Science.gov

Sample records for adenoviral vector system

  1. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  2. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose. PMID:27434682

  3. Helper-Dependent Adenoviral Vectors

    PubMed Central

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2012-01-01

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227

  4. The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats.

    PubMed

    Chen, X; Zhao, X; Hu, Y; Lan, F; Sun, H; Fan, G; Sun, Y; Wu, J; Kong, W; Kong, W

    2015-11-01

    There is no definitive conclusion concerning the spread of viral vectors to the brain after a cochlear inoculation. In addition, some studies have reported different distribution profiles of viral vectors in the central auditory system after a cochlear inoculation. Thus, rats were grouped into either a mimetic aging group or a young group and transfected with adenoviral vectors (AdVs) by round window membrane injection. The distribution of AdV in central nervous system (CNS) was demonstrated in the two groups with transmission electron microscopy and immunofluorescence. We found that the AdV could disseminate into the CNS and that the neuronal damage and stress-induced GRP78 expression were reduced after transfection with PGC-1α, as compared with the control vectors, especially in the mimetic aging group. We also found that the host immune response was degraded in CNS in the mimetic aging group after transduction through the cochlea, as compared with the young group. These results demonstrate that viral vectors can disseminate into the CNS through the cochlea. Moreover, mimetic aging induced by D-galactose could facilitate the spread of viral vectors into the CNS from the cochlea. These findings may indicate a new potential approach for gene therapy against age-related diseases in the CNS.

  5. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  6. Transcriptional Targeting of Mature Dendritic Cells with Adenoviral Vectors via a Modular Promoter System for Antigen Expression and Functional Manipulation.

    PubMed

    Knippertz, Ilka; Deinzer, Andrea; Dörrie, Jan; Schaft, Niels; Nettelbeck, Dirk M; Steinkasserer, Alexander

    2016-01-01

    To specifically target dendritic cells (DCs) to simultaneously express different therapeutic transgenes for inducing immune responses against tumors, we used a combined promoter system of adenoviral vectors. We selected a 216 bp short Hsp70B' core promoter induced by a mutated, constitutively active heat shock factor (mHSF) 1 to drive strong gene expression of therapeutic transgenes MelanA, BclxL, and IL-12p70 in HeLa cells, as well as in mature DCs (mDCs). As this involves overexpressing mHSF1, we first evaluated the resulting effects on DCs regarding upregulation of heat shock proteins and maturation markers, toxicity, cytokine profile, and capacity to induce antigen-specific CD8(+) T cells. Second, we generated the two-vector-based "modular promoter" system, where one vector contains the mHSF1 under the control of the human CD83 promoter, which is specifically active only in DCs and after maturation. mHSF1, in turn, activates the Hsp70B' core promotor-driven expression of transgenes MelanA and IL-12p70 in the DC-like cell line XS52 and in human mature and hence immunogenic DCs, but not in tolerogenic immature DCs. These in vitro experiments provide the basis for an in vivo targeting of mature DCs for the expression of multiple transgenes. Therefore, this modular promoter system represents a promising tool for future DC-based immunotherapies in vivo. PMID:27446966

  7. Transcriptional Targeting of Mature Dendritic Cells with Adenoviral Vectors via a Modular Promoter System for Antigen Expression and Functional Manipulation

    PubMed Central

    Deinzer, Andrea

    2016-01-01

    To specifically target dendritic cells (DCs) to simultaneously express different therapeutic transgenes for inducing immune responses against tumors, we used a combined promoter system of adenoviral vectors. We selected a 216 bp short Hsp70B′ core promoter induced by a mutated, constitutively active heat shock factor (mHSF) 1 to drive strong gene expression of therapeutic transgenes MelanA, BclxL, and IL-12p70 in HeLa cells, as well as in mature DCs (mDCs). As this involves overexpressing mHSF1, we first evaluated the resulting effects on DCs regarding upregulation of heat shock proteins and maturation markers, toxicity, cytokine profile, and capacity to induce antigen-specific CD8+ T cells. Second, we generated the two-vector-based “modular promoter” system, where one vector contains the mHSF1 under the control of the human CD83 promoter, which is specifically active only in DCs and after maturation. mHSF1, in turn, activates the Hsp70B′ core promotor-driven expression of transgenes MelanA and IL-12p70 in the DC-like cell line XS52 and in human mature and hence immunogenic DCs, but not in tolerogenic immature DCs. These in vitro experiments provide the basis for an in vivo targeting of mature DCs for the expression of multiple transgenes. Therefore, this modular promoter system represents a promising tool for future DC-based immunotherapies in vivo. PMID:27446966

  8. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system.

    PubMed

    Rubinchik, S; Ding, R; Qiu, A J; Zhang, F; Dong, J

    2000-05-01

    Fas ligand (FasL) is a member of the tumor necrosis family and when bound to its receptor, Fas, induces apoptosis. It plays important roles in immune response, degenerative and lymphoproliferative diseases, development and tumorigenesis. It is also involved in generation of immune privilege sites in the eye and testis. Harnessing the power of this molecule is expected to lead to a powerful chemotherapeutic. We describe the construction and characterization of replication-deficient adenoviral vectors that express a fusion of murine FasL and green fluorescent protein (GFP). FasL-GFP retains full activity of wild-type FasL, at the same time allowing for easy visualization and quantification in both living and fixed cells. The fusion protein is under the control of a tetracycline-regulated gene expression system. Tight control of expression is achieved by creating a novel 'double recombinant' Ad vector, in which the tet-responsive element and the transactivator element are built into the opposite ends of the same vector to avoid enhancer interference. Expression can be conveniently regulated by tetracycline or its derivatives in a dose-dependent manner. The vector was able to deliver FasL-GFP gene to cells in vitro efficiently, and the expression level and function of the fusion protein was modulated by the concentration of doxycycline. This regulation allows us to produce high titers of the vector by inhibiting FasL expression in an apoptosis-resistant cell line. Induction of apoptosis was demonstrated in all cell lines tested. These results indicate that our vector is a potentially valuable tool for FasL-based gene therapy of cancer and for the study of FasL/Fas-mediated apoptosis and immune privilege. PMID:10845726

  9. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Fang, Yu; Citra, Fudiman; Wang, Dong-An

    2015-09-01

    Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered - the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.

  10. Good manufacturing practice production of adenoviral vectors for clinical trials.

    PubMed

    Lusky, Monika

    2005-03-01

    The increasing importance of recombinant adenoviral vectors for gene therapy, cancer therapy, and the development of prophylactic and therapeutic vaccines has led to worldwide efforts toward scalable process development suitable for commercial manufacturing of replication-deficient adenoviral vectors. This review focuses on the manufacturing of adenovirus for clinical trials in the context of good manufacturing practice conditions and regulations. PMID:15812223

  11. Adenoviral vector-mediated gene transfer for human gene therapy.

    PubMed

    Breyer, B; Jiang, W; Cheng, H; Zhou, L; Paul, R; Feng, T; He, T C

    2001-07-01

    Human gene therapy promises to change the practice of medicine by treating the causes of disease rather than the symptoms. Since the first clinical trial made its debut ten years ago, there are over 400 approved protocols in the United States alone, most of which have failed to show convincing data of clinical efficacy. This setback is largely due to the lack of efficient and adequate gene transfer vehicles. With the recent progress in elucidating the molecular mechanisms of human diseases and the imminent arrival of the post genomic era, there are increasing numbers of therapeutic genes or targets that are available for gene therapy. Therefore, the urgency and need for efficacious gene therapies are greater than ever. Clearly, the current fundamental obstacle is to develop delivery vectors that exhibit high efficacy and specificity of gene transfer. Recombinant adenoviruses have provided a versatile system for gene expression studies and therapeutic applications. Of late, there has been a remarkable increase in adenoviral vector-based clinical trials. Recent endeavors in the development of recombinant adenoviral vectors have focused on modification of virus tropism, accommodation of larger genes, increase in stability and control of transgene expression, and down-modulation of host immune responses. These modifications and continued improvements in adenoviral vectors will provide a great opportunity for human gene therapy to live up to its enormous potential in the second decade.

  12. Current Strategies and Future Directions for Eluding Adenoviral Vector Immunity

    PubMed Central

    Bangari, Dinesh S.; Mittal, Suresh K.

    2006-01-01

    Adenoviral (Ad) vectors can efficiently transduce a broad range of cell types and have been used extensively in preclinical and clinical studies for gene delivery applications. The presence of preexisting Ad immunity in the majority of human population and a rapid development of immune response against the Ad vector backbone following the first inoculation with the vector have impeded clinical use of these vectors. In addition, a number of animal inoculation studies have demonstrated that high systemic doses of Ad vectors invariably lead to initiation of acute inflammatory responses. This is mainly due to activation of innate immunity by vector particles. In general, vector and innate immune responses drastically limit the vector transduction efficiency and the duration of transgene expression. In order to have a predictable response with Ad vectors for gene therapy applications, the above limitations must be overcome. Strategies that are being examined to circumvent these drawbacks of Ad vectors include immunosuppression, immunomodulation, serotype switching, use of targeted Ad vectors, microencapsulation of Ad vectors, use of helper-dependent (HD) Ad vectors, and development of nonhuman Ad vectors. Here we review the current understanding of immune responses to Ad vectors, and recent advances in the strategies for immune evasion to improve the vector transduction efficiency and the duration of transgene expression. Development of novel strategies for targeting specific cell types would further boost the utility of Ad vectors by enhancing the safety, efficacy and duration of transgene expression. PMID:16611043

  13. Rapid construction of capsid-modified adenoviral vectors through bacteriophage lambda Red recombination.

    PubMed

    Campos, Samuel K; Barry, Michael A

    2004-11-01

    There are extensive efforts to develop cell-targeting adenoviral vectors for gene therapy wherein endogenous cell-binding ligands are ablated and exogenous ligands are introduced by genetic means. Although current approaches can genetically manipulate the capsid genes of adenoviral vectors, these approaches can be time-consuming and require multiple steps to produce a modified viral genome. We present here the use of the bacteriophage lambda Red recombination system as a valuable tool for the easy and rapid construction of capsid-modified adenoviral genomes.

  14. Generation of helper-dependent adenoviral vectors by homologous recombination.

    PubMed

    Toietta, Gabriele; Pastore, Lucio; Cerullo, Vincenzo; Finegold, Milton; Beaudet, Arthur L; Lee, Brendan

    2002-02-01

    Helper-dependent adenoviral vectors (HD-Ad) represent a potentially valuable tool for safe and prolonged gene expression in vivo. The current approach for generating these vectors is based on ligation of the expression cassette into large plasmids containing the viral inverted terminal repeats flanking "stuffer" DNA to maintain a final size above the lower limit for efficient packaging into the adenovirus capsid (approximately 28 kb). The ligation to produce the viral plasmid is generally very inefficient. Similar problems in producing first-generation adenoviral (FG-Ad) vectors were circumvented with the development of a system taking advantage of efficient homologous recombination between a shuttle plasmid containing the expression cassette and a FG-Ad vector backbone in the Escherichia coli strain BJ5183. Here we describe a method for fast and efficient generation of HD-Ad vector plasmids that can accommodate expression cassettes of any size up to 35 kb. To validate the system, we generated a HD-Ad vector expressing the fusion protein between beta-galactosidase and neomycin resistance genes under the control of the SR alpha promoter, and one expressing the enhanced green fluorescent protein under the control of the cytomegalovirus promoter. The viruses were rescued and tested in vitro and for in vivo expression in mice. The data collected indicate the possibility for achieving a high level of hepatocyte transduction using HD-Ad vectors derived from plasmids obtained by homologous recombination in E. coli, with no significant alteration of liver enzymes and a less severe, transient thrombocytopenia in comparison with previous reports with similar doses of a FG-Ad vector. PMID:11829528

  15. Rare serotype adenoviral vectors for HIV vaccine development.

    PubMed

    Michael, Nelson L

    2012-01-01

    Human adenoviral vectors are being developed for use in candidate vaccines for HIV-1 and other pathogens. However, this approach suffered a setback when an HIV-1 vaccine using an adenovirus type 5 (Ad5) vector failed to reduce, and might even have increased, the rate of HIV infection in men who were uncircumcised and who had preexisting antibodies specific for Ad5. This increased interest in the evaluation of serologically distinct adenoviral vectors. In this issue of the JCI, Frahm and coworkers report evidence that preexisting cellular immune responses directed toward Ad5 reduce the immunogenicity of antigens expressed in Ad5-vectored vaccines and have cross-reacting potential with non-Ad5 adenoviral vectors. The implications of this observation need to be carefully evaluated in future clinical trials of all serotypes of adenovirus-vectored vaccines.

  16. Modulation of TNFalpha, a determinant of acute toxicity associated with systemic delivery of first-generation and helper-dependent adenoviral vectors.

    PubMed

    Mane, V P; Toietta, G; McCormack, W M; Conde, I; Clarke, C; Palmer, D; Finegold, M J; Pastore, L; Ng, P; Lopez, J; Lee, B

    2006-09-01

    Understanding the determinants of the host innate immune response to systemic administration of adenoviral (Ad) vectors is critical for clinical gene therapy. Acute toxicity occurs within minutes to hours after vector administration and is characterized by activation of innate immune responses. Our data indicate that in mice, indicators of vector toxicity include elevations of cytokine levels, liver transaminase levels and thrombocytopenia. To discern potential targets for blunting this host response, we evaluated genetic factors in the host response to systemically administered first-generation Ad vectors (FGV) and helper-dependent Ad vectors (HDV) containing beta-galactosidase expression cassettes. A preliminary screen for modulation of vector-induced thrombocytopenia revealed no role for interferon-gamma, mast cells or perforin. However, vector-induced thrombocytopenia and interleukin 6 (IL-6) expression are less evident in tumor necrosis factor alpha (TNFalpha)-deficient mice. Moreover, we also demonstrated that TNFalpha blockade via antibody or huTNFR:Fc pretreatment attenuates both thrombocytopenia (>40% increase in platelet count) and IL-6 expression (>80% reduction) without affecting interleukin 12 , liver enzymes, hematological indices or vector transduction in a murine model. Our data indicate that the use of HDV, in combination with clinically approved TNFalpha immunomodulation, may represent an approach for improving the therapeutic index of Ad gene therapy for human clinical trials. PMID:16708078

  17. Adenoviral vector-based strategies for cancer therapy

    PubMed Central

    Sharma, Anurag; Tandon, Manish; Bangari, Dinesh S.; Mittal, Suresh K.

