, who had an initial presentation of lower urinary tract voiding dysfunction with hematuria and sterile pyuria. This progressed to a severe tubulointerstitial nephritis and acute kidney injury that improved with reduction of immunosuppression. Serial blood viral loads are useful for monitoring the course of infection. Urinary adenoviral infection should be considered in the differential diagnosis whenever a kidney transplant recipient presents with unexplained lower tract voiding dysfunction, hematuria, and sterile pyuria. The allograft kidney and bladder can be targets of viral proliferation. Early diagnosis with reduction of immunosuppressive therapy is essential to clear the virus and maintain allograft function.

  18. Vaccine-preventable adenoviral respiratory illness in US military recruits, 1999-2004

    PubMed Central

    Russell, Kevin L.; Hawksworth, Anthony W.; Ryan, Margaret A. K.; Strickler, Jennifer; Irvine, Marina; Hansen, Christian J.; Gray, Gregory C.; Gaydos, Joel C.

    2007-01-01

    Background and Methods: The high burden of respiratory infections in military populations is well documented throughout history. The primary pathogen responsible for morbidity among US recruits in training was shown to be adenovirus. Highly efficacious oral vaccines were used for 25 years, but vaccine production ceased in 1996, and available stores were depleted by early 1999. Surveillance for acute febrile respiratory illness was performed at eight military recruit training sites throughout the United States from July 1999 through June 2004 to document rates after loss of the vaccines. Laboratory diagnoses complimented the surveillance efforts. Results: Over the 5 years, nearly 12 million person-weeks were followed and an estimated 110,172 febrile respiratory illness cases and 73,748 adenovirus cases were identified. Rates of illness were highest at the Navy and Air Force training centers, with average annual rates of 1.20 and 1.35 cases per 100 recruit- weeks respectively. Adenoviral-associated illness rates peaked in weeks 3 to 5 of training, depending upon service. Conclusions: The burden of adenoviral illness among US recruit populations has returned to high levels since loss of the vaccines. Restoration of an effective adenovirus vaccine effort within the military is anticipated by 2008, potentially reducing the adenovirus morbidity suffered in this vulnerable population. Efforts to determine the burden of adenovirus and potential benefits of vaccination in civilian populations are being renewed. PMID:16480793

  19. An Adenoviral Vaccine Encoding Full-Length Inactivated Human HER2 Exhibits Potent Immunogenicty and Enhanced Therapeutic Efficacy Without Oncogenicity

    PubMed Central

    Hartman, Zachary; Wei, Junping; Osada, Takuya; Glass, Oliver; Lei, Gangjun; Yang, Xiao-Yi; Peplinski, Sharon; Kim, Dong-Wan; Xia, Wenle; Spector, Neil; Marks, Jeffrey; Barry, William; Hobeika, Amy; Devi, Gayathri; Amalfitano, Andrea; Morse, Michael A.; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Purpose Overexpression of the breast cancer oncogene HER2 correlates with poor survival. Current HER2-directed therapies confer limited clinical benefits and most patients experience progressive disease. Because refractory tumors remain strongly HER2+, vaccine approaches targeting HER2 have therapeutic potential, but wild type (wt) HER2 cannot safely be delivered in imunogenic viral vectors because it is a potent oncogene. We designed and tested several HER2 vaccines devoid of oncogenic activity to develop a safe vaccine for clinical use. Experimental Design We created recombinant adenoviral vectors expressing the extracellular domain of HER2 (Ad-HER2-ECD), ECD plus the transmembrane domain (Ad-HER2-ECD-TM) and full length HER2 inactivated for kinase function (Ad-HER2-ki) and determined their immunogenicity and anti-tumor effect in wild type (WT) and HER2 tolerant mice. To assess their safety, we compared their effect on the cellular transcriptome, cell proliferation, anchorage-dependent growth, and transformation potential in vivo. Results Ad-HER2-ki was the most immunogenic vector in WT animals, retained immunogenicity in HER2-transgenic tolerant animals, and showed strong therapeutic efficacy in treatment models. Despite being highly expressed, HER2-ki protein was not phosphorylated and did not produce an oncogenic gene signature in primary human cells. And, in contrast to HER2-wt, cells overexpressing HER2-ki were less proliferative, displayed less anchorage independent growth and were not transformed in vivo. Conclusions Vaccination with mutationally inactivated, non-oncogenic Ad-HER2-ki results in robust polyclonal immune responses to HER2 in tolerant models, which translates into strong and effective anti-tumor responses in vivo. Ad-HER2-ki is thus a safe and promising vaccine for evaluation in clinical trials. PMID:20179231

  20. Adenoviral Delivery of VEGF121 Early in Pregnancy Prevents Spontaneous Development of Preeclampsia in BPH/5 Mice

    PubMed Central

    Woods, Ashley K.; Hoffmann, Darren S.; Weydert, Christine J.; Butler, Scott D.; Zhou, Yi; Sharma, Ram V.; Davisson, Robin L.

    2011-01-01

    An imbalance in circulating pro-angiogenic and anti-angiogenic factors is postulated to play a causal role in pre-eclampsia (PE). We have described an inbred mouse strain, BPH/5, which spontaneously develops a PE-like syndrome including late-gestational hypertension, proteinuria, and poor feto-placental outcomes. Here we tested the hypothesis that an angiogenic imbalance during pregnancy in BPH/5 mice leads to the development of PE-like phenotypes in this model. Similar to clinical findings, plasma from pregnant BPH/5 showed reduced levels of free vascular endothelial growth factor (VEGF) and placental growth factor (PGF) compared to C57BL/6 controls. This was paralleled by a marked decrease in VEGF protein and Pgf mRNA in BPH/5 placentae. Surprisingly, antagonism by the soluble form of the FLT1 receptor (sFLT1) did not appear to be the cause of this reduction, as sFLT1 levels were unchanged or even reduced in BPH/5 compared to controls. Adenoviral-mediated delivery of VEGF121 (Ad-VEGF) via tail vein at e7.5 normalized both the plasma free VEGF levels in BPH/5 and restored the in vitro angiogenic capacity of serum from these mice. Ad-VEGF also reduced the incidence of fetal resorptions and prevented the late-gestational spike in blood pressure and proteinuria observed in BPH/5. These data underscore the importance of dysregulation of angiogenic factors in the pathogenesis of PE, and suggest the potential utility of early pro-angiogenic therapies in treating this disease. PMID:21079047

  1. Adenoviral gene transfer of an NF-kappaB super-repressor increases collagen deposition in rodent cutaneous wound healing.

    PubMed

    Schreiber, Jeffrey; Efron, Philip A; Park, Julie E; Moldawer, Lyle L; Barbul, Adrian

    2005-11-01

    The transcription factor nuclear factor-kappaB (NF-kappaB) plays an essential role in inflammation. To date, no studies have investigated the effect of inhibiting NF-kappaB-mediated inflammation on normal cutaneous wound healing. We tested this by locally administering an adenovirus recombinant that constitutively expresses a super-repressor isoform of inhibitory-kappaB (IkappaB) into rats undergoing a well-established model of dorsal wound healing. Seventy-two Sprague-Dawley rats underwent insertion of a sponge-pump construct into a dorsal subcutaneous pocket. One group of rats received pumps filled with the adenovirus expressing I-kappaB (rAd-Ikappab), a second group received pumps filled with adenovirus expressing green fluorescent protein (GFP) (rAd-gfp), and a third received pumps filled with normal saline (NS). Rats were killed in groups of 6 on days 1, 3, 5 and 7 postoperation. The wound fluid was analyzed for nitrite/nitrate (NOx) and tumor necrosis factor-alpha (TNF-alpha) concentrations. The wound fluid was assayed for hydroxyproline (OHP) content, an index of reparative collagen deposition. Administration of rAd-Ikappab for 7 days resulted in higher collagen deposition (OHP) compared with the rAd-gfp and NS groups. NOx levels were significantly higher in the rAd-gfp group on day 1 and marginally so on day 5. TNF-alpha quantitation analysis found no significant difference among the 3 groups. IkappaB expression through an adenoviral vector in the cutaneous wound may improve rodent healing, as shown by increased collagen deposition, through decreased inflammation. This mechanism appears to be TNF-alpha independent. Inhibition of NF-kappaB may reduce inflammation by reducing the local NOx concentrations.

  2. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  3. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration

    PubMed Central

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose. PMID:27434682

  4. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  5. A Polymerase Chain Reaction-Based Algorithm to Detect and Prevent Transmission of Adenoviral Conjunctivitis in Hospital Employees.

    PubMed

    Kuo, Irene C; Espinosa, Colleen; Forman, Michael; Valsamakis, Alexandra

    2016-03-01

    To devise and implement a practice algorithm that would enable rapid detection and appropriate furlough of hospital employees with adenoviral conjunctivitis in order to prevent healthcare-associated epidemic keratoconjunctivitis. Evaluation of an ongoing quality assurance/improvement initiative. Employees of Johns Hopkins Hospital with signs and symptoms of adenoviral conjunctivitis underwent evaluation by nurse practitioners in Occupational Health and rapid diagnostic testing by real-time polymerase chain reaction (PCR). Sequencing was used to determine serotype when adenovirus was detected. Signs, symptoms, diagnosis, and disposition of employees with eye complaints as well as PCR and serotype results were recorded. Over a 36-month period approximately 18% of initial employee visits were due to unique, eye-related complaints. Viral conjunctivitis was suspected in 542 of 858 employees with eye complaints (62%); adenovirus was detected by PCR in 44 of 542 suspected viral conjunctivitis cases (8%) or 44 of 858 employees with any eye concern (5%). Fourteen of the 44 employees had adenoviral serotypes and clinical presentation consistent with epidemic keratoconjunctivitis (type 37 [n = 6], 8 [n = 4], 4 [n = 3], 19 [n = 1]). Other serotypes found in individuals with less severe conjunctivitis were 3 (n = 5), 4 (n = 5), 56 (n = 4), 1 (n = 2), 42 (n = 1), and 7 (n = 1). No healthcare-associated adenoviral conjunctivitis outbreaks occurred after algorithm implementation, and fewer employees required furlough than had clinical diagnosis alone been used. The algorithm is an effective infection prevention tool that minimizes productivity loss compared to clinical diagnosis and allows for determination of prevalence and serotype characterization of adenoviral conjunctivitis in hospital employees. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Adenoviral Mediated Gene Transfer of IGF-1 Enhances Wound Healing and Induces Angiogenesis

    PubMed Central

    Balaji, S.; LeSaint, M.; Bhattacharya, S. S.; Moles, C.; Dhamija, Y.; Kidd, M.; Le, L.D.; King, A.; Shaaban, A.; Crombleholme, T. M.; Bollyky, P.; Keswani, S. G.

    2014-01-01

    Background Chronic wounds are characterized by a wound healing and neovascularization deficit. Strategies to increase neovascularization can significantly improve chronic wound healing. Insulin like growth factor (IGF-1) is reported to be a keratinocyte mitogen and is believed to induce angiogenesis via a vascular endothelial growth factor (VEGF) dependent pathway. Using a novel ex vivo human dermal wound model and a diabetic impaired wound healing murine model, we hypothesized that adenoviral over expression of IGF-1 (Ad-IGF-1) will enhance wound healing and induce angiogenesis through a VEGF dependent pathway. Methods Ex vivo: 6 mm full thickness punch biopsies were obtained from normal human skin, and 3 mm full thickness wounds were created at the center. Skin explants were maintained at air liquid interface. Db/db murine model: 8 mm full thickness dorsal wounds in diabetic (db/db) mice were created. Treatment groups in both human ex vivo and in vivo db/db wound models include 1×108 PFU of Ad-IGF-1 or Ad-LacZ, and PBS (n=4–5/group). Cytotoxicity (LDH) was quantified at days 3, 5 and 7 for the human ex vivo wound model. Epithelial gap closure (H&E; Trichrome), VEGF expression (ELISA) and capillary density (CD 31+ CAPS/HPF) were analyzed at day 7. Results In the human ex vivo organ culture, the adenoviral vectors did not demonstrate any significant difference in cytotoxicity compared to PBS. Ad-IGF-1 over expression significantly increases basal keratinocyte migration, with no significant effect on epithelial gap closure. There was a significant increase in capillary density in the Ad-IGF-1 wounds. However, there was no effect on VEGF levels in Ad-IGF-1 samples compared to controls. In db/db wounds, Ad-IGF-1 over expression significantly improves epithelial gap closure and granulation tissue with a dense cellular infiltrate compared to controls. Ad-IGF-1 also increases capillary density, again with no significant difference in VEGF levels in the wounds compared

  7. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine

    PubMed Central

    Nielsen, Morten A.; Resende, Mafalda; de Jongh, Willem A.; Ditlev, Sisse B.; Mordmüller, Benjamin; Houard, Sophie; Ndam, Nicaise Tuikue; Agerbæk, Mette Ø.; Hamborg, Mette; Massougbodji, Achille; Issifou, Saddou; Strøbæk, Anette; Poulsen, Lars; Leroy, Odile; Kremsner, Peter G.; Chippaux, Jean-Philippe; Luty, Adrian J. F.; Deloron, Philippe; Theander, Thor G.; Dyring, Charlotte; Salanti, Ali

    2015-01-01

    The disease caused by Plasmodium falciparum (Pf) involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM) is one such manifestation in which Pf infected erythrocytes (IE) bind to chondroitin sulphate A (CSA) through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2) expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens that induce a

  8. Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro.

    PubMed Central

    Aoki, K.; Barker, C.; Danthinne, X.; Imperiale, M. J.; Nabel, G. J.

    1999-01-01

    BACKGROUND: Although recombinant adenovirus vectors are attractive for use in gene expression studies and therapeutic applications, the construction of these vectors remains relatively time-consuming. We report here a strategy that simplifies the production of adenoviruses using the Cre-loxP system. MATERIALS AND METHODS: Full-length recombinant adenovirus DNA was generated in vitro by Cre-mediated recombination between loxP sites in a linearized shuttle plasmid containing a transgene and adenovirus genomic DNA. RESULTS: After transfection of Cre-treated DNA into 293 cells, replication-defective viral vectors were rapidly obtained without detectable wild-type virus. CONCLUSION: This system facilitates the development of recombinant adenoviral vectors for basic and clinical research. Images Fig. 1 Fig. 2 Fig. 4 PMID:10448644

  9. Imaging expression of adenoviral HSV1-tk suicide gene transfer using the nucleoside analogue FIRU.

    PubMed

    Nanda, Dharmin; de Jong, Marion; Vogels, Ronald; Havenga, Menzo; Driesse, Maarten; Bakker, Willem; Bijster, Magda; Avezaat, Cees; Cox, Peter; Morin, Kevin; Naimi, Ebrahim; Knaus, Edward; Wiebe, Leonard; Smitt, Peter Sillevis

    2002-07-01

    Substrates for monitoring HSV1-tk gene expression include uracil and acycloguanosine derivatives. The most commonly used uracil derivative to monitor HSV1-tk gene transfer is 1-(2-fluoro-2-deoxy--D-arabinofuranosyl)-5-[*I]iodouracil (fialuridine; I*-FIAU), where the asterisk denotes any of the radioactive iodine isotopes that can be used. We have previously studied other nucleosides with imaging properties as good as or better than FIAU, including 1-(2-fluoro-2-deoxy--D-ribofuranosyl)-5-[*I]iodouracil (FIRU). The first aim of this study was to extend the biodistribution data of 123I-labelled FIRU. Secondly, we assessed the feasibility of detecting differences in HSV1-tk gene expression levels following adenoviral gene transfer in vivo with 123I-FIRU. 9L rat gliosarcoma cells were stably transfected with the HSV1-tk gene (9L-tk+). 123I-FIRU was prepared by radioiodination of 1-(2-fluoro-2-deoxy--D-ribofuranosyl)-5-tributylstannyl uracil (FTMRSU; precursor compound) and purified using an activated Sep-Pak column. Incubation of 9L-tk+ cells and the parental 9L cells with 123I-FIRU resulted in a 100-fold higher accumulation of radioactivity in the 9L-tk+ cells after an optimum incubation time of 4 h. NIH-bg-nu-xid mice were then inoculated subcutaneously with HSV1-tk (-) 9L cells or HSV1-tk (+) 9L-tk+ cells into both flanks. Biodistribution studies and gamma camera imaging were performed at 15 min and 1, 2, 4 and 24 h p.i. At 15 min, the tumour/muscle, tumour/blood and tumour/brain ratios were 5.2, 1.0 and 30.3 respectively. Rapid renal clearance of the tracer from the body resulted in increasing tumour/muscle, tumour/blood and tumour/brain ratios, reaching values of 32.2, 12.5 and 171.6 at 4 h p.i. A maximum specific activity of 22%ID/g tissue was reached in the 9L-tk+ tumours 4 h after 123I-FIRU injection. Two Ad5-based adenoviral vectors containing the HSV1-tk gene were constructed: a replication-incompetent vector with the transgene in the former E1 region, driven

  10. Effects of Adenoviral Gene Transduction on the Stemness of Human Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Marasini, Subash; Chang, Da-Young; Jung, Jin-Hwa; Lee, Su-Jung; Cha, Hye Lim; Suh-Kim, Haeyoung; Kim, Sung-Soo

    2017-01-01

    Human mesenchymal stem cells (MSCs) are currently being evaluated as a cell-based therapy for tissue injury and degenerative diseases. Recently, several methods have been suggested to further enhance the therapeutic functions of MSCs, including genetic modifications with tissue- and/or disease-specific genes. The objective of this study was to examine the efficiency and stability of transduction using an adenoviral vector in human MSCs. Additionally, we aimed to assess the effects of transduction on the proliferation and multipotency of MSCs. The results indicate that MSCs can be transduced by adenoviruses in vitro, but high viral titers are necessary to achieve high efficiency. In addition, transduction at a higher multiplicity of infection (MOI) was associated with attenuated proliferation and senescence-like morphology. Furthermore, transduced MSCs showed a diminished capacity for adipogenic differentiation while retaining their potential to differentiate into osteocytes and chondrocytes. This work could contribute significantly to clinical trials of MSCs modified with therapeutic genes. PMID:28835020

  11. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    PubMed Central

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  12. Vector and Helper Genome Rearrangements Occur During Production of Helper-Dependent Adenoviral Vectors

    PubMed Central

    Ahn, Miwon; Gamble, Aisha; Witting, Scott R.; Magrisso, Jack; Surendran, Sneha; Obici, Silvana

    2013-01-01

    Abstract Helper-dependent adenoviral vectors (HD Ad) hold extreme promise for gene therapy of human diseases. All viral genes are deleted in HD Ad vectors, and therefore, the presence of a helper virus is required for their production. Current methods to minimize helper contamination in large-scale preparations rely on the use of the Cre/loxP system. The inclusion of loxP sites flanking the packaging signal results in its excision in the presence of Cre recombinase, preventing helper genome encapsidation. It is well established that the level of Cre recombinase activity is important in determining the degree of helper contamination. However, there is little information on other mechanisms that could also play an important role. We have generated several HD Ad vectors containing a rapalog-inducible system to regulate transgene expression, or LacZ under the control of the elongation factor 1 α promoter. Large-scale production of these vectors resulted in abundant helper contamination. Viral DNA analysis revealed the presence of rearrangements between vector and helper genomes. The rearrangements involved a helper DNA molecule with a fragment of the left arm of the HD Ad vector, including its ITR, packaging signal, and some stuffer sequence. Overall, our data suggest that helper DNA molecules that accumulate after Cre recombinase activity are prone to rearrangements, resulting in helper genomes that have incorporated a packaging signal from the vector. Helper particles with rearranged genomes have a growth advantage. This study identifies a novel mechanism leading to helper contamination during helper-dependent adenoviral vector production. PMID:23249343

  13. Development of Gutless Adenoviral Vectors Encoding Anti Angiogenic Proteins for Therapy of Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    B. Molecular cloning of recombination-inactivatable helper virus A plasmid containing a recombination-inactivatable helper virus genome has been...for gutless vectors, Months 1-18 A. Molecular cloning of conditionally-inactive helper genomes A P-deleted, I-Scel-flanked and El-E2-flipped...Months 1-18 A. Molecular cloning of conditionally inactive helper genomes: completed (see last year’s report). B. Evaluation of the I-Scel- and ore

  14. Adenoviral Gene Transfer of PLD1-D4 Enhances Insulin Sensitivity in Mice by Disrupting Phospholipase D1 Interaction with PED/PEA-15

    PubMed Central

    Fiory, Francesca; Nigro, Cecilia; Ulianich, Luca; Castanò, Ilenia; D’Esposito, Vittoria; Terracciano, Daniela; Pastore, Lucio; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2013-01-01

    Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1). Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4) restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15) by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance. PMID:23585839

  15. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  16. An outbreak of adenoviral infection in inland bearded dragons (Pogona vitticeps) coinfected with dependovirus and coccidial protozoa (Isospora sp.).

    PubMed

    Kim, Dae Young; Mitchell, Mark A; Bauer, Rudy W; Poston, Rob; Cho, Doo-Youn

    2002-07-01

    Thirty of 200 (15%) hatchling inland bearded dragons were found dead after a short period (48 hours) of weakness and lethargy. The most common clinical signs were head tilt and circling. Six bearded dragons with neurological signs were euthanized, and postmortem examination revealed no gross abnormalities. Microscopically, severe, randomly distributed hepatocellular necrosis with large basophilic intranuclear inclusion bodies in numerous hepatocytes was noted. Small-intestinal enterocytes contained intracytoplasmic coccidial protozoa (Isospora sp.) and occasional enterocytes had basophilic intranuclear inclusion bodies. Transmission electron microscopy revealed both 80- and 20-nm-diameter viral particles, which were consistent with adenoviruses and dependoviruses, respectively. Adenoviral outbreaks in groups of animals are uncommon. An adverse synergistic effect of the coccidiosis with the adenoviral infection may have played a critical role in the high morbidity and mortality in this case.

  17. Adenoviral mediated gene transfer of PDGF-B enhances wound healing in type I and type II diabetic wounds.

    PubMed

    Keswani, Sundeep G; Katz, Anna B; Lim, Foong-Yen; Zoltick, Philip; Radu, Antoneta; Alaee, Datis; Herlyn, Meenhard; Crombleholme, Timothy M

    2004-01-01

    We have shown that the genetically diabetic mouse (C57BLKS/J-m+/+Lepr(db)) has a wound healing and neovascularization deficit associated with an inability to recruit endothelial precursor cells (EPCs) to the wound. This may account for a fundamental mechanism in impaired diabetic wound healing. We hypothesized that the adenoviral mediated overexpression of platelet-derived growth factor-B (PDGF-B) would enhance wound healing, improve neovascularization, and recruit EPCs to the epithelial wound in three diabetic mouse models. Eight-mm full-thickness flank wounds were made in db/db, nonobese NOD/Ltj, streptozotocin, and C57BLKS/J mice. Wounds were treated with either 1 x 10(8) PFU Ad-PDGF-B or Ad LacZ or phosphate buffered saline solution. Wounds harvested at seven days were analyzed for epithelial gap, blood vessel density, granulation tissue area, and EPCs per high powered field. All three diabetic models have a significant wound healing and neovascularization defect compared to C57BLKS/J controls. Adenoviral-PDGF-B treatment significantly enhanced epithelial gap closure in db/db, streptozotocin, and nonobese NOD/Ltj mice as compared to diabetic phosphate buffered saline solution or Ad LacZ controls. A similar increase in the formation of granulation tissue and vessel density was also observed. All three models had reduced levels of GATA-2 positive EPCs in the wound bed that was corrected by the adenoviral mediated gene transfer of PDGF. EPC recruitment was positively correlated with neovascularization and wound healing. Three different diabetic models have a wound healing impairment and a decreased ability to recruit EPCs. The vulnerary effect of adenoviral mediated gene therapy with PDGF-B significantly enhanced wound healing and neovascularization in diabetic wounds. The PDGF-B mediated augmentation of EPC recruitment to the wound bed may be a fundamental mechanism of these results.

  18. A Novel Adenoviral Hybrid-vector System Carrying a Plasmid Replicon for Safe and Efficient Cell and Gene Therapeutic Applications.

    PubMed

    Voigtlander, Richard; Haase, Rudolf; Mück-Hausl, Martin; Zhang, Wenli; Boehme, Philip; Lipps, Hans-Joachim; Schulz, Eric; Baiker, Armin; Ehrhardt, Anja

    2013-04-02

    In dividing cells, the two aims a gene therapeutic approach should accomplish are efficient nuclear delivery and retention of therapeutic DNA. For stable transgene expression, therapeutic DNA can either be maintained by somatic integration or episomal persistence of which the latter approach would diminish the risk of insertional mutagenesis. As most monosystems fail to fulfill both tasks with equal efficiency, hybrid-vector systems represent promising alternatives. Our hybrid-vector system synergizes high-capacity adenoviral vectors (HCAdV) for efficient delivery and the scaffold/matrix attachment region (S/MAR)-based pEPito plasmid replicon for episomal persistence. After proving that this plasmid replicon can be excised from adenovirus in vitro, colony forming assays were performed. We found an increased number of colonies of up to sevenfold in cells that received the functional plasmid replicon proving that the hybrid-vector system is functional. Transgene expression could be maintained for 6 weeks and the extrachromosomal plasmid replicon was rescued. To show efficacy in vivo, the adenoviral hybrid-vector system was injected into C57Bl/6 mice. We found that the plasmid replicon can be released from adenoviral DNA in murine liver resulting in long-term transgene expression. In conclusion, we demonstrate the efficacy of our novel HCAdV-pEPito hybrid-vector system in vitro and in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e83; doi:10.1038/mtna.2013.11; published online 2 April 2013.

  19. A Hybrid Adenoviral Vector System Achieves Efficient Long-Term Gene Expression in the Liver via piggyBac Transposition

    PubMed Central

    Smith, Ryan P.; Riordan, Jesse D.; Feddersen, Charlotte R.

    2015-01-01

    Abstract Much research has gone into the development of hybrid gene delivery systems that combine the broad tropism and efficient transduction of adenoviral vectors with the ability to achieve stable expression of cargo genes. In addition to gene therapy applications, such a system has considerable advantages for studies of gene function in vivo, permitting fine-tuned genetic manipulation with higher throughput than can be achieved using standard transgenic and DNA targeting techniques. Existing strategies are limited, however, by low integration efficiencies, small cargo capacity, and/or a dependence on target cell division. The utility of this approach could be enhanced by a system that provides all of the following: (1) efficient delivery, (2) stable expression in a high percentage of target cells (whether mitotic or not), (3) large cargo capacity, (4) flexibility to use with a wide range of additional experimental conditions, and (5) simple experimental technique. Here we report the initial characterization of a hybrid system that meets these criteria by utilizing piggyBac (PB) transposition to achieve genomic integration from adenoviral vectors. We demonstrate stable expression of an adenovirus (Ad)-PB-delivered reporter gene in ∼20–40% of hepatocytes following standard tail vein injection. Its high efficiency and flexibility relative to existing hybrid adenoviral gene delivery approaches indicate a considerable potential utility of the Ad-PB system for therapeutic gene delivery and in vivo studies of gene function. PMID:25808258

  20. Co-Expression of Tumor Antigen and Interleukin-2 From an Adenoviral Vector Augments the Efficiency of Therapeutic Tumor Vaccination

    PubMed Central

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nielsen, Karen Nørgaard; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Holst, Peter Johannes

    2014-01-01

    We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8+ T-cell response. Here we describe a new adenoviral vaccine vector approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following vaccination with the IL-2 expressing construct, these mice were able to raise a delayed but substantial CD8+ T-cell response, and to control melanoma growth nearly as efficaciously as similarly vaccinated WT mice. Taken together, these results demonstrate that current vaccine vectors can be improved and even tailored to meet specific demands: in the context of therapeutic vaccination, the capacity to promote an augmented effector T-cell response. PMID:25023330

  1. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model.

    PubMed

    Kim, Julius W; Miska, Jason; Young, Jacob S; Rashidi, Aida; Kane, J Robert; Panek, Wojciech K; Kanojia, Deepak; Han, Yu; Balyasnikova, Irina V; Lesniak, Maciej S

    2017-06-16

    Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system's response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs) in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM).

  2. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing.

    PubMed

    Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa

    2017-02-01

    Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.

  3. Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction.

    PubMed

    Fishbein, Ilia; Forbes, Scott P; Chorny, Michael; Connolly, Jeanne M; Adamo, Richard F; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    2013-09-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolyzable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37 °C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolyzable cross-linkers with structure-specific release kinetics.

  4. Cloning and characterization of an adenoviral vector for highly efficient and doxycycline-suppressible expression of bioactive human single-chain interleukin 12 in colon cancer.

    PubMed

    Wulff, Holger; Krieger, Thorsten; Krüger, Karen; Stahmer, Ingrid; Thaiss, Friedrich; Schäfer, Hansjörg; Block, Andreas

    2007-06-26

    Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12. High gene expression was obtained utilizing the VP16 herpes simplex transactivator. Strong regulation of gene expression was realized by fusion of the VP16 to a tetracycline repressor with binding of the fusion protein to a flanking tetracycline operator and further enhanced by auto-regulated expression of its fusion gene within a bicistronic promoter construct. Infection of human colon cancer cells (HT29) at a multiplicity of infection (m.o.i.) of 10 resulted in the production of up to 8000 ng/106 cells in 48 h, thus exceeding any published vector system so far. Doxycycline concentrations as low as 30 ng/ml resulted in up to 5000-fold suppression, enabling significant reduction of gene expression in a possible clinical setting. Bioactivity of the human single-chain IL-12 was similar to purified human heterodimeric IL-12. Frozen sections of human colon cancer showed high expression of the coxsackie adenovirus receptor with significant production of human single chain IL-12 in colon cancer biopsies after infection with 3*107 p.f.u. Ad.3r-scIL12. Doxycycline mediated suppression of gene expression was up to 9000-fold in the infected colon cancer tissue. VP16 transactivator-mediated and doxycycline-regulated expression

  5. Recombinant adenoviral vector expressing HCV NS4 induces protective immune responses in a mouse model of Vaccinia-HCV virus infection: a dose and route conundrum.

    PubMed

    Singh, Shakti; Vedi, Satish; Li, Wen; Samrat, Subodh Kumar; Kumar, Rakesh; Agrawal, Babita

    2014-05-13

    Hepatitis C virus (HCV) leads to chronic infection in the majority of infected patients presumably due to failure or inefficiency of the immune responses generated. Both antibody and cellular immune responses have been suggested to be important in viral clearance. Non-replicative adenoviral vectors expressing antigens of interest are considered as attractive vaccine vectors for a number of pathogens. In this study, we sought to evaluate cellular and humoral immune responses against HCV NS4 protein using recombinant adenovirus as a vaccine vector expressing NS4 antigen. We have also measured the effect of antigen doses and routes of immunization on the quality and extent of the immune responses, especially their role in viral load reduction, in a recombinant Vaccinia-HCV (Vac-HCV) infection mouse model. Our results show that an optimum dose of adenovirus vector (2×10(7)pfu/mouse) administered intramuscularly (i.m.) induces high T cell proliferation, granzyme B-expressing CD8(+) T cells, pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-2 and IL-6, and antibody responses that can significantly reduce the Vac-HCV viral load in the ovaries of female C57BL/6 mice. Our results demonstrate that recombinant adenovirus vector can induce both humoral and cellular protective immunity against HCV-NS4 antigen, and that immunity is intricately controlled by route and dose of immunizing vector.

  6. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis

    PubMed Central

    Dolzhikova, Inna V.; Shcherbinin, Dmitry N.; Zubkova, Olga V.; Ivanova, Tatiana I.; Tukhvatulin, Amir I.; Shmarov, Maxim M.; Logunov, Denis Y.; Naroditsky, Boris S.; Gintsburg, Aleksandr L.

