Science.gov

Sample records for adenoviral vector carrying

  1. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  2. GX1-mediated anionic liposomes carrying adenoviral vectors for enhanced inhibition of gastric cancer vascular endothelial cells.

    PubMed

    Xiong, Dan; Liu, Zhongbing; Bian, Tierong; Li, Juan; Huang, Wenjun; Jing, Pei; Liu, Li; Wang, Yunlong; Zhong, Zhirong

    2015-12-30

    Gastric cancer is a highly lethal malignancy and its 5-year survival rate remains depressed in spite of multiple treatment options. Targeting drug delivery to tumor vasculature may be a promising strategy for gastric cancer therapy, for it can block the nutrition source of tumor and inhibit the metastasis and invasion in a certain extent. In present study, we have prepared the drug-targeting delivery system of peptide GX1-mediated anionic liposomes carrying adenoviral vectors (GX1-Ad5-AL), in which the tumor suppressor gene of PTEN was integrated into DNA of Ad5 and the GX1 peptide could play targeting role to vascular of gastric cancer. The inhibition ability of GX1-Ad5-AL to human gastric cancer cell lines (SGC-7901) and human umbilical vein endothelial cells (HUVEC) was evaluated by MTT assay. Further, the cell migration assay was carried out in transwell inserts and the cells uptaking of GX1-Ad5-AL was detected by confocal laser scanning microscopy. The experimental results indicated that the average cell proliferation inhibition rates resulted from the drug delivery system of GX1-Ad5-AL in SGC-7901 and HUVEC were 68.36% and 64.13%, respectively which were higher than that resulted from GX1 or Ad5-AL. Meanwhile, results of cell migration experiment demonstrated that GX1-Ad5-AL could significantly suppress the migration of gastric cancer cell of SGC-7901. Moreover, both the imaging from confocal laser scanning microscopy and the quantitative analysis of fluorescence intensity showed that, GX1-Ad5-AL was more easily uptaken by SGC-7901 cells, as compared to Ad5-AL. Therefore, the formulation of GX1-Ad5-AL was effective for enhancing the inhibition effect and suppressing the migration of gastric cancer vascular endothelial cells.

  3. Bone formation in vivo induced by Cbfa1-carrying adenoviral vectors released from a biodegradable porous β-tricalcium phosphate (β-TCP) material

    NASA Astrophysics Data System (ADS)

    Uemura, Toshimasa; Kojima, Hiroko

    2011-06-01

    Overexpression of Cbfa1 (a transcription factor indispensable for osteoblastic differentiation) is expected to induce the formation of bone directly and indirectly in vivo by accelerating osteoblastic differentiation. Adenoviral vectors carrying the cDNA of Cbfa1/til-1(Adv-Cbf1) were allowed to be adsorbed onto porous blocks of β-tricalcium phosphate (β-TCP), a biodegradable ceramic, which were then implanted subcutaneously and orthotopically into bone defects. The adenoviral vectors were released sustainingly by biodegradation, providing long-term expression of the genes. Results of the subcutaneous implantation of Adv-Cbfa1-adsorbed β-TCP/osteoprogenitor cells suggest that a larger amount of bone formed in the pores of the implant than in the control material. Regarding orthotopic implantation into bone defects, the released Adv-Cbfa1 accelerated regeneration in the cortical bone, whereas it induced bone resorption in the marrow cavity. A safer gene transfer using a smaller amount of the vector was achieved using biodegradable porous β-TCP as a carrier.

  4. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  5. Using multivalent adenoviral vectors for HIV vaccination.

    PubMed

    Gu, Linlin; Li, Zan C; Krendelchtchikov, Alexandre; Krendelchtchikova, Valentina; Wu, Hongju; Matthews, Qiana L

    2013-01-01

    Adenoviral vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. For effective vaccine development it is often necessary to express or present multiple antigens to the immune system to elicit an optimal vaccine as observed preclinically with mosaic/polyvalent HIV vaccines or malaria vaccines. Due to the wide flexibility of Ad vectors they are an ideal platform for expressing large amounts of antigen and/or polyvalent mosaic antigens. Ad vectors that display antigens on their capsid surface can elicit a robust humoral immune response, the "antigen capsid-incorporation" strategy. The adenoviral hexon protein has been utilized to display peptides in the majority of vaccine strategies involving capsid incorporation. Based on our abilities to manipulate hexon HVR2 and HVR5, we sought to manipulate HVR1 in the context of HIV antigen display for the first time ever. More importantly, peptide incorporation within HVR1 was utilized in combination with other HVRs, thus creating multivalent vectors. To date this is the first report where dual antigens are displayed within one Ad hexon particle. These vectors utilize HVR1 as an incorporation site for a seven amino acid region of the HIV glycoprotein 41, in combination with six Histidine incorporation within HVR2 or HVR5. Our study illustrates that these multivalent antigen vectors are viable and can present HIV antigen as well as His6 within one Ad virion particle. Furthermore, mouse immunizations with these vectors demonstrate that these vectors can elicit a HIV and His6 epitope-specific humoral immune response.

  6. Emerging adenoviral vectors for stable correction of genetic disorders.

    PubMed

    Jager, Lorenz; Ehrhardt, Anja

    2007-08-01

    Recent drawbacks in treating patients with severe combined immunodeficiency disorders with retroviral vectors underline the importance of generating novel tools for stable transduction of mammalian cells. Substantial progress has been made over the recent years which may offer important steps towards stable and more importantly safer correction of genetic diseases. This article discusses recent advances for stable transduction of target cells based on adenoviral gene transfer. There is accumulating evidence that recombinant adenoviral vectors (AdVs) based on various human serotypes with a broad cellular tropism and adenoviruses (Ads) from different species will play an important role in future gene therapy applications. In combination with recombinant AdVs for somatic integration these gene transfer vectors offer high transduction efficiencies with potentially safer integration patterns. Other approaches for persistent transgene expression include excision of stable episomes from the adenoviral vector genome, but also long-term persistence of the complete adenoviral vector genome as an episomal DNA molecule was demonstrated and exemplified by the treatment of various genetic diseases in small and large animal models. This review displays advantages but also limitations of these Ad based vector systems. This is the perfect time to pursue such approaches because alternative strategies for stable transduction of mammalian cells undergoing many cell divisions are urgently needed. Looking into the future, we believe that a combination of different components from different viral vectors in concert with non-viral vector systems will be successful in designing significantly optimized transfer vehicles for a broad range of different genetic diseases.

  7. Enhanced Peptide of Prostate Cancer Using Targeted Adenoviral Vectors

    DTIC Science & Technology

    2005-06-01

    greater than that observed in tumors injected with control adenovirus (1.4 - 1..6% ID/g). Another adenovirus encoding for both SSTR2 and cytosine deaminase ...for treating prostate cancer xenografts which involves the use of an adenoviral vector encoding for both SSTR2 and the cytosine deaminase (CD) enzyme...SSTR2 and bacterial cytosine deaminase (CD) was performed in a manner similar to that previously described. The AdEasy system was used to generate the

  8. Adenoviral vector-based strategies against infectious disease and cancer

    PubMed Central

    Zhang, Chao; Zhou, Dongming

    2016-01-01

    ABSTRACT Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review, we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based vaccines are also discussed. PMID:27105067

  9. Chromatography purification of canine adenoviral vectors.

    PubMed

    Segura, María Mercedes; Puig, Meritxell; Monfar, Mercè; Chillón, Miguel

    2012-06-01

    Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ultracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarification and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contaminating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58-69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks.

  10. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  11. Vascular gene transfer from metallic stent surfaces using adenoviral vectors tethered through hydrolysable cross-linkers.

    PubMed

    Fishbein, Ilia; Forbes, Scott P; Adamo, Richard F; Chorny, Michael; Levy, Robert J; Alferiev, Ivan S

    2014-08-12

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  12. Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting

    PubMed Central

    Khare, Reeti; Chen, Christopher Y; Weaver, Eric A; Barry, Michael A

    2011-01-01

    Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral “sinks” must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect. PMID:21453281

  13. Circumventing Antivector Immunity: Potential Use of Nonhuman Adenoviral Vectors

    PubMed Central

    Podgorski, Iva I.; Downes, Nicholas; Alemany, Ramon

    2014-01-01

    Abstract Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles. PMID:24499174

  14. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors.

    PubMed

    Lopez-Gordo, Estrella; Podgorski, Iva I; Downes, Nicholas; Alemany, Ramon

    2014-04-01

    Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.

  15. Peptide targeting of adenoviral vectors to augment tumor gene transfer.

    PubMed

    Ballard, E N; Trinh, V T; Hogg, R T; Gerard, R D

    2012-07-01

    Adenovirus serotype 5 remains one of the most promising vectors for delivering genetic material to cancer cells for imaging or therapy, but optimization of these agents to selectively promote tumor cell infection is needed to further their clinical development. Peptide sequences that bind to specific cell surface receptors have been inserted into adenoviral capsid proteins to improve tumor targeting, often in the background of mutations designed to ablate normal ligand:receptor interactions and thereby reduce off target effects and toxicities in non-target tissues. Different tumor types also express highly variable complements of cell surface receptors, so a customized targeting strategy using a particular peptide in the context of specific adenoviral mutations may be needed to achieve optimal efficacy. To further investigate peptide targeting strategies in adenoviral vectors, we used a set of peptide motifs originally isolated using phage display technology that evince tumor specificity in vivo. To demonstrate their abilities as targeting motifs, we genetically incorporated these peptides into a surface loop of the fiber capsid protein to construct targeted adenovirus vectors. We then systematically evaluated the ability of these peptide targeted vectors to infect several tumor cell types, both in vitro and in vivo, in a variety of mutational backgrounds designed to reduce CAR and/or HSG-mediated binding. Results from this study support previous observations that peptide insertions in the HI loop of the fiber knob domain are generally ineffective when used in combination with HSG detargeting mutations. The evidence also suggests that this strategy can attenuate other fiber knob interactions, such as CAR-mediated binding, and reduce overall viral infectivity. The insertion of peptides into fiber proved more effective for targeting tumor cell types expressing low levels of CAR receptor, as this strategy can partially compensate for the very low infectivity of wild

  16. Adenoviral Vector-Mediated Gene Therapy for Gliomas: Coming of Age

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Wilson, Thomas J.; Calinescu, Alexandra; Paran, Christopher; Kamran, Neha; Koschmann, Carl; Moreno-Ayala, Mariela A.; Assi, Hikmat; Lowenstein, Pedro R.

    2014-01-01

    Introduction Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults; it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates’ brain. Importantly Ads have been safely administered within the tumor resection cavity in humans. Areas Covered Background on GBM and Ad vectors; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally we discuss the results of the human clinical trials for GBM that have used adenoviral vectors. Expert Opinion The transduction characteristics of Ad vectors, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases, encourages the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although it is large randomized phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM. PMID:24773178

  17. An Adenoviral Vector Based Vaccine for Rhodococcus equi

    PubMed Central

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D.; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  18. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development.

  19. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  20. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Adamo, Richard F.; Chorny, Michael; Levy, Robert J.; Alferiev, Ivan S.

    2014-01-01

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  1. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways.

    PubMed

    Kushwah, R; Oliver, J R; Cao, H; Hu, J

    2007-08-01

    Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors.

  2. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  3. Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents.

    PubMed

    Howard, Candace M; Forsberg, Flemming; Minimo, Corrado; Liu, Ji-Bin; Merton, Daniel A; Claudio, Pier Paolo

    2006-11-01

    We have evaluated if ultrasound imaging (US) and various commercially available contrast microbubbles can serve as a non-invasive systemically administered delivery vehicle for site-specific adenoviral-mediated gene transfer in vitro and in vivo. The contrast agents were tested for their ability to enclose and to protect an adenoviral vector carrying the GFP marker gene (Ad-GFP) into the microbubbles. We have also evaluated the ability of the innate immune system to inactivate free adenoviruses as well as unenclosed viruses adsorbed on the surface of the contrast agents and in turn the ability of the microbubbles to enclose and to protect the viral vectors from such agents. In vitro as well as in vivo, innate components of the immune system were able to serve as inactivating agents to clear free viral particles and unenclosed adenoviruses adsorbed on the microbubbles' surface. Systemic delivery of Ad-GFP enclosed into microbubbles in the tail vein of nude mice resulted in specific targeting of the GFP transgene. Both fluorescence microscopy and GFP immunohistochemistry demonstrated US guided specific transduction in the targeted cells only, with no uptake in either heart, lungs or liver using complement-pretreated Ad-GFP microbubbles. This approach enhances target specificity of US microbubble destruction as a delivery vehicle for viral-mediated gene transfer.

  4. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors

    PubMed Central

    Hanayama, Hiroyuki; Ohashi, Kazuo; Utoh, Rie; Shimizu, Hirofumi; Ise, Kazuya; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Tsuchiya, Hiroyuki; Okano, Teruo; Gotoh, Mitsukazu

    2015-01-01

    To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells. PMID:26858906

  5. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    PubMed

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+) T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+) T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+) T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  6. Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors.

    PubMed

    Brunetti-Pierri, N; Ng, P

    2008-04-01

    Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field.

  7. Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction.

    PubMed

    Fishbein, Ilia; Forbes, Scott P; Chorny, Michael; Connolly, Jeanne M; Adamo, Richard F; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    2013-09-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolyzable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37 °C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolyzable cross-linkers with structure-specific release kinetics.

  8. Adenoviral vectors for prodrug activation-based gene therapy for cancer

    PubMed Central

    Doloff, Joshua C.; Waxman, David J.

    2013-01-01

    Cancer cell heterogeneity is a common feature - both between patients diagnosed with the same cancer and within an individual patient’s tumor - and leads to widely different response rates to cancer therapies and the potential for the emergence of drug resistance. Diverse therapeutic approaches have been developed to combat the complexity of cancer, including individual treatment modalities designed to target tumor heterogeneity. This review discusses adenoviral vectors and how they can be modified to replicate in a cancer-specific manner and deliver therapeutic genes under multi-tiered regulation to target tumor heterogeneity, including heterogeneity associated with cancer stem cell-like subpopulations. Strategies that allow for combination of prodrug-activation gene therapy with a novel replication-conditional, heterogeneous tumor-targeting adenovirus are discussed, as are the benefits of using adenoviral vectors as tumor-targeting oncolytic vectors. While the anticancer activity of many adenoviral vectors has been well established in preclinical studies, only limited successes have been achieved in the clinic, indicating a need for further improvements in activity, specificity, tumor cell delivery and avoidance of immunogenicity. PMID:23869779

  9. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    PubMed Central

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L.; Bellamy, Scarlett L.; Betts, Michael R.

    2014-01-01

    ABSTRACT The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4+ T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4+ T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4+ T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4+ T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination. IMPORTANCE The possibility that vaccination with a human adenovirus 5 vector increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of human immunodeficiency virus (HIV) acquisition within the Step trial. In this study, we tested whether vaccination with a rhesus macaque-derived adenoviral vector in rhesus macaques enhances mucosal CD4+ T cell activation, the main cell target of simian immunodeficiency virus (SIV)/HIV. The results showed that vaccination with an adenoviral vector indeed increases activation of mucosal CD4+ T cells and potentially increases susceptibility to SIV

  10. Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration.

    PubMed

    Armendáriz-Borunda, Juan; Bastidas-Ramírez, Blanca Estela; Sandoval-Rodríguez, Ana; González-Cuevas, Jaime; Gómez-Meda, Belinda; García-Bañuelos, Jesús

    2011-11-01

    Gene therapy represents a promising approach in the treatment of several diseases. Currently, the ideal vector has yet to be designed; though, adenoviral vectors (Ad-v) have provided the most utilized tool for gene transfer due principally to their simple production, among other specific characteristics. Ad-v viability represents a critical variable that may be affected by storage or shipping conditions and therefore it is advisable to be assessed previously to protocol performance. The present work is unique in this matter, as the complete detailed process to obtain Ad-v of preclinical grade is explained. Amplification in permissive HEK-293 cells, purification in CsCl gradients in a period of 10 h, spectrophotometric titration of viral particles (VP) and titration of infectious units (IU), yielding batches of AdβGal, AdGFP, AdHuPA and AdMMP8, of approximately 10¹³-10¹⁴ VP and 10¹²-10¹³ IU were carried out. In vivo functionality of therapeutic AdHuPA and AdMMP8 was evidenced in rats presenting CCl₄-induced fibrosis, as more than 60% of fibrosis was eliminated in livers after systemic delivery through iliac vein in comparison with irrelevant AdβGal. Time required to accomplish the whole Ad-v production steps, including IU titration was 20 to 30 days. We conclude that production of Ad-v following standard operating procedures assuring vector functionality and the possibility to effectively evaluate experimental gene therapy results, leaving aside the use of high-cost commercial kits or sophisticated instrumentation, can be performed in a conventional laboratory of cell culture.

  11. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

    PubMed Central

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-01-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. PMID:27274908

  12. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells.

    PubMed

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-04-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.

  13. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy.

    PubMed

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Lyerly, H Kim

    2012-06-01

    Although cellular immunotherapy based on autolgous dendritic cells (DCs) targeting antigens expressed by metastatic cancer has demonstrated clinical efficacy, the logistical challenges in generating an individualized cell product create an imperative to develop alternatives to DC-based cancer vaccines. Particularly attractive alternatives include in situ delivery of antigen and activation signals to resident antigen-presenting cells (APCs), which can be achieved by novel fusion molecules targeting the mannose receptor and by recombinant viral vectors expressing the antigen of interest and capable of infecting DCs. A particular challenge in the use of viral vectors is the well-appreciated clinical obstacles to their efficacy, specifically vector-specific neutralizing immune responses. Because heterologous prime and boost strategies have been demonstrated to be particularly potent, we developed two novel recombinant vectors based on alphaviral replicon particles and a next-generation adenovirus encoding an antigen commonly overexpressed in many human cancers, carcinoembryonic antigen (CEA). The rationale for developing these vectors, their unique characteristics, the preclinical studies and early clinical experience with each, and opportunities to enhance their effectiveness will be reviewed. The potential of each of these potent recombinant vectors to efficiently generate clinically active anti-tumor immune response alone, or in combination, will be discussed.

  14. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  15. An efficient and scalable process for helper-dependent adenoviral vector production using polyethylenimine-adenofection.

    PubMed

    Dormond, E; Meneses-Acosta, A; Jacob, D; Durocher, Y; Gilbert, R; Perrier, M; Kamen, A

    2009-02-15

    Safety requirements for adenoviral gene therapy protocols have led to the development of the third generation of vectors commonly called helper-dependent adenoviral vectors (HDVs). HDVs have demonstrated a high therapeutic potential; however, the poor efficiency and reliability of the actual production process hampers further large-scale clinical evaluation of this new vector. The current HDV production methods involve a preliminary rescue step through transfection of adherent cell cultures by an HDV plasmid followed by a helper adenovirus (HV) infection. Amplification by serial co-infection of complementary cells allows an increase in the HDV titer. Using a HEK293 FLP/frt cell system in suspension culture, an alternative protocol to the current transfection/infection procedure was evaluated. In this work, the adenofection uses the HDV plasmid linked to the HV with the help of polyethylenimine (PEI) and has shown to outperform standard protocols by producing higher HDV yield. The influence of complex composition on the HDV production was examined by a statistical design. The optimized adenofection and amplification conditions were successively performed to generate HDV at the 3 L bioreactor scale. Following only two serial co-infection passages, up to 1.44 x 10(8) HDV infectious units/mL of culture were generated, which corresponded to 26% of the total particles produced. This production strategy, realized in cell suspension culture, reduced process duration and therefore the probability of vector recombination by introducing a cost-effective transfection protocol, ensuring production of high-quality vector stock.

  16. Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery

    PubMed Central

    Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima

    2014-01-01

    Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147

  17. Encapsulation of adenoviral vectors into chitosan-bile salt microparticles for mucosal vaccination.

    PubMed

    Lameiro, Maria Helena; Malpique, Rita; Silva, Ana Carina; Alves, Paula M; Melo, Eurico

    2006-11-01

    The objective of this study is the incorporation of adenoviral vectors into a microparticulate system adequate for mucosal delivery. Microencapsulation of the vectors was accomplished by ionotropic coacervation of chitosan, using bile salts as counter-anion. The process was optimized in order to promote high encapsulation efficiency, with a minimal loss of viral infectivity. The maintenance of sterility during all the encapsulation procedure was also taken into account. The principle relies on the simple addition of a solution containing adenoviral vectors to a solution of neutralized chitosan, under stirring. Some surfactants were added to the chitosan solution, to improve the efficiency of this process, such as Tween 80, and Pluronic F68 at 1% (w/v). Encapsulation efficiency higher than 84% was achieved with formulations containing sodium deoxycholate as counter-anion and Pluronic F68 as dispersant agent. The infectivity of the adenoviral vectors incorporated into microparticles was assessed by release assays in PBS and by direct inoculation in 293 and Caco-2 cells. The release in aqueous media was negligible but, when in contact with monolayers of the cells, an effective release of bioactive adenovirus was obtained. Our work shows that encapsulation in microparticles, not only appear to protect the adenovirus from the external medium, namely from low pH, but can also delay their release that is fully dependent on cell contact, an advantage for mucosal vaccination purposes. The formulations developed are able to maintain AdV infectivity and permit a delayed release of the bioactives that is promoted by digestion in situ of the microparticles by the cell monolayers. The onset of delivery is, that way, host-controlled. In view of these results, these formulations showed good properties for mucosal adenovirus delivery.

  18. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  19. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  20. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  1. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector

    PubMed Central

    Sasaki, Makoto; Mathis, J Michael; Jennings, Merilyn H; Jordan, Paul; Wang, Yuping; Ando, Tomoaki; Joh, Takashi; Alexander, J Steven

    2005-01-01

    Genetic deficiency in the expression of interleukin-10 (IL-10) is associated with the onset and progression of experimental inflammatory bowel disease (IBD). The clinical significance of IL-10 expression is supported by studies showing that immune-augmentation of IL-10 prevents inflammation and mucosal damage in animal models of colitis and in human colitis. Interleukin-10 (IL-10), an endogenous anti-inflammatory and immunomodulating cytokine, has been shown to prevent some inflammation and injury in animal and clinical studies, but the efficacy of IL-10 treatment remains unsatisfactory. We found that intra-peritoneal administration of adenoviral IL-10 to mice significantly reversed colitis induced by administration of 3% DSS (dextran sulfate), a common model of colitis. Adenoviral IL-10 (Ad-IL10) transfected mice developed high levels of IL-10 (394 +/- 136 pg/ml) within the peritoneal cavity where the adenovirus was expressed. Importantly, when given on day 4 (after the induction of colitis w/DSS), Ad-IL10 significantly reduced disease activity and weight loss and completely prevented histopathologic injury to the colon at day 10. Mechanistically, compared to Ad-null and DSS treated mice, Ad-IL10 and DSS-treated mice were able to suppress the expression of MAdCAM-1, an endothelial adhesion molecule associated with IBD. Our results suggest that Ad-IL10 (adenoviral IL-10) gene therapy of the intestine or peritoneum may be useful in the clinical treatment of IBD, since we demonstrated that this vector can reverse the course of an existing gut inflammation and markers of inflammation. PMID:16259632

  2. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale.

    PubMed

    Lesch, Hanna P; Heikkilä, Kati M; Lipponen, Eevi M; Valonen, Piia; Müller, Achim; Räsänen, Eva; Tuunanen, Tarja; Hassinen, Minna M; Parker, Nigel; Karhinen, Minna; Shaw, Robert; Ylä-Herttuala, Seppo

    2015-08-01

    Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors.

  3. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies.

    PubMed Central

    Lattanzi, L; Salvatori, G; Coletta, M; Sonnino, C; Cusella De Angelis, M G; Gioglio, L; Murry, C E; Kelly, R; Ferrari, G; Molinaro, M; Crescenzi, M; Mavilio, F; Cossu, G

    1998-01-01

    Ex vivo gene therapy of primary myopathies, based on autologous transplantation of genetically modified myogenic cells, is seriously limited by the number of primary myogenic cells that can be isolated, expanded, transduced, and reimplanted into the patient's muscles. We explored the possibility of using the MyoD gene to induce myogenic conversion of nonmuscle, primary cells in a quantitatively relevant fashion. Primary human and murine fibroblasts from skin, muscle, or bone marrow were infected by an E1-deleted adenoviral vector carrying a retroviral long terminal repeat-promoted MyoD cDNA. Expression of MyoD caused irreversible withdrawal from the cell cycle and myogenic differentiation in the majority (from 60 to 90%) of cultured fibroblasts, as defined by activation of muscle-specific genes, fusion into contractile myotubes, and appearance of ultrastructurally normal sarcomagenesis in culture. 24 h after adenoviral exposure, MyoD-converted cultures were injected into regenerating muscle of immunodeficient (severe combined immunodeficiency/beige) mice, where they gave rise to beta-galactosidase positive, centrally nucleated fibers expressing human myosin heavy chains. Fibers originating from converted fibroblasts were indistinguishable from those obtained by injection of control cultures of lacZ-transduced satellite cells. MyoD-converted murine fibroblasts participated to muscle regeneration also in immunocompetent, syngeneic mice. Although antibodies from these mice bound to adenoviral infected cells in vitro, no inflammatory infiltrate was present in the graft site throughout the 3-wk study period. These data support the feasibility of an alternative approach to gene therapy of primary myopathies, based on implantation of large numbers of genetically modified primary fibroblasts massively converted to myogenesis by adenoviral delivery of MyoD ex vivo. PMID:9593768

  4. Effects of an adenoviral vector containing a suicide gene fusion on growth characteristics of breast cancer cells.

    PubMed

    Kong, Heng; Liu, Chunli; Zhu, Ting; Huang, Zonghai; Yang, Liucheng; Li, Qiang

    2014-12-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV‑TK/GCV) and the cytosine deaminase/5‑fluorocytosine (CD/5‑FC) systems have been widely applied in suicide gene therapy for cancer. Although suicide gene therapy has been successfully used in vitro and in vivo studies, the number of studies on the effects of recombinant adenoviruses (Ads) containing suicide genes on target cancer cells is limited. The aim of this study was to examine whether recombinant Ads containing the CD/TK fusion gene affect cell proliferation of breast cancer cells in vitro. In the present study, we explored the use of a recombinant adenoviral vector to deliver the CD/TK fusion gene to the breast cancer cell line MCF‑7. We found that the recombinant adenoviral vector efficiently infected MCF‑7 cells. Western blot analysis revealed that CD and TK proteins are expressed in the infected cells. The infected breast cancer cells did not show any significant changes in morphology, ultrastructure, cell growth, and cell‑cycle distribution compared to the uninfected cells. This study revealed that the Ad‑vascular endothelial growth factor promoter (VEGFp)‑CD/TK vector is non‑toxic to MCF‑7 cells at the appropriate titer. Our results indicate that it is feasible to use a recombinant adenoviral vector containing the CD/TK fusion gene in suicide gene therapy to target breast cancer cells.

  5. Co-Expression of Tumor Antigen and Interleukin-2 From an Adenoviral Vector Augments the Efficiency of Therapeutic Tumor Vaccination

    PubMed Central

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nielsen, Karen Nørgaard; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Holst, Peter Johannes

    2014-01-01

    We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8+ T-cell response. Here we describe a new adenoviral vaccine vector approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following vaccination with the IL-2 expressing construct, these mice were able to raise a delayed but substantial CD8+ T-cell response, and to control melanoma growth nearly as efficaciously as similarly vaccinated WT mice. Taken together, these results demonstrate that current vaccine vectors can be improved and even tailored to meet specific demands: in the context of therapeutic vaccination, the capacity to promote an augmented effector T-cell response. PMID:25023330

  6. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    PubMed Central

    Coughlan, Lynda; Alba, Raul; Parker, Alan L.; Bradshaw, Angela C.; McNeish, Iain A.; Nicklin, Stuart A.; Baker, Andrew H.

    2010-01-01

    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated

  7. Construction and characterization of adenoviral vectors for the delivery of TALENs into human cells.

    PubMed

    Holkers, Maarten; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-09-01

    Transcription activator-like effector nucleases (TALENs) are designed to cut the genomic DNA at specific chromosomal positions. The resulting DNA double strand break activates cellular repair pathways that can be harnessed for targeted genome modifications. TALENs thus constitute a powerful tool to interrogate the function of DNA sequences within complex genomes. Moreover, their high DNA cleavage activity combined with a low cytotoxicity make them excellent candidates for applications in human gene therapy. Full exploitation of these large and repeat-bearing nucleases in human cell types will benefit largely from using the adenoviral vector (AdV) technology. The genetic stability and the episomal nature of AdV genomes in conjunction with the availability of a large number of AdV serotypes able to transduce various human cell types make it possible to achieve high-level and transient expression of TALENs in numerous target cells, regardless of their mitotic state. Here, we describe a set of protocols detailing the rescue, propagation and purification of TALEN-encoding AdVs. Moreover, we describe procedures for the characterization and quantification of recombinant viral DNA present in the resulting AdV preparations. The protocols are preceded by information about their underlying principles and applied in the context of second-generation capsid-modified AdVs expressing TALENs targeted to the AAVS1 "safe harbor" locus on human chromosome 19.

  8. Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors

    PubMed Central

    SUN, Q.F.; ZHAO, X.N.; PENG, C.L.; HAO, Y.T.; ZHAO, Y.P.; JIANG, N.; XUE, H.; GUO, J.Z.; YUN, C.H.; CONG, B.; ZHAO, X.G.

    2015-01-01

    Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor-specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd-CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy. PMID:26323510

  9. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  10. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    PubMed Central

    Hulin-Curtis, S L; Uusi-Kerttula, H; Jones, R; Hanna, L; Chester, J D; Parker, A L

    2016-01-01

    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer. PMID:27229159

  11. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1.

    PubMed

    Castello, R; Borzone, R; D'Aria, S; Annunziata, P; Piccolo, P; Brunetti-Pierri, N

    2016-02-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT), which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate that ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Toward this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared with saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with ethylene glycol, a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy.

  12. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    SciTech Connect

    Kanagawa, Naoko; Koretomo, Ryosuke; Murakami, Sayaka |; Sakurai, Fuminori; Mizuguchi, Hiroyuki |; Nakagawa, Shinsaku; Fujita, Takuya |; Yamamoto, Akira; Okada, Naoki |

    2008-05-10

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35{delta}RGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The {alpha}{sub v}-integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-{alpha}, and interferon-{alpha} in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of {alpha}{sub v}-integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes.

  13. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    PubMed Central

    Ruan, Merry ZC; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan HL

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  14. A Hybrid Adenoviral Vector System Achieves Efficient Long-Term Gene Expression in the Liver via piggyBac Transposition

    PubMed Central

    Smith, Ryan P.; Riordan, Jesse D.; Feddersen, Charlotte R.

    2015-01-01

    Abstract Much research has gone into the development of hybrid gene delivery systems that combine the broad tropism and efficient transduction of adenoviral vectors with the ability to achieve stable expression of cargo genes. In addition to gene therapy applications, such a system has considerable advantages for studies of gene function in vivo, permitting fine-tuned genetic manipulation with higher throughput than can be achieved using standard transgenic and DNA targeting techniques. Existing strategies are limited, however, by low integration efficiencies, small cargo capacity, and/or a dependence on target cell division. The utility of this approach could be enhanced by a system that provides all of the following: (1) efficient delivery, (2) stable expression in a high percentage of target cells (whether mitotic or not), (3) large cargo capacity, (4) flexibility to use with a wide range of additional experimental conditions, and (5) simple experimental technique. Here we report the initial characterization of a hybrid system that meets these criteria by utilizing piggyBac (PB) transposition to achieve genomic integration from adenoviral vectors. We demonstrate stable expression of an adenovirus (Ad)-PB-delivered reporter gene in ∼20–40% of hepatocytes following standard tail vein injection. Its high efficiency and flexibility relative to existing hybrid adenoviral gene delivery approaches indicate a considerable potential utility of the Ad-PB system for therapeutic gene delivery and in vivo studies of gene function. PMID:25808258

  15. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  16. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  17. PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice.

    PubMed

    Leggiero, E; Astone, D; Cerullo, V; Lombardo, B; Mazzaccara, C; Labruna, G; Sacchetti, L; Salvatore, F; Croyle, M; Pastore, L

    2013-12-01

    Helper-dependent adenoviral (HD-Ad) vectors have great potential for gene therapy applications; however, their administration induces acute toxicity that impairs safe clinical applications. We previously observed that PEGylation of HD-Ad vectors strongly reduces the acute response in murine and primate models. To evaluate whether PEGylated HD-Ad vectors combine reduced toxicity with the correction of pathological phenotypes, we administered an HD-Ad vector expressing the human apolipoprotein A-I (hApoA-I) to low-density lipoprotein (LDL)-receptor-deficient mice (a model for familial hypercholesterolemia) fed a high-cholesterol diet. Mice were treated with high doses of HD-Ad-expressing apo A-I or its PEGylated version. Twelve weeks later, LDL levels were lower and high-density lipoprotein (HDL) levels higher in mice treated with either of the vectors than in untreated mice. After terminal killing, the areas of atherosclerotic plaques were much smaller in the vector-treated mice than in the control animals. Moreover, the increase in pro-inflammatory cytokines was lower and consequently the toxicity profile better in mice treated with PEGylated vector than in mice treated with the unmodified vector. This finding indicates that the reduction in toxicity resulting from PEGylation of HD-Ad vectors does not impair the correction of pathological phenotypes. It also supports the clinical potential of these vectors for the correction of genetic diseases.

  18. Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero.

    PubMed

    Bilbao, R; Reay, D P; Wu, E; Zheng, H; Biermann, V; Kochanek, S; Clemens, P R

    2005-01-01

    In utero gene delivery could offer the advantage of treatment at an early stage for genetic disorders such as Duchenne muscular dystrophy (DMD) in which the inevitable process of muscle degeneration is already initiated at birth. Furthermore, treatment of fetal muscle with adenoviral (Ad) vectors is attractive because of a high density of Ad receptors, easy vector accessibility due to immaturity of the basal lamina and the possibility of treating stem cells. Previously, we demonstrated the efficient transduction of fetal muscle by high-capacity Ad (HC-Ad) vectors. In this study, we compared HC-Ad and first-generation Ad (FG-Ad) vectors for longevity of lacZ transgene expression, toxicity and induction of immunity after direct vector-mediated in utero gene delivery to fetal C57BL/6 mice muscle 16 days after conception (E-16). The total amount of beta-galactosidase (betagal) expressed from the HC-Ad vector remained stable for the 5 months of the study, although the concentration of betagal decreased due to muscle growth. Higher survival rates that reflect lower levels of toxicity were observed in those mice transduced with an HC-Ad vector as compared to an FG-Ad vector. The toxicity induced by FG-Ad vector gene delivery was dependent on mouse strain and vector dose. Animals treated with either HC-Ad and FG-Ad vectors developed non-neutralizing antibodies against Ad capsid and antibodies against betagal, but these antibodies did not cause loss of vector genomes from transduced muscle. In a mouse model of DMD, dystrophin gene transfer to muscle in utero using an HC-Ad vector restored the dystrophin-associated glycoproteins. Our results demonstrate that long-term transgene expression can be achieved by HC-Ad vector-mediated gene delivery to fetal muscle, although strategies of vector integration may need to be considered to accommodate muscle growth.

  19. Correction of hyperbilirubinemia in gunn rats by surgical delivery of low doses of helper-dependent adenoviral vectors.

    PubMed

    Schmitt, Françoise; Pastore, Nunzia; Abarrategui-Pontes, Cecilia; Flageul, Maude; Myara, Anne; Laplanche, Sophie; Labrune, Philippe; Podevin, Guillaume; Nguyen, Tuan Huy; Brunetti-Pierri, Nicola

    2014-06-01

    Helper-dependent adenoviral (HDAd) vectors are attractive for liver-directed gene therapy because they can drive sustained high levels of transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potential lethal consequences. We have previously shown in nonhuman primates that delivery of HDAd in surgically isolated livers resulted in a significantly higher hepatic transduction with reduced systemic vector dissemination compared with intravenous delivery and multiyear transgene expression. Encouraged by these data, we have now employed a surgical vector delivery method in the Gunn rat, an animal model for Crigler-Najjar syndrome. After vector delivery into the surgically isolated liver, we show phenotypic correction at the low and clinically relevant vector dose of 1 × 10(11) vp/kg. Correction of hyperbilirubinemia and increased glucuronidation of bilirubin in bile was achieved for up to 1 year after vector administration. Surgical delivery of the vector was well tolerated without signs of acute or chronic toxicity. This method of delivery could thereby be a safer alternative to liver transplantation for long-term treatment of Crigler-Najjar syndrome type I.

  20. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  1. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig.

    PubMed

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-06-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function.

  2. Vascular administration of adenoviral vector soaked in absorbable gelatin sponge particles (GSP) prolongs the transgene expression in hepatocytes.

    PubMed

    Park, Byeong-Ho; Lee, Jin-Hwa; Jeong, Jin-Sook; Rha, Seo-Hee; Kim, Seung-Eun; Kim, Jae-Seok; Kim, Jeong-Man; Hwang, Tae-Ho

    2005-02-01

    Transcatheter hepatic arterial chemoembolization using emulsions composed of anticancer agents and gelatin sponges (GS) has been an efficient and safe palliative treatment for inoperable hepatocellular carcinoma (HCC). We employed catheter-mediated left hepatic arterial embolization (CHAE) to increase transduction efficiency of adenoviral vector in canine hepatocytes. The emulsion was prepared by mixing pieces of GSP and adenoviral vectors expressing recombinant beta-galactosidase (Ad.LacZ) or human hepatocyte growth factor (Ad.hHGF). After the left hepatic artery was catheterized under angiography, CHAE with Ad.LacZ or Ad.hHGF was performed. Livers were removed and stained for LacZ activity on day 7. The expression pattern of LacZ staining was either scarce or patchy around the central hilum of the hepatic artery, or was homogeneously distributed in whole lobes, depending on whether large or small pieces of GSP were used. Hematological and serum biochemical changes during CHAE exhibited only a few effects. The chronological measurement of serum HGF concentration showed that the duration of transgene expression was greater after CHAE with Ad.hHGF. A similar pattern of transgene expression was observed in a rat model after hepatic arterial embolization with differential doses of Ad.hHGF soaked in GSP. These results suggest that hepatic arterial embolization by transcatheter mediated infusion with a mixture of adenovirus-GSP could be used for human HCC.

  3. The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats.

    PubMed

    Chen, X; Zhao, X; Hu, Y; Lan, F; Sun, H; Fan, G; Sun, Y; Wu, J; Kong, W; Kong, W

    2015-11-01

    There is no definitive conclusion concerning the spread of viral vectors to the brain after a cochlear inoculation. In addition, some studies have reported different distribution profiles of viral vectors in the central auditory system after a cochlear inoculation. Thus, rats were grouped into either a mimetic aging group or a young group and transfected with adenoviral vectors (AdVs) by round window membrane injection. The distribution of AdV in central nervous system (CNS) was demonstrated in the two groups with transmission electron microscopy and immunofluorescence. We found that the AdV could disseminate into the CNS and that the neuronal damage and stress-induced GRP78 expression were reduced after transfection with PGC-1α, as compared with the control vectors, especially in the mimetic aging group. We also found that the host immune response was degraded in CNS in the mimetic aging group after transduction through the cochlea, as compared with the young group. These results demonstrate that viral vectors can disseminate into the CNS through the cochlea. Moreover, mimetic aging induced by D-galactose could facilitate the spread of viral vectors into the CNS from the cochlea. These findings may indicate a new potential approach for gene therapy against age-related diseases in the CNS.

  4. Chapter five--The development of transcription-regulated adenoviral vectors with high cancer-selective imaging capabilities.