    2009-01-01

    Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy. PMID:20160875

  18. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  19. Adenoviral vector-based strategies against infectious disease and cancer

    PubMed Central

    Zhang, Chao; Zhou, Dongming

    2016-01-01

    ABSTRACT Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review, we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based vaccines are also discussed. PMID:27105067

  20. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    PubMed

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+) T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+) T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+) T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  1. Chromatography purification of canine adenoviral vectors.

    PubMed

    Segura, María Mercedes; Puig, Meritxell; Monfar, Mercè; Chillón, Miguel

    2012-06-01

    Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ultracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarification and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contaminating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58-69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks. PMID:22799886

  2. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  3. Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting

    PubMed Central

    Campos, Samuel K.; Barry, Michael A.

    2008-01-01

    Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting. PMID:17584037

  4. Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector.

    PubMed

    Campos, Samuel K; Parrott, M Brandon; Barry, Michael A

    2004-06-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (K(d) = 10(-15) M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (K(d) = 10(-7) M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors.

  5. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors.

    PubMed

    Lopez-Gordo, Estrella; Podgorski, Iva I; Downes, Nicholas; Alemany, Ramon

    2014-04-01

    Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.

  6. Photochemical control of the infectivity of adenoviral vectors using a novel photocleavable biotinylation reagent.

    PubMed

    Pandori, Mark W; Hobson, David A; Olejnik, Jerzy; Krzymanska-Olejnik, Edyta; Rothschild, Kenneth J; Palmer, Abraham A; Phillips, Tamara J; Sano, Takeshi

    2002-05-01

    We have explored a novel strategy for controlling the infectivity of adenoviral vectors. This strategy involves a method whereby the infectivity of adenoviral vectors is neutralized by treatment of viral particles with a water-soluble, photocleavable biotinylation reagent. These modified viral vectors possess little to no infectivity for target cells. Exposure of these modified viral vectors to 365 nm light induces a reversal of the neutralizing, chemical modification, resulting in restoration of infectivity to the viral vectors. The light-directed transduction of target cells by photoactivatable adenoviral vectors was demonstrated successfully both in vitro and in vivo. This photochemical infectivity trigger possesses great potential, both as a research tool and as a novel tactic for the delivery of gene-transfer agents, since the infectivity of adenoviral vectors can be controlled externally in a versatile manner. PMID:12031663

  7. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    PubMed

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  8. An Adenoviral Vector Based Vaccine for Rhodococcus equi

    PubMed Central

    Giles, Carla; Ndi, Olasumbo; Barton, Mary D.; Vanniasinkam, Thiru

    2016-01-01

    Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals. PMID:27008624

  9. Improved Gene Delivery to Intestinal Mucosa by Adenoviral Vectors Bearing Subgroup B and D Fibers

    PubMed Central

    Lecollinet, S.; Gavard, F.; Havenga, M. J. E.; Spiller, O. B.; Lemckert, A.; Goudsmit, J.; Eloit, M.; Richardson, J.

    2006-01-01

    A major obstacle to successful oral vaccination is the lack of antigen delivery systems that are both safe and highly efficient. Conventional replication-incompetent adenoviral vectors, derived from human adenoviruses of subgroup C, are poorly efficient in delivering genetic material to differentiated intestinal epithelia. To date, 51 human adenovirus serotypes have been identified and shown to recognize different cellular receptors with different tissue distributions. This natural diversity was exploited in the present study to identify suitable adenoviral vectors for efficient gene delivery to the human intestinal epithelium. In particular, we compared the capacities of a library of adenovirus type 5-based vectors pseudotyped with fibers of several human serotypes for transduction, binding, and translocation toward the basolateral pole in human and murine tissue culture models of differentiated intestinal epithelia. In addition, antibody-based inhibition was used to gain insight into the molecular interactions needed for efficient attachment. We found that vectors differing merely in their fiber proteins displayed vastly different capacities for gene transfer to differentiated human intestinal epithelium. Notably, vectors bearing fibers derived from subgroup B and subgroup D serotypes transduced the apical pole of human epithelium with considerably greater efficiency than a subgroup C vector. Such efficiency was correlated with the capacity to use CD46 or sialic acid-containing glycoconjugates as opposed to CAR as attachment receptors. These results suggest that substantial gains could be made in gene transfer to digestive epithelium by exploiting the tropism of existing serotypes of human adenoviruses. PMID:16501084

  10. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development.

  11. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  12. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  13. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression.

    PubMed

    Zhang, Peng; Du, Enqi; Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.

  14. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways.

    PubMed

    Kushwah, R; Oliver, J R; Cao, H; Hu, J

    2007-08-01

    Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors. PMID:17525704

  15. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways.

    PubMed

    Kushwah, R; Oliver, J R; Cao, H; Hu, J

    2007-08-01

    Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors.

  16. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  17. Copy number of adenoviral vector genome transduced into target cells can be measured using quantitative PCR: application to vector titration.

    PubMed

    Pei, Zheng; Kondo, Saki; Kanegae, Yumi; Saito, Izumu

    2012-01-20

    Both transfection and adenovirus vectors are commonly used in studies measuring gene expression. However, the real DNA copy number that is actually transduced into target cells cannot be measured using quantitative PCR because attached DNA present on the cell surface is difficult to distinguish from successfully transduced DNA. Here, we used Cre/loxP system to show that most of the transfected DNA was in fact attached to the cell surface; in contrast, most of the viral vector DNA used to infect the target cells was present inside the cells after the cells were washed according to the conventional infection protocol. We applied this characteristic to adenoviral vector titration. Current methods of vector titration using the growth of 293 cells are influenced by the effect of the expressed gene product as well as the cell conditions and culture techniques. The titration method proposed here indicates the copy numbers introduced to the target cells using a control vector that is infected in parallel (relative vector titer: rVT). Moreover, the new titration method is simple and reliable and may replace the current titration methods of viral vectors.

  18. Effects of an adenoviral vector containing a suicide gene fusion on growth characteristics of breast cancer cells.

    PubMed

    Kong, Heng; Liu, Chunli; Zhu, Ting; Huang, Zonghai; Yang, Liucheng; Li, Qiang

    2014-12-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV‑TK/GCV) and the cytosine deaminase/5‑fluorocytosine (CD/5‑FC) systems have been widely applied in suicide gene therapy for cancer. Although suicide gene therapy has been successfully used in vitro and in vivo studies, the number of studies on the effects of recombinant adenoviruses (Ads) containing suicide genes on target cancer cells is limited. The aim of this study was to examine whether recombinant Ads containing the CD/TK fusion gene affect cell proliferation of breast cancer cells in vitro. In the present study, we explored the use of a recombinant adenoviral vector to deliver the CD/TK fusion gene to the breast cancer cell line MCF‑7. We found that the recombinant adenoviral vector efficiently infected MCF‑7 cells. Western blot analysis revealed that CD and TK proteins are expressed in the infected cells. The infected breast cancer cells did not show any significant changes in morphology, ultrastructure, cell growth, and cell‑cycle distribution compared to the uninfected cells. This study revealed that the Ad‑vascular endothelial growth factor promoter (VEGFp)‑CD/TK vector is non‑toxic to MCF‑7 cells at the appropriate titer. Our results indicate that it is feasible to use a recombinant adenoviral vector containing the CD/TK fusion gene in suicide gene therapy to target breast cancer cells. PMID:25323393

  19. Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors

    PubMed Central

    Brunetti-Pierri, N; Ng, P

    2013-01-01

    Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field. In briefProgressHDAds provide stable, long-term transgene expression in small and large animal models without chronic toxicity for liver-directed gene therapy.High vector doses are required for efficient hepatocyte transduction by systemic administration.Strategies to improve the therapeutic index of HDAd are available or currently under investigation for liver-directed gene therapy.High-efficiency pulmonary transduction and clinically relevant end points can be achieved delivering HDAd in conjunction with tight junction opening agents for CF gene therapy.HDAd delivered with an intracorporeal nebulizing catheter results in high-efficiency transduction of the respiratory epithelium in large animals.Encouraging results have been obtained with HDAd for brain- and muscle-directed gene therapy in animal models.ProspectsA better understanding of the acute innate response will provide new targets for pharmacological blockade to improve the therapeutic index of the vector.Further optimization of preferential liver targeting by HDAd through balloon catheter delivery has the potential of providing a clinically attractive method of vector delivery.Further assessment of Ad PEGylation and modulation of the liver fenestrations may provide attractive strategies to increase the therapeutic index of the vector.Capsid modification to increase the affinity of Ad for hepatocytes has the potential to improve

  20. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile.

    PubMed

    Croyle, M A; Le, H T; Linse, K D; Cerullo, V; Toietta, G; Beaudet, A; Pastore, L

    2005-04-01

    Transgene expression from helper-dependent adenoviral (HD-Ad) vectors is effective and long lasting, but not permanent. Their use is also limited by the host response against capsid proteins that precludes successful gene expression upon readministration. In this report, we test the hypothesis that PEGylation of HD-Ad reduces its toxicity and promotes transgene expression upon readministration. PEGylation did not compromise transduction efficiency in vitro and in vivo and reduced peak serum IL-6 levels two-fold. IL-12 and TNF-alpha levels were reduced three- and seven-fold, respectively. Thrombocytopenia was not detected in mice treated with the PEGylated vector. Serum transaminases were not significantly elevated in mice treated with either vector. Mice immunized with 1 x 10(11) particles of unmodified HD-Ad expressing human alpha-1 antitrypsin (hA1AT) were rechallenged 28 days later with 8 x 10(10) particles of unmodified or PEG-conjugated vector expressing beta-galactosidase. Trace levels of beta-galactosidase (52.23+/-19.2 pg/mg protein) were detected in liver homogenates of mice that received two doses of unmodified HD-Ad. Mice rechallenged with PEGylated HD-Ad produced significant levels of beta-galactosidase (5.1+/-0.4 x 10(5) pg/mg protein, P=0.0001). This suggests that PEGylation of HD-Ad vectors may be appropriate for their safe and efficient use in the clinic. PMID:15647765

  1. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-03-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 'safe harbor' locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.

  2. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells

    PubMed Central

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M.; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A. F. V.

    2013-01-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 ‘safe harbor’ locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform. PMID:23275534

  3. The role of chromatin in adenoviral vector function.

    PubMed

    Wong, Carmen M; McFall, Emily R; Burns, Joseph K; Parks, Robin J

    2013-06-01

    Vectors based on adenovirus (Ad) are one of the most commonly utilized platforms for gene delivery to cells in molecular biology studies and in gene therapy applications. Ad is also the most popular vector system in human clinical gene therapy trials, largely due to its advantageous characteristics such as high cloning capacity (up to 36 kb), ability to infect a wide variety of cell types and tissues, and relative safety due to it remaining episomal in transduced cells. The latest generation of Ad vectors, helper-dependent Ad (hdAd), which are devoid of all viral protein coding sequences, can mediate high-level expression of a transgene for years in a variety of species ranging from rodents to non-human primates. Given the importance of histones and chromatin in modulating gene expression within the host cell, it is not surprising that Ad, a nuclear virus, also utilizes these proteins to protect the genome and modulate virus- or vector-encoded genes. In this review, we will discuss our current understanding of the contribution of chromatin to Ad vector function. PMID:23771241

  4. Gene Therapy with Helper-Dependent Adenoviral Vectors: Current Advances and Future Perspectives

    PubMed Central

    Vetrini, Francesco; Ng, Philip

    2010-01-01

    Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application. PMID:21994713

  5. Gene transfer into neural cells in vitro using adenoviral vectors.

    PubMed

    Southgate, T D; Kingston, P A; Castro, M G

    2001-05-01

    Adenoviruses (Ads) have become a very attractive and versatile vector system for delivering genes into brain cells in vitro and in vivo. One of the main attractions of Ads is that they can mediate gene transfer into post-mitotic cells, i.e. neurons. Ads are easy to grow and manipulate, stable, and their biology is very well understood. This unit is designed to help newcomers into the field, to design, prepare and grow replication-defective recombinant adenovirus vectors with the aim of transferring genes into neurons and glial cells in primary culture. It provides step-by-step methods describing the preparation of brain cell cultures, their infection using recombinant adenovirus vectors and also the assessment of transgene expression using a variety of techniques including fluorescence immunocytochemistry and fluorescence activated cell-sorting (FACS) analysis. The methods described will be useful to scientists wishing to enter the adenovirus field to construct adenovirus vectors to be used for gene transfer into neural cells.

  6. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale.

    PubMed

    Lesch, Hanna P; Heikkilä, Kati M; Lipponen, Eevi M; Valonen, Piia; Müller, Achim; Räsänen, Eva; Tuunanen, Tarja; Hassinen, Minna M; Parker, Nigel; Karhinen, Minna; Shaw, Robert; Ylä-Herttuala, Seppo

    2015-08-01

    Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors. PMID:26176404

  7. Replication-attenuated Human Adenoviral Type 4 vectors elicit capsid dependent enhanced innate immune responses that are partially dependent upon interactions with the complement system

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Serra, Delila; Glass, Oliver; Mendelson, Todd; Clay, Timothy M.; Amalfitano, Andrea

    2009-01-01

    Human Adenovirus Type 4 (HAdV-4) is responsible for epidemic outbreaks of Acute Respiratory Disease (especially in military recruits), and is known to cause significant morbidity with several reported cases of mortality. However, we do not understand why this serotype causes such high morbidity, and have little insight into the immunobiology of HAdV-4 infections. We have now developed a replication attenuated HAdV-4 vector system, and through it, demonstrate that HAdV-4 virions have enhanced infectivity of certain cell types and reveal aspects of the serotype-specific heightened innate immunogenicity of infectious HAdV-4 capsids both in vitro and in vivo. We further found that elements of this serotype-specific immunogenicity were dependent upon interactions with the complement system. These findings provide insights into the mechanisms possibly underlying the known morbidity accompanying wild-type HAdV-4 infections as well as highlight important considerations when considering development of alternative serotype vectors. PMID:18280530

  8. Efficient gene transfer into normal human B lymphocytes with the chimeric adenoviral vector Ad5/F35.

    PubMed

    Jung, Daniel; Néron, Sonia; Drouin, Mathieu; Jacques, Annie

    2005-09-01

    The failure to efficiently introduce genes into normal cells such as human B lymphocytes limits the characterization of their function on cellular growth, differentiation and survival. Recent studies have shown that a new adenoviral vector Ad5/F35 can efficiently transduce human haematopoietic CD34+ progenitor cells. In this study, we compared the gene transfer efficiencies of the Ad5/F35 vector to that of the parental vector Ad5 in human B lymphocytes. Peripheral blood B cells obtained from healthy individuals were cultured in vitro using CD40-CD154 system. Normal B lymphocytes were infected with replication-defectives Ad5 and Ad5/F35, both containing the GFP reporter gene, and transduction efficiencies were monitored by flow cytometry. Ad5 was highly ineffective, infecting only about 5% of human B lymphocytes. In contrast, Ad5/F35 transduced up to 60% of human B lymphocytes and GFP expression could be detected for up to 5 days post infection. Importantly, physiology of B lymphocytes such as proliferation, viability and antibodies secretion were unaffected following Ad5/F35 transduction. Finally, we observed that memory B lymphocytes were more susceptible to Ad5/F35 infection than naïve B lymphocytes. Thus, our results demonstrate that the adenoviral vector Ad5/F35 is an efficient tool for the functional characterization of genes in B lymphopoiesis.