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection. PMID:26962869

  7. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis.

    PubMed

    Burmistrova, Daria A; Tillib, Sergey V; Shcheblyakov, Dmitry V; Dolzhikova, Inna V; Shcherbinin, Dmitry N; Zubkova, Olga V; Ivanova, Tatiana I; Tukhvatulin, Amir I; Shmarov, Maxim M; Logunov, Denis Y; Naroditsky, Boris S; Gintsburg, Aleksandr L

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection.

  8. Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice

    SciTech Connect

    Fu, Yuanhui; He, Jinsheng; Zheng, Xianxian; Wu, Qiang; Zhang, Mei; Wang, Xiaobo; Wang, Yan; Xie, Can; Tang, Qian; Wei, Wei; Wang, Min; Song, Jingdong; Qu, Jianguo; Zhang, Ying; Wang, Xin; Hong, Tao

    2009-04-17

    Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.

  9. Differential type I interferon-dependent transgene silencing of helper-dependent adenoviral vs. adeno-associated viral vectors in vivo.

    PubMed

    Suzuki, Masataka; Bertin, Terry K; Rogers, Geoffrey L; Cela, Racel G; Zolotukhin, Irene; Palmer, Donna J; Ng, Philip; Herzog, Roland W; Lee, Brendan

    2013-04-01

    We previously dissected the components of the innate immune response to Helper-dependent adenoviral vectors (HDAds) using genetic models, and demonstrated that multiple pattern recognition receptor signaling pathways contribute to this host response to HDAds in vivo. Based on analysis of cytokine expression profiles, type I interferon (IFN) mRNA is induced in host mouse livers at 1 hour post-injection. This type I IFN signaling amplifies cytokine expression in liver independent of the nature of vector DNA sequences after 3 hours post-injection. This type I IFN signaling in response to HDAds administration contributes to transcriptional silencing of both HDAd prokaryotic and eukaryotic DNA in liver. This silencing occurs early and is mediated by epigenetic modification as shown by in vivo chromatin immunoprecipitation (ChIP) with anti-histone deacetylase (HDAC) and promyelocytic leukemia protein (PML). In contrast, self-complementary adeno-associated viral vectors (scAAVs) showed significantly lower induction of type I IFN mRNA in liver compared to HDAds at both early and late time points. These results show that the type I IFN signaling dependent transgene silencing differs between AAV and HDAd vectors after liver-directed gene transfer.

  10. The route of immunization with adenoviral vaccine influences the recruitment of cytotoxic T lymphocytes in the lung that provide potent protection from influenza A virus.

    PubMed

    Suda, Tatsuya; Kawano, Masaaki; Nogi, Yasuhisa; Ohno, Naohito; Akatsuka, Toshitaka; Matsui, Masanori

    2011-09-01

    Virus-specific cytotoxic T lymphocytes (CTLs) in the lung are considered to confer protection from respiratory viruses. Several groups demonstrated that the route of priming was likely to have an implication for the trafficking of antigen-specific CTLs. Therefore, we investigated whether the route of immunization with adenoviral vaccine influenced the recruitment of virus-specific CTLs in the lung that should provide potent protection from influenza A virus. Mice were immunized with recombinant adenovirus expressing the matrix (M1) protein of influenza A virus via various immunization routes involving intraperitoneal, intranasal, intramuscular, or intravenous administration as well as subcutaneous administration in the hind hock. We found that the immunization route dramatically impacted the recruitment of M1-specific IFN-γ(+) CD8(+) T cells both in the lung and the spleen. Surprisingly, hock immunization was most effective for the accumulation in the lung of IFN-γ-producing CD8(+) T cells that possessed M1-specific cytolytic activity. Further, antigen-driven IFN-γ(+) CD8(+) T cells in the lung, but not in the spleen, were likely to be correlated with the resistance to challenge with influenza A virus. These results may improve our ability to design vaccines that target virus-specific CTL responses to respiratory viruses such as influenza A virus. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale.

    PubMed

    Lesch, Hanna P; Heikkilä, Kati M; Lipponen, Eevi M; Valonen, Piia; Müller, Achim; Räsänen, Eva; Tuunanen, Tarja; Hassinen, Minna M; Parker, Nigel; Karhinen, Minna; Shaw, Robert; Ylä-Herttuala, Seppo

    2015-08-01

    Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors.

  12. Ganciclovir ophthalmic gel treatment shortens the recovery time and prevents complications in the adenoviral eye infection.

    PubMed

    Ozen, Serkan; Ozer, Murat A

    2017-02-01

    The purpose of this study was to determine the effectiveness of ganciclovir ophthalmic gel (GOG) in the treatment of adenoviral eye infection (AEI) by looking at the effect of the drug on shortening recovery time, preventing transmission, reducing sequelae, and on complications such as corneal infiltrates and conjunctival pseudomembranes. 200 patients' examination records were evaluated retrospectively. Patients who were within the first 3 days of AEI were divided into two groups: Group 1 with 100 patients who used artificial tears as treatment, and Group 2 with 100 patients who used GOG plus artificial tears (GAT). All patients underwent an eye examination by the same ophthalmologist on the 1st, 5th, 10th, and 15th day after treatment. Using the examination records, variables were compared using SPSS 22.0. There was a statistically significant difference between Groups 1 and 2. Group 2 showed better and faster response to treatment. There was less transmission to the contralateral eye and environment, and less formation of corneal subepithelial infiltrate and conjunctival pseudomembrane in Group 2. Only three patients in Group 2 had corneal involvement. A comparison of each group pre-treatment and during treatment revealed improved signs and symptoms in Group 2 (p < 0.005). The study showed a trend toward more rapid improvement, less corneal and conjunctival involvement, and less transmission to the contralateral eye and environment in the GAT group. These results need to be confirmed by additional studies.

  13. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    SciTech Connect

    Kanagawa, Naoko; Koretomo, Ryosuke; Murakami, Sayaka |; Sakurai, Fuminori; Mizuguchi, Hiroyuki |; Nakagawa, Shinsaku; Fujita, Takuya |; Yamamoto, Akira; Okada, Naoki |

    2008-05-10

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35{delta}RGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The {alpha}{sub v}-integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-{alpha}, and interferon-{alpha} in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of {alpha}{sub v}-integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes.

  14. A Th1-inducing adenoviral vaccine for boosting adoptively transferred T cells.

    PubMed

    Song, Xiao-Tong; Turnis, Meghan E; Zhou, Xiaoou; Zhu, Wei; Hong, Bang-Xing; Rollins, Lisa; Rabinovich, Brian; Chen, Si-Yi; Rooney, Cliona M; Gottschalk, Stephen

    2011-01-01

    Although the benefits of adoptive T-cell therapy can be increased by prior lymphodepletion of the recipient, this process usually requires chemotherapy or radiation. Vaccination with antigens to which the transferred T cells respond should be a less toxic means of enhancing their activity, but to date such vaccines have not been effective. We, therefore, determined which characteristics an adenoviral vaccine has to fulfill to optimally activate and expand adoptively transferred antigen-specific T cells in vivo. We evaluated (i) antigen, (ii) flagellin, a Toll-like receptor (TLR) 5 ligand, and (iii) an inhibitor of the antigen-presenting attenuator A20. Vaccination of mice before T-cell transfer with a vaccine that contained all three components dramatically enhanced the effector function of ovalbumin (OVA)-specific T cells as judged by the regression of established B16-OVA tumors compared to one- and two-component vaccines. Immunization with the three-component vaccine induced a strong Th1 environment, which was critical for the observed synergy and proved as effective as cytoxan-induced lymphodepletion in enhancing in vivo T-cell expansion. Thus, the combination of our vaccine with T-cell therapy has the potential to enhance and broaden adoptive cellular immunotherapy.

  15. CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic

    PubMed Central

    Hangalapura, Basav N.; Timares, Laura; Oosterhoff, Dinja; Scheper, Rik J.; Curiel, David T.; de Gruijl, Tanja D.

    2012-01-01

    Summary The ability of Dendritic Cells (DC) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DC for clinical administration, their loading with tumor associated antigens (TAA) and their activation, is laborious and expensive, and, due to interindividual variability in the personalized vaccines, poorly standardized. An attractive alternative approach is to load resident DC in vivo by targeted delivery of TAA , using viral vectors and activating them simultaneously. To this end we have constructed genetically modified Adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAA to the CD40 receptor on DC. Preclinical human and murine studies conducted so far have clearly demonstrated the suitability of a “two-component”, i.e. Ad and adaptor molecule, configuration for targeted modification of DC in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in clinical translation of this approach. PMID:22228547

  16. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy

    PubMed Central

    Farzad, Lisa; Cerullo, Vincenzo; Yagyu, Shigeki; Bertin, Terry; Hemminki, Akseli; Rooney, Cliona; Lee, Brendan; Suzuki, Masataka

    2014-01-01

    Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy. PMID:27119096

  17. Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling

    PubMed Central

    Quinn, Kylie M.; Zak, Daniel E.; Costa, Andreia; Yamamoto, Ayako; Kastenmuller, Kathrin; Hill, Brenna J.; Lynn, Geoffrey M.; Darrah, Patricia A.; Lindsay, Ross W.B.; Wang, Lingshu; Cheng, Cheng; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gall, Jason G.D.; Roederer, Mario; Aderem, Alan; Seder, Robert A.

    2015-01-01

    Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines. PMID:25642773

  18. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  19. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    PubMed Central

    Hulin-Curtis, S L; Uusi-Kerttula, H; Jones, R; Hanna, L; Chester, J D; Parker, A L

    2016-01-01

    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer. PMID:27229159

  20. Construction and characterization of adenoviral vectors for the delivery of TALENs into human cells.

    PubMed

    Holkers, Maarten; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-09-01

    Transcription activator-like effector nucleases (TALENs) are designed to cut the genomic DNA at specific chromosomal positions. The resulting DNA double strand break activates cellular repair pathways that can be harnessed for targeted genome modifications. TALENs thus constitute a powerful tool to interrogate the function of DNA sequences within complex genomes. Moreover, their high DNA cleavage activity combined with a low cytotoxicity make them excellent candidates for applications in human gene therapy. Full exploitation of these large and repeat-bearing nucleases in human cell types will benefit largely from using the adenoviral vector (AdV) technology. The genetic stability and the episomal nature of AdV genomes in conjunction with the availability of a large number of AdV serotypes able to transduce various human cell types make it possible to achieve high-level and transient expression of TALENs in numerous target cells, regardless of their mitotic state. Here, we describe a set of protocols detailing the rescue, propagation and purification of TALEN-encoding AdVs. Moreover, we describe procedures for the characterization and quantification of recombinant viral DNA present in the resulting AdV preparations. The protocols are preceded by information about their underlying principles and applied in the context of second-generation capsid-modified AdVs expressing TALENs targeted to the AAVS1 "safe harbor" locus on human chromosome 19.

  1. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1.

    PubMed

    Castello, R; Borzone, R; D'Aria, S; Annunziata, P; Piccolo, P; Brunetti-Pierri, N

    2016-02-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT), which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate that ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Toward this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared with saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with ethylene glycol, a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy.

  2. Induction of Immunological Tolerance to Adenoviral Vectors by Using a Novel Dendritic Cell-Based Strategy

    PubMed Central

    Kushwah, Rahul; Oliver, Jordan R.; Duan, Rongqi; Zhang, Li; Keshavjee, Shaf

    2012-01-01

    The success of helper-dependent adenoviral (HD-Ad) vector-mediated lung gene therapy is hampered by the host immune response, which limits pulmonary transgene expression following multiple rounds of vector readminstration. Here, we show that HD-Ad-mediated pulmonary gene expression is sustained even upon three rounds of readministration to immunodeficient mice, highlighting the need to suppress the adaptive immune response for sustained gene expression following vector readministration. Therefore, we devised a dendritic cell (DC)-based strategy for induction of immunological tolerance toward HD-Ad vectors. DCs derived in the presence of interleukin-10 (IL-10) are refractory to HD-Ad-induced maturation and instead facilitate generation of IL-10-producing Tr1 regulatory T cells which suppress HD-Ad-induced T cell proliferation. Delivery of HD-Ad-pulsed, IL-10-modified DCs to mice induces long-lasting immunological tolerance to HD-Ad vectors, whereby pulmonary DC maturation, the T cell response, and antibody response to HD-Ad vectors are suppressed even after three rounds of pulmonary HD-Ad readministration. Moreover, sustained transgene expression is also observed in the lungs of mice immunized with HD-Ad-pulsed, IL-10-modified DCs even after three rounds of pulmonary HD-Ad delivery. Taken together, these studies identify the use of DCs generated in the presence of IL-10 as a novel strategy to induce long-lasting immune tolerance to HD-Ad vectors. PMID:22258241

  3. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    PubMed Central

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  4. Inhibition of Choroidal Neovascularization by Intravenous Injection of Adenoviral Vectors Expressing Secretable Endostatin

    PubMed Central

    Mori, Keisuke; Ando, Akira; Gehlbach, Peter; Nesbitt, David; Takahashi, Kyoichi; Goldsteen, Donna; Penn, Michael; Chen, Cheauyan T.; Mori, Keiko; Melia, Michele; Phipps, Sandrina; Moffat, Diana; Brazzell, Kim; Liau, Gene; Dixon, Katharine H.; Campochiaro, Peter A.

    2001-01-01

    Endostatin is a cleavage product of collagen XVIII that inhibits tumor angiogenesis and growth. Interferon α2a blocks tumor angiogenesis and causes regression of hemangiomas, but has no effect on choroidal neovascularization (CNV). Therefore, inhibitors of tumor angiogenesis do not necessarily inhibit ocular neovascularization. In this study, we used an intravenous injection of adenoviral vectors containing a sig-mEndo transgene consisting of murine immunoglobulin κ-chain leader sequence coupled to sequence coding for murine endostatin to investigate the effect of high serum levels of endostatin on CNV in mice. Mice injected with a construct in which sig-mEndo expression was driven by the Rous sarcoma virus promoter had moderately high serum levels of endostatin and significantly smaller CNV lesions at sites of laser-induced rupture of Bruch’s membrane than mice injected with null vector. Mice injected with a construct in which sig-mEndo was driven by the simian cytomegalovirus promoter had ∼10-fold higher endostatin serum levels and had nearly complete prevention of CNV. There was a strong inverse correlation between endostatin serum level and area of CNV. This study provides proof of principle that gene therapy to increase levels of endostatin can prevent the development of CNV and may provide a new treatment for the leading cause of severe loss of vision in patients with age-related macular degeneration. PMID:11438478

  5. Adenoviral Infections in Adult Allogeneic Hematopoietic Stem Cell Transplant Recipients: A Single Center Experience

    PubMed Central

    Yilmaz, Musa; Chemaly, Roy F.; Han, Xiang Y.; Thall, Peter F.; Fox, Patricia S.; Tarrand, Jeffrey J.; De Lima, Marcos J.; Hosing, Chitra M.; Popat, Uday R.; Shpall, Elizabeth; Champlin, Richard E.; Qazilbash, Muzaffar H.

    2014-01-01

    Disseminated adenoviral infection (AI) is associated with profound immunosuppression and poor outcome after allogeneic hematopoietic stem cell transplantation (allo-HCT). A better understanding of AI in allo-HCT recipients can serve a basis to develop more effective management strategies. We evaluated all adult patients who received allo-HCT at M.D. Anderson Cancer Center between 1999 and 2008. Among the 2879 allo-HCT patients, 73 (2.5%) were diagnosed with AI. Enteritis (26%) and pneumonia (24%) were the most common clinical manifestations; pneumonia was the most common cause of adenovirus-associated death. A multivariable Bayesian logistic regression showed that, when the joint effects of all covariates were accounted for, a cord blood transplant, absolute lymphocyte count (ALC) ≤ 200/mm3, and male gender were associated with a higher probability of disseminated AI. The overall survival was significantly worse for patients with AI that was disseminated rather than localized (median of 5 months versus 28 months, respectively, p<0.001) and for patients with ALC ≤ 200/mm3 (p<0.001). Disseminated AI, in patients who received allo-HCT, is a significant cause of morbidity and mortality. Strategies for early diagnosis and intervention are essential, especially for high-risk patients. PMID:23503529

  6. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers

    PubMed Central

    Kwon, Se-Young; Moon, Changjong; Kim, Kwonseop; Lee, Keesook; Lee, Sang-Jin; Hemmi, Silvio; Joo, Young-Eun; Kim, Min Soo; Jung, Chaeyong

    2016-01-01

    CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients. PMID:27203670

  7. Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery

    PubMed Central

    Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima

    2014-01-01

    Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147

  8. Common Structure of Rare Replication-Deficient E1-Positive Particles in Adenoviral Vector Batches

    PubMed Central

    Murakami, Pete; Havenga, Menzo; Fawaz, Farah; Vogels, Ronald; Marzio, Giuseppe; Pungor, Erno; Files, Jim; Do, Linh; Goudsmit, Jaap; McCaman, Michael

    2004-01-01

    The use of the PER.C6 adenovirus packaging cell line in combination with a designated vector plasmid system, whereby the cell line and vector with E1 deleted have no sequence overlap, eliminates the generation of replication-competent adenovirus during vector production. However, we have found cytopathic effect (CPE)-inducing particles in 2 out of more than 40 large-scale manufacturing lots produced in PER.C6 cells. The CPE inducer was detected at a frequency of 1 event in 7.5 × 1012 vector particles. Despite amplification, it was not readily purified, indicating that the agent itself is replication deficient and requires the parental recombinant adenovirus serotype 5 (rAd5) vector for replication and packaging. Therefore, we designated the agent as a helper-dependent E1-positive region containing viral particle (HDEP). Here, we report the molecular structure of the HDEP genome, revealing an Ad comprised of E1 sequences derived from PER.C6 cells flanked by inverted terminal repeat, packaging signal, and transgene sequences. These sequences form a palindromic structure devoid of E2, E3, E4, and late genes. Since only 5 bp were shared between E1 sequences in the PER.C6 genome and viral vector sequences, the data strongly suggested that insertion of genomic DNA into an adenoviral genome had occurred essentially via nonhomologous recombination. HDEPs have been found in unrelated virus batches and appear to share a common structure that may explain their mechanism of generation. This finding allowed development of an HDEP assay to screen batches of rAd5 produced on the PER.C6 cell line and resulted in detection of seven HDEP agents from four different transgene-virus vector constructs in separate batches of Ad. PMID:15163713

  9. Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration.

    PubMed

    Armendáriz-Borunda, Juan; Bastidas-Ramírez, Blanca Estela; Sandoval-Rodríguez, Ana; González-Cuevas, Jaime; Gómez-Meda, Belinda; García-Bañuelos, Jesús

    2011-11-01

    Gene therapy represents a promising approach in the treatment of several diseases. Currently, the ideal vector has yet to be designed; though, adenoviral vectors (Ad-v) have provided the most utilized tool for gene transfer due principally to their simple production, among other specific characteristics. Ad-v viability represents a critical variable that may be affected by storage or shipping conditions and therefore it is advisable to be assessed previously to protocol performance. The present work is unique in this matter, as the complete detailed process to obtain Ad-v of preclinical grade is explained. Amplification in permissive HEK-293 cells, purification in CsCl gradients in a period of 10 h, spectrophotometric titration of viral particles (VP) and titration of infectious units (IU), yielding batches of AdβGal, AdGFP, AdHuPA and AdMMP8, of approximately 10¹³-10¹⁴ VP and 10¹²-10¹³ IU were carried out. In vivo functionality of therapeutic AdHuPA and AdMMP8 was evidenced in rats presenting CCl₄-induced fibrosis, as more than 60% of fibrosis was eliminated in livers after systemic delivery through iliac vein in comparison with irrelevant AdβGal. Time required to accomplish the whole Ad-v production steps, including IU titration was 20 to 30 days. We conclude that production of Ad-v following standard operating procedures assuring vector functionality and the possibility to effectively evaluate experimental gene therapy results, leaving aside the use of high-cost commercial kits or sophisticated instrumentation, can be performed in a conventional laboratory of cell culture.

  10. [The virological and epidemiological aspects of human adenoviral conjunctivitis in Tunisia].

    PubMed

    Fedaoui, N; Ben Ayed, N; Ben Yahia, A; Matri, L; Nacef, L; Triki, H

    2017-01-01

    Human adenoviruses (HAdV) are the main cause of viral conjunctivitis. In Tunisia and North Africa more generally, there is no regular nationwide surveillance program that monitors viruses causing conjunctivitis and keratoconjunctivitis. In this study, we report the results of HAdV screening in conjunctival samples collected for over 14 years in Tunisia. A total of 282 conjunctival samples received between 2000 and 2013 were investigated. Detection and identification of genotype were performed by PCR-sequencing at the hexon gene; 64.5% of samples (n=182) revealed positive by PCR detection without correlation noted between infection, age, sex, social class or clinical manifestations of viral conjunctivitis. HAdV-D8 was the largely predominant genotype in Tunisia, representing 81.3% of all isolates, and was detected continuously from 2000 to 2013. Minor co-circulating genotypes were also identified - HAdV-E4, HAdV-B3, B55 and HAdV-B7 - accounting for 10.7%, 4.9%, 1.9% and 0.9% of isolates, respectively. In conclusion, this work reports epidemiological data on adenoviral conjunctivitis from a region where such information is very scarce and contributes to a better knowledge of the worldwide distribution of causative genotypes. It also presents an approach for the identification of circulating HAdV in the country and demonstrates the importance of molecular tools for both detection and identification of genotypes, which allow rapid virological investigation, especially during epidemics. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    PubMed

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle.

  12. Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters.

    PubMed

    Schaar, Katrin; Geisler, Anja; Kraus, Milena; Pinkert, Sandra; Pryshliak, Markian; Spencer, Jacqueline F; Tollefson, Ann E; Ying, Baoling; Kurreck, Jens; Wold, William S; Klopfleisch, Robert; Toth, Karoly; Fechner, Henry

    2017-09-15

    Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Expression of pIX gene induced by transgene promoter: possible cause of host immune response in first-generation adenoviral vectors.

    PubMed

    Nakai, Michio; Komiya, Kazuo; Murata, Masashi; Kimura, Toru; Kanaoka, Masaharu; Kanegae, Yumi; Saito, Izumu

    2007-10-01

    First-generation (FG) adenoviral vectors (AdVs) have been widely used not only for gene therapy but also for basic studies. Because vectors of this type lack the E1A gene that is essential for the expression of other viral genes, their expression levels in target cells have been considered low. However, we found that the viral pIX gene, located immediately downstream of the inserted expression unit of the transgene, was significantly coexpressed with the transgene in cells infected with FG AdV. Whereas CAG and SRalpha promoters activated the pIX promoter considerably through their enhancer effects, the EF1alpha promoter hardly did. Moreover, when the expression unit was inserted in the rightward orientation, not only the pIX protein but also a fusion protein consisting of the N-terminal part of transgene product and pIX were sometimes coexpressed with the transgene product through an aberrant splicing mechanism. In in vivo experiments, a LacZ-expressing AdV bearing the CAG promoter caused an elevation of alanine aminotransferase, but an AdV bearing the EF1alpha promoter produced no detectable levels. Whereas the FG AdV expressing human growth hormone under the control of the CAG promoter maintained a high hormone level for less than 1 month, the FG AdV under the control of the EF1alpha promoter maintained a high level for at least 6 months. These results suggest that pIX coexpression may be one of the main causes of AdV-induced immune responses, and that the EF1alpha promoter is probably valuable for the long-term expression of FG AdV. Thus, the in vivo utility of FG AdV should be reevaluated.

  14. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  15. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.

  16. Potential of Mycobacterium tuberculosis resuscitation-promoting factors as antigens in novel tuberculosis sub-unit vaccines.

    PubMed

    Romano, M; Aryan, E; Korf, H; Bruffaerts, N; Franken, C L M C; Ottenhoff, T H M; Huygen, K

    2012-01-01

    Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Comparison of Efficacy of Two Different Topical 0.05% Cyclosporine A Formulations in the Treatment of Adenoviral Keratoconjunctivitis-Related Subepithelial Infiltrates

    PubMed Central

    Bayraktutar, Betül N.; Uçakhan, Ömur Ö.

    2016-01-01

    Subepithelial infiltrates secondary to adenoviral keratoconjunctivitis may persist for years and cause blurred vision, halos, glare, and photophobia. These infiltrates arise from immune reaction against the virus, and few studies have reported topical cyclosporine A to be effective in the treatment of subepithelial infiltrates. Herein, we describe a patient with adenoviral keratoconjunctivitis-related subepithelial infiltrates who did not respond to treatment with a new topical cyclosporine A emulsion prepared with castor oil (Depores 0.05%; Deva İlaç, Kocaeli, Turkey), while the FDA-approved nanoemulsion formulation provided improvement in symptoms and reduced the inflammatory reaction (Restasis 0.05%; Allergan, Irvine, Calif., USA). PMID:27065851

  18. Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine.

    PubMed

    Le Luduec, Jean-Benoît; Debeer, Sabine; Piras, Fabienne; Andréoni, Christine; Boudet, Florence; Laurent, Philippe; Kaiserlian, Dominique; Dubois, Bertrand

    2016-02-10

    Intradermal (ID) vaccination constitutes a promising approach to induce anti-infectious immunity. This route of immunization has mostly been studied with influenza split-virion vaccines. However, the efficacy of ID vaccination for sub-unit vaccines in relation to underlying skin innate immunity remains to be explored for wider application in humans. Relevant animal models that more closely mimic human skin immunity than the widely used mouse models are therefore necessary. Here, we show in domestic swine, which shares striking anatomic and functional properties with human skin, that a single ID delivery of pseudorabies virus (PRV) glycoproteins without added adjuvant is sufficient to trigger adaptive cellular and humoral immune responses, and to confer protection from a lethal respiratory infection with PRV. Analysis of early events at the skin injection site revealed up-regulation of pro-inflammatory cytokine and chemokine genes, recruitment of neutrophils and monocytes and accumulation of inflammatory DC. We further show that the sustained induction of pro-inflammatory cytokine genes results from the combined effects of skin puncture, liquid injection in the dermis and viral antigens. These data highlight that immune protection against respiratory infection can be induced by ID vaccination with a subunit vaccine and reveal that adjuvant requirements are circumvented by the mechanical and antigenic stress caused by ID injection, which triggers innate immunity and mobilization of inflammatory DC at the immunization site. ID vaccination with sub-unit vaccines may thus represent a safe and efficient solution for protection against respiratory infections in swine and possibly also in humans, given the similarity of skin structure and function in both species.

  19. Chapter five--The development of transcription-regulated adenoviral vectors with high cancer-selective imaging capabilities.

    PubMed

    Jiang, Ziyue Karen; Sato, Makoto; Wu, Lily

    2012-01-01

    A clear benefit of molecular imaging is to enable noninvasive, repetitive monitoring of intrinsic signals within tumor cells as a means to identify the lesions as malignant or to assess the ability of treatment to perturb key pathways within the tumor cells. Due to the promising utility of molecular imaging in oncology, preclinical research to refine molecular imaging techniques in small animals is a blossoming field. We will first discuss the several imaging modalities such as fluorescent imaging, bioluminescence imaging, and positron emission tomography that are now commonly used in small animal settings. The indirect imaging approach, which can be adapted to a wide range of imaging reporter genes, is a useful platform to develop molecular imaging. In particular, reporter gene-based imaging is well suited for transcriptional-targeted imaging that can be delivered by recombinant adenoviral vectors. In this review, we will summarize transcription-regulated strategies used in adenoviral-mediated molecular imaging to visualize metastasis and monitor oncolytic therapy in preclinical models.

  20. Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery.

    PubMed

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G; Mandrup, Susanne

    2006-08-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARgamma2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARgamma2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (alpha, gamma, and beta/delta), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci.

  1. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  2. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  3. Vascular administration of adenoviral vector soaked in absorbable gelatin sponge particles (GSP) prolongs the transgene expression in hepatocytes.

    PubMed

    Park, Byeong-Ho; Lee, Jin-Hwa; Jeong, Jin-Sook; Rha, Seo-Hee; Kim, Seung-Eun; Kim, Jae-Seok; Kim, Jeong-Man; Hwang, Tae-Ho

    2005-02-01

    Transcatheter hepatic arterial chemoembolization using emulsions composed of anticancer agents and gelatin sponges (GS) has been an efficient and safe palliative treatment for inoperable hepatocellular carcinoma (HCC). We employed catheter-mediated left hepatic arterial embolization (CHAE) to increase transduction efficiency of adenoviral vector in canine hepatocytes. The emulsion was prepared by mixing pieces of GSP and adenoviral vectors expressing recombinant beta-galactosidase (Ad.LacZ) or human hepatocyte growth factor (Ad.hHGF). After the left hepatic artery was catheterized under angiography, CHAE with Ad.LacZ or Ad.hHGF was performed. Livers were removed and stained for LacZ activity on day 7. The expression pattern of LacZ staining was either scarce or patchy around the central hilum of the hepatic artery, or was homogeneously distributed in whole lobes, depending on whether large or small pieces of GSP were used. Hematological and serum biochemical changes during CHAE exhibited only a few effects. The chronological measurement of serum HGF concentration showed that the duration of transgene expression was greater after CHAE with Ad.hHGF. A similar pattern of transgene expression was observed in a rat model after hepatic arterial embolization with differential doses of Ad.hHGF soaked in GSP. These results suggest that hepatic arterial embolization by transcatheter mediated infusion with a mixture of adenovirus-GSP could be used for human HCC.

  4. Regulation of epithelial differentiation in rat intestine by intraluminal delivery of an adenoviral vector or silencing RNA coding for Schlafen 3.

    PubMed

    Kovalenko, Pavlo L; Yuan, Lisi; Sun, Kelian; Kunovska, Lyudmyla; Seregin, Sergey; Amalfitano, Andrea; Basson, Marc D

    2013-01-01

    Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.

  5. Regulation of Epithelial Differentiation in Rat Intestine by Intraluminal Delivery of an Adenoviral Vector or Silencing RNA Coding for Schlafen 3

    PubMed Central

    Kovalenko, Pavlo L.; Yuan, Lisi; Sun, Kelian; Kunovska, Lyudmyla; Seregin, Sergey; Amalfitano, Andrea; Basson, Marc D.

    2013-01-01

    Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome. PMID:24244554

  6. Standard Free Droplet Digital Polymerase Chain Reaction as a New Tool for the Quality Control of High-Capacity Adenoviral Vectors in Small-Scale Preparations

    PubMed Central

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E.

    2015-01-01

    Abstract High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy. PMID:25640117

  7. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo.

    PubMed

    Sipo, I; Wang, X; Hurtado Picó, A; Suckau, L; Weger, S; Poller, W; Fechner, H

    2006-01-01

    Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, E(DeltaNLS)M, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.E(DeltaNLS)M and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.E(DeltaNLS)M and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.E(DeltaNLS)M and Ad.MEM in vivo. Induction of Ad.E(DeltaNLS)M inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. E(DeltaNLS)M and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

  8. Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy.