    PubMed

    Jiang, Ziyue Karen; Sato, Makoto; Wu, Lily

    2012-01-01

    A clear benefit of molecular imaging is to enable noninvasive, repetitive monitoring of intrinsic signals within tumor cells as a means to identify the lesions as malignant or to assess the ability of treatment to perturb key pathways within the tumor cells. Due to the promising utility of molecular imaging in oncology, preclinical research to refine molecular imaging techniques in small animals is a blossoming field. We will first discuss the several imaging modalities such as fluorescent imaging, bioluminescence imaging, and positron emission tomography that are now commonly used in small animal settings. The indirect imaging approach, which can be adapted to a wide range of imaging reporter genes, is a useful platform to develop molecular imaging. In particular, reporter gene-based imaging is well suited for transcriptional-targeted imaging that can be delivered by recombinant adenoviral vectors. In this review, we will summarize transcription-regulated strategies used in adenoviral-mediated molecular imaging to visualize metastasis and monitor oncolytic therapy in preclinical models.

  5. Early life vaccination: Generation of adult-quality memory CD8+ T cells in infant mice using non-replicating adenoviral vectors

    PubMed Central

    Nazerai, Loulieta; Bassi, Maria R.; Uddback, Ida E. M.; Holst, Peter J.; Christensen, Jan P.; Thomsen, Allan R.

    2016-01-01

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate that memory CD8+ T cells induced by adenoviral vectors in infant mice are of good quality and match those elicited in the adult host. PMID:27929135

  6. Early life vaccination: Generation of adult-quality memory CD8+ T cells in infant mice using non-replicating adenoviral vectors.

    PubMed

    Nazerai, Loulieta; Bassi, Maria R; Uddback, Ida E M; Holst, Peter J; Christensen, Jan P; Thomsen, Allan R

    2016-12-08

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate that memory CD8+ T cells induced by adenoviral vectors in infant mice are of good quality and match those elicited in the adult host.

  7. Transcriptional Targeting of Primary and Metastatic Tumor Neovasculature by an Adenoviral Type 5 Roundabout4 Vector in Mice

    PubMed Central

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E.; Kaliberova, Lyudmila; Curiel, David T.; Arbeit, Jeffrey M.

    2013-01-01

    New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies. PMID:24376772

  8. Transcriptional targeting of primary and metastatic tumor neovasculature by an adenoviral type 5 roundabout4 vector in mice.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E; Kaliberova, Lyudmila; Curiel, David T; Arbeit, Jeffrey M

    2013-01-01

    New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies.

  9. Developing adenoviral vectors encoding therapeutic genes toxic to host cells: comparing binary and single-inducible vectors expressing truncated E2F-1.

    PubMed

    Gomez-Gutierrez, Jorge G; Rao, Xiao-Mei; Garcia-Garcia, Aracely; Hao, Hongying; McMasters, Kelly M; Zhou, H Sam

    2010-02-20

    Adenoviral vectors are highly efficient at transferring genes into cells and are broadly used in cancer gene therapy. However, many therapeutic genes are toxic to vector host cells and thus inhibit vector production. The truncated form of E2F-1 (E2Ftr), which lacks the transactivation domain, can significantly induce cancer cell apoptosis, but is also toxic to HEK-293 cells and inhibits adenovirus replication. To overcome this, we have developed binary- and single-vector systems with a modified tetracycline-off inducible promoter to control E2Ftr expression. We compared several vectors and found that the structure of expression cassettes in vectors significantly affects E2Ftr expression. One construct expresses high levels of inducible E2Ftr and efficiently causes apoptotic cancer cell death by activation of caspase-3. The approach developed in this study may be applied in other viral vectors for encoding therapeutic genes that are toxic to their host cells and/or inhibit vector propagation.

  10. Fibroblast growth factor 2-retargeted adenoviral vectors exhibit a modified biolocalization pattern and display reduced toxicity relative to native adenoviral vectors.

    PubMed

    Printz, M A; Gonzalez, A M; Cunningham, M; Gu, D L; Ong, M; Pierce, G F; Aukerman, S L

    2000-01-01

    Targeted vectors provide a number of advantages for systemic and local gene delivery strategies. Several groups have investigated the utility of using various ligands to alter the tropism of adenovirus (Ad) vectors. We have previously demonstrated that fibroblast growth factor (FGF) ligands can specifically target DNA transfection and Ad transduction through high-affinity FGF receptors (FGFRs). FGFRs are overexpressed in abnormally proliferating tissues, such as malignancies. The present studies explore the effects of retargeting with FGF2 on the tissue localization pattern and the systemic toxicity of Ad in mice. Results of semiquantitative PCR analyses indicate that the distribution of FGF2-Ad vector genome sequences after intravenous administration in mice is altered. Markedly lower amounts (10- to 20-fold) of FGF2-Ad localize to the liver when compared with native Ad. This decrease in liver deposition translates into a significant reduction in subsequent toxicity as measured by serum transaminases and histopathology in mice injected with FGF2-AdHSV-thymidine kinase with and without ganciclovir administration. In an intraperitoneal model of ovarian cancer, FGF2-Ad generates increased transgene expression in tumor tissue when compared with Ad. Taken together, these results indicate that the retargeting of Ad with FGF2 results in a more efficient vector system for systemic and regional gene therapy applications, with concomitant lower levels of systemic toxicity.

  11. Ocular Localization and Transduction by Adenoviral Vectors Are Serotype-Dependent and Can Be Modified by Inclusion of RGD Fiber Modifications

    PubMed Central

    Ueyama, Kazuhiro; Mori, Keisuke; Shoji, Takuhei; Omata, Hidekazu; Gehlbach, Peter L.; Brough, Douglas E.; Wei, Lisa L.; Yoneya, Shin

    2014-01-01

    Purpose To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration. Methods Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter. Results GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month. Conclusions Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases. PMID:25232844

  12. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Fang, Yu; Citra, Fudiman; Wang, Dong-An

    2015-09-01

    Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered - the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.

  13. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates.

    PubMed

    Brunetti-Pierri, Nicola; Ng, Thomas; Iannitti, David A; Palmer, Donna J; Beaudet, Arthur L; Finegold, Milton J; Carey, K Dee; Cioffi, William G; Ng, Philip

    2006-04-01

    Helper-dependent adenoviral vectors (HDAds) are attractive vectors for liver-directed gene therapy because they can mediate sustained, high-level transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potentially severe and lethal consequences. We hypothesize that the threshold to efficient hepatic transduction may be circumvented by delivering the vector into the surgically isolated liver via the portal vein. Total hepatic isolation was achieved by occluding hepatic inflow from the portal vein and hepatic artery and by occluding hepatic venous outflow at the inferior vena cava. We demonstrate in nonhuman primates that this approach resulted in significantly higher efficiency hepatic transduction with reduced systemic vector dissemination compared with systemic intravascular delivery. This method of delivery was associated with transient acute toxicity, the severity of which was variable. Importantly, stable, high levels of transgene expression were obtained for at least 665 days for one baboon and for at least 560 days for two baboons with no evidence of long-term toxicity.

  14. Transcriptional Targeting of Mature Dendritic Cells with Adenoviral Vectors via a Modular Promoter System for Antigen Expression and Functional Manipulation

    PubMed Central

    Deinzer, Andrea

    2016-01-01

    To specifically target dendritic cells (DCs) to simultaneously express different therapeutic transgenes for inducing immune responses against tumors, we used a combined promoter system of adenoviral vectors. We selected a 216 bp short Hsp70B′ core promoter induced by a mutated, constitutively active heat shock factor (mHSF) 1 to drive strong gene expression of therapeutic transgenes MelanA, BclxL, and IL-12p70 in HeLa cells, as well as in mature DCs (mDCs). As this involves overexpressing mHSF1, we first evaluated the resulting effects on DCs regarding upregulation of heat shock proteins and maturation markers, toxicity, cytokine profile, and capacity to induce antigen-specific CD8+ T cells. Second, we generated the two-vector-based “modular promoter” system, where one vector contains the mHSF1 under the control of the human CD83 promoter, which is specifically active only in DCs and after maturation. mHSF1, in turn, activates the Hsp70B′ core promotor-driven expression of transgenes MelanA and IL-12p70 in the DC-like cell line XS52 and in human mature and hence immunogenic DCs, but not in tolerogenic immature DCs. These in vitro experiments provide the basis for an in vivo targeting of mature DCs for the expression of multiple transgenes. Therefore, this modular promoter system represents a promising tool for future DC-based immunotherapies in vivo. PMID:27446966

  15. Improved efficacy and reduced toxicity by ultrasound-guided intrahepatic injections of helper-dependent adenoviral vector in Gunn rats.

    PubMed

    Pastore, Nunzia; Nusco, Edoardo; Piccolo, Pasquale; Castaldo, Sigismondo; Vaníkova, Jana; Vetrini, Francesco; Palmer, Donna J; Vitek, Libor; Ng, Philip; Brunetti-Pierri, Nicola

    2013-10-01

    Crigler-Najjar syndrome type I is caused by mutations of the uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) gene resulting in life-threatening increase of serum bilirubin. Life-long correction of hyperbilirubinemia was previously shown with intravenous injection of high doses of a helper-dependent adenoviral (HDAd) vector expressing UGT1A1 in the Gunn rat, the animal model of Crigler-Najjar syndrome. However, such high vector doses can activate an acute and potentially lethal inflammatory response with elevated serum interleukin-6 (IL-6). To overcome this obstacle, we investigated safety and efficacy of direct injections of low HDAd doses delivered directly into the liver parenchyma of Gunn rats. Direct hepatic injections performed by either laparotomy or ultrasound-guided percutaneous injections were compared with the same doses given by intravenous injections. A greater reduction of hyperbilirubinemia and increased conjugated bilirubin in bile were achieved with 1 × 10(11) vp/kg by direct liver injections compared with intravenous injections. In sharp contrast to intravenous injections, direct hepatic injections neither raised serum IL-6 nor resulted in thrombocytopenia. In conclusion, ultrasound-guided percutaneous injection of HDAd vectors into liver parenchyma resulted in improved hepatocyte transduction and reduced toxicity compared with systemic injections and is clinically attractive for liver-directed gene therapy of Crigler-Najjar syndrome.

  16. Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ing, Jordan; Crane, Ana M; Venken, Koen; Davis, Brian R; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50–64.6% after positive selection for vector integration, and 97.4–100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9–57.1% after positive selection and 87.5–100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6–16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10−3) necessitated negative selection for piggyBac-excision product isolation. PMID:27727248

  17. Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors.

    PubMed

    Palmer, Donna J; Grove, Nathan C; Ing, Jordan; Crane, Ana M; Venken, Koen; Davis, Brian R; Ng, Philip

    2016-10-11

    Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration, and 97.4-100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6-16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10(-3)) necessitated negative selection for piggyBac-excision product isolation.

  18. Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors.

    PubMed

    Palmer, Donna J; Grove, Nathan C; Ing, Jordan; Crane, Ana M; Venken, Koen; Davis, Brian R; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration, and 97.4-100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6-16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10(-3)) necessitated negative selection for piggyBac-excision product isolation.

  19. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells

    PubMed Central

    Maggio, Ignazio; Liu, Jin; Janssen, Josephine M.; Chen, Xiaoyu; Gonçalves, Manuel A. F. V.

    2016-01-01

    Mutations disrupting the reading frame of the ~2.4 Mb dystrophin-encoding DMD gene cause a fatal X-linked muscle-wasting disorder called Duchenne muscular dystrophy (DMD). Genome editing based on paired RNA-guided nucleases (RGNs) from CRISPR/Cas9 systems has been proposed for permanently repairing faulty DMD loci. However, such multiplexing strategies require the development and testing of delivery systems capable of introducing the various gene editing tools into target cells. Here, we investigated the suitability of adenoviral vectors (AdVs) for multiplexed DMD editing by packaging in single vector particles expression units encoding the Streptococcus pyogenes Cas9 nuclease and sequence-specific gRNA pairs. These RGN components were customized to trigger short- and long-range intragenic DMD excisions encompassing reading frame-disrupting exons in patient-derived muscle progenitor cells. By allowing synchronous and stoichiometric expression of the various RGN components, we demonstrate that dual RGN-encoding AdVs can correct over 10% of target DMD alleles, readily leading to the detection of Becker-like dystrophin proteins in unselected muscle cell populations. Moreover, we report that AdV-based gene editing can be tailored for removing mutations located within the over 500-kb major DMD mutational hotspot. Hence, this single DMD editing strategy can in principle tackle a broad spectrum of mutations present in more than 60% of patients with DMD. PMID:27845387

  20. Neonatal helper-dependent adenoviral vector gene therapy mediates correction of hemophilia A and tolerance to human factor VIII.

    PubMed

    Hu, Chuhong; Cela, Racel G; Suzuki, Masataka; Lee, Brendan; Lipshutz, Gerald S

    2011-02-01

    Neonatal gene therapy is a promising strategy for treating a number of congenital diseases diagnosed shortly after birth as expression of therapeutic proteins during postnatal life may limit the pathologic consequences and result in a potential "cure." Hemophilia A is often complicated by the development of antibodies to recombinant protein resulting in treatment failure. Neonatal administration of vectors may avoid inhibitory antibody formation to factor VIII (FVIII) by taking advantage of immune immaturity. A helper-dependent adenoviral vector expressing human factor VIII was administered i.v. to neonatal hemophilia A knockout mice. Three days later, mice produced high levels of FVIII. Levels declined rapidly with animal growth to 5 wk of age with stable factor VIII expression thereafter to >1 y of age. Decline in factor VIII expression was not related to cell-mediated or humoral responses with lack of development of antibodies to capsid or human factor VIII proteins. Subsequent readministration and augmentation of expression was possible as operational tolerance was established to factor VIII without development of inhibitors; however, protective immunity to adenovirus remained.

  1. A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo.

    PubMed

    Gu, Jian; Zhang, Lidong; Huang, Xuefeng; Lin, Tongyu; Yin, Min; Xu, Kai; Ji, Lin; Roth, Jack A; Fang, Bingliang

    2002-07-18

    Using a binary adenoviral system, we recently showed that the human telomerase reverse transcriptase (hTERT) promoter induces tumor-specific Bax gene expression. However, the strong cytotoxicity of Bax and other pro-apoptotic genes to packaging 293 cells has so far hindered construction of the desired single adenoviral vectors expressing toxic genes. We report here the construction of a single bicistronic adenoviral vector for tumor-specific Bax expression. The vector (Ad/gBax) utilizes the Tet-Off system and expresses a GFP/Bax fusion protein for easy detection. The hTERT promoter drives the expression of tTA, a transactivator capable of binding to TRE (tetracycline-responsive element) in the absence of tetracycline, which in turn induces expression of the GFP-Bax gene. The addition of tetracycline in 293 cells blocks the binding of tTA to TRE and substantially inhibits GFP-Bax expression and toxicity, thus allowing the packaging and production of Ad/gBax. Our data show that Ad/gBax could drive the high expression of GFP-Bax in tumor cells but not in normal cells and mouse tissues. Furthermore, the expression of GFP-Bax fusion protein elicited tumor-specific apoptosis in a variety of human cancer cells in vitro and in vivo at a level comparable to that induced by the binary system. Thus, Ad/gBax may become a potent therapeutic agent for the treatment of cancers.

  2. Gene Therapy of Disseminated Breast Cancer Using Adenoviral Vectors Targeted Through Immunological Methods

    DTIC Science & Technology

    1998-08-01

    vectors encoding the firefly luciferase and 13-galactosidase reporter genes. In addition to these, an adenovirus vector encoding for the cytosine ... deaminase (CD) gene will be used to perform therapeutic studies. The CD enzyme converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), a

  3. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs

    PubMed Central

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude. PMID:23127366

  4. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    PubMed

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  5. Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; Swadling, Leo; O’Hara, Geraldine; de Lara, Catherine; Baban, Dilair; Saghal, Natasha; Lee, Lian Ni; Marchi, Emanuele; Davis, Mark; Newell, Evan; Capone, Stefania; Folgori, Antonella; Barnes, Ellie; Klenerman, Paul

    2015-01-01

    Summary Following exposure to vaccines, antigen-specific CD8+ T cell responses develop as long-term memory pools. Vaccine strategies based on adenoviral vectors, e.g., those developed for HCV, are able to induce and sustain substantial CD8+ T cell populations. How such populations evolve following vaccination remains to be defined at a transcriptional level. We addressed the transcriptional regulation of divergent CD8+ T cell memory pools induced by an adenovector encoding a model antigen (beta-galactosidase). We observe transcriptional profiles that mimic those following infection with persistent pathogens, murine and human cytomegalovirus (CMV). Key transcriptional hallmarks include upregulation of homing receptors and anti-apoptotic pathways, driven by conserved networks of transcription factors, including T-bet. In humans, an adenovirus vaccine induced similar CMV-like phenotypes and transcription factor regulation. These data clarify the core features of CD8+ T cell memory following vaccination with adenovectors and indicate a conserved pathway for memory development shared with persistent herpesviruses. PMID:26586434

  6. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    PubMed Central

    Dasari, Vijayendra; Schuessler, Andrea; Smith, Corey; Wong, Yide; Miles, John J; Smyth, Mark J; Ambalathingal, George; Francis, Ross; Campbell, Scott; Chambers, Daniel; Khanna, Rajiv

    2016-01-01

    Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients. PMID:27606351

  7. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  8. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma

    PubMed Central

    Kim, Julius W.; Kane, J. Robert; Young, Jacob S.; Chang, Alan L.; Kanojia, Deepak; Morshed, Ramin A.; Miska, Jason; Ahmed, Atique U.; Balyasnikova, Irina V.; Han, Yu; Zhang, Lingjiao; Curiel, David T.; Lesniak, Maciej S.

    2015-01-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as “GliomaFF.” We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy. PMID:26058317

  9. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors.

    PubMed

    Ohbayashi, Fumi; Balamotis, Michael A; Kishimoto, Atsuhiro; Aizawa, Emi; Diaz, Arturo; Hasty, Paul; Graham, Frank L; Caskey, C Thomas; Mitani, Kohnosuke

    2005-09-20

    For gene therapy of inherited diseases, targeted integration/gene repair through homologous recombination (HR) between exogenous and chromosomal DNA would be an ideal strategy to avoid potentially serious problems of random integration such as cellular transformation and gene silencing. Efficient sequence-specific modification of chromosomes by HR would also advance both biological studies and therapeutic applications of a variety of stem cells. Toward these goals, we developed an improved strategy of adenoviral vector (AdV)-mediated HR and examined its ability to correct an insertional mutation in the hypoxanthine phosphoribosyl transferase (Hprt) locus in male mouse ES cells. The efficiency of HR was compared between four types of AdVs that contained various lengths of homologies at the Hprt locus and with various multiplicities of infections. The frequency of HR with helper-dependent AdVs (HD AdVs) with an 18.6-kb homology reached 0.2% per transduced cell at a multiplicity of infection of 10 genomes per cell. Detection of random integration at DNA levels by PCR revealed extremely high efficiency of 5% per cell. We also isolated and characterized chromosomal sites where HD AdVs integrated in a random manner. In contrast to retroviral, lentiviral, and adeno-associated viral vectors, which tend to integrate into genes, the integration sites of AdV was distributed randomly inside and outside genes. These findings suggest that HR mediated by HD AdVs is efficient and relatively safe and might be a new viable option for ex vivo gene therapy as well as a tool for chromosomal manipulation of a variety of stem cells.

  10. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  11. Development of Gutless Adenoviral Vectors Encoding Anti Angiogenic Proteins for Therapy of Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    B. Molecular cloning of recombination-inactivatable helper virus A plasmid containing a recombination-inactivatable helper virus genome has been...for gutless vectors, Months 1-18 A. Molecular cloning of conditionally-inactive helper genomes A P-deleted, I-Scel-flanked and El-E2-flipped...Months 1-18 A. Molecular cloning of conditionally inactive helper genomes: completed (see last year’s report). B. Evaluation of the I-Scel- and ore

  12. Retargeting of Gene Expression Using Endothelium Specific Hexon Modified Adenoviral Vector

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Lu, Zhi Hong; Preuss, Meredith A.; Barnes, Justin A.; Stockard, Cecil R.; Grizzle, William E.; Arbeit, Jeffrey M.; Curiel, David T.

    2013-01-01

    Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter were characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution. PMID:24210128

  13. Retargeting of gene expression using endothelium specific hexon modified adenoviral vector.

    PubMed

    Kaliberov, Sergey A; Kaliberova, Lyudmila N; Hong Lu, Zhi; Preuss, Meredith A; Barnes, Justin A; Stockard, Cecil R; Grizzle, William E; Arbeit, Jeffrey M; Curiel, David T

    2013-12-01

    Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter was characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution.

  14. Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

    PubMed Central

    Del Papa, Joshua; Parks, Robin J.

    2017-01-01

    Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics. PMID:28106842

  15. Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson's disease.

    PubMed

    Lapchak, P A; Araujo, D M; Hilt, D C; Sheng, J; Jiao, S

    1997-11-28

    A recombinant adenoviral vector encoding the human glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was used to express the neurotrophic factor GDNF in the unilaterally 6-hydroxydopamine (6-OHDA) denervated substantia nigra (SN) of adult rats ten weeks following the 6-OHDA injection. 6-OHDA lesions significantly increased apomorphine-induced (contralateral) rotations and reduced striatal and nigral dopamine (DA) levels by 99% and 70%, respectively. Ad-GDNF significantly (P < 0.01) decreased (by 30-40%) apomorphine-induced rotations in lesioned rats for up to two weeks following a single injection. Locomotor activity, assessed 7 days following the Ad-GDNF injection, was also significantly (P < 0.05) increased (by 300-400%). Two weeks after the Ad-GDNF injection, locomotor activity was still significantly increased compared to the Ad-beta-gal-injected 6-OHDA lesioned (control) group. Additionally, in Ad-GDNF-injected rats, there was a significant decrease (10-13%) in weight gain which persisted for approximately two weeks following the injection. Consistent with the behavioral changes, levels of DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were elevated (by 98% and 65%, respectively) in the SN, but not the striatum of Ad-GDNF-injected rats. Overall, a single Ad-GDNF injection had significant effects for 2-3 weeks following administration. These results suggest that virally delivered GDNF promotes the recovery of nigral dopaminergic tone (i.e.: increased DA and DOPAC levels) and improves behavioral performance (i.e.: decreased rotations, increased locomotion) in rodents with extensive nigrostriatal dopaminergic denervation. Moreover, our results suggest that viral delivery of trophic factors may be used eventually to treat neurodegenerative diseases such as Parkinson's disease.

  16. Highly efficient retinal gene delivery with helper-dependent adenoviral vectors

    PubMed Central

    Lam, Simon; Cao, Huibi; Wu, Jing; Duan, Rongqi; Hu, Jim

    2015-01-01

    There have been significant advancements in the field of retinal gene therapy in the past several years. In particular, therapeutic efficacy has been achieved in three separate human clinical trials conducted to assess the ability of adeno-associated viruses (AAV) to treat of a type of Leber’s congenital amaurosis caused by RPE65 mutations. However, despite the success of retinal gene therapy with AAV, challenges remain for delivering large therapeutic genes or genes requiring long DNA regulatory elements for controlling their expression. For example, Stargardt’s disease, a form of juvenile macular degeneration, is caused by defects in ABCA4, a gene that is too large to be packaged in AAV. Therefore, we investigated the ability of helper dependent adenovirus (HD-Ad) to deliver genes to the retina as it has a much larger transgene capacity. Using an EGFP reporter, our results showed that HD-Ad can transduce the entire retinal epithelium of a mouse using a dose of only 1 × 105 infectious units and maintain transgene expression for at least 4 months. The results demonstrate that HD-Ad has the potential to be an effective vector for the gene therapy of the retina. PMID:26161435

  17. Genetic modification of human embryonic stem cells with adenoviral vectors: differences of infectability between lines and correlation of infectability with expression of the coxsackie and adenovirus receptor.

    PubMed

    Brokhman, Irina; Pomp, Oz; Fishman, Lital; Tennenbaum, Tamar; Amit, Michal; Itzkovitz-Eldor, Joseph; Goldstein, Ronald S

    2009-04-01

    Adenovirus is an efficient vector for expression of transgenes in dividing and nondividing cells. However, very few studies of human embryonic stem cells (hESCs) have utilized adenoviral vectors. We examine here the ability of adenovirus to infect naive hESCs and the differentiated derivatives of multiple hESC lines. We found a striking variation in adenovirus infection rates between lines. The variability in infection rates was positively correlated with the expression of the coxsackievirus and adenovirus receptor, but not that of alpha(nu)-integrin. Adenoviral infection did not interfere with the expression of pluripotency markers, even after passaging. In addition, infection did not affect differentiation of hESC-derived neural precursors in vitro. We also found that green fluorescent protein expression mediated by adenovirus can be a useful marker for tracking hESC in xenografts. We conclude that adenovirus is a practical vector for genetic modification of naive hESC from most, but not all lines, but may be more generally useful for gene transfer into differentiated derivatives of hESC lines.

  18. Exogenous surfactant enhances the delivery of recombinant adenoviral vectors to the lung.

    PubMed

    Katkin, J P; Husser, R C; Langston, C; Welty, S E

    1997-01-20

    Somatic gene therapy for pulmonary diseases must be accomplished in vivo, requiring the spread of a gene transfer vector across a vast expanse of respiratory epithelium. Surfactant, a naturally occurring protein and lipid mixture used to treat the respiratory distress syndrome of prematurity, disperses rapidly and evenly throughout the lung. We employed exogenous bovine surfactant (Survanta beractant) as a carrier vehicle for pulmonary delivery of a recombinant adenovirus expressing beta-galactosidase (beta-Gal). Rats treated with an adenovirus-beractant mixture demonstrated more uniform lobar distribution of transgene expression than rats treated with the same amount of virus in saline. Tissue homogenates were examined for quantitative beta-Gal expression by reaction with o-nitrophenol beta-n-galactopyranoside (ONPG). The degree of beta-Gal activity was affected by both the volume and type of carrier used to deliver the virus. At low volumes (0.5 ml, 1.3 ml/kg), beractant-treated animals demonstrated significantly greater pulmonary beta-Gal activity than saline-treated animals (p < 0.002) and untreated controls. At high volume (1.2 ml, 4 ml/kg), average beta-Gal activity was similar between groups treated with beractant or saline, but was more variable within the saline treated group. Higher volumes of delivery medium were associated with increased levels of beta-Gal expression regardless of the carrier used. Survanta was well tolerated by the animals and did not affect the duration of transgene expression. Exogenous beractant provides a useful medium for delivering recombinant adenoviruses to the lung when diffuse distribution of transgene expression is desired.

  19. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3

    PubMed Central

    Suchanek, Amanda L.; Salati, Lisa M.

    2015-01-01

    Serine/arginine-rich splicing factor-3 (SRSF3), alternatively known as SRp20, is a member of the highly-conserved SR protein family of mRNA splicing factors. SRSF3 generally functions as an enhancer of mRNA splicing by binding to transcripts in a sequence-specific manner to both recruit and stabilize the binding of spliceosomal components to the mRNA. In liver, expression of SRSF3 is relatively low and its activity is increased in response to insulin and feeding a high carbohydrate diet. We sought to over-express SRSF3 in primary rat hepatocytes to identify regulatory targets. A standard adenoviral shuttle vector system containing an epitope-tagged SRSF3 under the transcriptional control of the CMV promoter could not be used to produce infectious adenoviral particles. SRSF3 over-expression in the packaging cell line prevented the production of infectious adenovirus particles by interfering with the viral splicing program. To circumvent this issue, SRSF3 expression from the shuttle vector was blocked by placing its expression under the control of the liver-specific albumin promoter. In this system, the FLAG-SRSF3 transgene is only expressed in the target cells (hepatocytes) but not in the packaging cell line. An additional benefit of the albumin promoter is that expression of the transgene does not require the addition of hormones or antibiotics to drive SRSF3 expression in the hepatocytes. Robust expression of FLAG-SRSF3 protein is detected in both HepG2 cells and primary rat hepatocytes infected with adenovirus prepared from this new shuttle vector. Furthermore, abundances of several known and suspected mRNA targets of SRSF3 action are increased in response to over-expression using this virus. This report details the construction of the albumin promoter-driven adenoviral shuttle vector, termed pmAlbAd5-FLAG.SRSF3, that can be used to generate functional adenovirus to express FLAG-SRSF3 specifically in liver. This vector would be suitable for over-expression of

  20. Recombinant adenoviral vector expressing HCV NS4 induces protective immune responses in a mouse model of Vaccinia-HCV virus infection: a dose and route conundrum.

    PubMed

    Singh, Shakti; Vedi, Satish; Li, Wen; Samrat, Subodh Kumar; Kumar, Rakesh; Agrawal, Babita

    2014-05-13

    Hepatitis C virus (HCV) leads to chronic infection in the majority of infected patients presumably due to failure or inefficiency of the immune responses generated. Both antibody and cellular immune responses have been suggested to be important in viral clearance. Non-replicative adenoviral vectors expressing antigens of interest are considered as attractive vaccine vectors for a number of pathogens. In this study, we sought to evaluate cellular and humoral immune responses against HCV NS4 protein using recombinant adenovirus as a vaccine vector expressing NS4 antigen. We have also measured the effect of antigen doses and routes of immunization on the quality and extent of the immune responses, especially their role in viral load reduction, in a recombinant Vaccinia-HCV (Vac-HCV) infection mouse model. Our results show that an optimum dose of adenovirus vector (2×10(7)pfu/mouse) administered intramuscularly (i.m.) induces high T cell proliferation, granzyme B-expressing CD8(+) T cells, pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-2 and IL-6, and antibody responses that can significantly reduce the Vac-HCV viral load in the ovaries of female C57BL/6 mice. Our results demonstrate that recombinant adenovirus vector can induce both humoral and cellular protective immunity against HCV-NS4 antigen, and that immunity is intricately controlled by route and dose of immunizing vector.

  1. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques

  2. A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory*

    PubMed Central

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D.; Brown, Anthony; Richardson, Rachel; Newell, Evan W.; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2015-01-01

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b. Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost. We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine. PMID:25378645

  3. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory.

    PubMed

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D; Brown, Anthony; Richardson, Rachel; Newell, Evan W; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Del Sorbo, Mariarosaria; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2014-11-05

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.

  4. Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis.

    PubMed

    Zhang, Xiong; Qi, Dong-Dong; Zhang, Ting-Ting; Chen, Qing-Xin; Wang, Guang-Zhi; Sui, Guang-Yu; Hao, Xue-Wei; Sun, Shouli; Song, Xue; Chen, Ying-Li

    2015-03-01

    The T42 peptide, generated from two active fragments of tumstatin, has been shown to have anti‑tumor activity. The adenoviral vector is the most frequently used vector in research and clinical trials for gene therapy. In the present study, the anti‑tumor activity of the T42 peptide and quadruple T42 (4xT42) peptide adenoviral vectors were elucidated for the first time, to the best of our knowledge. Human embryonic kidney 293 cells were infected with plasmid adenovirus (pAd)‑enhanced green fluorescent protein (EGFP)‑T42 or pAd‑EGFP‑4xT42 and the expression of the T42 and 4xT42 genes was confirmed by the identification of GFP expression and reverse transcription polymerase chain reaction experiments. The anti‑cancer effects of pAd‑EGFP‑T42 and pAd‑EGFP‑4xT42 on breast cancer cells in vivo and in vitro were subsequently investigated. The results indicated that the packaging of the recombinant adenoviruses with the viral titer was successful, following purification at 5x109 plaque forming units/ml. The results also revealed that the recombinant adenoviruses promoted apoptosis in MCF‑7 breast cancer cells and inhibited cancer growth. Through the analysis of caspase‑3, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein expression, it was demonstrated that the T42/4xT42 peptide may induce apoptosis via the mitochondrial pathway. In addition, mouse xenograft experiments confirmed that the T42 peptide inhibited tumor growth and reduced angiogenesis in vivo. In conclusion, the results of the present study indicated that the T42 and 4xT42 peptide genes, transfected by a recombinant adenovirus, may provide a potential novel strategy for the treatment of breast cancer.

  5. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    PubMed

    Kanagavelu, Saravana; Termini, James M; Gupta, Sachin; Raffa, Francesca N; Fuller, Katherine A; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S; Stone, Geoffrey W

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  6. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  7. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  8. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    PubMed Central

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  9. Standard Free Droplet Digital Polymerase Chain Reaction as a New Tool for the Quality Control of High-Capacity Adenoviral Vectors in Small-Scale Preparations

    PubMed Central

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E.

    2015-01-01

    Abstract High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy. PMID:25640117

  10. Standard free droplet digital polymerase chain reaction as a new tool for the quality control of high-capacity adenoviral vectors in small-scale preparations.

    PubMed

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E; Ehrhardt, Anja

    2015-02-01

    High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.

  11. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    PubMed

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major

  12. Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy.

    PubMed

    Tamura, Rodrigo Esaki; da Silva Soares, Rafael Bento; Costanzi-Strauss, Eugenia; Strauss, Bryan E

    2016-12-01

    Alternative treatments for cancer using gene therapy approaches have shown promising results and some have even reached the marketplace. Even so, additional improvements are needed, such as employing a strategically chosen promoter to drive expression of the transgene in the target cell. Previously, we described viral vectors where high-level transgene expression was achieved using a p53-responsive promoter. Here we present an adenoviral vector (AdPGp53) where p53 is employed to regulate its own expression and which outperforms a traditional vector when tested in a model of gene therapy for prostate cancer. The functionality of AdPGp53 and AdCMVp53 were compared in human prostate carcinoma cell lines. AdPGp53 conferred greatly enhanced levels of p53 protein and induction of the p53 target gene, p21, as well as superior cell killing by a mechanism consistent with apoptosis. DU145 cells were susceptible to induction of death with AdPGp53, yet PC3 cells were quite resistant. Though AdCMVp53 was shown to be reliable, extremely high-level expression of p53 offered by AdPGp53 was necessary for tumor suppressor activity in PC3 and DU145. In situ gene therapy experiments revealed tumor inhibition and increased overall survival in response to AdPGp53, but not AdCMVp53. Upon histologic examination, only AdPGp53 treatment was correlated with the detection of both p53 and TUNEL-positive cells. This study points to the importance of improved vector performance for gene therapy of prostate cancer.

  13. Adenoviral vectors modified by heparin-polyethyleneimine nanogels enhance targeting to the lung and show therapeutic potential for pulmonary metastasis in vivo.

    PubMed

    Wei, Wei; Mu, Yandong; Li, XiaoPeng; Gou, MaLing; Zhang, HaiLong; Luo, ShunTao; Men, Ke; Mao, YongQiu; Qian, ZhiYong; Yang, Li

    2011-12-01

    Polyethyleneimine (PEI) is a well-known cationic polymer that has previously been shown to have significant potential to deliver genes in vitro and in vivo. However, PEI is non-degradable and exhibits a high cytotoxicity as its molecular weight increases. The clinical application for systemic administration of adenoviral (Ad) vectors is limited, as these vectors do not efficiently penetrate solid tumor masses due to a common deficiency of Coxsackie Adenovirus Receptor (CAR) on the tumor surface. In this study, we conjugated low molecular weight PEI (Mn = 1,800) to heparin (Mn = 4,000-6,000) to create a new type of cationic degradable nanogel (HPEI) that was then used to modify Ad vectors. The resulting HPEI-Ad complexes were used to infect CT26 and HeLa cells in vitro. Additionally, the HPEI-Ad complexes were administrated in vivo via intravenous injection, and tissue distribution was assessed using luciferase assays; the therapeutic potential of HPEI-Ad complexes for pulmonary metastasis mediated by CT26 cells was also investigated. In vitro, HPEI-Ad complexes enhanced the transfection efficiency in CT26 cells, reaching 36.3% compared with 0.1% of the native adenovirus. In vivo, HPEI-Ad complexes exhibited greater affinity for lung tissue than the native adenovirus and effectively inhibited the growth of pulmonary metastases mediated by CT26 cells. Our results indicate that Ad vectors modified by HPEI nanogels to form HPEI-Ad complexes enhanced transfection efficiency in CT26 cells that lacked CAR, targeted to the lung and demostrated a potential therapy for pulmonary metastasis.

  14. Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs

    PubMed Central

    Alonso-Padilla, Julio; Papp, Tibor; Kaján, Győző L; Benkő, Mária; Havenga, Menzo; Lemckert, Angelique; Harrach, Balázs; Baker, Andrew H

    2016-01-01

    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes. PMID:26478249

  15. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors

    PubMed Central

    Hirsch, Matthew L.; Wolf, Sonya J.; Samulski, R.J.

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber’s congenital amaurosis. In addition to rAAV’s high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package “large” genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6–8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6–8, 2010; Duan et al., J Virol 73(1):161–169, 1999; Duan et al., J Virol 72(11):8568–8577, 1998; Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002). This method involves “splitting” the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002; Ghosh et al., Mol Ther 16(1):124–130, 2008; Ghosh et al., Mol Ther 15

  16. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Prior, Julie L; Leib, Daniel J; Chauchereau, Anne; Sehn, Jennifer K; Curiel, David T; Arbeit, Jeffrey M

    2017-01-17

    While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.

  17. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse.

  18. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  19. Enhancement of Protective Efficacy through Adenoviral Vectored Vaccine Priming and Protein Boosting Strategy Encoding Triosephosphate Isomerase (SjTPI) against Schistosoma japonicum in Mice

    PubMed Central

    Dai, Yang; Wang, Xiaoting; Tang, Jianxia; Zhao, Song; Xing, Yuntian; Dai, Jianrong; Jin, Xiaolin; Zhu, Yinchang

    2015-01-01

    Background Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice. Methodology/Principal Findings Adenoviral vectored vaccine (rAdV-SjTPI.opt) and recombinant protein vaccine (rSjTPI) were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice. Conclusions/Significance The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China. PMID:25793406

  20. Sublingual administration of a helper-dependent adenoviral vector expressing the codon-optimized soluble fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in mice.

    PubMed

    Fu, Yuan-hui; Jiao, Yue-Ying; He, Jin-sheng; Giang, Gui-Yuan; Zhang, Wei; Yan, Yi-Fei; Ma, Yao; Hua, Ying; Zhang, Ying; Peng, Xiang-Lei; Shi, Chang-Xin; Hong, Tao

    2014-05-01

    Sublingual (s.l.) immunization has been described as a convenient and safe way to induce mucosal immune responses in the respiratory and genital tracts. We constructed a helper-dependent adenoviral (HDAd) vector expressing a condon-optimized soluble fusion glycoprotein (sFsyn) of respiratory syncytial virus (HDAd-sFsyn) and explored the potential of s.l. immunization with HDAd-sFsyn to stimulate immune responses in the respiratory mucosa. The RSV specific systemic and mucosal immune responses were generated in BALB/c mice, and the serum IgG with neutralizing activity was significantly elevated after homologous boost with s.l. application of HDAd-sFsyn. Humoral immune responses could be measured even 14weeks after a single immunization. Upon challenge, s.l. immunization with HDAd-sFsyn displayed an effective protection against RSV infection. These findings suggest that s.l. administration of HDAd-sFsyn acts as an effective and safe mucosal vaccine against RSV infection, and may be a useful tool in the prevention of RSV infection.

  1. Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice

    SciTech Connect

    Fu, Yuanhui; He, Jinsheng; Zheng, Xianxian; Wu, Qiang; Zhang, Mei; Wang, Xiaobo; Wang, Yan; Xie, Can; Tang, Qian; Wei, Wei; Wang, Min; Song, Jingdong; Qu, Jianguo; Zhang, Ying; Wang, Xin; Hong, Tao

    2009-04-17

    Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.

  2. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis

    PubMed Central

    Dolzhikova, Inna V.; Shcherbinin, Dmitry N.; Zubkova, Olga V.; Ivanova, Tatiana I.; Tukhvatulin, Amir I.; Shmarov, Maxim M.; Logunov, Denis Y.; Naroditsky, Boris S.; Gintsburg, Aleksandr L.