  9. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

    PubMed Central

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-01-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. PMID:27274908

  10. Quantification of High-Capacity Helper-Dependent Adenoviral Vector Genomes In Vitro and In Vivo, Using Quantitative TaqMan Real-Time Polymerase Chain Reaction

    PubMed Central

    PUNTEL, M.; CURTIN, J.F.; ZIRGER, J.M.; MUHAMMAD, A.K.M.; XIONG, W.; LIU, C.; HU, J.; KROEGER, K.M.; CZER, P.; SCIASCIA, S.; MONDKAR, S.; LOWENSTEIN, P.R.; CASTRO, M.G.

    2006-01-01

    First-generation adenoviral (Ad) and high-capacity adenoviral (HC-Ad) vectors are efficient delivery vehicles for transferring therapeutic transgenes in vivo into tissues/organs. The initial successes reported with adenoviral vectors in preclinical trials have been limited by immune-related adverse side effects. This has been, in part, attributed to the use of poorly characterized preparations of adenoviral vectors and also to the untoward immune adverse side effects elicited when high doses of these vectors were used. HC-Ads have several advantages over Ads, including the lack of viral coding sequences, which after infection and uncoating, makes them invisible to the host’s immune system. Another advantage is their large cloning capacity (up to ~35 kb). However, accurate characterization of HC-Ad vectors, and of contaminating replication-competent adenovirus (RCA) or helper virus, is necessary before these preparations can be used safely in clinical trials. Consequently, the development of accurate, simple, and reproducible methods to standardize and validate adenoviral preparations for the presence of contaminant genomes is required. By using a molecular method that allows accurate, reproducible, and simultaneous determination of HC-Ad, contaminating helper virus, and RCA genome copy numbers based on real-time quantitative PCR, we demonstrate accurate detection of these three genomic entities, within CsCl-purified vector stocks, total DNA isolated from cells transduced in vitro, and from brain tissue infected in vivo. This approach will allow accurate assessment of the levels and biodistribution of HC-Ad and improve the safety and efficacy of clinical trials. PMID:16716110

  11. Helper-Dependent Adenoviral Vectors and Their Use for Neuroscience Applications.

    PubMed

    Montesinos, Mónica S; Satterfield, Rachel; Young, Samuel M

    2016-01-01

    Neuroscience research has been revolutionized by the use of recombinant viral vector technology from the basic, preclinical and clinical levels. Currently, multiple recombinant viral vector types are employed with each having its strengths and weaknesses depending on the proposed application. Helper-dependent adenoviral vectors (HdAd) are emerging as ideal viral vectors that solve a major need in the neuroscience field: (1) expression of transgenes that are too large to be packaged by other viral vectors and (2) rapid onset of transgene expression in the absence of cytotoxicity. Here, we describe the methods for large-scale production of HdAd viral vectors for in vivo use with neurospecific transgene expression. PMID:27515075

  12. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  13. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig.

    PubMed

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-06-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  14. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes.

    PubMed

    Ruan, Merry Zc; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan Hl

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  15. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    PubMed Central

    Ruan, Merry ZC; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan HL

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  16. Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration.

    PubMed

    Armendáriz-Borunda, Juan; Bastidas-Ramírez, Blanca Estela; Sandoval-Rodríguez, Ana; González-Cuevas, Jaime; Gómez-Meda, Belinda; García-Bañuelos, Jesús

    2011-11-01

    Gene therapy represents a promising approach in the treatment of several diseases. Currently, the ideal vector has yet to be designed; though, adenoviral vectors (Ad-v) have provided the most utilized tool for gene transfer due principally to their simple production, among other specific characteristics. Ad-v viability represents a critical variable that may be affected by storage or shipping conditions and therefore it is advisable to be assessed previously to protocol performance. The present work is unique in this matter, as the complete detailed process to obtain Ad-v of preclinical grade is explained. Amplification in permissive HEK-293 cells, purification in CsCl gradients in a period of 10 h, spectrophotometric titration of viral particles (VP) and titration of infectious units (IU), yielding batches of AdβGal, AdGFP, AdHuPA and AdMMP8, of approximately 10¹³-10¹⁴ VP and 10¹²-10¹³ IU were carried out. In vivo functionality of therapeutic AdHuPA and AdMMP8 was evidenced in rats presenting CCl₄-induced fibrosis, as more than 60% of fibrosis was eliminated in livers after systemic delivery through iliac vein in comparison with irrelevant AdβGal. Time required to accomplish the whole Ad-v production steps, including IU titration was 20 to 30 days. We conclude that production of Ad-v following standard operating procedures assuring vector functionality and the possibility to effectively evaluate experimental gene therapy results, leaving aside the use of high-cost commercial kits or sophisticated instrumentation, can be performed in a conventional laboratory of cell culture.

  17. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    PubMed Central

    Coughlan, Lynda; Alba, Raul; Parker, Alan L.; Bradshaw, Angela C.; McNeish, Iain A.; Nicklin, Stuart A.; Baker, Andrew H.

    2010-01-01

    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated

  18. Tropism-modification strategies for targeted gene delivery using adenoviral vectors.

    PubMed

    Coughlan, Lynda; Alba, Raul; Parker, Alan L; Bradshaw, Angela C; McNeish, Iain A; Nicklin, Stuart A; Baker, Andrew H

    2010-10-01

    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and "bridging" interactions. "Bridging" interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of "bridging interactions" such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated "stealth" vectors

  19. Adenoviral-vector-mediated gene transfer to dendritic cells.

    PubMed

    Song, W; Crystal, R G

    2001-01-01

    Dendritic cells (DC) are the most potent antigen presenting cells capable of initiating T-cell-dependent immune responses (1-5). This biologic potential can be harnessed to elicit effective antigen-specific immune responses by transferring the relevant antigens to the DC. Once the DC have been mobilized and purified, the relevant antigens can be transferred to the DC as intact proteins, or as peptides representing specific epitopes, or with gene transfer using sequences of DNA or RNA coding for the pertinent antigen(s) (6-15). Theoretically, genetically modifying DC with genes coding for specific antigens has potential advantages over pulsing the DC with peptides repeating the antigen or antigen fragment. First, the genetically modified DC may present previously unknown epitopes in association with different MHC molecules. Second, gene transfer to DC ensures that the gene product is endogenously processed, leading to the generation of MHC class I-restricted cytotoxic T lymphocytes (CTL), the effector arm of cell-mediated immune responses. Finally, in addition to genes coding for the antigen(s), genetic modification of the DC can induce genes coding for mediators relevant to generation of the immune response to the antigen(s), further boosting host responses to the antigens presented by the modified DC. Different gene transfer approaches have been explored to genetically modify DC, including retroviral vectors (16-18), recombinant vaccinia virus vectors (19), and recombinant adenovirus (Ad) vectors (19-23). The focus of this chapter is on using recombinant Ad vectors to transfer genes to murine DC. We have used a similar strategy to transfer genes to human DC (24). As an example of the power of this technology, we will describe the use of Ad-vector-modified DC to suppress the growth of tumor cells modified to express a specific antigen.

  20. Immune responses to adenoviral vectors during gene transfer in the brain.

    PubMed

    Kajiwara, K; Byrnes, A P; Charlton, H M; Wood, M J; Wood, K J

    1997-02-10

    We have investigated the immune response to E1-deleted adenovirus vectors encoding the lacZ gene introduced into the brains of adult mice. Injection of these nonreplicating vectors caused a marked inflammatory response in the brain as assessed by immunocytochemistry and flow cytometry of leukocytes. Infiltrating leukocytes were detectable within 2 days of injection and reached a maximum by 9 days. Thereafter, the number of infiltrating cells decreased, but a small number persisted in the brain until day 60. Between 2 and 4 days after injection, the percentage of CD8+ cells detectable increased whereas the percentage of CD4+ cells present in the infiltrating population did not significantly increase until day 6, peaking on day 15. Activated CD25+ T cells were detectable between days 6 and 15. beta-Galactosidase (beta-Gal), the product of the lacZ gene encoded by the vector, was also detected, both at the injection site in the striatum and also in the substantia nigra. Expression peaked between 4 and 6 days but a small number of beta-Gal+ cells was still seen at 60 days after injection. This study demonstrates that a quantitative analysis of the immune responses caused by a nonreplicating adenovirus vector is possible in the brain. E1-deleted adenoviral vectors trigger a strong inflammatory response in the brain, but this immune response is not sufficient to eliminate completely expression of genes encoded by the adenoviral construct. PMID:9048192

  1. Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of Fabry disease.

    PubMed

    Ziegler, Robin J; Li, Chester; Cherry, Maribeth; Zhu, Yunxiang; Hempel, Donna; van Rooijen, Nico; Ioannou, Yiannis A; Desnick, Robert J; Goldberg, Mark A; Yew, Nelson S; Cheng, Seng H

    2002-05-20

    Systemic administration of recombinant adenoviral vectors for gene therapy of chronic diseases such as Fabry disease can be limited by dose-dependent toxicity. Because administration of a high dose of Ad2/CMVHI-alpha gal encoding human alpha-galactosidase A results in expression of supraphysiological levels of the enzyme, we sought to determine whether lower doses would suffice to correct the enzyme deficiency and lysosomal storage abnormality observed in Fabry mice. Reducing the dose of Ad2/CMVHI-alpha gal by 10-fold (from 10(11) to 10(10) particles/mouse) resulted in a greater than 200-fold loss in transgene expression. In Fabry mice, the reduced expression of alpha-galactosidase A, using the lower dose of Ad2/CMVHI-alpha gal, was associated with less than optimal clearance of the accumulated glycosphingolipid (GL-3) from the affected lysosomes. It was determined that this lack of linearity in dose response was not due to an inability to deliver the recombinant viral vectors to the liver but rather to sequestration, at least in part, of the viral vectors by the Kupffer cells. This lack of correlation between dose and expression levels could be obviated by supplementing the low dose of Ad2/CMVHI-alpha gal with an unrelated adenoviral vector or by depleting the Kupffer cells before administration of Ad2/CMVHI-alpha gal. Prior removal of the Kupffer cells, using clodronate liposomes, facilitated the use of a 100-fold lower dose of Ad2/CMVHI-alpha gal (10(9) particles/mouse) to effect the nearly complete clearance of GL-3 from the affected organs of Fabry mice. These results suggest that practical strategies that minimize the interaction between the recombinant adenoviral vectors and the reticuloendothelial system (RES) may improve the therapeutic window of this vector system. In this regard, we showed that pretreatment of mice with gamma globulins also resulted in significantly enhanced adenovirus-mediated transduction and expression of alpha-galactosidase A in the

  2. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  3. Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozotocin-induced hyperglycemia.

    PubMed

    Shifrin, A L; Auricchio, A; Yu, Q C; Wilson, J; Raper, S E

    2001-10-01

    Therapy for type 1 diabetes consists of tight blood glucose (BG) control to minimize complications. Current treatment relies on multiple insulin injections or an insulin pump placement, beta-cell or whole pancreas transplantation. All approaches have significant limitations and have led to the realization that novel treatment strategies are needed. Pancreatic acinar cells have features that make them a good target for insulin gene transfer. They are not subject to autoimmune attack, a problem with pancreas or islets transplantation, they are avidly transduced by recombinant adenoviral vectors, and capable of exporting a variety of peptides into the portal circulation. Recombinant adenoviral vectors were engineered to express either wild-type or furin-modified human insulin cDNA (AdCMVhInsM). Immunodeficient mice were made diabetic with streptozotocin and injected intrapancreatically with the vectors. BG and blood insulin levels have normalized after administration of AdCMVhInsM. Immunohistochemistry and electron microscopy showed the presence of insulin in acinar cells throughout the pancreas and localization of insulin molecules to acinar cell vesicles. The data clearly establish a relationship between intrapancreatic vector administration, decreased BG and elevated blood insulin levels. The findings support the use of pancreatic acinar cells to express and secrete insulin into the blood stream. PMID:11593361

  4. Challenges in manufacturing adenoviral vectors for global vaccine product deployment.

    PubMed

    Vellinga, Jort; Smith, J Patrick; Lipiec, Agnieszka; Majhen, Dragomira; Lemckert, Angelique; van Ooij, Mark; Ives, Paul; Yallop, Christopher; Custers, Jerome; Havenga, Menzo

    2014-04-01

    Abstract Once adenovirus vector-based vaccines are licensed for the prevention of important infectious diseases, manufacturing processes capable of reliably delivering large numbers of vaccine doses will be required. The highest burden of disease for many infectious pathogens under investigation occurs in resource-poor settings. Therefore, the price per dose will be an important determinant of success. This review describes common practices for manufacturing replication-incompetent adenovirus vectors at clinical scale. Recent innovations and strategies aimed at improving the cost-effectiveness of manufacturing and ensuring high-volume vaccine production and purification are described. Hereto, technologies to increase bioreactor yields are reviewed. In addition, the use of single-use perfusion bioreactors, modification of some purification steps to avoid the use of expensive endonucleases, and use of charged filters during anion exchange all have the potential to bring down the cost of goods and are thus described. Finally, processes for ensuring quality throughout the manufacturing process, methods for testing viral identity, and safety of master seeds through to the end vaccine product are described.

  5. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates.