    PubMed

    Tamura, Rodrigo Esaki; da Silva Soares, Rafael Bento; Costanzi-Strauss, Eugenia; Strauss, Bryan E

    2016-12-01

    Alternative treatments for cancer using gene therapy approaches have shown promising results and some have even reached the marketplace. Even so, additional improvements are needed, such as employing a strategically chosen promoter to drive expression of the transgene in the target cell. Previously, we described viral vectors where high-level transgene expression was achieved using a p53-responsive promoter. Here we present an adenoviral vector (AdPGp53) where p53 is employed to regulate its own expression and which outperforms a traditional vector when tested in a model of gene therapy for prostate cancer. The functionality of AdPGp53 and AdCMVp53 were compared in human prostate carcinoma cell lines. AdPGp53 conferred greatly enhanced levels of p53 protein and induction of the p53 target gene, p21, as well as superior cell killing by a mechanism consistent with apoptosis. DU145 cells were susceptible to induction of death with AdPGp53, yet PC3 cells were quite resistant. Though AdCMVp53 was shown to be reliable, extremely high-level expression of p53 offered by AdPGp53 was necessary for tumor suppressor activity in PC3 and DU145. In situ gene therapy experiments revealed tumor inhibition and increased overall survival in response to AdPGp53, but not AdCMVp53. Upon histologic examination, only AdPGp53 treatment was correlated with the detection of both p53 and TUNEL-positive cells. This study points to the importance of improved vector performance for gene therapy of prostate cancer.

  9. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL.

    PubMed Central

    Cao, Xiaobo X.; Mohuiddin, Imran; Chada, Sunil; Mhashilkar, Abner M.; Ozvaran, Mustafa K.; McConkey, David J.; Miller, Steven D.; Daniel, Jonathon C.; Smythe, W. Roy

    2002-01-01

    BACKGROUND: Malignant pleural mesothelioma (MPM) is unresponsive to conventional therapies. Forced expression of the novel tumor suppressor mda-7 gene in other cell types has resulted in decreased growth and apoptosis. We evaluated cell growth, apoptosis and tumor suppressor characteristics following forced expression of this gene in mesothelioma cell lines. METHODS: MDA-7 expression in human MPM cells at baseline, following pharmacologic differentiation and viral mda-7 transduction (Ad-mda7) were evaluated with Western blot. Cell viability was evaluated with a colorimetric (XTT) assay, and apoptosis with subG1 FACS and Hoescht. Caspase-3 expression was evaluated by functional assay. These parameters were also evaluated in a stable bcl-xl hyper-expressing MPM cell line. Bax mRNA levels were evaluated with real-time PCR. RESULTS: No baseline or differentiated MPM MDA7 expression was found, but was noted following Ad-mda7 exposure. More than 50% of MPM cells were killed at 5 days following Ad-mda7 exposure (p < 0.001). Apoptosis was accompanied by caspase-3 cleavage and increased BAX expression at both the protein (translational) and mRNA (transcriptional) level. These findings were reduced in a bcl-xl hyper-expressing cell line (P < 0.01). CONCLUSIONS: Although mda-7 does not appear to be a MPM suppressor gene, adenoviral-mediated expression in cell lines induces apoptotic cellular death related to BAX upregulation and caspase cleavage. This is supported by abrogation of effect in a bcl-xl hyper-expressing cell line. PMID:12606823

  10. A reproducible and quantifiable model of choroidal neovascularization induced by VEGF A165 after subretinal adenoviral gene transfer in the rabbit

    PubMed Central

    Kreppel, Florian; Beck, Susanne; Heiduschka, Peter; Brito, Veronica; Schnichels, Sven; Kochanek, Stefan; Schraermeyer, Ulrich

    2008-01-01

    Purpose To determine the effects of the vascular endothelial growth factor (VEGF)-A165 delivered using a high capacity adenoviral vector (HC Ad.VEGF-A) on vascular growth and pathological changes in the rabbit eye. To combine different detection methods of VEGF-A165 overexpression-induced neovascularization in the rabbit. Methods HC Ad.VEGF-A165 was constructed and injected at 5x106 infectious units (iu) into the subretinal space of rabbit eyes. Two and four weeks postinjection, the development of neovascularization and the expression of HC Ad-transduced VEGF-A165 protein were followed up in vivo by scanning laser ophthalmoscopy, fluorescein and indocyanine green angiographies and ex vivo by electron microscopy and immunohistochemistry Results We observed a choroidal neovascularization (CNV) with leakage in 83% of the rabbit eyes. Our findings present clear indications that there is a significant effect on the endothelial cells of the choriocapillaris after subretinal transduction of the retinal pigment epithelium (RPE) with VEGF-A165 vector. The choroidal endothelial cells were activated, adherent junctions opened, and the fenestration was minimized, while the extracellular matrix localized between the RPE and the endothelium of the choriocapillaris was enlarged toward the lumen of the vessels, inducing a deep invagination of the endothelial cells into the vessel lumen. They also proliferated and formed pathological vessels in the subretinal space. Moreover,there was an increased expression of basic fibroblast growth factor and VEGF-A accompanied by macrophage stimulation, retinal edema, and photoreceptor loss. Conclusions This is the first model of VEGF-induced CNV in the rabbit in which the pathological events following overexpression of VEGF by RPE cells have been described in detail. Many of the features of our experimental CNV resemble those observed clinically in patients having wet age-related macular degeneration. PMID:18682809

  11. Standard free droplet digital polymerase chain reaction as a new tool for the quality control of high-capacity adenoviral vectors in small-scale preparations.

    PubMed

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E; Ehrhardt, Anja

    2015-02-01

    High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.

  12. Early life vaccination: Generation of adult-quality memory CD8+ T cells in infant mice using non-replicating adenoviral vectors.

    PubMed

    Nazerai, Loulieta; Bassi, Maria R; Uddback, Ida E M; Holst, Peter J; Christensen, Jan P; Thomsen, Allan R

    2016-12-08

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate that memory CD8+ T cells induced by adenoviral vectors in infant mice are of good quality and match those elicited in the adult host.

  13. STANDARDIZATION AND VALIDATION OF ADENOVIRAL TRANSDUCTION OF AN ANDROGEN RECEPTOR POSITIVE CELL LINE WITH AN MMTV-LUC REPORTER FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Standardization and Validation of Adenoviral Transduction of an Androgen Receptor Positive Cell Line with an MMTV-Luc Reporter for Endocrine Screening P. Hartig, K . Bobseine,
    M. Cardon, C. Lambright and L. E. Gray, Jr. USEPA, Reproductive Toxicology Division, NHEERL, RTP, NC...

  14. Early life vaccination: Generation of adult-quality memory CD8+ T cells in infant mice using non-replicating adenoviral vectors

    PubMed Central

    Nazerai, Loulieta; Bassi, Maria R.; Uddback, Ida E. M.; Holst, Peter J.; Christensen, Jan P.; Thomsen, Allan R.

    2016-01-01

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate that memory CD8+ T cells induced by adenoviral vectors in infant mice are of good quality and match those elicited in the adult host. PMID:27929135

  15. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  16. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  17. STANDARDIZATION AND VALIDATION OF ADENOVIRAL TRANSDUCTION OF AN ANDROGEN RECEPTOR POSITIVE CELL LINE WITH AN MMTV-LUC REPORTER FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Standardization and Validation of Adenoviral Transduction of an Androgen Receptor Positive Cell Line with an MMTV-Luc Reporter for Endocrine Screening P. Hartig, K . Bobseine,
    M. Cardon, C. Lambright and L. E. Gray, Jr. USEPA, Reproductive Toxicology Division, NHEERL, RTP, NC...

  18. Adenovirus Type 5 Viral Particles Pseudotyped with Mutagenized Fiber Proteins Show Diminished Infectivity of Coxsackie B-Adenovirus Receptor-Bearing Cells

    PubMed Central

    Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.

    2001-01-01

    A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722

  19. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  20. Immunogenicity without Efficacy of an Adenoviral Tuberculosis Vaccine in a Stringent Mouse Model for Immunotherapy during Treatment

    PubMed Central

    Alyahya, S. Anisah; Nolan, Scott T.; Smith, Cara M. R.; Bishai, William R.; Sadoff, Jerald; Lamichhane, Gyanu

    2015-01-01

    To investigate if bacterial persistence during TB drug treatment could be overcome by modulation of host immunity, we adapted a clinically-relevant model developed for the evaluation of new drugs and examined if immunotherapy with two adenoviral vaccines, Ad35-TBS (AERAS-402) and Ad26-TBS, could shorten therapy in mice. Even though immunotherapy resulted in strong splenic IFN-γ responses, no effect on bacterial replication in the lungs was seen. Multiplex assay analysis of lung samples revealed the absence of cytokine augmentation such as IFN-γ, TNF-α and IL-2, suggesting that immunization failed to induce immunity in the lungs. In this model, we show that IFN-γ levels were not associated with protection against disease relapse. The results obtained from our study raise questions regarding the traits of protective TB immunity that are relevant for the development of future immunotherapeutic and post-exposure vaccination strategies. PMID:25996375

  1. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy

    PubMed Central

    Weymann, Alexander; Arif, Rawa; Weber, Antje; Zaradzki, Marcin; Richter, Karsten; Ensminger, Stephan; Robinson, Peter Nicholas; Wagner, Andreas H.; Karck, Matthias; Kallenbach, Klaus

    2016-01-01

    Objectives Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis. Methods We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM). Results IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1

  2. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    PubMed

    2003-01-01

    undergoing phase I trials for the potential treatment of lung, breast, ovarian, bladder, liver and brain cancers. Introgen and Aventis Pharma had signed a Cooperative Research and Development Agreement (CRADA) with the National Cancer Institute (NCI). NCI will sponsor clinical trials to evaluate and develop RPR/INGN 201 as a potential anticancer agent for these cancer indications. The trials conducted under a NCI-sponsored IND will evaluate RPR/INGN 201 alone and in combination with other anticancer agents. This agreement was originally signed by Rhône-Poulenc Rorer's Gencell. Introgen has completed three phase I clinical trials with INGN 201 in patients with bronchioalveolar cell lung carcinoma, ovarian cancer and recurrent glioblastomas, respectively. Intratumoural injection of RPR/INGN 201 in patients with recurrent glioblastomas was well tolerated and resulted in expression of the p53 protein. Direct administration of RPR/INGN 201 to the lower airways of patients with bronchioalveolar cell lung carcinoma resulted in symptomatic improvement and improved lung function in some patients. In February 2003, Introgen announced that the US Patent and Trademark Office has issued to The Board of Regents of The University of Texas System, patent No. 6,511,847 entitled "Recombinant p53 Adenovirus Methods and Compositions". Introgen Therapeutics is the exclusive licensee of this patent. The patent covers any adenoviral DNA molecules that encode the p53 gene positioned under the control of a promoter. Such a DNA molecule forms the genetic core of Introgen's ADVEXIN cancer therapy. Introgen's ADVEXIN therapy is now covered by up to ten separate US patents relevant to the product including compositions, therapeutic methods of administering the product in virtually any form, alone and in conjunction with the most widely used chemotherapeutic and radiation treatments, as well as its production. Introgen has a number of US patents that relate to the clinical use of ADVEXIN in cancer as

  3. Adenoviral Vector Driven by a Minimal Rad51 Promoter Is Selective for p53-Deficient Tumor Cells

    PubMed Central

    Fong, Vincent; Osterbur, Marika; Capella, Cristina; Kim, Yo-El; Hine, Christopher; Gorbunova, Vera; Seluanov, Andrei; Dewhurst, Stephen

    2011-01-01

    Background The full length Rad51 promoter is highly active in cancer cells but not in normal cells. We therefore set out to assess whether we could confer this tumor-selectivity to an adenovirus vector. Methodology/Principal Findings Expression of an adenovirally-vectored luciferase reporter gene from the Rad51 promoter was up to 50 fold higher in cancer cells than in normal cells. Further evaluations of a panel of truncated promoter mutants identified a 447 bp minimal core promoter element that retained the full tumor selectivity and transcriptional activity of the original promoter, in the context of an adenovirus vector. This core Rad51 promoter was highly active in cancer cells that lack functional p53, but less active in normal cells and in cancer cell lines with intact p53 function. Exogenous expression of p53 in a p53 null cell line strongly suppressed activity of the Rad51 core promoter, underscoring the selectivity of this promoter for p53-deficient cells. Follow-up experiments showed that the p53-dependent suppression of the Rad51 core promoter was mediated via an indirect, p300 coactivator dependent mechanism. Finally, transduction of target cells with an adenovirus vector encoding the thymidine kinase gene under transcriptional control of the Rad51 core promoter resulted in efficient killing of p53 defective cancer cells, but not of normal cells, upon addition of ganciclovir. Conclusions/Significance Overall, these experiments demonstrated that a small core domain of the Rad51 promoter can be used to target selective transgene expression from adenoviral vectors to tumor cells lacking functional p53. PMID:22174876

  4. Adenoviral vector driven by a minimal Rad51 promoter is selective for p53-deficient tumor cells.

    PubMed

    Fong, Vincent; Osterbur, Marika; Capella, Cristina; Kim, Yo-El; Hine, Christopher; Gorbunova, Vera; Seluanov, Andrei; Dewhurst, Stephen

    2011-01-01

    The full length Rad51 promoter is highly active in cancer cells but not in normal cells. We therefore set out to assess whether we could confer this tumor-selectivity to an adenovirus vector. Expression of an adenovirally-vectored luciferase reporter gene from the Rad51 promoter was up to 50 fold higher in cancer cells than in normal cells. Further evaluations of a panel of truncated promoter mutants identified a 447 bp minimal core promoter element that retained the full tumor selectivity and transcriptional activity of the original promoter, in the context of an adenovirus vector. This core Rad51 promoter was highly active in cancer cells that lack functional p53, but less active in normal cells and in cancer cell lines with intact p53 function. Exogenous expression of p53 in a p53 null cell line strongly suppressed activity of the Rad51 core promoter, underscoring the selectivity of this promoter for p53-deficient cells. Follow-up experiments showed that the p53-dependent suppression of the Rad51 core promoter was mediated via an indirect, p300 coactivator dependent mechanism. Finally, transduction of target cells with an adenovirus vector encoding the thymidine kinase gene under transcriptional control of the Rad51 core promoter resulted in efficient killing of p53 defective cancer cells, but not of normal cells, upon addition of ganciclovir. Overall, these experiments demonstrated that a small core domain of the Rad51 promoter can be used to target selective transgene expression from adenoviral vectors to tumor cells lacking functional p53.

  5. Targeted Delivery of Human VEGF Gene via Complexes of Magnetic Nanoparticle-Adenoviral Vectors Enhanced Cardiac Regeneration

    PubMed Central

    Ou, Lailiang; Wang, Weiwei; Delyagina, Evgenya; Lux, Cornelia; Sorg, Heiko; Riehemann, Kristina

    2012-01-01

    This study assessed the concept of whether delivery of magnetic nanobeads (MNBs)/adenoviral vectors (Ad)–encoded hVEGF gene (AdhVEGF) could regenerate ischaemically damaged hearts in a rat acute myocardial infarction model under the control of an external magnetic field. Adenoviral vectors were conjugated to MNBs with the Sulfo-NHS-LC-Biotin linker. In vitro transduction efficacy of MNBs/Ad–encoded luciferase gene (Adluc) was compared with Adluc alone in human umbilical vein endothelial cells (HUVECs) under magnetic field stimulation. In vivo, in a rat acute myocardial infarction (AMI) model, MNBs/AdhVEGF complexes were injected intravenously and an epicardial magnet was employed to attract the circulating MNBs/AdhVEGF complexes. In vitro, compared with Adluc alone, MNBs/Adluc complexes had a 50-fold higher transduction efficiency under the magnetic field. In vivo, epicardial magnet effectively attracted MNBs/AdhVEGF complexes and resulted in strong therapeutic gene expression in the ischemic zone of the infarcted heart. When compared to other MI-treated groups, the MI-M+/AdhVEGF group significantly improved left ventricular function (p<0.05) assessed by pressure-volume loops after 4 weeks. Also the MI-M+/AdhVEGF group exhibited higher capillary and arteriole density and lower collagen deposition than other MI-treated groups (p<0.05). Magnetic targeting enhances transduction efficiency and improves heart function. This novel method to improve gene therapy outcomes in AMI treatment offers the potential into clinical applications. PMID:22844395

  6. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  7. Adenoviral-Mediated Glial Cell Line–Derived Neurotrophic Factor Gene Transfer Has a Protective Effect on Sciatic Nerve Following Constriction-Induced Spinal Cord Injury

    PubMed Central

    Chou, An-Kuo; Yang, Ming-Chang; Tsai, Hung-Pei; Chai, Chee-Yin; Tai, Ming-Hong; Kwan, Aij-Li; Hong, Yi-Ren

    2014-01-01

    Neuropathic pain due to peripheral nerve injury may be associated with abnormal central nerve activity. Glial cell-line-derived neurotrophic factor (GDNF) can help attenuate neuropathic pain in different animal models of nerve injury. However, whether GDNF can ameliorate neuropathic pain in the spinal cord dorsal horn (SCDH) in constriction-induced peripheral nerve injury remains unknown. We investigated the therapeutic effects of adenoviral-mediated GDNF on neuropathic pain behaviors, microglial activation, pro-inflammatory cytokine expression and programmed cell death in a chronic constriction injury (CCI) nerve injury animal model. In this study, neuropathic pain was produced by CCI on the ipsilateral SCDH. Mechanical allodynia was examined with von Frey filaments and thermal sensitivity was tested using a plantar test apparatus post-operatively. Target proteins GDNF-1, GDNFRa-1, MMP2, MMP9, p38, phospho-p38, ED1, IL6, IL1β, AIF, caspase-9, cleaved caspase-9, caspase-3, cleaved caspase-3, PARP, cleaved PARP, SPECTRIN, cleaved SPECTRIN, Beclin-1, PKCσ, PKCγ, iNOS, eNOS and nNOS were detected. Microglial activity was measured by observing changes in immunoreactivity with OX-42. NeuN and TUNEL staining were used to reveal whether apoptosis was attenuated by GDNF. Results showed that administrating GDNF began to attenuate both allodynia and thermal hyperalgesia at day 7. CCI-rats were found to have lower GDNF and GDNFRa-1 expression compared to controls, and GDNF re-activated their expression. Also, GDNF significantly down-regulated CCI-induced protein expression except for MMP2, eNOS and nNOS, indicating that the protective action of GDNF might be associated with anti-inflammation and prohibition of microglia activation. Immunocytochemistry staining showed that GDNF reduced CCI-induced neuronal apoptosis. In sum, GDNF enhanced the neurotrophic effect by inhibiting microglia activation and cytokine production via p38 and PKC signaling. GDNF could be a good

  8. Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells

    PubMed Central

    Wei, Fang; Wang, Huiping; Chen, Xiafang; Li, Chuanyuan; Huang, Qian

    2014-01-01

    Oncolytic viruses have recently received widespread attention for their potential in innovative cancer therapy. Many telomerase promoter-regulated oncolytic adenoviral vectors retain E1A and E1B. However, the functions of E1A and E1B proteins in the oncolytic role of replication-competent adenovirus (RCAd) and RCAd enhanced transduction of replication defective adenoviruses (RDAd) have not been addressed well. In this study, we constructed viruses expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa. We then tested their roles in oncolysis and replication of RCAd as well as their roles in RCAd enhanced transfection rate and transgene expression of RDAd in various cancer cells in vitro and in xenografted human NCI-H460 tumors in nude mice. We demonstrated that RCAds expressing E1A alone and plus E1B-19 kDa exhibited an obvious ability in replication and oncolytic effects as well as enhanced RDAd replication and transgene expression, with the former showed more effective oncolysis, while the latter exhibited superior viral replication and transgene promotion activity. However, RCAd expressing both E1A and E1B-19 kDa/55 kDa was clearly worst in all these abilities. The effects of E1A and E1B observed through using RCAd were further validated by using plasmids expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa proteins. Our study provided evidence that E1A was essential for inducing replication and oncolytic effects of RCAd as well as RCAd enhanced RDAd transduction, and expression of E1B-19 kDa other than E1B-55 kDa could promote these effects. E1B-55 kDa is not necessary for the oncolytic effects of adenoviruses and somehow inhibits RCAd-mediated RDAd replication and transgene expression. PMID:25019940

  9. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice

    PubMed Central

    Thoryk, Elizabeth A.; Swaminathan, Gokul; Meschino, Steven; Cox, Kara S.; Gindy, Marian; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs) markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg) and Ovalbumin (OVA), respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA) to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties. PMID:27929422

  10. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice.

    PubMed

    Thoryk, Elizabeth A; Swaminathan, Gokul; Meschino, Steven; Cox, Kara S; Gindy, Marian; Casimiro, Danilo R; Bett, Andrew J

    2016-12-06

    A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs) markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg) and Ovalbumin (OVA), respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA) to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered-both at the same time and in the same location-in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

  11. Pathogen-Induced Proapoptotic Phenotype and High CD95 (Fas) Expression Accompany a Suboptimal CD8+ T-Cell Response: Reversal by Adenoviral Vaccine

    PubMed Central

    Vasconcelos, José Ronnie; Bruña–Romero, Oscar; Araújo, Adriano F.; Dominguez, Mariana R.; Ersching, Jonatan; de Alencar, Bruna C. G.; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bortoluci, Karina R.; Amarante-Mendes, Gustavo P.; Lopes, Marcela F.; Rodrigues, Mauricio M.

    2012-01-01

    MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination. PMID:22615561

  12. Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors.

    PubMed

    Palmer, Donna J; Grove, Nathan C; Ing, Jordan; Crane, Ana M; Venken, Koen; Davis, Brian R; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration, and 97.4-100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6-16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10(-3)) necessitated negative selection for piggyBac-excision product isolation.

  13. Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors.

    PubMed

    Palmer, Donna J; Grove, Nathan C; Ing, Jordan; Crane, Ana M; Venken, Koen; Davis, Brian R; Ng, Philip

    2016-10-11

    Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration, and 97.4-100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6-16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10(-3)) necessitated negative selection for piggyBac-excision product isolation.

  14. Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ing, Jordan; Crane, Ana M; Venken, Koen; Davis, Brian R; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50–64.6% after positive selection for vector integration, and 97.4–100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9–57.1% after positive selection and 87.5–100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6–16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10−3) necessitated negative selection for piggyBac-excision product isolation. PMID:27727248

  15. A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer

    PubMed Central

    Fang, Lin; Cheng, Qian; Zhao, Jingjing; Ge, Yan; Zhu, Qi; Zhao, Min; Zhang, Jie; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-01-01

    The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection. PMID:27340782

  16. Ocular Localization and Transduction by Adenoviral Vectors Are Serotype-Dependent and Can Be Modified by Inclusion of RGD Fiber Modifications

    PubMed Central

    Ueyama, Kazuhiro; Mori, Keisuke; Shoji, Takuhei; Omata, Hidekazu; Gehlbach, Peter L.; Brough, Douglas E.; Wei, Lisa L.; Yoneya, Shin

    2014-01-01

    Purpose To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration. Methods Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter. Results GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month. Conclusions Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases. PMID:25232844

  17. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies.

    PubMed Central

    Lattanzi, L; Salvatori, G; Coletta, M; Sonnino, C; Cusella De Angelis, M G; Gioglio, L; Murry, C E; Kelly, R; Ferrari, G; Molinaro, M; Crescenzi, M; Mavilio, F; Cossu, G

    1998-01-01

    Ex vivo gene therapy of primary myopathies, based on autologous transplantation of genetically modified myogenic cells, is seriously limited by the number of primary myogenic cells that can be isolated, expanded, transduced, and reimplanted into the patient's muscles. We explored the possibility of using the MyoD gene to induce myogenic conversion of nonmuscle, primary cells in a quantitatively relevant fashion. Primary human and murine fibroblasts from skin, muscle, or bone marrow were infected by an E1-deleted adenoviral vector carrying a retroviral long terminal repeat-promoted MyoD cDNA. Expression of MyoD caused irreversible withdrawal from the cell cycle and myogenic differentiation in the majority (from 60 to 90%) of cultured fibroblasts, as defined by activation of muscle-specific genes, fusion into contractile myotubes, and appearance of ultrastructurally normal sarcomagenesis in culture. 24 h after adenoviral exposure, MyoD-converted cultures were injected into regenerating muscle of immunodeficient (severe combined immunodeficiency/beige) mice, where they gave rise to beta-galactosidase positive, centrally nucleated fibers expressing human myosin heavy chains. Fibers originating from converted fibroblasts were indistinguishable from those obtained by injection of control cultures of lacZ-transduced satellite cells. MyoD-converted murine fibroblasts participated to muscle regeneration also in immunocompetent, syngeneic mice. Although antibodies from these mice bound to adenoviral infected cells in vitro, no inflammatory infiltrate was present in the graft site throughout the 3-wk study period. These data support the feasibility of an alternative approach to gene therapy of primary myopathies, based on implantation of large numbers of genetically modified primary fibroblasts massively converted to myogenesis by adenoviral delivery of MyoD ex vivo. PMID:9593768

  18. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies

    PubMed Central

    Uusi-Kerttula, Hanni; Legut, Mateusz; Davies, James; Jones, Rachel; Hudson, Emma; Hanna, Louise; Stanton, Richard J.; Chester, John D.

    2015-01-01

    Abstract Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCARlow/EGFRhigh cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of

  19. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies.

    PubMed

    Uusi-Kerttula, Hanni; Legut, Mateusz; Davies, James; Jones, Rachel; Hudson, Emma; Hanna, Louise; Stanton, Richard J; Chester, John D; Parker, Alan L

    2015-05-01

    Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCAR(low)/EGFR(high) cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of circumventing

  20. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma

    PubMed Central

    Kim, Julius W.; Kane, J. Robert; Young, Jacob S.; Chang, Alan L.; Kanojia, Deepak; Morshed, Ramin A.; Miska, Jason; Ahmed, Atique U.; Balyasnikova, Irina V.; Han, Yu; Zhang, Lingjiao; Curiel, David T.; Lesniak, Maciej S.

    2015-01-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as “GliomaFF.” We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy. PMID:26058317

  1. Doxycycline-Regulated 3T3-L1 Preadipocyte Cell Line with Inducible, Stable Expression of Adenoviral E4orf1 Gene: A Cell Model to Study Insulin-Independent Glucose Disposal

    PubMed Central

    Krishnapuram, Rashmi; Dhurandhar, Emily J.; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V.

    2013-01-01

    Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin. PMID:23544159

  2. Correction of hyperbilirubinemia in gunn rats by surgical delivery of low doses of helper-dependent adenoviral vectors.

    PubMed

    Schmitt, Françoise; Pastore, Nunzia; Abarrategui-Pontes, Cecilia; Flageul, Maude; Myara, Anne; Laplanche, Sophie; Labrune, Philippe; Podevin, Guillaume; Nguyen, Tuan Huy; Brunetti-Pierri, Nicola

    2014-06-01

    Helper-dependent adenoviral (HDAd) vectors are attractive for liver-directed gene therapy because they can drive sustained high levels of transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potential lethal consequences. We have previously shown in nonhuman primates that delivery of HDAd in surgically isolated livers resulted in a significantly higher hepatic transduction with reduced systemic vector dissemination compared with intravenous delivery and multiyear transgene expression. Encouraged by these data, we have now employed a surgical vector delivery method in the Gunn rat, an animal model for Crigler-Najjar syndrome. After vector delivery into the surgically isolated liver, we show phenotypic correction at the low and clinically relevant vector dose of 1 × 10(11) vp/kg. Correction of hyperbilirubinemia and increased glucuronidation of bilirubin in bile was achieved for up to 1 year after vector administration. Surgical delivery of the vector was well tolerated without signs of acute or chronic toxicity. This method of delivery could thereby be a safer alternative to liver transplantation for long-term treatment of Crigler-Najjar syndrome type I.

  3. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction

    PubMed Central

    Baum, Bruce J.; Alevizos, Ilias; Zheng, Changyu; Cotrim, Ana P.; Liu, Shuying; McCullagh, Linda; Goldsmith, Corinne M.; Burbelo, Peter D.; Citrin, Deborah E.; Mitchell, James B.; Nottingham, Liesl K.; Rudy, Susan F.; Van Waes, Carter; Whatley, Millie A.; Brahim, Jaime S.; Chiorini, John A.; Danielides, Stamatina; Turner, R. James; Patronas, Nicholas J.; Chen, Clara C.; Nikolov, Nikolay P.; Illei, Gabor G.

    2012-01-01

    No conventional therapy exists for salivary hypofunction in surviving head and neck cancer patients with Radiation Therapy Oncology Group late grade 2–3 toxicity. We conducted a phase I clinical trial to test the safety and biologic efficacy of serotype 5, adenoviral-mediated aquaporin-1 cDNA transfer to a single previously irradiated parotid gland in 11 subjects using an open label, single-dose, dose-escalation design (AdhAQP1 vector; four dose tiers from 4.8 × 107 to 5.8 × 109 vector particles per gland). Treated subjects were followed at scheduled intervals. Multiple safety parameters were measured and biologic efficacy was evaluated with measurements of parotid salivary flow rate. Symptoms were assessed with a visual analog scale. All subjects tolerated vector delivery and study procedures well over the 42-d study period reported. No deaths, serious adverse events, or dose-limiting toxicities occurred. Generally, few adverse events occurred, and all were considered mild or moderate. No consistent changes were found in any clinical chemistry and hematology parameters measured. Objective responses were seen in six subjects, all at doses <5.8 × 109 vector particles per gland. Five of these six subjects also experienced subjective improvement in xerostomia. AdhAQP1 vector delivery to a single parotid gland was safe and transfer of the hAQP1 cDNA increased parotid flow and relieved symptoms in a subset of subjects. PMID:23129637

  4. Improved efficacy and reduced toxicity by ultrasound-guided intrahepatic injections of helper-dependent adenoviral vector in Gunn rats.

    PubMed

    Pastore, Nunzia; Nusco, Edoardo; Piccolo, Pasquale; Castaldo, Sigismondo; Vaníkova, Jana; Vetrini, Francesco; Palmer, Donna J; Vitek, Libor; Ng, Philip; Brunetti-Pierri, Nicola

    2013-10-01

    Crigler-Najjar syndrome type I is caused by mutations of the uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) gene resulting in life-threatening increase of serum bilirubin. Life-long correction of hyperbilirubinemia was previously shown with intravenous injection of high doses of a helper-dependent adenoviral (HDAd) vector expressing UGT1A1 in the Gunn rat, the animal model of Crigler-Najjar syndrome. However, such high vector doses can activate an acute and potentially lethal inflammatory response with elevated serum interleukin-6 (IL-6). To overcome this obstacle, we investigated safety and efficacy of direct injections of low HDAd doses delivered directly into the liver parenchyma of Gunn rats. Direct hepatic injections performed by either laparotomy or ultrasound-guided percutaneous injections were compared with the same doses given by intravenous injections. A greater reduction of hyperbilirubinemia and increased conjugated bilirubin in bile were achieved with 1 × 10(11) vp/kg by direct liver injections compared with intravenous injections. In sharp contrast to intravenous injections, direct hepatic injections neither raised serum IL-6 nor resulted in thrombocytopenia. In conclusion, ultrasound-guided percutaneous injection of HDAd vectors into liver parenchyma resulted in improved hepatocyte transduction and reduced toxicity compared with systemic injections and is clinically attractive for liver-directed gene therapy of Crigler-Najjar syndrome.