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection. PMID:26962869

  3. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch.

    PubMed

    Gaillet, Bruno; Gilbert, Rénald; Amziani, Rachid; Guilbault, Claire; Gadoury, Christine; Caron, Antoine W; Mullick, Alaka; Garnier, Alain; Massie, Bernard

    2007-01-01

    To facilitate and accelerate the production of eukaryotic proteins with correct post-translational modifications, we have developed a protein production system based on the transduction of Chinese hamster ovary (CHO) cells using adenovirus vectors (AdVs). We have engineered a CHO cell line (CHO-cTA) that stably expresses the transactivator (cTA) of our newly developed cumate gene-switch transcription system. This cell line is adapted to suspension culture and can grow in serum-free and protein-free medium. To increase the transduction level of AdVs, we have also generated a cell line (CHO-cTA-CAR) that expresses additional amounts of the coxackievirus and adenovirus receptor (CAR) on its surface. Recombinant protein production was tested using an AdV carrying the secreted alkaline phosphatase (SEAP) under the control of the CR5 promoter, which is strongly and specifically activated by binding to cTA. The SEAP expression was linked to the expression of the green fluorescent protein (GFP) through an internal ribosome entry site (IRES) to facilitate titration of the AdV. We monitored SEAP expression on a daily basis for 9 days after transduction of CHO-cTA and CHO-cTA-CAR using different quantities of AdVs at 37 and 30 degrees C. Incubation at the latter temperature increased the production of SEAP at least 10-fold, and the presence of CAR increased the transduction level of the AdV. Maximum SEAP production (63 mg/L) was achieved at 6-7 days post-infection at 30 degrees C by transducing CHO-cTA-CAR with 500 infectious particles/cell. Because numerous AdVs can now be generated within a few weeks and large-scale production of AdVs is now a routine procedure, this system could be used to produce rapidly milligram quantities of a battery of recombinant proteins as well as for large-scale protein production.

  4. Intratracheal Instillation of High Dose Adenoviral Vectors Is Sufficient to Induce Lung Injury and Fibrosis in Mice

    PubMed Central

    Zhou, Qiyuan; Chen, Tianji; Bozkanat, Melike; Ibe, Joyce Christina F.; Christman, John W.; Raj, J. Usha; Zhou, Guofei

    2014-01-01

    Rationale Replication deficient adenoviruses (Ad) vectors are common tools in gene therapy. Since Ad vectors are known to activate innate and adaptive immunity, we investigated whether intratracheal administration of Ad vectors alone is sufficient to induce lung injury and pulmonary fibrosis. Methods We instilled Ad viruses ranging from 107 to 1.625×109 ifu/mouse as well as the same volume of PBS and bleomycin. 14 and 21 days after administration, we collected bronchoalveolar lavage fluid (BALF) and mouse lung tissues. We measured the protein concentration, total and differential cell counts, and TGF-β1 production, performed Trichrome staining and Sircol assay, determined gene and protein levels of profibrotic cytokines, MMPs, and Wnt signaling proteins, and conducted TUNEL staining and co-immunofluorescence for GFP and α-SMA staining. Results Instillation of high dose Ad vectors (1.625×109 ifu/mouse) into mouse lungs induced high levels of protein content, inflammatory cells, and TGF-β1 in BALF, comparable to those in bleomycin-instilled lungs. The collagen content and mRNA levels of Col1a1, Col1a2, PCNA, and α-SMA were also increased in the lungs. Instillation of both bleomycin and Ad vectors increased expression levels of TNFα and IL-1β but not IL-10. Instillation of bleomycin but not Ad increased the expression of IL-1α, IL-13 and IL-16. Treatment with bleomycin or Ad vectors increased expression levels of integrin α1, α5, and αv, MMP9, whereas treatment with bleomycin but not Ad vectors induced MMP2 expression levels. Both bleomycin and Ad vectors induced mRNA levels of Wnt2, 2b, 5b, and Lrp6. Intratracheal instillation of Ad viruses also induced DNA damages and Ad viral infection-mediated fibrosis is not limited to the infection sites. Conclusions Our results suggest that administration of Ad vectors induces an inflammatory response, lung injury, and pulmonary fibrosis in a dose dependent manner. PMID:25551570

  5. A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery.

    PubMed

    Yun, Jonathan; Sonabend, Adam M; Ulasov, Ilya V; Kim, Dong-Hyun; Rozhkova, Elena A; Novosad, Valentyn; Dashnaw, Stephen; Brown, Truman; Canoll, Peter; Bruce, Jeffrey N; Lesniak, Maciej S

    2012-06-01

    In vivo tracking of gene therapy vectors challenges the investigation and improvement of biodistribution of these agents in the brain, a key feature for their targeting of infiltrative malignant gliomas. The glioma-targeting Ad5/3-cRGD gene therapy vector was covalently bound to super-paramagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPION) to monitor its distribution by MRI. Transduction of labeled and unlabeled vectors was assessed on the U87 glioma cell line and normal human astrocytes (NHA), and was higher in U87 compared to NHA, but was similar between labeled and unlabeled virus. An in vivo study was performed by intracranial subcortical injection of labeled-Ad5/3-cRGD particles into a pig brain. The labeled vector appeared in vivo as a T2-weighted hyperintensity and a T2-gradient echo signal at the injection site, persisting up to 72 hours post-injection. We describe a glioma-targeting vector that is labeled with SPION, thereby allowing for MRI detection with no change in transduction capability.

  6. Cytotoxic effect of a replication-incompetent adenoviral vector with cytosine deaminase gene driven by L-plastin promoter in hepatocellular carcinoma cells.

    PubMed

    Jung, Kihwa; Kim, Sunja; Lee, Kyumhyang; Kim, Changmin; Chung, Injae

    2007-06-01

    Great expectations are set on gene therapy for the treatment of malignant hepatocellular carcinomas (HCC) in East Asia. Recombinant adenoviral vectors (AV) have been developed in which the L-plastin promoter (LP) regulates the expression of transgenes, in a tumor cell specific manner, resulting in an increase in the therapeutic index. The development of the AdLPCD vector, a replication-incompetent AV, containing a transcription unit of LP and E. coli cytosine deaminase (CD), was reported in our previous work. In the present study, the AdLPCD vector combined with 5-fluorocytosine (5-FC) administration was tested to see if it might have significant utility in the chemosensitization of L-plastin positive HCC. Four HCC cell lines (HepG2, Chang Liver, Huh-7 and SK-Hep-1 cells) were investigated for the expression of LacZ after infecting the cells with the AdLPLacZ vector containing a 2.4 kb fragment of LP and the LacZ gene. Relatively high levels of LP activity were detected in HepG2, followed by Chang Liver cells; whereas, no promoter activity was found in Huh-7 and SK-Hep-1 cells, as determined by AdLPLacZ infection followed by the beta-galactosidase assay. In addition, the results of RT-PCR assays for the detection of endogenous L-plastin mRNA in these cells lines correlated well with those of the beta-galactosidase activity after infection with AdLPLacZ. Based on these data, the cytotoxic effect of AdLPCD/5-FC was evaluated in HepG2 cells. These results indicate that the CD gene delivered by AV could sensitize HepG2 cells to the prodrug, 5-FC. However, the observed effects were insufficient to cause the death of most of cells. This suggests that the screening of patients for an AdLP/5-FC strategy based on AdLPLacZ data might not always guarantee a good therapeutic outcome.

  7. An adenoviral vector expressing lipoprotein A, a major antigen of Mycoplasma mycoides subspecies mycoides, elicits robust immune responses in mice.

    PubMed

    Carozza, Marlène; Rodrigues, Valérie; Unterfinger, Yves; Galea, Sandra; Coulpier, Muriel; Klonjkowski, Bernard; Thiaucourt, François; Totté, Philippe; Richardson, Jennifer

    2015-01-01

    Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC), is a devastating respiratory disease of cattle. In sub-Saharan Africa, where CBPP is enzootic, live attenuated vaccines are deployed but afford only short-lived protection. In cattle, recovery from experimental MmmSC infection has been associated with the presence of CD4(+) T lymphocytes that secrete interferon gamma in response to MmmSC, and in particular to the lipoprotein A (LppA) antigen. In an effort to develop a better vaccine against CBPP, a viral vector (Ad5-LppA) that expressed LppA was generated from human adenovirus type 5. The LppA-specific immune responses elicited by the Ad5-LppA vector were evaluated in mice, and compared to those elicited by recombinant LppA formulated with a potent adjuvant. Notably, a single administration of Ad5-LppA, but not recombinant protein, sufficed to elicit a robust LppA-specific humoral response. After a booster administration, both vector and recombinant protein elicited strong LppA-specific humoral and cell-mediated responses. Ex vivo stimulation of splenocytes induced extensive proliferation of CD4(+) T cells for mice immunized with vector or protein, and secretion of T helper 1-associated and proinflammatory cytokines for mice immunized with Ad5-LppA. Our study - by demonstrating the potential of a viral-vectored prototypic vaccine to elicit prompt and robust immune responses against a major antigen of MmmSC - represents a first step in developing a recombinant vaccine against CBPP.

  8. Immunization with Hexon Modified Adenoviral Vectors Integrated with gp83 Epitope Provides Protection against Trypanosoma cruzi Infection

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Nde, Pius N.; Pratap, Siddharth; Lima, Maria F.; Villalta, Fernando; Matthews, Qiana L.

    2014-01-01

    Background Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary. Methodology/Principal Findings The “antigen capsid-incorporation” strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5) vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83). This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies. Conclusions/Significance This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses

  9. A Multi-Antigenic Adenoviral-Vectored Vaccine Improves BCG-Induced Protection of Goats against Pulmonary Tuberculosis Infection and Prevents Disease Progression

    PubMed Central

    Pérez de Val, Bernat; Vidal, Enric; Villarreal-Ramos, Bernardo; Gilbert, Sarah C.; Andaluz, Anna; Moll, Xavier; Martín, Maite; Nofrarías, Miquel; McShane, Helen; Vordermeier, H. Martin; Domingo, Mariano

    2013-01-01

    The “One world, one health” initiative emphasizes the need for new strategies to control human and animal tuberculosis (TB) based on their shared interface. A good example would be the development of novel universal vaccines against Mycobacterium tuberculosis complex (MTBC) infection. This study uses the goat model, a natural TB host, to assess the protective effectiveness of a new vaccine candidate in combination with Bacillus Calmette-Guerin (BCG) vaccine. Thirty-three goat kids were divided in three groups: Group 1) vaccinated with BCG (week 0), Group 2) vaccinated with BCG and boosted 8 weeks later with a recombinant adenovirus expressing the MTBC antigens Ag85A, TB10.4, TB9.8 and Acr2 (AdTBF), and Group 3) unvaccinated controls. Later on, an endobronchial challenge with a low dose of M. caprae was performed (week 15). After necropsy (week 28), the pulmonary gross pathology was quantified using high resolution Computed Tomography. Small granulomatous pulmonary lesions (< 0.5 cm diameter) were also evaluated through a comprehensive qualitative histopathological analysis. M. caprae CFU were counted from pulmonary lymph nodes. The AdTBF improved the effects of BCG reducing gross lesion volume and bacterial load, as well as increasing weight gain. The number of Ag85A-specific gamma interferon-producing memory T-cells was identified as a predictor of vaccine efficacy. Specific cellular and humoral responses were measured throughout the 13-week post-challenge period, and correlated with the severity of lesions. Unvaccinated goats exhibited the typical pathological features of active TB in humans and domestic ruminants, while vaccinated goats showed only very small lesions. The data presented in this study indicate that multi-antigenic adenoviral vectored vaccines boosts protection conferred by vaccination with BCG. PMID:24278420

  10. Regulation of Epithelial Differentiation in Rat Intestine by Intraluminal Delivery of an Adenoviral Vector or Silencing RNA Coding for Schlafen 3

    PubMed Central

    Kovalenko, Pavlo L.; Yuan, Lisi; Sun, Kelian; Kunovska, Lyudmyla; Seregin, Sergey; Amalfitano, Andrea; Basson, Marc D.

    2013-01-01

    Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome. PMID:24244554

  11. Targeting different types of human meningioma and glioma cells using a novel adenoviral vector expressing GFP-TRAIL fusion protein from hTERT promoter

    PubMed Central

    2011-01-01

    Objective The objective of this study was to evaluate the anti-tumor effects of Ad/gTRAIL (an adenoviral vector in which expression of GFP and TRAIL is driven by a human telomerase reverse transcriptase promoter, hTERT) on malignant meningiomas and gliomas. Background Gliomas and meningiomas are the two most common types of human brain tumors. Currently there is no effective cure for recurrent malignant meningiomas or for gliomas. Ad/gTRAIL has been shown to be effective in killing selected lung, colon and breast cancer cells, but there have been no studies reporting its antitumor effects on malignant meningiomas. Therefore, we tested the antitumor effect of Ad/gTRAIL for the first time in human malignant meningioma and glioma cell lines, and in intracranial M6 and U87 xenografts. Methods Materials and Methods: Human malignant meningioma and glioma cells were infected with adenoviruses, Ad/gTRAIL and Ad/CMV-GFP. Cell viability was determined by proliferation assay. FACS analysis and quantification of TRAIL were used to measure apoptosis in these cells. We injected Ad/gTRAIL viruses in intracranial M6 and U87 xenografts, and measured the brain tumor volume, quantified apoptosis by TUNEL assay in the brain tumor tissue. Results Our studies demonstrate that in vitro/in vivo treatment with Ad/gTRAIL virus resulted in significant increase of TRAIL activity, and elicited a greater tumor cell apoptosis in malignant brain tumor cells as compared to treatment with the control, Ad/CMV-GFP virus without TRAIL activity. Conclusions We showed for the first time that adenovirus Ad/gTRAIL had significant antitumor effects against high grade malignant meningiomas as well as gliomas. Although more work needs to be done, our data suggests that Ad/gTRAIL has the potential to be useful as a tool against malignant brain tumors. PMID:22035360

  12. Tuning Surface Charge and PEGylation of Biocompatible Polymers for Efficient Delivery of Nucleic Acid or Adenoviral Vector.

    PubMed

    Choi, Joung-Woo; Kim, Jaesung; Bui, Quang Nam; Li, Yi; Yun, Chae-Ok; Lee, Doo Sung; Kim, Sung Wan

    2015-08-19

    As an effective and safe strategy to overcome the limits of therapeutic nucleic acid or adenovirus (Ad) vectors for in vivo application, various technologies to modify the surface of vectors with nonimmunogenic/biocompatible polymers have been emerging in the field of gene therapy. However, the transfection efficacy of the polymer to transfer genetic materials is still relatively weak. To develop more advanced and effective polymers to deliver not only Ad vectors, but also nucleic acids, 6 biocompatible polymers were newly designed and synthesized to different sizes (2k, 3.4k, or 5k) of poly(ethylene) glycol (PEG) and different numbers of amine groups (2 or 5) based on methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-l-glutamate (PNLG). We characterized size distribution and surface charge of 6 PNLGs after complexation with either nucleic acid or Ad. Among all 6 PNLGs, the 5 amine group PNLG showed the strongest efficacy in delivering nucleic acid as well as Ad vectors. Interestingly, cellular uptake results showed higher uptake ability in Ad complexed with 2 amine group PNLG than Ad/5 amine group PNLG, suggesting that the size of Ad/PNLGs is more essential than the surface charge for cellular uptake in polymers with charges greater than 30 mV. Moreover, the endosome escape ability of Ad/PNLGs increased depending on the number of amine groups, but decreased by PEG size. Cancer cell killing efficacy and immune response studies of oncolytic Ad/PNLGs showed 5 amine group PNLG to be a more effective and safe carrier for delivering Ad. Overall, these studies provide new insights into the functional mechanism of polymer-based approaches to either nucleic acid or Ad/nanocomplex. Furthermore, the identified ideal biocompatible PNLG polymer formulation (5 amine/2k PEG for nucleic acid, 5 amine/5k PEG for Ad) demonstrated high transduction efficiency as well as therapeutic value (efficacy and safety) and thus has strong potential for in vivo therapeutic

  13. Adenoviral vectors coated with PAMAM dendrimer conjugates allow CAR independent virus uptake and targeting to the EGF receptor.

    PubMed

    Vetter, Alexandra; Virdi, Kulpreet S; Espenlaub, Sigrid; Rödl, Wolfgang; Wagner, Ernst; Holm, Per S; Scheu, Christina; Kreppel, Florian; Spitzweg, Christine; Ogris, Manfred

    2013-02-04

    Adenovirus type 5 (Ad) is an efficient gene vector with high gene transduction potential, but its efficiency depends on its native cell receptors coxsackie- and adenovirus receptor (CAR) for cell attachment and α(v)β(3/5) integrins for internalization. To enable transduction of CAR negative cancer cell lines, we have coated the negatively charged Ad by noncovalent charge interaction with cationic PAMAM (polyamidoamine) dendrimers. The specificity for tumor cell infection was increased by targeting the coated Ad to the epidermal growth factor receptor using the peptide ligand GE11, which was coupled to the PAMAM dendrimer via a 2 kDa PEG spacer. Particles were examined by measuring surface charge and size, the degree of coating was determined by transmission electron microscopy. The net positive charge of PAMAM coated Ad enhanced cellular binding and uptake leading to increased transduction efficiency, especially in low to medium CAR expressing cancer cell lines using enhanced green fluorescent protein or luciferase as transgene. While PAMAM coated Ad allowed for efficient internalization, coating with linear polyethylenimine induced excessive particle aggregation, elevated cellular toxicity and lowered transduction efficiency. PAMAM coating of Ad enabled successful transduction of cells in vitro even in the presence of neutralizing antibodies. Taken together, this study clearly proves noncovalent, charge-based coating of Ad vectors with ligand-equipped dendrimers as a viable strategy for efficient transduction of cells otherwise refractory to Ad infection.

  14. Induction of Specific Humoral and Cellular Immune Responses in a Mouse Model following Gene Fusion of HSP70C and Hantaan Virus Gn and S0.7 in an Adenoviral Vector

    PubMed Central

    Li, Kai; Wang, Fang; Zhang, Liang; Ye, Wei; Li, Puyuan; Zhang, Fanglin; Xu, Zhikai

    2014-01-01

    Heat shock proteins (HSPs) display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV) glycoprotein (GP) and nucleocapsid protein (NP) immunogenicity by heat shock protein 70 (HSP70), a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359–610 aa, HSP70C) to the Gn and 0.7 kb fragment of the NP (aa1–274-S0.7). C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7) and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV. PMID:24505421

  15. Helper-dependent adenoviral vectors are superior in vitro to first-generation vectors for endothelial cell-targeted gene therapy.

    PubMed

    Flynn, Rowan; Buckler, Joshua M; Tang, Chongren; Kim, Francis; Dichek, David A

    2010-12-01

    Arterial endothelial cells (EC) are attractive targets for gene therapy of atherosclerosis because they are accessible to hematogenous and catheter-based vector delivery and overlie atherosclerotic plaques. Vector-mediated expression-in EC-of proteins that mediate cholesterol transfer out of the artery wall and decrease inflammation could prevent and reverse atherosclerosis. However, clinical application of this strategy is limited by lack of a suitable gene-transfer vector. First-generation adenovirus (FGAd) is useful for EC gene transfer in proof-of-concept studies, but is unsuitable for atheroprotective human gene therapy because of limited duration of expression and proinflammatory effects. Moreover, others have reported detrimental effects of FGAd on critical aspects of EC physiology including proliferation, migration, and apoptosis. Here, we investigated whether helper-dependent adenovirus (HDAd) either alone or expressing an atheroprotective gene [apolipoprotein A-I (apoA-I)] could circumvent these limitations. In contrast to control FGAd, HDAd did not alter any of several critical EC physiologic functions (including proliferation, migration, apoptosis, metabolic activity, and nitric oxide (NO) production) and did not stimulate proinflammatory pathways [including expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and interleukin-6 (IL-6)]. Expression of apoA-I by HDAd reduced EC VCAM-1 expression. HDAd is a promising vector and apoA-I is a promising gene for atheroprotective human gene therapy delivered via EC.

  16. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector.

    PubMed

    Oka, K; Mullins, C E; Kushwaha, R S; Leen, A M; Chan, L

    2015-01-01

    Autosomal dominant familial hypercholesterolemia (FH) is a monogenic life-threatening disease. We tested the efficacy of low-density lipoprotein receptor (LDLR) gene therapy using helper-dependent adenoviral vector (HDAd) in a nonhuman primate model of FH, comparing intravenous injection versus intrahepatic arterial injection in the presence of balloon catheter-based hepatic venous occlusion. Rhesus monkeys heterozygous for mutant LDLR gene (LDLR+/-) developed hypercholesterolemia while on a high-cholesterol diet. We treated them with HDAd-LDLR either by intravenous delivery or by catheter-based intrahepatic artery injection. Intravenous injection of ⩽1.1 × 10(12) viral particles (vp) kg(-1) failed to have any effect on plasma cholesterol. Increasing the dose to 5 × 10(12) vp kg(-1) led to a 59% lowering of the plasma cholesterol that lasted for 30 days before it returned to pre-treatment levels by day 40. A further increase in dose to 8.4 × 10(12) vp kg(-1) resulted in severe lethal toxicity. In contrast, direct hepatic artery injection following catheter-based hepatic venous occlusion enabled the use of a reduced HDAd-LDLR dose of 1 × 10(12) vp kg(-1) that lowered plasma cholesterol within a week, and reached a nadir of 59% pre-treatment level on days 20-48 after injection. Serum alanine aminotransferase remained normal until day 48 when it went up slightly and stayed mildly elevated on day 72 before it returned to normal on day 90. In this monkey, the HDAd-LDLR-induced trough of hypocholesterolemia started trending upward on day 72 and returned to pre-treatment levels on day 120. We measured the LDL apolipoprotein B turnover rate at 10 days before, and again 79 days after, HDAd-LDLR treatment in two monkeys that exhibited a cholesterol-lowering response. HDAd-LDLR therapy increased the LDL fractional catabolic rate by 78 and 50% in the two monkeys, coincident with an increase in hepatic LDLR mRNA expression. In conclusion, HDAd-mediated LDLR

  17. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon-catheter hepatic delivery of helper-dependent adenoviral vector

    PubMed Central

    Oka, Kazuhiro; Mullins, Charles E.; Kushwaha, Rampratap S.; Leen, Ann M; Chan, Lawrence

    2014-01-01

    Autosomal dominant familial hypercholesterolemia (FH) is a monogenic life-threatening disease. We tested the efficacy of low-density lipoprotein receptor (LDLR) gene therapy using helper-dependent adenoviral vector (HDAd) in a nonhuman primate model of FH, comparing intravenous injection versus intrahepatic arterial injection in the presence of balloon catheter-based hepatic venous occlusion. Rhesus monkeys heterozygous for mutant LDLR gene (LDLR+/−) developed hypercholesterolemia while on a high cholesterol diet. We treated them with HDAd-LDLR either by intravenous delivery, or by catheter-based intra-hepatic artery injection. Intravenous injection of ≤1.1×1012 viral particles (vp)/kg failed to have any effect on plasma cholesterol. Increasing the dose to 5×1012 vp/kg led to a 59% lowering of the plasma cholesterol that lasted for 30 days before it returned to pretreatment levels by day 40. A further increase in dose to 8.4×1012 vp/kg resulted in severe lethal toxicity. In contrast, direct hepatic artery injection following catheter-based hepatic venous occlusion enabled the use of a reduced HDAd-LDLR dose of 1×1012 vp/kg that lowered plasma cholesterol within a week, and reached a nadir of 59% pretreatment level on days 20 to 48 after injection. Serum alanine aminotransaminase (ALT) remained normal until day 48 when it went up slightly and stayed mildly elevated on day 72 before it returned to normal on day 90. In this monkey, the HDAd-LDLR-induced trough of hypocholesterolemia started trending upwards on day 72 and returned to pretreatment levels on day 120. We measured the LDL apolipoprotein B turnover rate at 10 days before, and again 79 days after, HDAd-LDLR treatment in two monkeys that exhibited a cholesterol lowering response. HDAd-LDLR therapy increased the LDL fractional catabolic rate by 78% and 50%, respectively, in the two monkeys, coincident with an increase in hepatic LDLR mRNA expression. In conclusion, HDAd-mediated LDLR gene delivery to

  18. Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    PubMed Central

    Lewis, Travis B.; Glasgow, Joel N.; Glandon, Anya M.; Curiel, David T.; Standaert, David G.

    2010-01-01

    Background Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo. Methodology/Principal Findings Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. Conclusions/Significance These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development

  19. A single intratumoral injection of a fiber-mutant adenoviral vector encoding interleukin 12 induces remarkable anti-tumor and anti-metastatic activity in mice with Meth-A fibrosarcoma.

    PubMed

    Gao, Jian-Qing; Sugita, Toshiki; Kanagawa, Naoko; Iida, Keisuke; Eto, Yusuke; Motomura, Yoshiaki; Mizuguchi, Hiroyuki; Tsutsumi, Yasuo; Hayakawa, Takao; Mayumi, Tadanori; Nakagawa, Shinsaku

    2005-03-25

    Cytokine-encoding viral vectors are considered to be promising in cancer gene immunotherapy. Interleukin 12 (IL-12) has been used widely for anti-tumor treatment, but the administration route and tumor characteristics strongly influence therapeutic efficiency. Meth-A fibrosarcoma has been demonstrated to be insensitive to IL-12 treatment via systemic administration. In the present study, we developed an IL-12-encoding fiber-mutant adenoviral vector (AdRGD-IL-12) that showed enhanced gene transfection efficiency in Meth-A tumor cells, and the production of IL-12 p70 in the culture supernatant from transfected cells was confirmed by ELISA. In therapeutic experiments, a single low-dose (2 x 10(7) plaque-forming units) intratumoral injection of AdRGD-IL-12 elicited pronounced anti-tumor activity and notably prolonged the survival of Meth-A fibrosarcoma-bearing mice. Immunohistochemical staining revealed that the IL-12 vector induced the accumulation of T cells in tumor tissue. Furthermore, intratumoral administration of the vector induced an anti-metastasis effect as well as long-term specific immunity against syngeneic tumor challenge.

  20. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    PubMed

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  1. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  2. Comparative analysis of the magnitude, quality, phenotype, and protective capacity of simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and chimpanzee-derived recombinant adenoviral vector immunization.

    PubMed

    Quinn, Kylie M; Da Costa, Andreia; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W B; Darrah, Patricia A; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G D; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A; Gomez, Carmen E; Esteban, Mariano; Wyatt, Linda S; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T; Nabel, Gary J; Koup, Richard A; Seder, Robert A

    2013-03-15

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8(+) T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8(+) T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 10(7)-10(9) particle units), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8(+) T cell responses, from most to least, as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFN-γ(+)TNF-α(+)IL-2(+) and KLRG1(+)CD127(-)CD8(+) T cells, but strikingly ∼30-80% of memory CD8(+) T cells coexpressed CD127 and KLRG1. To further optimize CD8(+) T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ∼60% of total CD8(+) T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8(+) T cell responses compared with prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8(+) T cells for rapid effector function or robust long-term memory, respectively.

  3. [Construction of venus vector carrying IGFBP7 gene and its expression in K562 cells].

    PubMed

    Wu, Shui-Yan; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2012-02-01

    The aim of this study was to construct venus vector carrying the gene encoding insulin-like growth factor binding protein 7 (IGFBP7), which provides an effective platform for exploring the function of this gene in leukemia. After digestion by restriction endonuclease, the IGFBP7 gene was recombined with the transfer plasmid. The venus particles were packaged using 293T cells to transfect K562 cells, and identification was performed by means of flow cytometry, RT-PCR and Western blot. The results showed that the sequence of cloned IGFBP7 gene was the same as that in GenBank. The size of product restricted by BamHI was same as the predicted one. GFP expression was observed in 293T and K562 cells with the fluorescent microscopy and flow cytometry. The expression level of mRNA and protein of IGFBP7 was confirmed by RT-PCR and Western blotting in K562 cells. It is concluded that venus vector carrying IGFBP7 gene has been successfully constructed and provides basis for exploring function of IGFBP7 in K562 cells.

  4. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    SciTech Connect

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.; Freimuth, P.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  5. Viral Vector Production: Adenovirus.

    PubMed

    Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S

    2016-01-01

    Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.

  6. Robust antigen-specific humoral immune responses to sublingually delivered adenoviral vectors encoding HIV-1 Env: association with mucoadhesion and efficient penetration of the sublingual barrier.

    PubMed

    Domm, William; Brooks, Lauren; Chung, Hung Li; Feng, Changyong; Bowers, William J; Watson, Gene; McGrath, James L; Dewhurst, Stephen

    2011-09-16

    The efficient induction of virus-specific mucosal antibodies is an important unmet objective in Human Immunodeficiency Virus Type-1 (HIV-1) vaccine research. One promising approach is sublingual (SL) immunization. We examined the effectiveness of SL delivery of two different viral vectors: (i) a recombinant adenovirus (rAd5), and (ii) a Herpes Simplex Virus Type-1 amplicon vector (HSV-1). Initial in vitro videomicroscopy experiments showed that rAd5 particles were trapped in saliva (i.e., that Ad5 was mucoadhesive) - unlike HSV-1 virions, which migrated freely in both saliva and water. In vivo imaging studies in mice revealed that only the rAd5 vector efficiently transduced the SL epithelium. Consistent with this, SL delivery of an rAd5 encoding HIV-1 envelope glycoprotein (Env) resulted in robust antigen-specific antibody responses in plasma and in vaginal washes, whereas SL delivery of a HSV-1 amplicon vector encoding HIV-1 Env failed to elicit Env-specific antibodies. In contrast, both vectors elicited equivalent humoral responses following intramuscular (IM) delivery. Finally, SL delivery of the rAd5:Env vector resulted in elevated levels of Env-specific serum IgA, and vaginal IgA and IgG, when compared to IM delivery of the same vector. These results findings shed light on vector properties (mucoadhesion, penetration of the sublingual barrier) which may be important for the induction of potent humoral immune responses following sublingual vector administration. Our data also show that SL delivery of an Env-encoding rAd5 vector can elicit a potent antigen-specific mucosal antibody response in the absence of adjuvant. Overall, these findings support the further exploration of the SL delivery route for HIV-1 vaccine delivery.

  7. Robust Antigen-Specific Humoral Immune Responses to Sublingually Delivered Adenoviral Vectors Encoding HIV-1 Env: Association with Mucoadhesion and Efficient Penetration of the Sublingual Barrier

    PubMed Central

    Domm, William; Brooks, Lauren; Chung, Hung Li; Feng, Changyong; Bowers, William J.; Watson, Gene; McGrath, James L.; Dewhurst, Stephen

    2011-01-01

    The efficient induction of virus-specific mucosal antibodies is an important unmet objective in Human Immunodeficiency Virus Type-1 (HIV-1) vaccine research. One promising approach is sublingual (SL) immunization. We examined the effectiveness of SL delivery of two different viral vectors: (i) a recombinant adenovirus (rAd5), and (ii) a Herpes Simplex Virus Type-1 amplicon vector (HSV-1). Initial in vitro videomicroscopy experiments showed that rAd5 particles were trapped in saliva (i.e., that Ad5 was mucoadhesive) - unlike HSV-1 virions, which migrated freely in both saliva and water. In vivo imaging studies in mice revealed that only the rAd5 vector efficiently transduced the SL epithelium. Consistent with this, SL delivery of an rAd5 encoding HIV-1 envelope glycoprotein (Env) resulted in robust antigen-specific antibody responses in plasma and in vaginal washes, whereas SL delivery of a HSV-1 amplicon vector encoding HIV-1 Env failed to elicit Env-specific antibodies. In contrast, both vectors elicited equivalent humoral responses following intramuscular (IM) delivery. Finally, SL delivery of the rAd5:Env vector resulted in elevated levels of Env-specific serum IgA, and vaginal IgA and IgG, when compared to IM delivery of the same vector. These results findings shed light on vector properties (mucoadhesion, penetration of the sublingual barrier) which may be important for the induction of potent humoral immune responses following sublingual vector administration. Our data also show that SL delivery of an Env-encoding rAd5 vector can elicit a potent antigen-specific mucosal antibody response in the absence of adjuvant. Overall, these findings support the further exploration of the SL delivery route for HIV-1 vaccine delivery. PMID:21801777

  8. A Targeted Mulifunctional Platform for Imaging and Treatment of Breast Cancer and Its Metastases Based on Adenoviral Vectors and Magnetic Nanoparticles

    DTIC Science & Technology

    2008-02-01

    synthesis , and regulation of apoptosis (Bridge et al. 1989; Huang et al. 1989). With regards to E4, viral vectors with modifications other than...one of the advantages of HSV-based oncolytic vectors is the potential use of the antiviral drug acyclovir , should replication become out of...such as mRNA transport and shut-off of host cell protein synthesis (Ring 2002). Another type of CRAds are those with tissue specific promoters to

  9. Restoration of Full-Length SMN Promoted by Adenoviral Vectors Expressing RNA Antisense Oligonucleotides Embedded in U7 snRNAs

    PubMed Central

    Geib, Till; Hertel, Klemens J.

    2009-01-01

    Background Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping. Methodology/Principal Findings To correct SMN2 splicing, we use Adenovirus type 5–derived vectors to express SMN2-antisense U7 snRNA oligonucleotides targeting the SMN intron 7/exon 8 junction. Infection of SMA type I–derived patient fibroblasts with these vectors resulted in increased levels of exon 7 inclusion, upregulating the expression of SMN to similar levels as in non–SMA control cells. Conclusions/Significance These results show that Adenovirus type 5–derived vectors delivering U7 antisense oligonucleotides can efficiently restore full-length SMN protein and suggest that the viral vector-mediated oligonucleotide application may be a suitable therapeutic approach to counteract SMA. PMID:19997596

  10. A Targeted Multifunctional Platform for Imaging and Treatment of Breast Cancer and Its Metastases Based on Adenoviral Vectors and Magnetic Nanoparticles

    DTIC Science & Technology

    2007-08-01

    our main contact person. Dr. Nikles is the Associate Director of the Center for Materials for Information Technology and an expert in the synthesis ...DNA replication, mRNA transport and splicing, in- hibition of host cell protein synthesis , and regulation of apoptosis (Bridge et al. 1989; Huang et al...potential use of the antiviral drug acyclovir , should replication become out of control. HSV-1 based vectors have been tested in various phases of clinical

  11. Intradermal delivery of adenoviral type-35 vectors leads to high efficiency transduction of mature, CD8+ T cell-stimulating skin-emigrated dendritic cells.

    PubMed

    de Gruijl, Tanja D; Ophorst, Olga J A E; Goudsmit, Jaap; Verhaagh, Sandra; Lougheed, Sinéad M; Radosevic, Katarina; Havenga, Menzo J E; Scheper, Rik J

    2006-08-15

    Recombinant adenovirus (Ad) type 35 (rAd35) shows great promise as vaccine carrier with the advantage of low pre-existing immunity in human populations, in contrast to the more commonly used rAd5 vector. The rAd35 vector uses CD46 as a high-affinity receptor, which, unlike the rAd5 receptor, is expressed on human dendritic cells (DC), the most powerful APCs identified to date. In this study, we show that in contrast to rAd5, rAd35 infects migrated and mature CD83+ cutaneous DC with high efficiency (up to 80%), when delivered intradermally in an established human skin explant model. The high transduction efficiency is in line with high expression levels of CD46 detected on migratory cutaneous DC, which proved to be further increased upon intradermal administration of GM-CSF and IL-4. As compared with Ad5, these Ad35 infection characteristics translate into higher absolute numbers of skin-emigrated DC per explant that both express the transgene and are phenotypically mature. Finally, we demonstrate that upon intracutaneous delivery of a rAd35 vaccine encoding the circumsporozoite (CS) protein of Plasmodium falciparum, emigrated DC functionally express and process CS-derived epitopes and are capable of activating specific CD8+ effector T cells, as evidenced by activation of an HLA-A2-restricted CS-specific CD8+ T cell clone. Collectively, these data demonstrate the utility of rAd35 vectors for efficient in vivo human DC transduction.

  12. Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Responses

    PubMed Central

    Koup, Richard A.; Roederer, Mario; Lamoreaux, Laurie; Fischer, Jennifer; Novik, Laura; Nason, Martha C.; Larkin, Brenda D.; Enama, Mary E.; Ledgerwood, Julie E.; Bailer, Robert T.; Mascola, John R.; Nabel, Gary J.; Graham, Barney S.

    2010-01-01

    Background Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies. Methods The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination. Results rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8+ T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4+ and CD8+ T-cells expressed multiple functions and were predominantly long-term (CD127+) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition. Conclusion Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses. Trial Registration ClinicalTrails.gov NCT00102089, NCT00108654 PMID:20126394

  13. Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine

    PubMed Central

    Zhang, Yiling; Feng, Liqiang; Li, Liang; Wang, Dimin; Li, Chufang; Sun, Caijun; Li, Pingchao; Zheng, Xuehua; Liu, Yichu; Yang, Wei; Niu, Xuefeng; Zhong, Nanshan; Chen, Ling

    2015-01-01

    Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4+ T and CD8+ T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens. PMID:26076321

  14. Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine.

    PubMed

    Zhang, Yiling; Feng, Liqiang; Li, Liang; Wang, Dimin; Li, Chufang; Sun, Caijun; Li, Pingchao; Zheng, Xuehua; Liu, Yichu; Yang, Wei; Niu, Xuefeng; Zhong, Nanshan; Chen, Ling

    2015-01-01

    Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4(+) T and CD8(+) T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens.

  15. Adenoviral gene delivery for HIV-1 vaccination.

    PubMed

    Vanniasinkam, T; Ertl, H C J

    2005-04-01

    The AIDS epidemic continues to spread throughout nations of Africa and Asia and is by now threatening to undermine the already frail infrastructure of developing countries in Sub-Saharan Africa that are hit the hardest. The only option to stem this epidemic is through inexpensive and efficacious vaccines that prevent or at least blunt HIV-1 infections. Despite decades of pre-clinical and clinical research such vaccines remain elusive. Most anti-viral vaccines act by inducing protective levels of virus-neutralizing antibodies. The envelope protein of HIV-1, the sole target of neutralizing antibodies, is constantly changing due to mutations, B cell epitopes are masked by heavy glycosylation and the protein's structural unfolding upon binding to its CD4 receptor and chemokine co-receptors. Efforts to induce broadly cross-reactive virus-neutralizing antibodies able to induce sterilizing or near sterilizing immunity to HIV-1 have thus failed. Studies have indicated that cell-mediated immune responses and in particular CD8+ T cell responses to internal viral proteins may control HIV-1 infections without necessarily preventing them. Adenoviral vectors expressing antigens of HIV-1 are eminently suited to stimulate potent CD8+ T cell responses against transgene products, such as antigens of HIV-1. They performed well in pre-clinical studies in rodents and nonhuman primates and are currently in human clinical trials. This review summarizes the published literature on adenoviral vectors as vaccine carriers for HIV-1 and discusses advantages and disadvantages of this vaccine modality.

  16. Recovery of radiation-induced dry eye and corneal damage by pretreatment with adenoviral vector-mediated transfer of erythropoietin to the salivary glands in mice.