    PubMed

    Smith, Theodore A G; Idamakanti, Neeraja; Marshall-Neff, Jennifer; Rollence, Michele L; Wright, Patrick; Kaloss, Michele; King, Laura; Mech, Christine; Dinges, Lisa; Iverson, William O; Sherer, Alfred D; Markovits, Judit E; Lyons, Russette M; Kaleko, Michael; Stevenson, Susan C

    2003-11-20

    Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice. To evaluate possible species differences in Ad vector tropism, we characterized the effects of each detargeting mutation in non-human primates after systemic delivery to confirm our conclusions made in mice. In non-human primates, CAR was found to have minimal effects on vector delivery to all organs examined including liver and spleen. Cell-surface alpha nu integrins played a significant role in delivery of vector to the spleen, lung and kidney. The fiber shaft mutation S*, which presumably inhibits HSG binding, was found to significantly decrease delivery to all organs examined. The ability to detarget the liver corresponded with decreased elevations in liver serum enzymes (aspartate transferase [AST] and alanine transferase [ALT]) 24 hr after vector administration and also in serum interleukin (IL)-6 levels 6 hr after vector administration. The biodistribution data generated in cynomolgus monkeys correspond with those data derived from mice, demonstrating that CAR binding is not the major determinant of viral tropism in vivo. Vectors containing the fiber shaft modification may provide for a detargeted adenoviral vector on which to introduce new tropisms for the development of targeted, systemically deliverable adenoviral vectors for human clinical application.

  6. [Transfection efficiency of adenoviral vector AD5/F35 to malignant hematopoietic cells of different origins].

    PubMed

    Wabg, Kai; Peng, Jian-Qinag; Yuan, Zhen-Hua; Wu, Xiao-Bin

    2006-06-01

    This study was aimed to investigate the transfection efficiency of adenoviral vector AD5/F35 to hematopoietic malignant cells lines of various origins and AD5/F35 cytotoxicity. The hematologic malignant cell lines of various origins were transfected by AD5/F35-EGFP at different multiple of infection (MOI) and AD5-EGFP was used as control; the proportion of fluorescence positive cells was detected by flow cytometry; the killing effect of virus on infective target cells was assayed by MTT and observed by fluorescence microscopy. The results showed that the transfection efficiency of AD5/F35 vector to cell line of myeloid origin was > 99% at MOI = 30, the transfective efficiency of AD5 vector was 26.4% at MOI = 1,000; the transfection efficiency of AD5/F35 vector and AD5 vector to cell line of B cell origin were 11.7% and 5.7%, respectively, at MOI = 1,000. AD5/F35 and AD5 vectors could not effectively transfect cells of T cell origin, no fluorescence positive cells were detected at MOI = 1,000; no significant killing effect of AD5/F35 vector on infective target cells was observed at MOI = 1,000. It is concluded that AD5/F35 vector infection has definite selectivity to hematologic malignant cells of various origin, the infection ability of AD5/F35 vector to cells of myeloid origin is stronger than that to cells of B cell origin, the cytotoxicity of AD5/F35 vector to infective target cells is small. The AD5/F35 vector is preferable to AD5 vector in respect of infection ability and offers good prospects of application in gene therapy for myeloid leukemia cells as target cells.

  7. Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million-fold when they contaminate hematopoietic cells: a potential purging method for autologous transplantation.

    PubMed

    Garcia-Sanchez, F; Pizzorno, G; Fu, S Q; Nanakorn, T; Krause, D S; Liang, J; Adams, E; Leffert, J J; Yin, L H; Cooperberg, M R; Hanania, E; Wang, W L; Won, J H; Peng, X Y; Cote, R; Brown, R; Burtness, B; Giles, R; Crystal, R; Deisseroth, A B

    1998-07-15

    Ad.CMV-CD is a replication incompetent adenoviral vector carrying a cytomegalovirus (CMV)-driven transcription unit of the cytosine deaminase (CD) gene. The CD transcription unit in this vector catalyzes the deamination of the nontoxic pro-drug, 5-fluorocytosine (5-FC), thus converting it to the cytotoxic drug 5-fluorouracil (5-FU). This adenoviral vector prodrug activation system has been proposed for use in selectively sensitizing breast cancer cells, which may contaminate collections of autologous stem cells products from breast cancer patients, to the toxic effects of 5-FC, without damaging the reconstitutive capability of the normal hematopoietic cells. This system could conceivably kill even the nondividing breast cancer cells, because the levels of 5-FU generated by this system are 10 to 30 times that associated with systemic administration of 5-FU. The incorporation of 5-FU into mRNA at these high levels is sufficient to disrupt mRNA processing and protein synthesis so that even nondividing cells die of protein starvation. To test if the CD adenoviral vector sensitizes breast cancer cells to 5-FC, we exposed primary explants of normal human mammary epithelial cells (HMECs) and the established breast cancer cell (BCC) lines MCF-7 and MDA-MB-453 to the Ad.CMV-CD for 90 minutes. This produced a 100-fold sensitization of these epithelial cells to the effects of 48 hours of exposure to 5-FC. We next tested the selectivity of this system for BCC. When peripheral blood mononuclear cells (PBMCs), collected from cancer patients during the recovery phase from conventional dose chemotherapy-induced myelosuppression, were exposed to the Ad.CMV-CD for 90 minutes in serum-free conditions, little or no detectable conversion of 5-FC into 5-FU was seen even after 48 hours of exposure to high doses of 5-FC. In contrast, 70% of 5-FC was converted into the cytotoxic agent 5-FU when MCF-7 breast cancer cells (BCCs) were exposed to the same Ad.CMV-CD vector followed by 5-FC for

  8. A novel adenoviral vector-mediated mouse model of Charcot-Marie-Tooth type 2D (CMT2D).

    PubMed

    Seo, Ah Jung; Shin, Youn Ho; Lee, Seo Jin; Kim, Doyeun; Park, Byung Sun; Kim, Sunghoon; Choi, Kyu Ha; Jeong, Na Young; Park, Chan; Jang, Ji-Yeon; Huh, Youngbuhm; Jung, Junyang

    2014-04-01

    Charcot-Marie-Tooth disease type 2D is a hereditary axonal and glycyl-tRNA synthetase (GARS)-associated neuropathy that is caused by a mutation in GARS. Here, we report a novel GARS-associated mouse neuropathy model using an adenoviral vector system that contains a neuronal-specific promoter. In this model, we found that wild-type GARS is distributed to peripheral axons, dorsal root ganglion (DRG) cell bodies, central axon terminals, and motor neuron cell bodies. In contrast, GARS containing a G240R mutation was localized in DRG and motor neuron cell bodies, but not axonal regions, in vivo. Thus, our data suggest that the disease-causing G240R mutation may result in a distribution defect of GARS in peripheral nerves in vivo. Furthermore, a distributional defect may be associated with axonal degradation in GARS-associated neuropathies.

  9. Hepatic Delivery of Artificial Micro RNAs Using Helper-Dependent Adenoviral Vectors.

    PubMed

    Crowther, Carol; Mowa, Betty; Arbuthnot, Patrick

    2016-01-01

    The potential of RNA interference (RNAi)-based gene therapy has been demonstrated in many studies. However, clinical application of this technology has been hampered by a paucity of efficient and safe methods of delivering the RNAi activators. Prolonged transgene expression and improved safety of helper-dependent adenoviral vectors (HD AdVs) makes them well suited to delivery of engineered artificial intermediates of the RNAi pathway. Also, AdVs' natural hepatotropism makes them potentially useful for liver-targeted gene delivery. HD AdVs may be used for efficient delivery of cassettes encoding short hairpin RNAs and artificial primary microRNAs to the mouse liver. Methods for the characterization of HD AdV-mediated delivery of hepatitis B virus-targeting RNAi activators are described here.

  10. Robust Hepatic Gene Silencing for Functional Studies Using Helper-Dependent Adenoviral Vectors

    PubMed Central

    Ruiz, Rafaela; Witting, Scott R.; Saxena, Romil

    2009-01-01

    Abstract RNA interference is currently envisioned as the basis of gene function and drug target validation studies. This novel technology has the advantage of providing a remarkably faster tool for gene silencing than traditional transgenic animal methodologies. In vivo administration of short interfering RNA (siRNA) typically results in reduced target gene expression for approximately 1 week. Viral vectors offer the possibility to express constitutive levels of short hairpin RNA (shRNA) so that the effects of knocking down the target gene can be studied for a few weeks, rather than a few days. Helper-dependent vectors have a significant advantage over previous generations of adenoviral vectors because of their much higher cloning capacity, potential for long-term transgene expression, and enhanced safety profiles on administration in vivo. Therefore, this advanced type of vector is an excellent tool to carry out in vivo studies directed at constitutive expression of shRNA. Here we show it is possible to obtain more than 90% target gene knockdown in an animal model of type 2 diabetes for several weeks, thereby consolidating this technology as an alternative to generating liver-specific knockout animals. PMID:18828727

  11. Delivery of adenoviral DNA to mouse liver.

    PubMed

    Connelly, Sheila; Mech, Christine

    2004-01-01

    The liver represents a major target organ for gene delivery owing to its high biosynthetic capacity and access to the bloodstream. Adenoviral vectors are highly efficient gene-transfer vehicles, making them among the most promising systems for in vivo gene transfer to the liver. Following intravenous administration of adenoviral vectors to a variety of mammalian models, including mice, dogs, and monkeys, hepatocytes are efficiently transduced. Several delivery methods to the liver have been described, including portal vein (2-4), hepatic artery (3,5), and peripheral vein infusions (6). This chapter describes the simple, nonsurgical method of intravenous (iv) administration of adenoviral vectors in mice, and an immunohistochemical method to qualitatively evaluate liver transduction efficiency following delivery of an adenoviral vector encoding a bgalactosidase (beta-gal) marker gene. Additionally, several alternative methods to verify efficient liver transduction are introduced.

  12. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    PubMed

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle.

  13. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  14. Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus.

    PubMed

    Nakashima, Hiroshi; Chiocca, E Antonio

    2014-01-01

    The adenovirus immediate early gene E1A initiates the program of viral gene transcription and reprograms multiple aspects of cell function and behavior. For adenoviral (Ad) vector-mediated gene transfer and therapy approaches, where replication-defective (RD) gene transfer is required, E1A has thus been the primary target for deletions. For oncolytic gene therapy for cancer, where replication-competent (RC) Ad viral gene expression is needed, E1A has been either mutated or placed under tumor-specific transcriptional control. A novel Ad vector that initially infected target tumor cells in an RD manner for transgene expression but that could be "switched" into an RC, oncolytic state when needed might represent an advance in vector technology. Here, we report that we designed such an Ad vector (proAdΔ24.GFP), where initial Ad replication is silenced by a green fluorescent protein (GFP) transgene that blocks cytomegalovirus (CMV)-mediated transcription of E1A. This vector functions as a bona fide E1A-deleted RD vector in infected tumor cells. However, because the silencing GFP transgene is flanked by FLP recombination target (FRT) sites, we show that it can be efficiently excised by Flp recombinase site-specific recombination, either when Flp is expressed constitutively in cells or when it is provided in trans by coinfection with a second RD herpes simplex virus (HSV) amplicon vector. This switches the RD Ad, proAdΔ24.GFP, into a fully RC, oncolytic Ad (rAdΔ24) that lyses tumor cells in culture and generates oncolytic progeny virions. In vivo, coinfection of established flank tumors with the RD proAdΔ24.GFP and the RD Flp-bearing HSV1 amplicon leads to generation of RC, oncolytic rAdΔ24. In an orthotopic human glioma xenograft tumor model, coinjection of the RD proAdΔ24.GFP and the RD Flp-bearing HSV1 amplicon also led to a significant increase in animal survival, compared to controls. Therefore, Flp-FRT site-specific recombination can be applied to switch RD Ad

  15. Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus.

    PubMed

    Nakashima, Hiroshi; Chiocca, E Antonio

    2014-01-01

    The adenovirus immediate early gene E1A initiates the program of viral gene transcription and reprograms multiple aspects of cell function and behavior. For adenoviral (Ad) vector-mediated gene transfer and therapy approaches, where replication-defective (RD) gene transfer is required, E1A has thus been the primary target for deletions. For oncolytic gene therapy for cancer, where replication-competent (RC) Ad viral gene expression is needed, E1A has been either mutated or placed under tumor-specific transcriptional control. A novel Ad vector that initially infected target tumor cells in an RD manner for transgene expression but that could be "switched" into an RC, oncolytic state when needed might represent an advance in vector technology. Here, we report that we designed such an Ad vector (proAdΔ24.GFP), where initial Ad replication is silenced by a green fluorescent protein (GFP) transgene that blocks cytomegalovirus (CMV)-mediated transcription of E1A. This vector functions as a bona fide E1A-deleted RD vector in infected tumor cells. However, because the silencing GFP transgene is flanked by FLP recombination target (FRT) sites, we show that it can be efficiently excised by Flp recombinase site-specific recombination, either when Flp is expressed constitutively in cells or when it is provided in trans by coinfection with a second RD herpes simplex virus (HSV) amplicon vector. This switches the RD Ad, proAdΔ24.GFP, into a fully RC, oncolytic Ad (rAdΔ24) that lyses tumor cells in culture and generates oncolytic progeny virions. In vivo, coinfection of established flank tumors with the RD proAdΔ24.GFP and the RD Flp-bearing HSV1 amplicon leads to generation of RC, oncolytic rAdΔ24. In an orthotopic human glioma xenograft tumor model, coinjection of the RD proAdΔ24.GFP and the RD Flp-bearing HSV1 amplicon also led to a significant increase in animal survival, compared to controls. Therefore, Flp-FRT site-specific recombination can be applied to switch RD Ad

  16. Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter.