  5. Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; Swadling, Leo; O’Hara, Geraldine; de Lara, Catherine; Baban, Dilair; Saghal, Natasha; Lee, Lian Ni; Marchi, Emanuele; Davis, Mark; Newell, Evan; Capone, Stefania; Folgori, Antonella; Barnes, Ellie; Klenerman, Paul

    2015-01-01

    Summary Following exposure to vaccines, antigen-specific CD8+ T cell responses develop as long-term memory pools. Vaccine strategies based on adenoviral vectors, e.g., those developed for HCV, are able to induce and sustain substantial CD8+ T cell populations. How such populations evolve following vaccination remains to be defined at a transcriptional level. We addressed the transcriptional regulation of divergent CD8+ T cell memory pools induced by an adenovector encoding a model antigen (beta-galactosidase). We observe transcriptional profiles that mimic those following infection with persistent pathogens, murine and human cytomegalovirus (CMV). Key transcriptional hallmarks include upregulation of homing receptors and anti-apoptotic pathways, driven by conserved networks of transcription factors, including T-bet. In humans, an adenovirus vaccine induced similar CMV-like phenotypes and transcription factor regulation. These data clarify the core features of CD8+ T cell memory following vaccination with adenovectors and indicate a conserved pathway for memory development shared with persistent herpesviruses. PMID:26586434

  6. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    PubMed Central

    Dasari, Vijayendra; Schuessler, Andrea; Smith, Corey; Wong, Yide; Miles, John J; Smyth, Mark J; Ambalathingal, George; Francis, Ross; Campbell, Scott; Chambers, Daniel; Khanna, Rajiv

    2016-01-01

    Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients. PMID:27606351

  7. Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy

    PubMed Central

    Qiao, Jian; Dey, Mahua; Chang, Alan L; Kim, Julius W; Miska, Jason; Ling, Alex; M Nettlebeck, Dirk; Han, Yu; Zhang, Lingjiao; Lesniak, Maciej S

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor and is associated with poor survival. Virotherapy is a promising candidate for the development of effective, novel treatments for GBM. Recent studies have underscored the potential of virotherapy in enhancing antitumor immunity despite the fact that its mechanisms remain largely unknown. Here, using a syngeneic GBM mouse model, we report that intratumoral virotherapy significantly modulates the tumor microenvironment. We found that intratumoral administration of an oncolytic adenovirus, AdCMVdelta24, decreased tumor-infiltrating CD4+ Foxp3+ regulatory T cells (Tregs) and increased IFNγ-producing CD8+ T cells in treated tumors, even in late stage disease in which a highly immunosuppressive tumor microenvironment is considered to be a significant barrier to immunotherapy. Importantly, intratumoral AdCMVdelta24 treatment augmented systemically transferred tumor-antigen-specific T cell therapy. Furthermore, mechanistic studies showed (1) downregulation of Foxp3 in Tregs that were incubated with media conditioned by virus-infected tumor cells, (2) downregulation of indoleamine 2,3 dioxygenase 1 (IDO) in glioma cells upon infection by AdCMVdelta24, and (3) reprograming of Tregs from an immunosuppressive to a stimulatory state. Taken together, our findings demonstrate the potency of intratumoral oncolytic adenoviral treatment in enhancing antitumor immunity through the regulation of multiple aspects of immune suppression in the context of glioma, supporting further clinical development of oncolytic adenovirus-based immune therapies for malignant brain cancer. PMID:26405578

  8. CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis

    PubMed Central

    Burt, Bryan M.; Plitas, George; Stableford, Jennifer A.; Nguyen, Hoang M.; Bamboat, Zubin M.; Pillarisetty, Venu G.; DeMatteo, Ronald P.

    2008-01-01

    The liver contains a unique repertoire of immune cells and a particular abundance of NK cells. We have found that CD11c defines a distinct subset of NK cells (NK1.1+CD3−) in the murine liver whose function was currently unknown. In naïve animals, CD11c+ liver NK cells displayed an activated phenotype and possessed enhanced effector functions when compared with CD11c− liver NK cells. During the innate response to adenovirus infection, CD11c+ NK cells were the more common IFN-γ-producing NK cells in the liver, demonstrated enhanced lytic capability, and gained a modest degree of APC function. The mechanism of IFN-γ production in vivo depended on TLR9 ligation as well as IL-12 and -18. Taken together, our findings demonstrate that CD11c+ NK cells are a unique subset of NK cells in the murine liver that contribute to the defense against adenoviral hepatitis. PMID:18664530

  9. Adenoviral p53 gene transfer and gemcitabine in three patients with liver metastases due to advanced pancreatic carcinoma

    PubMed Central

    Thiede, Christian; Fischer, Rainer; Ehninger, Gerhard; Haag, Cornelie

    2007-01-01

    Background. Current therapies for adenocarcinoma of the pancreas do not improve the life expectancy of patients. Methods. In a non-randomized pilot trail we tested whether a local therapy based upon an adenoviral gene transfer of wild type p53 in combination with gemcitabine administration would be safe in patients with liver metastases due to pancreatic carcinoma. We report on the clinical course of three patients with respect to safety, tolerability and tumor response. Results. Transient grade III toxicities occurred with fever, leucopenia, elevation of AP, ALT, AST, GGT, while grade IV toxicity occurred for bilirubin only. Laboratory tests suggested disseminated intravascular coagulation in all three patients, but fine needle biopsies of liver did not show any histological evidence of thrombus or clot formation. Progression of liver metastases was documented in one and stable disease in another patient two months after treatment. However, a major improvement with regression of the indexed lesion by 80% occurred in a third patient after a single administration of 7.5×1012 viral particles, and time to progression was extended to six months. Conclusion. The combination therapy of viral gene transfer and chemotherapy temporarily controls and diminishes tumor burden. Improvement of the toxicity profile is necessary. Further trials are warranted to improve treatment and life expectancy of patients suffering from fatal diseases such as pancreatic carcinoma. PMID:18333108

  10. PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice.

    PubMed

    Leggiero, E; Astone, D; Cerullo, V; Lombardo, B; Mazzaccara, C; Labruna, G; Sacchetti, L; Salvatore, F; Croyle, M; Pastore, L

    2013-12-01

    Helper-dependent adenoviral (HD-Ad) vectors have great potential for gene therapy applications; however, their administration induces acute toxicity that impairs safe clinical applications. We previously observed that PEGylation of HD-Ad vectors strongly reduces the acute response in murine and primate models. To evaluate whether PEGylated HD-Ad vectors combine reduced toxicity with the correction of pathological phenotypes, we administered an HD-Ad vector expressing the human apolipoprotein A-I (hApoA-I) to low-density lipoprotein (LDL)-receptor-deficient mice (a model for familial hypercholesterolemia) fed a high-cholesterol diet. Mice were treated with high doses of HD-Ad-expressing apo A-I or its PEGylated version. Twelve weeks later, LDL levels were lower and high-density lipoprotein (HDL) levels higher in mice treated with either of the vectors than in untreated mice. After terminal killing, the areas of atherosclerotic plaques were much smaller in the vector-treated mice than in the control animals. Moreover, the increase in pro-inflammatory cytokines was lower and consequently the toxicity profile better in mice treated with PEGylated vector than in mice treated with the unmodified vector. This finding indicates that the reduction in toxicity resulting from PEGylation of HD-Ad vectors does not impair the correction of pathological phenotypes. It also supports the clinical potential of these vectors for the correction of genetic diseases.

  11. Adenoviral Gene Transfer of Hepatic Stimulator Substance Confers Resistance Against Hepatic Ischemia–Reperfusion Injury by Improving Mitochondrial Function

    PubMed Central

    Jiang, Shu-Jun; Li, Wen

    2013-01-01

    Abstract Hepatic stimulator substance (HSS) has been suggested to protect liver cells from various toxins. However, the precise role of HSS in hepatic ischemia–reperfusion (I/R) injury remains unknown. This study aims to elucidate whether overexpression of HSS could attenuate hepatic ischemia–reperfusion injury and its possible mechanisms. Both in vivo hepatic I/R injury in mice and in vitro hypoxia–reoxygenation (H/R) in a cell model were used to evaluate the effect of HSS protection after adenoviral gene transfer. Moreover, a possible mitochondrial mechanism of HSS protection was investigated. Efficient transfer of the HSS gene into liver inhibited hepatic I/R injury in mice, as evidenced by improvement in liver function tests, the preservation of hepatic morphology, and a reduction in hepatocyte apoptosis. HSS overexpression also inhibited H/R-induced cell death, as detected by cell viability and cell apoptosis assays. The underlying mechanism of this hepatic protection might involve the attenuation of mitochondrial dysfunction and mitochondrial-dependent cell apoptosis, as shown by the good preservation of mitochondrial ultrastructure, mitochondrial membrane potential, and the inhibition of cytochrome c leakage and caspase activity. Moreover, the suppression of H/R-induced mitochondrial ROS production and the maintenance of mitochondrial respiratory chain complex activities may participate in this mechanism. This new function of HSS expands the possibility of its application for the prevention of I/R injury, such as hepatic resection and liver transplantation in clinical practice. PMID:23461564

  12. The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats.

    PubMed

    Chen, X; Zhao, X; Hu, Y; Lan, F; Sun, H; Fan, G; Sun, Y; Wu, J; Kong, W; Kong, W

    2015-11-01

    There is no definitive conclusion concerning the spread of viral vectors to the brain after a cochlear inoculation. In addition, some studies have reported different distribution profiles of viral vectors in the central auditory system after a cochlear inoculation. Thus, rats were grouped into either a mimetic aging group or a young group and transfected with adenoviral vectors (AdVs) by round window membrane injection. The distribution of AdV in central nervous system (CNS) was demonstrated in the two groups with transmission electron microscopy and immunofluorescence. We found that the AdV could disseminate into the CNS and that the neuronal damage and stress-induced GRP78 expression were reduced after transfection with PGC-1α, as compared with the control vectors, especially in the mimetic aging group. We also found that the host immune response was degraded in CNS in the mimetic aging group after transduction through the cochlea, as compared with the young group. These results demonstrate that viral vectors can disseminate into the CNS through the cochlea. Moreover, mimetic aging induced by D-galactose could facilitate the spread of viral vectors into the CNS from the cochlea. These findings may indicate a new potential approach for gene therapy against age-related diseases in the CNS.

  13. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments.

    PubMed

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-Il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene

  14. Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero.

    PubMed

    Bilbao, R; Reay, D P; Wu, E; Zheng, H; Biermann, V; Kochanek, S; Clemens, P R

    2005-01-01

    In utero gene delivery could offer the advantage of treatment at an early stage for genetic disorders such as Duchenne muscular dystrophy (DMD) in which the inevitable process of muscle degeneration is already initiated at birth. Furthermore, treatment of fetal muscle with adenoviral (Ad) vectors is attractive because of a high density of Ad receptors, easy vector accessibility due to immaturity of the basal lamina and the possibility of treating stem cells. Previously, we demonstrated the efficient transduction of fetal muscle by high-capacity Ad (HC-Ad) vectors. In this study, we compared HC-Ad and first-generation Ad (FG-Ad) vectors for longevity of lacZ transgene expression, toxicity and induction of immunity after direct vector-mediated in utero gene delivery to fetal C57BL/6 mice muscle 16 days after conception (E-16). The total amount of beta-galactosidase (betagal) expressed from the HC-Ad vector remained stable for the 5 months of the study, although the concentration of betagal decreased due to muscle growth. Higher survival rates that reflect lower levels of toxicity were observed in those mice transduced with an HC-Ad vector as compared to an FG-Ad vector. The toxicity induced by FG-Ad vector gene delivery was dependent on mouse strain and vector dose. Animals treated with either HC-Ad and FG-Ad vectors developed non-neutralizing antibodies against Ad capsid and antibodies against betagal, but these antibodies did not cause loss of vector genomes from transduced muscle. In a mouse model of DMD, dystrophin gene transfer to muscle in utero using an HC-Ad vector restored the dystrophin-associated glycoproteins. Our results demonstrate that long-term transgene expression can be achieved by HC-Ad vector-mediated gene delivery to fetal muscle, although strategies of vector integration may need to be considered to accommodate muscle growth.

  15. Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson's disease.

    PubMed

    Lapchak, P A; Araujo, D M; Hilt, D C; Sheng, J; Jiao, S

    1997-11-28

    A recombinant adenoviral vector encoding the human glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was used to express the neurotrophic factor GDNF in the unilaterally 6-hydroxydopamine (6-OHDA) denervated substantia nigra (SN) of adult rats ten weeks following the 6-OHDA injection. 6-OHDA lesions significantly increased apomorphine-induced (contralateral) rotations and reduced striatal and nigral dopamine (DA) levels by 99% and 70%, respectively. Ad-GDNF significantly (P < 0.01) decreased (by 30-40%) apomorphine-induced rotations in lesioned rats for up to two weeks following a single injection. Locomotor activity, assessed 7 days following the Ad-GDNF injection, was also significantly (P < 0.05) increased (by 300-400%). Two weeks after the Ad-GDNF injection, locomotor activity was still significantly increased compared to the Ad-beta-gal-injected 6-OHDA lesioned (control) group. Additionally, in Ad-GDNF-injected rats, there was a significant decrease (10-13%) in weight gain which persisted for approximately two weeks following the injection. Consistent with the behavioral changes, levels of DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were elevated (by 98% and 65%, respectively) in the SN, but not the striatum of Ad-GDNF-injected rats. Overall, a single Ad-GDNF injection had significant effects for 2-3 weeks following administration. These results suggest that virally delivered GDNF promotes the recovery of nigral dopaminergic tone (i.e.: increased DA and DOPAC levels) and improves behavioral performance (i.e.: decreased rotations, increased locomotion) in rodents with extensive nigrostriatal dopaminergic denervation. Moreover, our results suggest that viral delivery of trophic factors may be used eventually to treat neurodegenerative diseases such as Parkinson's disease.

  16. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors.

    PubMed

    Ohbayashi, Fumi; Balamotis, Michael A; Kishimoto, Atsuhiro; Aizawa, Emi; Diaz, Arturo; Hasty, Paul; Graham, Frank L; Caskey, C Thomas; Mitani, Kohnosuke

    2005-09-20

    For gene therapy of inherited diseases, targeted integration/gene repair through homologous recombination (HR) between exogenous and chromosomal DNA would be an ideal strategy to avoid potentially serious problems of random integration such as cellular transformation and gene silencing. Efficient sequence-specific modification of chromosomes by HR would also advance both biological studies and therapeutic applications of a variety of stem cells. Toward these goals, we developed an improved strategy of adenoviral vector (AdV)-mediated HR and examined its ability to correct an insertional mutation in the hypoxanthine phosphoribosyl transferase (Hprt) locus in male mouse ES cells. The efficiency of HR was compared between four types of AdVs that contained various lengths of homologies at the Hprt locus and with various multiplicities of infections. The frequency of HR with helper-dependent AdVs (HD AdVs) with an 18.6-kb homology reached 0.2% per transduced cell at a multiplicity of infection of 10 genomes per cell. Detection of random integration at DNA levels by PCR revealed extremely high efficiency of 5% per cell. We also isolated and characterized chromosomal sites where HD AdVs integrated in a random manner. In contrast to retroviral, lentiviral, and adeno-associated viral vectors, which tend to integrate into genes, the integration sites of AdV was distributed randomly inside and outside genes. These findings suggest that HR mediated by HD AdVs is efficient and relatively safe and might be a new viable option for ex vivo gene therapy as well as a tool for chromosomal manipulation of a variety of stem cells.

  17. Intrapleural Adenoviral Delivery of Human Plasminogen Activator Inhibitor–1 Exacerbates Tetracycline-Induced Pleural Injury in Rabbits

    PubMed Central

    Karandashova, Sophia; Florova, Galina; Azghani, Ali O.; Komissarov, Andrey A.; Koenig, Kathy; Tucker, Torry A.; Allen, Timothy C.; Stewart, Kris; Tvinnereim, Amy

    2013-01-01

    Elevated concentrations of plasminogen activator inhibitor–1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, β-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40–80 and 200–400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10–15 nM in control animals to 20–40 nM in hPAI-1–overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment. PMID:23002099

  18. A novel adenoviral gutless vector encoding sphingosine kinase promotes arteriogenesis and improves perfusion in a rabbit hindlimb ischemia model.

    PubMed

    Lee, Jae Ung; Shin, Jinho; Song, Woohyuk; Kim, Hyunjoong; Lee, Seunghwan; Jang, Se Jin; Wong, S Chiu; Edelberg, Jay E; Liau, Gene; Hong, Mun K

    2005-11-01

    We previously demonstrated that sphingosine kinase (SPK) increases the level of extracellular sphingosine-1-phosphate and promotes neovascularization in a mouse matrigel model. In this study, we tested the hypothesis that SPK gene transfer using a novel adenoviral 'gutless' vector (AGV) can enhance arteriogenesis in a rabbit hindlimb ischemia model. Thirty-five male New Zealand white rabbits were randomized to the AGV-SPK group (n=13), AGV-null group (n=13), and control group (n=9). On day 10, after the induction of unilateral hindlimb ischemia, gene vectors or buffer were introduced and the effect examined on day 30, using calf blood pressure, quantitative angiographic analysis, and histology. Calf systolic blood pressure ratios of the ischemic limb to the normal limb on day 30 were 0.77+/-0.13 in control groups, including the AGV-null group, and 0.91+/-0.14 in the AGV-SPK group (P<0.05). Angiographic vessel counts were significantly increased (8.0+/-2.1 at baseline and 11.8+/-3.2 on day 30, P<0.001) in the AGV-SPK group. Histologic analysis showed that microscopic total vessel counts on day 30 were 3.5+/-1.8/field in the control and AGV-null group and 5.4+/-1.0/field in the AGV-SPK group. Arterioles (AGV-SPK; 3.0+/-0.8 versus control and AGV-null; 2.1+/-1.1, P<0.05) were significantly increased in the AGV-SPK group. This study shows that SPK promotes arteriogenesis, as evidenced by the maximal improvement in the blood pressure restoration and collateral vessel counts. SPK may be an important angiogenic target to improve perfusion in ischemic tissues.

  19. Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the

  20. GX1-mediated anionic liposomes carrying adenoviral vectors for enhanced inhibition of gastric cancer vascular endothelial cells.

    PubMed

    Xiong, Dan; Liu, Zhongbing; Bian, Tierong; Li, Juan; Huang, Wenjun; Jing, Pei; Liu, Li; Wang, Yunlong; Zhong, Zhirong

    2015-12-30

    Gastric cancer is a highly lethal malignancy and its 5-year survival rate remains depressed in spite of multiple treatment options. Targeting drug delivery to tumor vasculature may be a promising strategy for gastric cancer therapy, for it can block the nutrition source of tumor and inhibit the metastasis and invasion in a certain extent. In present study, we have prepared the drug-targeting delivery system of peptide GX1-mediated anionic liposomes carrying adenoviral vectors (GX1-Ad5-AL), in which the tumor suppressor gene of PTEN was integrated into DNA of Ad5 and the GX1 peptide could play targeting role to vascular of gastric cancer. The inhibition ability of GX1-Ad5-AL to human gastric cancer cell lines (SGC-7901) and human umbilical vein endothelial cells (HUVEC) was evaluated by MTT assay. Further, the cell migration assay was carried out in transwell inserts and the cells uptaking of GX1-Ad5-AL was detected by confocal laser scanning microscopy. The experimental results indicated that the average cell proliferation inhibition rates resulted from the drug delivery system of GX1-Ad5-AL in SGC-7901 and HUVEC were 68.36% and 64.13%, respectively which were higher than that resulted from GX1 or Ad5-AL. Meanwhile, results of cell migration experiment demonstrated that GX1-Ad5-AL could significantly suppress the migration of gastric cancer cell of SGC-7901. Moreover, both the imaging from confocal laser scanning microscopy and the quantitative analysis of fluorescence intensity showed that, GX1-Ad5-AL was more easily uptaken by SGC-7901 cells, as compared to Ad5-AL. Therefore, the formulation of GX1-Ad5-AL was effective for enhancing the inhibition effect and suppressing the migration of gastric cancer vascular endothelial cells.

  1. Expression of biologically active atrial natriuretic factor following intrahepatic injection of a replication-defective adenoviral vector in dogs.

    PubMed

    Chetboul, V; Adam, M; Deprez, I; Ambriovic, A; Rosenberg, D; Crespeau, F; Saana, M; Pham, I; Eloit, M; Adnot, S; Pouchelon, J L

    1999-01-20

    Atrial natriuretic factor (ANF) is a potent natriuretic, diuretic, and vasoactive hormone produced and released by atrial cardiomyocytes. We investigated whether adenovirus-mediated ANF gene delivery to dogs leads to a sustained increase in circulating ANF levels resulting in long-lasting biological effects. An adenoviral vector containing the canine ANF cDNA under the control of the Rous sarcoma virus 3' long terminal repeat (AdRSV-ANF) was injected via the intrahepatic route to nonvaccinated 2-month-old dogs. In the first group of four dogs injected with AdRSV-ANF (10(10.2) TCID50), a short-lived increase in plasma ANF concentrations not associated with biological effects occurred 8-10 days after the injection, as compared with four control dogs injected with an adenovirus encoding a luciferase reporter gene (AdRSV-luc). In a second series of experiments, six dogs received AdRSV-ANF at a dose of 10(10) TCID50 and a replication-defective type 5 adenovirus harboring a modified VAI gene (Ad-VAr) at the same dose. Sustained increases in plasma ANF concentrations and urinary cGMP excretion starting on day 2 and persisting until day 20 were seen, as well as concomitant elevations in natriuresis and diuresis, a transient increase in cardiac output, and a delay in body weight gain, as compared with control dogs injected with AdRSV-luc/Ad-VAr. These results show that adenovirus-mediated ANF gene expression can lead to systemic biological effects in dogs, a finding of potential relevance for the treatment of cardiovascular diseases and sodium-retaining disorders.

  2. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  3. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  4. Protein

    USDA-ARS?s Scientific Manuscript database

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  5. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  6. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  7. The HDAC inhibitor FK228 enhances adenoviral transgene expression by a transduction-independent mechanism but does not increase adenovirus replication.

    PubMed

    Danielsson, Angelika; Dzojic, Helena; Rashkova, Victoria; Cheng, Wing-Shing; Essand, Magnus

    2011-02-17

    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected.

  8. The HDAC Inhibitor FK228 Enhances Adenoviral Transgene Expression by a Transduction-Independent Mechanism but Does Not Increase Adenovirus Replication

    PubMed Central

    Danielsson, Angelika; Dzojic, Helena; Rashkova, Victoria; Cheng, Wing-Shing; Essand, Magnus

    2011-01-01

    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected. PMID:21379379

  9. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments

    PubMed Central

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. “adenovirus driven NPT2a-EGFP and endogenous NHE3 protein”, “adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein” and “adenovirus driven AQP2-EGFP and endogenous AQP2 protein”. Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and

  10. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  11. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    PubMed

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  12. Functional Effects of Coxsackievirus and Adenovirus Receptor Glycosylation on Homophilic Adhesion and Adenoviral Infection▿

    PubMed Central

    Excoffon, Katherine J. D. Ashbourne; Gansemer, Nicholas; Traver, Geri; Zabner, Joseph

    2007-01-01

    The coxsackievirus and adenovirus receptor (CAR) is both a viral receptor and homophilic adhesion protein. The extracellular portion of CAR consists of two immunoglobulin (Ig)-like domains, each with a consensus sequence for N-glycosylation. We used chemical, genetic, and biochemical studies to show that both sites are glycosylated and contribute to the function of CAR. Although the glycosylation of CAR does not alter cell surface levels or junctional localization, it affects both adhesion and adenovirus infection in unique ways. CAR-mediated adhesion appears to require at least one site of glycosylation since cells expressing CAR without glycosylation do not cluster with each other. In contrast, glycosylation of the Ig-like domain proximal to the membrane is key to the cooperative behavior of adenovirus binding and infection. Contrary to the hypothesis that cooperativity improves viral infection, our data show that although glycosylation of the D2 domain is required for adenovirus cooperative binding, it has a negative consequence upon infection. This is the first report dissecting the adhesion and receptor activities of CAR, revealing that factors other than the binding interface play a significant role in the function of CAR. These data have important implications for both cancers with altered glycosylation states and cancer treatments using oncolytic adenovirus. PMID:17376928

  13. Exogenous surfactant enhances the delivery of recombinant adenoviral vectors to the lung.

    PubMed

    Katkin, J P; Husser, R C; Langston, C; Welty, S E

    1997-01-20

    Somatic gene therapy for pulmonary diseases must be accomplished in vivo, requiring the spread of a gene transfer vector across a vast expanse of respiratory epithelium. Surfactant, a naturally occurring protein and lipid mixture used to treat the respiratory distress syndrome of prematurity, disperses rapidly and evenly throughout the lung. We employed exogenous bovine surfactant (Survanta beractant) as a carrier vehicle for pulmonary delivery of a recombinant adenovirus expressing beta-galactosidase (beta-Gal). Rats treated with an adenovirus-beractant mixture demonstrated more uniform lobar distribution of transgene expression than rats treated with the same amount of virus in saline. Tissue homogenates were examined for quantitative beta-Gal expression by reaction with o-nitrophenol beta-n-galactopyranoside (ONPG). The degree of beta-Gal activity was affected by both the volume and type of carrier used to deliver the virus. At low volumes (0.5 ml, 1.3 ml/kg), beractant-treated animals demonstrated significantly greater pulmonary beta-Gal activity than saline-treated animals (p < 0.002) and untreated controls. At high volume (1.2 ml, 4 ml/kg), average beta-Gal activity was similar between groups treated with beractant or saline, but was more variable within the saline treated group. Higher volumes of delivery medium were associated with increased levels of beta-Gal expression regardless of the carrier used. Survanta was well tolerated by the animals and did not affect the duration of transgene expression. Exogenous beractant provides a useful medium for delivering recombinant adenoviruses to the lung when diffuse distribution of transgene expression is desired.

  14. Bone formation in vivo induced by Cbfa1-carrying adenoviral vectors released from a biodegradable porous β-tricalcium phosphate (β-TCP) material

    NASA Astrophysics Data System (ADS)

    Uemura, Toshimasa; Kojima, Hiroko

    2011-06-01

    Overexpression of Cbfa1 (a transcription factor indispensable for osteoblastic differentiation) is expected to induce the formation of bone directly and indirectly in vivo by accelerating osteoblastic differentiation. Adenoviral vectors carrying the cDNA of Cbfa1/til-1(Adv-Cbf1) were allowed to be adsorbed onto porous blocks of β-tricalcium phosphate (β-TCP), a biodegradable ceramic, which were then implanted subcutaneously and orthotopically into bone defects. The adenoviral vectors were released sustainingly by biodegradation, providing long-term expression of the genes. Results of the subcutaneous implantation of Adv-Cbfa1-adsorbed β-TCP/osteoprogenitor cells suggest that a larger amount of bone formed in the pores of the implant than in the control material. Regarding orthotopic implantation into bone defects, the released Adv-Cbfa1 accelerated regeneration in the cortical bone, whereas it induced bone resorption in the marrow cavity. A safer gene transfer using a smaller amount of the vector was achieved using biodegradable porous β-TCP as a carrier.

  15. Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-cultured Corneas and Limbal Epithelial Cells.

    PubMed

    Kramerov, Andrei A; Saghizadeh, Mehrnoosh; Ljubimov, Alexander V

    2016-04-07

    The goal of this protocol is to describe molecular alterations in human diabetic corneas and demonstrate how they can be alleviated by adenoviral gene therapy in organ-cultured corneas. The diabetic corneal disease is a complication of diabetes with frequent abnormalities of corneal nerves and epithelial wound healing. We have also documented significantly altered expression of several putative epithelial stem cell markers in human diabetic corneas. To alleviate these changes, adenoviral gene therapy was successfully implemented using the upregulation of c-met proto-oncogene expression and/or the downregulation of proteinases matrix metalloproteinase-10 (MMP-10) and cathepsin F. This therapy accelerated wound healing in diabetic corneas even when only the limbal stem cell compartment was transduced. The best results were obtained with combined treatment. For possible patient transplantation of normalized stem cells, an example is also presented of the optimization of gene transduction in stem cell-enriched cultures using polycationic enhancers. This approach may be useful not only for the selected genes but also for the other mediators of corneal epithelial wound healing and stem cell function.

  16. Efficacy of recombinant adenoviral human p53 gene in the treatment of lung cancer-mediated pleural effusion

    PubMed Central

    LI, KUN-LIN; KANG, JUN; ZHANG, PENG; LI, LI; WANG, YU-BO; CHEN, HENG-YI; HE, YONG

    2015-01-01

    Pleural effusion induced by lung cancer exerts a negative impact on quality of life and prognosis. The aim of the present study was to evaluate the value of the recombinant adenoviral human p53 gene (rAd-p53) in the local treatment of lung cancer and its synergistic effect with chemotherapy. The present study retrospectively recruited 210 patients with lung cancer-mediated pleural effusion who had adopted a treatment strategy of platinum chemotherapy. Pleurodesis was performed via the injection of cisplatin or rAd-p53. Long-term follow-up was conducted to investigate the therapeutic effects of cisplatin and rAd-p53 administration on pleural effusion and other relevant clinical indicators. The short-term effect of pleurodesis was as follows: The efficacy rate of rAd-p53 therapy was significantly higher compared with cisplatin therapy (71.26 vs. 54.47%), and the efficacy of treatment with ≥2×1012 viral particles of rAd-p53 for pleurodesis was significantly greater than treatment with 40 mg cisplatin (P<0.05). Furthermore, efficacy analysis performed 6 and 12 months after pleurodesis indicated that the efficacy rate of rAd-p53 was significantly greater than that of cisplatin (P<0.05). A comparison of median progression-free survival (PFS) time identified a significant difference (P<0.05) between rAd-p53 and cisplatin therapy (3.3 vs. 2.7 months); however, a comparison of median overall survival time identified no significant difference (P>0.05) between rAd-p53 and cisplatin therapy (9.6 vs. 8.7 months). In addition, Cox regression analysis indicated that PFS was not affected by clinical indicators such as age, gender, prognostic staging and smoking status; however, PFS was affected by pathological subtype (adenocarcinoma or squamous carcinoma) in the rAd-p53 group. rAd-p53 administration for pleurodesis exerts long-term therapeutic effects on the local treatment of lung cancer. Thus, a combination of rAd-p53 and chemotherapy may exert a synergistic effect and

  17. Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion

    SciTech Connect

    Li Jing; Le, Long; Sibley, Don A.; Mathis, J. Michael; Curiel, David T. . E-mail: david.curiel@ccc.uab.edu

    2005-08-01

    Adenoviral vectors have been exploited for a wide range of gene therapy applications. Direct genetic modification of the adenovirus capsid proteins has been employed to achieve alteration of vector tropism. We have defined the carboxy-terminus of the minor capsid protein pIX as a locus capable of presenting incorporated ligands on the virus capsid surface. Thus, we sought to exploit the possibility of incorporating functional proteins at pIX. In our current study, we incorporated the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) within pIX to determine if a larger protein of this type could retain functionality in this context. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional HSV-1 TK as a component of their capsid surface. DNA packaging and cytopathic effect were not affected by this genetic modification to the virus, while CAR-dependent binding was only marginally affected. Using an in vitro [{sup 3}H]-thymidine phosphorylation assay, we demonstrated that the kinase activity of the protein IX-TK fusion protein incorporated into adenoviral virions is functional. Analysis of cell killing after adenovirus infection showed that the protein IX-TK fusion protein could also serve as a therapeutic gene by rendering transduced cells sensitive to gancyclovir. Using 9-[4-[{sup 18}F]-fluoro-3-(hydroxymethyl)butyl]guanine ([{sup 18}F]-FHBG; a positron-emitting TK substrate), we demonstrated that we could detect specific cell binding and uptake of adenoviral virions containing the protein IX-TK fusion protein at 1 h post-infection. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional HSV-1 TK as a component of their capsid surface. The alternative display of HSV-1 TK on the capsid may offer advantages with respect to direct functional applications of this gene product. In addition, the determination of an expanded upper limit of incorporable

  18. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection.