    PubMed

    Rocha, Eduardo M; Cotrim, Ana P; Zheng, Changyu; Riveros, Paola Perez; Baum, Bruce J; Chiorini, John A

    2013-04-01

    Therapeutic doses of radiation (RTx) causes dry eye syndrome (DES), dry mouth, and as in other sicca syndromes, they are incurable. The aims of this work are as follows: (a) to evaluate a mouse model of DES induced by clinically relevant doses of radiation, and (b) to evaluate the protective effect of erythropoietin (Epo) in preventing DES. C3H female mice were subjected to five sessions of RTx, with or without pre-RTx retroductal administration of the AdLTR2EF1a-hEPO (AdEpo) vector in the salivary glands (SG), and compared with naïve controls at Day 10 (10d) (8 Gy fractions) and 56 days (56d) (6 Gy fractions) after RTx treatment. Mice were tested for changes in lacrimal glands (LG), tear secretion (phenol red thread), weight, hematocrit (Hct), and markers of inflammation, as well as microvessels and oxidative damage. Tear secretion was reduced in both RTx groups, compared to controls, by 10d. This was also seen at 56d in RTx but not AdEpo+RTx group. Hct was significantly higher in all AdEpo+RTx mice at 10d and 56d. Corneal epithelium was significantly thinner at 10d in the RTx group compared with AdEpo+RTx or the control mice. There was a significant reduction at 10d in vascular endothelial growth factor (VEGF)-R2 in LG in the RTx group that was prevented in the AdEpo+RTx group. In conclusion, RTx is able to induce DES in mice. AdEpo administration protected corneal epithelia and resulted in some recovery of LG function, supporting the value of further studies using gene therapy for extraglandular diseases.

  17. Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

    PubMed Central

    Allen, Susan; Than, Soe; Adams, Elizabeth M.; Graham, Barney S.; Koup, Richard A.; Bailer, Robert T.; Smith, Carol; Dally, Len; Tarragona-Fiol, Tony; Bergin, Philip J.; Hayes, Peter; Ho, Martin; Loughran, Kelley; Komaroff, Wendy; Stevens, Gwynneth; Thomson, Helen; Boaz, Mark J.; Cox, Josephine H.; Schmidt, Claudia; Gilmour, Jill; Nabel, Gary J.; Fast, Patricia

    2010-01-01

    Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial

  18. Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome

    PubMed Central

    Aikawa, Takuya; Anbutsu, Hisashi; Nikoh, Naruo; Kikuchi, Taisei; Shibata, Fukashi; Fukatsu, Takema

    2009-01-01

    Monochamus alternatus is the longicorn beetle notorious as a vector of the pinewood nematode that causes the pine wilt disease. When two populations of M. alternatus were subjected to diagnostic polymerase chain reaction (PCR) detection of four Wolbachia genes, only the ftsZ gene was detected from one of the populations. The Wolbachia ftsZ gene persisted even after larvae were fed with a tetracycline-containing diet for six weeks. The inheritance of the ftsZ gene was not maternal but biparental, exhibiting a typical Mendelian pattern. The ftsZ gene titres in homozygotic ftsZ+ insects were nearly twice as high as those in heterozygotic ftsZ+ insects. Exhaustive PCR surveys revealed that 31 and 30 of 214 Wolbachia genes examined were detected from the two insect populations, respectively. Many of these Wolbachia genes contained stop codon(s) and/or frame shift(s). Fluorescent in situ hybridization confirmed the location of the Wolbachia genes on an autosome. On the basis of these results, we conclude that a large Wolbachia genomic region has been transferred to and located on an autosome of M. alternatus. The discovery of massive gene transfer from Wolbachia to M. alternatus would provide further insights into the evolution and fate of laterally transferred endosymbiont genes in multicellular host organisms. PMID:19692404

  19. Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome.

    PubMed

    Aikawa, Takuya; Anbutsu, Hisashi; Nikoh, Naruo; Kikuchi, Taisei; Shibata, Fukashi; Fukatsu, Takema

    2009-11-07

    Monochamus alternatus is the longicorn beetle notorious as a vector of the pinewood nematode that causes the pine wilt disease. When two populations of M. alternatus were subjected to diagnostic polymerase chain reaction (PCR) detection of four Wolbachia genes, only the ftsZ gene was detected from one of the populations. The Wolbachia ftsZ gene persisted even after larvae were fed with a tetracycline-containing diet for six weeks. The inheritance of the ftsZ gene was not maternal but biparental, exhibiting a typical Mendelian pattern. The ftsZ gene titres in homozygotic ftsZ(+) insects were nearly twice as high as those in heterozygotic ftsZ(+) insects. Exhaustive PCR surveys revealed that 31 and 30 of 214 Wolbachia genes examined were detected from the two insect populations, respectively. Many of these Wolbachia genes contained stop codon(s) and/or frame shift(s). Fluorescent in situ hybridization confirmed the location of the Wolbachia genes on an autosome. On the basis of these results, we conclude that a large Wolbachia genomic region has been transferred to and located on an autosome of M. alternatus. The discovery of massive gene transfer from Wolbachia to M. alternatus would provide further insights into the evolution and fate of laterally transferred endosymbiont genes in multicellular host organisms.

  20. [Construction of an integration vector carrying hygromycin B resistance gene and its genetic transformation in Rhizopus oryzae].

    PubMed

    Zhang, Min; Jiang, Shaotong; Zheng, Juan; Zheng, Zhi; Li, Xingjiang; Pan, Lijun; Luo, Shuizhong

    2015-08-01

    To construct a system of genetic transformation suitable for Rhizopus oryzae, we constructed a single-exchange vector pBS-hygro carrying hygromycin B resistance gene (hph) as its selective marker using gene splicing by overlap extension PCR (SOE PCR) technique. We introduced this recombinant vector into Rhizopus oryzae AS 3.819 by PEG/CaCl2-mediated transformation of protoplast, electroporation of protoplast and germinated spores; and we studied the effects of hydrolysis time, field strength and spore germination time on transformation frequency. We conducted quantitative real-time PCR (qPCR) assay to determine the gene copy number of ldhA integrated in the genome of R. oryzae transformants and its effect on the stability of transformants. We successfully achieved R. oryzae transformants integrated with pBS-hygro-ldhA vector. The optimal hydrolysis time for protoplast production was 140 min, and the optimal field strength of electroporation pulse for protoplast was 13 kV/cm. The optimal germination time of spores for electroporation was 2.5 h, and the optimal field strength of electroporation pulse was 14 kV/cm. The transformation frequency of method based on germinated spores was generally higher than the methods based on protoplast. The qPCR test results suggested that transformants with high copy number of integration in a certain range were relatively stable. Our results provided basis and support for metabolic regulation and genetic engineering breeding of R. oryzae.

  1. Homologous Boosting with Adenoviral Serotype 5 HIV Vaccine (rAd5) Vector Can Boost Antibody Responses despite Preexisting Vector-Specific Immunity in a Randomized Phase I Clinical Trial

    PubMed Central

    Sarwar, Uzma N.; Novik, Laura; Enama, Mary E.; Plummer, Sarah A.; Koup, Richard A.; Nason, Martha C.; Bailer, Robert T.; McDermott, Adrian B.; Roederer, Mario; Mascola, John R.; Ledgerwood, Julie E.; Graham, Barney S.

    2014-01-01

    Background Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods Thirty-one adults, 18–55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 1010 PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity. Trial Registration Clinicaltrials.gov NCT00709605 NCT00709605 PMID:25264782

  2. Clinical adenoviral gene therapy for prostate cancer.

    PubMed

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  3. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  4. Elucidation of Insertion Elements Carried on Plasmids and In Vitro Construction of Shuttle Vectors from the Toxic Cyanobacterium Planktothrix

    PubMed Central

    Christiansen, Guntram; Goesmann, Alexander

    2014-01-01

    Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6Kγ origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes. PMID:24907328

  5. Targeting the Immune System to Fight Cancer Using Chemical Receptor Homing Vectors Carrying Polyinosine/Cytosine (PolyIC).

    PubMed

    Levitzki, Alexander

    2012-01-01

    Cancer researchers have been looking for ways to harness the immune system and to reinstate immune surveillance, to kill cancer cells without collateral damage. Here we scan current approaches to targeting the immune system against cancer, and emphasize our own approach. We are using chemical vectors attached to a specific ligand, to introduce synthetic dsRNA, polyinosine/cytosine (polyIC), into tumors. The ligand binds to a receptor protein that is overexpressed on the surface of the tumor cells. Upon ligand binding, the receptor complex is internalized, introducing the polyIC into the cell. In this fashion a large amount of synthetic dsRNA can be internalized, leading to the activation of dsRNA-binding proteins, such as dsRNA dependent protein kinase (PKR), Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-1), and melanoma differentiation-associated gene 5 (MDA5). The simultaneous activation of these signaling proteins leads to the rapid demise of the targeted cell and to cytokine secretion. The cytokines lead to a strong bystander effect and to the recruitment of immune cells that converge upon the targeted cells. The bystander effects lead to the destruction of neighboring tumor cells not targeted themselves by the vector. Normal cells, being more robust than tumor cells, survive. This strategy has several advantages: (1) recruitment of the immune system is localized to the tumor. (2) The response is rapid, leading to fast tumor eradication. (3) The bystander effects lead to the eradication of tumor cells not harboring the target. (4) The multiplicity of pro-death signaling pathways elicited by PolyIC minimizes the likelihood of the emergence of resistance. In this chapter we focus on EGFR as the targeted receptor, which is overexpressed in many tumors. In principle, the strategy can be extended to other tumors that overexpress a protein that can be internalized by a ligand, which can be a small molecule, a single chain antibody, or an affibody.

  6. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1

    PubMed Central

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Objective Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. Materials and Methods We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. Results After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. Conclusion MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation. PMID:26199902

  7. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers

    PubMed Central

    Kwon, Se-Young; Moon, Changjong; Kim, Kwonseop; Lee, Keesook; Lee, Sang-Jin; Hemmi, Silvio; Joo, Young-Eun; Kim, Min Soo; Jung, Chaeyong

    2016-01-01

    CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients. PMID:27203670

  8. Differential Contribution of Adeno-Associated Virus Type 2 Rep Protein Expression and Nucleic Acid Elements to Inhibition of Adenoviral Replication in cis and in trans

    PubMed Central

    Hammer, Eva; Heilbronn, Regine

    2014-01-01

    ABSTRACT The helper-dependent adeno-associated virus type 2 (AAV-2) exhibits complex interactions with its helper adenovirus. Whereas AAV-2 is dependent on adenoviral functions for productive replication, it conversely inhibits adenoviral replication, both when its genome is present in trans after coinfection with both viruses and when it is present in cis, as in the production of recombinant adenovirus (rAd)/AAV-2 hybrid vectors. The notion that AAV-mediated inhibition of adenoviral replication is due predominantly to the expression of the AAV-2 Rep proteins was recently challenged by successful Rep78 expression in a rAd5 vector through recoding of the Rep open reading frame (ORF). We closely analyzed the relative contributions of AAV-2 nucleic acid elements and Rep protein expression to the inhibition of adenoviral replication in both of the above scenarios. When present in cis, a sequence element in the 3′ part of the rep gene, comprising only the AAV-2 p40 promoter and the AAV-2 intron sequence, which we termed the RIS-Ad, completely blocks adenoviral replication. p5/p19 promoter-driven Rep protein expression, on the other hand, only weakly inhibits rAd/AAV-2 vector propagation, and by inactivation of the RIS-Ad, it is feasible to generate first-generation rAd vectors expressing functional Rep proteins. The RIS-Ad plays no role in the inhibition of adenoviral replication in trans in a model closely mimicking AAV-2–Ad coinfection. In this case, expression of the Rep proteins is required, as well as the presence of an amplifiable inverted terminal repeat (ITR)-containing template. Thus, very different AAV-2 elements and mechanisms are involved in inhibition of adenoviral replication during rAd/AAV-2 vector propagation and after Ad-AAV coinfection. IMPORTANCE This is the first study to systematically compare the contributions of AAV-2 protein expression and AAV-2 nucleic acid elements to the inhibition of adenoviral replication in rAd/AAV-2 hybrid vector

  9. Direct selection of targeted adenovirus vectors by random peptide display on the fiber knob.

    PubMed

    Miura, Y; Yoshida, K; Nishimoto, T; Hatanaka, K; Ohnami, S; Asaka, M; Douglas, J T; Curiel, D T; Yoshida, T; Aoki, K

    2007-10-01

    Targeting of gene transfer at the level of cell entry is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success because proper targeting ligand-receptor systems on the cells of interest are generally unknown. Systematic approaches to generate adenovirus vectors targeting any given cell type need to be developed to achieve this goal. Here, we constructed an adenovirus library that was generated by a Cre-lox-mediated in vitro recombination between an adenoviral fiber-modified plasmid library and genomic DNA to display random peptides on a fiber knob. As proof of concept, we screened the adenovirus display library on a glioma cell line and observed selection of several particular peptide sequences. The targeted vector carrying the most frequently isolated peptide significantly enhanced gene transduction in the glioma cell line but not in many other cell lines. Because the insertion of a pre-selected peptide into a fiber knob often fails to generate an adenovirus vector, the selection of targeting peptides is highly useful in the context of the adenoviral capsid. This vector-screening system can facilitate the development of a targeted adenovirus vector for a variety of applications in medicine.

  10. Cuticular differences associated with aridity acclimation in African malaria vectors carrying alternative arrangements of inversion 2La

    PubMed Central

    2014-01-01

    Background Principal malaria vectors in Africa, An. gambiae and An. coluzzii, share an inversion polymorphism on the left arm of chromosome 2 (2La/2L+a) that is distributed non-randomly in the environment. Genomic sequencing studies support the role of strong natural selection in maintaining steep clines in 2La inversion frequency along environmental gradients of aridity, and physiological studies have directly implicated 2La in heat and desiccation tolerance, but the precise genetic basis and the underlying behavioral and physiological mechanisms remain unknown. As the insect cuticle is the primary barrier to water loss, differences in cuticle thickness and/or epicuticular waterproofing associated with alternative 2La arrangements might help explain differences in desiccation resistance. Methods To test that hypothesis, two subcolonies of both An. gambiae and An. coluzzii were established that were fixed for alternative 2La arrangements (2La or 2L+a) on an otherwise homosequential and shared genetic background. Adult mosquitoes reared under controlled environmental conditions (benign or arid) for eight days post-eclosion were collected and analyzed. Measurements of cuticle thickness were made based on scanning electron microscopy, and cuticular hydrocarbon (CHC) composition was evaluated by gas chromatography–mass spectrometry. Results After removing the allometric effects of body weight, differences in mean cuticle thickness were found between alternative 2La karyotypes, but not between alternative environments. Moreover, the thicker cuticle of the An. coluzzii 2La karyotype was contrary to the known higher rate of water loss of this karyotype relative to 2L+a. On the other hand, quantitative differences in individual CHCs and overall CHC profiles between alternative karyotypes and environmental conditions were consistent with expectation based on previous physiological studies. Conclusions Our results suggest that alternative arrangements of the 2La inversion

  11. Immunocompromised Children with Severe Adenoviral Respiratory Infection

    PubMed Central

    Tylka, Joanna C.; McCrory, Michael C.; Gertz, Shira J.; Custer, Jason W.; Spaeder, Michael C.

    2016-01-01

    Purpose. To investigate the impact of severe respiratory adenoviral infection on morbidity and case fatality in immunocompromised children. Methods. Combined retrospective-prospective cohort study of patients admitted to the intensive care unit (ICU) in four children's hospitals with severe adenoviral respiratory infection and an immunocompromised state between August 2009 and October 2013. We performed a secondary case control analysis, matching our cohort 1 : 1 by age and severity of illness score with immunocompetent patients also with severe respiratory adenoviral infection. Results. Nineteen immunocompromised patients were included in our analysis. Eleven patients (58%) did not survive to hospital discharge. Case fatality was associated with cause of immunocompromised state (p = 0.015), multiple organ dysfunction syndrome (p = 0.001), requirement of renal replacement therapy (p = 0.01), ICU admission severity of illness score (p = 0.011), and treatment with cidofovir (p = 0.005). Immunocompromised patients were more likely than matched controls to have multiple organ dysfunction syndrome (p = 0.01), require renal replacement therapy (p = 0.02), and not survive to hospital discharge (p = 0.004). One year after infection, 43% of immunocompromised survivors required chronic mechanical ventilator support. Conclusions. There is substantial case fatality as well as short- and long-term morbidity associated with severe adenoviral respiratory infection in immunocompromised children. PMID:27242924

  12. Production of high-capacity adenovirus vectors.

    PubMed

    Kreppel, Florian

    2014-01-01

    High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.

  13. Developing Universal Genetic Tools for Rapid and Efficient Deletion Mutation in Vibrio Species Based on Suicide T-Vectors Carrying a Novel Counterselectable Marker, vmi480.

    PubMed

    Luo, Peng; He, Xiangyan; Liu, Qiuting; Hu, Chaoqun

    2015-01-01

    Despite that Vibrio spp. have a significant impact on the health of humans and aquatic animals, the molecular basis of their pathogenesis is little known, mainly due to the limited genetic tools for the functional research of genes in Vibrio. In some cases, deletion of target DNAs in Vibrio can be achieved through the use of suicide vectors. However, these strategies are time-consuming and lack universality, and the widely used counterselectable gene sacB does not work well in Vibrio cells. In this study, we developed universal genetic tools for rapid and efficient deletion mutations in Vibrio species based on suicide T-Vectors carrying a novel counterselectable marker, vmi480. We explored two uncharacterized genes, vmi480 and vmi470, in a genomic island from Vibrio mimicus VM573 and confirmed that vmi480 and vmi470 constitute a two-component toxin-antitoxin system through deletion and expression of vmi480 and vmi470. The product of vmi480 exhibited strong toxicity to Escherichia coli cells. Based on vmi480 and the PBAD or PTAC promoter system, we constructed two suicide T-vectors, pLP11 and pLP12, and each of these vectors contained a multiple cloning region with two AhdI sites. Both vectors linearized by AhdI digestion could be stored and directly ligated with purified PCR products without a digestion step. By using pLP11 and pLP12 coupled with a highly efficient conjugation system provided by E. coli β2163, six genes from four representative Vibrio species were easily deleted. By using the counterselective marker vmi480, we obtained 3-12 positive colonies (deletion mutants) among no more than 20 colonies randomly selected on counterselection plates. The strategy does not require the digestion of PCR products and suicide vectors every time, and it avoids large-scale screening colonies on counterselective plates. These results demonstrate that we successfully developed universal genetic tools for rapid and efficient gene deletion in Vibrio species.

  14. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator.

    PubMed

    Newman, J R; Fuqua, C

    1999-02-18

    We describe the development and analysis of broad-host-range (BHR) cloning vectors that carry the araC-PBAD controlled expression cassette from Escherichia coli. These plasmids are designed to facilitate l-arabinose-responsive control of target genes in a variety of Gram-negative bacterial hosts. BHR PBAD::lacZ fusions were used to analyze the utility of this controlled expression system in the plant pathogen Agrobacterium tumefaciens. In A. tumefaciens, the level of control afforded is significant, although less stringent than that observed in E. coli. The BHR PBAD vectors offer a useful alternative to currently used controlled expression systems, and can be employed in conjunction with other regulated promoters to simultaneously regulate expression of multiple genes. Addition of a variety of carbon sources, namely C4 acids and the anti-inducer d-fucose, allows modulation of l-arabinose induction. Activation of PBAD expression in A. tumefaciens requires a plasmid-borne copy of araC, and is not affected by endogenous regulators.

  15. Novel treatment for lithium-induced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene.

    PubMed

    Suga, Hidetaka; Nagasaki, Hiroshi; Kondo, Taka-Aki; Okajima, Yoshiki; Suzuki, Chizuko; Ozaki, Nobuaki; Arima, Hiroshi; Yamamoto, Tokunori; Ozaki, Noriyuki; Akai, Masaro; Sato, Aiko; Uozumi, Nobuyuki; Inoue, Makoto; Hasegawa, Mamoru; Oiso, Yutaka

    2008-11-01

    Congenital nephrogenic diabetes insipidus (NDI) is a chronic disorder involving polyuria and polydipsia that results from unresponsiveness of the renal collecting ducts to the antidiuretic hormone vasopressin. Either of the genetic defects in vasopressin V2 receptor or the water channel aquaporin 2 (AQP2) cause the disease, which interfere the water reabsorption at the epithelium of the collecting duct. An unconscious state including a perioperative situation can be life threatening because of the difficulty to regulate their water balance. The Sendai virus (SeV) vector system deleting fusion protein (F) gene (SeV/DeltaF) is considered most suitable because of the short replication cycle and nontransmissible character. An animal model for NDI with reduced AQP2 by lithium chloride was used to develop the therapy. When the SeV/DeltaF vector carrying a human AQP2 gene (AQP2-SeV/DeltaF) was administered retrogradely via ureter to renal pelvis, AQP2 was expressed in the renal collecting duct to reduce urine output and water intake by up to 40%. In combination with the retorograde administration to pelvis, this system could be the cornerstone for the applicable therapies on not only NDI patients but also other diseases associate with the medullary collecting duct.

  16. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives

    PubMed Central

    Chen, Guang-xia; Zhang, Shu; He, Xiao-hua; Liu, Shi-yu; Ma, Chao; Zou, Xiao-Ping

    2014-01-01

    Gene therapy has promised to be a highly effective antitumor treatment by introducing a tumor suppressor gene or the abrogation of an oncogene. Among the potential therapeutic transgenes, the tumor suppressor gene p53 serves as an attractive target. Restoration of wild-type p53 function in tumors can be achieved by introduction of an intact complementary deoxyribonucleic acid copy of the p53 gene using a suitable viral vector, in most cases an adenoviral vector (Adp53). Preclinical in vitro and in vivo studies have shown that Adp53 triggers a dramatic tumor regression response in various cancers. These viruses are engineered to lack certain early proteins and are thus replication defective, including Gendicine, SCH-58500, and Advexin. Several types of tumor-specific p53-expressing conditionally replicating adenovirus vectors (known as replication-competent CRAdp53 vectors) have been developed, such as ONYX 015, AdDelta24-p53, SG600-p53, OBP-702, and H101. Various clinical trials have been conducted to investigate the safety and efficiency of these adenoviral vectors. In this review we will talk about the biological mechanisms, clinical utility, and therapeutic potentials of the replication-deficient Adp53-based and replication-competent CRAdp53-based gene therapy. PMID:25364261

  17. Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector.

    PubMed Central

    O'Neal, W. K.; Zhou, H.; Morral, N.; Langston, C.; Parks, R. J.; Graham, F. L.; Kochanek, S.; Beaudet, A. L.

    2000-01-01

    BACKGROUND: Certain gene therapy protocols may require multiple administrations of vectors to achieve therapeutic benefit to the patient. This may be especially relevant for vectors such as adenoviral vectors that do not integrate into the host chromosome. Because immunocompetent animal models used for gene transfer studies develop neutralizing antibodies to adenoviral vectors after a single administration, little is known about how repeat administrations of vectors might affect transgene expression and vector toxicity. MATERIALS AND METHODS: We used mice deficient in the membrane spanning region of immunoglobulin (IgM), which do not develop antibodies, to evaluate the effect of repeated intravenous administration of first-generation and helper-dependent adenoviral vectors expressing human alpha 1-antitrypsin (hAAT). The duration and levels of transgene expression were evaluated after repeated administration of vectors. Toxicity was assessed by measuring the level of liver enzymes in the serum and the degrees of hepatocyte hypertrophy and proliferation. RESULTS: We found that previous administration of first-generation adenoviral vectors can alter the response to subsequent doses. These alterations included an increase in transgene expression early (within 1 and 3 days), followed by a rapid drop in expression by day 7. In addition, previous administrations of first-generation vectors led to an increase in toxicity of subsequent doses, as indicated by a rise in liver enzymes and an increase in hepatocyte proliferation. In contrast to first-generation vectors, use of the helper-dependent adenovirus vector, Ad-STK109, which contained no viral coding regions, did not lead to increased toxicity after multiple administrations. CONCLUSIONS: We conclude that the response of the host to adenoviral vectors can be altered after repeated administration, compared with the response after the initial vector dose. In addition, these experiments provide further evidence for the

  18. Mucosal immunotherapy in an Alzheimer mouse model by recombinant Sendai virus vector carrying Aβ1-43/IL-10 cDNA.

    PubMed

    Hara, Hideo; Mouri, Akihiro; Yonemitsu, Yoshikazu; Nabeshima, Toshitaka; Tabira, Takeshi

    2011-10-06

    Based on the amyloid cascade hypothesis, many reports have indicated that immunotherapy is beneficial for Alzheimer's disease (AD). We developed a mucosal immunotherapy for AD by nasal administration of recombinant Sendai virus vector carrying Aβ1-43 and mouse IL-10 cDNA. Nasal but not intramuscular administration of the vaccine induced good antibody responses to Aβ. When APP transgenic mice (Tg2576) received this vaccine once nasally, the Aβ plaque burden was significantly decreased 8 weeks after without inducing inflammation in the brain. The amount of Aβ measured by ELISA was also reduced in both soluble and insoluble fractions of the brain homogenates, and notably the Aβ oligomer (12-mer) was also apparently decreased. Tg2576 mice showed significant improvement in cognitive functions examined at 3 months after vaccination. Thus, this is an alternative immunotherapy for AD, which has an advantage in non-invasive, safe and relatively long lasting features.

  19. Adenoviral Gene Therapy Vectors Targeted to Prostate Cancer

    DTIC Science & Technology

    2004-06-01

    collectively called retinitis pigmentosa . Al- though there currently is no treatment or cure for these diseases, the past few years have seen important...Dryja, T. P., and Li, T. (1995). Molecular genetics of retinitis pigmentosa . Hum. Mol. 1358. Genet. 4: 1739-174. 50. Friedlander, M., and Blobel, G...refractory to Ad5 transduction such as EBV-infected B cells and retinal photoreceptors. Using this technique, we are now evaluating the ability of

  20. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice.

    PubMed

    Guidotti, J E; Mignon, A; Haase, G; Caillaud, C; McDonell, N; Kahn, A; Poenaru, L

    1999-05-01

    The severe neurodegenerative disorder, Tays-Sachs disease, is caused by a beta-hexosaminidase alpha-subunit deficiency which prevents the formation of lysosomal heterodimeric alpha-beta enzyme, hexosaminidase A (HexA). No treatment is available for this fatal disease; however, gene therapy could represent a therapeutic approach. We previously have constructed and characterized, in vitro, adenoviral and retroviral vectors coding for alpha- and beta-subunits of the human beta-hexosaminidases. Here, we have determined the in vivo strategy which leads to the highest HexA activity in the maximum number of tissues in hexA -deficient knock-out mice. We demonstrated that intravenous co-administration of adenoviral vectors coding for both alpha- and beta-subunits, resulting in preferential liver transduction, was essential to obtain the most successful results. Only the supply of both subunits allowed for HexA overexpression leading to massive secretion of the enzyme in serum, and full or partial enzymatic activity restoration in all peripheral tissues tested. The enzymatic correction was likely to be due to direct cellular transduction by adenoviral vectors and/or uptake of secreted HexA by different organs. These results confirmed that the liver was the preferential target organ to deliver a large amount of secreted proteins. In addition, the need to overexpress both subunits of heterodimeric proteins in order to obtain a high level of secretion in animals defective in only one subunit is emphasized. The endogenous non-defective subunit is otherwise limiting.

  1. Adenovirus vector carrying REIC/DKK-3 gene: neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy

    PubMed Central

    Kumon, H; Ariyoshi, Y; Sasaki, K; Sadahira, T; Araki, M; Ebara, S; Yanai, H; Watanabe, M; Nasu, Y

    2016-01-01

    As the First-In-Human study of in situ gene therapy using an adenovirus vector carrying the human REIC (reduced expression in immortalized cell)/Dkk-3 gene (Ad-REIC), we conducted neoadjuvant intraprostatic injections in patients with high-risk localized prostate cancer undergoing radical prostatectomy (RP). Patients with recurrence probability of 35% or more within 5 years following RP, as calculated by Kattan's nomogram, were enrolled. Patients received two ultrasound-guided intratumoral injections at 2-week intervals, followed by RP 6 weeks after the second injection. After confirming the safety of the therapeutic interventions with initially planned three escalating doses of 1.0 × 1010, 1.0 × 1011 and 1.0 × 1012 viral particles (vp) in 1.0–1.2 ml (n=3, 3 and 6), an additional higher dose of 3.0 × 1012 vp in 3.6 ml (n=6) was further studied. All four DLs including the additional dose level-4 (DL-4) were feasible with no adverse events, except for grade 1 or 2 transient fever. Laboratory toxicities were grade 1 or 2 elevated aspartate transaminase/alanine transaminase (n=4). Regarding antitumor activities, cytopathic effects (tumor degeneration with cytolysis and pyknosis) and remarkable tumor-infiltrating lymphocytes in the targeted tumor areas were detected in a clear dose-dependent manner. Consequently, biochemical recurrence-free survival in DL-4 was significantly more favorable than in patient groups DL-1+2+3. PMID:27767086

  2. Oral Immunization of Rhesus Macaques with Adenoviral HIV Vaccines Using Enteric-coated Capsules

    PubMed Central

    Mercier, George T.; Nehete, Pramod N.; Passeri, Marco F.; Nehete, Bharti N.; Weaver, Eric A.; Templeton, Nancy Smyth; Schluns, Kimberly; Buchl, Stephanie S.; Sastry, K. Jagannadha; Barry, Michael A.

    2007-01-01

    Targeted delivery of vaccine candidates to the gastrointestinal (GI) tract holds potential for mucosal immunization, particularly against mucosal pathogens like the human immunodeficiency virus (HIV). Among the different strategies for achieving targeted release in the GI tract, namely the small intestine, pH sensitive enteric coating polymers have been shown to protect solid oral dosage forms from the harsh digestive environment of the stomach and dissolve relatively rapidly in the small intestine by taking advantage of the luminal pH gradient. We developed an enteric polymethacrylate formulation for coating hydroxy-propyl-methyl-cellulose (HPMC) capsules containing lyophilized Adenoviral type 5 (Ad5) vectors expressing HIV-1 gag and a string of six highly-conserved HIV-1 envelope peptides representing broadly cross-reactive CD4+ and CD8+ T cell epitopes. Oral immunization of rhesus macaques with these capsules primed antigen-specific mucosal and systemic immune responses and subsequent intranasal delivery of the envelope peptide cocktail using a mutant cholera toxin adjuvant boosted cellular immune responses including, antigen-specific intracellular IFN-γ-producing CD4+ and CD8+ effector memory T cells in the intestine. These results suggest that the combination of oral adenoviral vector priming followed by intranasal protein/peptide boosting may be an effective mucosal HIV vaccination strategy for targeting viral antigens to the GI tract and priming systemic and mucosal immunity. PMID:18063450

  3. Hydrodynamic Limb Vein Injection of Adeno-Associated Virus Serotype 8 Vector Carrying Canine Myostatin Propeptide Gene into Normal Dogs Enhances Muscle Growth

    PubMed Central

    Qiao, Chunping; Li, Juan; Zheng, Hui; Bogan, Janet; Li, Jianbin; Yuan, Zhenhua; Zhang, Cheng; Bogan, Dan; Kornegay, Joe

    2009-01-01

    Abstract Inhibition or blockade of myostatin, a negative growth factor of skeletal muscle, enhances muscle growth and therefore is considered a promising strategy for the treatment of muscle-wasting diseases such as the muscular dystrophies. Previously, we showed that myostatin blockade in both normal and dystrophin-deficient mdx mice by systemic delivery of the myostatin propeptide (MPRO) gene by an adeno-associated virus serotype 8 (AAV8) vector could enhance muscle growth and ameliorate dystrophic lesions. Here, we further investigate whether the muscle growth effect of myostatin blockade can be achieved in dogs by gene transfer. First, we cloned the canine MPRO gene, packaged it in the AAV8 vector, and showed robust muscle-enhancing effects after systemic delivery into neonatal mice. This vector was then further tested in two 3-month-old normal dogs (weighing 9.7 and 6.3 kg). The vector was delivered to one limb by hydrodynamic vein injection, and the contralateral limb served as a control. The delivery procedure was safe, without discernible adverse effects. AAV vector DNA and MPRO gene expression were detected by quantitative polymerase chain reaction, Western blotting, and immunofluorescence staining of muscle biopsies. Overexpression of MPRO resulted in enhanced muscle growth without a cytotoxic T lymphocytic immune response, as evidenced by larger myofibers in multiple muscles, increased muscle volume determined by magnetic resonance imaging, and the lack of CD4+ and CD8+ T cell infiltration in the vector-injected limbs. Our preliminary study thus supports further investigation of this therapeutic strategy in the dystrophin-deficient golden retriever muscular dystrophy dog model. PMID:18828709

  4. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    PubMed Central

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  5. [Construction of a bivalent plant expression vector carrying VvSUC11 and VvSUC12 genes and its genetic transformation in sugar beet].

    PubMed

    Yin, Donglin; Zhu, Jianbo; Wang, Aiying; Xiang, Benchun

    2011-08-01

    We have recombined genes VvSUC11, VvSUC12 from Vitis vinifera L., and root-specific promoters of sweet potato storage protein gene from Ipomoea batatas L. Lam., named as SP1 and SP2. We have constructed a vector pCAMBIA2301-SP1- VvSUC11-SP2-VvSUC12 using pCAMBIA2301 as an original vector. VvSUC11 and VvSUC12 were under the control of root-specific promoters of sweet potato storage protein gene. We transformed the vector into KWS-9103 breeding line of Beta vulgaris L. with Agrobacterium-mediated transformation. We have established the optimal genetic transformation protocol of sugar beet as following: the explants pre-cultured for 4 days were immersed in Agrobacterium suspension of OD(600)=0.5, supplemented with 0.005% Silwet L-77, and followed by a 4-day culture on medium containing cefotaxime, then the buds were selected on medium containing kanamycin and cefotaxime. The percentage of kanamycin-resistant buds was as high as 42%. Results of PCR and RT-PCR proved that the target genes had integrated into sugar beet genome and expressed. It will lay a foundation for further studying their function in Beta vulgaris.

  6. Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion.

    PubMed

    Liang, S T; Dennis, P P; Bremer, H

    1998-12-01

    The expression of lacZ has been analyzed and compared in a series of promoter cloning vectors by measuring the amount of lacZ mRNA by hybridization and the amount of beta-galactosidase by standard enzymatic assay. Expression was driven by the promoter, Pspc, of the spc ribosomal protein operon. The vectors contained either the standard W205 trp-lac fusion with the trp operon transcription terminator, trpt, located in the lacZ leader sequence, or a deletion derivative that functionally inactivates trpt. In the presence of trpt, lacZ expression was temperature dependent so that increasing the growth temperature reduced the accumulation of lacZ mRNA and beta-galactosidase activity. The frequency of transcript termination at trpt was estimated to be near zero at 20 degreesC and at about 45% at 37 degreesC. The amount of Pspc-derived lacZ mRNA and the amount of beta-galactosidase produced per lacZ mRNA varied, depending on the mRNA 5' leader sequence between Pspc and lacZ. These results demonstrate that the quantitative assessment of promoter activities with promoter cloning vectors requires careful analysis and interpretation. One particular construct without trpt did not seem to contain fortuitous transcription or translation signals generated at the fusion junction. In this strain, lacZ expression from Pspc was compared at the enzyme activity and mRNA levels with a previously constructed strain in which lacZ was linked to the tandem P1 and P2 promoters of the rrnB operon. At any given growth rate, the different activities of beta-galactosidase in these two strains were found to reflect the same differences in their amounts of lacZ mRNA. Assuming that the promoter-lacZ fusions in these strains reflect the properties of the promoters in their normal chromosomal setting, it was possible to estimate the absolute transcription activity of Pspc and the relative translation efficiency of Pspc-lacZ mRNA at different growth rates. Transcription from the spc promoter was found

  7. Gene therapy in skin: choosing the optimal viral vector.

    PubMed

    Teo, Esther H; Cross, Kevin J; Bomsztyk, Elan D; Lyden, David C; Spector, Jason A

    2009-05-01

    Skin is an ideal gene therapy target because it is readily accessible and is involved in many pathologic processes. Viruses are the most common gene vectors, however, few comparative studies exist examining their efficacy in skin. This study evaluates adenovirus serotype 5, adeno-associated virus type 2 and 5, MMLV-derived retrovirus, and human immunodeficiency virus-1 derived lentivirus for gene vector activity in human dermal fibroblasts and other skin cell lines. Human immunodeficiency virus-1-based lentiviral vector resulted in over 90% transduction in all cell lines tested. Transduced cells maintained reporter expression over several passages after a single exposure. In contrast, gene activity fell rapidly over cell divisions with adenoviral and adeno-associated vectors. Therefore, lentiviral vectors are the delivery mechanism of choice for long-term therapeutic gene expression in dermal fibroblasts and other skin cell lines, whereas adenoviral or adeno-associated vectors may be preferred for short-term therapy.

  8. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  9. CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic

    PubMed Central

    Hangalapura, Basav N.; Timares, Laura; Oosterhoff, Dinja; Scheper, Rik J.; Curiel, David T.; de Gruijl, Tanja D.

    2012-01-01

    Summary The ability of Dendritic Cells (DC) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DC for clinical administration, their loading with tumor associated antigens (TAA) and their activation, is laborious and expensive, and, due to interindividual variability in the personalized vaccines, poorly standardized. An attractive alternative approach is to load resident DC in vivo by targeted delivery of TAA , using viral vectors and activating them simultaneously. To this end we have constructed genetically modified Adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAA to the CD40 receptor on DC. Preclinical human and murine studies conducted so far have clearly demonstrated the suitability of a “two-component”, i.e. Ad and adaptor molecule, configuration for targeted modification of DC in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in clinical translation of this approach. PMID:22228547

  10. Carrying Loom

    ERIC Educational Resources Information Center

    Lazaron, Edna

    1976-01-01

    Whenever a young student wanted to weave, his loom was at school or at home. He solved the problem by designing a portable loom which he is able to carry with his school books and can even use on the school bus. (Author/RK)

  11. Healing after death: antitumor immunity induced by oncolytic adenoviral therapy

    PubMed Central

    Jiang, Hong; Fueyo, Juan

    2014-01-01

    We recently evaluated the capacity of Delta-24-RGD oncolytic adenovirus to trigger an antitumor immune response in a syngeneic mouse glioma model. This virotherapy elicited immunity against both tumor-associated antigens and viral antigens. An immunogenic cell death accompanied by pathogen- or damage- associated patterns (PAMPs and DAMPs) induced by the virus may be responsible for the adenoviral-mediated antitumor effect. PMID:25954598

  12. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy

    PubMed Central

    Farzad, Lisa; Cerullo, Vincenzo; Yagyu, Shigeki; Bertin, Terry; Hemminki, Akseli; Rooney, Cliona; Lee, Brendan; Suzuki, Masataka

    2014-01-01

    Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy. PMID:27119096

  13. Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens.

    PubMed

    Sánchez Ramos, Oliberto; González Pose, Alain; Gómez-Puerta, Silvia; Noda Gomez, Julia; Vega Redondo, Armando; Águila Benites, Julio César; Suárez Amarán, Lester; Parra, Natalie C; Toledo Alonso, Jorge R

    2011-05-01

    Recombinant adenoviral vectors have emerged as an attractive system for veterinary vaccines development. However, for poultry vaccination a very important criterion for an ideal vaccine is its low cost. The objective of this study was to test the ability of chicken CD154 to enhance the immunogenicity of an adenoviral vector-based vaccine against avian influenza virus in order to reduce the amount of antigen required to induce an effective immune response in avian. Chickens were vaccinated with three different doses of adenoviral vectors encoding either HA (AdHA), or HA fused to extracellular domain chicken's CD154 (AdHACD). Hemagglutination inhibition (HI) assay and relative quantification of IFN-γ showed that the adenoviral vector encoding for the chimeric antigen is able to elicit an improved humoral and cellular immune response, which demonstrated that CD154 can be used as a molecular adjuvant allowing to reduce in about 50-fold the amount of adenoviral vector vaccine required to induce an effective immune response.