    PubMed

    Toietta, Gabriele; Koehler, David R; Finegold, Milton J; Lee, Brendan; Hu, Jim; Beaudet, Arthur L

    2003-05-01

    Efforts have been made to deliver transgenes to the airway epithelia of laboratory animals and humans to develop gene therapy for cystic fibrosis. These investigations have been disappointing due to combinations of transient and low-level gene expression, acute toxicity, and inflammation. We have developed new helper-dependent adenoviral vectors to deliver an epithelial cell-specific keratin 18 expression cassette driving the beta-galactosidase (beta-gal) or human alpha-fetoprotein (AFP) reporter genes. Following intranasal administration to mice, we found that the reporter genes were widely expressed in airway epithelial and submucosal cells, and secreted human AFP was also detectable in serum. In contrast to a first-generation adenoviral vector, inflammation was negligible at doses providing efficient transduction, and expression lasted longer than typically reported-up to 28 days with beta-gal and up to 15 weeks with human AFP. These results suggest that delivery to the airway of helper-dependent adenoviral vectors utilizing a tissue-specific promoter could be a significant advance in the development of gene therapy for cystic fibrosis. PMID:12718908

  17. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons

    PubMed Central

    Morral, Núria; O’Neal, Wanda; Rice, Karen; Leland, Michele; Kaplan, Johanne; Piedra, Pedro A.; Zhou, Heshan; Parks, Robin J.; Velji, Rizwan; Aguilar-Córdova, Estuardo; Wadsworth, Samuel; Graham, Frank L.; Kochanek, Stefan; Carey, K. Dee; Beaudet, Arthur L.

    1999-01-01

    The efficiency of first-generation adenoviral vectors as gene delivery tools is often limited by the short duration of transgene expression, which can be related to immune responses and to toxic effects of viral proteins. In addition, readministration is usually ineffective unless the animals are immunocompromised or a different adenovirus serotype is used. Recently, adenoviral vectors devoid of all viral coding sequences (helper-dependent or gutless vectors) have been developed to avoid expression of viral proteins. In mice, liver-directed gene transfer with AdSTK109, a helper-dependent adenoviral (Ad) vector containing the human α1-antitrypsin (hAAT) gene, resulted in sustained expression for longer than 10 months with negligible toxicity to the liver. In the present report, we have examined the duration of expression of AdSTK109 in the liver of baboons and compared it to first-generation vectors expressing hAAT. Transgene expression was limited to approximately 3–5 months with the first-generation vectors. In contrast, administration of AdSTK109 resulted in transgene expression for longer than a year in two of three baboons. We have also investigated the feasibility of circumventing the humoral response to the virus by sequential administration of vectors of different serotypes. We found that the ineffectiveness of readministration due to the humoral response to an Ad5 first-generation vector was overcome by use of an Ad2-based vector expressing hAAT. These data suggest that long-term expression of transgenes should be possible by combining the reduced immunogenicity and toxicity of helper-dependent vectors with sequential delivery of vectors of different serotypes. PMID:10536005

  18. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    SciTech Connect

    Kanagawa, Naoko; Koretomo, Ryosuke; Murakami, Sayaka |; Sakurai, Fuminori; Mizuguchi, Hiroyuki |; Nakagawa, Shinsaku; Fujita, Takuya |; Yamamoto, Akira; Okada, Naoki |

    2008-05-10

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35{delta}RGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The {alpha}{sub v}-integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-{alpha}, and interferon-{alpha} in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of {alpha}{sub v}-integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes.

  19. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    PubMed Central

    Hulin-Curtis, S L; Uusi-Kerttula, H; Jones, R; Hanna, L; Chester, J D; Parker, A L

    2016-01-01

    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer. PMID:27229159

  20. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy.

    PubMed

    Hulin-Curtis, S L; Uusi-Kerttula, H; Jones, R; Hanna, L; Chester, J D; Parker, A L

    2016-07-01

    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer.

  1. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  2. Novel recombinant adenoviral vector that targets the interleukin-13 receptor alpha2 chain permits effective gene transfer to malignant glioma.

    PubMed

    Ulasov, Ilya V; Tyler, Matthew A; Han, Yu; Glasgow, Joel N; Lesniak, Maciej S

    2007-02-01

    Transduction of malignant glioma with adenovirus serotype 5 (Ad5) vectors is limited by the low levels of coxsackievirus and adenovirus receptor (CAR) on tumor cells. However, malignant brain tumors have been found to overexpress a glioma-associated receptor, interleukin-13 receptor alpha2 chain (IL-13Ralpha2), a marker of both glial transformation and tumor grade. To selectively target Ad5 to IL-13Ralpha2, we constructed a replication-deficient adenoviral vector that possesses an IL-13 ligand presented by a T4 phage fibritin shaft, and designated the new virus LU-13. Western blot and sequence analyses confirmed proper trimerization and ligand presentation by the T4 fibritin shaft. Confocal microscopy analysis of primary glioma suspensions incubated with viral recombinants showed that LU-13 colocalized with IL-13Ralpha2. Luciferase transduction assays conducted in both primary and passaged glioma cell cultures exhibited at least 10-fold enhanced gene transduction. Moreover, the virus preferentially bound to glioma cells, as documented by increased adenoviral E4 DNA copy number. In vitro competition assays performed with anti-human IL-13 monoclonal antibody confirmed significant attenuation of LU-13 transduction. These results were further confirmed in vivo, where LU-13 showed a 300-fold increase in transgene expression. In summary, we describe here the development of a novel and targeted adenoviral vector that binds IL-13Ralpha2. Our findings confirm the ability of LU-13 to bind IL-13Ralpha2 and increase transgene expression, making it an attractive gene therapy vector for the treatment of malignant glioma in a clinical setting.

  3. Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery

    PubMed Central

    Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima

    2014-01-01

    Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147

  4. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  5. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3.

    PubMed

    Suchanek, Amanda L; Salati, Lisa M

    2015-11-01

    Serine/arginine-rich splicing factor-3 (SRSF3), alternatively known as SRp20, is a member of the highly-conserved SR protein family of mRNA splicing factors. SRSF3 generally functions as an enhancer of mRNA splicing by binding to transcripts in a sequence-specific manner to both recruit and stabilize the binding of spliceosomal components to the mRNA. In liver, expression of SRSF3 is relatively low and its activity is increased in response to insulin and feeding a high carbohydrate diet. We sought to over-express SRSF3 in primary rat hepatocytes to identify regulatory targets. A standard adenoviral shuttle vector system containing an epitope-tagged SRSF3 under the transcriptional control of the CMV promoter could not be used to produce infectious adenoviral particles. SRSF3 over-expression in the packaging cell line prevented the production of infectious adenovirus particles by interfering with the viral splicing program. To circumvent this issue, SRSF3 expression from the shuttle vector was blocked by placing its expression under the control of the liver-specific albumin promoter. In this system, the FLAG-SRSF3 transgene is only expressed in the target cells (hepatocytes) but not in the packaging cell line. An additional benefit of the albumin promoter is that expression of the transgene does not require the addition of hormones or antibiotics to drive SRSF3 expression in the hepatocytes. Robust expression of FLAG-SRSF3 protein is detected in both HepG2 cells and primary rat hepatocytes infected with adenovirus prepared from this new shuttle vector. Furthermore, abundances of several known and suspected mRNA targets of SRSF3 action are increased in response to over-expression using this virus. This report details the construction of the albumin promoter-driven adenoviral shuttle vector, termed pmAlbAd5-FLAG.SRSF3, that can be used to generate functional adenovirus to express FLAG-SRSF3 specifically in liver. This vector would be suitable for over-expression of

  6. Transgene Expression up to 7 Years in Nonhuman Primates Following Hepatic Transduction with Helper-Dependent Adenoviral Vectors

    PubMed Central

    Brunetti-Pierri, Nicola; Ng, Thomas; Iannitti, David; Cioffi, William; Stapleton, Gary; Law, Mark; Breinholt, John; Palmer, Donna; Grove, Nathan; Rice, Karen; Bauer, Cassondra; Finegold, Milton; Beaudet, Arthur; Mullins, Charles

    2013-01-01

    Abstract Helper-dependent adenoviral vectors (HDAd) have been shown to mediate a considerably longer duration of transgene expression than first-generation adenoviral vectors. We have previously shown that transgene expression from HDAd-transduced hepatocytes can persist at high levels for up to 2.6 years in nonhuman primates following a single-vector administration. Because duration of transgene expression and long-term toxicity are critical for risk:benefit assessment, we have continued to monitor these animals. We report here that transgene expression has persisted for the entire observation period of up to 7 years for all animals without long-term adverse effects. However, in all cases, transgene expression level slowly declined over time to less than 10% of peak values by the end of the observation period but remained 2.3–111-fold above baseline values. These results will provide important information for a more informed risk:benefit assessment before clinical application of HDAd. PMID:23902403

  7. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases. PMID:27245510

  8. Neo-islet formation in liver of diabetic mice by helper-dependent adenoviral vector-mediated gene transfer.

    PubMed

    Li, Rongying; Oka, Kazuhiro; Yechoor, Vijay

    2012-01-01

    Type 1 diabetes is caused by T cell-mediated autoimmune destruction of insulin-producing cells in the pancreas. Until now insulin replacement is still the major therapy, because islet transplantation has been limited by donor availability and by the need for long-term immunosuppression. Induced islet neogenesis by gene transfer of Neuogenin3 (Ngn3), the islet lineage-defining specific transcription factor and Betacellulin (Btc), an islet growth factor has the potential to cure type 1 diabetes. Adenoviral vectors (Ads) are highly efficient gene transfer vector; however, early generation Ads have several disadvantages for in vivo use. Helper-dependent Ads (HDAds) are the most advanced Ads that were developed to improve the safety profile of early generation of Ads and to prolong transgene expression(1). They lack chronic toxicity because they lack viral coding sequences(2-5) and retain only Ad cis elements necessary for vector replication and packaging. This allows cloning of up to 36 kb genes. In this protocol, we describe the method to generate HDAd-Ngn3 and HDAd-Btc and to deliver these vectors into STZ-induced diabetic mice. Our results show that co-injection of HDAd-Ngn3 and HDAd-Btc induces 'neo islets' in the liver and reverses hyperglycemia in diabetic mice. PMID:23093064

  9. Chimeric Adenoviral Vectors Incorporating a Fiber of Human Adenovirus 3 Efficiently Mediate Gene Transfer into Prostate Cancer Cells

    PubMed Central

    Murakami, Miho; Ugai, Hideyo; Belousova, Natalya; Pereboev, Alexander; Dent, Paul; Fisher, Paul B.; Everts, Maaike; Curiel, David T.

    2010-01-01

    BACKGROUND We have developed a range of adenoviral (Ad) vectors based on human adenovirus serotype 5 (HAdV-5) displaying the fiber shaft and knob domains of species B viruses (HAdV-3, HAdV-11, or HAdV-35). These species B Ads utilize different cellular receptors than HAdV-5 for infection. We evaluated whether Ad vectors displaying species B fiber shaft and knob domains (Ad5F3Luc1, Ad5F11Luc1, and Ad5F35Luc1) would efficiently infect cancer cells of distinct origins, including prostate cancer. METHODS The fiber chimeric Ad vectors were genetically generated and compared with the original Ad vector (Ad5Luc1) for transductional efficiency in a variety of cancer cell lines, including prostate cancer cells and primary prostate epithelial cells (PrEC), using luciferase as a reporter gene. RESULTS Prostate cancer cell lines infected with Ad5F3Luc1 expressed higher levels of luciferase than Ad5Luc1, as well as the other chimeric Ad vectors. We also analyzed the transductional efficiency via monitoring of luciferase activity in prostate cancer cells when expressed as a fraction of the gene transfer in PrEC cells. In the PC-3 and DU145 cell lines, the gene transfer ratio of cancer cells versus PrEC was once again highest for Ad5F3Luc1. CONCLUSION Of the investigated chimeric HAdV-5/species B vectors, Ad5F3Luc1 was judged to be the most suitable for targeting prostate cancer cells as it showed the highest transductional efficiency in these cells. It is foreseeable that an Ad vector incorporating the HAdV-3 fiber could potentially be used for prostate cancer gene therapy. PMID:19902467

  10. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector

    PubMed Central

    Toietta, Gabriele; Mane, Viraj P.; Norona, Wilma S.; Finegold, Milton J.; Ng, Philip; McDonagh, Antony F.; Beaudet, Arthur L.; Lee, Brendan

    2005-01-01

    Crigler–Najjar syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by a deficiency of uridine diphospho-glucuronosyl transferase 1A1. Current therapy relies on phototherapy to prevent kernicterus, but liver transplantation presently is the only permanent cure. Gene therapy is a potential alternative, and recent work has shown that helper-dependent adenoviral (HD-Ad) vectors, devoid of all viral coding sequences, induce prolonged transgene expression and exhibit significantly less chronic toxicity than early-generation Ad vectors. We used a HD-Ad vector to achieve liver-restricted expression of human uridine diphospho-glucuronosyl transferase 1A1 in the Gunn rat, a model of the human disorder. Total plasma bilirubin levels were reduced from >5.0 mg/dl to «1.4 mg/dl for >2 yr after a single i.v. administration of vector expressing the therapeutic transgene at a dose of 3 × 1012 viral particles per kg. HPLC analysis of bile from treated rats showed the presence of bilirubin glucuronides at normal WT levels >2 yr after one injection of vector, and i.v. injection of bilirubins IIIα and XIIIα in the same animals revealed excess bilirubin-conjugating capacity. There was no significant elevation of liver enzymes (alanine aminotransferase) and only transient, moderate thrombocytopenia after injection of the vector. A clinically significant reduction in serum bilirubin was observed with a dose as low as 6 × 1011 viral particles per kg. We conclude that complete, long-term correction of hyperbilirubinemia in the Gunn rat model of Crigler–Najjar syndrome can be achieved with one injection of HD-Ad vector and negligible chronic toxicity. PMID:15753292

  11. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector.