    PubMed

    Min, Jung-Jun; Iyer, Meera; Gambhir, Sanjiv S

    2003-11-01

    Earlier studies involving comparison of different reporter probes have shown conflicting results between pyrimidine nucleosides [e.g., 2'-fluoro-2'-deoxy-1-beta- d-arabinofuranosyl-5-iodouracil (FIAU)] and acycloguanosine derivatives [e.g., penciclovir (PCV), 9-(4-fluoro-3-hydroxymethylbutyl)guanine (FHBG)]. We hypothesized that this reported discrepancy may be related to how the reporter gene is delivered to the cells-stably transfected vs adenoviral infection. We directly compared the uptake characteristics of [(18)F]FHBG, [(3)H]PCV, and [(14)C]FIAU in cell culture and in vivo using an adenoviral mediated gene transfer model and stably transfected cells. We further compared the uptake of three reporter probes using both HSV1-tk and a mutant HSV1-sr39tk expressing cells to assess the optimal reporter probe/reporter gene combination. [(14)C]FIAU accumulation was greater than that of [(3)H]PCV and [(18)F]FHBG in control cells and in HSV1-tk stably transfected cells ( P<0.001). After infection of C6 cells with AdCMV- HSV1-tk (1.5x10(8) pfu), [(18)F]FHBG and [(3)H]PCV accumulation was significantly greater than that of [(14)C]FIAU ( P<0.01). [(18)F]FHBG and [(3)H]PCV accumulated to a significantly greater extent than [(14)C]FIAU in C6-stb-sr39tk+ and AdCMV- HSV1-sr39tk infected C6 cells ( P<0.001). Results from the nude mice supported the results in cell culture. [(14)C]FIAU led to significantly higher %ID/g in C6-stb-tk+ xenografts than [(18)F]FHBG ( P<0.05); however, compared with [(14)C]FIAU, [(18)F]FHBG led to as high %ID/g in HSV1-tk expressing hepatocytes and to significantly greater %ID/g in C6-stb-sr39tk+ xenografts and HSV1-sr39tk expressing hepatocytes. Dynamic sequential images showed that [(18)F]FHBG was well retained in HSV1-sr39tk expressing cells (C6-stb-sr39tk+) for at least 4 h after injection, while it was rapidly cleared from HSV1-tk expressing cells (MH3924A-stb-tk+). [(14)C]FIAU accumulated in HSV1-tk stably expressing cells to a greater extent

  19. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice.

    PubMed

    Moayeri, Mahtab; Tremblay, Jacqueline M; Debatis, Michelle; Dmitriev, Igor P; Kashentseva, Elena A; Yeh, Anthony J; Cheung, Gordon Y C; Curiel, David T; Leppla, Stephen; Shoemaker, Charles B

    2016-01-06

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice

    PubMed Central

    Moayeri, Mahtab; Tremblay, Jacqueline M.; Debatis, Michelle; Dmitriev, Igor P.; Kashentseva, Elena A.; Yeh, Anthony J.; Cheung, Gordon Y. C.; Curiel, David T.; Leppla, Stephen

    2016-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. PMID:26740390

  1. GLIPR1 tumor suppressor gene expressed by adenoviral vector as neoadjuvant intraprostatic injection for localized intermediate or high-risk prostate cancer preceding radical prostatectomy.

    PubMed

    Sonpavde, Guru; Thompson, Timothy C; Jain, Rajul K; Ayala, Gustavo E; Kurosaka, Shinji; Edamura, Kohei; Tabata, Ken-ichi; Ren, Chengzhen; Goltsov, Alexei A; Mims, Martha P; Hayes, Teresa G; Ittmann, Michael M; Wheeler, Thomas M; Gee, Adrian; Miles, Brian J; Kadmon, Dov

    2011-11-15

    GLIPR1 is upregulated by p53 in prostate cancer cells and has preclinical antitumor activity. A phase I clinical trial was conducted to evaluate the safety and activity of the neoadjuvant intraprostatic injection of GLIPR1 expressing adenovirus for intermediate or high-risk localized prostate cancer before radical prostatectomy (RP). Eligible men had localized prostate cancer (T1-T2c) with Gleason score greater than or equal to 7 or prostate-specific antigen 10 ng/mL or more and were candidates for RP. Patients received the adenoviral vector expressing the GLIPR1 gene by a single injection into the prostate followed four weeks later by RP. Six viral particle (vp) dose levels were evaluated: 10(10), 5 × 10(10), 10(11), 5 × 10(11), 10(12), and 5 × 10(12) vp. Nineteen patients with a median age of 64 years were recruited. Nine men had T1c, 4 had T2a, and 3 had T2b and T2c clinical stage. Toxicities included urinary tract infection (n = 3), flu-like syndrome (n = 3), fever (n = 1), dysuria (n = 1), and photophobia (n = 1). Laboratory toxicities were grade 1 elevated AST/ALT (n = 1) and elevations of PTT (n = 3, with 1 proven to be lupus anticoagulant). No pathologic complete remission was seen. Morphologic cytotoxic activity, induction of apoptosis, and nuclear p27(Kip1) upregulation were observed. Peripheral blood CD8(+), CD4(+), and CD3(+) T-lymphocytes were increased, with upregulation of their HLA-DR expression and elevations of serum IL-12. The intraprostatic administration of GLIPR1 tumor suppressor gene expressed by an adenoviral vector was safe in men, with localized intermediate or high-risk prostate cancer preceding RP. Preliminary evidence of biologic antitumor activity and systemic immune response was documented.

  2. Target-mediated disposition model describing the dynamics of IL12 and IFNγ after administration of a mifepristone-inducible adenoviral vector for IL-12 expression in mice.

    PubMed

    Parra-Guillen, Zinnia Patricia; Janda, Alvaro; Alzuguren, Pilar; Berraondo, Pedro; Hernandez-Alcoceba, Ruben; Troconiz, Iñaki F

    2013-01-01

    Interleukin-12 (IL12) is a cytokine with potential applications in the treatment of cancer given the potent immune response that it triggers, in part due to its ability to stimulate expression of interferon-γ (IFNγ). To avoid the toxicity associated with systemic exposure to IL12, a high-capacity adenoviral vector carrying a liver-specific, mifepristone-inducible IL12 expression system (HC-Ad/RUmIL12) has been developed. However, the maintenance of IL12 expression at therapeutic levels is compromised by the inhibitory effect of IFNγ on inducible systems. The aim of this work is to develop a semi-mechanistic model to characterize the relationship between IL12 and IFNγ in wild-type and knock-out mice for the IFNγ receptor treated with HC-Ad/RUmIL12 under different dosing regimens in order to better understand the key mechanisms controlling the system. Rapid binding was considered to account for target-mediated disposition exhibited by both cytokines (equilibrium dissociation constant were 18 and 2.28 pM for IL12 and IFNγ, respectively). The final model included: (1) IFNγ receptor turnover, (2) irreversible free cytokine elimination from the serum compartment, (3) internalization of the IL12 receptor complex, (4) IL12 expression upregulated by the co-administration of the adenoviral vector and mifepristone and downregulated by the IFNγ receptor, and (5) synthesis of IFNγ controlled by the relative increments in the bound IL12. In conclusion, a model simultaneously describing the kinetics of IL12 and IFNγ in the context of gene therapy was developed and validated with additional data. The model was applied to design an experimental dosing protocol intended to maintain sustained therapeutic IL12 levels.

  3. Regulation of the Target Protein (Transgene) Expression in the Adenovirus Vector Using Agonists of Toll-Like Receptors

    PubMed Central

    Bagaev, A. V.; Pichugin, A. V.; Lebedeva, E. S.; Lysenko, A. A.; Shmarov, M. M.; Logunov, D. Yu.; Naroditsky, B. S.; Ataullakhanov, R. I.; Khaitov, R. M.; Gintsburg, A. L.

    2014-01-01

    Replication-defective adenoviral vectors are effective molecular tools for both gene therapy and gene vaccination. Using such vectors one can deliver and express target genes in different epithelial, liver, hematopoietic and immune system cells of animal and human origin. The success of gene therapy and gene vaccination depends on the production intensity of the target protein encoded by the transgene. In this work, we studied influence of Toll-like receptors (TLR) agonists on transduction and expression efficacy of adenoviral vectors in animal and human antigen-presenting cells. We found that agonists of TLR2, 4, 5, 7, 8 and 9 significantly enhance a production of the target protein in cells transduced with adenoviral vector having the target gene insert. The enhancement was observed in dendritic cells and macrophages expressing cytoplasmic (GFP), membrane (HA) or secretory (SEAP) proteins encoded by the respective rAd-vectors. Experiments in mice showed that enhancement of the transgene expression can be achieved in the organism of animals using a pharmaceutical-grade TLR4-agonist. In contrast to other TLR-agonists, the agonist of TLR3 substantially suppressed the expression of transgene in cells transduced with adenoviral vectors having insert of GFP or SEAP target genes. We propose that the enhancement of transgene expression is linked to the activation of MyD88→ NF-kB, while the inhibition of transgene expression depends on TRIF→ IRF signaling pathways. Both of these pathways jointly exploited by TLR4-agonists lead to the enhancement of transgene expression due to the dominant role of the MyD88→ NF-kB signaling. PMID:25558392

  4. Purification and characterization of adenovirus core protein VII: a histone-like protein that is critical for adenovirus core formation.

    PubMed

    Sharma, Gaurav; Moria, Nithesh; Williams, Martin; Krishnarjuna, Bankala; Pouton, Colin W

    2017-07-01

    Adenovirus protein VII is a highly cationic core protein that forms a nucleosome-like structure in the adenovirus core by condensing DNA in combination with protein V and mu. It has been proposed that protein VII could condense DNA in a manner analogous to mammalian histones. Due to the lack of an expression and purification protocol, the interactions between protein VII and DNA are poorly understood. In this study we describe methods for the purification of biologically active recombinant protein VII using an E. coli expression system. We expressed a cleavable fusion of protein VII with thioredoxin and established methods for purification of this fusion protein in denatured form. We describe an efficient method for resolving the cleavage products to obtain pure protein VII using hydroxyapatite column chromatography. Mass spectroscopy data confirmed its mass and purity to be 19.4 kDa and >98 %, respectively. Purified recombinant protein VII spontaneously condensed dsDNA to form particles, as shown by dye exclusion assay, electrophoretic mobility shift assay and nuclease protection assay. Additionally, an in vitro bioluminescence assay revealed that protein VII can be used to enhance the transfection of mammalian cells with lipofectamine/DNA complexes. The availability of recombinant protein VII will facilitate future studies of the structure of the adenovirus core. Improved understanding of the structure and function of protein VII will be valuable in elucidating the mechanism of adenoviral DNA condensation, defining the morphology of the adenovirus core and establishing the mechanism by which adenoviral DNA enters the nucleus.

  5. Targeted radiotherapy with [(90)Y]-SMT 487 in mice bearing human nonsmall cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector.

    PubMed

    Rogers, Buck E; Zinn, Kurt R; Lin, Chin-Yu; Chaudhuri, Tandra R; Buchsbaum, Donald J

    2002-02-15

    Novel approaches to increasing the therapeutic efficacy of targeted radiotherapy of cancer are required. One strategy to achieve this goal is to induce high-level expression of a receptor on the surface of tumor cells that can be targeted with a radiolabeled peptide. The objectives of this study were to 1) induce somatostatin receptor (SSTr2) expression in tumor cells using an adenovirus encoding the SSTr2 gene (AdSSTr2), 2) demonstrate tumor localization of [(111)In]-DTPA-D-Phe(1)-octreotide in AdSSTr2-injected tumors, and 3) show therapeutic efficacy with [(90)Y]-DOTA-D-Phe(1)-Tyr(3)-octreotide ([(90)Y]-SMT 487). SSTr2 expression was validated in vitro by the binding and subsequent internalization of [(111)In]-DTPA-D-Phe(1)-octreotide (21.3% per mg of total protein) in A-427 cells infected with AdSSTr2. In vivo imaging confirmed 5- to 10-fold greater uptake 5.5 hours after intravenous administration of [(111)In]-DTPA-D-Phe(1)-octreotide in AdSSTr2-injected tumors relative to control tumors. For therapy studies, mice bearing established subcutaneous A-427 tumors were given two intratumoral injections of AdSSTr2 1 week apart, followed by an intravenous injection of 400 microCi or 500 microCi [(90)Y]-SMT 487 at 2 and 4 days after each adenoviral administration. Control animals either were not treated or were administered 500 microCi [(90)Y]-SMT 487 with no AdSSTr2 injection. These studies showed that untreated animals and animals treated with no virus and 500 microCi [(90)Y]-SMT 487 had median tumor quadrupling times of 16 and 25 days, respectively. Mice administered AdSSTr2 and either 400 microCi or 500 microCi of [(90)Y]-SMT 487 demonstrated significantly longer median tumor quadrupling times of 40 and 44 days, respectively (P < 0.02). These studies are the first to demonstrate in vivo therapeutic efficacy using a radiolabeled peptide targeted to a receptor expressed on the surface of tumor cells following gene transfer. Future studies will focus on the

  6. Identification of a novel SNF2/SWI2 protein family member, SRCAP, which interacts with CREB-binding protein.

    PubMed

    Johnston, H; Kneer, J; Chackalaparampil, I; Yaciuk, P; Chrivia, J

    1999-06-04

    The ability of cAMP response-element binding protein (CREB)-binding protein (CBP) to function as a co-activator for a number of transcription factors appears to be mediated by its ability to act as a histone acetyltransferase and through its interaction with a number of other proteins (general transcription factors, histone acetyltransferases, and other co-activators). Here we report that CBP also interacts with a novel ATPase termed Snf2-Related CBP Activator Protein (SRCAP). Consistent with this activity, SRCAP contains the conserved ATPase domain found within members of the Snf2 family. Transfection experiments demonstrate that SRCAP is able to activate transcription when expressed as a Gal-SRCAP chimera and that SRCAP also enhances the ability of CBP to activate transcription. The adenoviral protein E1A was found to disrupt interaction between SRCAP and CBP possibly representing a mechanism for E1A-mediated transcriptional repression.

  7. Adenoviral vector platform for transduction of constitutive and regulated tricistronic or triple-transcript transgene expression in mammalian cells and microtissues.

    PubMed

    Gonzalez-Nicolini, Valeria; Sanchez-Bustamante, Carlota Diaz; Hartenbach, Shizuka; Fussenegger, Martin

    2006-10-01

    Adenoviral particles can efficiently transduce a broad spectrum of cell types, so they are widely used in basic research and clinical trials. We have developed a novel adenoviral vector platform for delivery of constitutive or streptogramin-inducible expression of up to three therapeutic transgenes into a variety of murine and human cell lines, primary cells and microtissues. Coordinated expression of three independent transgenes in a compact genetic format was achieved by two different expression configurations: (i) The multicistronic expression format consisting of a single constitutive (simian virus 40 promoter, P(SV40); murine or human cytomegalovirus immediate-early promoter, P(mCMV), P(hCMV)) or regulated (streptogramin-inducible) promoters (P(PIR)ON2) driving the expression of a single multicistronic transcript of which the first cistron is translated in a cap-dependent manner and the two subsequent ones by internal ribosome entry site (IRES)-mediated translation initiation. (ii) The triple-transcript expression configuration, in which a combination of well-established (P(SV40), P(hCMV), P(mCMV)) and novel synthetic constitutive promoters (P(GTX)) control transcription of three expression units. The constitutive multigene expression design enabled coordinated high-level expression of the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY), the human vascular endothelial growth factor 121 (VEGF(121)) and the human placental secreted alkaline phosphatase (SEAP) in monolayer populations and microtissues of Chinese hamster ovary cells (CHO-K1), human fibrosarcoma cells (HT-1080), primary neonatal rat cardiomyocytes (NRCs) and primary human aortic fibroblasts (HAFs). Streptogramin-inducible tricistronic SAMY-VEGF(121)-SEAP expression provided excellent regulation performance-high-level induction in the presence of the streptogramin antibiotic pristinamycin I (PI), near-undetectable basal expression in the absence of PI, optimal adjustability and

  8. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates.

    PubMed

    Brunetti-Pierri, Nicola; Ng, Thomas; Iannitti, David A; Palmer, Donna J; Beaudet, Arthur L; Finegold, Milton J; Carey, K Dee; Cioffi, William G; Ng, Philip

    2006-04-01

    Helper-dependent adenoviral vectors (HDAds) are attractive vectors for liver-directed gene therapy because they can mediate sustained, high-level transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potentially severe and lethal consequences. We hypothesize that the threshold to efficient hepatic transduction may be circumvented by delivering the vector into the surgically isolated liver via the portal vein. Total hepatic isolation was achieved by occluding hepatic inflow from the portal vein and hepatic artery and by occluding hepatic venous outflow at the inferior vena cava. We demonstrate in nonhuman primates that this approach resulted in significantly higher efficiency hepatic transduction with reduced systemic vector dissemination compared with systemic intravascular delivery. This method of delivery was associated with transient acute toxicity, the severity of which was variable. Importantly, stable, high levels of transgene expression were obtained for at least 665 days for one baboon and for at least 560 days for two baboons with no evidence of long-term toxicity.

  9. Developing adenoviral vectors encoding therapeutic genes toxic to host cells: comparing binary and single-inducible vectors expressing truncated E2F-1.

    PubMed

    Gomez-Gutierrez, Jorge G; Rao, Xiao-Mei; Garcia-Garcia, Aracely; Hao, Hongying; McMasters, Kelly M; Zhou, H Sam

    2010-02-20

    Adenoviral vectors are highly efficient at transferring genes into cells and are broadly used in cancer gene therapy. However, many therapeutic genes are toxic to vector host cells and thus inhibit vector production. The truncated form of E2F-1 (E2Ftr), which lacks the transactivation domain, can significantly induce cancer cell apoptosis, but is also toxic to HEK-293 cells and inhibits adenovirus replication. To overcome this, we have developed binary- and single-vector systems with a modified tetracycline-off inducible promoter to control E2Ftr expression. We compared several vectors and found that the structure of expression cassettes in vectors significantly affects E2Ftr expression. One construct expresses high levels of inducible E2Ftr and efficiently causes apoptotic cancer cell death by activation of caspase-3. The approach developed in this study may be applied in other viral vectors for encoding therapeutic genes that are toxic to their host cells and/or inhibit vector propagation.

  10. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  11. Adenoviral E4 Gene Stimulates Secretion of Pigmental Epithelium Derived Factor (PEDF) that Maintains Long-term Survival of Human Glomerulus-derived Endothelial Cells*

    PubMed Central

    Jerebtsova, Marina; Kumari, Namita; Obuhkov, Yuri; Nekhai, Sergei

    2012-01-01

    Renal glomerular endothelial cells are specialized cells with an important role in physiological filtration and glomerular disease. However, maintenance of human primary endothelial cells requires stimulation with serum and growth factors that often results in modification of the cells properties. Previously, expression of early adenovirus region E4 was shown to help maintaining long-term survival of human endothelial cells in serum free media without addition of growth factors. In the current study, we showed that media conditioned with human epithelial cells stably transfected with Ad E4 region also supported survival of human glomerulus-derived endothelial cells in serum-free media. Mass-spectrometry analysis of the conditioned media identified pigmental epithelium derived factor (PEDF) as a major component of the conditioned media. PEDF expression in 293-E4 cells was validated by RT-PCR, Western blot and ELISA analysis. PEDF expression was detected in mouse glomeruli. Supplementation with recombinant PEDF supported survival of primary endothelial cells and the cells transformed with SV40 large T antigen in serum-free media, and extended the life-span of both cell cultures. PEDF did not inhibit FGF-2 stimulated growth and tubulogenesis of endothelial cells. Thus we demonstrated that adenoviral E4 region stimulated expression and secretion of PEDF by human renal epithelial cells that acted as a survival factor for glomerulus-derived endothelial cells. PMID:22915824

  12. PET imaging of thymidine kinase gene expression in the liver of non-human primates following systemic delivery of an adenoviral vector.

    PubMed

    Fontanellas, A; Hervas-Stubbs, S; Sampedro, A; Collantes, M; Azpilicueta, A; Mauleón, I; Pañeda, A; Quincoces, G; Prieto, J; Melero, I; Peñuelas, I

    2009-01-01

    Non-invasive in vivo imaging of transgene expression is currently providing very important means to optimize gene therapy regimes. Results in non-human primates are considered the most predictive models for the outcome in patients. In this study, we have documented that tumour and primary cell lines from human and non-human primates are comparably gene-transduced in vitro by serotype 5 adenovirus expressing HSV1-thymidine kinase. Transgene expression can be quantified in human and monkey cultured cells by positron emission tomography (PET) imaging when transduced cells are incubated with a fluoride-18 labelled penciclovir analogue. In our hands, PET images of cell cultures estimate the number of transduced cells rather than intensity of transgene expression once a threshold of TK per cell is reached. Interestingly, in vivo systemic administration of a clinical grade recombinant adenovirus expressing TK into macaques gives rise to an intense retention of the radiotracer in the liver parenchyma, providing an experimental system to visualize transgene expression that ought to be similar in human and macaques. Such imaging methodology might contribute to improve strategies based on adenoviral vectors.

  13. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging.

    PubMed

    Sato, M; Figueiredo, M L; Burton, J B; Johnson, M; Chen, M; Powell, R; Gambhir, S S; Carey, M; Wu, L

    2008-04-01

    Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer.

  14. Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter.

    PubMed

    Mowa, Mohube Betty; Crowther, Carol; Ely, Abdullah; Arbuthnot, Patrick

    2014-01-01

    Research on applying RNA interference (RNAi) to counter HBV replication has led to identification of potential therapeutic sequences. However, before clinical application liver-specific expression and efficient delivery of these sequences remain an important objective. We recently reported short-term inhibition of HBV replication in vivo by using helper dependent adenoviral vectors (HD Ads) expressing anti-HBV sequences from a constitutively active cytomegalovirus (CMV) promoter. To develop the use of liver-specific transcription regulatory elements we investigated the utility of the murine transthyretin (MTTR) promoter for expression of anti-HBV primary microRNAs (pri-miRs). HD Ads containing MTTR promoter effected superior expression of anti-HBV pri-miRs in mice compared to HD Ads containing the CMV promoter. MTTR-containing HD Ads resulted in HBV replication knockdown of up to 94% in mice. HD Ads expressing trimeric anti-HBV pri-miRs silenced HBV replication for 5 weeks. We previously showed that the product of the codelivered lacZ gene induces an immune response, and the duration of HBV silencing in vivo is likely to be attenuated by this effect. Nevertheless, expression of anti-HBV pri-miRs from MTTR promoter is well suited to countering HBV replication and development of HD Ads through attenuation of their immunostimulatory effects should advance their clinical utility.

  15. Inhibition of Hepatitis B Virus Replication by Helper Dependent Adenoviral Vectors Expressing Artificial Anti-HBV Pri-miRs from a Liver-Specific Promoter

    PubMed Central

    Mowa, Mohube Betty; Crowther, Carol; Ely, Abdullah; Arbuthnot, Patrick

    2014-01-01

    Research on applying RNA interference (RNAi) to counter HBV replication has led to identification of potential therapeutic sequences. However, before clinical application liver-specific expression and efficient delivery of these sequences remain an important objective. We recently reported short-term inhibition of HBV replication in vivo by using helper dependent adenoviral vectors (HD Ads) expressing anti-HBV sequences from a constitutively active cytomegalovirus (CMV) promoter. To develop the use of liver-specific transcription regulatory elements we investigated the utility of the murine transthyretin (MTTR) promoter for expression of anti-HBV primary microRNAs (pri-miRs). HD Ads containing MTTR promoter effected superior expression of anti-HBV pri-miRs in mice compared to HD Ads containing the CMV promoter. MTTR-containing HD Ads resulted in HBV replication knockdown of up to 94% in mice. HD Ads expressing trimeric anti-HBV pri-miRs silenced HBV replication for 5 weeks. We previously showed that the product of the codelivered lacZ gene induces an immune response, and the duration of HBV silencing in vivo is likely to be attenuated by this effect. Nevertheless, expression of anti-HBV pri-miRs from MTTR promoter is well suited to countering HBV replication and development of HD Ads through attenuation of their immunostimulatory effects should advance their clinical utility. PMID:25003129

  16. Sublingual administration of a helper-dependent adenoviral vector expressing the codon-optimized soluble fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in mice.

    PubMed

    Fu, Yuan-hui; Jiao, Yue-Ying; He, Jin-sheng; Giang, Gui-Yuan; Zhang, Wei; Yan, Yi-Fei; Ma, Yao; Hua, Ying; Zhang, Ying; Peng, Xiang-Lei; Shi, Chang-Xin; Hong, Tao

    2014-05-01

    Sublingual (s.l.) immunization has been described as a convenient and safe way to induce mucosal immune responses in the respiratory and genital tracts. We constructed a helper-dependent adenoviral (HDAd) vector expressing a condon-optimized soluble fusion glycoprotein (sFsyn) of respiratory syncytial virus (HDAd-sFsyn) and explored the potential of s.l. immunization with HDAd-sFsyn to stimulate immune responses in the respiratory mucosa. The RSV specific systemic and mucosal immune responses were generated in BALB/c mice, and the serum IgG with neutralizing activity was significantly elevated after homologous boost with s.l. application of HDAd-sFsyn. Humoral immune responses could be measured even 14weeks after a single immunization. Upon challenge, s.l. immunization with HDAd-sFsyn displayed an effective protection against RSV infection. These findings suggest that s.l. administration of HDAd-sFsyn acts as an effective and safe mucosal vaccine against RSV infection, and may be a useful tool in the prevention of RSV infection.

  17. Optimization of HEK-293S cell cultures for the production of adenoviral vectors in bioreactors using on-line OUR measurements.

    PubMed

    Gálvez, J; Lecina, M; Solà, C; Cairó, J J; Gòdia, F

    2012-01-01

    The culture of HEK-293S cells in a stirred tank bioreactor for adenoviral vectors production for gene therapy is studied. Process monitoring using oxygen uptake rate (OUR) was performed. The OUR was determined on-line by the dynamic method, providing good information of the process evolution. OUR enabled cell activity monitoring, facilitating as well the determination of the feeding rate in perfusion cultures and when to infect the culture. Batch cultures were used to validate the monitoring methodology. A cell density of 10×10(5)cell/mL was infected, producing 1.3×10(9) infectious viral particles/mL (IVP/mL). To increase cell density values maintaining cell specific productivity, perfusion cultures, based on tangential flow filtration, were studied. In this case, OUR measurements were used to optimize the dynamic culture medium feeding strategy, addressed to avoid any potential nutrient limitation. Furthermore, the infection protocol was defined in order to optimize the use of the viral inoculum, minimizing the uncontrolled release of particles through the filter unit mesh. All these developments enabled an infection at 78×10(5)cell/mL with the consequent production of 44×10(9)IVP/mL, representing a cell specific productivity 4.3 times higher than for the batch culture. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    SciTech Connect

    Campos, Samuel K.; Barry, Michael A. . E-mail: mab@bcm.edu

    2006-06-05

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon.

  19. In Vitro Dynamic Visualization Analysis of Fluorescently Labeled Minor Capsid Protein IX and Core Protein V by Simultaneous Detection

    PubMed Central

    Ugai, Hideyo; Wang, Minghui; Le, Long P.; Matthews, David A.; Yamamoto, Masato; Curiel, David T.

    2009-01-01

    Oncolytic adenoviruses represent a promising therapeutic medicine for human cancer therapy, but successful translation to human clinical trials requires careful evaluation of these viral characteristics. While the function of the adenovirus proteins have been analyzed in detail, the dynamics of adenovirus infection remain largely unknown due to technological constraints which prevent adequate tracking of the adenovirus particles after infection. Fluorescent labeling of the adenoviral particles is one new strategy designed to directly analyze dynamic processes of viral infection in virus-host cell interactions. We hypothesized that the double labeling technique of adenovirus with fluorescent proteins would allow us to properly analyze intracellular viruses and the fate of viral proteins in live analysis of adenovirus as compared to a single labeling. Thus, we generated a fluorescently labeled adenovirus with both a red fluorescent minor capsid protein IX (pIX-mRFP1) and a green fluorescent minor core protein V (pV-EGFP), resulting in Ad5-IX-mRFP1-E3-V-EGFP. The fluorescent signals for pIX-mRFP1 and pV-EGFP were detected within 10 min in living cells. However, the growth curve analysis of Ad5-IX-mRFP1-E3-V-EGFP showed approximately 150-fold reduced production of the viral progeny at 48 hours post-infection (h.p.i.) as compared to Ad5. Interestingly, pIX-mRFP1 and pV-EGFP were initially localized in the cytoplasm and the nucleolus, respectively, at 18 h.p.i. These proteins were observed in the nucleus during the late stage of infection and the relocalization of the proteins was observed in an adenoviral replication-dependent manner. These results indicate that the simultaneous detection of adenovirus using dual-fluorescent proteins is suitable for real-time analysis, including identification of infected cells, and monitoring viral spread, which will be required for complete evaluation of oncolytic adenoviruses. PMID:19853616

  20. BC-box protein domain-related mechanism for VHL protein degradation

    PubMed Central

    Pozzebon, Maria Elena; Varadaraj, Archana; Mattoscio, Domenico; Jaffray, Ellis G.; Miccolo, Claudia; Galimberti, Viviana; Tommasino, Massimo; Hay, Ronald T.; Chiocca, Susanna

    2013-01-01

    The tumor suppressor VHL (von Hippel–Lindau) protein is a substrate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), containing a BC-box domain that associates to the adaptor Elongin B/C. VHL targets hypoxia-inducible factor 1α to proteasome-dependent degradation. Gam1 is an adenoviral protein, which also possesses a BC-box domain that interacts with the host Elongin B/C, thereby acting as a viral substrate receptor. Gam1 associates with both Cullin2 and Cullin5 to form CRL complexes targeting the host protein SUMO enzyme SAE1 for proteasomal degradation. We show that Gam1 protein expression induces VHL protein degradation leading to hypoxia-inducible factor 1α stabilization and induction of its downstream targets. We also characterize the CRL-dependent mechanism that drives VHL protein degradation via proteasome. Interestingly, expression of Suppressor of Cytokine Signaling (SOCS) domain-containing viral proteins and cellular BC-box proteins leads to VHL protein degradation, in a SOCS domain-containing manner. Our work underscores the exquisite ability of viral domains to uncover new regulatory mechanisms by hijacking key cellular proteins. PMID:24145437

  1. Analysis of Known Bacterial Protein Vaccine Antigens Reveals Biased Physical Properties and Amino Acid Composition

    PubMed Central

    Mayers, Carl; Rowe, Sonya; Miller, Julie; Lingard, Bryan; Hayward, Sarah; Titball, Richard W.

    2003-01-01

    Many vaccines have been developed from live attenuated forms of bacterial pathogens or from killed bacterial cells. However, an increased awareness of the potential for transient side-effects following vaccination has prompted an increased emphasis on the use of sub-unit vaccines, rather than those based on whole bacterial cells. The identification of vaccine sub-units is often a lengthy process and bioinformatics approaches have recently been used to identify candidate protein vaccine antigens. Such methods ultimately offer the promise of a more rapid advance towards preclinical studies with vaccines. We have compared the properties of known bacterial vaccine antigens against randomly selected proteins and identified differences in the make-up of these two groups. A computer algorithm that exploits these differences allows the identification of potential vaccine antigen candidates from pathogenic bacteria on the basis of their amino acid composition, a property inherently associated with sub-cellular location. PMID:18629010

  2. An adenoviral vector expressing lipoprotein A, a major antigen of Mycoplasma mycoides subspecies mycoides, elicits robust immune responses in mice.