  14. Survival after prolonged pediatric extracorporeal membrane oxygenation support for adenoviral pneumonia.

    PubMed

    Allibhai, Taslim F; Spinella, Philip C; Meyer, Michael T; Hall, Brian H; Kofos, Daniel; DiGeronimo, Robert J

    2008-08-01

    Adenoviral pneumonia can cause significant pulmonary morbidity leading to extracorporeal membrane oxygenation (ECMO) rescue. Reported survival of adenoviral pneumonia requiring ECMO has been poor, and prolonged time on ECMO is associated with increased mortality. We present 2 pediatric cases of adenoviral pneumonia in patients who survived after greater than 30 days on ECMO and review the Extracorporeal Life Support Organization (ELSO) registry to describe the collective experience of children with viral pneumonia requiring prolonged ECMO. Although survival has improved over the past decade for pediatric adenoviral pneumonia, the ELSO database previously has had no surviving children reported with a primary diagnosis of adenovirus after more than 4 weeks on ECMO. Our experience suggests that there may be use for prolonged ECMO support in children despite severe adenoviral pneumonia.

  15. Vectors for Treatment of Metastatic Breast Cancer

    DTIC Science & Technology

    2006-08-01

    17). The CCL3 (2.8-fold in- crease) and CCR5 (16-fold increase), which are involved in the targeting of T cells to the extravascular sites of tissue...ligand, which attracts CCR5 -positive effector T cells into the tumor tissue. This result shows that there are increased levels of the effector T cells in...the injected s.c. tumor cell lines in vivo models (21–23, 32 –35). The vector infection efficiency of adenoviral vectors in mouse cell lines is not as

  16. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  17. Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling

    PubMed Central

    Quinn, Kylie M.; Zak, Daniel E.; Costa, Andreia; Yamamoto, Ayako; Kastenmuller, Kathrin; Hill, Brenna J.; Lynn, Geoffrey M.; Darrah, Patricia A.; Lindsay, Ross W.B.; Wang, Lingshu; Cheng, Cheng; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gall, Jason G.D.; Roederer, Mario; Aderem, Alan; Seder, Robert A.

    2015-01-01

    Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines. PMID:25642773

  18. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus

    PubMed Central

    Guo, Xiaojuan; Deng, Yao; Chen, Hong; Lan, Jiaming; Wang, Wen; Zou, Xiaohui; Hung, Tao; Lu, Zhuozhuang; Tan, Wenjie

    2015-01-01

    An ideal vaccine against mucosal pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) should confer sustained, protective immunity at both systemic and mucosal levels. Here, we evaluated the in vivo systemic and mucosal antigen-specific immune responses induced by a single intramuscular or intragastric administration of recombinant adenoviral type 5 (Ad5) or type 41 (Ad41) -based vaccines expressing the MERS-CoV spike (S) protein. Intragastric administration of either Ad5-S or Ad41-S induced antigen-specific IgG and neutralizing antibody in serum; however, antigen-specific T-cell responses were not detected. In contrast, after a single intramuscular dose of Ad5-S or Ad41-S, functional antigen-specific T-cell responses were elicited in the spleen and pulmonary lymphocytes of the mice, which persisted for several months. Both rAd-based vaccines administered intramuscularly induced systemic humoral immune responses (neutralizing IgG antibodies). Our results show that a single dose of Ad5-S- or Ad41-S-based vaccines represents an appealing strategy for the control of MERS-CoV infection and transmission. PMID:25762305

  19. The HDAC inhibitor FK228 enhances adenoviral transgene expression by a transduction-independent mechanism but does not increase adenovirus replication.

    PubMed

    Danielsson, Angelika; Dzojic, Helena; Rashkova, Victoria; Cheng, Wing-Shing; Essand, Magnus

    2011-02-17

    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected.

  20. The HDAC Inhibitor FK228 Enhances Adenoviral Transgene Expression by a Transduction-Independent Mechanism but Does Not Increase Adenovirus Replication

    PubMed Central

    Danielsson, Angelika; Dzojic, Helena; Rashkova, Victoria; Cheng, Wing-Shing; Essand, Magnus

    2011-01-01

    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected. PMID:21379379

  1. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    PubMed

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes; Bassi, Maria Rosaria; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2012-01-01

    Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii). To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  2. Light axial vector mesons

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  3. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy

    PubMed Central

    Weymann, Alexander; Arif, Rawa; Weber, Antje; Zaradzki, Marcin; Richter, Karsten; Ensminger, Stephan; Robinson, Peter Nicholas; Wagner, Andreas H.; Karck, Matthias; Kallenbach, Klaus

    2016-01-01

    Objectives Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis. Methods We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM). Results IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1

  4. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy

    PubMed Central

    Zhang, L; Hedjran, F; Larson, C; Perez, G L; Reid, T

    2015-01-01

    Oncolytic adenoviruses are under investigation as a promising novel strategy for cancer immunotherapeutics. Unfortunately, there is no immunocompetent mouse cancer model to test oncolytic adenovirus because murine cancer cells are generally unable to produce infectious viral progeny from human adenoviruses. We find that the murine K-ras-induced lung adenocarcinoma cell line ADS-12 supports adenoviral infection and generates infectious viral progeny. ADS-12 cells express the coxsackie and adenovirus receptor and infected ADS-12 cells express the viral protein E1A. We find that our previously described oncolytic virus, adenovirus TAV-255 (AdTAV-255), kills ADS-12 cells in a dose- and time-dependent manner. We investigated ADS-12 cells as an in-vivo model system for replicating oncolytic adenoviruses. Subcutaneous injection of ADS-12 cells into immunocompetent 129 mice led to tumor formation in all injected mice. Intratumoral injection of AdTAV-255 in established tumors causes a significant reduction in tumor growth. This model system represents the first fully immunocompetent mouse model for cancer treatment with replicating oncolytic adenoviruses, and therefore will be useful to study the therapeutic effect of oncolytic adenoviruses in general and particularly immunostimulatory viruses designed to evoke an antitumor immune response. PMID:25525035

  5. Adenoviral Vectors Incorporating Multiple Targeting and Efficacy Strategies to Eliminate Breast Cancer Metastases

    DTIC Science & Technology

    2002-07-01

    7464-7472. DORONIN, K., TOTH, K., KUPPUSWAMY, M., WARD, P ., TOLLEFSON, A.E., and WOLD, W.S. (2000). Tumor-specific, replication-competent adenovirus...Gene Increases the Oncolytic Effect. Human Gene Therapy 12, 1323-1332. HARVEY, B.G., MARONI , J., O’DONOGHUE, K.A., CHU, K.W., MUSCAT, J.C., PIPPO, A.L...region. Gene Ther 8, 1132-1141. HAWKINS, L.K., JOHNSON, L., BAUZON, M., NYE, J.A., CASTRO, D., KITZES, G.A., YOUNG, M.D., HOLT, J.K., TROWN, P ., and

  6. Treatment of Primary and Metastatic Breast Cancer by an Armed Replicating Adenoviral Vector

    DTIC Science & Technology

    2005-10-31

    Clinical studies of vaccines targeting breast cancer. Clin Cancer Res 9: 3222-3234. 5. Seregni E, Coli A and Mazzucca N (2004). Circulating tumour markers in breast cancer. Eur J Nucl Med Mol Imaging 31 Suppl 1: S15-22. 14

  7. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria.

    PubMed

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-28

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.

  8. Isolation and Characterization of Anti-Adenoviral Secondary Metabolites from Marine Actinobacteria

    PubMed Central

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-01

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure. PMID:24477283

  9. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1

    SciTech Connect

    Ugai, Hideyo; Dobbins, George C.; Wang, Minghui; Le, Long P.; Matthews, David A.; Curiel, David T.

    2012-10-25

    Adenoviral infection induces nucleoplasmic redistribution of a nucleolar nucleophosmin 1/NPM1/B23.1. NPM1 is preferentially localized in the nucleoli of normal cells, whereas it is also present at the nuclear matrix in cancer cells. However, the biological roles of NPM1 during infection are unknown. Here, by analyzing a pV-deletion mutant, Ad5-dV/TSB, we demonstrate that pV promotes the NPM1 translocation from the nucleoli to the nucleoplasm in normal cells, and the NPM1 translocation is correlated with adenoviral replication. Lack of pV causes a dramatic reduction of adenoviral replication in normal cells, but not cancer cells, and Ad5-dV/TSB was defective in viral assembly in normal cells. NPM1 knockdown inhibits adenoviral replication, suggesting an involvement of NPM1 in adenoviral biology. Further, we show that NPM1 interacts with empty adenovirus particles which are an intermediate during virion maturation by immunoelectron microscopy. Collectively, these data implicate that pV participates in a process of viral assembly through NPM1.

  10. Development of hybrid viral vectors for gene therapy.

    PubMed

    Huang, Shuohao; Kamihira, Masamichi

    2013-01-01

    Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.

  11. Treatment of Adenoviral Acute Respiratory Distress Syndrome Using Cidofovir With Extracorporeal Membrane Oxygenation.

    PubMed

    Lee, Minhyeok; Kim, Seulgi; Kwon, Oh Jung; Kim, Ji Hye; Jeong, Inbeom; Son, Ji Woong; Na, Moon Jun; Yoon, Yoo Sang; Park, Hyun Woong; Kwon, Sun Jung

    2017-03-01

    Adenovirus infections are associated with respiratory (especially upper respiratory) infection and gastrointestinal disease and occur primarily in infants and children. Although rare in adults, severe lower respiratory adenovirus infections including pneumonia are reported in specific populations, such as military recruits and immunocompromised patients. Antiviral treatment is challenging due to limited clinical experience and lack of well-controlled randomized trials. Several previously reported cases of adenoviral pneumonia showed promising efficacy of cidofovir. However, few reports discussed the efficacy of cidofovir in acute respiratory distress syndrome (ARDS). We experienced 3 cases of adenoviral pneumonia associated with ARDS and treated with cidofovir and respiratory support, including extracorporeal membrane oxygenation (ECMO). All 3 patients showed a positive clinical response to cidofovir and survival at 28 days. Cidofovir with early ECMO therapy may be a therapeutic option in adenoviral ARDS. A literature review identified 15 cases of adenovirus pneumonia associated with ARDS.

  12. Effect of adenoviral delivery of prodynorphin gene on experimental inflammatory pain induced by formalin in rats

    PubMed Central

    Chen, Xionggang; Wang, Tingting; Lin, Caizhu; Chen, Baihong

    2014-01-01

    Circumstantial evidences suggest that dynorphins and their common precursor prodynorphin (PDYN) are involved in antinociception and neuroendocrine signaling. DREAM knockout mice had increased levels of PDYN and dynorphin expression, and reduced sensitivity to painful stimuli. However, some data support the notion that the up-regulation of spinal dynorphin expression is a common critical feature in neuropathic pain. It is not clear whether the production of dynorphin A can be increased when more PDYN is present. In this study we investigated the changes in pain behaviors, spinal PDYN mRNA expression and dynorphin A production on formalin-induced pain in rats receiving the pretreatment of adenoviral delivery of PDYN. Our results showed that the adenoviral transfer of PDYN gene was sufficient to reduce pain behaviors resulting from formalin injection, and the antinociceptive effect after receiving the pretreatment of adenoviral delivery of PDYN was mediated at the level of the spinal cord via KOR. PMID:25663984

  13. An Adenoviral Vaccine Encoding Full-Length Inactivated Human HER2 Exhibits Potent Immunogenicty and Enhanced Therapeutic Efficacy Without Oncogenicity

    PubMed Central

    Hartman, Zachary; Wei, Junping; Osada, Takuya; Glass, Oliver; Lei, Gangjun; Yang, Xiao-Yi; Peplinski, Sharon; Kim, Dong-Wan; Xia, Wenle; Spector, Neil; Marks, Jeffrey; Barry, William; Hobeika, Amy; Devi, Gayathri; Amalfitano, Andrea; Morse, Michael A.; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Purpose Overexpression of the breast cancer oncogene HER2 correlates with poor survival. Current HER2-directed therapies confer limited clinical benefits and most patients experience progressive disease. Because refractory tumors remain strongly HER2+, vaccine approaches targeting HER2 have therapeutic potential, but wild type (wt) HER2 cannot safely be delivered in imunogenic viral vectors because it is a potent oncogene. We designed and tested several HER2 vaccines devoid of oncogenic activity to develop a safe vaccine for clinical use. Experimental Design We created recombinant adenoviral vectors expressing the extracellular domain of HER2 (Ad-HER2-ECD), ECD plus the transmembrane domain (Ad-HER2-ECD-TM) and full length HER2 inactivated for kinase function (Ad-HER2-ki) and determined their immunogenicity and anti-tumor effect in wild type (WT) and HER2 tolerant mice. To assess their safety, we compared their effect on the cellular transcriptome, cell proliferation, anchorage-dependent growth, and transformation potential in vivo. Results Ad-HER2-ki was the most immunogenic vector in WT animals, retained immunogenicity in HER2-transgenic tolerant animals, and showed strong therapeutic efficacy in treatment models. Despite being highly expressed, HER2-ki protein was not phosphorylated and did not produce an oncogenic gene signature in primary human cells. And, in contrast to HER2-wt, cells overexpressing HER2-ki were less proliferative, displayed less anchorage independent growth and were not transformed in vivo. Conclusions Vaccination with mutationally inactivated, non-oncogenic Ad-HER2-ki results in robust polyclonal immune responses to HER2 in tolerant models, which translates into strong and effective anti-tumor responses in vivo. Ad-HER2-ki is thus a safe and promising vaccine for evaluation in clinical trials. PMID:20179231

  14. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice

    PubMed Central

    Moayeri, Mahtab; Tremblay, Jacqueline M.; Debatis, Michelle; Dmitriev, Igor P.; Kashentseva, Elena A.; Yeh, Anthony J.; Cheung, Gordon Y. C.; Curiel, David T.; Leppla, Stephen

    2016-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. PMID:26740390

  15. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice.

    PubMed

    Moayeri, Mahtab; Tremblay, Jacqueline M; Debatis, Michelle; Dmitriev, Igor P; Kashentseva, Elena A; Yeh, Anthony J; Cheung, Gordon Y C; Curiel, David T; Leppla, Stephen; Shoemaker, Charles B

    2016-01-06

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.

  16. The prevalence of adenoviral conjunctivitis at the Clinical Hospital of the State University of Campinas, Brazil

    PubMed Central

    Pinto, Roberto Damian Pacheco; Lira, Rodrigo Pessoa Cavalcanti; Arieta, Carlos Eduardo Leite; de Castro, Rosane Silvestre; Bonon, Sandra Helena Alves

    2015-01-01

    OBJECTIVES: Viral conjunctivitis is a common, highly contagious disease that is often caused by an adenovirus. The aim of this study was to evaluate the prevalence of adenoviral conjunctivitis by analyzing data from a prospective clinical study of 122 consecutively enrolled patients who were treated at the Clinical Hospital of the State University of Campinas (UNICAMP) after a clinical diagnosis of infectious conjunctivitis between November 2011 and June 2012. METHODS: Polymerase chain reaction was used to evaluate all cases of clinically diagnosed infectious conjunctivitis and based on the laboratory findings, the prevalence of adenoviral infections was determined. The incidence of subepithelial corneal infiltrates was also investigated. RESULTS: Of the 122 patients with acute infectious conjunctivitis included, 72 had positive polymerase chain reaction results for adenoviruses and 17 patients developed subepithelial corneal infiltrates (13.93%). CONCLUSIONS: The polymerase chain reaction revealed that the prevalence of adenoviral conjunctivitis was 59% in all patients who presented with a clinical diagnosis of infectious conjunctivitis from November 2011 to June 2012. The prevalence of adenoviral conjunctivitis in the study population was similar to its prevalence in other regions of the world. PMID:26602522

  17. Adenoviral targeting using genetically incorporated camelid single variable domains

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Buggio, Maurizio; Tremblay, Jacqueline M.; Shoemaker, Charles B.; Curiel, David T.

    2014-01-01

    The unique ability of human adenovirus serotype 5 (Ad5) to accomplish efficient transduction has allowed the use of Ad5-based vectors for a range of gene therapy applications. Several strategies have been developed to alter tropism of Ad vectors to achieve a cell-specific gene delivery by employing fiber modifications via genetic incorporation of targeting motifs. In this study we have explored the utility of novel anti-human carcinoembryonic antigen (hCEA) single variable domains derived from heavy chain (VHH) camelid family of antibodies to achieve targeted gene transfer. To obtain anti-CEA VHHs we produced a VHH-display library from peripheral blood lymphocytes RNA of alpacas at the peak of immune response to the hCEA antigen. We genetically incorporated an anti-hCEA VHH into a de-knobbed Ad5 fiber-fibritin chimera and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of target cells. We report that the anti-hCEA VHH employed in this study retains antigen recognition functionality and provides specificity for gene transfer of capsid-modified Ad5 vectors. These studies clearly demonstrated the feasibility of retargeting of Ad5-based gene transfer using VHHs. PMID:24933423

  18. Adenoviral targeting using genetically incorporated camelid single variable domains.

    PubMed

    Kaliberov, Sergey A; Kaliberova, Lyudmila N; Buggio, Maurizio; Tremblay, Jacqueline M; Shoemaker, Charles B; Curiel, David T

    2014-08-01

    The unique ability of human adenovirus serotype 5 (Ad5) to accomplish efficient transduction has allowed the use of Ad5-based vectors for a range of gene therapy applications. Several strategies have been developed to alter tropism of Ad vectors to achieve a cell-specific gene delivery by using fiber modifications via genetic incorporation of targeting motifs. In this study, we have explored the utility of novel anti-human carcinoembryonic antigen (hCEA) single variable domains derived from heavy chain (VHH) camelid family of antibodies to achieve targeted gene transfer. To obtain anti-CEA VHHs, we produced a VHH-display library from peripheral blood lymphocytes RNA of alpacas at the peak of immune response to the hCEA antigen (Ag). We genetically incorporated an anti-hCEA VHH into a de-knobbed Ad5 fiber-fibritin chimera and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of target cells. We report that the anti-hCEA VHH used in this study retains Ag recognition functionality and provides specificity for gene transfer of capsid-modified Ad5 vectors. These studies clearly demonstrated the feasibility of retargeting of Ad5-based gene transfer using VHHs.

  19. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system

    PubMed Central

    Maunder, H. E.; Wright, J.; Kolli, B. R.; Vieira, C. R.; Mkandawire, T. T.; Tatoris, S.; Kennedy, V.; Iqball, S.; Devarajan, G.; Ellis, S.; Lad, Y.; Clarkson, N. G.; Mitrophanous, K. A.; Farley, D. C.

    2017-01-01

    A key challenge in the field of therapeutic viral vector/vaccine manufacturing is maximizing production. For most vector platforms, the ‘benchmark' vector titres are achieved with inert reporter genes. However, expression of therapeutic transgenes can often adversely affect vector titres due to biological effects on cell metabolism and/or on the vector virion itself. Here, we exemplify the novel ‘Transgene Repression In vector Production' (TRiP) system for the production of both RNA- and DNA-based viral vectors. The TRiP system utilizes a translational block of one or more transgenes by employing the bacterial tryptophan RNA-binding attenuation protein (TRAP), which binds its target RNA sequence close to the transgene initiation codon. We report enhancement of titres of lentiviral vectors expressing Cyclo-oxygenase-2 by 600-fold, and adenoviral vectors expressing the pro-apoptotic gene Bax by >150,000-fold. The TRiP system is transgene-independent and will be a particularly useful platform in the clinical development of viral vectors expressing problematic transgenes. PMID:28345582

  20. Treatment for Retinopathy of Prematurity in an Infant with Adenoviral Conjunctivitis

    PubMed Central

    Gunay, Murat; Celik, Gokhan; Con, Rahim

    2015-01-01

    Retinopathy of prematurity (ROP) has been a major problematic disorder during childhood. Laser photocoagulation (LPC) has been proven to be effective in most of the ROP cases. Adenoviral conjunctivitis (AVC) is responsible for epidemics among adult and pediatric population. It has also been reported to be a cause of outbreaks in neonatal intensive care units (NICU) several times. We herein demonstrate a case with AVC who underwent LPC for ROP. And we discuss the treatment methodology in such cases. PMID:25874149

  1. Carrying Backpacks: Physical Effects

    ERIC Educational Resources Information Center

    Illinois State Board of Education, 2006

    2006-01-01

    It is estimated that more than 40 million U.S. youth carry school materials in backs, routinely carrying books, laptop computers, personal and other items used on a daily basis. The Consumer Product Safety Commission (CPSC) estimates that 7,277 emergency visits each year result from injuries related to backpacks. Injury can occur when a child…

  2. Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the

  3. Vector sequences are not detected in tumor tissue from research subjects with ornithine transcarbamylase deficiency who previously received adenovirus gene transfer.

    PubMed

    Zhong, Li; Li, Shaoyong; Li, Mengxin; Xie, Jun; Zhang, Yu; Lee, Brendan; Batshaw, Mark L; Wilson, James M; Gao, Guangping

    2013-09-01

    A 66-year-old woman heterozygous for a mutation in the ornithine transcarbamylase gene (Otc) participated in a phase I gene therapy trial for OTC deficiency. She received an adenovirus (Ad) vector expressing the functional OTC gene by intraportal perfusion. Fourteen years later she developed and subsequently died of hepatocellular carcinoma. A second subject, a 45-year-old woman, enrolled in the same trial presented with colon cancer 15 years later. We sought to investigate a possible association between the development of a tumor and prior adenoviral gene transfer in these two subjects. We developed and validated a sensitive nested polymerase chain reaction assay for recovering recombinant Ad sequences from host tissues. Using this method, we could not detect any Ad vector DNA in either tumor or normal tissue from the two patients. Our results are informative in ruling out the possibility that the adenoviral vector might have contributed to the development of cancer in those two subjects.

  4. Vector platforms for gene therapy of inherited retinopathies.

    PubMed

    Trapani, Ivana; Puppo, Agostina; Auricchio, Alberto

    2014-11-01

    Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs' limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.

  5. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  6. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  7. Altered hyaluronic acid content in tear fluid of patients with adenoviral conjunctivitis.

    PubMed

    Dreyfuss, Juliana L; Regatieri, Caio V; Coelho, Bruno; Barbosa, José B; De Freitas, Denise; Nader, Helena B; Martins, João R

    2015-03-01

    The adenoviral conjunctivitis is one of the biggest causes of conjunctival infection in the world. Conjunctivitis causes relatively nonspecific symptoms, as hyperaemia and chemosis. Even after biomicroscopy, complex laboratory tests, such as viral culture, are necessary to identify the pathogen or its etiology. To contribute to the better understanding of the pathobiology of the adenoviral conjunctivitis, the tear fluids of patients with unilateral acute adenovirus conjunctivitis (UAAC), normal donors (control) and patients with allergic conjunctivitis were analyzed. Tear samples were collected with Schirmer strips from control, allergic conjunctivitis and UAAC patients, diagnosed by clinical signs. UAAC tears were tested positive in viral cultures. After the elution, HA was quantified using an ELISA-like fluorometric assay and the protein profile was determined by SDS-PAGE. A profound increase in the HA tear content in UAAC patients was found when compared to control and ALC. This HA increase in UAAC tears remarkably was not observed in tears from contralateral eyes without clinical signs, nor in allergic conjunctivitis. In addition a distinct profile of UAAC tear proteins was observed in patients with UAAC. The quantification of HA in the tear fluid is a rapid, sensitive and specific test. This molecule might be a biomarker candidate for acute conjunctivitis.

  8. Disseminated adenoviral infection masquerading as lower urinary tract voiding dysfunction in a kidney transplant recipient.

    PubMed

    Aboumohamed, Ahmed; Flechner, Stuart M; Chiesa-Vottero, Andres; Srinivas, Titte R; Mossad, Sherif B

    2014-11-01

    Viral infections continue to cause significant morbidity in immunosuppressed kidney transplant patients. Although cytomegalovirus, Epstein-Barr virus and polyoma "BK" virus are more frequently encountered, the Adenovirus can cause multi-organ system infections, and may be difficult to diagnose because it is not often considered in the initial work up in kidney transplant recipients. We present an unusual case of a kidney recipient 1 year post-transplant with disseminated adenoviral infection, who had an initial presentation of lower urinary tract voiding dysfunction with hematuria and sterile pyuria. This progressed to a severe tubulointerstitial nephritis and acute kidney injury that improved with reduction of immunosuppression. Serial blood viral loads are useful for monitoring the course of infection. Urinary adenoviral infection should be considered in the differential diagnosis whenever a kidney transplant recipient presents with unexplained lower tract voiding dysfunction, hematuria, and sterile pyuria. The allograft kidney and bladder can be targets of viral proliferation. Early diagnosis with reduction of immunosuppressive therapy is essential to clear the virus and maintain allograft function.

  9. Vaccine-preventable adenoviral respiratory illness in US military recruits, 1999-2004

    PubMed Central

    Russell, Kevin L.; Hawksworth, Anthony W.; Ryan, Margaret A. K.; Strickler, Jennifer; Irvine, Marina; Hansen, Christian J.; Gray, Gregory C.; Gaydos, Joel C.

    2007-01-01

    Background and Methods: The high burden of respiratory infections in military populations is well documented throughout history. The primary pathogen responsible for morbidity among US recruits in training was shown to be adenovirus. Highly efficacious oral vaccines were used for 25 years, but vaccine production ceased in 1996, and available stores were depleted by early 1999. Surveillance for acute febrile respiratory illness was performed at eight military recruit training sites throughout the United States from July 1999 through June 2004 to document rates after loss of the vaccines. Laboratory diagnoses complimented the surveillance efforts. Results: Over the 5 years, nearly 12 million person-weeks were followed and an estimated 110,172 febrile respiratory illness cases and 73,748 adenovirus cases were identified. Rates of illness were highest at the Navy and Air Force training centers, with average annual rates of 1.20 and 1.35 cases per 100 recruit- weeks respectively. Adenoviral-associated illness rates peaked in weeks 3 to 5 of training, depending upon service. Conclusions: The burden of adenoviral illness among US recruit populations has returned to high levels since loss of the vaccines. Restoration of an effective adenovirus vaccine effort within the military is anticipated by 2008, potentially reducing the adenovirus morbidity suffered in this vulnerable population. Efforts to determine the burden of adenovirus and potential benefits of vaccination in civilian populations are being renewed. PMID:16480793

  10. High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper" Proteins.

    PubMed

    Gwiazda, Kamila S; Grier, Alexandra E; Sahni, Jaya; Burleigh, Stephen M; Martin, Unja; Yang, Julia G; Popp, Nicholas A; Krutein, Michelle C; Khan, Iram F; Jacoby, Kyle; Jensen, Michael C; Rawlings, David J; Scharenberg, Andrew M

    2016-09-29

    Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.

  11. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  12. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  13. Adenovirus-derived vectors for prostate cancer gene therapy.

    PubMed

    de Vrij, Jeroen; Willemsen, Ralph A; Lindholm, Leif; Hoeben, Rob C; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Dautzenberg, Iris J C; de Ridder, Corrina; Dzojic, Helena; Erbacher, Patrick; Essand, Magnus; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Jennings, Ian; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nugent, Regina; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schenk-Braat, Ellen; Schooten, Erik; Seymour, Len; Slade, Michael; Szyjanowicz, Pio; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; van der Weel, Laura; van Weerden, Wytske; Wagner, Ernst; Zuber, Guy

    2010-07-01

    Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.

  14. A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells

    PubMed Central

    Buo, Atum M; Williams, Mark S; Kerr, Jaclyn P; Stains, Joseph P

    2016-01-01

    We report here a method for the use of poly-l-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. PMID:27547486

  15. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  16. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    ClinicalTrials.gov

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  17. Vector carpets

    SciTech Connect

    Dovey, D.

    1995-03-22

    Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.

  18. Culture and adenoviral infection of sinoatrial node myocytes from adult mice

    PubMed Central

    St. Clair, Joshua R.; Sharpe, Emily J.

    2015-01-01

    Pacemaker myocytes in the sinoatrial node of the heart initiate each heartbeat by firing spontaneous action potentials. However, the molecular processes that underlie pacemaking are incompletely understood, in part because of our limited ability to manipulate protein expression within the native cellular context of sinoatrial node myocytes (SAMs). Here we describe a new method for the culture of fully differentiated SAMs from adult mice, and we demonstrate that robust expression of introduced proteins can be achieved within 24–48 h in vitro via adenoviral gene transfer. Comparison of morphological and electrophysiological characteristics of 48 h-cultured versus acutely isolated SAMs revealed only minor changes in vitro. Specifically, we found that cells tended to flatten in culture but retained an overall normal morphology, with no significant changes in cellular dimensions or membrane capacitance. Cultured cells beat spontaneously and, in patch-clamp recordings, the spontaneous action potential firing rate did not differ between cultured and acutely isolated cells, despite modest changes in a subset of action potential waveform parameters. The biophysical properties of two membrane currents that are critical for pacemaker activity in SAMs, the “funny current” (If) and voltage-gated Ca2+ currents (ICa), were also indistinguishable between cultured and acutely isolated cells. This new method for culture and adenoviral infection of fully-differentiated SAMs from the adult mouse heart expands the range of experimental techniques that can be applied to study the molecular physiology of cardiac pacemaking because it will enable studies in which protein expression levels can be modified or genetically encoded reporter molecules expressed within SAMs. PMID:26001410

  19. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    SciTech Connect

    Campos, Samuel K.; Barry, Michael A. . E-mail: mab@bcm.edu

    2006-06-05

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon.

  20. An outbreak of adenoviral infection in inland bearded dragons (Pogona vitticeps) coinfected with dependovirus and coccidial protozoa (Isospora sp.).

    PubMed

    Kim, Dae Young; Mitchell, Mark A; Bauer, Rudy W; Poston, Rob; Cho, Doo-Youn

    2002-07-01

    Thirty of 200 (15%) hatchling inland bearded dragons were found dead after a short period (48 hours) of weakness and lethargy. The most common clinical signs were head tilt and circling. Six bearded dragons with neurological signs were euthanized, and postmortem examination revealed no gross abnormalities. Microscopically, severe, randomly distributed hepatocellular necrosis with large basophilic intranuclear inclusion bodies in numerous hepatocytes was noted. Small-intestinal enterocytes contained intracytoplasmic coccidial protozoa (Isospora sp.) and occasional enterocytes had basophilic intranuclear inclusion bodies. Transmission electron microscopy revealed both 80- and 20-nm-diameter viral particles, which were consistent with adenoviruses and dependoviruses, respectively. Adenoviral outbreaks in groups of animals are uncommon. An adverse synergistic effect of the coccidiosis with the adenoviral infection may have played a critical role in the high morbidity and mortality in this case.

  1. 35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE BOILER SHOP IS ON THE RIGHT, IN FRONT OF HOT BLAST STOVES. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  2. Adenoviral mediated gene transfer of PDGF-B enhances wound healing in type I and type II diabetic wounds.

    PubMed

    Keswani, Sundeep G; Katz, Anna B; Lim, Foong-Yen; Zoltick, Philip; Radu, Antoneta; Alaee, Datis; Herlyn, Meenhard; Crombleholme, Timothy M

    2004-01-01

    We have shown that the genetically diabetic mouse (C57BLKS/J-m+/+Lepr(db)) has a wound healing and neovascularization deficit associated with an inability to recruit endothelial precursor cells (EPCs) to the wound. This may account for a fundamental mechanism in impaired diabetic wound healing. We hypothesized that the adenoviral mediated overexpression of platelet-derived growth factor-B (PDGF-B) would enhance wound healing, improve neovascularization, and recruit EPCs to the epithelial wound in three diabetic mouse models. Eight-mm full-thickness flank wounds were made in db/db, nonobese NOD/Ltj, streptozotocin, and C57BLKS/J mice. Wounds were treated with either 1 x 10(8) PFU Ad-PDGF-B or Ad LacZ or phosphate buffered saline solution. Wounds harvested at seven days were analyzed for epithelial gap, blood vessel density, granulation tissue area, and EPCs per high powered field. All three diabetic models have a significant wound healing and neovascularization defect compared to C57BLKS/J controls. Adenoviral-PDGF-B treatment significantly enhanced epithelial gap closure in db/db, streptozotocin, and nonobese NOD/Ltj mice as compared to diabetic phosphate buffered saline solution or Ad LacZ controls. A similar increase in the formation of granulation tissue and vessel density was also observed. All three models had reduced levels of GATA-2 positive EPCs in the wound bed that was corrected by the adenoviral mediated gene transfer of PDGF. EPC recruitment was positively correlated with neovascularization and wound healing. Three different diabetic models have a wound healing impairment and a decreased ability to recruit EPCs. The vulnerary effect of adenoviral mediated gene therapy with PDGF-B significantly enhanced wound healing and neovascularization in diabetic wounds. The PDGF-B mediated augmentation of EPC recruitment to the wound bed may be a fundamental mechanism of these results.

  3. Production and Characterization of Vectors Based on the Cardiotropic AAV Serotype 9.

    PubMed

    Kohlbrenner, Erik; Weber, Thomas

    2017-01-01

    Vectors based on adeno-associated virus serotype 9 (AAV9) efficiently transduce cardiomyocytes in both rodents and large animal models upon either systemic or regional vector delivery. In this chapter, we describe the most widely used production and purification method of AAV9. This production approach does not depend on the use of a helpervirus but instead on transient transfection of HEK293T cells with a plasmid containing the recombinant AAV genome and a second plasmid encoding the AAV9 capsid proteins, the AAV Rep proteins and the adenoviral helper functions. The recombinant AAV is then purified by iodixanol density gradient centrifugation. This chapter also describes in detail the characterization and quality control methods required for assuring high quality vector preparations, which is of particular importance for experiments in large animal models.

  4. On fast carry select adders

    NASA Technical Reports Server (NTRS)

    Shamanna, M.; Whitaker, S.

    1992-01-01

    This paper presents an architecture for a high-speed carry select adder with very long bit lengths utilizing a conflict-free bypass scheme. The proposed scheme has almost half the number of transistors and is faster than a conventional carry select adder. A comparative study is also made between the proposed adder and a Manchester carry chain adder which shows that the proposed scheme has the same transistor count, without suffering any performance degradation, compared to the Manchester carry chain adder.

  5. On fast carry select adders

    NASA Astrophysics Data System (ADS)

    Shamanna, M.; Whitaker, S.

    This paper presents an architecture for a high-speed carry select adder with very long bit lengths utilizing a conflict-free bypass scheme. The proposed scheme has almost half the number of transistors and is faster than a conventional carry select adder. A comparative study is also made between the proposed adder and a Manchester carry chain adder which shows that the proposed scheme has the same transistor count, without suffering any performance degradation, compared to the Manchester carry chain adder.

  6. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo.

    PubMed

    Sipo, I; Wang, X; Hurtado Picó, A; Suckau, L; Weger, S; Poller, W; Fechner, H

    2006-01-01

    Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, E(DeltaNLS)M, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.E(DeltaNLS)M and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.E(DeltaNLS)M and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.E(DeltaNLS)M and Ad.MEM in vivo. Induction of Ad.E(DeltaNLS)M inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. E(DeltaNLS)M and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

  7. Phosphodiesterase 5a Inhibition with Adenoviral Short Hairpin RNA Benefits Infarcted Heart Partially through Activation of Akt Signaling Pathway and Reduction of Inflammatory Cytokines

    PubMed Central

    Jin, Zhe; Zhang, Jian; Paul, Christian; Wang, Yigang

    2015-01-01

    Introduction Treatment with short hairpin RNA (shRNA) interference therapy targeting phosphodiesterase 5a after myocardial infarction (MI) has been shown to mitigate post-MI heart failure. We investigated the mechanisms that underpin the beneficial effects of PDE5a inhibition through shRNA on post-MI heart failure. Methods An adenoviral vector with an shRNA sequence inserted was adopted for the inhibition of phosphodiesterase 5a (Ad-shPDE5a) in vivo and in vitro. Myocardial infarction (MI) was induced in male C57BL/6J mice by left coronary artery ligation, and immediately after that, the Ad-shPDE5a was injected intramyocardially around the MI region and border areas. Results Four weeks post-MI, the Ad-shPDE5a-treated mice showed significant mitigation of the left ventricular (LV) dilatation and dysfunction compared to control mice. Infarction size and fibrosis were also significantly reduced in Ad-shPDE5a-treated mice. Additionally, Ad-shPDE5a treatment decreased the MI-induced inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β1, which was confirmed in vitro in Ad-shPDE5a transfected myofibroblasts cultured under oxygen glucose deprivation. Finally, Ad-shPDE5a treatment was found to activate the myocardial Akt signaling pathway in both in vivo and in vitro experiments. Conclusion These findings indicate that PDE5a inhibition by Ad-shPDE5a via the Akt signal pathway could be of significant value in the design of future therapeutics for post-MI heart failure. PMID:26709517

  8. A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

    PubMed Central

    Farrow, Anitra L.; Peng, Binghao J.; Gu, Linlin; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2016-01-01

    Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease. PMID:26978385

  9. Adenoviral Infections in Adult Allogeneic Hematopoietic Stem Cell Transplant Recipients: A Single Center Experience

    PubMed Central

    Yilmaz, Musa; Chemaly, Roy F.; Han, Xiang Y.; Thall, Peter F.; Fox, Patricia S.; Tarrand, Jeffrey J.; De Lima, Marcos J.; Hosing, Chitra M.; Popat, Uday R.; Shpall, Elizabeth; Champlin, Richard E.; Qazilbash, Muzaffar H.

    2014-01-01

    Disseminated adenoviral infection (AI) is associated with profound immunosuppression and poor outcome after allogeneic hematopoietic stem cell transplantation (allo-HCT). A better understanding of AI in allo-HCT recipients can serve a basis to develop more effective management strategies. We evaluated all adult patients who received allo-HCT at M.D. Anderson Cancer Center between 1999 and 2008. Among the 2879 allo-HCT patients, 73 (2.5%) were diagnosed with AI. Enteritis (26%) and pneumonia (24%) were the most common clinical manifestations; pneumonia was the most common cause of adenovirus-associated death. A multivariable Bayesian logistic regression showed that, when the joint effects of all covariates were accounted for, a cord blood transplant, absolute lymphocyte count (ALC) ≤ 200/mm3, and male gender were associated with a higher probability of disseminated AI. The overall survival was significantly worse for patients with AI that was disseminated rather than localized (median of 5 months versus 28 months, respectively, p<0.001) and for patients with ALC ≤ 200/mm3 (p<0.001). Disseminated AI, in patients who received allo-HCT, is a significant cause of morbidity and mortality. Strategies for early diagnosis and intervention are essential, especially for high-risk patients. PMID:23503529

  10. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    PubMed Central

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  11. Novel mechanism of JNK pathway activation by adenoviral E1A.

    PubMed

    Romanov, Vasily S; Brichkina, Anna I; Morrison, Helen; Pospelova, Tatiana V; Pospelov, Valery A; Herrlich, Peter

    2014-04-30

    The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action.

  12. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  13. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies

    PubMed Central

    Uusi-Kerttula, Hanni; Legut, Mateusz; Davies, James; Jones, Rachel; Hudson, Emma; Hanna, Louise; Stanton, Richard J.; Chester, John D.

    2015-01-01

    Abstract Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCARlow/EGFRhigh cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of

  14. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies.

    PubMed

    Uusi-Kerttula, Hanni; Legut, Mateusz; Davies, James; Jones, Rachel; Hudson, Emma; Hanna, Louise; Stanton, Richard J; Chester, John D; Parker, Alan L

    2015-05-01

    Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCAR(low)/EGFR(high) cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of circumventing

  15. Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids.