    PubMed

    Toietta, Gabriele; Mane, Viraj P; Norona, Wilma S; Finegold, Milton J; Ng, Philip; McDonagh, Antony F; Beaudet, Arthur L; Lee, Brendan

    2005-03-15

    Crigler-Najjar syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by a deficiency of uridine diphospho-glucuronosyl transferase 1A1. Current therapy relies on phototherapy to prevent kernicterus, but liver transplantation presently is the only permanent cure. Gene therapy is a potential alternative, and recent work has shown that helper-dependent adenoviral (HD-Ad) vectors, devoid of all viral coding sequences, induce prolonged transgene expression and exhibit significantly less chronic toxicity than early-generation Ad vectors. We used a HD-Ad vector to achieve liver-restricted expression of human uridine diphospho-glucuronosyl transferase 1A1 in the Gunn rat, a model of the human disorder. Total plasma bilirubin levels were reduced from >5.0 mg/dl to <1.4 mg/dl for >2 yr after a single i.v. administration of vector expressing the therapeutic transgene at a dose of 3 x 10(12) viral particles per kg. HPLC analysis of bile from treated rats showed the presence of bilirubin glucuronides at normal WT levels >2 yr after one injection of vector, and i.v. injection of bilirubins IIIalpha and XIIIalpha in the same animals revealed excess bilirubin-conjugating capacity. There was no significant elevation of liver enzymes (alanine aminotransferase) and only transient, moderate thrombocytopenia after injection of the vector. A clinically significant reduction in serum bilirubin was observed with a dose as low as 6 x 10(11) viral particles per kg. We conclude that complete, long-term correction of hyperbilirubinemia in the Gunn rat model of Crigler-Najjar syndrome can be achieved with one injection of HD-Ad vector and negligible chronic toxicity. PMID:15753292

  12. Vector systems for prenatal gene therapy: principles of adenovirus design and production.

    PubMed

    Alba, Raul; Baker, Andrew H; Nicklin, Stuart A

    2012-01-01

    Adenoviruses have many attributes, which have made them one of the most widely investigated vectors for gene therapy applications. These include ease of genetic manipulation to produce replication-deficient vectors, ability to readily generate high titer stocks, efficiency of gene delivery into many cell types, and ability to encode large genetic inserts. Recent advances in adenoviral vector engineering have included the ability to genetically manipulate the tropism of the vector by engineering of the major capsid proteins, particularly fiber and hexon. Furthermore, simple replication-deficient adenoviral vectors deleted for expression of a single gene have been complemented by the development of systems in which the majority of adenoviral genes are deleted, generating sophisticated Ad vectors which can mediate sustained transgene expression following a single delivery. This chapter outlines methods for developing simple transgene over expressing Ad vectors and detailed strategies to engineer mutations into the major capsid proteins.

  13. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    SciTech Connect

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.; Freimuth, P.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  14. Correction of Hyperbilirubinemia in Gunn Rats Using Clinically Relevant Low Doses of Helper-Dependent Adenoviral Vectors

    PubMed Central

    Dimmock, David; Brunetti-Pierri, Nicola; Palmer, Donna J.; Beaudet, Arthur L.

    2011-01-01

    Abstract Crigler–Najjar syndrome type I is a severe inborn error of bilirubin metabolism caused by a complete deficiency of uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) and results in life-threatening unconjugated hyperbilirubinemia. Lifelong correction of hyperbilirubinemia by liver-directed gene therapy using a helper-dependent adenoviral (HDAd) vector has been previously reported in the Gunn rat, a model of Crigler–Najjar syndrome, but was only achieved using high doses (≥3 × 1012 viral particles [vp]/kg), which are likely to elicit a severe toxic response in humans. Therefore, in this study, we investigate strategies to achieve correction of hyperbilirubinemia in the Gunn rat using clinically relevant low HDAd doses. We have found that correction of hyperbilirubinemia in the Gunn rat can be achieved with a low dose of 5 × 1011 vp/kg by using an HDAd vector bearing a more potent UGT1A1 expression cassette. Furthermore, by using hydrodynamic injection of the improved HDAd vector, correction of hyperbilirubinemia in the Gunn rat can be achieved using an even lower dose of 5 × 1010 vp/kg. Although hydrodynamic injection as performed in rats is not acceptable in humans, clinically attractive, minimally invasive methods have been successfully developed to mimic hydrodynamic injection of HDAd vector in non-human primates. Therefore, using an improved expression cassette combined with a more efficient method of vector delivery permits correction of hyperbilirubinemia in the Gunn rat using clinically relevant low HDAd doses and may thus pave the way to clinical application of HDAd vectors for Crigler–Najjar syndrome gene therapy. PMID:20973621

  15. Standard free droplet digital polymerase chain reaction as a new tool for the quality control of high-capacity adenoviral vectors in small-scale preparations.

    PubMed

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E; Ehrhardt, Anja

    2015-02-01

    High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.

  16. Short-term Correction of Arginase Deficiency in a Neonatal Murine Model With a Helper-dependent Adenoviral Vector

    PubMed Central

    Gau, Chia-Ling; Rosenblatt, Robin A; Cerullo, Vincenzo; Lay, Fides D; Dow, Adrienne C; Livesay, Justin; Brunetti-Pierri, Nicola; Lee, Brendan; Cederbaum, Stephen D; Grody, Wayne W; Lipshutz, Gerald S

    2009-01-01

    Neonatal gene therapy has the potential to ameliorate abnormalities before disease onset. Our gene knockout of arginase I (AI) deficiency is characterized by increasing hyperammonemia, neurological deterioration, and early death. We constructed a helper-dependent adenoviral vector (HDV) carrying AI and examined for correction of this defect. Neonates were administered 5 × 109 viral particles/g and analyzed for survival, arginase activity, and ammonia and amino acids levels. The life expectancy of arg−/− mice increased to 27 days while controls died at 14 days with hyperammonemia and in extremis. Death correlated with a decrease in viral DNA/RNA per cell as liver mass increased. Arginase assays demonstrated that vector-injected hepatocytes had ~20% activity of heterozygotes at 2 weeks of age. Hepatic arginine and ornithine in treated mice were similar to those of saline-injected heterozygotes at 2 weeks, whereas ammonia was normal. By 26 days, arginase activity in the treated arg−/− livers declined to <10%, and arginine and ornithine increased. Ammonia levels began increasing by day 25, suggesting the cause of death to be similar to that of uninjected arg−/− mice, albeit at a later time. These studies demonstrate that the AI deficient newborn mouse can be temporarily corrected and rescued using a HDV. PMID:19367256

  17. Neonatal helper-dependent adenoviral vector gene therapy mediates correction of hemophilia A and tolerance to human factor VIII

    PubMed Central

    Cela, Racel G.; Suzuki, Masataka; Lee, Brendan; Lipshutz, Gerald S.

    2011-01-01

    Neonatal gene therapy is a promising strategy for treating a number of congenital diseases diagnosed shortly after birth as expression of therapeutic proteins during postnatal life may limit the pathologic consequences and result in a potential “cure.” Hemophilia A is often complicated by the development of antibodies to recombinant protein resulting in treatment failure. Neonatal administration of vectors may avoid inhibitory antibody formation to factor VIII (FVIII) by taking advantage of immune immaturity. A helper-dependent adenoviral vector expressing human factor VIII was administered i.v. to neonatal hemophilia A knockout mice. Three days later, mice produced high levels of FVIII. Levels declined rapidly with animal growth to 5 wk of age with stable factor VIII expression thereafter to >1 y of age. Decline in factor VIII expression was not related to cell-mediated or humoral responses with lack of development of antibodies to capsid or human factor VIII proteins. Subsequent readministration and augmentation of expression was possible as operational tolerance was established to factor VIII without development of inhibitors; however, protective immunity to adenovirus remained. PMID:21245323

  18. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    PubMed Central

    Dasari, Vijayendra; Schuessler, Andrea; Smith, Corey; Wong, Yide; Miles, John J; Smyth, Mark J; Ambalathingal, George; Francis, Ross; Campbell, Scott; Chambers, Daniel; Khanna, Rajiv

    2016-01-01

    Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients. PMID:27606351

  19. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients.

    PubMed

    Dasari, Vijayendra; Schuessler, Andrea; Smith, Corey; Wong, Yide; Miles, John J; Smyth, Mark J; Ambalathingal, George; Francis, Ross; Campbell, Scott; Chambers, Daniel; Khanna, Rajiv

    2016-01-01

    Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as "off-the-shelf" therapeutics as well as autologous T-cell therapies for transplant patients. PMID:27606351

  20. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    PubMed Central

    Dasari, Vijayendra; Schuessler, Andrea; Smith, Corey; Wong, Yide; Miles, John J; Smyth, Mark J; Ambalathingal, George; Francis, Ross; Campbell, Scott; Chambers, Daniel; Khanna, Rajiv

    2016-01-01

    Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  1. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  2. Combined use of adenoviral vector Ad5/F35-mediated APE1 siRNA enhances the therapeutic efficacy of adenoviral-mediated p53 gene transfer in hepatoma cells in vitro and in vivo.

    PubMed

    Cun, Yanping; Zhang, Qinhong; Xiong, Chengjie; Li, Mengxia; Dai, Nan; Zhang, Shiheng; Wang, Dong

    2013-06-01

    Gene therapy has emerged as a novel therapeutic approach for the treatment of cancer. In order to establish a more effective therapeutic strategy against unresectable hepatocellular carcinoma (HCC), we evaluated, in the present study, the effects of combined treatment with adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1) and adenoviral-mediated p53 gene transfer (Ad-p53) in hepatoma cells in vitro and in vivo. Infection of SMMC-7721 cells with Ad5/F35-siAPE1 resulted in a time- and dose-dependent decrease of APE1 protein, while Ad-p53 treatment led to a time- and dose-dependent increase of p53 protein expression. Ad5/F35-siAPE1 significantly enhanced the cytotoxic effect of SMMC-7721 cells to Ad-p53 in cell survival assays, associated with increased cell apoptosis. Moreover, administration of Ad5/F35-siAPE1 and Ad-p53 into nude mice resulted in tumor growth inhibition and apoptosis induction in SMMC-7721 xenografts compared to administration of either agent alone. These results suggest that combination of Ad5/F35-siAPE1 and Ad-p53 could be a promising gene therapeutic approach against human HCC.

  3. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis

    PubMed Central

    Dolzhikova, Inna V.; Shcherbinin, Dmitry N.; Zubkova, Olga V.; Ivanova, Tatiana I.; Tukhvatulin, Amir I.; Shmarov, Maxim M.; Logunov, Denis Y.; Naroditsky, Boris S.; Gintsburg, Aleksandr L.

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection. PMID:26962869

  4. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis.

    PubMed

    Burmistrova, Daria A; Tillib, Sergey V; Shcheblyakov, Dmitry V; Dolzhikova, Inna V; Shcherbinin, Dmitry N; Zubkova, Olga V; Ivanova, Tatiana I; Tukhvatulin, Amir I; Shmarov, Maxim M; Logunov, Denis Y; Naroditsky, Boris S; Gintsburg, Aleksandr L

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection. PMID:26962869

  5. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors.

    PubMed

    Schiedner, Gudrun; Hertel, Sabine; Johnston, Marion; Dries, Volker; van Rooijen, Nico; Kochanek, Stefan

    2003-01-01

    Tissue macrophages, in particular hepatic Kupffer cells (KCs), contribute to early inflammatory responses following adenoviral vector administration. This study evaluates the effect of selective and transient (3 days) depletion of KCs by a single injection of clodronate liposomes on the in vivo performance of high-capacity adenoviral (HC-Ad) vectors. In KC-depleted C57BL/6 and C3H mice increased and stabilized hAAT levels were observed following intravenous injection of HC-Ad vectors expressing human alpha-1 anti-trypsin (hAAT) either from the hAAT promoter or from the human cytomegalovirus promoter. Comparable increases in hAAT levels were obtained in mice preinjected with a transcriptionally silent HC-Ad vector. Interestingly, in the majority of animals of both strains depletion of KCs was sufficient to prevent the generation of anti-hAAT antibodies, resulting in prolonged transgene expression. Thus, short-term and selective depletion of hepatic macrophages at the same time significantly increased hepatic transgene expression and reduced the humoral immune response to the transgenic protein.

  6. Construction of an adenoviral expression vector carrying FLAG and hrGFP-1 genes and its expression in bone marrow mesenchymal stem cells.

    PubMed

    Wang, G X; Hu, L; Zhang, Z; Liu, D P

    2014-02-20

    The aim of this study was to construct an adenoviral expression vector for vascular endothelium growth factor 121 (VEGF121)-FLAG and humanized Renilla reniformis green fluorescent protein (hrGFP-1) genes, and to observe their expressions in bone marrow mesenchymal stem cells. Using pTG19T-VEGF121 as a template, polymerase chain reaction technology was adopted to mutate the VEGF121 gene by removing the stop codon and inserting NotI and XhoI restriction sites both before and after the gene sequences. The resultant gene was then subcloned into a pMD19-T plasmid, the pMD19-T-VEGF121 and pShuttle-CMV-IRES-hrGFP-1 plasmids were double-digested, and small and large fragments were linked after gel recovery to complete the construction of recombinant adenovirus vectors. After titer determination, the recombinant adenovirus vectors were used to affect rabbit bone marrow mesenchymal stem cells, and fluorescence intensity was observed under fluorescence microscopy. Enzyme digestion identification and sequencing confirmed that the recombinant plasmids were successfully constructed, and observations under fluorescence microscopy showed significant expression of green fluorescent protein in recombinant adenovirus-infected bone marrow mesenchymal stem cells. The constructed adenoviral gene expression vectors carrying VEGF121-FLAG and hrGFP-1 can be expressed in eukaryotic cells, which may be used for gene therapy of ischemic disorders.

  7. Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs

    PubMed Central

    Alonso-Padilla, Julio; Papp, Tibor; Kaján, Győző L; Benkő, Mária; Havenga, Menzo; Lemckert, Angelique; Harrach, Balázs; Baker, Andrew H

    2016-01-01

    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes. PMID:26478249

  8. Prime/Boost Immunization with DNA and Adenoviral Vectors Protects from Hepatitis D Virus (HDV) Infection after Simultaneous Infection with HDV and Woodchuck Hepatitis Virus

    PubMed Central

    Kosinska, Anna; Schumann, Alexandra; Brovko, Olena; Walker, Andreas; Lu, Mengji; Johrden, Lena; Mayer, Anja; Wildner, Oliver; Roggendorf, Michael

    2013-01-01

    Hepatitis D virus (HDV) superinfection of hepatitis B virus (HBV) carriers causes severe liver disease and a high rate of chronicity. Therefore, a vaccine protecting HBV carriers from HDV superinfection is needed. To protect from HDV infection an induction of virus-specific T cells is required, as antibodies to the two proteins of HDV, p24 and p27, do not neutralize the HBV-derived envelope of HDV. In mice, HDV-specific CD8+ and CD4+ T cell responses were induced by a DNA vaccine expressing HDV p27. In subsequent experiments, seven naive woodchucks were immunized with a DNA prime and adenoviral boost regimen prior to simultaneous woodchuck hepatitis virus (WHV) and HDV infection. Five of seven HDV-immunized woodchucks were protected against HDV infection, while acute self-limiting WHV infection occurred as expected. The two animals with the breakthrough had a shorter HDV viremia than the unvaccinated controls. The DNA prime and adenoviral vector boost vaccination protected woodchucks against HDV infection in the setting of simultaneous infection with WHV and HDV. In future experiments, the efficacy of this protocol to protect from HDV infection in the setting of HDV superinfection will need to be proven. PMID:23637419

  9. A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory*

    PubMed Central

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D.; Brown, Anthony; Richardson, Rachel; Newell, Evan W.; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2015-01-01

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b. Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost. We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine. PMID:25378645

  10. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2.