    PubMed

    Carozza, Marlène; Rodrigues, Valérie; Unterfinger, Yves; Galea, Sandra; Coulpier, Muriel; Klonjkowski, Bernard; Thiaucourt, François; Totté, Philippe; Richardson, Jennifer

    2015-01-01

    Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC), is a devastating respiratory disease of cattle. In sub-Saharan Africa, where CBPP is enzootic, live attenuated vaccines are deployed but afford only short-lived protection. In cattle, recovery from experimental MmmSC infection has been associated with the presence of CD4(+) T lymphocytes that secrete interferon gamma in response to MmmSC, and in particular to the lipoprotein A (LppA) antigen. In an effort to develop a better vaccine against CBPP, a viral vector (Ad5-LppA) that expressed LppA was generated from human adenovirus type 5. The LppA-specific immune responses elicited by the Ad5-LppA vector were evaluated in mice, and compared to those elicited by recombinant LppA formulated with a potent adjuvant. Notably, a single administration of Ad5-LppA, but not recombinant protein, sufficed to elicit a robust LppA-specific humoral response. After a booster administration, both vector and recombinant protein elicited strong LppA-specific humoral and cell-mediated responses. Ex vivo stimulation of splenocytes induced extensive proliferation of CD4(+) T cells for mice immunized with vector or protein, and secretion of T helper 1-associated and proinflammatory cytokines for mice immunized with Ad5-LppA. Our study - by demonstrating the potential of a viral-vectored prototypic vaccine to elicit prompt and robust immune responses against a major antigen of MmmSC - represents a first step in developing a recombinant vaccine against CBPP.

  3. Intratracheal Instillation of High Dose Adenoviral Vectors Is Sufficient to Induce Lung Injury and Fibrosis in Mice

    PubMed Central

    Zhou, Qiyuan; Chen, Tianji; Bozkanat, Melike; Ibe, Joyce Christina F.; Christman, John W.; Raj, J. Usha; Zhou, Guofei

    2014-01-01

    Rationale Replication deficient adenoviruses (Ad) vectors are common tools in gene therapy. Since Ad vectors are known to activate innate and adaptive immunity, we investigated whether intratracheal administration of Ad vectors alone is sufficient to induce lung injury and pulmonary fibrosis. Methods We instilled Ad viruses ranging from 107 to 1.625×109 ifu/mouse as well as the same volume of PBS and bleomycin. 14 and 21 days after administration, we collected bronchoalveolar lavage fluid (BALF) and mouse lung tissues. We measured the protein concentration, total and differential cell counts, and TGF-β1 production, performed Trichrome staining and Sircol assay, determined gene and protein levels of profibrotic cytokines, MMPs, and Wnt signaling proteins, and conducted TUNEL staining and co-immunofluorescence for GFP and α-SMA staining. Results Instillation of high dose Ad vectors (1.625×109 ifu/mouse) into mouse lungs induced high levels of protein content, inflammatory cells, and TGF-β1 in BALF, comparable to those in bleomycin-instilled lungs. The collagen content and mRNA levels of Col1a1, Col1a2, PCNA, and α-SMA were also increased in the lungs. Instillation of both bleomycin and Ad vectors increased expression levels of TNFα and IL-1β but not IL-10. Instillation of bleomycin but not Ad increased the expression of IL-1α, IL-13 and IL-16. Treatment with bleomycin or Ad vectors increased expression levels of integrin α1, α5, and αv, MMP9, whereas treatment with bleomycin but not Ad vectors induced MMP2 expression levels. Both bleomycin and Ad vectors induced mRNA levels of Wnt2, 2b, 5b, and Lrp6. Intratracheal instillation of Ad viruses also induced DNA damages and Ad viral infection-mediated fibrosis is not limited to the infection sites. Conclusions Our results suggest that administration of Ad vectors induces an inflammatory response, lung injury, and pulmonary fibrosis in a dose dependent manner. PMID:25551570

  4. Adenoviral targeting of malignant melanoma for fluorescence-guided surgery prevents recurrence in orthotopic nude-mouse models

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    Malignant melanoma requires precise resection in order to avoid metastatic recurrence. We report here that the telomerase-dependent, green fluorescent protein (GFP)-containing adenovirus OBP-401 could label malignant melanoma with GFP in situ in orthotopic mouse models. OBP-401-based fluorescence-guided surgery (FGS) resulted in the complete resection of malignant melanoma in the orthotopic models, where conventional bright-light surgery (BLS) could not. High-dose administration of OBP-401 enabled FGS without residual cancer cells or recurrence, due to its dual effect of cancer-cell labeling with GFP and killing. PMID:26701857

  5. Increased utility in the CNS of a powerful neuron-specific tetracycline-regulatable adenoviral system developed using a post-transcriptional enhancer.

    PubMed

    Lee, Youn-Bok; Cosgrave, A Siobhan; Glover, Colin P J; Bienemann, Alison; Heywood, Darren; Hobson, Russell J; Uney, James B

    2005-05-01

    In previous studies we have found that the tetracycline (Tet)-regulatable system functions best in recombinant adenoviral (Ad) vectors when the Tet transactivators and the Tet-regulatable element (TRE) are incorporated into separate viral vectors. However, such a dual vector system is disadvantaged by the need to use relatively high titres that may elicit an immune response. Therefore, to develop a system that could be used at low titres while mediating strong, tightly regulatable gene expression in the central nervous system (CNS), we incorporated the woodchuck hepatitis virus post-transcriptional enhancer (WPRE) into a neuron-specific Tet-regulatable Ad system. The WPRE was incorporated into Ad vectors encoding the Tet-Off (tTA) transactivator driven by the synapsin-1 and CMV promoters and encoding the TRE driving EGFP expression (TRE)-EGFP. The addition of the WPRE to the neuron-specific Tet-regulatable system mediated a greater than three-fold increase in transgene expression in primary hippocampal neurons with no loss of gene regulation. The results also showed that the addition of the WPRE enhanced transgene expression in the CNS without the loss of neuron specificity and without affecting the ability to regulate transgene expression. We have further developed a tetracycline-regulatable neuron-specific expression system such that it can now be used at low titres with no loss of transgene expression or ability to regulate transgene expression. It should therefore be of significant value to studies investigating neuronal gene function and to those seeking to develop effective neuronal gene therapy strategies. Copyright (c) 2004 John Wiley & Sons, Ltd.

  6. A Multi-Antigenic Adenoviral-Vectored Vaccine Improves BCG-Induced Protection of Goats against Pulmonary Tuberculosis Infection and Prevents Disease Progression

    PubMed Central

    Pérez de Val, Bernat; Vidal, Enric; Villarreal-Ramos, Bernardo; Gilbert, Sarah C.; Andaluz, Anna; Moll, Xavier; Martín, Maite; Nofrarías, Miquel; McShane, Helen; Vordermeier, H. Martin; Domingo, Mariano

    2013-01-01

    The “One world, one health” initiative emphasizes the need for new strategies to control human and animal tuberculosis (TB) based on their shared interface. A good example would be the development of novel universal vaccines against Mycobacterium tuberculosis complex (MTBC) infection. This study uses the goat model, a natural TB host, to assess the protective effectiveness of a new vaccine candidate in combination with Bacillus Calmette-Guerin (BCG) vaccine. Thirty-three goat kids were divided in three groups: Group 1) vaccinated with BCG (week 0), Group 2) vaccinated with BCG and boosted 8 weeks later with a recombinant adenovirus expressing the MTBC antigens Ag85A, TB10.4, TB9.8 and Acr2 (AdTBF), and Group 3) unvaccinated controls. Later on, an endobronchial challenge with a low dose of M. caprae was performed (week 15). After necropsy (week 28), the pulmonary gross pathology was quantified using high resolution Computed Tomography. Small granulomatous pulmonary lesions (< 0.5 cm diameter) were also evaluated through a comprehensive qualitative histopathological analysis. M. caprae CFU were counted from pulmonary lymph nodes. The AdTBF improved the effects of BCG reducing gross lesion volume and bacterial load, as well as increasing weight gain. The number of Ag85A-specific gamma interferon-producing memory T-cells was identified as a predictor of vaccine efficacy. Specific cellular and humoral responses were measured throughout the 13-week post-challenge period, and correlated with the severity of lesions. Unvaccinated goats exhibited the typical pathological features of active TB in humans and domestic ruminants, while vaccinated goats showed only very small lesions. The data presented in this study indicate that multi-antigenic adenoviral vectored vaccines boosts protection conferred by vaccination with BCG. PMID:24278420

  7. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    PubMed Central

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  8. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice.

    PubMed

    de Andrade Pereira, Bruna; Maduro Bouillet, Leoneide E; Dorigo, Natalia A; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels.

  9. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse.

  10. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Prior, Julie L; Leib, Daniel J; Chauchereau, Anne; Sehn, Jennifer K; Curiel, David T; Arbeit, Jeffrey M

    2017-01-17

    While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.

  11. Adenovirally delivered enzyme prodrug therapy with herpes simplex virus-thymidine kinase in composite tissue free flaps shows therapeutic efficacy in rat models of glioma

    PubMed Central

    2016-01-01

    Structured Abstract Introduction Free flap gene therapy exploits a novel therapeutic window when viral vectors can be delivered to the flap ex vivo. We investigated the therapeutic potential of the thymidine kinase (TK)/ganciclovir pro-drug system in treating residual disease when delivered into a free flap by intra-arterial injection of an adenoviral vector (Ad.TK). Methods We demonstrated direct in vitro efficacy of the Ad.TK/ganciclovir system by treating a panel of malignant cell lines with Ad.TK/ganciclovir to show significant cell kill proportional to the multiplicity of infection (MOI) of Ad.TK. Indirect (bystander) cytotoxicity was demonstrated by transferring conditioned medium from Ad.TK-infected malignant, or non-malignant, producer cells to uninfected tumour cells. We investigated the effect of Ad.TK/ganciclovir therapy in vivo, using models of microscopic (MiRD) and macroscopic (MaRD) residual disease in a rodent superficial inferior epigastric artery flap model. Results We observed retardation of tumour volume growth in both MiRD and MaRD models (p<0.05) and improvements in animal survival (MiRD median survival: MOI10 = 28 days, MOI 50 = 25 days, control = 18.5 days, p=0.0004; MaRD median survival: MOI 50 = 30 days, control = 18 days, p=0.0005). Gene expression studies demonstrated that viral genomic material was found predominantly in flap tissues but declined over time. Conclusion In summary, we describe the utility of virally-delivered enzyme/pro-drug therapy (VDEPT), using a free flap as a vehicle for delivery. We discuss the merits and limitations of this approach and the unique role of therapeutic free flaps in the reconstructive armamentarium. PMID:25626794

  12. Phosphodiesterase 5a Inhibition with Adenoviral Short Hairpin RNA Benefits Infarcted Heart Partially through Activation of Akt Signaling Pathway and Reduction of Inflammatory Cytokines

    PubMed Central

    Jin, Zhe; Zhang, Jian; Paul, Christian; Wang, Yigang

    2015-01-01

    Introduction Treatment with short hairpin RNA (shRNA) interference therapy targeting phosphodiesterase 5a after myocardial infarction (MI) has been shown to mitigate post-MI heart failure. We investigated the mechanisms that underpin the beneficial effects of PDE5a inhibition through shRNA on post-MI heart failure. Methods An adenoviral vector with an shRNA sequence inserted was adopted for the inhibition of phosphodiesterase 5a (Ad-shPDE5a) in vivo and in vitro. Myocardial infarction (MI) was induced in male C57BL/6J mice by left coronary artery ligation, and immediately after that, the Ad-shPDE5a was injected intramyocardially around the MI region and border areas. Results Four weeks post-MI, the Ad-shPDE5a-treated mice showed significant mitigation of the left ventricular (LV) dilatation and dysfunction compared to control mice. Infarction size and fibrosis were also significantly reduced in Ad-shPDE5a-treated mice. Additionally, Ad-shPDE5a treatment decreased the MI-induced inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β1, which was confirmed in vitro in Ad-shPDE5a transfected myofibroblasts cultured under oxygen glucose deprivation. Finally, Ad-shPDE5a treatment was found to activate the myocardial Akt signaling pathway in both in vivo and in vitro experiments. Conclusion These findings indicate that PDE5a inhibition by Ad-shPDE5a via the Akt signal pathway could be of significant value in the design of future therapeutics for post-MI heart failure. PMID:26709517

  13. Adenoviral vectors modified by heparin-polyethyleneimine nanogels enhance targeting to the lung and show therapeutic potential for pulmonary metastasis in vivo.

    PubMed

    Wei, Wei; Mu, Yandong; Li, XiaoPeng; Gou, MaLing; Zhang, HaiLong; Luo, ShunTao; Men, Ke; Mao, YongQiu; Qian, ZhiYong; Yang, Li

    2011-12-01

    Polyethyleneimine (PEI) is a well-known cationic polymer that has previously been shown to have significant potential to deliver genes in vitro and in vivo. However, PEI is non-degradable and exhibits a high cytotoxicity as its molecular weight increases. The clinical application for systemic administration of adenoviral (Ad) vectors is limited, as these vectors do not efficiently penetrate solid tumor masses due to a common deficiency of Coxsackie Adenovirus Receptor (CAR) on the tumor surface. In this study, we conjugated low molecular weight PEI (Mn = 1,800) to heparin (Mn = 4,000-6,000) to create a new type of cationic degradable nanogel (HPEI) that was then used to modify Ad vectors. The resulting HPEI-Ad complexes were used to infect CT26 and HeLa cells in vitro. Additionally, the HPEI-Ad complexes were administrated in vivo via intravenous injection, and tissue distribution was assessed using luciferase assays; the therapeutic potential of HPEI-Ad complexes for pulmonary metastasis mediated by CT26 cells was also investigated. In vitro, HPEI-Ad complexes enhanced the transfection efficiency in CT26 cells, reaching 36.3% compared with 0.1% of the native adenovirus. In vivo, HPEI-Ad complexes exhibited greater affinity for lung tissue than the native adenovirus and effectively inhibited the growth of pulmonary metastases mediated by CT26 cells. Our results indicate that Ad vectors modified by HPEI nanogels to form HPEI-Ad complexes enhanced transfection efficiency in CT26 cells that lacked CAR, targeted to the lung and demostrated a potential therapy for pulmonary metastasis.

  14. Dissection of the Adenoviral VA RNAI Central Domain Structure Reveals Minimum Requirements for RNA-mediated Inhibition of PKR*

    PubMed Central

    Wilson, Jo L.; Vachon, Virginia K.; Sunita, S.; Schwartz, Samantha L.; Conn, Graeme L.

    2014-01-01

    Virus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role. Our results support the existence of a pH- and Mg2+-dependent tertiary structure involving pseudoknot formation within the central domain. Unexpectedly, this structure appears to play no direct role in PKR inhibition. Deletion of central domain sequences within a minimal but fully active construct lacking the tertiary structure reveals a crucial role in PKR binding and inhibition for nucleotides in the 5′ half of the central domain. Deletion of the central domain 3′ half also significantly impacts activity but appears to arise indirectly by reducing its capacity to assist in optimally presenting the 5′ half sequence. Collectively, our results identify regions of VA RNAI critical for PKR inhibition and reveal that the requirements for an effective RNA inhibitor of PKR are simpler than appreciated previously. PMID:24970889

  15. Adenoviral modification of mouse brain derived endothelial cells, bEnd3, to induce apoptosis by vascular endothelial growth factor.

    PubMed

    Mitsuuchi, Y; Powell, D R; Gallo, J M

    2006-02-09

    A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.

  16. Anti-viral state segregates two molecular phenotypes of pancreatic adenocarcinoma: potential relevance for adenoviral gene therapy

    PubMed Central

    2010-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer mortality for which novel gene therapy approaches relying on tumor-tropic adenoviruses are being tested. Methods We obtained the global transcriptional profiling of primary PDAC using RNA from eight xenografted primary PDAC, three primary PDAC bulk tissues, three chronic pancreatitis and three normal pancreatic tissues. The Affymetrix GeneChip HG-U133A was used. The results of the expression profiles were validated applying immunohistochemical and western blot analysis on a set of 34 primary PDAC and 10 established PDAC cell lines. Permissivity to viral vectors used for gene therapy, Adenovirus 5 and Adeno-Associated Viruses 5 and 6, was assessed on PDAC cell lines. Results The analysis of the expression profiles allowed the identification of two clearly distinguishable phenotypes according to the expression of interferon-stimulated genes. The two phenotypes could be readily recognized by immunohistochemical detection of the Myxovirus-resistance A protein, whose expression reflects the activation of interferon dependent pathways. The two molecular phenotypes discovered in primary carcinomas were also observed among established pancreatic adenocarcinoma cell lines, suggesting that these phenotypes are an intrinsic characteristic of cancer cells independent of their interaction with the host's microenvironment. The two pancreatic cancer phenotypes are characterized by different permissivity to viral vectors used for gene therapy, as cell lines expressing interferon stimulated genes resisted to Adenovirus 5 mediated lysis in vitro. Similar results were observed when cells were transduced with Adeno-Associated Viruses 5 and 6. Conclusion Our study identified two molecular phenotypes of pancreatic cancer, characterized by a differential expression of interferon-stimulated genes and easily recognized by the expression of the Myxovirus-resistance A protein. We suggest that the detection

  17. Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice.

    PubMed

    Naumann, U; Bähr, O; Wolburg, H; Altenberend, S; Wick, W; Liston, P; Ashkenazi, A; Weller, M

    2007-01-01

    The expression of inhibitor of apoptosis (IAP) family members contributes to the resistance of human cancers to apoptosis induced by radiotherapy and chemotherapy. We report that the infection of malignant glioma cells and several other tumor cell lines with adenoviruses encoding antisense RNA to X-linked IAP (XIAP) depletes endogenous XIAP levels and promotes global caspase activation and apoptosis. In contrast, non-neoplastic SV-FHAS human astrocytes and other non-neoplastic cells express XIAP at very low levels and resist these effects of adenovirus-expressing XIAP antisense RNA (Ad-XIAP-as). Caspase inhibitors such as z-Val-Ala-DL-Asp(OMe)-fluoromethylketone (zVAD-fmk) delay caspase processing and XIAP depletion, suggesting that XIAP depletion results both from antisense-mediated interference with protein synthesis and proteolytic cleavage by activated caspases. However, zVAD-fmk neither prevents nor delays cell death, indicating a caspase-independent pathway to cell death triggered by IAP depletion. Similarly, B-cell lymphoma-X(L) (BCL-X(L)) inhibits caspase activity, but fails to rescue from apoptosis. Loss of p65/nuclear factor-kappaB (NF-kappaB) protein and NF-kappaB activity is an early event triggered by Ad-XIAP-as and probably involved in Ad-XIAP-as-induced apoptosis. Finally, Ad-XIAP-as gene therapy induces cell death in intracranial glioma xenografts, prolongs survival in nude mice and may reduce tumorigenicity in synergy with Apo2L/TNF-related apoptosis-inducing ligand (TRAIL) in vivo. Altogether, these data define a powerful survival function for XIAP and reinforce its possible role as a therapeutic target in human glioma cells.

  18. Adenoviral vectors coated with PAMAM dendrimer conjugates allow CAR independent virus uptake and targeting to the EGF receptor.

    PubMed

    Vetter, Alexandra; Virdi, Kulpreet S; Espenlaub, Sigrid; Rödl, Wolfgang; Wagner, Ernst; Holm, Per S; Scheu, Christina; Kreppel, Florian; Spitzweg, Christine; Ogris, Manfred

    2013-02-04

    Adenovirus type 5 (Ad) is an efficient gene vector with high gene transduction potential, but its efficiency depends on its native cell receptors coxsackie- and adenovirus receptor (CAR) for cell attachment and α(v)β(3/5) integrins for internalization. To enable transduction of CAR negative cancer cell lines, we have coated the negatively charged Ad by noncovalent charge interaction with cationic PAMAM (polyamidoamine) dendrimers. The specificity for tumor cell infection was increased by targeting the coated Ad to the epidermal growth factor receptor using the peptide ligand GE11, which was coupled to the PAMAM dendrimer via a 2 kDa PEG spacer. Particles were examined by measuring surface charge and size, the degree of coating was determined by transmission electron microscopy. The net positive charge of PAMAM coated Ad enhanced cellular binding and uptake leading to increased transduction efficiency, especially in low to medium CAR expressing cancer cell lines using enhanced green fluorescent protein or luciferase as transgene. While PAMAM coated Ad allowed for efficient internalization, coating with linear polyethylenimine induced excessive particle aggregation, elevated cellular toxicity and lowered transduction efficiency. PAMAM coating of Ad enabled successful transduction of cells in vitro even in the presence of neutralizing antibodies. Taken together, this study clearly proves noncovalent, charge-based coating of Ad vectors with ligand-equipped dendrimers as a viable strategy for efficient transduction of cells otherwise refractory to Ad infection.

  19. Specific transcription of an adenoviral gene that possesses no TATA sequence homology in extracts of HeLa cells.

    PubMed

    Leong, K; Flint, S J

    1984-09-25

    Transcription of the adenovirus type 2 (Ad2) IVa2 gene, which contains no TATA-like sequence in the region immediately upstream of the IVa2 cap sites (Baker, C. C., and Ziff, E. B. (1981) J. Mol. Biol. 149, 189-221), has been examined in extracts of HeLa cells (Manley, J. L., Fire, A., Cano, A., Sharp, P. A., and Gefter, M.L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 3855-3859). Run-off transcripts of the predicted length of those initiated at the IVa2 cap sites were synthesized from different Ad2 DNA templates, each of which also contained the major late transcriptional control region. Mapping of the 5' ends of the RNA made from one template by a nuclease protection assay established the fidelity of initiation of IVa2 transcription in vitro. The efficiency of IVa2 expression in whole HeLa extracts was influenced quite dramatically by monovalent and divalent metal ion concentrations and the concentration of extract protein present in the reaction mixture. Under certain conditions, IVa2 run-off transcripts were made almost as efficiently as those from the Ad2 major late transcriptional control region. However, conditions promoting optimal IVa2 transcription in vitro did not favor recognition of the major late transcriptional control region, and vice versa: the synthesis of IVa2 and major late run-off transcripts responded differently to all parameters tested.

  20. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  1. Development of a quantitative immunocapture real-time PCR assay for detecting structurally intact adenoviral particles in water.

    PubMed

    Ogorzaly, Leslie; Bonot, Sébastien; Moualij, Benaissa El; Zorzi, Willy; Cauchie, Henry-Michel

    2013-12-01

    Development of rapid, sensitive and specific methods for detection of infectious enteric viruses in water is challenging but crucial for gaining reliable information for risk assessment. An immunocapture real-time PCR (IC-qPCR) was designed to detect jointly the two major viral particle components, i.e. the capsid protein and the viral genome. Targeting both constituents helps circumventing the technical limits of cell culture approaches and the inability of PCR based methods to predict the infectious status. Two waterborne pathogenic virus models, human adenovirus types 2 and 41, were chosen for this study. IC-qPCR showed a detection limit of 10MPNCU/reaction with a dynamic range from 10(2) to 10(6)MPNCU/reaction. Sensitivity was thus 100-fold higher compared to ELISA-based capture employing the same anti-hexon antibodies. After optimisation, application on environmental water samples was validated, and specificity towards the targeted virus types was obtained through the qPCR step. Heat-treated pure samples as well as surface water samples brought evidence that this method achieves detection of encapsidated viral genomes while excluding free viral genome amplification. As a consequence, adenovirus concentrations estimated by IC-qPCR were below those calculated by direct qPCR. The results demonstrate that the IC-qPCR method is a sensitive and rapid tool for detecting, in a single-tube assay, structurally intact and thus potentially infectious viral particles in environmental samples.

  2. Adenoviral expression of 15-lipoxygenase-1 in rabbit aortic endothelium: role in arachidonic acid-induced relaxation.

    PubMed

    Aggarwal, Nitin T; Holmes, Blythe B; Cui, Lijie; Viita, Helena; Yla-Herttuala, Seppo; Campbell, William B

    2007-02-01

    Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.

  3. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity.

    PubMed

    Blalock, Leeann T; Landsberg, Jennifer; Messmer, Michelle; Shi, Jian; Pardee, Angela D; Haskell, Ronald; Vujanovic, Lazar; Kirkwood, John M; Butterfield, Lisa H

    2012-05-01

    Dendritic cell (DC) immunotherapy has shown a promising ability to promote anti-tumor immunity in vitro and in vivo. Many trials have tested single epitopes and single antigens to activate single T cell specificities, and often CD8(+) T cells only. We previously found that determinant spreading and breadth of antitumor immunity correlates with improved clinical response. Therefore, to promote activation and expansion of polyclonal, multiple antigen-specific CD8(+) T cells, as well as provide cognate help from antigen-specific CD4(+) T cells, we have created an adenovirus encoding three full length melanoma tumor antigens (tyrosinase, MART-1 and MAGE-A6, "AdVTMM"). We previously showed that adenovirus (AdV)-mediated antigen engineering of human DC is superior to peptide pulsing for T cell activation, and has positive biological effects on the DC, allowing for efficient activation of not only antigen-specific CD8(+) and CD4(+) T cells, but also NK cells. Here we describe the cloning and testing of "AdVTMM2," an E1/E3-deleted AdV encoding the three melanoma antigens. This novel three-antigen virus expresses mRNA and protein for all antigens, and AdVTMM-transduced DC activate both CD8(+) and CD4(+) T cells which recognize melanoma tumor cells more efficiently than single antigen AdV. Addition of physiological levels of interferon-α (IFNα) further amplifies melanoma antigen-specific T cell activation. NK cells are also activated, and show cytotoxic activity. Vaccination with multi-antigen engineered DC may provide for superior adaptive and innate immunity and ultimately, improved antitumor responses.

  4. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity

    PubMed Central

    Blalock, LeeAnn T.; Landsberg, Jennifer; Messmer, Michelle; Shi, Jian; Pardee, Angela D.; Haskell, Ronald; Vujanovic, Lazar; Kirkwood, John M.; Butterfield, Lisa H.

    2012-01-01

    Dendritic cell (DC) immunotherapy has shown a promising ability to promote anti-tumor immunity in vitro and in vivo. Many trials have tested single epitopes and single antigens to activate single T cell specificities, and often CD8+ T cells only. We previously found that determinant spreading and breadth of antitumor immunity correlates with improved clinical response. Therefore, to promote activation and expansion of polyclonal, multiple antigen-specific CD8+ T cells, as well as provide cognate help from antigen-specific CD4+ T cells, we have created an adenovirus encoding three full length melanoma tumor antigens (tyrosinase, MART-1 and MAGE-A6, “AdVTMM”). We previously showed that adenovirus (AdV)-mediated antigen engineering of human DC is superior to peptide pulsing for T cell activation, and has positive biological effects on the DC, allowing for efficient activation of not only antigen-specific CD8+ and CD4+ T cells, but also NK cells. Here we describe the cloning and testing of “AdVTMM2,” an E1/E3-deleted AdV encoding the three melanoma antigens. This novel three-antigen virus expresses mRNA and protein for all antigens, and AdVTMM-transduced DC activate both CD8+ and CD4+ T cells which recognize melanoma tumor cells more efficiently than single antigen AdV. Addition of physiological levels of interferon-α (IFNα) further amplifies melanoma antigen-specific T cell activation. NK cells are also activated, and show cytotoxic activity. Vaccination with multi-antigen engineered DC may provide for superior adaptive and innate immunity and ultimately, improved antitumor responses. PMID:22737604

  5. Immunization with Hexon Modified Adenoviral Vectors Integrated with gp83 Epitope Provides Protection against Trypanosoma cruzi Infection

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Nde, Pius N.; Pratap, Siddharth; Lima, Maria F.; Villalta, Fernando; Matthews, Qiana L.

    2014-01-01

    Background Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary. Methodology/Principal Findings The “antigen capsid-incorporation” strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5) vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83). This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies. Conclusions/Significance This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses

  6. The trafficking pathway of a wheat storage protein in transgenic rice endosperm

    PubMed Central

    Oszvald, Maria; Tamas, Laszlo; Shewry, Peter R.; Tosi, Paola

    2014-01-01

    Background and Aims The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. Methods The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. Key results The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. Conclusions The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm. PMID:24603605

  7. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon-catheter hepatic delivery of helper-dependent adenoviral vector

    PubMed Central

    Oka, Kazuhiro; Mullins, Charles E.; Kushwaha, Rampratap S.; Leen, Ann M; Chan, Lawrence

    2014-01-01

    Autosomal dominant familial hypercholesterolemia (FH) is a monogenic life-threatening disease. We tested the efficacy of low-density lipoprotein receptor (LDLR) gene therapy using helper-dependent adenoviral vector (HDAd) in a nonhuman primate model of FH, comparing intravenous injection versus intrahepatic arterial injection in the presence of balloon catheter-based hepatic venous occlusion. Rhesus monkeys heterozygous for mutant LDLR gene (LDLR+/−) developed hypercholesterolemia while on a high cholesterol diet. We treated them with HDAd-LDLR either by intravenous delivery, or by catheter-based intra-hepatic artery injection. Intravenous injection of ≤1.1×1012 viral particles (vp)/kg failed to have any effect on plasma cholesterol. Increasing the dose to 5×1012 vp/kg led to a 59% lowering of the plasma cholesterol that lasted for 30 days before it returned to pretreatment levels by day 40. A further increase in dose to 8.4×1012 vp/kg resulted in severe lethal toxicity. In contrast, direct hepatic artery injection following catheter-based hepatic venous occlusion enabled the use of a reduced HDAd-LDLR dose of 1×1012 vp/kg that lowered plasma cholesterol within a week, and reached a nadir of 59% pretreatment level on days 20 to 48 after injection. Serum alanine aminotransaminase (ALT) remained normal until day 48 when it went up slightly and stayed mildly elevated on day 72 before it returned to normal on day 90. In this monkey, the HDAd-LDLR-induced trough of hypocholesterolemia started trending upwards on day 72 and returned to pretreatment levels on day 120. We measured the LDL apolipoprotein B turnover rate at 10 days before, and again 79 days after, HDAd-LDLR treatment in two monkeys that exhibited a cholesterol lowering response. HDAd-LDLR therapy increased the LDL fractional catabolic rate by 78% and 50%, respectively, in the two monkeys, coincident with an increase in hepatic LDLR mRNA expression. In conclusion, HDAd-mediated LDLR gene delivery to

  8. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector.

    PubMed

    Oka, K; Mullins, C E; Kushwaha, R S; Leen, A M; Chan, L

    2015-01-01

    Autosomal dominant familial hypercholesterolemia (FH) is a monogenic life-threatening disease. We tested the efficacy of low-density lipoprotein receptor (LDLR) gene therapy using helper-dependent adenoviral vector (HDAd) in a nonhuman primate model of FH, comparing intravenous injection versus intrahepatic arterial injection in the presence of balloon catheter-based hepatic venous occlusion. Rhesus monkeys heterozygous for mutant LDLR gene (LDLR+/-) developed hypercholesterolemia while on a high-cholesterol diet. We treated them with HDAd-LDLR either by intravenous delivery or by catheter-based intrahepatic artery injection. Intravenous injection of ⩽1.1 × 10(12) viral particles (vp) kg(-1) failed to have any effect on plasma cholesterol. Increasing the dose to 5 × 10(12) vp kg(-1) led to a 59% lowering of the plasma cholesterol that lasted for 30 days before it returned to pre-treatment levels by day 40. A further increase in dose to 8.4 × 10(12) vp kg(-1) resulted in severe lethal toxicity. In contrast, direct hepatic artery injection following catheter-based hepatic venous occlusion enabled the use of a reduced HDAd-LDLR dose of 1 × 10(12) vp kg(-1) that lowered plasma cholesterol within a week, and reached a nadir of 59% pre-treatment level on days 20-48 after injection. Serum alanine aminotransferase remained normal until day 48 when it went up slightly and stayed mildly elevated on day 72 before it returned to normal on day 90. In this monkey, the HDAd-LDLR-induced trough of hypocholesterolemia started trending upward on day 72 and returned to pre-treatment levels on day 120. We measured the LDL apolipoprotein B turnover rate at 10 days before, and again 79 days after, HDAd-LDLR treatment in two monkeys that exhibited a cholesterol-lowering response. HDAd-LDLR therapy increased the LDL fractional catabolic rate by 78 and 50% in the two monkeys, coincident with an increase in hepatic LDLR mRNA expression. In conclusion, HDAd-mediated LDLR

  9. Cytotoxic effect of a replication-incompetent adenoviral vector with cytosine deaminase gene driven by L-plastin promoter in hepatocellular carcinoma cells.