    PubMed

    Choi, Samjin; Moon, Sung Woon; Shin, Jae-Ho; Park, Hun-Kuk; Jin, Kyung-Hyun

    2014-11-18

    Cell culture and polymerase chain reaction are currently regarded as the gold standard for adenoviral conjunctivitis diagnosis. They maximize sensitivity and specificity but require several days to 3 weeks to get the results. The aim of this study is to determine the potential of Raman spectroscopy as a stand-alone analytical tool for clinical diagnosis of adenoviral conjunctivitis using human tear fluids. A drop-coating deposition surface enhanced Raman scattering (DCD-SERS) method was identified as the most effective method of proteomic analysis in tear biofluids. The proposed DCD-SERS method (using a 2-μL sample) led to Raman spectra with high reproducibility, noise-independence, and uniformity. Additionally, the spectra were independent of the volume of biofluids used and detection zones, including the ring, middle, and central zone, with the exception of the outer layer of the ring zone. Assessments with an intensity ratio of 1242-1342 cm(-1) achieved 100% sensitivity and 100% specificity in the central zone. Principal component analysis assessments achieved 0.9453 in the area under the receiver operating characteristic curve (AUC) as well as 93.3% sensitivity and 94.5% specificity in the central zone. Multi-Gaussian peak assessments showed that the differences between these two groups resulted from the reduction of the amide III α-helix structures of the proteins. The presence of adenovirus in tear fluids could be detected more accurately in the center of the sample than in the periphery. The DCD-SERS technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of adenoviral conjunctivitis. Therefore, we are hopeful that the DCD-SERS method will be approved for use in ophthalmological clinics in the near future.

  16. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.

  17. Gene Therapy of Breast Cancer: Studies of Selective Promoter/Enhancer-Modified Vectors to Deliver Suicide Genes

    DTIC Science & Technology

    1997-09-01

    gene therapy strategies for breast cancer by translation of studies derived from the DF3/MUCl gene. We have completed Tasks 1 and 2 as outlined in the Statement of Work using the DF3 promoter to selectively drive transgenes in breast cancer cells. The DF3 promoter has been used in an adenoviral vector to selectively detect and eliminate breast cancer cells that contaminate hematopoietic stem cell preparations used in autologous bone marrow transplantation. More recent work has involved modification of the DF3 promoter by adding a Tet-enhancer system to increase expression

  18. Comparison of Efficacy of Two Different Topical 0.05% Cyclosporine A Formulations in the Treatment of Adenoviral Keratoconjunctivitis-Related Subepithelial Infiltrates

    PubMed Central

    Bayraktutar, Betül N.; Uçakhan, Ömur Ö.

    2016-01-01

    Subepithelial infiltrates secondary to adenoviral keratoconjunctivitis may persist for years and cause blurred vision, halos, glare, and photophobia. These infiltrates arise from immune reaction against the virus, and few studies have reported topical cyclosporine A to be effective in the treatment of subepithelial infiltrates. Herein, we describe a patient with adenoviral keratoconjunctivitis-related subepithelial infiltrates who did not respond to treatment with a new topical cyclosporine A emulsion prepared with castor oil (Depores 0.05%; Deva İlaç, Kocaeli, Turkey), while the FDA-approved nanoemulsion formulation provided improvement in symptoms and reduced the inflammatory reaction (Restasis 0.05%; Allergan, Irvine, Calif., USA). PMID:27065851

  19. Toxic activity of the CdtB component of Haemophilus ducreyi cytolethal distending toxin expressed from an adenovirus 5 vector.

    PubMed

    Wising, Catharina; Magnusson, Maria; Ahlman, Karin; Lindholm, Leif; Lagergård, Teresa

    2010-02-01

    The Haemophilus ducreyi cytolethal distending toxin (HdCDT) catalytic subunit CdtB has DNase-like activity and mediates DNA damage after its delivery into target cells. We constructed a replication-deficient adenovirus type 5 (Ad5) vector expressing CdtB and investigated the toxic properties of this vector on HeLa cells. Ad5CdtB caused loss of cell viability, morphologic changes, and cell cycle arrest, findings similar to HdCDT intoxication. This confirmed that CdtB is responsible for the toxicity of the holotoxin when expressed in cells following transduction by an adenoviral vector, and indicated a possible potential of this novel strategy in studies of activity of intracellular products and in gene therapy of cancer.

  20. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice

    PubMed Central

    Liu, Shan; Jackson, Andrew; Beloor, Jagadish; Kumar, Priti; Sutton, Richard E.

    2015-01-01

    Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4+ T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans. PMID:25953321

  1. New protocol for lentiviral vector mass production.

    PubMed

    Segura, María Mercedes; Garnier, Alain; Durocher, Yves; Ansorge, Sven; Kamen, Amine

    2010-01-01

    Multiplasmid transient transfection is the most widely used technique for the generation of lentiviral vectors. However, traditional transient transfection protocols using 293 T adherent cells and calcium phosphate/DNA co-precipitation followed by ultracentrifugation are tedious, time-consuming, and difficult to scale up. This chapter describes a streamlined protocol for the fast mass production of lentiviral vectors and their purification by affinity chromatography. Lentiviral particles are generated by transient transfection of suspension growing HEK 293 cells in serum-free medium using polyethylenimine (PEI) as transfection reagent. Lentiviral vector production is carried out in Erlenmeyer flasks agitated on orbital shakers requiring minimum supplementary laboratory equipment. Alternatively, the method can be easily scaled up to generate larger volumes of vector stocks in bioreactors. Heparin affinity chromatography allows for selective concentration and purification of lentiviral particles in a singlestep directly from vector supernatants. The method is suitable for the production and purification of different vector pseudotypes.

  2. Hybrid Nonviral/Viral Vector Systems for Improved piggyBac DNA Transposon In Vivo Delivery

    PubMed Central

    Cooney, Ashley L; Singh, Brajesh K; Sinn, Patrick L

    2015-01-01

    The DNA transposon piggyBac is a potential therapeutic agent for multiple genetic diseases such as cystic fibrosis (CF). Recombinant piggyBac transposon and transposase are typically codelivered by plasmid transfection; however, plasmid delivery is inefficient in somatic cells in vivo and is a barrier to the therapeutic application of transposon-based vector systems. Here, we investigate the potential for hybrid piggyBac/viral vectors to transduce cells and support transposase-mediated genomic integration of the transposon. We tested both adenovirus (Ad) and adeno-associated virus (AAV) as transposon delivery vehicles. An Ad vector expressing hyperactive insect piggyBac transposase (iPB7) was codelivered. We show transposase-dependent transposition activity and mapped integrations in mammalian cells in vitro and in vivo from each viral vector platform. We also demonstrate efficient and persistent transgene expression following nasal delivery of piggyBac/viral vectors to mice. Furthermore, using piggyBac/Ad expressing Cystic Fibrosis transmembrane Conductance Regulator (CFTR), we show persistent correction of chloride current in well-differentiated primary cultures of human airway epithelial cells derived from CF patients. Combining the emerging technologies of DNA transposon-based vectors with well-studied adenoviral and AAV delivery provides new tools for in vivo gene transfer and presents an exciting opportunity to increase the delivery efficiency for therapeutic genes such as CFTR. PMID:25557623

  3. Carry Groups: Abstract Algebra Projects

    ERIC Educational Resources Information Center

    Miller, Cheryl Chute; Madore, Blair F.

    2004-01-01

    Carry Groups are a wonderful collection of groups to introduce in an undergraduate Abstract Algebra course. These groups are straightforward to define but have interesting structures for students to discover. We describe these groups and give examples of in-class group projects that were developed and used by Miller.

  4. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and

  5. STANDARDIZATION AND VALIDATION OF ADENOVIRAL TRANSDUCTION OF AN ANDROGEN RECEPTOR POSITIVE CELL LINE WITH AN MMTV-LUC REPORTER FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Standardization and Validation of Adenoviral Transduction of an Androgen Receptor Positive Cell Line with an MMTV-Luc Reporter for Endocrine Screening P. Hartig, K . Bobseine,
    M. Cardon, C. Lambright and L. E. Gray, Jr. USEPA, Reproductive Toxicology Division, NHEERL, RTP, NC...

  6. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  7. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  8. Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells

    PubMed Central

    Wei, Fang; Wang, Huiping; Chen, Xiafang; Li, Chuanyuan; Huang, Qian

    2014-01-01

    Oncolytic viruses have recently received widespread attention for their potential in innovative cancer therapy. Many telomerase promoter-regulated oncolytic adenoviral vectors retain E1A and E1B. However, the functions of E1A and E1B proteins in the oncolytic role of replication-competent adenovirus (RCAd) and RCAd enhanced transduction of replication defective adenoviruses (RDAd) have not been addressed well. In this study, we constructed viruses expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa. We then tested their roles in oncolysis and replication of RCAd as well as their roles in RCAd enhanced transfection rate and transgene expression of RDAd in various cancer cells in vitro and in xenografted human NCI-H460 tumors in nude mice. We demonstrated that RCAds expressing E1A alone and plus E1B-19 kDa exhibited an obvious ability in replication and oncolytic effects as well as enhanced RDAd replication and transgene expression, with the former showed more effective oncolysis, while the latter exhibited superior viral replication and transgene promotion activity. However, RCAd expressing both E1A and E1B-19 kDa/55 kDa was clearly worst in all these abilities. The effects of E1A and E1B observed through using RCAd were further validated by using plasmids expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa proteins. Our study provided evidence that E1A was essential for inducing replication and oncolytic effects of RCAd as well as RCAd enhanced RDAd transduction, and expression of E1B-19 kDa other than E1B-55 kDa could promote these effects. E1B-55 kDa is not necessary for the oncolytic effects of adenoviruses and somehow inhibits RCAd-mediated RDAd replication and transgene expression. PMID:25019940

  9. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma

    PubMed Central

    Wang, Yi-Gang; Huang, Pan-Pan; Zhang, Rong; Ma, Bu-Yun; Zhou, Xiu-Mei; Sun, Yan-Fang

    2016-01-01

    Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors. PMID:26755879

  10. Why do dolphins carry sponges?

    PubMed

    Mann, Janet; Sargeant, Brooke L; Watson-Capps, Jana J; Gibson, Quincy A; Heithaus, Michael R; Connor, Richard C; Patterson, Eric

    2008-01-01

    Tool use is rare in wild animals, but of widespread interest because of its relationship to animal cognition, social learning and culture. Despite such attention, quantifying the costs and benefits of tool use has been difficult, largely because if tool use occurs, all population members typically exhibit the behavior. In Shark Bay, Australia, only a subset of the bottlenose dolphin population uses marine sponges as tools, providing an opportunity to assess both proximate and ultimate costs and benefits and document patterns of transmission. We compared sponge-carrying (sponger) females to non-sponge-carrying (non-sponger) females and show that spongers were more solitary, spent more time in deep water channel habitats, dived for longer durations, and devoted more time to foraging than non-spongers; and, even with these potential proximate costs, calving success of sponger females was not significantly different from non-spongers. We also show a clear female-bias in the ontogeny of sponging. With a solitary lifestyle, specialization, and high foraging demands, spongers used tools more than any non-human animal. We suggest that the ecological, social, and developmental mechanisms involved likely (1) help explain the high intrapopulation variation in female behaviour, (2) indicate tradeoffs (e.g., time allocation) between ecological and social factors and, (3) constrain the spread of this innovation to primarily vertical transmission.

  11. Immunogenicity without Efficacy of an Adenoviral Tuberculosis Vaccine in a Stringent Mouse Model for Immunotherapy during Treatment

    PubMed Central

    Alyahya, S. Anisah; Nolan, Scott T.; Smith, Cara M. R.; Bishai, William R.; Sadoff, Jerald; Lamichhane, Gyanu

    2015-01-01

    To investigate if bacterial persistence during TB drug treatment could be overcome by modulation of host immunity, we adapted a clinically-relevant model developed for the evaluation of new drugs and examined if immunotherapy with two adenoviral vaccines, Ad35-TBS (AERAS-402) and Ad26-TBS, could shorten therapy in mice. Even though immunotherapy resulted in strong splenic IFN-γ responses, no effect on bacterial replication in the lungs was seen. Multiplex assay analysis of lung samples revealed the absence of cytokine augmentation such as IFN-γ, TNF-α and IL-2, suggesting that immunization failed to induce immunity in the lungs. In this model, we show that IFN-γ levels were not associated with protection against disease relapse. The results obtained from our study raise questions regarding the traits of protective TB immunity that are relevant for the development of future immunotherapeutic and post-exposure vaccination strategies. PMID:25996375

  12. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  13. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  14. Novelties that change carrying capacity.

    PubMed

    Erwin, Douglas H

    2012-09-01

    Comparative developmental studies have revealed a rich array of details about the patterns and processes of morphological change in animals and increasingly in plants. But, applying these insights to the study of major episodes of evolutionary innovation requires understanding how these novel morphologies become established and sufficiently abundant (either as individuals within a species or as a clade of species) to be preserved in the fossil record, and, in many cases, to influence ecological processes. Evolutionary novelties may: (1) disappear without changing the species; (2) be associated with the generation (through selection or drift) of a new species; and if the latter (3) may or may not become ecologically significant. Only the latter are commonly preserved in the fossil record. These alternatives mirror the distinction among historians of technology between innovation and invention. Here, I argue that specific sorts of evolutionary inventions drive ecological transformation, essentially constructing an environment for themselves and ancillary organisms through ecological spillover effects, increasing the "carrying capacity" of an ecosystem.

  15. Carrying our founders' mission overseas.

    PubMed

    Williams, Patricia A

    2006-01-01

    Catholic' health care providers have a calling to care for people in need, and that mission does not stop at geographical boundaries. In fact, U.S. health facilities in many cases were founded by overseas religious communities with a mission. Providing aid internationally enables U.S. sites to carry on that legacy. Although Americans traveling overseas to provide aid usually expect to be "teachers", they often find themselves becoming "students" instead. They learn to provide care without the advanced technology that is available in developed countries. They often experience cultures in which people can only hope for care access and in which patients are deeply appreciative of the services they receive. This type of education can change U.S. health care providers' perspective of their role and of the services they deliver. While gaining this wisdom-and imparting their own knowledge-providers also affect the quality of life of people in developing countries. In the end, global aid can create a better world for everyone, benefiting not only the recipients but also the worldwide community. When developing countries become more stable, develop stronger infrastructures, and have healthier citizens, other countries benefit from this progress.

  16. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  17. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy.

  18. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  19. A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer

    PubMed Central

    Fang, Lin; Cheng, Qian; Zhao, Jingjing; Ge, Yan; Zhu, Qi; Zhao, Min; Zhang, Jie; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-01-01

    The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection. PMID:27340782

  20. Pathogen-Induced Proapoptotic Phenotype and High CD95 (Fas) Expression Accompany a Suboptimal CD8+ T-Cell Response: Reversal by Adenoviral Vaccine

    PubMed Central

    Vasconcelos, José Ronnie; Bruña–Romero, Oscar; Araújo, Adriano F.; Dominguez, Mariana R.; Ersching, Jonatan; de Alencar, Bruna C. G.; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bortoluci, Karina R.; Amarante-Mendes, Gustavo P.; Lopes, Marcela F.; Rodrigues, Mauricio M.

    2012-01-01

    MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination. PMID:22615561

  1. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  2. Vector adaptive predictive coder for speech and audio

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey (Inventor); Gersho, Allen (Inventor)

    1990-01-01

    A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted.

  3. Molecular neurosurgery: vectors and vector delivery strategies.

    PubMed

    White, Edward

    2012-12-01

    Molecular neurosurgery involves the use of vector-mediated gene therapy and gene knockdown to manipulate in vivo gene expression for the treatment of neurological diseases. These techniques have the potential to revolutionise the practice of neurosurgery. However, significant challenges remain to be overcome before these techniques enter routine clinical practice. These challenges have been the subject of intensive research in recent years and include the development of strategies to facilitate effective vector delivery to the brain and the development of both viral and non-viral vectors that are capable of efficient cell transduction without excessive toxicity. This review provides an update on the practice of molecular neurosurgery with particular focus on the practical neurosurgical aspects of vector delivery to the brain. In addition, an introduction to the key vectors employed in clinical trials and a brief overview of previous gene therapy clinical trials is provided. Finally, key areas for future research aimed at increasing the likelihood of the successful translation of gene therapy into clinical trials are highlighted.

  4. Long-term survival of cardiac allografts induced by cyclophosphamide combined with CTLA4Ig-gene transfer mediated by adenoviral vector.

    PubMed

    Wang, G M; Ma, J B; Jin, Y Z; Feng, Y G; Hao, J; Gao, X; Xie, S S

    2006-11-01

    There is a need to achieve donor-specific tolerance in clinical organ transplantation, where potential benefits remain overshadowed by chronic rejection and the side-effects of long-term immunosuppressive therapy. It is known that the mature immune system in mice can be reprogrammed to accept a foreign graft as if it was "self". The AdCTLA4Ig-mediated gene transfer (SC) + cyclophosphamide (CP) treatment alone prolongs allograft survival but does not induce tolerance. However, in our study, the AdCTLA4Ig-mediated gene transfer combined with SC + CP treatment yielded significantly prolonged mean survival times (149.7 +/- 18.0 days), while those in the untreated or AdLacZ treated mice were rejected in normal fashion (5.3 +/- 0.5 and 5.2 +/- 0.4 days, respectively), and survival in the AdCTLA4Ig or SC + CP treated groups were 45.7 +/- 9.6 or 50.2 +/- 5.3 days, respectively. In conclusion, a protocol of AdCTLA4Ig + SC + CP improved the survival of DA-->LEW cardiac allografts.

  5. Risk Behavior among Women enrolled in a Randomized Controlled Efficacy Trial of an Adenoviral Vector Vaccine to Prevent HIV Acquisition: the Step Study

    PubMed Central

    Novak, Richard M.; Metch, Barbara; Buchbinder, Susan; Cabello, Robinson; Donastorg, Yeycy; Figoroa, John-Peter; Adbul-Jauwad, Hend; Joseph, Patrice; Koenig, Ellen; Metzger, David; Sobieszycz, Magda; Tyndall, Mark; Zorilla, Carmen

    2013-01-01

    Objectives Report of risk behavior, HIV incidence, and pregnancy rates among women participating in the Step Study, a phase IIB trial of MRKAd5 HIV-1 gag/pol/nef vaccine in HIV-negative individuals who were at high risk of HIV-1. Design Prospective multicenter, double-blinded, placebo-controlled trial Methods Women were from North American (NA) and Caribbean and South America (CSA) sites. Risk behavior was collected at screening and 6-month intervals. Differences in characteristics between groups were tested with Chi-square, two-sided Fisher’s exact tests, and Wilcoxon rank sum tests. Generalized estimating equation models were used to assess behavioral change. Results Among 1134 enrolled women, the median number of male partners was 18; 73.8% reported unprotected vaginal sex, 15.9% unprotected anal sex and 10.8% evidence of a sexually transmitted infection in the 6 months prior to baseline. With 3344 person-years (p–y) of follow up, there were 15 incident HIV infections: incidence rate was 0.45 per 100/p-y (95% CI 0.25, 0.74). Crack cocaine use in both regions (relative risk [RR]=2.4 [1.7,3.3]) and in CSA, unprotected anal sex (RR=6.4 [3.8. 10.7]) and drug use (RR=4.1 [2.1, 8.0]) were baseline risk behaviors associated with HIV acquisition. There was a marked reduction in risk behaviors after study enrollment with some recurrence in unprotected vaginal sex. Of 963 non-sterilized women, 304 (31.6%) became pregnant. Conclusions Crack cocaine use and unprotected anal sex are important risk criteria to identify high-risk women for HIV efficacy trials. Pregnancy during the trial was a common occurrence and needs to be considered in trial planning for prevention trials in women. PMID:23807272

  6. Conditionally replicating oncolytic adenoviral vector expressing arresten and tumor necrosis factor-related apoptosis-inducing ligand experimentally suppresses lung carcinoma progression.

    PubMed

    Li, Shudong; Qi, Zongli; Li, Huijin; Hu, Jun; Wang, Dongyang; Wang, Xin; Feng, Zhenzhen

    2015-08-01

    Current methods of treatment for lung carcinoma are ineffective for the majority of patients. Conditionally replicating adenoviruses (CRAds) represent a potential novel treatment for a number of neoplastic diseases, including lung carcinoma. The present study aimed to investigate the synergistic mechanisms underlying the anti-angiogenesis gene, arresten, and the apoptosis-inducing gene, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in order to evaluate their therapeutic potential in lung cancer. The two genes were expressed by CRAd, which was confirmed using reverse transcription-polymerase chain reaction and western blotting. In vitro analyses demonstrated that CRAd adenoviruses are capable of selectively inhibiting A549 lung cancer cell growth and replication but not in that of healthy cells. In vivo analyses demonstrated that the infection of A549 cell lines using CRAd armed with the two genes (CRAd-arresten-TRAIL) enhanced the tumor inhibition, compared with cells infected with CRAd-arresten, CRAd-TRAIL or CRAd, and with the control group. CRAd-arresten-TRAIL may therefore be useful in the treatment of lung cancer.

  7. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  8. Declining Prevalence of Disease Vectors Under Climate Change.

    PubMed

    Escobar, Luis E; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A; Craft, Meggan E; Borbor-Cordova, Mercy J; Svenning, Jens-Christian

    2016-12-16

    More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.

  9. Declining Prevalence of Disease Vectors Under Climate Change

    PubMed Central

    Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian

    2016-01-01

    More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales. PMID:27982119

  10. Declining Prevalence of Disease Vectors Under Climate Change

    NASA Astrophysics Data System (ADS)

    Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian

    2016-12-01

    More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.

  11. A Brief Analysis of Sister Carrie's Character

    ERIC Educational Resources Information Center

    Yu, Hanying

    2010-01-01

    Carrie is always dreaming while the rocking chair is rocking again and again, this is the deep impression on us after we read "Sister Carrie" which is the first novel of Theodore Dreiser. In this novel the protagonist Sister Carrie is a controversial person. This paper tries to analyze the character of Sister Carrie in order to find out…

  12. Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy

    PubMed Central

    Qiao, Jian; Dey, Mahua; Chang, Alan L; Kim, Julius W; Miska, Jason; Ling, Alex; M Nettlebeck, Dirk; Han, Yu; Zhang, Lingjiao; Lesniak, Maciej S

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor and is associated with poor survival. Virotherapy is a promising candidate for the development of effective, novel treatments for GBM. Recent studies have underscored the potential of virotherapy in enhancing antitumor immunity despite the fact that its mechanisms remain largely unknown. Here, using a syngeneic GBM mouse model, we report that intratumoral virotherapy significantly modulates the tumor microenvironment. We found that intratumoral administration of an oncolytic adenovirus, AdCMVdelta24, decreased tumor-infiltrating CD4+ Foxp3+ regulatory T cells (Tregs) and increased IFNγ-producing CD8+ T cells in treated tumors, even in late stage disease in which a highly immunosuppressive tumor microenvironment is considered to be a significant barrier to immunotherapy. Importantly, intratumoral AdCMVdelta24 treatment augmented systemically transferred tumor-antigen-specific T cell therapy. Furthermore, mechanistic studies showed (1) downregulation of Foxp3 in Tregs that were incubated with media conditioned by virus-infected tumor cells, (2) downregulation of indoleamine 2,3 dioxygenase 1 (IDO) in glioma cells upon infection by AdCMVdelta24, and (3) reprograming of Tregs from an immunosuppressive to a stimulatory state. Taken together, our findings demonstrate the potency of intratumoral oncolytic adenoviral treatment in enhancing antitumor immunity through the regulation of multiple aspects of immune suppression in the context of glioma, supporting further clinical development of oncolytic adenovirus-based immune therapies for malignant brain cancer. PMID:26405578

  13. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  14. A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression.

    PubMed

    Rubinchik, S; Wang, D; Yu, H; Fan, F; Luo, M; Norris, J S; Dong, J Y

    2001-11-01

    Cell-type-restricted transgene expression delivered by adenovirus vectors is highly desirable for gene therapy of cancer, as it can limit cytotoxic gene expression to tumor cells. However, many tumor- and tissue-specific promoters are weaker than the constitutively active promoters and are thus less effective. To combine cell-type specificity with high-level regulated transgene expression, we have developed a complex adenoviral vector. We have placed the tetracycline transactivator gene under the control of a prostate-specific ARR2PB promoter, and a mouse Tnfsf6 (encoding FASL)-GFP fusion gene under the control of the tetracycline responsive promoter. We have incorporated both expression cassettes into a single construct. We show that FASL-GFP expression from this vector is essentially restricted to prostate cancer cells, in which it can be regulated by doxycycline. Higher levels of prostate-specific FASL-GFP expression were generated by this approach than by driving the FASL-GFP expression directly with ARR2PB. More FASL-GFP expression correlated with greater induction of apoptosis in prostate cancer LNCaP cells. Mouse studies confirmed that systemic delivery of both the prostate-specific and the prostate-specific/tet-regulated vectors was well tolerated at doses that were lethal for FASL-GFP vector with CMV promoter. This strategy should be able to improve the safety and efficacy of cancer gene therapy using other cytotoxic genes as well.

  15. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments.

    PubMed

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-Il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene

  16. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments

    PubMed Central

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. “adenovirus driven NPT2a-EGFP and endogenous NHE3 protein”, “adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein” and “adenovirus driven AQP2-EGFP and endogenous AQP2 protein”. Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and

  17. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  18. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  19. Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors.

    PubMed

    Mitchell, M; Jerebtsova, M; Batshaw, M L; Newman, K; Ye, X

    2000-12-01

    We have developed a micro-injection technique to deliver recombinant adenovirus and AAV to mouse fetuses at day 15 after conception. Several routes of delivery, including injections to the amniotic fluid, the front limb, the placenta, the liver, and the retro-orbital venus plexus, were tested using an E1-deleted recombinant adenovirus (Ad.CBlacZ) or a recombinant adeno-associated virus (AAV.CMVlacZ) carrying a beta-galactosidase (lacZ) gene. Injection of Ad.CBlacZ into the amniotic cavity led to transgene expression in the skin and in the digestive tract of the fetuses. Injection of Ad.CBlacZ in the front limb resulted in LacZ expression in all major muscle groups around the injection site and at low levels in the liver. The other three routes of delivery, ie intra-placental, intra-hepatic and retro-orbital injections of Ad.CBlacZ, all led to lacZ expression predominantly in the liver. Further studies revealed a maximal tolerant dose (defined as the highest viral dose with < or =20% mortality in the injected fetuses) of 1 x 10(9) particles per fetus for intra- hepatic injections, 3 x 10(9) particles per fetus for intra-placental injection, 1 x 1010 particles per fetus for retro-orbital and intra-amniotic injections, and 2 x 10(10) particle per fetus for intra-muscular injection. The adenovirus-mediated lacZ expression in liver and muscle persisted for at least 6 weeks. Intra-muscular injection of AAV.CMVlacZ also resulted in lacZ expression in the muscle up to 3 months after birth with no indication of cellular immune response at the injection site. Taken together, our results demonstrated that prolonged transgene expression can be achieved by in utero gene transfer using either adenoviral or AAV vectors. The distribution of virus-mediated gene transfer appeared to determined mostly by the route of viral administration.

  20. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  1. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    PubMed

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy.

  2. Taking on Titan: Meet Carrie Anderson

    NASA Video Gallery

    When she was a little girl, Carrie Anderson dreamed of becoming an astronomer. Now, as a space scientist at NASA Goddard Space Flight Center, Carrie studies the atmosphere on Titan: one of Saturn's...

  3. Baculovirus Transfer Vectors.

    PubMed

    Possee, Robert D; King, Linda A

    2016-01-01

    The production of a recombinant baculovirus expression vector normally involves mixing infectious virus DNA with a plasmid-based transfer vector and then co-transfecting insect cells to initiate virus infection. The aim of this chapter is to provide an update on the range of baculovirus transfer vectors currently available. Some of the original transfer vectors developed are now difficult to obtain but generally have been replaced by superior reagents. We focus on those that are available commercially and should be easy to locate. These vectors permit the insertion of single or multiple genes for expression, or the production of proteins with specific peptide tags that aid subsequent protein purification. Others have signal peptide coding regions permitting protein secretion or plasma membrane localization. A table listing the transfer vectors also includes information on the parental virus that should be used with each one. Methods are described for the direct insertion of a recombinant gene into the virus genome without the requirement for a transfer vector. The information provided should enable new users of the system to choose those reagents most suitable for their purposes.

  4. 25 CFR 167.6 - Carrying capacities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Carrying capacities. 167.6 Section 167.6 Indians BUREAU... Carrying capacities. (a) The Commissioner of Indian Affairs on June 26, 1943, promulgated the authorized carrying capacity for each land management district of the Navajo Reservation. (b) Recommended...

  5. 25 CFR 167.6 - Carrying capacities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Carrying capacities. 167.6 Section 167.6 Indians BUREAU OF... capacities. (a) The Commissioner of Indian Affairs on June 26, 1943, promulgated the authorized carrying... carrying capacities shall be referred by the Superintendent to District Grazing Committee, Central...

  6. 25 CFR 167.6 - Carrying capacities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Carrying capacities. 167.6 Section 167.6 Indians BUREAU... Carrying capacities. (a) The Commissioner of Indian Affairs on June 26, 1943, promulgated the authorized carrying capacity for each land management district of the Navajo Reservation. (b) Recommended...

  7. 25 CFR 167.6 - Carrying capacities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Carrying capacities. 167.6 Section 167.6 Indians BUREAU... Carrying capacities. (a) The Commissioner of Indian Affairs on June 26, 1943, promulgated the authorized carrying capacity for each land management district of the Navajo Reservation. (b) Recommended...

  8. Null Killing vectors

    NASA Astrophysics Data System (ADS)

    Lukács, B.; Perjés, Z.; Sebestyén, Á.

    1981-06-01

    Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin coefficient formalism. The properties of the eigenrays (principal null curves of the Killing bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and charged source.

  9. [Research progress on environmental carrying capacity].

    PubMed

    Wang, Jian; Sun, Tieheng; Li, Peijun; Li, Fayun

    2005-04-01

    To study the theories and quantification methods of environmental carrying capacity is of significance in reality for directing human beings economic behaviors and harmonizing the relationships between social development and environment. In this paper, the definition of environmental carrying capacity was introduced from the aspects of "capacity", "threshold" and "capability", with the main characteristics of objective and subjective, regional and temporal, and dynamic and adjustable, and its research progress was reviewed. On the basis of these, the quantification methods of environmental carrying capacity, including exponential assessment, carrying rate assessment, system dynamics, and multi-objective optimization, were analyzed, and the research perspectives of environmental carrying capacity were discussed.

  10. Adenoviral E4orf3 and E4orf6 Proteins, But Not E1B55K, Increase Killing of Cancer Cells by Radiotherapy in vivo

    SciTech Connect

    Liikanen, Ilkka; Dias, Joao D.; Nokisalmi, Petri; Sloniecka, Marta; Kangasniemi, Lotta; Rajecki, Mari; Dobner, Thomas; Tenhunen, Mikko; Kanerva, Anna; Pesonen, Sari; Ahtiainen, Laura Ph.D.; Hemminki, Akseli

    2010-11-15

    Purpose: Radiotherapy is widely used for treatment of many tumor types, but it can damage normal tissues. It has been proposed that cancer cells can be selectively sensitized to radiation by adenovirus replication or by using radiosensitizing transgenes. Adenoviral proteins E1B55K, E4orf3, and E4orf6 play a role in radiosensitization, by targeting the Mre11, Rad50, and NBS1 complex (MRN) and inhibiting DNA double-strand break (DSB) repair. We hypothesize that combined with irradiation, these adenoviral proteins increase cell killing through the impairment of DSB repair. Methods and Materials: We assessed the radiosensitizing/additive potential of replication-deficient adenoviruses expressing E1B55K, E4orf3, and E4orf6 proteins. Combination treatments with low-dose external photon beam radiotherapy were studied in prostate cancer (PC-3MM2 and DU-145), breast cancer (M4A4-LM3), and head and neck cancer (UT-SCC8) cell lines. We further demonstrated radiosensitizing or additive effects in mice with PC-3MM2 tumors. Results: We show enhanced cell killing with adenovirus and radiation combination treatment. Co-infection with several of the viruses did not further increase cell killing, suggesting that both E4orf6 and E4orf3 are potent in MRN inhibition. Our results show that adenoviral proteins E4orf3 and E4orf6, but not E1B55K, are effective also in vivo. Enhanced cell killing was due to inhibition of DSB repair resulting in persistent double-strand DNA damage, indicated by elevated phospho-H2AX levels at 24 h after irradiation. Conclusions: This knowledge can be applied for improving the treatment of malignant tumors, such as prostate cancer, for development of more effective combination therapies and minimizing radiation doses and reducing side effects.

  11. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  12. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  13. Adenoviral Delivery of VEGF121 Early in Pregnancy Prevents Spontaneous Development of Preeclampsia in BPH/5 Mice

    PubMed Central

    Woods, Ashley K.; Hoffmann, Darren S.; Weydert, Christine J.; Butler, Scott D.; Zhou, Yi; Sharma, Ram V.; Davisson, Robin L.

    2011-01-01

    An imbalance in circulating pro-angiogenic and anti-angiogenic factors is postulated to play a causal role in pre-eclampsia (PE). We have described an inbred mouse strain, BPH/5, which spontaneously develops a PE-like syndrome including late-gestational hypertension, proteinuria, and poor feto-placental outcomes. Here we tested the hypothesis that an angiogenic imbalance during pregnancy in BPH/5 mice leads to the development of PE-like phenotypes in this model. Similar to clinical findings, plasma from pregnant BPH/5 showed reduced levels of free vascular endothelial growth factor (VEGF) and placental growth factor (PGF) compared to C57BL/6 controls. This was paralleled by a marked decrease in VEGF protein and Pgf mRNA in BPH/5 placentae. Surprisingly, antagonism by the soluble form of the FLT1 receptor (sFLT1) did not appear to be the cause of this reduction, as sFLT1 levels were unchanged or even reduced in BPH/5 compared to controls. Adenoviral-mediated delivery of VEGF121 (Ad-VEGF) via tail vein at e7.5 normalized both the plasma free VEGF levels in BPH/5 and restored the in vitro angiogenic capacity of serum from these mice. Ad-VEGF also reduced the incidence of fetal resorptions and prevented the late-gestational spike in blood pressure and proteinuria observed in BPH/5. These data underscore the importance of dysregulation of angiogenic factors in the pathogenesis of PE, and suggest the potential utility of early pro-angiogenic therapies in treating this disease. PMID:21079047

  14. Vector inflation and vortices

    SciTech Connect

    Lewis, C.M. )

    1991-09-15

    A vector field {ital A}{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker metric, constructed to generate first-order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux {ital T}{sub 0{ital i}} is tracked to the epoch where radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation give rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}{ital c}. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.

  15. The Vector Decomposition Problem

    NASA Astrophysics Data System (ADS)

    Yoshida, Maki; Mitsunari, Shigeo; Fujiwara, Toru

    This paper introduces a new computational problem on a two-dimensional vector space, called the vector decomposition problem (VDP), which is mainly defined for designing cryptosystems using pairings on elliptic curves. We first show a relation between the VDP and the computational Diffie-Hellman problem (CDH). Specifically, we present a sufficient condition for the VDP on a two-dimensional vector space to be at least as hard as the CDH on a one-dimensional subspace. We also present a sufficient condition for the VDP with a fixed basis to have a trapdoor. We then give an example of vector spaces which satisfy both sufficient conditions and on which the CDH is assumed to be hard in previous work. In this sense, the intractability of the VDP is a reasonable assumption as that of the CDH.

  16. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  18. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  19. The effect of adenovirus-specific antibodies on adenoviral vector–induced, transgene product–specific T cell responses

    PubMed Central

    Small, Juliana C.; Haut, Larissa H.; Bian, Ang; Ertl, Hildegund C. J.

    2014-01-01

    In this study, we tested the effect of neutralizing Abs to different serotypes of E1-deleted Ad vectors on the immunogenicity of the homologous Ad vector or a vector derived from a heterologous serotype. Our results showed that, as expected, even low titers of passively transferred neutralizing Abs significantly reduced the homologous vectors' ability to elicit transgene-specific CD8+ T cell responses. In addition, Abs changed the fate of transgene product–specific CD8+ T cells by promoting their transition into the central memory cell pool, which resulted in markedly enhanced expansion of transgene product–specific CD8+ T cells after a boost with a heterologous Ad vector. Non-neutralizing Abs specific to a distinct Ad serotype had no effect on the magnitude of transgene product-specific CD8+ T cells induced by a heterologous Ad vector, nor did such Abs promote induction of more resting memory CD8+ T cells. These results show that Abs to an Ad vaccine carrier affect not only the magnitude but also the profile of a vector-induced CD8+ T cell response. PMID:25082150

  20. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors.

    PubMed

    Liu, Qiang; Zaiss, Anne K; Colarusso, Pina; Patel, Kamala; Haljan, Gregory; Wickham, Thomas J; Muruve, Daniel A

    2003-05-01

    Adenovirus (Ad) vectors can produce inflammatory responses at high doses. Intravenous administration of an Ad vector expressing green fluorescent protein (AdGFP) to naive mice induced a biphasic pattern of liver cytokine/chemokine gene expression over 7 days. Tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2 (MIP-2), and interferon gamma-inducible protein 10 (IP-10) genes were upregulated, with two distinct peaks of mRNA expression occurring at 6 hr and 5 days. The administration of transcription-defective AdGFP particles induced the early but not the late peak of chemokine/cytokine gene expression, confirming that Ad vector-induced inflammation is capsid dependent in the early phase and transcription dependent in the late phase. To determine the role of adenoviral capsid motifs in the early phase, capsid-modified Ad vectors were employed. The intravenous administration of the RGD-deleted Ad vector AdL.PB*, the fiber mutant AdL.F*, or the double mutant AdL.F*PB* induced similar levels of cytokine/chemokine expression compared with the wild-type vector AdLuc. Kupffer cell blockade significantly reduced liver TNF-alpha, MIP-2, and IP-10 gene expression and liver inflammation after the administration of AdL.PB* or AdL.F*PB*. Fluorescence microscopy of AdLuc- and AdL.PB*-transduced liver at 1 hr revealed localization of Ad vectors to liver sinusoids in Kupffer cell-depleted mice. AdL.PB* induced less E-selectin and VCAM-1 gene expression in liver, confirming reduced endothelial activation in mice receiving RGD-deleted Ad vectors. In vitro studies of endothelial cells demonstrated reduced transduction and endothelial activation by AdL.PB* compared with AdLuc. These results demonstrate that adenovirus capsid RGD motifs are required for efficient transduction and endothelial cell activation. Altering vector tropism represents a feasible strategy to modulate the innate response to Ad vectors in nontargeted tissues.

  1. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  2. A Modified γ-Retrovirus Vector for X-Linked Severe Combined Immunodeficiency

    PubMed Central

    Hacein-Bey-Abina, S.; Pai, S.-Y.; Gaspar, H.B.; Armant, M.; Berry, C.C.; Blanche, S.; Bleesing, J.; Blondeau, J.; de Boer, H.; Buckland, K.F.; Caccavelli, L.; Cros, G.; De Oliveira, S.; Fernández, K.S.; Guo, D.; Harris, C.E.; Hopkins, G.; Lehmann, L.E.; Lim, A.; London, W.B.; van der Loo, J.C.M.; Malani, N.; Male, F.; Malik, P.; Marinovic, M.A.; McNicol, A.-M.; Moshous, D.; Neven, B.; Oleastro, M.; Picard, C.; Ritz, J.; Rivat, C.; Schambach, A.; Shaw, K.L.; Sherman, E.A.; Silberstein, L.E.; Six, E.; Touzot, F.; Tsytsykova, A.; Xu-Bayford, J.; Baum, C.; Bushman, F.D.; Fischer, A.; Kohn, D.B.; Filipovich, A.H.; Notarangelo, L.D.; Cavazzana, M.; Williams, D.A.; Thrasher, A.J.

    2014-01-01

    BACKGROUND In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus–based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS All patients received bone marrow–derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2 , MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.) PMID:25295500

  3. Vector and Axial Vector Pion Form Factors

    NASA Astrophysics Data System (ADS)

    Vitz, Michael; PEN Collaboration

    2015-04-01

    Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.