  11. The effectiveness of the oncolytic activity induced by Ad5/F35 adenoviral vector is dependent on the cumulative cellular conditions of survival and autophagy.

    PubMed

    Kim, So Y; Kang, Sujin; Song, Jae J; Kim, Joo-Hang

    2013-04-01

    To overcome the poor tumor transduction efficiency of adenovirus serotype 5 (Ad5) observed in several types of cancer, the fiber region of Ad5, apart from its tail, was replaced by adenovirus serotype 35 (Ad35). The chimeric Ad5/F35 adenoviral vector did not exhibit any significant enhancement of transduction efficiency. CD46, a receptor for Ad35, was expressed in relatively small amounts in most of the cancer cells examined. Therefore, we investigated the pivotal factor(s) that render cancer cells susceptible to transduction. We discovered that the tumor transduction efficiency of Ad5/F35 was enhanced in the presence of rapamycin, an autophagy inducer, in some cancer cells. Analysis of survival potential and cell proliferation rates revealed that Ad5/F35 exerted a more pronounced oncolytic effect in cancer cells with higher survival potential in the presence of rapamycin.

  12. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  13. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  14. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.

    PubMed

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A F V

    2016-02-18

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  15. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    PubMed Central

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  16. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse.

  17. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-01

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants.

  18. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse. PMID:26968195

  19. Optimization of HEK-293S cell cultures for the production of adenoviral vectors in bioreactors using on-line OUR measurements.

    PubMed

    Gálvez, J; Lecina, M; Solà, C; Cairó, J J; Gòdia, F

    2012-01-01

    The culture of HEK-293S cells in a stirred tank bioreactor for adenoviral vectors production for gene therapy is studied. Process monitoring using oxygen uptake rate (OUR) was performed. The OUR was determined on-line by the dynamic method, providing good information of the process evolution. OUR enabled cell activity monitoring, facilitating as well the determination of the feeding rate in perfusion cultures and when to infect the culture. Batch cultures were used to validate the monitoring methodology. A cell density of 10×10(5)cell/mL was infected, producing 1.3×10(9) infectious viral particles/mL (IVP/mL). To increase cell density values maintaining cell specific productivity, perfusion cultures, based on tangential flow filtration, were studied. In this case, OUR measurements were used to optimize the dynamic culture medium feeding strategy, addressed to avoid any potential nutrient limitation. Furthermore, the infection protocol was defined in order to optimize the use of the viral inoculum, minimizing the uncontrolled release of particles through the filter unit mesh. All these developments enabled an infection at 78×10(5)cell/mL with the consequent production of 44×10(9)IVP/mL, representing a cell specific productivity 4.3 times higher than for the batch culture.

  20. Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice

    SciTech Connect

    Fu, Yuanhui; He, Jinsheng; Zheng, Xianxian; Wu, Qiang; Zhang, Mei; Wang, Xiaobo; Wang, Yan; Xie, Can; Tang, Qian; Wei, Wei; Wang, Min; Song, Jingdong; Qu, Jianguo; Zhang, Ying; Wang, Xin; Hong, Tao

    2009-04-17

    Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.

  1. Enhancement of Protective Efficacy through Adenoviral Vectored Vaccine Priming and Protein Boosting Strategy Encoding Triosephosphate Isomerase (SjTPI) against Schistosoma japonicum in Mice

    PubMed Central

    Dai, Yang; Wang, Xiaoting; Tang, Jianxia; Zhao, Song; Xing, Yuntian; Dai, Jianrong; Jin, Xiaolin; Zhu, Yinchang

    2015-01-01

    Background Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice. Methodology/Principal Findings Adenoviral vectored vaccine (rAdV-SjTPI.opt) and recombinant protein vaccine (rSjTPI) were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice. Conclusions/Significance The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China. PMID:25793406

  2. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  3. Long-term reduction of cocaine self-administration in rats treated with adenoviral vector-delivered cocaine hydrolase: evidence for enzymatic activity.

    PubMed

    Zlebnik, Natalie E; Brimijoin, Stephen; Gao, Yang; Saykao, Amy T; Parks, Robin J; Carroll, Marilyn E

    2014-05-01

    A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decrease ongoing intravenous cocaine (0.4 mg/kg) self-administration. The hdAD-CocH vector was injected into self-administering rats, and after accumulation of plasma CocH, there was a dramatic reduction in cocaine infusions earned under a fixed ratio 1 schedule of reinforcement that lasted for the length of the study (>2 months). Pretreatment with the selective BChE and CocH inhibitor iso-OMPA (1.5 mg/kg) restored cocaine intake; therefore, the decline in self-administration was likely due to rapid CocH-mediated cocaine metabolism. Direct measurements of cocaine levels in plasma and brain samples taken after the conclusion of behavioral studies provided strong support for this conclusion. Further, rats injected with hdAD-CocH did not experience a deficit in operant responding for drug reinforcement and self-administered methamphetamine (0.05 mg/kg) at control levels. Overall, these outcomes suggest that viral gene transfer can yield plasma CocH levels that effectively diminish long-term cocaine intake and may have potential treatment implications for cocaine-dependent individuals seeking to become and remain abstinent. PMID:24407266

  4. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch.

    PubMed

    Gaillet, Bruno; Gilbert, Rénald; Amziani, Rachid; Guilbault, Claire; Gadoury, Christine; Caron, Antoine W; Mullick, Alaka; Garnier, Alain; Massie, Bernard

    2007-01-01

    To facilitate and accelerate the production of eukaryotic proteins with correct post-translational modifications, we have developed a protein production system based on the transduction of Chinese hamster ovary (CHO) cells using adenovirus vectors (AdVs). We have engineered a CHO cell line (CHO-cTA) that stably expresses the transactivator (cTA) of our newly developed cumate gene-switch transcription system. This cell line is adapted to suspension culture and can grow in serum-free and protein-free medium. To increase the transduction level of AdVs, we have also generated a cell line (CHO-cTA-CAR) that expresses additional amounts of the coxackievirus and adenovirus receptor (CAR) on its surface. Recombinant protein production was tested using an AdV carrying the secreted alkaline phosphatase (SEAP) under the control of the CR5 promoter, which is strongly and specifically activated by binding to cTA. The SEAP expression was linked to the expression of the green fluorescent protein (GFP) through an internal ribosome entry site (IRES) to facilitate titration of the AdV. We monitored SEAP expression on a daily basis for 9 days after transduction of CHO-cTA and CHO-cTA-CAR using different quantities of AdVs at 37 and 30 degrees C. Incubation at the latter temperature increased the production of SEAP at least 10-fold, and the presence of CAR increased the transduction level of the AdV. Maximum SEAP production (63 mg/L) was achieved at 6-7 days post-infection at 30 degrees C by transducing CHO-cTA-CAR with 500 infectious particles/cell. Because numerous AdVs can now be generated within a few weeks and large-scale production of AdVs is now a routine procedure, this system could be used to produce rapidly milligram quantities of a battery of recombinant proteins as well as for large-scale protein production.

  5. Efficient targeting of adenoviral vectors to integrin positive vascular cells utilizing a CAR-cyclic RGD linker protein.

    PubMed

    Krom, Y D; Gras, J C E; Frants, R R; Havekes, L M; van Berkel, T J; Biessen, E A L; van Dijk, K Willems

    2005-12-16

    Vascular smooth muscle (VSMC) and endothelial cells (EC) are particularly resistant to infection by type 5 adenovirus (Ad) vectors. To overcome this limitation and target Ad vectors to ubiquitously expressed alpha(V)beta(3/5) integrins, we have generated a linker protein consisting of the extracellular domain of the coxsackie adenovirus receptor (CAR) connected via avidin to a biotinylated cyclic (c) RGD peptide. After optimization of CAR to cRGD and to Ad coupling, infection of mouse heart endothelial cells (H5V) could be augmented significantly, as demonstrated by 600-fold increased transgene expression levels. In EOMAs, a hemangioendothelioma-derived cell line, the fraction of infected cells was enhanced 4- to 6-fold. Furthermore, the fraction of infected primary mouse VSMC was increased from virtually 0% to 25%. Finally, in human umbilical vein endothelial cells, the number of GFP positive cells was enhanced from 2% to 75%. In conclusion, CAR-cRGD is a versatile and highly efficient construct to target Ad vectors to both transformed and primary VSMC and EC.

  6. Tuning Surface Charge and PEGylation of Biocompatible Polymers for Efficient Delivery of Nucleic Acid or Adenoviral Vector.

    PubMed

    Choi, Joung-Woo; Kim, Jaesung; Bui, Quang Nam; Li, Yi; Yun, Chae-Ok; Lee, Doo Sung; Kim, Sung Wan

    2015-08-19

    As an effective and safe strategy to overcome the limits of therapeutic nucleic acid or adenovirus (Ad) vectors for in vivo application, various technologies to modify the surface of vectors with nonimmunogenic/biocompatible polymers have been emerging in the field of gene therapy. However, the transfection efficacy of the polymer to transfer genetic materials is still relatively weak. To develop more advanced and effective polymers to deliver not only Ad vectors, but also nucleic acids, 6 biocompatible polymers were newly designed and synthesized to different sizes (2k, 3.4k, or 5k) of poly(ethylene) glycol (PEG) and different numbers of amine groups (2 or 5) based on methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-l-glutamate (PNLG). We characterized size distribution and surface charge of 6 PNLGs after complexation with either nucleic acid or Ad. Among all 6 PNLGs, the 5 amine group PNLG showed the strongest efficacy in delivering nucleic acid as well as Ad vectors. Interestingly, cellular uptake results showed higher uptake ability in Ad complexed with 2 amine group PNLG than Ad/5 amine group PNLG, suggesting that the size of Ad/PNLGs is more essential than the surface charge for cellular uptake in polymers with charges greater than 30 mV. Moreover, the endosome escape ability of Ad/PNLGs increased depending on the number of amine groups, but decreased by PEG size. Cancer cell killing efficacy and immune response studies of oncolytic Ad/PNLGs showed 5 amine group PNLG to be a more effective and safe carrier for delivering Ad. Overall, these studies provide new insights into the functional mechanism of polymer-based approaches to either nucleic acid or Ad/nanocomplex. Furthermore, the identified ideal biocompatible PNLG polymer formulation (5 amine/2k PEG for nucleic acid, 5 amine/5k PEG for Ad) demonstrated high transduction efficiency as well as therapeutic value (efficacy and safety) and thus has strong potential for in vivo therapeutic

  7. A Multi-Antigenic Adenoviral-Vectored Vaccine Improves BCG-Induced Protection of Goats against Pulmonary Tuberculosis Infection and Prevents Disease Progression

    PubMed Central

    Pérez de Val, Bernat; Vidal, Enric; Villarreal-Ramos, Bernardo; Gilbert, Sarah C.; Andaluz, Anna; Moll, Xavier; Martín, Maite; Nofrarías, Miquel; McShane, Helen; Vordermeier, H. Martin; Domingo, Mariano

    2013-01-01

    The “One world, one health” initiative emphasizes the need for new strategies to control human and animal tuberculosis (TB) based on their shared interface. A good example would be the development of novel universal vaccines against Mycobacterium tuberculosis complex (MTBC) infection. This study uses the goat model, a natural TB host, to assess the protective effectiveness of a new vaccine candidate in combination with Bacillus Calmette-Guerin (BCG) vaccine. Thirty-three goat kids were divided in three groups: Group 1) vaccinated with BCG (week 0), Group 2) vaccinated with BCG and boosted 8 weeks later with a recombinant adenovirus expressing the MTBC antigens Ag85A, TB10.4, TB9.8 and Acr2 (AdTBF), and Group 3) unvaccinated controls. Later on, an endobronchial challenge with a low dose of M. caprae was performed (week 15). After necropsy (week 28), the pulmonary gross pathology was quantified using high resolution Computed Tomography. Small granulomatous pulmonary lesions (< 0.5 cm diameter) were also evaluated through a comprehensive qualitative histopathological analysis. M. caprae CFU were counted from pulmonary lymph nodes. The AdTBF improved the effects of BCG reducing gross lesion volume and bacterial load, as well as increasing weight gain. The number of Ag85A-specific gamma interferon-producing memory T-cells was identified as a predictor of vaccine efficacy. Specific cellular and humoral responses were measured throughout the 13-week post-challenge period, and correlated with the severity of lesions. Unvaccinated goats exhibited the typical pathological features of active TB in humans and domestic ruminants, while vaccinated goats showed only very small lesions. The data presented in this study indicate that multi-antigenic adenoviral vectored vaccines boosts protection conferred by vaccination with BCG. PMID:24278420

  8. Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo.

    PubMed

    Xiang, D-B; Chen, Z-T; Wang, D; Li, M-X; Xie, J-Y; Zhang, Y-S; Qing, Y; Li, Z-P; Xie, J

    2008-10-01

    Apurinic/apyrimidinic endonuclease (APE1), a bifunctional AP endonuclease/redox factor, is important in DNA repair and redox signaling, may be associated with radioresistance. Here we investigate whether targeted inhibition of APE1 can sensitize tumor cells to irradiation in vitro and in vivo. We first constructed chimeric adenoviral vector Ad5/F35 carrying human APE1 siRNA (Ad5/F35-APE1 siRNA). The infectivity of chimeric Ad5/F35 to LOVO colon cancer cells was greater than that of Ad5. APE1 was strongly expressed and nuclear factor kappaB (NF-kappaB), a downstream molecule of APE1, known as a radioresistance factor, was constitutively active in LOVO cells. Infection of LOVO cells with Ad5/F35-APE1 siRNA resulted in a dose-dependent decrease of APE1 protein and AP endonuclease activity in vitro. Ad5/F35-APE1 siRNA significantly enhanced sensitivity of LOVO cells to irradiation in clonogenic survival assays, associated with increased cell apoptosis. The APE1 expression in LOVO cells was induced by irradiation in a dose-dependent manner, accompanied with the enhancement of DNA-binding activity of NF-kappaB and Ad5/F35-APE1 siRNA effectively inhibited constitutive and irradiation-induced APE1 expression and NF-kappaB activation. In a subcutaneous nude mouse colon cancer model, Ad5/F35-APE1 siRNA (5 x 10(8) IU, intratumoral injection) inhibited the expression of APE1 protein in LOVO xenografts, and significantly enhanced inhibition of tumor growth by irradiation. In conclusion, APE1 may be involved as one of the radioresistance factors, and targeted inhibition of APE1 shows an effective means of enhancing tumor sensitivity to radiotherapy.