    PubMed

    Jung, Kihwa; Kim, Sunja; Lee, Kyumhyang; Kim, Changmin; Chung, Injae

    2007-06-01

    Great expectations are set on gene therapy for the treatment of malignant hepatocellular carcinomas (HCC) in East Asia. Recombinant adenoviral vectors (AV) have been developed in which the L-plastin promoter (LP) regulates the expression of transgenes, in a tumor cell specific manner, resulting in an increase in the therapeutic index. The development of the AdLPCD vector, a replication-incompetent AV, containing a transcription unit of LP and E. coli cytosine deaminase (CD), was reported in our previous work. In the present study, the AdLPCD vector combined with 5-fluorocytosine (5-FC) administration was tested to see if it might have significant utility in the chemosensitization of L-plastin positive HCC. Four HCC cell lines (HepG2, Chang Liver, Huh-7 and SK-Hep-1 cells) were investigated for the expression of LacZ after infecting the cells with the AdLPLacZ vector containing a 2.4 kb fragment of LP and the LacZ gene. Relatively high levels of LP activity were detected in HepG2, followed by Chang Liver cells; whereas, no promoter activity was found in Huh-7 and SK-Hep-1 cells, as determined by AdLPLacZ infection followed by the beta-galactosidase assay. In addition, the results of RT-PCR assays for the detection of endogenous L-plastin mRNA in these cells lines correlated well with those of the beta-galactosidase activity after infection with AdLPLacZ. Based on these data, the cytotoxic effect of AdLPCD/5-FC was evaluated in HepG2 cells. These results indicate that the CD gene delivered by AV could sensitize HepG2 cells to the prodrug, 5-FC. However, the observed effects were insufficient to cause the death of most of cells. This suggests that the screening of patients for an AdLP/5-FC strategy based on AdLPLacZ data might not always guarantee a good therapeutic outcome.

  10. Genetic Incorporation of Human Metallothionein into the Adenovirus Protein IX for Non-Invasive SPECT Imaging

    PubMed Central

    Mathis, J. Michael; Bhatia, Shilpa; Khandelwal, Alok; Kovesdi, Imre; Lokitz, Stephen J.; Odaka, Yoshi; Takalkar, Amol M.; Terry, Tracee; Curiel, David T.

    2011-01-01

    As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice. The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to study adenovirus biology in vivo. PMID:21347423

  11. Overexpression of IL-1beta by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour.

    PubMed

    Campbell, Sandra J; Deacon, Rob M J; Jiang, Yanyan; Ferrari, Carina; Pitossi, Fernando J; Anthony, Daniel C

    2007-08-01

    Acute brain injury induces early and transient hepatic expression of chemokines, which amplify the injury response and give rise to movement of leukocytes into the blood and subsequently the brain and liver. Here, we sought to determine whether an ongoing injury stimulus within the brain would continue to drive the hepatic chemokine response and how it impacts on behaviour and CNS integrity. We generated chronic IL-1beta expression in rat brain by adenoviral-mediated gene transfer, which resulted in chronic leukocyte recruitment, axonal injury and prolonged depression of spontaneous behaviour. IL-1beta could not be detected in circulating blood, but a chronic systemic response was established, including extended production of hepatic and circulating chemokines, leukocytosis, liver damage, weight loss, decreased serum albumin and marked liver leukocyte recruitment. Thus, hepatic chemokine synthesis is a feature of active chronic CNS disease and provides an accessible target for the suppression of CNS inflammation.

  12. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  13. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins.

    PubMed

    Lowenthal, Mark S; Markey, Sanford P; Dosemeci, Ayse

    2015-06-05

    Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.

  14. Overexpression of ABCG1 protein attenuates arteriosclerosis and endothelial dysfunction in atherosclerotic rabbits

    PubMed Central

    Münch, Götz; Bültmann, Andreas; Li, Zhongmin; Holthoff, Hans-Peter; Ullrich, Julia; Wagner, Silvia; Ungerer, Martin

    2012-01-01

    The ABCG1 protein is centrally involved in reverse cholesterol transport from the vessel wall. Investigation of the effects of ABCG1 overexpression or knockdown in vivo has produced controversial results and strongly depended on the gene intervention model in which it was studied. Therefore, we investigated the effect of local overexpression of human ABCG1 in a novel model of vessel wall-directed adenoviral gene transfer in atherosclerotic rabbits. We conducted local, vascular-specific gene transfer by adenoviral delivery of human ABCG1 (Ad-ABCG1-GFP) in cholesterol-fed atherosclerotic rabbits in vivo. Endothelial overexpression of ABCG1 markedly reduced atheroprogression (plaque size) and almost blunted vascular inflammation, as shown by markedly reduced macrophage and smooth muscle cell invasion into the vascular wall. Also endothelial function, as determined by vascular ultrasound in vivo, was improved in rabbits after gene transfer with Ad-ABCG1-GFP. Therefore, both earlier and later stages of atherosclerosis were improved in this model of somatic gene transfer into the vessel wall. In contrast to results in transgenic mice, over-expression of ABCG1 by somatic gene transfer to the atherosclerotic vessel wall results in a significant improvement of plaque morphology and composition, and of vascular function in vivo. PMID:23185679

  15. Adenovirus E1B 19-Kilodalton Protein Modulates Innate Immunity through Apoptotic Mimicry

    PubMed Central

    Grigera, Fernando; Ucker, David S.; Cook, James L.

    2014-01-01

    ABSTRACT Cells that undergo apoptosis in response to chemical or physical stimuli repress inflammatory reactions, but cells that undergo nonapoptotic death in response to such stimuli lack this activity. Whether cells dying from viral infection exhibit a cell death-type modulatory effect on inflammatory reactions is unknown. We compared the effects on macrophage inflammatory responses of cells dying an apoptotic or a nonapoptotic death as a result of adenoviral infection. The results were exactly opposite to the predictions from the conventional paradigm. Cells dying by apoptosis induced by infection with an adenovirus type 5 (Ad5) E1B 19-kilodalton (E1B 19K) gene deletion mutant did not repress macrophage NF-κB activation or cytokine responses to proinflammatory stimuli, whereas cells dying a nonapoptotic death from infection with E1B 19K-competent, wild-type Ad5 repressed these macrophage inflammatory responses as well as cells undergoing classical apoptosis in response to chemical injury. The immunorepressive, E1B 19K-related cell death activity depended upon direct contact of the virally infected corpses with responder macrophages. Replacement of the viral E1B 19K gene with the mammalian Bcl-2 gene in cis restored the nonapoptotic, immunorepressive cell death activity of virally infected cells. These results define a novel function of the antiapoptotic, adenoviral E1B 19K protein that may limit local host innate immune inflammation during accumulation of virally infected cells at sites of infection and suggest that E1B 19K-deleted, replicating adenoviral vectors might induce greater inflammatory responses to virally infected cells than E1B 19K-positive vectors, because of the net effect of their loss-of-function mutation. IMPORTANCE We observed that cells dying a nonapoptotic cell death induced by adenovirus infection repressed macrophage proinflammatory responses while cells dying by apoptosis induced by infection with an E1B 19K deletion mutant virus did not

  16. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Choi, Sunga; Kim, Cuk-Seong; Ryoo, Sungwoo; Park, Jin Bong; Jeon, Byeong Hwa

    2015-01-01

    Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells. PMID:26608360

  17. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  18. Comparative analysis of the magnitude, quality, phenotype, and protective capacity of simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and chimpanzee-derived recombinant adenoviral vector immunization.

    PubMed

    Quinn, Kylie M; Da Costa, Andreia; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W B; Darrah, Patricia A; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G D; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A; Gomez, Carmen E; Esteban, Mariano; Wyatt, Linda S; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T; Nabel, Gary J; Koup, Richard A; Seder, Robert A

    2013-03-15

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8(+) T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8(+) T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 10(7)-10(9) particle units), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8(+) T cell responses, from most to least, as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFN-γ(+)TNF-α(+)IL-2(+) and KLRG1(+)CD127(-)CD8(+) T cells, but strikingly ∼30-80% of memory CD8(+) T cells coexpressed CD127 and KLRG1. To further optimize CD8(+) T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ∼60% of total CD8(+) T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8(+) T cell responses compared with prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8(+) T cells for rapid effector function or robust long-term memory, respectively.

  19. Heat shock proteins and protection against ischemic injury.

    PubMed Central

    Dillmann, W H

    1999-01-01

    Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and alphaB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hsp10 when coexpressed, and hsp27 and alphaB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types. PMID:10231010

  20. Regulation of Cellular Oxidative Stress and Apoptosis by G Protein-Coupled Receptor Kinase-2; The Role of NADPH Oxidase 4

    PubMed Central

    Theccanat, Tiju; Philip, Jennifer L.; Razzaque, Md. Abdur; Ludmer, Nicholas; Li, Jinju; Xu, Xianyao; Akhter, Shahab A.

    2016-01-01

    Cardiac myocyte oxidative stress and apoptosis are considered important mechanisms for the development of heart failure (HF). Chronic HF is characterized by increased circulating catecholamines to augment cardiac output. Long-term stimulation of myocardial β-adrenergic receptors (β-ARs) is deleterious in cardiac myocytes, however, the potential mechanisms underlying increased cell death are unclear. We hypothesize that GRK2, a critical regulator of myocardial β-AR signaling, plays an important role in mediating cellular oxidative stress and apoptotic cell death in response to β-agonist stimulation. Stimulation of H9c2 cells with a non-selective β-agonist, isoproterenol (Iso) caused increased oxidative stress and apoptosis. There was also increased Nox4 expression, but no change in Nox2, the primary NADPH isoforms and major sources of ROS generation in cardiac myocytes. Adenoviral-mediated overexpression of GRK2 led to similar increases in ROS production and apoptosis as seen with Iso stimulation. These increases in oxidative stress were abolished by pre-treatment with non-specific Nox inhibitor, apocynin, or siRNA knockdown of Nox4. Adenoviral-mediated expression of a GRK2 inhibitor prevented ROS production and apoptosis in response to Iso stimulation. β-arrestins are signaling proteins that function downstream of GRK2 in β-AR uncoupling. Adenoviral-mediated overexpression of β-arrestins increased ROS production and Nox4 expression. Chronic β-agonist stimulation in mice increased Nox4 expression and apoptosis compared to PBS or AngII treatment. These data demonstrate that GRK2 may play an important role in regulating oxidative stress and apoptosis in cardiac myocytes and provides an additional novel mechanism for the beneficial effects of cardiac-targeted GRK2 inhibition to prevent the development of HF. PMID:26631573

  1. A single intratumoral injection of a fiber-mutant adenoviral vector encoding interleukin 12 induces remarkable anti-tumor and anti-metastatic activity in mice with Meth-A fibrosarcoma.

    PubMed

    Gao, Jian-Qing; Sugita, Toshiki; Kanagawa, Naoko; Iida, Keisuke; Eto, Yusuke; Motomura, Yoshiaki; Mizuguchi, Hiroyuki; Tsutsumi, Yasuo; Hayakawa, Takao; Mayumi, Tadanori; Nakagawa, Shinsaku

    2005-03-25

    Cytokine-encoding viral vectors are considered to be promising in cancer gene immunotherapy. Interleukin 12 (IL-12) has been used widely for anti-tumor treatment, but the administration route and tumor characteristics strongly influence therapeutic efficiency. Meth-A fibrosarcoma has been demonstrated to be insensitive to IL-12 treatment via systemic administration. In the present study, we developed an IL-12-encoding fiber-mutant adenoviral vector (AdRGD-IL-12) that showed enhanced gene transfection efficiency in Meth-A tumor cells, and the production of IL-12 p70 in the culture supernatant from transfected cells was confirmed by ELISA. In therapeutic experiments, a single low-dose (2 x 10(7) plaque-forming units) intratumoral injection of AdRGD-IL-12 elicited pronounced anti-tumor activity and notably prolonged the survival of Meth-A fibrosarcoma-bearing mice. Immunohistochemical staining revealed that the IL-12 vector induced the accumulation of T cells in tumor tissue. Furthermore, intratumoral administration of the vector induced an anti-metastasis effect as well as long-term specific immunity against syngeneic tumor challenge.

  2. Adenoviral L4 33K forms ring-like oligomers and stimulates ATPase activity of IVa2: implications in viral genome packaging

    PubMed Central

    Ahi, Yadvinder S.; Vemula, Sai V.; Hassan, Ahmed O.; Costakes, Greg; Stauffacher, Cynthia; Mittal, Suresh K.

    2015-01-01

    The mechanism of genome packaging in adenoviruses (AdVs) is presumed to be similar to that of dsDNA viruses including herpesviruses and dsDNA phages. First, the empty capsids are assembled after which the viral genome is pushed through a unique vertex by a motor which consists of three minimal components: an ATPase, a small terminase and a portal. Various components of this motor exist as ring-like structures forming a central channel through which the DNA travels during packaging. In AdV, the IVa2 protein is believed to function as a packaging ATPase, however, the equivalents of the small terminase and the portal have not been identified in AdVs. IVa2 interacts with another viral protein late region 4 (L4) 33K which is important for genome packaging. Both IVa2 and 33K are expressed at high levels during the late stage of virus infection. The oligomeric state of IVa2 and 33K was analyzed in virus-infected cells, IVa2 and 33K transfected cells, AdV particles, or as recombinant purified proteins. Electron microscopy of the purified proteins showed ring-like oligomers for both proteins which is consistent with their putative roles as a part of the packaging motor. We found that the ATPase activity of IVa2 is stimulated in the presence of 33K and the AdV genome. Our results suggest that the 33K functions analogous to the small terminase proteins and so will be part of the packaging motor complex. PMID:25954255

  3. Adenoviral delivery of truncated MMP-8 fused with the hepatocyte growth factor mutant 1K1 ameliorates liver cirrhosis and promotes hepatocyte proliferation.

    PubMed

    Liu, Jinghua; Li, Jianbo; Fu, Weiwei; Tang, Jiacheng; Feng, Xu; Chen, Jiang; Liang, Yuelong; Jin, Ren'an; Xie, Anyong; Cai, Xiujun

    2015-01-01

    Liver cirrhosis is a chronic liver disease caused by chronic liver injury, which activates hepatic stellate cells (HSCs) and the secretion of extracellular matrix (ECM). Cirrhosis accounts for an extensive level of morbidity and mortality worldwide, largely due to lack of effective treatment options. In this study, we have constructed a fusion protein containing matrix metal-loproteinase 8 (MMP-8) and the human growth factor mutant 1K1 (designated cMMP8-1K1) and delivered it into hepatocytes and in vivo and in cell culture via intravenous injection of fusion protein-harboring adenovirus. In doing so, we found that the cMMP8-1K1 fusion protein promotes the proliferation of hepatocytes, likely resulting from the combined inhibition of type I collagen secretion and the degradation of the ECM in the HSCs. This fusion protein was also observed to ameliorate liver cirrhosis in our mouse model. These changes appear to be linked to changes in downstream gene expression. Taken together, these results suggest a possible strategy for the treatment of liver cirrhosis and additional work is warranted.

  4. Adenoviral delivery of truncated MMP-8 fused with the hepatocyte growth factor mutant 1K1 ameliorates liver cirrhosis and promotes hepatocyte proliferation

    PubMed Central

    Liu, Jinghua; Li, Jianbo; Fu, Weiwei; Tang, Jiacheng; Feng, Xu; Chen, Jiang; Liang, Yuelong; Jin, Ren’an; Xie, Anyong; Cai, Xiujun

    2015-01-01

    Liver cirrhosis is a chronic liver disease caused by chronic liver injury, which activates hepatic stellate cells (HSCs) and the secretion of extracellular matrix (ECM). Cirrhosis accounts for an extensive level of morbidity and mortality worldwide, largely due to lack of effective treatment options. In this study, we have constructed a fusion protein containing matrix metal-loproteinase 8 (MMP-8) and the human growth factor mutant 1K1 (designated cMMP8-1K1) and delivered it into hepatocytes and in vivo and in cell culture via intravenous injection of fusion protein-harboring adenovirus. In doing so, we found that the cMMP8-1K1 fusion protein promotes the proliferation of hepatocytes, likely resulting from the combined inhibition of type I collagen secretion and the degradation of the ECM in the HSCs. This fusion protein was also observed to ameliorate liver cirrhosis in our mouse model. These changes appear to be linked to changes in downstream gene expression. Taken together, these results suggest a possible strategy for the treatment of liver cirrhosis and additional work is warranted. PMID:26527860

  5. A Targeted Multifunctional Platform for Imaging and Treatment of Breast Cancer and Its Metastases Based on Adenoviral Vectors and Magnetic Nanoparticles

    DTIC Science & Technology

    2007-08-01

    our main contact person. Dr. Nikles is the Associate Director of the Center for Materials for Information Technology and an expert in the synthesis ...DNA replication, mRNA transport and splicing, in- hibition of host cell protein synthesis , and regulation of apoptosis (Bridge et al. 1989; Huang et al...potential use of the antiviral drug acyclovir , should replication become out of control. HSV-1 based vectors have been tested in various phases of clinical

  6. A Targeted Mulifunctional Platform for Imaging and Treatment of Breast Cancer and Its Metastases Based on Adenoviral Vectors and Magnetic Nanoparticles

    DTIC Science & Technology

    2008-02-01

    synthesis , and regulation of apoptosis (Bridge et al. 1989; Huang et al. 1989). With regards to E4, viral vectors with modifications other than...one of the advantages of HSV-based oncolytic vectors is the potential use of the antiviral drug acyclovir , should replication become out of...such as mRNA transport and shut-off of host cell protein synthesis (Ring 2002). Another type of CRAds are those with tissue specific promoters to

  7. Reduced viability of neuronal cells after overexpression of protein histidine phosphatase.

    PubMed

    Krieglstein, Josef; Lehmann, Martina; Mäurer, Anette; Gudermann, Thomas; Pinkenburg, Olaf; Wieland, Thomas; Litterscheid, Sarah; Klumpp, Susanne

    2008-11-01

    Protein histidine phosphatase (PHP) has just recently been discovered in eukaryotes and ATP-citrate lyase (ACL) was shown to be one of its substrates. Since ACL is crucial for cellular energy and fat metabolism we made an attempt to study the influence of PHP on cell viability. Using an adenoviral vector PHP was overexpressed in SN56 cholinergic murine neuroblastoma cells and in primary cultures of hippocampal neurons obtained from embryonic rats (E18). Overexpression of PHP in these cells caused a decrease in ACL activity and consequently impaired viability. To be sure that the reduced cellular viability was achieved by overexpression of PHP we also downregulated ACL in SN56 cells using RNAi-technology. Downregulation of ACL was harmful to the cells similar to what was observed upon overexpression of PHP. Taken together, it is concluded that overexpression of PHP results in increased dephosphorylation with concomitant inactivation of ACL, thus finally leading to cell damage.

  8. Adenoviral mediated interferon-alpha 2b gene therapy suppresses the pro-angiogenic effect of vascular endothelial growth factor in superficial bladder cancer.

    PubMed

    Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N

    2007-05-01

    Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment

  9. Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    PubMed Central

    Lewis, Travis B.; Glasgow, Joel N.; Glandon, Anya M.; Curiel, David T.; Standaert, David G.

    2010-01-01

    Background Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo. Methodology/Principal Findings Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. Conclusions/Significance These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development

  10. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characterization of even and odd load drug species.

    PubMed

    Sarrut, Morgan; Fekete, Szabolcs; Janin-Bussat, Marie-Claire; Colas, Olivier; Guillarme, Davy; Beck, Alain; Heinisch, Sabine

    2016-10-01

    This paper is the second part of a two-part series dedicated to the development of an on-line comprehensive HICxRPLC-UV/MS method for the characterization of a commercial inter-chain cysteine-linked ADC (brentuximab vedotin, Adcetris(®)). The first part focused on the optimization of the chromatographic conditions. In the second part of this series of papers, the structural characterization of the Brentuximab Vedotin was extensively discussed. With the combination of HIC and RPLC-MS data, the average DAR was easily measured in HIC and, at the same time, the predominant positional isomers were identified in RPLC-MS in one single injection. It was also demonstrated that the retention data obtained in the first and second dimensions was particularly useful to assist ADC characterization through the identification of sub-units. Using this methodology, the presence of odd DARs (1, 3 and 5) and their relative abundance was assessed by a systematic evaluation of HIC x RPLC-UV/MS data for both commercial and stressed ADC samples. Finally, once the exhaustive characterization of ADC was completed, MS could be conveniently replaced by UV detection to quickly assess the conformity of different ADCs batches. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Overexpression of NHE1 suppresses ABCA1 protein expression via increasing calpain activity in RAW264.7 cells].

    PubMed

    Mo, Xiangang; Wang, Lan; Guo, Jing; Hong, Wei; Long, Shiqi; Zhang, Li; Xiang, Ning; Yang, Juan

    2017-01-01

    Objective To investigate the effect of over-expressed Na(+)/H(+) exchanger 1 (NHE1) on the protein expression of adenosine three phosphate binding cassette transporter A1 (ABCA1) in RAW264.7 cells. Methods RAW264.7 cells were infected with the adenoviral vector encoding NHE1-EGFP (AdNHE1). The infected RAW264.7 cells were subjected to Western blot analysis for NHE1-EGFP fusion protein. The subcellular localization of NHE1-EGFP fusion protein was observed by confocal laser scanning microscopy. NHE1 activity was measured by the method of pH recovery in response to an acute acid pulse. Furthermore, Western blotting was performed to determine ABCA1 protein levels and calpain activity in NHE1-overexpressing RAW264.7 cells. The effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN) on ABCA1 protein levels in the presence of TO-901317 was examined by Western blotting. Results NHE1-EGFP fusion protein was highly expressed and localized in cytoplasm and cell membrane of RAW264.7 cells infected with AdNHE1. NHE1-EGFP fusion protein reduced ABCA1 protein expression and increased calpain activity. The calpain inhibitor ALLN blocked the decrease of ABCA1 protein expression. Conclusion Overexpressed NHE1 suppresses the expression of ABCA1 protein via increasing the calpain activity in RAW264.7 cells.

  12. A role for muscle LIM protein (MLP) in vascular remodeling.

    PubMed

    Wang, Xiaohong; Li, Qinglu; Adhikari, Neeta; Hall, Jennifer L

    2006-04-01

    Given the well-defined role of LIM-motif containing proteins in cytoskeletal organization, cell fate, and differentiation, we hypothesized that the regulation of LIM proteins played an integral role in vascular remodeling. We screened a compendium of cDNA microarray data from rat vascular smooth muscle cells (VSMC) for novel LIM-containing targets and identified muscle LIM protein (MLP), a gene previously thought to be only in striated muscle. Sequence analysis, RTQPCR and Western blotting reconfirmed expression of MLP in VSMC. MLP was elevated>10-fold 7 days following balloon injury in the rat carotid artery. Wire injury led to a significantly increased intima/media ratio in MLP -/- mice compared to wild-type controls (P<0.007, N=5). Fas-ligand and ceramide-induced apoptosis were significantly decreased in MLP deficient VSMC (n=6, P<0.001). Adenoviral-induced restoration of MLP significantly restored apoptotic response (N=6, P<0.001). These findings are the first to identify MLP in vascular smooth muscle and demonstrate that it plays a critical role in vascular remodeling. This is consistent with earlier findings demonstrating a role for MLP in striated muscle remodeling in response to load and stretch.

  13. Restoration of Full-Length SMN Promoted by Adenoviral Vectors Expressing RNA Antisense Oligonucleotides Embedded in U7 snRNAs

    PubMed Central

    Geib, Till; Hertel, Klemens J.

    2009-01-01

    Background Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping. Methodology/Principal Findings To correct SMN2 splicing, we use Adenovirus type 5–derived vectors to express SMN2-antisense U7 snRNA oligonucleotides targeting the SMN intron 7/exon 8 junction. Infection of SMA type I–derived patient fibroblasts with these vectors resulted in increased levels of exon 7 inclusion, upregulating the expression of SMN to similar levels as in non–SMA control cells. Conclusions/Significance These results show that Adenovirus type 5–derived vectors delivering U7 antisense oligonucleotides can efficiently restore full-length SMN protein and suggest that the viral vector-mediated oligonucleotide application may be a suitable therapeutic approach to counteract SMA. PMID:19997596

  14. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  15. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  16. Regulation of cardiomyocyte signaling by RGS proteins: differential selectivity towards G proteins and susceptibility to regulation.

    PubMed

    Hao, Jianming; Michalek, Christina; Zhang, Wei; Zhu, Ming; Xu, Xiaomei; Mende, Ulrike

    2006-07-01

    Many signals that regulate cardiomyocyte growth, differentiation and function are mediated via heterotrimeric G proteins, which are under the control of RGS proteins (Regulators of G protein Signaling). Several RGS proteins are expressed in the heart, but so far little is known about their function and regulation. Using adenoviral gene transfer, we conducted the first comprehensive analysis of the capacity and selectivity of the major cardiac RGS proteins (RGS2-RGS5) to regulate central G protein-mediated signaling pathways in adult ventricular myocytes (AVM). All four RGS proteins potently inhibited Gq/11-mediated phospholipase C beta stimulation and cell growth (assessed in neonatal myocytes). Importantly, RGS2 selectively inhibited Gq/11 signaling, whereas RGS3, RGS4 and RGS5 had the capacity to regulate both Gq/11 and Gi/o signaling (carbachol-induced cAMP inhibition). Gs signaling was unaffected, and, contrary to reports in other cell lines, RGS2-RGS5 did not appear to regulate adenylate cyclase directly in AVM. Since RGS proteins can be highly regulated in their expression by many different stimuli, we also tested the hypothesis that RGS expression is subject to G protein-mediated regulation in AVM and determined the specificity with which enhanced G protein signaling alters endogenous RGS expression in AVM. RGS2 mRNA and protein were markedly but transiently up-regulated by enhanced Gq/11 signaling (alpha1-adrenergic stimulation or Galphaq* overexpression), possibly by a negative feedback mechanism. In contrast, the other negative regulators of Gq/11 signaling (RGS3-RGS5) were unchanged. Endogenous RGS2 (but not RGS3-RGS5) expression was also up-regulated in cells with enhanced AC signaling (beta-adrenergic or forskolin stimulation). Taken together, these findings suggest diverse roles of RGS proteins in regulating myocyte signaling. RGS2 emerged as the only selective and highly regulated inhibitor of Gq/11 signaling that could potentially become a promising

  17. Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

    PubMed Central

    Allen, Susan; Than, Soe; Adams, Elizabeth M.; Graham, Barney S.; Koup, Richard A.; Bailer, Robert T.; Smith, Carol; Dally, Len; Tarragona-Fiol, Tony; Bergin, Philip J.; Hayes, Peter; Ho, Martin; Loughran, Kelley; Komaroff, Wendy; Stevens, Gwynneth; Thomson, Helen; Boaz, Mark J.; Cox, Josephine H.; Schmidt, Claudia; Gilmour, Jill; Nabel, Gary J.; Fast, Patricia

    2010-01-01

    Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial

  18. Adenovirally-Induced Polyfunctional T Cells Do Not Necessarily Recognize the Infected Target: Lessons from a Phase I Trial of the AERAS-402 Vaccine

    PubMed Central

    Nyendak, Melissa; Swarbrick, Gwendolyn M.; Duncan, Amanda; Cansler, Meghan; Huff, Ervina Winata; Hokey, David; Evans, Tom; Barker, Lewellys; Blatner, Gretta; Sadoff, Jerald; Douoguih, Macaya; Pau, Maria Grazia; Lewinsohn, Deborah A.; Lewinsohn, David M.

    2016-01-01

    The development of a vaccine for Mycobacterium tuberculosis (Mtb) has been impeded by the absence of correlates of protective immunity. One correlate would be the ability of cells induced by vaccination to recognize the Mtb-infected cell. AERAS-402 is a replication-deficient serotype 35 adenovirus containing DNA expressing a fusion protein of Mtb antigens 85A, 85B and TB10.4. We undertook a phase I double-blind, randomized placebo controlled trial of vaccination with AERAS-402 following BCG. Analysis of the vaccine-induced immune response revealed strong antigen-specific polyfunctional CD4+ and CD8+ T cell responses. However, analysis of the vaccine-induced CD8+ T cells revealed that in many instances these cells did not recognize the Mtb-infected cell. Our findings highlight the measurement of vaccine-induced, polyfunctional T cells may not reflect the extent or degree to which these cells are capable of identifying the Mtb-infected cell and correspondingly, the value of detailed experimental medicine studies early in vaccine development. PMID:27805026

  19. Helper-dependent adenoviral vectors are superior in vitro to first-generation vectors for endothelial cell-targeted gene therapy.

    PubMed

    Flynn, Rowan; Buckler, Joshua M; Tang, Chongren; Kim, Francis; Dichek, David A

    2010-12-01

    Arterial endothelial cells (EC) are attractive targets for gene therapy of atherosclerosis because they are accessible to hematogenous and catheter-based vector delivery and overlie atherosclerotic plaques. Vector-mediated expression-in EC-of proteins that mediate cholesterol transfer out of the artery wall and decrease inflammation could prevent and reverse atherosclerosis. However, clinical application of this strategy is limited by lack of a suitable gene-transfer vector. First-generation adenovirus (FGAd) is useful for EC gene transfer in proof-of-concept studies, but is unsuitable for atheroprotective human gene therapy because of limited duration of expression and proinflammatory effects. Moreover, others have reported detrimental effects of FGAd on critical aspects of EC physiology including proliferation, migration, and apoptosis. Here, we investigated whether helper-dependent adenovirus (HDAd) either alone or expressing an atheroprotective gene [apolipoprotein A-I (apoA-I)] could circumvent these limitations. In contrast to control FGAd, HDAd did not alter any of several critical EC physiologic functions (including proliferation, migration, apoptosis, metabolic activity, and nitric oxide (NO) production) and did not stimulate proinflammatory pathways [including expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and interleukin-6 (IL-6)]. Expression of apoA-I by HDAd reduced EC VCAM-1 expression. HDAd is a promising vector and apoA-I is a promising gene for atheroprotective human gene therapy delivered via EC.

  20. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington's disease delays the onset of the motor phenotype.

    PubMed

    Arregui, Leticia; Benítez, Jorge A; Razgado, Luis F; Vergara, Paula; Segovia, Jose

    2011-11-01

    Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. The most characteristic structural feature of this disease is neurodegeneration accompanied by gliosis in the striatum. BDNF has been proposed to protect striatal neurons from degeneration, because it is an important survival factor for these neurons from development to adulthood. Considering the extensive gliosis and the survival effects of BDNF, we constructed an adenovirus to express a BDNF cDNA in astrocyte cells using a promoter of the glial fibrillary acidic protein gene. Cells stably transfected in vitro with a BDNF cDNA driven by this promoter expressed BDNF and responded to external stimuli increasing BDNF production. When the vector was applied into the striata of mice transgenic for HD, long-term expression of the transgene was observed, associated with a delay of onset of the motor phenotype of the R6/2 HD transgenic mice. The present data indicate that the striatal expression of BDNF is a potential adjuvant for the treatment of HD.