  4. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  5. Carrie Chapman Catt and Woman Suffrage.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1989-01-01

    Most of the material for this issue of the "Goldfinch," which explores the life of Carrie Chapman Catt, came from the archives of the State Historical Society of Iowa. Carrie Chapman Catt (1859-1947) was an Iowan who advocated woman suffrage and spent 26 years actively working for that cause. The issue contains a biography of Catt, and…

  6. Identification of a Novel Immunodominant HLA-B*07: 02-restricted Adenoviral Peptide Epitope and Its Potential in Adoptive Transfer Immunotherapy.

    PubMed

    Günther, Patrick S; Peper, Janet K; Faist, Benjamin; Kayser, Simone; Hartl, Lena; Feuchtinger, Tobias; Jahn, Gerhard; Neuenhahn, Michael; Busch, Dirk H; Stevanović, Stefan; Dennehy, Kevin M

    2015-09-01

    Adenovirus infections of immunocompromised patients, particularly following allogeneic hematopoietic stem cell transplantation, are associated with morbidity and mortality. Immunotherapy by adoptive transfer of hexon-specific and penton-specific T cells has been successfully applied, but many approaches are impeded by the low number of HLA class I-restricted adenoviral peptide epitopes described to date. We use a novel method to identify naturally presented adenoviral peptide epitopes from infected human cells, ectopically expressing defined HLA, using peptide elution and liquid chromatography-mass spectrometry analysis. We show that the previously described HLA-A*01:01-restricted peptide epitope LTDLGQNLLY from hexon protein is naturally presented, and demonstrate the functionality of LTDLGQNLLY-specific T cells. We further identify a novel immunodominant HLA-B*07:02-restricted peptide epitope VPATGRTLVL from protein 13.6 K, and demonstrate the high proliferative, cytotoxic, and IFN-γ-producing capacity of peptide-specific T cells. Lastly, LTDLGQNLLY-specific T cells can be detected ex vivo following adoptive transfer therapy, and LTDLGQNLLY-specific and VPATGRTLVL-specific T cells have memory phenotypes ex vivo. Given their proliferative and cytotoxic capacity, such epitope-specific T cells are promising candidates for adoptive T-cell transfer therapy of adenovirus infection.

  7. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  8. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    ERIC Educational Resources Information Center

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  9. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  10. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  11. Efficacy of recombinant adenoviral human p53 gene in the treatment of lung cancer-mediated pleural effusion

    PubMed Central

    LI, KUN-LIN; KANG, JUN; ZHANG, PENG; LI, LI; WANG, YU-BO; CHEN, HENG-YI; HE, YONG

    2015-01-01

    Pleural effusion induced by lung cancer exerts a negative impact on quality of life and prognosis. The aim of the present study was to evaluate the value of the recombinant adenoviral human p53 gene (rAd-p53) in the local treatment of lung cancer and its synergistic effect with chemotherapy. The present study retrospectively recruited 210 patients with lung cancer-mediated pleural effusion who had adopted a treatment strategy of platinum chemotherapy. Pleurodesis was performed via the injection of cisplatin or rAd-p53. Long-term follow-up was conducted to investigate the therapeutic effects of cisplatin and rAd-p53 administration on pleural effusion and other relevant clinical indicators. The short-term effect of pleurodesis was as follows: The efficacy rate of rAd-p53 therapy was significantly higher compared with cisplatin therapy (71.26 vs. 54.47%), and the efficacy of treatment with ≥2×1012 viral particles of rAd-p53 for pleurodesis was significantly greater than treatment with 40 mg cisplatin (P<0.05). Furthermore, efficacy analysis performed 6 and 12 months after pleurodesis indicated that the efficacy rate of rAd-p53 was significantly greater than that of cisplatin (P<0.05). A comparison of median progression-free survival (PFS) time identified a significant difference (P<0.05) between rAd-p53 and cisplatin therapy (3.3 vs. 2.7 months); however, a comparison of median overall survival time identified no significant difference (P>0.05) between rAd-p53 and cisplatin therapy (9.6 vs. 8.7 months). In addition, Cox regression analysis indicated that PFS was not affected by clinical indicators such as age, gender, prognostic staging and smoking status; however, PFS was affected by pathological subtype (adenocarcinoma or squamous carcinoma) in the rAd-p53 group. rAd-p53 administration for pleurodesis exerts long-term therapeutic effects on the local treatment of lung cancer. Thus, a combination of rAd-p53 and chemotherapy may exert a synergistic effect and

  12. Gun Carrying by High School Students in Boston, MA: Does Overestimation of Peer Gun Carrying Matter?

    ERIC Educational Resources Information Center

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M.; Miller, Matthew; Azrael, Deborah

    2011-01-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1700 high school students in Boston, MA. Over 5% of students reported carrying a…

  13. Population growth and earth's human carrying capacity.

    PubMed

    Cohen, J E

    1995-07-21

    Earth's capacity to support people is determined both by natural constraints and by human choices concerning economics, environment, culture (including values and politics), and demography. Human carrying capacity is therefore dynamic and uncertain. Human choice is not captured by ecological notions of carrying capacity that are appropriate for nonhuman populations. Simple mathematical models of the relation between human population growth and human carrying capacity can account for faster-than-exponential population growth followed by a slowing population growth rate, as observed in recent human history.

  14. Carry on: spontaneous object carrying in 13-month-old crawling and walking infants.

    PubMed

    Karasik, Lana B; Adolph, Karen E; Tamis-LeMonda, Catherine S; Zuckerman, Alyssa L

    2012-03-01

    Carrying objects requires coordination of manual action and locomotion. This study investigated spontaneous carrying in 24 walkers who were 13 months old and 26 crawlers who were 13 months old during 1-hr, naturalistic observations in the infants' homes. Carrying was more common in walkers, but crawlers also carried objects. Typically, walkers carried objects in their hands, whereas crawlers multitasked by using their hands simultaneously for holding objects and supporting their bodies. Locomotor experience predicted frequency of carrying in both groups, suggesting that experienced crawlers and walkers perceive their increased abilities to handle objects while in motion. Despite additional biomechanical constraints imposed by holding an object, carrying may actually improve upright balance: Crawlers rarely fell while carrying an object, and walkers were more likely to fall without an object in hand than while carrying. Thus, without incurring an additional risk of falling, spontaneous carrying may provide infants with new avenues for combining locomotor and manual skills and for interacting with their environments.

  15. Effects of carrying methods and box handles on two-person team carrying capacity for females.

    PubMed

    Wu, Swei-Pi; Chang, Shu-Yu

    2010-07-01

    This study used a psychophysical approach to examine the effects of carrying methods and the presence or absence of box handles on the maximum acceptable weight carried and resulting responses (heart rate and rating of perceived exertion) in a two-person carrying task. After training, 16 female subjects performed a two-person carrying task at knuckle height for an 8-h work period. Each subject performed 4 different carrying combinations two times. The independent variables were carrying methods (parallel and tandem walking) and box handles (with and without handles). For comparison with two-person carrying, the subjects also performed one-person carrying. The results showed that the maximum acceptable weight carried (MAWC), heart rate (HR), and rating of perceived exertion (RPE) were significantly affected by the presence of box handles. However, the subjects' MAWC, HR, and RPE values were not significantly influenced by the carrying methods. The test-retest reliability of the psychophysical approach was 0.945. The carrying efficiency of two-person carrying was 96.2% of the one-person carrying method. In general, the use of box with handles allows the subjects to carry a higher MAWC (with lower HR and RPE) compared to carrying boxes without handles.

  16. 7 CFR 1437.402 - Carrying capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Determining Coverage of Forage Intended for Animal Consumption § 1437.402 Carrying capacity. (a) CCC will... management and maintenance practices are improvements over those practices generally associated with...

  17. CCP: Sierra Nevada Captive-Carry Test

    NASA Video Gallery

    Sierra Nevada Corporation (SNC) Space System's Dream Chaser design passed one of its most complex tests to date with a successful captive-carry test conducted near the Rocky Mountain Metropolitan A...

  18. Infections That Pets Carry (For Parents)

    MedlinePlus

    ... eczema should probably avoid aquariums. continue Dogs and Cats Dogs and cats are popular pets but can carry infections such ... be in the intestinal tract of infected dogs, cats, hamsters, birds, and certain farm animals. A person ...

  19. Mechanical analysis of infant carrying in hominoids

    NASA Astrophysics Data System (ADS)

    Amaral, Lia Q.

    2008-04-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

  20. Mechanical analysis of infant carrying in hominoids

    PubMed Central

    2007-01-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair–hair friction coefficient, and body angle exists. The hair–hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here. PMID:18030438

  1. Mechanical analysis of infant carrying in hominoids.

    PubMed

    Amaral, Lia Q

    2008-04-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

  2. Designing plasmid vectors.

    PubMed

    Tolmachov, Oleg

    2009-01-01

    Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs. DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.

  3. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  4. Vectors Point Toward Pisa

    ERIC Educational Resources Information Center

    Dean, Richard A.

    1971-01-01

    The author shows that the set of all sequences in which each term is the sum of the two previous terms forms a vector space of dimension two. He uses this result to obtain the formula for the Fibonacci sequence and applies the same technique to other linear recursive relations. (MM)

  5. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  6. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  7. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  8. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  9. Gun carrying by high school students in Boston, MA: does overestimation of peer gun carrying matter?

    PubMed

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M; Miller, Matthew; Azrael, Deborah

    2011-10-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1,700 high school students in Boston, MA. Over 5% of students reported carrying a gun, 9% of boys and 2% of girls. Students substantially overestimated the percentage of their peers who carried guns; the likelihood that a respondent carried a gun was strongly associated with their perception of the level of peer gun carrying. Most respondents believed it was easier for other youth to obtain guns than it was for them. Social marketing campaigns designed to lower young people's perceptions about the prevalence of peer gun carrying may be a promising strategy for reducing actual gun carrying among youth.

  10. Effects of box handle position and carrying range on bi-manual carrying capacity for females.

    PubMed

    Wu, Swei-Pi; Loiu, Yi; Chien, Te Hong

    2015-01-01

    This study utilizes a psychophysical approach to examine the effects on carrying capacity for bi-manual carrying tasks involving different handle positions and carrying ranges. A total of 16 female subjects participated in the experiment in groups of two people, and each group of subjects performed the tasks in a random order with 12 different combinations of carrying task. The independent variables are handle position (upper, middle, lower) and carrying range (F-F: floor height carried to floor height, F-W: floor height carried to waist height, W-W: waist height carried to waist height, W-F: waist height carried to floor height), the dependent variable is the maximum acceptable carried weight (MAWC), heart rate (HR), and the rating of perceived exertion (RPE). The results show that the handle position has a significant effect on MAWC and overall RPE but no significant effect on HR. Carrying range has a significant effect on the MAWC and HR, but no significant effect on overall HR. The handle position and carrying range have a significant interaction on the MAWC and HR. The RPE for different body parts shows significant differences, and the hands feel the most tired. Overall, this study confirms that the lower handle position with the W-W carrying range is the best combination for a two-person carrying task.

  11. Optimal growth trajectories with finite carrying capacity.

    PubMed

    Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  12. Optimal growth trajectories with finite carrying capacity

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  13. Assured load carrying capability and capacity credit

    NASA Astrophysics Data System (ADS)

    Pape, H.

    1981-04-01

    The determination of assured load carrying capability and the capacity credit for use in planning windpowered electric generation facilities is considered. Calculation of the available capacity of thermal power plants is described and compared with calculation of available capacity for wind turbines, taking into account outages caused by the unavailability of the primary energy, wind. The assured load carrying capability of power plants is defined. An operational definition of the capacity credit of wind turbines as related to a fixed time t Epsilon T is presented and extended to the period T.

  14. Vector fields in cosmology

    NASA Astrophysics Data System (ADS)

    Davydov, E. A.

    2012-06-01

    Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.

  15. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  16. Some experiences with Krylov vectors and Lanczos vectors

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng; Kim, Hyoung M.

    1993-01-01

    This paper illustrates the use of Krylov vectors and Lanczos vectors for reduced-order modeling in structural dynamics and for control of flexible structures. Krylov vectors and Lanczos vectors are defined and illustrated, and several applications that have been under study at The University of Texas at Austin are reviewed: model reduction for undamped structural dynamics systems, component mode synthesis using Krylov vectors, model reduction of damped structural dynamics systems, and one-sided and two-sided unsymmetric block-Lanczos model-reduction algorithms.

  17. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  18. What is a vector?

    PubMed Central

    Morgan, Eric René; Booth, Mark; Norman, Rachel; Mideo, Nicole; McCallum, Hamish; Fenton, Andy

    2017-01-01

    Many important and rapidly emerging pathogens of humans, livestock and wildlife are ‘vector-borne’. However, the term ‘vector’ has been applied to diverse agents in a broad range of epidemiological systems. In this perspective, we briefly review some common definitions, identify the strengths and weaknesses of each and consider the functional differences between vectors and other hosts from a range of ecological, evolutionary and public health perspectives. We then consider how the use of designations can afford insights into our understanding of epidemiological and evolutionary processes that are not otherwise apparent. We conclude that from a medical and veterinary perspective, a combination of the ‘haematophagous arthropod’ and ‘mobility’ definitions is most useful because it offers important insights into contact structure and control and emphasizes the opportunities for pathogen shifts among taxonomically similar species with similar feeding modes and internal environments. From a population dynamics and evolutionary perspective, we suggest that a combination of the ‘micropredator’ and ‘sequential’ definition is most appropriate because it captures the key aspects of transmission biology and fitness consequences for the pathogen and vector itself. However, we explicitly recognize that the value of a definition always depends on the research question under study. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289253

  19. Lorentz Contraction and Current-Carrying Wires

    ERIC Educational Resources Information Center

    van Kampen, Paul

    2008-01-01

    The force between two parallel current-carrying wires is investigated in the rest frames of the ions and the electrons. A straightforward Lorentz transformation shows that what appears as a purely magnetostatic force in the ion frame appears as a combined magnetostatic and electrostatic force in the electron frame. The derivation makes use of a…

  20. Must-Carry and Public Broadcasting.

    ERIC Educational Resources Information Center

    Davenport, Elizabeth K.

    Because of the United States Court of Appeal's ruling ("Quincy Cable TV vs. Federal Communications Commission") that government regulation of what cable television stations can broadcast violates their First Amendment rights, a number of consequences have arisen concerning what cable stations are required to broadcast (must-carry rules),…

  1. Increased carrying capacity with perennial forage kochia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carrying capacity can be increased on grass-dominated rangeland pastures by including perennial forage kochia (Kochia prostrata) as one of the plant components. The objectives of the study reported here were to compare the differences of traditional winter pastures versus pastures with forage kochi...

  2. Carry Hard ICBM basing: A technical assessment

    SciTech Connect

    Harvey, J.R.; Schaffer, A.B.; Speed, R.; Todaro, A.F.

    1989-11-15

    Carry Hard is a deceptive, multiple-aimpoint ICBM basing concept in which hardened, encapsulated missiles are shuttled among several thousand, low-cost, water-filled vertical shelters. Since most of the essential launch and operational support equipment is carried with the missile (not provided with each shelter), the overall system costs are reduced. High system hardness permits relatively close shelter spacing, which in turn allows Carry Hard to be deployed on a comparatively small piece of land (a few hundred square miles) that could be removed from public access. Controlled access to the deployment area helps in maintaining concealment of the missiles among the shelters. If concealment is successfully maintained, the system is believed to be survivable against plausible Soviet threats, regardless of whether attack-warning information is received or acted upon. Thus, Carry Hard holds high promise as a feasible, affordable, and survivable means of ICBM deployment, and a high priority should be given to developing the concept to the point that an informed decision on full-scale engineering development can be made. 33 refs., 4 figs., 5 tabs.

  3. 7 CFR 1437.402 - Carrying capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... acreage upward for the crop year NAP assistance is requested by: (1) Three percent when at least 1... have a positive impact on the forage's carrying capacity in the crop year NAP assistance is requested... crop year NAP assistance is requested; and (3) Greater than 5 percent when producers provide...

  4. 7 CFR 1437.402 - Carrying capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... acreage upward for the crop year NAP assistance is requested by: (1) Three percent when at least 1... have a positive impact on the forage's carrying capacity in the crop year NAP assistance is requested... crop year NAP assistance is requested; and (3) Greater than 5 percent when producers provide...

  5. 7 CFR 1437.402 - Carrying capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acreage upward for the crop year NAP assistance is requested by: (1) Three percent when at least 1... have a positive impact on the forage's carrying capacity in the crop year NAP assistance is requested... crop year NAP assistance is requested; and (3) Greater than 5 percent when producers provide...

  6. 7 CFR 1437.402 - Carrying capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acreage upward for the crop year NAP assistance is requested by: (1) Three percent when at least 1... have a positive impact on the forage's carrying capacity in the crop year NAP assistance is requested... crop year NAP assistance is requested; and (3) Greater than 5 percent when producers provide...

  7. Error propagation in energetic carrying capacity models

    USGS Publications Warehouse

    Pearse, Aaron T.; Stafford, Joshua D.

    2014-01-01

    Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.

  8. Genetic elimination of dengue vector mosquitoes.

    PubMed

    Wise de Valdez, Megan R; Nimmo, Derric; Betz, John; Gong, Hong-Fei; James, Anthony A; Alphey, Luke; Black, William C

    2011-03-22

    An approach based on mosquitoes carrying a conditional dominant lethal gene (release of insects carrying a dominant lethal, RIDL) is being developed to control the transmission of dengue viruses by vector population suppression. A transgenic strain, designated OX3604C, of the major dengue vector, Aedes aegypti, was engineered to have a repressible female-specific flightless phenotype. This strain circumvents the need for radiation-induced sterilization, allows genetic sexing resulting in male-only releases, and permits the release of eggs instead of adult mosquitoes. OX3604C males introduced weekly into large laboratory cages containing stable target mosquito populations at initial ratios of 8.5-101 OX3604Ctarget eliminated the populations within 10-20 weeks. These data support the further testing of this strain in contained or confined field trials to evaluate mating competitiveness and environmental and other effects. Successful completion of the field trials should facilitate incorporation of this approach into area-wide dengue control or elimination efforts as a component of an integrated vector management strategy.

  9. Vector Helmholtz-Gauss and vector Laplace-Gauss beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-08-15

    We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG beams are TE and TM Gaussian vector beams, nondiffracting vector Bessel beams, polarized Bessel-Gauss beams, modes in cylindrical waveguides and cavities, and scalar Helmholtz-Gauss beams. The general expression of the vHzG beams can be used straightforwardly to obtain vector Mathieu-Gauss and vector parabolic-Gauss beams, which to our knowledge have not yet been reported.

  10. From population structure to genetically-engineered vectors: new ways to control vector-borne diseases?

    PubMed

    Sparagano, O A E; De Luna, C J

    2008-07-01

    Epidemiological studies on vectors and the pathogens they can carry (such as Borrelia burgdorferi) are showing some correlations between infection rates and biodiversity highlighting the "dilution" effects on potential vectors. Meanwhile other studies comparing sympatric small rodent species demonstrated that rodent species transmitting more pathogens are parasitized by more ectoparasite species. Studies on population structure and size have also proven a difference on the intensity of the parasitic infection. Furthermore, preliminary results in genetic improvement in mosquitoes (genetic markers, sexing, and genetic sterilization) will also increase performance as it has already been shown in field applications in developing countries. Recent results have greatly improved the fitness of genetically-modified insects compared to wild type populations with new approaches such as the post-integration elimination of transposon sequences, stabilising any insertion in genetically-modified insects. Encouraging results using the Sterile Insect Technique highlighted some metabolism manipulation to avoid the viability of offspring from released parent insect in the wild. Recent studies on vector symbionts would also bring a new angle in vector control capabilities, while complete DNA sequencing of some arthropods could point out ways to block the deadly impact on animal and human populations. These new potential approaches will improve the levels of control or even in some cases would eradicate vector species and consequently the vector-borne diseases they can transmit. In this paper we review some of the population biology theories, biological control methods, and the genetic techniques that have been published in the last years that are recommended to control for vector-borne diseases.

  11. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  12. Proof-Carrying Code with Correct Compilers

    NASA Technical Reports Server (NTRS)

    Appel, Andrew W.

    2009-01-01

    In the late 1990s, proof-carrying code was able to produce machine-checkable safety proofs for machine-language programs even though (1) it was impractical to prove correctness properties of source programs and (2) it was impractical to prove correctness of compilers. But now it is practical to prove some correctness properties of source programs, and it is practical to prove correctness of optimizing compilers. We can produce more expressive proof-carrying code, that can guarantee correctness properties for machine code and not just safety. We will construct program logics for source languages, prove them sound w.r.t. the operational semantics of the input language for a proved-correct compiler, and then use these logics as a basis for proving the soundness of static analyses.

  13. Development of Oxygen-Carrying Compounds

    DTIC Science & Technology

    1942-10-16

    hydroxy-3-nitrobenzal)ethylene- dlimine Cobelt • 30 - ili - >, > Section Part Subseotlon I* 2-Hydroxy-3-nitro-5- methylbenzaldehyde ...Schiffes bases of 2-hydroxy-3-nitrobenzal- dehyde and of 2-hydroxy-5- methylbenzaldehyde with ethylene- dlamlne had been previously found to carry...at a much lowur temperature has not as yet been definitely ascerteined. to ’--■ ■* o - 32 - I. 2-Hydroxy-3-nltro-5- methylbenzaldehyde . The

  14. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  15. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  16. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  17. Vector ecology of equine piroplasmosis.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2015-01-07

    Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.

  18. Carry-over coarticulation in joint angles.

    PubMed

    Hansen, Eva; Grimme, Britta; Reimann, Hendrik; Schöner, Gregor

    2015-09-01

    Coarticulation indicates a dependence of a movement segment on a preceding segment (carry-over coarticulation) or on the segment that follows (anticipatory coarticulation). Here we study coarticulation in multidegrees of freedom human arm movements. We asked participants to transport a cylinder from a starting position to a center target and on to a final target. In this naturalistic setting, the human arm has ten degrees of freedom and is thus comfortably redundant for the task. We studied coarticulation by comparing movements between the same spatial locations that were either preceded by different end-effector paths (carry-over coarticulation) or followed by different end-effector paths (anticipatory coarticulation). We found no evidence for coarticulation at the level of the end-effector. We found very clear evidence, however, for carry-over, not for anticipatory coarticulation at the joint level. We used the concept of the uncontrolled manifold to systematically establish coarticulation as a form of motor equivalence, in which most of the difference between different movement contexts lies within the uncontrolled manifold that leaves the end-effector invariant. The findings are consistent with movement planning occurring at the level of the end-effector, and those movement plans being transformed to the joint level by a form of inverse kinematics. The observation of massive self-motion excludes an account that is solely based on a kinematic pseudo-inverse.

  19. Data Analysis for the SOLIS Vector Spectromagnetograph

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Harvey, John W.; Oegerle, William (Technical Monitor)

    2002-01-01

    The National Solar Observatory's SOLIS Vector Spectromagnetograph (VSM), which will produce three or more full-disk maps of the Sun's photospheric vector magnetic field every day for at least one solar magnetic cycle, is in the final stages of assembly. Initial observations, including cross-calibration with the current NASA/NSO spectromagnetograph (SPM) will soon be carried out at a test site in Tucson. This paper discusses data analysis techniques for reducing the raw data, calculation of line-of-sight magnetograms and both quick-look and high-precision inference of vector fields from Stokes spectral profiles. Existing SPM algorithms, suitably modified to accomodate the cameras, scanning pattern, and polarization calibration optics for the VSM, will be used to "clean" the raw data and to process line-of-sight, magnetograms. A recent. version of the High Altitude Observatory Milne-Eddington (HAO-ME) inversion code (Skumanich and Lites; 1987, 11)J 322, p. 473) will he used for high-precision vector fields since the algorithm has been extensively tested, is well understood, and is fast enough to complete data analysis within 24 hours of data acquisition. The simplified inversion algorithm of Auer, Heasley. arid House (1977, Sol. Phys. 55, p. 47) forms the initial guess for this version of the HAO-ME code and will be used for quick-look vector analysis of VSM data since its performance on simulated Stokes profiles is better than other candidate methods. Improvements (e.g., principal components analysis or neural networks) are under consideration and will be straightforward to implement. However, current resources are sufficient to store the original Stokes profiles only long enough for high-precision analysis. Retrospective reduction of Stokes data with improved methods will not be possible, and modifications will only be introduced when the advantages of doing so are compelling enough to justify discontinuity in the long-term data stream.

  20. Vector potential photoelectron microscopy.

    PubMed

    Browning, R

    2011-10-01

    A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

  1. Information carrying capacity of a cosmological constant

    NASA Astrophysics Data System (ADS)

    Simidzija, Petar; Martín-Martínez, Eduardo

    2017-01-01

    We analyze the exchange of information in different cosmological backgrounds when sender and receiver are timelike separated and communicate through massless fields (without the exchange of light signals). Remarkably, we show that the dominance of a cosmological constant makes the amount of recoverable information imprinted in the field by the sender extremely resilient: it does not decay in time or with the spatial separation of the sender and receiver, and it actually increases with the rate of expansion of the Universe. This is in stark contrast with the information carried by conventional light signals and with previous results on timelike communication through massless fields in matter-dominated cosmologies.

  2. Carrying Synchronous Voice Data On Asynchronous Networks

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1990-01-01

    Buffers restore synchronism for internal use and permit asynchronism in external transmission. Proposed asynchronous local-area digital communication network (LAN) carries synchronous voice, data, or video signals, or non-real-time asynchronous data signals. Network uses double buffering scheme that reestablishes phase and frequency references at each node in network. Concept demonstrated in token-ring network operating at 80 Mb/s, pending development of equipment operating at planned data rate of 200 Mb/s. Technique generic and used with any LAN as long as protocol offers deterministic (or bonded) access delays and sufficient capacity.

  3. Transfer of stem cells carrying engineered chromosomes with XY clone laser system.

    PubMed

    Sinko, Ildiko; Katona, Robert L

    2011-01-01

    Current transgenic technologies for gene transfer into the germline of mammals cause a random integration of exogenous naked DNA into the host genome that can generate undesirable position effects as well as insertional mutations. The vectors used to generate transgenic animals are limited by the amount of foreign DNA they can carry. Mammalian artificial chromosomes have large DNA-carrying capacity and ability to replicate in parallel with, but without integration into, the host genome. Hence they are attractive vectors for transgenesis, cellular protein production, and gene therapy applications as well. ES cells mediated chromosome transfer by conventional blastocyst injection has a limitation in unpredictable germline transmission. The demonstrated protocol of laser-assisted microinjection of artificial chromosome containing ES cells into eight-cell mouse embryos protocol described here can solve the problem for faster production of germline transchromosomic mice.

  4. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  5. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass.

  6. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  7. Extended vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke

    2017-01-01

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.

  8. Economic growth, carrying capacity, and the environment

    SciTech Connect

    Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Maeler, K.G.; Holling, C.S.; Jansson, B.O.; Levin, S.; Perrings, C.

    1995-04-28

    National and international economic policy has usually ignored the environment. In areas where the environment is beginning to impinge on policy, as in the General Agreement on Tariffs and Trade (GATT) and the North American Free Trade Agreement (NAFTA), it remains a tangential concern, and the presumption is often made that economic growth and economic liberalization (including the liberalization of international trade) are, in some sense, good for the environment. This notion has meant that economy-wide policy reforms designed to promote growth and liberalization have been encouraged with little regard to their environmental consequences, presumably on the assumption that these consequences would either take care of themselves or could be dealt with separately. In this article, we discuss the relation between economic growth and environmental quality, and the link between economic activity and the carrying capacity and resilience of the environment.

  9. Safety considerations in vector development.

    PubMed

    Kappes, J C; Wu, X

    2001-11-01

    The inadvertent production of replication competent retrovirus (RCR) constitutes the principal safety concern for the use of lentiviral vectors in human clinical protocols. Because of limitations in animal models to evaluate lentiviral vectors for their potential to recombine and induce disease, the vector design itself should ensure against the emergence of RCR in vivo. Issues related to RCR generation and one approach to dealing with this problem are discussed in this chapter. To assess the risk of generating RCR, a highly sensitive biological assay was developed to specifically detect vector recombination in transduced cells. Analysis of lentiviral vector stocks has shown that recombination occurs during reverse transcription in primary target cells. Rejoining of viral protein-coding sequences of the packaging construct and cis-acting sequences of the vector was demonstrated to generate env-minus recombinants (LTR-gag-pol-LTR). Mobilization of recombinant lentiviral genomes was also demonstrated but was dependent on pseudotyping of the vector core with an exogenous envelope protein. 5' sequence analysis has demonstrated that recombinants consist of U3, R, U5, and the psi packaging signal joined with an open gag coding region. Analysis of the 3' end has mapped the point of vector recombination to the poly(A) tract of the packaging construct's mRNA. The state-of-the-art third generation packaging construct and SIN vector also have been shown to generate env-minus proviral recombinants capable of mobilizing retroviral DNA when pseudotyped with an exogenous envelope protein. A new class of HIV-based vector (trans-vector) was recently developed that splits the gag-pol component of the packaging construct into two parts: one that expresses Gag/Gag-Pro and another that expresses Pol (RT and IN) fused with Vpr. Unlike other lentiviral vectors, the trans-vector has not been shown to form recombinants capable of DNA mobilization. These results indicate the trans-vector

  10. Multistage vector (MSV) therapeutics.

    PubMed

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers.

  11. Entangled vector vortex beams

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  12. Multistage vector (MSV) therapeutics

    PubMed Central

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-01-01

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  13. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  14. Chameleon vector bosons

    SciTech Connect

    Nelson, Ann E.

    2008-05-01

    We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 {mu}m, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.

  15. Adenoviral modification of mouse brain derived endothelial cells, bEnd3, to induce apoptosis by vascular endothelial growth factor.

    PubMed

    Mitsuuchi, Y; Powell, D R; Gallo, J M

    2006-02-09

    A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.

  16. Enhanced adenoviral gene delivery to motor and dorsal root ganglion neurons following injection into demyelinated peripheral nerves.

    PubMed

    Zhang, Yongjie; Zheng, Yiyan; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Yu, Panpan; Burke, Darlene A; Wang, Heming; Jun, Cai; Byers, Jonathan; Whittemore, Scott R; Shields, Christopher B

    2010-08-15

    Injection of viral vectors into peripheral nerves may transfer specific genes into their dorsal root ganglion (DRG) neurons and motoneurons. However, myelin sheaths of peripheral axons block the entry of viral particles into nerves. We studied whether mild, transient peripheral nerve demyelination prior to intraneural viral vector injection would enhance gene transfer to target DRG neurons and motoneurons. The right sciatic nerve of C57BL/6 mice was focally demyelinated with 1% lysolecithin, and the left sciatic nerve was similarly injected with saline (control). Five days after demyelination, 0.5 microl of Ad5-GFP was injected into both sciatic nerves at the site of previous injection. The effectiveness of gene transfer was evaluated by counting GFP(+) neurons in the DRGs and ventral horns. After peripheral nerve demyelination, there was a fivefold increase in the number of infected DRG neurons and almost a 15-fold increase in the number of infected motoneurons compared with the control, nondemyelinated side. Focal demyelination reduced the myelin sheath barrier, allowing greater virus-axon contact. Increased CXADR expression on the demyelinated axons facilitated axoplasmic viral entry. No animals sustained any prolonged neurological deficits. Increased gene delivery into DRG neurons and motoneurons may provide effective treatment for amyotrophic lateral sclerosis, pain, and spinal cord injury.

  17. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing

    PubMed Central

    Chiou, Shin-Heng; Winters, Ian P.; Wang, Jing; Naranjo, Santiago; Dudgeon, Crissy; Tamburini, Fiona B.; Brady, Jennifer J.; Yang, Dian; Grüner, Barbara M.; Chuang, Chen-Hua; Caswell, Deborah R.; Zeng, Hong; Chu, Pauline; Kim, Grace E.; Carpizo, Darren R.; Kim, Seung K.; Winslow, Monte M.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer. PMID:26178787

  18. Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes.

    PubMed

    Hui, Daniel J; Basner-Tschakarjan, Etiena; Chen, Yifeng; Davidson, Robert J; Buchlis, George; Yazicioglu, Mustafa; Pien, Gary C; Finn, Jonathan D; Haurigot, Virginia; Tai, Alex; Scott, David W; Cousens, Leslie P; Zhou, Shangzhen; De Groot, Anne S; Mingozzi, Federico

    2013-09-01

    Immune responses directed against viral capsid proteins constitute a main safety concern in the use of adeno-associated virus (AAV) as gene transfer vectors in humans. Pharmacological immunosuppression has been proposed as a solution to the problem; however, the approach suffers from several potential limitations. Using MHC class II epitopes initially identified within human IgG, named Tregitopes, we showed that it is possible to modulate CD8+ T cell responses to several viral antigens in vitro. We showed that incubation of peripheral blood mononuclear cells with these epitopes triggers proliferation of CD4+CD25+FoxP3+ T cells that suppress killing of target cells loaded with MHC class I antigens in an antigen-specific fashion, through a mechanism that seems to require cell-to-cell contact. Expression of a construct encoding for the AAV capsid structural protein fused to Tregitopes resulted in reduction of CD8+ T cell reactivity against the AAV capsid following immunization with an adenoviral vector expressing capsid. This was accompanied by an increase in frequency of CD4+CD25+FoxP3+ T cells in spleens and lower levels of inflammatory infiltrates in injected tissues. This proof-of-concept study demonstrates modulation of CD8+ T cell reactivity to an antigen using regulatory T cell epitopes is possible.

  19. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing.

    PubMed

    Chiou, Shin-Heng; Winters, Ian P; Wang, Jing; Naranjo, Santiago; Dudgeon, Crissy; Tamburini, Fiona B; Brady, Jennifer J; Yang, Dian; Grüner, Barbara M; Chuang, Chen-Hua; Caswell, Deborah R; Zeng, Hong; Chu, Pauline; Kim, Grace E; Carpizo, Darren R; Kim, Seung K; Winslow, Monte M

    2015-07-15

    Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer.

  20. Poynting vector and wave vector directions of equatorial chorus

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolík, Ondřej; Breuillard, Hugo; Li, Wen; Le Contel, Olivier

    2016-12-01

    We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B0). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B0. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to ±6∘ around the B0 minimum or approximately ±5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B0 direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within ˜20∘ latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density.

  1. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  2. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  3. Robust ferromagnetism carried by antiferromagnetic domain walls.

    PubMed

    Hirose, Hishiro T; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-14

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  4. Sparse Elimination on Vector Multiprocessors.

    DTIC Science & Technology

    2014-09-26

    vector registers . Several reports have been prepared recently under this effort, and a paper entitled "Task Granularity Studies in a Many-Processor Cray X...measures this effect. To reduce this ratio, it has been shown * possible to assembly-code the X-MP so that accesses are pre-fetched into vector registers

  5. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  6. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  7. Transgenic pig carrying green fluorescent proteasomes

    PubMed Central

    Miles, Edward L.; O’Gorman, Chad; Zhao, Jianguo; Samuel, Melissa; Walters, Eric; Yi, Young-Joo; Prather, Randall S.; Wells, Kevin D.; Sutovsky, Peter

    2013-01-01

    Among its many functions, the ubiquitin–proteasome system regulates substrate-specific proteolysis during the cell cycle, apoptosis, and fertilization and in pathologies such as Alzheimer’s disease, cancer, and liver cirrhosis. Proteasomes are present in human and boar spermatozoa, but little is known about the interactions of proteasomal subunits with other sperm proteins or structures. We have created a transgenic boar with green fluorescent protein (GFP) tagged 20S proteasomal core subunit α-type 1 (PSMA1-GFP), hypothesizing that the PSMA1-GFP fusion protein will be incorporated into functional sperm proteasomes. Using direct epifluorescence imaging and indirect immunofluorescence detection, we have confirmed the presence of PSMA1-GFP in the sperm acrosome. Western blotting revealed a protein band corresponding to the predicted mass of PSMA1-GFP fusion protein (57 kDa) in transgenic spermatozoa. Transgenic boar fertility was confirmed by in vitro fertilization, resulting in transgenic blastocysts, and by mating, resulting in healthy transgenic offspring. Immunoprecipitation and proteomic analysis revealed that PSMA1-GFP copurifies with several acrosomal membrane-associated proteins (e.g., lactadherin/milk fat globule E8 and spermadhesin alanine-tryptophan-asparagine). The interaction of MFGE8 with PSMA1-GFP was confirmed through cross-immunoprecipitation. The identified proteasome-interacting proteins may regulate sperm proteasomal activity during fertilization or may be the substrates of proteasomal proteolysis during fertilization. Proteomic analysis also confirmed the interaction/coimmunoprecipitation of PSMA1-GFP with 13/14 proteasomal core subunits. These results demonstrate that the PSMA1-GFP was incorporated in the assembled sperm proteasomes. This mammal carrying green fluorescent proteasomes will be useful for studies of fertilization and wherever the ubiquitin–proteasome system plays a role in cellular function or pathology. PMID:23550158

  8. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    PubMed Central

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  9. Global carrying capacity: how many people?

    PubMed

    1992-07-01

    During 1980-85 energy consumption in developing countries increased by 22%, of which 50% was used to maintain current levels of use and 50% pertained to real economic growth. Commercial energy consumption during 1970-89 tripled in developing countries. Population growth alone is expected to increase world energy consumption from the current 13.5 terawatts (13.5 trillion watts) to 18 terawatts by 2025 at the same level of use. The increased level of consumption (4.5 terawatts) is the equivalent of total current commercial energy consumption. One terawatt is equal to energy use from 5 billion barrels of oil yearly, 1 billion tons of coal, or 1.6 billion tons of wood. Economic development will require even greater levels of energy use. Since the oil price increases of the 1970s, developed countries increased their energy consumption by about 33%, even while becoming more fuel efficient. During 1990-2025, if developing countries double their per capita energy use and developed countries reduce their use by 50%, world energy consumption will still be almost 21 terawatts. If consumption remains constant at current levels without any population increase, the oil supply will be exhausted in 40 years. Coal consumption will last hundreds of years but air pollution will worsen, and global warming will be accelerated. Developed countries, which are wealthier, are having difficulty switching to non-fossil fuels, and the prospects for developing countries pose even greater challenges. Slowing growth buys time for technological development. World population is expected to reach 8 billion by 2020. Stabilization of growth at 8 billion would occur only if world fertility averages 1.7 children per woman by 2025. One opinion is that the carrying capacity has been reached with the present population of 5.4 billion. Others say that with changes in consumption and technological developments the earth can sustain 8 billion people. The physical limits are 1) the finite capacity of natural

  10. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs

    SciTech Connect

    Flint, S.J. . E-mail: sjflint@molbio.princeton.edu; Huang, Wenying; Goodhouse, Joseph; Kyin, Saw

    2005-06-20

    The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.

  11. Regulation of Human Adenovirus Alternative RNA Splicing by the Adenoviral L4-33K and L4-22K Proteins

    PubMed Central

    Biasiotto, Roberta; Akusjärvi, Göran

    2015-01-01

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins. PMID:25636034

  12. Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins.

    PubMed

    Biasiotto, Roberta; Akusjärvi, Göran

    2015-01-28

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.

  13. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs.

    PubMed

    Flint, S J; Huang, Wenying; Goodhouse, Joseph; Kyin, Saw

    2005-06-20

    The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.

  14. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  15. Vector fields in multidimensional cosmology

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris E.

    2011-09-01

    Vector fields in the expanding Universe are considered within the multidimensional theory of general relativity. Vector fields in general relativity form a three-parametric variety. Our consideration includes the fields with a nonzero covariant divergence. Depending on the relations between the particular parameters and the symmetry of a problem, the vector fields can be longitudinal and/or transverse, ultrarelativistic (i.e. massless) or nonrelativistic (massive), and so on. The longitudinal and transverse vector fields are considered separately in detail in the background of the de Sitter cosmological metric. In most cases the field equations reduce to Bessel equations, and their temporal evolution is analyzed analytically. The energy-momentum tensor of the most simple zero-mass longitudinal vector fields enters the Einstein equations as an additive to the cosmological constant. In this case the de Sitter metric is the exact solution of the Einstein equations. Hence, the most simple zero-mass longitudinal vector field pretends to be an adequate tool for macroscopic description of dark energy as a source of the expansion of the Universe at a constant rate. The zero-mass vector field does not vanish in the process of expansion. On the contrary, massive fields vanish with time. Though their amplitude is falling down, the massive fields make the expansion accelerated.

  16. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  17. Construction of human artificial chromosome vectors by recombineering.

    PubMed

    Kotzamanis, George; Cheung, Wing; Abdulrazzak, Hassan; Perez-Luz, Sara; Howe, Steven; Cooke, Howard; Huxley, Clare

    2005-05-23

    Human artificial chromosomes (HACs) can be formed de novo by transfection of large fragments of cloned alphoid DNA into human HT1080 cells in tissue culture. In order to generate HACs carrying a gene of interest, one can either co-transfect the alphoid DNA and the gene of interest, or one can clone both into a single vector prior to transfection. Here we describe linking approximately 70 kb of alphoid DNA onto a 156-kb BAC carrying the human HPRT gene using Red homologous recombination in the EL350 Escherichia coli host [Lee et al., Genomics 73 (2001) 56-65]. A selectable marker and EGFP marker were then added by loxP/Cre recombination using the arabinose inducible cre gene in the EL350 bacteria. The final construct generates minichromosomes in HT1080 cells and the HPRT gene is expressed. The retrofitting vector can be used to add the approximately 70 kb of alphoid DNA to any BAC carrying a gene of interest to generate a HAC vector. The method can also be used to link any unrelated BAC or PAC insert onto another BAC clone. The EL350 bacteria are an excellent host for building up complex vectors by a combination of homologous and loxP/Cre recombination.

  18. Insecticide resistance and vector control.

    PubMed Central

    Brogdon, W. G.; McAllister, J. C.

    1998-01-01

    Insecticide resistance has been a problem in all insect groups that serve as vectors of emerging diseases. Although mechanisms by which insecticides become less effective are similar across all vector taxa, each resistance problem is potentially unique and may involve a complex pattern of resistance foci. The main defense against resistance is close surveillance of the susceptibility of vector populations. We describe the mechanisms of insecticide resistance, as well as specific instances of resistance emergence worldwide, and discuss prospects for resistance management and priorities for detection and surveillance. PMID:9866736

  19. Vector statistics of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Underwood, D.

    1977-01-01

    A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.

  20. Control of vector populations using genetically modified mosquitoes.

    PubMed

    Wilke, André Barreto Bruno; Gomes, Almério de Castro; Natal, Delsio; Marrelli, Mauro Toledo

    2009-10-01

    The ineffectiveness of current strategies for chemical control of mosquito vectors raises the need for developing novel approaches. Thus, we carried out a literature review of strategies for genetic control of mosquito populations based on the sterile insect technique. One of these strategies consists of releasing radiation-sterilized males into the population; another, of integrating a dominant lethal gene under the control of a specific promoter into immature females. Advantages of these approaches over other biological and chemical control strategies include: highly species-specific, environmentally safety, low production cost, and high efficacy. The use of this genetic modification technique will constitute an important tool for integrated vector management.

  1. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  2. Vector independent transmission of the vector-borne bluetongue virus.

    PubMed

    van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M

    2016-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.

  3. Simian virus 40 vectors for pulmonary gene therapy

    PubMed Central

    Eid, Luminita; Bromberg, Zohar; EL-Latif, Mahmoud Abd; Zeira, Evelyn; Oppenheim, Ariella; Weiss, Yoram G

    2007-01-01

    Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS). Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40) vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP). SV40 vectors carrying the luciferase reporter gene (SV/luc) were administered intratracheally immediately after sepsis induction. Sham operated (SO) as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C). Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool. PMID:17967178

  4. Systemic and mucosal immune responses following oral adenoviral delivery of influenza vaccine to the human intestine by radio controlled capsule

    PubMed Central

    Kim, Leesun; Martinez, C. Josefina; Hodgson, Katie A.; Trager, George R.; Brandl, Jennifer R.; Sandefer, Erik P.; Doll, Walter J.; Liebowitz, Dave; Tucker, Sean N.

    2016-01-01

    There are several benefits of oral immunization including the ability to elicit mucosal immune responses that may protect against pathogens that invade through a mucosal surface. Our understanding of human immune biology is hampered by the difficulty in isolating mucosal cells from humans, and the fact that animal models may or may not completely mirror human intestinal immunobiology. In this human pharmacodynamic study, a novel adenovirus vector-based platform expressing influenza hemagglutinin was explored. We used radio-controlled capsules to deliver the vaccine to either the jejunum or the ileum. The resulting immune responses induced by immunization at each of the intestinal sites were investigated. Both intestinal sites were capable of inducing mucosal and systemic immune responses to influenza hemagglutinin, but ileum delivery induced higher numbers of antibody secreting cells of IgG and IgA isotypes, increased mucosal homing B cells, and higher number of vaccine responders. Overall, these data provided substantial insights into human mucosal inductive sites, and aided in the design and selection of indications that could be used with this oral vaccine platform. PMID:27881837

  5. Improved self-inactivating retroviral vectors derived from spleen necrosis virus.

    PubMed Central

    Olson, P; Nelson, S; Dornburg, R

    1994-01-01

    Self-inactivating (SIN) retroviral vectors contain a deletion spanning most of the right long terminal repeat's (LTR's) U3 region. Reverse transcription copies this deletion to both LTRs. As a result, there is no transcription from the 5' LTR, preventing further replication. Many previously developed SIN vectors, however, had reduced titers or were genetically unstable. Earlier, we reported that certain SIN vectors derived from spleen necrosis virus (SNV) experienced reconstitution of the U3-deleted LTR at high frequencies. This reconstitution occurred on the DNA level and appeared to be dependent on defined vector sequences. To study this phenomenon in more detail, we developed an almost completely U3-free retroviral vector. The promoter and enhancer of the left LTR were replaced with those of the cytomegalovirus immediate-early genes. This promoter swap did not impair the level of transcription or alter its start site. Our data indicate that SNV contains a strong initiator which resembles that of human immunodeficiency virus. We show that the vectors replicate with efficiencies similar to those of vectors possessing two wild-type LTRs. U3-deleted vectors carrying the hygromycin B phosphotransferase gene did not observably undergo LTR reconstitution, even when replicated in helper cells containing SNV-LTR sequences. However, vectors carrying the neomycin resistance gene did undergo LTR reconstitution with the use of homologous helper cell LTR sequences as template. This supports our earlier finding that sequences within the neomycin resistance gene can trigger recombination. Images PMID:7933088

  6. Integrated Thrust Vectored Engine Control

    DTIC Science & Technology

    2001-06-01

    erformances operationnelles des aeronefs militaires, des vehicules terrestres et des vehicules maritimes] To order the complete compilation report...throttling "* Autonomous Engine Configuration Side forces demand to define nozzle vectoring "* Simple Interface FADEC -> FCS " Minimum Interaction FCS

  7. Contingency Pest and Vector Surveillance

    DTIC Science & Technology

    2013-11-01

    names are used in this TG to provide specific information or photo credits and do not imply endorsement of the products named or criticism of similar...ones not mentioned. Mention of trade names does not constitute a guarantee or warranty of the products by the author, the AFPMB, the Military...VectorMap (http://www.vectormap.org/), a product of the Walter Reed Biosystematics Unit (WRBU). VectorMap provides disease maps, and mapped collection

  8. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  9. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  10. Vector control after malaria eradication

    PubMed Central

    Micks, D. W.

    1963-01-01

    In considerable areas now in or near the consolidation phase of malaria eradication, other vector-borne diseases present serious public health problems, even though not susceptible to control on the same world-wide scale as malaria. Several of these areas are already making plans for converting their malaria eradication services to vector control services. While it is possible to use essentially the same personnel and equipment, the methods must be adapted to the biology and habits of the vector. For a smooth and rapid transition, considerable advance planning is therefore needed—preferably well ahead of the consolidation phase. The author gives several examples of the need for flexibility in effecting the changeover and of the problems likely to arise after the completion of malaria eradication programmes. He recommends that epidemiological studies should be extended to vector-borne diseases other than malaria while eradication programmes are still in progress and that vector control programmes should be integrated into the basic health services of the country as soon as possible. He also underlines the importance of water management and other aspects of environmental sanitation in vector control programmes. PMID:20604169

  11. Handling S/MAR vectors.

    PubMed

    Hagedorn, Claudia; Baiker, Armin; Postberg, Jan; Ehrhardt, Anja; Lipps, Hans J

    2012-06-01

    Nonviral episomal vectors represent attractive alternatives to currently used virus-based expression systems. In the late 1990s, it was shown that a plasmid containing an expression cassette linked to a scaffold/matrix attached region (S/MAR) replicates as a low copy number episome in all cell lines tested, as well as primary cells, and can be used for the genetic modification of higher animals. Once established in the cell, the S/MAR vector replicates early during S-phase and, in the absence of selection, is stably retained in the cells for an unlimited period of time. This vector can therefore be regarded as a minimal model system for studying the epigenetic regulation of replication and functional nuclear architecture. In theory, this construct represents an almost "ideal" expression system for gene therapy. In practice, S/MAR-based vectors stably modify mammalian cells with efficiencies far below those of virus-based constructs. Consequently, they have not yet found application in gene therapy trials. Furthermore, S/MAR vector systems are not trivial to handle and several critical technical issues have to be considered when modifying these vectors for various applications.

  12. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  13. Measurement and assessment of carrying capacity of the environment in Ningbo, China.

    PubMed

    Liu, R Z; Borthwick, Alistair G L

    2011-08-01

    Carrying Capacity of the Environment (CCE) provides a useful measure of the sustainable development of a region. Approaches that use integrated assessment instead of measurement can lead to misinterpretation of sustainable development because of confusion between Environmental Stress (ES) indexes and CCE indexes, and the selection of over-simple linear plus models. The present paper proposes a comprehensive measurement system for CCE which comprises models of natural resources capacity, environmental assimilative capacity, ecosystem services capacity, and society supporting capacity. The corresponding measurable indexes are designed to assess CCE using a carrying capacity surplus ratio model and a vector of surplus ratio of carrying capacity model. The former aims at direct comparison of ES and CCE based on the values of basic indexes, and the latter uses a Euclidean vector to assess CCE states. The measurement and assessment approaches are applicable to Strategic Environmental Assessment (SEA) and environmental planning and management. A case study is presented for Ningbo, China, whereby all the basic indexes of ECC are measured and the CCE states assessed for 2005 and 2010.

  14. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    PubMed Central

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  15. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    PubMed

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-Lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  16. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements.

    PubMed

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K; Kersey, Paul J; Maslen, Gareth L; Takken, Willem; Koenraadt, Constantianus J M; Oliva, Clelia F; Busquets, Núria; Abad, F Xavier; Failloux, Anna-Bella; Levashina, Elena A; Wilson, Anthony J; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.

  17. Black holes with vector hair

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  18. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2

    PubMed Central

    Neumann, Alexander J.; Gardner, Oliver F. W.; Williams, Rebecca; Alini, Mauro; Archer, Charles W.; Stoddart, Martin J.

    2015-01-01

    Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a

  19. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL.

    PubMed Central

    Cao, Xiaobo X.; Mohuiddin, Imran; Chada, Sunil; Mhashilkar, Abner M.; Ozvaran, Mustafa K.; McConkey, David J.; Miller, Steven D.; Daniel, Jonathon C.; Smythe, W. Roy

    2002-01-01

    BACKGROUND: Malignant pleural mesothelioma (MPM) is unresponsive to conventional therapies. Forced expression of the novel tumor suppressor mda-7 gene in other cell types has resulted in decreased growth and apoptosis. We evaluated cell growth, apoptosis and tumor suppressor characteristics following forced expression of this gene in mesothelioma cell lines. METHODS: MDA-7 expression in human MPM cells at baseline, following pharmacologic differentiation and viral mda-7 transduction (Ad-mda7) were evaluated with Western blot. Cell viability was evaluated with a colorimetric (XTT) assay, and apoptosis with subG1 FACS and Hoescht. Caspase-3 expression was evaluated by functional assay. These parameters were also evaluated in a stable bcl-xl hyper-expressing MPM cell line. Bax mRNA levels were evaluated with real-time PCR. RESULTS: No baseline or differentiated MPM MDA7 expression was found, but was noted following Ad-mda7 exposure. More than 50% of MPM cells were killed at 5 days following Ad-mda7 exposure (p < 0.001). Apoptosis was accompanied by caspase-3 cleavage and increased BAX expression at both the protein (translational) and mRNA (transcriptional) level. These findings were reduced in a bcl-xl hyper-expressing cell line (P < 0.01). CONCLUSIONS: Although mda-7 does not appear to be a MPM suppressor gene, adenoviral-mediated expression in cell lines induces apoptotic cellular death related to BAX upregulation and caspase cleavage. This is supported by abrogation of effect in a bcl-xl hyper-expressing cell line. PMID:12606823

  20. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    PubMed

    2003-01-01

    Introgen's adenoviral p53 gene therapy [INGN 201, ADVEXIN] is in clinical development for the treatment of various cancers. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. INGN 201 has been shown to kill cancer cells directly. In August 2002, Introgen announced plans to file an application for INGN 201 with the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of head and neck cancer; the European filing will be submitted simultaneously with the previously scheduled (planned for 2004) submission of a Biologics License Application (BLA) for ADVEXIN to the US FDA. On 20 February 2003, INGN 201 received orphan drug designation from the US FDA for head and neck cancer. INGN 201 is available for licensing although Introgen favours retaining partial or full rights to the therapy in the US. Introgen Therapeutics and its collaborative partner for the p53 programme, Aventis Gencell, have been developing p53 gene therapy products. The agreement was originally signed by Rhône-Poulenc Rorer's Gencell division, which became Aventis Gencell after Rhône-Poulenc Rorer merged with Hoechst Marion Roussel to form Aventis Pharma. According to the original agreement, Introgen was responsible for phase I and preclinical development in North America, while Aventis Gencell was responsible for clinical trials conducted in Europe and for clinical trials in North America beyond phase I. In April 2001, Aventis Gencell and Introgen restructured their existing collaboration agreement for p53 gene therapy products. Aventis Gencell indicated that p53 research had suffered from internal competition for resources and was pulling back from its development agreement with Introgen for p53 gene therapy products. Introgen will assume responsibility for worldwide development of all p53 programmes and will obtain exclusive worldwide commercial rights to p53-based gene therapy

  1. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry.

    PubMed

    Colomer-Lluch, Marta; Imamovic, Lejla; Jofre, Juan; Muniesa, Maite

    2011-10-01

    This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. bla(TEM), bla(CTX-M) (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log(10) gene copies (GC) of bla(TEM), 2 to 3 log(10) GC of bla(CTX-M), and 1 to 3 log(10) GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes.

  2. Learning with LOGO: Logo and Vectors.

    ERIC Educational Resources Information Center

    Lough, Tom; Tipps, Steve

    1986-01-01

    This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)

  3. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  4. Episomal vectors for gene therapy.

    PubMed

    Ehrhardt, Anja; Haase, Rudolf; Schepers, Aloys; Deutsch, Manuel J; Lipps, Hans Joachim; Baiker, Armin

    2008-06-01

    The increasing knowledge of the molecular and genetic background of many different human diseases has led to the vision that genetic engineering might be used one day for their phenotypic correction. The main goal of gene therapy is to treat loss-of-function genetic disorders by delivering correcting therapeutic DNA sequences into the nucleus of a cell, allowing its long-term expression at physiologically relevant levels. Manifold different vector systems for the therapeutic gene delivery have been described over the recent years. They all have their individual advantages but also their individual limitations and must be judged on a careful risk/benefit analysis. Integrating vector systems can deliver genetic material to a target cell with high efficiency enabling long-term expression of an encoded transgene. The main disadvantage of integrating vector systems, however, is their potential risk of causing insertional mutagenesis. Episomal vector systems have the potential to avoid these undesired side effects, since they behave as separate extrachromosomal elements in the nucleus of a target cell. Within this article we present a comprehensive survey of currently available episomal vector systems for the genetic modification of mammalian cells. We will discuss their advantages and disadvantages and their applications in the context of basic research, biotechnology and gene therapy.

  5. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  6. Biosafety of recombinant adeno-associated virus vectors.

    PubMed

    Dismuke, David J; Tenenbaum, Liliane; Samulski, R Jude

    2013-12-01

    It is hoped that the use of gene transfer technology to treat both monogenetic and acquired diseases may soon become a common therapy option in medicine. For gene therapy to achieve this objective, any gene delivery method will have to meet several criteria, including ease of manufacturing, efficient gene transfer to target tissue, long-term gene expression to alleviate the disease, and most importantly safety in patients. Viral vectors are an attractive choice for use in gene therapy protocols due to their relative efficiency in gene delivery. Since there is inherent risk in using viruses, investigators in the gene therapy community have devoted extensive efforts toward reengineering viral vectors for enhance safety. Here we review the approaches and technologies that are being evaluated for the use of recombinant vectors based upon adeno-associated virus (AAV) in the treatment of a variety of human diseases. AAV is currently the only known human DNA virus that is non-pathogenic and AAV-based vectors are classified as Risk Group 1 agents for all laboratory and animal studies carried out in the US. Although its apparent safety in natural infection and animals appears well documented, we examine the accumulated knowledge on the biology and vectorology of AAV, lessons learned from gene therapy clinical trials, and how this information is impacting current vector design and manufacturing with an overall emphasis on biosafety.

  7. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors.

    PubMed

    Indraccolo, Stefano; Habeler, Walter; Tisato, Veronica; Stievano, Laura; Piovan, Erich; Tosello, Valeria; Esposito, Giovanni; Wagner, Ralf; Uberla, Klaus; Chieco-Bianchi, Luigi; Amadori, Alberto

    2002-11-01

    Local gene therapy could be a therapeutic option for ovarian carcinoma, a life-threatening malignancy, because of disease containment within the peritoneal cavity in most patients. Lentiviral vectors, which are potentially capable of stable transgene expression, may be useful to vehicle therapeutic molecules requiring long-term production in these tumors. To investigate this concept, we used lentiviral vectors to deliver the enhanced green fluorescent protein (EGFP) gene to ovarian cancer cells. Their efficiency of gene transfer was compared with that of a retroviral vector carrying the same envelope. In vitro, both vectors infected ovarian cancer cells with comparable efficiency under standard culture conditions; however, the lentiviral vector was much more efficient in transducing growth-arrested cells when compared with the retroviral vector. Gene transfer was fully neutralized by an anti-VSV-G antibody, and in vitro stability was similar. In vivo, the lentiviral vector delivered the transgene 10-fold more efficiently to ovarian cancer cells growing i.p. in SCID mice, as evaluated by real-time PCR analysis of the tumors. Confocal microscopy analysis of tumor sections showed a dramatic difference at the level of transgene expression, because abundant EGFP(+) cells were detected only in mice receiving the lentiviral vector. Quantitative analysis by flow cytometry confirmed this and indicated 0.05 and 5.6% EGFP(+) tumor cells after administration of the retroviral and lentiviral vector, respectively. Injection of ex vivo transduced tumor cells, sorted for EGFP expression, indicated that the lentiviral vector was considerably more resistant to in vivo silencing in comparison with the retroviral vector. Finally, multiple administrations of a murine IFN-alpha(1)-lentiviral vector to ovarian carcinoma-bearing mice significantly prolonged the animals' survival, indicating the therapeutic efficacy of this approach. These findings indicate that lentiviral vectors deserve

  8. Mapping of Malaria Vectors at District Level in India: Changing Scenario and Identified Gaps.

    PubMed

    Singh, Poonam; Lingala, Mercy Aparna L; Sarkar, Soma; Dhiman, Ramesh C

    2017-02-01

    Malaria is one of the six major vector-borne diseases in India, the endemicity of which changes with changes in ecological, climatic, and sociodevelopmental conditions. The anopheline vectors are greatly affected by ecological conditions such as deforestation, urbanization, climate and lifestyle. Despite the advent of tools such as Geographic Information System (GIS), the updated information on the distribution of anopheline vectors of malaria is not available. In India, the plan for vector control is organized at subcentral level but information about vectors is unavailable even at the district level. Therefore, a systematic presentation of vector distribution has been made to provide maps in respect of major vector species. A search of the literature for major vector species, that is, Anopheles culicifacies, Anopheles fluviatilis, Anopheles stephensi, Anopheles minimus, and Anopheles dirus sensu lato, since 1927 till 2015 was carried out. Data have been presented as present, absent, and no information about vector species during pre-eradication (1927-1958), posteradication (1959-1999), and current scenario (2000-2015). Vectors' distribution and malaria endemicity were mapped using Arc GIS. Of 630 districts of India, major vectors An. culicifacies, An. fluviatilis, and An. stephensi were present in 420, 241, and 243 districts, respectively. In 183 districts, there is no information on any major malaria vector species although 27 of them from the states of Arunachal Pradesh, Jharkhand, Manipur, and Mizoram are highly endemic for malaria, having incidences of 2-40 cases/1000/year. The identified gaps in vector distribution, particularly in malaria endemic areas, necessitate further surveys so as to generate the missing information.

  9. Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery.

    PubMed

    Wang, Qizhao; Dong, Biao; Firrman, Jenni; Roberts, Sean; Moore, Andrea Rossi; Cao, Wenjing; Diao, Yong; Kapranov, Philipp; Xu, Ruian; Xiao, Weidong

    2014-08-01

    Recombinant adeno-associated viral (rAAV) vectors have gained attention for human gene therapy because of their high safety and clinical efficacy profile. For factor VIII gene delivery, splitting the coding region between two AAV vectors remains a viable strategy to avoid the packaging capacity limitation (∼5.0 kb). However, it is time-consuming and labor-intensive to produce two rAAV vectors in separate batches. Here we demonstrated successful production of dual rAAV vectors for hemophilia A gene therapy in a single preparation. When the AAV vector plasmids carrying the human factor VIII heavy chain (hHC) and the light chain (hLC) expression cassettes were cotransfected into 293 cells along with the AAV rep&cap and mini-adenovirus helper plasmids, both rAAV-hHC and rAAV-hLC were produced at the desired ratio and in high titer. Interestingly, the rAAV-hHC vectors always yielded higher titers than rAAV-hLC vectors as a result of more efficient replication of rAAV-hHC genomes. The resulting vectors were effective in transducing the tissue culture cells in vitro. When these vectors were administered to hemophilia A mice, factor VIII was detected in the mouse plasma by both the activated partial thromboplastin time assay and enzyme-linked immunosorbent assay. The functional activity as well as the antigen levels of secreted factor VIII were similar to those of vectors produced by the traditional method. The dual-vector production method has been successfully extended to both AAV2 and AAV8 serotypes. In conclusion, cotransfection of vector plasmids presents an efficient method for producing dual or multiple AAV vectors at significantly reduced cost and labor.

  10. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins.

    PubMed

    Beekwilder, J; Rakonjac, J; Jongsma, M; Bosch, D

    1999-03-04

    Phage display is a powerful tool with which to adapt the specificity of protease inhibitors. To this end, a library of variants of the potato protease inhibitor PI2 was introduced in a canonical phagemid vector. Although PI2 is a natural trypsin inhibitor, we were unable to select trypsin-binding variants from the library. Instead, only mutants carrying deletions or amber stop codons were found. Bacteria carrying these mutations had a much faster growth rate than those carrying the wt PI2-encoding gene, even when the promoter was repressed. To overcome these problems, two new phagemid vectors for g3-mediated phage display were constructed. The first vector has a lower plasmid copy number, as compared to the canonical vector. Bacteria harboring this new vector are much less affected by the presence of the PI2-g3 fusion gene, which appears from a markedly reduced growth retardation. A second vector was equipped with the promoter of the Escherichia coli psp operon, instead of the lac promoter, to control the PI2-g3 gene fusion expression. The psp promoter is induced upon helper phage infection. A phagemid vector with this promoter controlling a PI2-g3 gene fusion did not affect the viability of the host. Furthermore, both new vectors were shown to produce phage particles that display the inhibitor protein and were therefore considered suitable for phage display. The inhibitor library was introduced in both new vectors. Trypsin-binding phages with inhibitory sequences were selected, instead of sequences with stop codons or deletions. This demonstrates the usefulness of these new vectors for phage display of proteins that affect the viability of E. coli.

  11. Chiral bag with vector mesons

    NASA Astrophysics Data System (ADS)

    Hosaka, A.; Toki, H.; Weise, W.

    1990-01-01

    We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.

  12. Vector insects and their control.

    PubMed

    Lehane, M J

    1996-01-01

    This paper emphasizes the huge influence that vector-transmitted disease has on humans using plague, epidemic typhus and nagana as examples. The continuing need for vector control in campaigns against insect-transmitted disease is shown by reference to current control programmes mounted against Chagas' disease, onchocerciasis, lymphatic filariasis and nagana. These successful campaigns have not been reliant on new breakthroughs but on the forging of available tools into effective strategies widely and efficiently used by the control authorities, and the long-lasting political commitment to the success of the schemes in question. A brief mention is made of current fashions in vector control research and that great care needs to be taken by policy-makers to achieve a balance between long-term research aiming at the production of fundamentally new control technologies and operational research aiming to forge the often highly effective tools we already have into sound control strategies.

  13. Targeting retroviral and lentiviral vectors.

    PubMed

    Sandrin, V; Russell, S J; Cosset, F L

    2003-01-01

    Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.

  14. Extrapolation methods for vector sequences

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Ford, William F.; Sidi, Avram

    1987-01-01

    This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.

  15. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  16. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  17. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  18. Thrust-vectored differential turns

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Lefton, L.

    1980-01-01

    Barrier surface construction in the joint space of the differential turning game for thrust-vectored vs. conventional aircraft is discussed. Differential-turn studies are based on modifications of existing computer programs including an energy-turn program, and one which generates hodograph data. Optimal turning flight in energy approximation is discussed for the conventional aircraft configurations. It is concluded that any advantages realized from thrust-vectoring are minor, unless hover is possible, where advantages would be major at low energies, and affect tactics at high energies as well.

  19. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene.

    PubMed

    Song, Y F; Zhang, H; Zhao, L M; Shen, D Y; Tang, D Y

    2016-01-25

    We report on the experimental observation of vector and bound vector solitons in a fiber laser passively mode locked by graphene. Localized interactions between vector solitons, vector soliton with bound vector solitons, and vector soliton with a bunch of vector solitons are experimentally investigated. We show that depending on the soliton interactions, various stable and dynamic multiple vector soliton states could be formed.

  20. Generating a transgenic mouse line stably expressing human MHC surface antigen from a HAC carrying multiple genomic BACs.

    PubMed

    Hasegawa, Yoshinori; Ishikura, Tomoyuki; Hasegawa, Takanori; Watanabe, Takashi; Suzuki, Junpei; Nakayama, Manabu; Okamura, Yoshiaki; Okazaki, Tuneko; Koseki, Haruhiko; Ohara, Osamu; Ikeno, Masashi; Masumoto, Hiroshi

    2015-03-01

    The human artificial chromosome (HAC) vector is a promising tool to improve the problematic suppression and position effects of transgene expression frequently seen in transgenic cells and animals produced by conventional plasmid or viral vectors. We generated transgenic mice maintaining a single HAC vector carrying two genomic bacterial artificial chromosomes (BACs) from human HLA-DR loci (DRA and DRB1). Both transgenes on the HAC in transgenic mice exhibited tissue-specific expression in kidney, liver, lung, spleen, lymph node, bone marrow, and thymus cells in RT-PCR analysis. Stable functional expression of a cell surface HLA-DR marker from both transgenes, DRA and DRB1 on the HAC, was detected by flow cytometric analysis of splenocytes and maintained through at least eight filial generations. These results indicate that the de novo HAC system can allow us to manipulate multiple BAC transgenes with coordinated expression as a surface antigen through the generation of transgenic animals.

  1. Novel HDAd/EBV Reprogramming Vector and Highly Efficient Ad/CRISPR-Cas Sickle Cell Disease Gene Correction

    PubMed Central

    Li, Chao; Ding, Lei; Sun, Chiao-Wang; Wu, Li-Chen; Zhou, Dewang; Pawlik, Kevin M.; Khodadadi-Jamayran, Alireza; Westin, Erik; Goldman, Frederick D.; Townes, Tim M.

    2016-01-01

    CRISPR/Cas enhanced correction of the sickle cell disease (SCD) genetic defect in patient-specific induced Pluripotent Stem Cells (iPSCs) provides a potential gene therapy for this debilitating disease. An advantage of this approach is that corrected iPSCs that are free of off-target modifications can be identified before differentiating the cells into hematopoietic progenitors for transplantation. In order for this approach to be practical, iPSC generation must be rapid and efficient. Therefore, we developed a novel helper-dependent adenovirus/Epstein-Barr virus (HDAd/EBV) hybrid reprogramming vector, rCLAE-R6, that delivers six reprogramming factors episomally. HDAd/EBV transduction of keratinocytes from SCD patients resulted in footprint-free iPSCs with high efficiency. Subsequently, the sickle mutation was corrected by delivering CRISPR/Cas9 with adenovirus followed by nucleoporation with a 70 nt single-stranded oligodeoxynucleotide (ssODN) correction template. Correction efficiencies of up to 67.9% (βA/[βS+βA]) were obtained. Whole-genome sequencing (WGS) of corrected iPSC lines demonstrated no CRISPR/Cas modifications in 1467 potential off-target sites and no modifications in tumor suppressor genes or other genes associated with pathologies. These results demonstrate that adenoviral delivery of reprogramming factors and CRISPR/Cas provides a rapid and efficient method of deriving gene-corrected, patient-specific iPSCs for therapeutic applications. PMID:27460639

  2. Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modification of p53

    PubMed Central

    DeHart, Caroline J.; Perlman, David H.

    2015-01-01

    ABSTRACT Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1–17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076–1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3

  3. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription.

    PubMed

    Miller, Daniel L; Rickards, Brenden; Mashiba, Michael; Huang, Wenying; Flint, S J

    2009-04-01

    The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.

  4. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    PubMed

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.

  5. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    PubMed Central

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel GW; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising “mixed-modality” regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  6. FUNCTIONAL PROTEOME OF MACROPHAGE CARRIED NANOFORMULATED ANTIRETROVIRAL THERAPY DEMONSTRATES ENHANCED PARTICLE CARRYING CAPACITY

    PubMed Central

    Martinez-Skinner, Andrea L.; Veerubhotla, Ram S.; Liu, Han; Xiong, Huangui; Yu, Fang; McMillan, JoEllyn M.; Gendelman, Howard E.

    2013-01-01

    Our laboratory has pioneered the development of long-acting nanoformulations of antiretroviral therapy (nanoART). NanoART serves to improve drug compliance, toxicities, and access to viral reservoirs. These all function to improve treatment of human immunodeficiency virus (HIV) infection. Formulations are designed to harness the carrying capacities of mononuclear phagocytes (MP; monocytes and macrophages) and to use these cells as Trojan horses for drug delivery. Such a drug distribution system limits ART metabolism and excretion while facilitating access to viral reservoirs. Our prior works demonstrated a high degree of nanoART sequestration in macrophage recycling endosomes with broad and sustained drug tissue biodistribution and depots with limited untoward systemic toxicities. Despite such benefits, the effects of particle carriage on the cells’ functional capacities remained poorly understood. Thus, we employed pulsed stable isotope labeling of amino acids in cell culture to elucidate the macrophage proteome and assess any alterations in cellular functions that would affect cell-drug carriage and release kinetics. NanoART-MP interactions resulted in the induction of a broad range of activation-related proteins that can enhance phagocytosis, secretory functions, and cell migration. Notably, we now demonstrate that particle-cell interactions serve to enhance drug loading while facilitating drug tissue depots and transportation. PMID:23544708

  7. Portfolio Analysis for Vector Calculus

    ERIC Educational Resources Information Center

    Kaplan, Samuel R.

    2015-01-01

    Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…

  8. Vector ecology of equine piroplasmosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...

  9. Phlebotomine Vectors of Human Disease.

    DTIC Science & Technology

    1983-12-30

    different. We refrain from naming this specimen until more material becomes available. 12. Lutzomyia olmeca bicolor Fairchild and Theodor 1971...Castillo (1958) and Arzube (1960). Lutzomyia olmeca bicolor is the suspected vector of Leishmania mexicana aristedesi among rodents and marsupials in

  10. Primer vector theory and applications

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1975-01-01

    A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.

  11. Paleomagnetic vectors and tilted dikes

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.

    2001-04-01

    Where tectonic deformation reorients rocks without penetrative strain, their paleomagnetic vectors may be restored to their original attitudes by untilting. For strata, paleomagnetic inclination is readily restored but the tilt axis must be precisely known if paleodeclination is required. For dikes, without the knowledge of the rotation(s), neither declination nor inclination of the paleomagnetic vector can be uniquely defined. Furthermore, back-rotating dike orientations to an upright attitude assumes primary verticality whereas primary dike dips are bimodal across the spreading axes (e.g. Troodos ophiolite, Cyprus). In the Cyprus ophiolite, the dikes of the Limassol Forest Transform Zone are tilted due to uplift of the mantle-sequence rocks and deflected against the Arakapas Fault. Their paleomagnetic vectors may be restored rotating about the two axes defined by the strike and the vertical, or about a net axis that is possibly the actual tectonic rotation axis. This net axis is determined from the tectonic regional dispersion of the dike orientations. In this test case, the results of the restorations differ slightly but underline the difficulty in selecting the best restoration procedure and the greater difficulty of restoring the paleomagnetic data from dikes vis à vis strata. For dikes, it is recommended that the paleomagnetic vectors are restored using average dike orientations to minimize the inaccuracies due to the large primary variation in dike orientation.

  12. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  13. Single dose adenovirus vectored vaccine induces a potent and long-lasting immune response against rabbit hemorrhagic disease virus after parenteral or mucosal administration.

    PubMed

    Fernández, Erlinda; Toledo, Jorge R; Chiong, Maylin; Parra, Francisco; Rodríguez, Elsa; Montero, Carlos; Méndez, Lídice; Capucci, Lorenzo; Farnós, Omar

    2011-08-15

    Rabbit hemorrhagic disease virus (RHDV) is the etiological agent of a lethal and contagious disease of rabbits that remains as a serious problem worldwide. As this virus does not replicate in cell culture systems, the capsid protein gene has been expressed in heterologous hosts or inserted in replication-competent viruses in order to obtain non-conventional RHDV vaccines. However, due to technological or safety issues, current RHDV vaccines are still prepared from organs of infected rabbits. In this work, two human type 5 derived replication-defective adenoviruses encoding the rabbit hemorrhagic disease virus VP60 capsid protein were constructed. The recombinant protein was expressed as a multimer in mouse and rabbit cell lines at levels that ranged from approximately 120 to 160 mg/L of culture. Mice intravenously or subcutaneously inoculated with a single 10(8) gene transfer units (GTU) dose of the AdVP60 vector (designed for VP60 intracellular expression) seroconverted at days 7 and 14 post-immunization, respectively. This vector generated a stronger response than that obtained with a second vector (AdVP60sec) designed for VP60 secretion. Rabbits were then immunized by parenteral or mucosal routes with a single 10(9)GTU dose of the AdVP60 and the antibody response was evaluated using a competition ELISA specific for RHDV or RHDVa. Protective hemagglutination inhibition (HI) titers were also promptly detected and IgG antibodies corresponding with inhibition percentages over 85% persisted up to one year in all rabbits, independently of the immunization route employed. These levels were similar to those elicited with inactivated RHDV or with VP60 obtained from yeast or insect cells. IgA specific antibodies were only found in saliva of rabbits immunized by intranasal instillation. The feasibility of VP60 production and vaccination of rabbits with replication-defective adenoviral vectors was demonstrated.

  14. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain.

    PubMed

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard

    2011-02-15

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b) to the MHC class II chaperone protein invariant chain (Ii). We found that, after a single vaccination of C57BL/6 or BALB/c mice with Ad-IiNS3, the HCV NS3-specific CD8(+) T cell responses were significantly enhanced, accelerated, and prolonged compared with the vaccine encoding NS3 alone. The AdIiNS3 vaccination induced polyfunctional CD8(+) T cells characterized by coproduction of IFN-γ, TNF-α and IL-2, and this cell phenotype is associated with good viral control. The memory CD8(+) T cells also expressed high levels of CD27 and CD127, which are markers of long-term survival and maintenance of T cell memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice demonstrated that this protection was mediated primarily through IFN-γ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model.

  15. 32 CFR 552.103 - Requirements for carrying and use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements for carrying and use. Persons legally authorized to possess firearms, ammunition, knives (with... engaged in hunting or shooting. Knives will be carried in a sheath or scabbard worn in a clearly visible manner. Commanders may authorize the carrying of a privately-owned knife with a blade over 3 inches...

  16. 32 CFR 552.103 - Requirements for carrying and use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for carrying and use. Persons legally authorized to possess firearms, ammunition, knives (with... engaged in hunting or shooting. Knives will be carried in a sheath or scabbard worn in a clearly visible manner. Commanders may authorize the carrying of a privately-owned knife with a blade over 3 inches...

  17. 32 CFR 552.103 - Requirements for carrying and use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements for carrying and use. Persons legally authorized to possess firearms, ammunition, knives (with... engaged in hunting or shooting. Knives will be carried in a sheath or scabbard worn in a clearly visible manner. Commanders may authorize the carrying of a privately-owned knife with a blade over 3 inches...

  18. 21 CFR 880.6900 - Hand-carried stretcher.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hand-carried stretcher. 880.6900 Section 880.6900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6900 Hand-carried stretcher. (a) Identification. A hand-carried stretcher is a...

  19. 21 CFR 880.6900 - Hand-carried stretcher.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hand-carried stretcher. 880.6900 Section 880.6900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6900 Hand-carried stretcher. (a) Identification. A hand-carried stretcher is a...

  20. 21 CFR 880.6900 - Hand-carried stretcher.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hand-carried stretcher. 880.6900 Section 880.6900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6900 Hand-carried stretcher. (a) Identification. A hand-carried stretcher is a...

  1. 21 CFR 880.6900 - Hand-carried stretcher.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hand-carried stretcher. 880.6900 Section 880.6900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6900 Hand-carried stretcher. (a) Identification. A hand-carried stretcher is a...

  2. 21 CFR 880.6900 - Hand-carried stretcher.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hand-carried stretcher. 880.6900 Section 880.6900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6900 Hand-carried stretcher. (a) Identification. A hand-carried stretcher is a...

  3. 46 CFR 111.105-35 - Vessels carrying coal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Vessels carrying coal. 111.105-35 Section 111.105-35...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-35 Vessels carrying coal. (a) The following are Class II, Division 1, (Zone 10 or Z) locations on a vessel that carries coal: (1) The interior of each...

  4. 46 CFR 111.105-35 - Vessels carrying coal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Vessels carrying coal. 111.105-35 Section 111.105-35...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-35 Vessels carrying coal. (a) The following are Class II, Division 1, (Zone 10 or Z) locations on a vessel that carries coal: (1) The interior of each...

  5. 46 CFR 111.105-35 - Vessels carrying coal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Vessels carrying coal. 111.105-35 Section 111.105-35...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-35 Vessels carrying coal. (a) The following are Class II, Division 1, (Zone 10 or Z) locations on a vessel that carries coal: (1) The interior of each...

  6. 46 CFR 111.105-35 - Vessels carrying coal.

    Code of Federal Regulations, 2010 CFR