  1. Redifferentiation of dedifferentiated chondrocytes by adenoviral vector-mediated TGF-β3 and collagen-1 silencing shRNA in 3D culture.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Pang, Patricia Xiaotian; Zhou, Ruijie; Wang, Yingjun; Wang, Dong-An

    2011-12-01

    Autologous chondrocytes remain one of the most preferable candidates among various therapeutic cell species because of their high efficacy, despite remarkable progress in discovery and development of therapeutic cells for cartilage regenerative medicine to date. However, the essential process of cell expansion via repeated monolayer sub-cultures inevitably induces chondrocytic dedifferentiation. In this study, we aimed to achieve and enhance redifferentiation of dedifferentiated chondrocytes with dual genes of transforming growth factor (TGF)-β3 and short hairpin RNA (shRNA) that restore chondrocytic phenotype and silence fibrous collagen type I (Col I), respectively. It was hypothesized that gene delivery of the two targets would promote chondrogenesis in chondrocytes, and meanwhile inhibit the expression of the undesired Col I. Three types of recombinant adenoviruses were constructed. Two of them were of single-function vectors with the ability to express either TGF-β3 (Ad-TGFβ3) or shRNA (specific for Col I, Ad-shRNA); the third type was of double-function vectors that encode both TGF-β3 and anti-Col I shRNA (Ad-double). We infected the dedifferentiated chondrocytes with Ad-double, or co-transduced them with Ad-TGFβ3 and Ad-shRNA at the same time (designated as Ad-combination). Data from real-time RT-PCR and histological staining suggested a restoration in the expression of cartilage-specific genes including aggrecan, type II collagen, and cartilage oligomeric matrix protein (COMP); while a significant down-regulation of Col I expression was observed in groups treated with Ad-double and Ad-combination compared to other control groups. These results demonstrated that, by genetic modification, dedifferentiated chondrocytes managed to redifferentiate back to chondrocytic phenotype, which may greatly facilitate cartilage regenerative medicine by providing sufficient number of competent therapeutic cells.

  2. Intradermal delivery of adenoviral type-35 vectors leads to high efficiency transduction of mature, CD8+ T cell-stimulating skin-emigrated dendritic cells.

    PubMed

    de Gruijl, Tanja D; Ophorst, Olga J A E; Goudsmit, Jaap; Verhaagh, Sandra; Lougheed, Sinéad M; Radosevic, Katarina; Havenga, Menzo J E; Scheper, Rik J

    2006-08-15

    Recombinant adenovirus (Ad) type 35 (rAd35) shows great promise as vaccine carrier with the advantage of low pre-existing immunity in human populations, in contrast to the more commonly used rAd5 vector. The rAd35 vector uses CD46 as a high-affinity receptor, which, unlike the rAd5 receptor, is expressed on human dendritic cells (DC), the most powerful APCs identified to date. In this study, we show that in contrast to rAd5, rAd35 infects migrated and mature CD83+ cutaneous DC with high efficiency (up to 80%), when delivered intradermally in an established human skin explant model. The high transduction efficiency is in line with high expression levels of CD46 detected on migratory cutaneous DC, which proved to be further increased upon intradermal administration of GM-CSF and IL-4. As compared with Ad5, these Ad35 infection characteristics translate into higher absolute numbers of skin-emigrated DC per explant that both express the transgene and are phenotypically mature. Finally, we demonstrate that upon intracutaneous delivery of a rAd35 vaccine encoding the circumsporozoite (CS) protein of Plasmodium falciparum, emigrated DC functionally express and process CS-derived epitopes and are capable of activating specific CD8+ effector T cells, as evidenced by activation of an HLA-A2-restricted CS-specific CD8+ T cell clone. Collectively, these data demonstrate the utility of rAd35 vectors for efficient in vivo human DC transduction.

  3. eEF1A mediates the nuclear export of SNAG-containing proteins via the Exportin5-aminoacyl-tRNA complex.

    PubMed

    Mingot, José Manuel; Vega, Sonia; Cano, Amparo; Portillo, Francisco; Nieto, M Angela

    2013-11-14

    Exportin5 mediates the nuclear export of double-stranded RNAs, including pre-microRNAs, adenoviral RNAs, and tRNAs. When tRNAs are aminoacylated, the Exportin5-aminoacyl (aa)-tRNA complex recruits and coexports the translation elongation factor eEF1A. Here, we show that eEF1A binds to Snail transcription factors when bound to their main target, the E-cadherin promoter, facilitating their export to the cytoplasm in association with the aa-tRNA-Exportin5 complex. Snail binds to eEF1A through the SNAG domain, a protein nuclear export signal present in several transcription factor families, and this binding is regulated by phosphorylation. Thus, we describe a nuclear role for eEF1A and provide a mechanism for protein nuclear export that attenuates the activity of SNAG-containing transcription factors.

  4. c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice.

    PubMed

    Win, Sanda; Than, Tin Aung; Han, Derick; Petrovic, Lydia M; Kaplowitz, Neil

    2011-10-07

    Sustained JNK activation plays a critical role in hepatotoxicity by acetaminophen or GalN/TNF-α. To address the importance of JNK translocation to mitochondria that accompanies sustained activation in these models, we assessed the importance of the expression of a potential initial target of JNK in the outer membrane of mitochondria, namely Sab (SH3 domain-binding protein that preferentially associates with Btk), also known as Sh3bp5 (SH3 domain-binding protein 5). Silencing the expression of Sab in the liver using adenoviral shRNA inhibited sustained JNK activation and mitochondrial targeting of JNK and the upstream MKK4 (MAPK kinase 4), accompanied by striking protection against liver injury in vivo and in cultured hepatocytes in both toxicity models. We conclude that mitochondrial Sab may serve as a platform for the MAPK pathway enzymes and that the interaction of stress-activated JNK with Sab is required for sustained JNK activation and toxicity.

  5. c-Jun N-terminal Kinase (JNK)-dependent Acute Liver Injury from Acetaminophen or Tumor Necrosis Factor (TNF) Requires Mitochondrial Sab Protein Expression in Mice*

    PubMed Central

    Win, Sanda; Than, Tin Aung; Han, Derick; Petrovic, Lydia M.; Kaplowitz, Neil

    2011-01-01

    Sustained JNK activation plays a critical role in hepatotoxicity by acetaminophen or GalN/TNF-α. To address the importance of JNK translocation to mitochondria that accompanies sustained activation in these models, we assessed the importance of the expression of a potential initial target of JNK in the outer membrane of mitochondria, namely Sab (SH3 domain-binding protein that preferentially associates with Btk), also known as Sh3bp5 (SH3 domain-binding protein 5). Silencing the expression of Sab in the liver using adenoviral shRNA inhibited sustained JNK activation and mitochondrial targeting of JNK and the upstream MKK4 (MAPK kinase 4), accompanied by striking protection against liver injury in vivo and in cultured hepatocytes in both toxicity models. We conclude that mitochondrial Sab may serve as a platform for the MAPK pathway enzymes and that the interaction of stress-activated JNK with Sab is required for sustained JNK activation and toxicity. PMID:21844199

  6. Selective and efficient retardation of cancers expressing cytoskeleton-associated protein 2 by targeted RNA replacement.

    PubMed

    Ban, Guyee; Jeong, Jin-Sook; Kim, Areum; Kim, Sung Jin; Han, Sang-Young; Kim, In-Hoo; Lee, Seong-Wook

    2011-08-15

    Human cytoskeleton-associated protein 2 (hCKAP2) is upregulated and highly expressed in various human malignances. hCKAP2 has microtubule-stabilizing characteristics and potentially regulates the dynamics and assembly of the mitotic spindle and chromosome segregation, indicating that hCKAP2 plays important functions during mitosis. In this study, we evaluated hCKAP2 as a plausible anticancer target through development and validation of a targeted cancer gene therapy strategy based on targeting and replacement of hCKAP2 RNA using a trans-splicing ribozyme. This targeted RNA replacement triggered transgene activity via accurate trans-splicing reaction selectively in human cancer cells expressing the hCKAP2 RNA and simultaneously reduced the expression level of the RNA in the cells. Adenoviral vector encoding the hCKAP2-specific trans-splicing ribozyme selectively induced cytotoxicity in tumor cells expressing hCKAP2. Moreover, intratumoral injection of the virus produced selective and efficient regression of tumor that had been subcutaneously inoculated with hCKAP2-positive colon cancer cells in mice with minimal liver toxicity. Furthermore, orthotopically multifocal hCKAP2-positive hepatocarcinoma established in mice were efficiently regressed by systemic delivery of adenoviral vector encoding the specific ribozyme under the control of a liver-selective phosphoenolpyruvate carboxykinase promoter with least hepatotoxicity. The results indicate that hCKAP2 RNA is a promising target for anticancer approach based on trans-splicing ribozyme-mediated RNA replacement. Copyright © 2011 UICC.

  7. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation

    PubMed Central

    Lee, Jae Ho; Lee, Gha Young; Jang, Hagoon; Choe, Sung Sik; Koo, Seung-Hoi; Kim, Jae Bum

    2014-01-01

    Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c-interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c-interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20-dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20-induced SREBP1c ubiquitination down-regulates hepatic lipogenic activity upon PKA activation. Conclusion: RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation

  8. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16

    PubMed Central

    Zhao, Ling-Jun; Loewenstein, Paul M.; Green, Maurice

    2016-01-01

    Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells. PMID:27382434

  9. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells.

    PubMed

    Manni, Sabrina; Mauban, Joseph H; Ward, Christopher W; Bond, Meredith

    2008-08-29

    Subcellular compartmentalization of the cAMP-dependent protein kinase (PKA) by protein kinase A-anchoring proteins (AKAPs) facilitates local protein phosphorylation. However, little is known about how PKA targeting to AKAPs is regulated in the intact cell. PKA binds to an amphipathic helical region of AKAPs via an N-terminal domain of the regulatory subunit. In vitro studies showed that autophosphorylation of type II regulatory subunit (RII) can alter its affinity for AKAPs and the catalytic subunit (PKA(cat)). We now investigate whether phosphorylation of serine 96 on RII regulates PKA targeting to AKAPs, downstream substrate phosphorylation and calcium cycling in primary cultured cardiomyocytes. We demonstrated that, whereas there is basal phosphorylation of RII subunits, persistent maximal activation of PKA results in a phosphatase-dependent loss of RII phosphorylation. To investigate the functional effects of RII phosphorylation, we constructed adenoviral vectors incorporating mutants which mimic phosphorylated (RIIS96D), nonphosphorylated (RIIS96A) RII, or wild-type (WT) RII and performed adenoviral infection of neonatal rat cardiomyocytes. Coimmunoprecipitation showed that more AKAP15/18 was pulled down by the phosphomimic, RIIS96D, than RIIS96A. Phosphorylation of phospholamban and ryanodine receptor was significantly increased in cells expressing RIIS96D versus RIIS96A. Expression of recombinant RII constructs showed significant effects on cytosolic calcium transients. We propose a model illustrating a central role of RII phosphorylation in the regulation of local PKA activity. We conclude that RII phosphorylation regulates PKA-dependent substrate phosphorylation and may have significant implications for modulation of cardiac function.

  10. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein

    PubMed Central

    Rademacher, Christoph; Bru, Thierry; McBride, Ryan; Robison, Elizabeth; Nycholat, Corwin M; Kremer, Eric J; Paulson, James C

    2012-01-01

    Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid. PMID:22522600

  11. Sorting of growth hormone-erythropoietin fusion proteins in rat salivary glands

    SciTech Connect

    Samuni, Yuval Zheng Changyu; Cawley, Niamh X.; Cotrim, Ana P.; Loh, Y. Peng; Baum, Bruce J.

    2008-08-15

    Neuroendocrine and exocrine cells secrete proteins in either a constitutive manner or via the regulated secretory pathway (RSP), but the specific sorting mechanisms involved are not fully understood. After gene transfer to rat salivary glands, the transgenic model proteins human growth hormone (hGH) and erythropoietin (hEpo) are secreted primarily into saliva (RSP; exocrine) and serum (constitutive; endocrine), respectively. We hypothesized that fusion of hGH at either the C-terminus or the N-terminus of hEpo would re-direct hEpo from the bloodstream into saliva. We constructed and expressed two fusion proteins, hEpo-hGH and hGH-hEpo, using serotype 5-adenoviral vectors, and delivered them to rat submandibular glands in vivo via retroductal cannulation. Both the hEpo-hGH and hGH-hEpo fusion proteins, but not hEpo alone, were secreted primarily into saliva (p < 0.0001 and p = 0.0083, respectively). These in vivo studies demonstrate for the first time that hGH, in an N- as well as C-terminal position, influences the secretion of a constitutive pathway protein.

  12. Sorting of growth hormone-erythropoietin fusion proteins in rat salivary glands.

    PubMed

    Samuni, Yuval; Zheng, Changyu; Cawley, Niamh X; Cotrim, Ana P; Loh, Y Peng; Baum, Bruce J

    2008-08-15

    Neuroendocrine and exocrine cells secrete proteins in either a constitutive manner or via the regulated secretory pathway (RSP), but the specific sorting mechanisms involved are not fully understood. After gene transfer to rat salivary glands, the transgenic model proteins human growth hormone (hGH) and erythropoietin (hEpo) are secreted primarily into saliva (RSP; exocrine) and serum (constitutive; endocrine), respectively. We hypothesized that fusion of hGH at either the C-terminus or the N-terminus of hEpo would re-direct hEpo from the bloodstream into saliva. We constructed and expressed two fusion proteins, hEpo-hGH and hGH-hEpo, using serotype 5-adenoviral vectors, and delivered them to rat submandibular glands in vivo via retroductal cannulation. Both the hEpo-hGH and hGH-hEpo fusion proteins, but not hEpo alone, were secreted primarily into saliva (p<0.0001 and p=0.0083, respectively). These in vivo studies demonstrate for the first time that hGH, in an N- as well as C-terminal position, influences the secretion of a constitutive pathway protein.

  13. Induction of cellular prion protein (PrPc) under hypoxia inhibits apoptosis caused by TRAIL treatment

    PubMed Central

    Lee, Ju-Hee; Moon, Ji-Hong; Kim, Sung-Wook; Lee, You-Jin; Park, Sang-Youel

    2015-01-01

    Hypoxia decreases cytotoxic responses to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. Cellular prion protein (PrPc) is regulated by HIF-1α in neurons. We hypothesized that PrPc is involved in hypoxia-mediated resistance to TRAIL-induced apoptosis. We found that hypoxia induced PrPc protein and inhibited TRAIL-induced apoptosis. Thus silencing of PrPc increased TRAIL-induced apoptosis under hypoxia. Overexpression of PrPc protein using an adenoviral vector inhibited TRAIL-induced apoptosis. In xenograft model in vivo, shPrPc transfected cells were more sensitive to TRAIL-induced apoptosis than in shMock transfected cells. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. PMID:25742790

  14. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation.

    PubMed

    Din, Shabana; Mason, Matthew; Völkers, Mirko; Johnson, Bevan; Cottage, Christopher T; Wang, Zeping; Joyo, Anya Y; Quijada, Pearl; Erhardt, Peter; Magnuson, Nancy S; Konstandin, Mathias H; Sussman, Mark A

    2013-04-09

    Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.

  15. Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein.

    PubMed

    Moutachakkir, Mariame; Lamrani Hanchi, Asma; Baraou, Azzedine; Boukhira, Abderrahman; Chellak, Saliha

    2017-04-01

    C-reactive protein (CRP) is a polypeptide molecule belonging to the family of pentraxins. It has a molecular mass of 120,000 daltons and consists of five identical sub-units that contain each 206 amino acids. CRP is synthesized primarily by the liver in response to certain pro-inflammatory cytokines. It plays an important role in innate immunity, opsonization by its properties, complement activation and immunoglobulins receptor binding. CRP is a protein of the acute systemic inflammation and is, therefore, a prime marker of inflammation. As atherosclerosis has an inflammatory component, CRP can appreciate cardiovascular risk when analysed by more sensitive assays, that are able to measure extremely low concentrations of CRP, called high sensitivity CRP (hs-CRP). The CRP is quantified by immunonephelometry or immunoturbidimetry. There is no standard technique. The hs-CRP quantification is based on immunonephelemetry sensitized techniques called "immunolatex". We present in this paper the main biochemical and physiological data related to CRP, explaining the need for its quantification, the problems encountered in immunoassay and the interpretation of results.

  16. Magnetic Resonance Imaging in Epidemic Adenoviral Keratoconjunctivitis

    PubMed Central

    Horton, Jonathan C.; Miller, Steven

    2015-01-01

    Most clinicians would agree that there is no reason to obtain a magnetic resonance (MR) scan to evaluate a patient with viral conjunctivitis. We scheduled a patient for an annual MR scan to monitor his optic nerve meningiomas. By coincidence, he had florid viral conjunctivitis the day the scan was performed. It showed severe eyelid edema, contrast enhancement of the anterior orbit, enlargement of the lacrimal gland, and obstruction of the nasolacrimal duct. Adenovirus produces deep orbital inflammation, in addition to infection of the conjunctival surface. PMID:26022084

  17. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon.

    PubMed

    Akbulut, Hakan; Zhang, Lixin; Tang, Yucheng; Deisseroth, Albert

    2003-05-01

    Prodrug activating transcription unit gene therapy is one of several promising approaches to cancer gene therapy. Combining that approach with conditionally replication-competent viral vectors that are truly tumor specific has been an important objective of recent work. In this study, we report the construction of a new conditionally replication-competent bicistronic adenoviral vector in which the cytosine deaminase (CD) gene and the E1a gene are driven by the L-plastin tumor-specific promoter (AdLpCDIRESE1a). A similar vector driven by the CMV promoter has also been constructed (AdCMVCDIRESE1a) as a control. We have carried out in vitro cytotoxicity in carcinomas of the breast, ovary and colon, and in vivo efficacy studies with these vectors in an animal model of colon cancer. While the addition of the AdLpCDIRESE1a vector to established cancer cell lines showed significant cytotoxicity in tumor cells derived from carcinomas of the breast (MCF-7), colon (HTB-38) and ovary (Ovcar 5), no significant toxicity was seen in explant cultures of normal human mammary epithelial cells (HMEC) exposed to this vector. The addition of 5-fluorocytosine (5FC) significantly increased the cytotoxicity in an additive fashion of both the AdLpCDIRESE1a and AdCMVCDIRESE1a vectors as well as that of the AdLpCD replication incompetent vector to established tumor cell lines. However, no significant cytotoxicity was observed with the addition of 5FC to explant cultures of normal human mammary epithelial cells that had been exposed to the L-plastin-driven vectors. Studies with mixtures of infected and uninfected tumor cell lines showed that the established cancer cell lines infected with the AdLpCDIRESE1a vector generated significant toxicity to surrounding uninfected cells (the "bystander effect") even at a ratio of 0.25 of infected cells to infected + uninfected cells in the presence of 5FC. The injection of the AdLpCDIRESE1a vector into subcutaneous deposits of human tumor nodules in the

  18. The Amphipathic Helix of Adenovirus Capsid Protein VI Contributes to Penton Release and Postentry Sorting

    PubMed Central

    Martinez, Ruben; Schellenberger, Pascale; Vasishtan, Daven; Aknin, Cindy; Austin, Sisley; Dacheux, Denis; Rayne, Fabienne; Siebert, Alistair; Ruzsics, Zsolt; Gruenewald, Kay

    2014-01-01

    ABSTRACT Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle. PMID:25473051

  19. Secretory leukocyte protease inhibitor reverses inhibition by CNS myelin, promotes regeneration in the optic nerve, and suppresses expression of the TGFβ signaling protein Smad2

    PubMed Central

    Hannila, Sari S.; Siddiq, Mustafa M.; Carmel, Jason B.; Hou, Jianwei; Chaudhry, Nagarathnamma; Bradley, Peter M.J.; Hilaire, Melissa; Richman, Erica L.; Hart, Ronald P.; Filbin, Marie T.

    2013-01-01

    Following CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP, as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cyclic AMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats. Furthermore, regeneration of dorsal column axons does not occur after a conditioning lesion in SLPI null mutant mice, indicating that expression of SLPI is required for the conditioning lesion effect. Mechanistically, we demonstrate that SLPI localizes to the nuclei of neurons, binds to the Smad2 promoter, and reduces levels of Smad2 protein. Adenoviral overexpression of Smad2 also blocked SLPI-induced axonal regeneration. SLPI and Smad2 may therefore represent new targets for therapeutic intervention in CNS injury. PMID:23516280

  20. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    PubMed

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  1. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  2. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  3. Oxidized LDL enhances stretch-induced smooth muscle cell proliferation through alterations in nuclear protein import.

    PubMed

    Chahine, Mirna N; Dibrov, Elena; Blackwood, David P; Pierce, Grant N

    2012-12-01

    Mechanical stress contributes to hypertension and atherosclerosis partly through the stimulation of vascular smooth muscle cell (VSMC) proliferation. Oxidized low density lipoprotein (oxLDL) is another important atherogenic factor that can increase VSMC proliferation. The purpose of this study was to investigate whether oxLDL could further enhance the proliferative action of mechanical stretch on VSMC, and to determine the mechanism responsible for this interaction. Because nuclear protein import is critical in regulating gene expression, transcription, and cell proliferation, its involvement in the mitogenic effects of oxLDL and mechanical stress was studied. OxLDL enhanced the proliferative effects of mechanical stretch on its own in rabbit aortic VSMC, and induced increases in the expression of HSP60 in an additive manner. Adenoviral-mediated overexpression of HSP60 induced increases in cell proliferation compared with uninfected VSMC. Mechanical stretch and oxLDL stimulated the rate of nuclear protein import in VSMC and increased the expression of nucleoporins. These effects were sensitive to inhibition of the MAPK pathway. We conclude that oxLDL and mechanical stretch have a synergistic effect on VSMC proliferation. This synergistic effect is induced through a stimulation of nuclear protein import via HSP60 and an activation of the MAPK pathway.

  4. Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX

    SciTech Connect

    Tang Yizhe; Le, Long P.; Matthews, Qiana L.; Han Tie; Wu Hongju; Curiel, David T.

    2008-08-01

    Adenoviral capsid protein IX (pIX) has been shown to be a potential locale to insert targeting, imaging-related and therapeutic modalities by genetic modification. Recent evidences suggested that capsid protein mosaicism could be a promising strategy for improving the utility of Ad vector. In this study, we explored a method to genetically generate triple pIX mosaic Ad serotype 5 (Ad5) displaying three types of pIX on a single virion. pIXs were modified at their carboxy termini with a Flag sequence, a hexahistidine sequence (His{sub 6}) or a monomeric red fluorescent protein (mRFP1), respectively. Western blotting analysis and fluorescence microscopy of the purified recombinant viruses indicated that all three modified pIXs were incorporated into the viral particles. Immuno-gold electron microscopy (EM) further confirmed that three types of pIX indeed co-existed on an individual virion. These results firstly validated a triple mosaic capsid configuration on pIX, and demonstrated the possibility of further radical design.

  5. Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX.

    PubMed

    Tang, Yizhe; Le, Long P; Matthews, Qiana L; Han, Tie; Wu, Hongju; Curiel, David T

    2008-08-01

    Adenoviral capsid protein IX (pIX) has been shown to be a potential locale to insert targeting, imaging-related and therapeutic modalities by genetic modification. Recent evidences suggested that capsid protein mosaicism could be a promising strategy for improving the utility of Ad vector. In this study, we explored a method to genetically generate triple pIX mosaic Ad serotype 5 (Ad5) displaying three types of pIX on a single virion. pIXs were modified at their carboxy termini with a Flag sequence, a hexahistidine sequence (His(6)) or a monomeric red fluorescent protein (mRFP1), respectively. Western blotting analysis and fluorescence microscopy of the purified recombinant viruses indicated that all three modified pIXs were incorporated into the viral particles. Immuno-gold electron microscopy (EM) further confirmed that three types of pIX indeed co-existed on an individual virion. These results firstly validated a triple mosaic capsid configuration on pIX, and demonstrated the possibility of further radical design.

  6. Proteasome-Dependent Degradation of Daxx by the Viral E1B-55K Protein in Human Adenovirus-Infected Cells ▿

    PubMed Central

    Schreiner, Sabrina; Wimmer, Peter; Sirma, Hüseyin; Everett, Roger D.; Blanchette, Paola; Groitl, Peter; Dobner, Thomas

    2010-01-01

    The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PML-NBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication. The viral protein binds to Daxx and induces its degradation through a proteasome-dependent pathway. We show that this process is independent of Ad E4orf6 (early region 4 open reading frame 6), known to promote the proteasomal degradation of cellular p53, Mre11, DNA ligase IV, and integrin α3 in combination with E1B-55K. These results illustrate the importance of the PML-NB-associated factor Daxx in virus growth restriction and suggest that E1B-55K antagonizes innate antiviral activities of Daxx and PML-NBs to stimulate viral replication at a posttranslational level. PMID:20484509

  7. Elucidation of a protein-protein interaction network involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis.

    PubMed

    Jankute, Monika; Byng, Charlotte V; Alderwick, Luke J; Besra, Gurdyal S

    2014-10-01

    Mycobacterium species have a highly complex and unique cell wall that consists of a large macromolecular structure termed the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex. This complex is essential for growth, survival and virulence of the human pathogen Mycobacterium tuberculosis, and is the target of several anti-tubercular drugs. The closely related species Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes and proteins involved in mAGP synthesis. This study examines the construction of a protein-protein interaction network for the major cell wall component arabinogalactan in C. glutamicum based on the use of a bacterial two-hybrid system. We have identified twenty-four putative homotypic and heterotypic protein interactions in vivo. Our results demonstrate an association between glycosyltransferases, GlfT1 and AftB, and interaction between the sub-units of decaprenylphosphoribose epimerase, DprE1 and DprE2. These analyses have also shown that AftB interacts with AftA, which catalyzes the addition of the first three arabinose units onto the galactan chain. Both AftA and AftB associate with other arabinofuranosyltransferases, including Emb and AftC, that elongate and branch the arabinan domain. Moreover, a number of proteins involved in arabinogalactan biosynthesis were shown to form dimers or multimers. These findings provide a useful recourse for understanding the biosynthesis and function of the mycobacterial cell wall, as well as providing new therapeutic targets.

  8. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.

  9. Visualizing Viral Protein Structures in Cells Using Genetic Probes for Correlated Light and Electron Microscopy

    PubMed Central

    Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.

    2015-01-01

    , and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760

  10. Redox Regulation of the AMP-Activated Protein Kinase

    PubMed Central

    Han, Yingying; Wang, Qilong; Song, Ping; Zhu, Yi; Zou, Ming-Hui

    2010-01-01

    Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death. Objectives The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC). Methods Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation. Results In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC) at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-NG-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor) blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol) pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC. Conclusion Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells. PMID:21079763

  11. A new function of Nell-1 protein in repressing adipogenic differentiation.

    PubMed

    James, Aaron W; Pan, Angel; Chiang, Michael; Zara, Janette N; Zhang, Xinli; Ting, Kang; Soo, Chia

    2011-07-22

    A theoretical inverse relationship has long been postulated for osteogenic and adipogenic differentiation (bone versus adipose tissue differentiation). This inverse relationship in theory at least partially underlies the clinical entity of osteoporosis, in which marrow mesenchymal stem cells (MSCs) have a predilection for adipose differentiation that increases with age. In the present study, we assayed the potential anti-adipogenic effects of Nell-1 protein (an osteoinductive molecule). Using 3T3-L1 (a human preadipocyte cell line) cells and human adipose-derived stromal cells (ASCs), we observed that adenoviral delivered (Ad)-Nell-1 or recombinant NELL-1 protein significantly reduced adipose differentiation across all markers examined (Oil red O staining, adipogenic gene expression [Pparg, Lpl, Ap2]). In a prospective fashion, Hedgehog signaling was assayed as potentially downstream of Nell-1 signaling in regulating osteogenic over adipogenic differentiation. In comparison to Ad-LacZ control, Ad-Nell-1 increased expression of hedgehog signaling markers (Ihh, Gli1, Ptc1). These studies suggest that Nell-1 is a potent anti-adipogenic agent. Moreover, Nell-1 signaling may inhibit adipogenic differentiation via a Hedgehog dependent mechanism.

  12. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  13. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  14. NDR proteins

    PubMed Central

    Jones, Alan M

    2010-01-01

    N-myc downregulated (NDR) genes were discovered more than fifteen years ago. Indirect evidence support a role in tumor progression and cellular differentiation, but their biochemical function is still unknown. Our detailed analyses on Arabidopsis NDR proteins (deisgnated NDR-like, NDL) show their involvement in altering auxin transport, local auxin gradients and expression level of auxin transport proteins. Animal NDL proteins may be involved in membrane recycling of E-cadherin and effector for the small GTPase. In light of these findings, we hypothesize that NDL proteins regulate vesicular trafficking of auxin transport facilitator PIN proteins by biochemically alterating the local lipid environment of PIN proteins. PMID:20724844

  15. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  16. Proteins (image)

    MedlinePlus

    ... is an important nutrient that builds muscles and bones and provides energy. Protein can help with weight control because it helps you feel full and satisfied from your meals. The healthiest proteins are the leanest. This means ...

  17. Dietary Proteins

    MedlinePlus

    ... and maintain bones, muscles and skin. We get proteins in our diet from meat, dairy products, nuts, and certain grains ... level of physical activity. Most Americans eat enough protein in their diet.

  18. Cellular mechanism through which parathyroid hormone-related protein induces proliferation in arterial smooth muscle cells: definition of an arterial smooth muscle PTHrP/p27kip1 pathway.

    PubMed

    Fiaschi-Taesch, Nathalie; Sicari, Brian M; Ubriani, Kiran; Bigatel, Todd; Takane, Karen K; Cozar-Castellano, Irene; Bisello, Alessandro; Law, Brian; Stewart, Andrew F

    2006-10-27

    Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP. The cyclin D/cdk-4,-6 system and its upstream regulators, the inhibitory kinases (INKs), are not appreciably influenced by PTHrP. In striking contrast, cyclin E/cdk-2 kinase activity is markedly increased by PTHrP, and this is a result of a specific, marked, PTHrP-induced proteasomal degradation of p27(kip1). Adenoviral restoration of p27(kip1) fully reverses PTHrP-induced cell cycle progression, indicating that PTHrP mediates its cell cycle acceleration in VSM via p27(kip1). In confirmation, adenoviral delivery of PTHrP to murine primary vascular smooth muscle cells (VSMCs) significantly decreases p27(kip1) expression and accelerates cell cycle progression. p27(kip1) is well known to be a central cell cycle regulatory molecule involved in both normal and pathological VSM proliferation and is a target of widely used drug-eluting stents. The current observations define a novel "PTHrP/p27(kip1) pathway" in the arterial wall and suggest that this pathway is important in normal arterial biology and a potential target for therapeutic manipulation of the arterial response to injury.

  19. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation.

    PubMed

    Lee, Jae Ho; Lee, Gha Young; Jang, Hagoon; Choe, Sung Sik; Koo, Seung-Hoi; Kim, Jae Bum

    2014-09-01

    Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c-interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c-interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20-dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20-induced SREBP1c ubiquitination down-regulates hepatic lipogenic activity upon PKA activation. RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation. Copyright

  20. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  1. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the