  9. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul

    2013-01-01

    CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359

  10. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors.

    PubMed

    Fallaux, F J; Kranenburg, O; Cramer, S J; Houweling, A; Van Ormondt, H; Hoeben, R C; Van Der Eb, A J

    1996-01-20

    Currently, the preferred host for the production of early region-1 (E1)-deleted recombinant adenoviruses (rAdV) is cell line 293, which was generated by transformation of human embryonic kidney cells by sheared adenovirus 5 (Ad5) DNA. To develop alternative hosts for the production of rAdV, we generated adenovirus-transformed human cell lines by transformation of human embryonic retinoblasts (HER) with a plasmid containing base pairs 79-5789 of the Ad5 genome. One of the established HER cell lines, which we called 911, exhibited favorable growth characteristics and was chosen for further study. This cell line is demonstrated to have several characteristics in common with the well-known 293 cell line: The 911 cell line is highly transfectable, and exhibits similar frequencies of homologous recombination. However, it has additional characteristics that make it a useful alternative for 293. The 911 cells perform particularly well in plaque assays. Upon infection with E1-deleted adenoviruses, plaques become apparent in monolayers of 911 cells already after 3-4 days versus 4-10 days in monolayers of 293 cells, thereby reducing the time required for quantitative plaque assays. Furthermore, yields of E1-deleted adenovirus vectors up to three times as high as those achieved with 293 cells can be obtained with 911 cells. Finally, the Ad5-DNA content of the 911 cell line is completely known. These features make the 911 cell line a useful alternative for the construction, propagation, and titration of E1-deleted recombinant adenoviruses.

  11. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon-catheter hepatic delivery of helper-dependent adenoviral vector

    PubMed Central

    Oka, Kazuhiro; Mullins, Charles E.; Kushwaha, Rampratap S.; Leen, Ann M; Chan, Lawrence

    2014-01-01

    Autosomal dominant familial hypercholesterolemia (FH) is a monogenic life-threatening disease. We tested the efficacy of low-density lipoprotein receptor (LDLR) gene therapy using helper-dependent adenoviral vector (HDAd) in a nonhuman primate model of FH, comparing intravenous injection versus intrahepatic arterial injection in the presence of balloon catheter-based hepatic venous occlusion. Rhesus monkeys heterozygous for mutant LDLR gene (LDLR+/−) developed hypercholesterolemia while on a high cholesterol diet. We treated them with HDAd-LDLR either by intravenous delivery, or by catheter-based intra-hepatic artery injection. Intravenous injection of ≤1.1×1012 viral particles (vp)/kg failed to have any effect on plasma cholesterol. Increasing the dose to 5×1012 vp/kg led to a 59% lowering of the plasma cholesterol that lasted for 30 days before it returned to pretreatment levels by day 40. A further increase in dose to 8.4×1012 vp/kg resulted in severe lethal toxicity. In contrast, direct hepatic artery injection following catheter-based hepatic venous occlusion enabled the use of a reduced HDAd-LDLR dose of 1×1012 vp/kg that lowered plasma cholesterol within a week, and reached a nadir of 59% pretreatment level on days 20 to 48 after injection. Serum alanine aminotransaminase (ALT) remained normal until day 48 when it went up slightly and stayed mildly elevated on day 72 before it returned to normal on day 90. In this monkey, the HDAd-LDLR-induced trough of hypocholesterolemia started trending upwards on day 72 and returned to pretreatment levels on day 120. We measured the LDL apolipoprotein B turnover rate at 10 days before, and again 79 days after, HDAd-LDLR treatment in two monkeys that exhibited a cholesterol lowering response. HDAd-LDLR therapy increased the LDL fractional catabolic rate by 78% and 50%, respectively, in the two monkeys, coincident with an increase in hepatic LDLR mRNA expression. In conclusion, HDAd-mediated LDLR gene delivery to

  12. Formulation and in vitro and in vivo evaluation of a cationic emulsion as a vehicle for improving adenoviral gene transfer.

    PubMed

    Kim, Soo-Yeon; Lee, Sang-Jin; Lim, Soo-Jeong

    2014-11-20

    Advancements in the use of adenoviral vectors in gene therapy have been limited by the need for specific receptors on targeted cell types, immunogenicity and hepatotoxicity following systemic administration. In an effort to overcome the current limitations of adenovirus-mediated gene transfer, cationic emulsions were explored as a vehicle to improve adenoviral vector-mediated gene transfer. Complexation of adenovirus with emulsions containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) enhanced the potency of adenoviral gene transfer as compared to DOTAP liposomes. Among the various emulsion formulations examined, those containing the iodized oil, Lipiodol, as an inner core and stabilized by DOTAP/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly-ethylene glycol)-5000 most efficiently enhanced adenovirus-mediated gene transfer. Optimized Lipiodol-containing emulsions appear to be more strongly associated with adenoviral particles, exhibiting higher complex stability compared to other formulations. They provide the adenovirus with an additional cellular entry mechanism through caveolae-dependent endocytosis, thereby increasing adenovirus entry into cells. Furthermore, adenovirus-emulsion complexation significantly reduced transgene expression in the liver following systemic administration. These findings indicate that emulsion complexation may be a promising strategy for overcoming many of the challenges associated with the use of adenoviruses in gene therapy. Additionally, the observation of increased transgene expression in lung together with reduced expression in liver demonstrates that the adenovirus-emulsion complex may act as a lung-targeting adenoviral gene delivery system.

  13. Enhanced anti-tumor effects of combined MDR1 RNA interference and human sodium/iodide symporter (NIS) radioiodine gene therapy using an adenoviral system in a colon cancer model

    PubMed Central

    Ahn, S J; Jeon, Y H; Lee, Y J; Lee, Y L; Lee, S-W; Ahn, B-C; Ha, J-H; Lee, J

    2010-01-01

    Using an adenoviral system as a delivery mediator of therapeutic gene, we investigated the therapeutic effects of the use of combined MDR1 shRNA and human NIS (hNIS) radioiodine gene therapy in a mouse colon xenograft model. In vitro uptake of Tc-99m sestamibi was increased approximately two-fold in cells infected with an adenovirus vector that expressed MDR1 shRNA (Ad-shMDR1) and I-125 uptake was 25-fold higher in cells infected with an adenovirus vector that expressed human NIS (Ad-hNIS) as compared with control cells. As compared with doxorubicin or I-131 treatment alone, the combination of doxorubicin and I-131 resulted in enhanced cytotoxicity for both Ad-shMDR1- and Ad-hNIS-infected cells, but not for control cells. In vivo uptake of Tc-99m sestamibi and Tc-99m pertechnetate was twofold and 10-fold higher for Ad-shMDR1 and Ad-hNIS-infected tumors as compared with tumors infected with a control adenovirus construct that expressed β-galactrosidase (Ad-LacZ), respectively. In mice treated with either doxorubicin or I-131 alone, there was a slight delay in tumor growth as compared to mice treated with Ad-LacZ. However, combination therapy with doxorubicin and I-131 induced further significant inhibition of tumor growth as compared with mice treated with Ad-LacZ. We have shown successful therapeutic efficacy of combined MDR shRNA and hNIS radioiodine gene therapy using an adenoviral vector system in a mouse colon cancer model. Adenovirus-mediated cancer gene therapy using MDR1 shRNA and hNIS would be a useful tool for the treatment of cancer cells expressing multi-drug resistant genes. PMID:20186172

  14. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  15. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon.

    PubMed

    Akbulut, Hakan; Zhang, Lixin; Tang, Yucheng; Deisseroth, Albert

    2003-05-01

    Prodrug activating transcription unit gene therapy is one of several promising approaches to cancer gene therapy. Combining that approach with conditionally replication-competent viral vectors that are truly tumor specific has been an important objective of recent work. In this study, we report the construction of a new conditionally replication-competent bicistronic adenoviral vector in which the cytosine deaminase (CD) gene and the E1a gene are driven by the L-plastin tumor-specific promoter (AdLpCDIRESE1a). A similar vector driven by the CMV promoter has also been constructed (AdCMVCDIRESE1a) as a control. We have carried out in vitro cytotoxicity in carcinomas of the breast, ovary and colon, and in vivo efficacy studies with these vectors in an animal model of colon cancer. While the addition of the AdLpCDIRESE1a vector to established cancer cell lines showed significant cytotoxicity in tumor cells derived from carcinomas of the breast (MCF-7), colon (HTB-38) and ovary (Ovcar 5), no significant toxicity was seen in explant cultures of normal human mammary epithelial cells (HMEC) exposed to this vector. The addition of 5-fluorocytosine (5FC) significantly increased the cytotoxicity in an additive fashion of both the AdLpCDIRESE1a and AdCMVCDIRESE1a vectors as well as that of the AdLpCD replication incompetent vector to established tumor cell lines. However, no significant cytotoxicity was observed with the addition of 5FC to explant cultures of normal human mammary epithelial cells that had been exposed to the L-plastin-driven vectors. Studies with mixtures of infected and uninfected tumor cell lines showed that the established cancer cell lines infected with the AdLpCDIRESE1a vector generated significant toxicity to surrounding uninfected cells (the "bystander effect") even at a ratio of 0.25 of infected cells to infected + uninfected cells in the presence of 5FC. The injection of the AdLpCDIRESE1a vector into subcutaneous deposits of human tumor nodules in the

  16. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus.

    PubMed

    Singh, Neetu; Pandey, Aseem; Jayashankar, Lakshmi; Mittal, Suresh K

    2008-05-01

    Because of the high prevalence of adenovirus (Ad) infections in humans, it is believed that pre-existing Ad-neutralizing antibodies (vector immunity) may negatively impact the immune response to vaccine antigens when delivered by human Ad (HAd) vectors. In order to evaluate whether bovine Ad subtype 3 (BAd3), a non-HAd vector, can effectively elude high levels of pre-existing vector immunity, naïve and HAd serotype 5 (HAd)-primed mice were immunized with BAd-H5HA [BAd3 vector expressing the hemagglutinin (HA) gene from H5N1 influenza virus]. Even in the presence of very high levels of HAd-specific neutralizing antibody, no significant reductions in HA-specific humoral and cell-mediated immune (CMI) responses were observed in HAd-primed mice immunized with BAd-H5HA. In naïve mice immunized with HAd-H5HA (HAd5 vector expressing H5N1 HA) and boosted with BAd-H5HA, the humoral responses elicited were significantly higher (P < 0.01) than with either HAd-H5HA or BAd-H5HA alone, while the CMI responses were comparable in the groups. This finding underlines the importance of a heterologous prime-boost approach for achieving an enhanced immune response. The immunization of naïve or HAd-primed mice with BAd-H5HA bestowed full protection from morbidity and mortality following a potentially lethal challenge with A/Hong Kong/483/97. These results demonstrate the importance of BAd vectors as an alternate or supplement to HAd vectors for influenza pandemic preparedness.

  17. Fatal systemic adenoviral infection superimposed on pulmonary mucormycosis in a child with acute leukemia

    PubMed Central

    Seo, Yu Mi; Hwang-Bo, Seok; Kim, Seong koo; Han, Seung Beom; Chung, Nack-Gyun; Kang, Jin Han

    2016-01-01

    Abstract Background: Although adenovirus (ADV) infection usually causes self-limiting respiratory disorders in immune competent children; severe and systemic ADV infection in children undergoing chemotherapy for leukemia has been continuously reported. Nevertheless, there has been no consensus on risk factors and treatment strategies for severe ADV infection in children undergoing chemotherapy. Case summary: We report a case of a 15-year-old boy with a fatal systemic ADV infection. He had received reinduction chemotherapy for relapsed acute lymphoblastic leukemia under continuing antifungal therapy for previously diagnosed fungal pneumonia. He complained of fever and right shoulder pain 4 days after completing the reinduction chemotherapy. In spite of appropriate antibiotic and antifungal therapy, pneumonia was aggravated and gross hematuria was accompanied. A multiplex polymerase chain reaction test for respiratory viruses was positive for ADV in a blood sample, and a urine culture was positive for ADV. He received oral ribavirin, intravenous immunoglobulin, and intravenous cidofovir therapy; however, he eventually died. Relapsed leukemia, concurrent fungal pneumonia, and delayed cidofovir administration were considered the cause of the grave outcome in this patient. Conclusion: ADV may cause severe infections not only in allogeneic hematopoietic cell transplant recipients, but also in patients undergoing chemotherapy for acute leukemia. The risk factors for severe ADV infection in patients undergoing chemotherapy should be determined in the future studies, and early antiviral therapy should be administered to immune compromised patients with systemic ADV infection. PMID:27749571

  18. Hybrid Nonviral/Viral Vector Systems for Improved piggyBac DNA Transposon In Vivo Delivery

    PubMed Central

    Cooney, Ashley L; Singh, Brajesh K; Sinn, Patrick L

    2015-01-01

    The DNA transposon piggyBac is a potential therapeutic agent for multiple genetic diseases such as cystic fibrosis (CF). Recombinant piggyBac transposon and transposase are typically codelivered by plasmid transfection; however, plasmid delivery is inefficient in somatic cells in vivo and is a barrier to the therapeutic application of transposon-based vector systems. Here, we investigate the potential for hybrid piggyBac/viral vectors to transduce cells and support transposase-mediated genomic integration of the transposon. We tested both adenovirus (Ad) and adeno-associated virus (AAV) as transposon delivery vehicles. An Ad vector expressing hyperactive insect piggyBac transposase (iPB7) was codelivered. We show transposase-dependent transposition activity and mapped integrations in mammalian cells in vitro and in vivo from each viral vector platform. We also demonstrate efficient and persistent transgene expression following nasal delivery of piggyBac/viral vectors to mice. Furthermore, using piggyBac/Ad expressing Cystic Fibrosis transmembrane Conductance Regulator (CFTR), we show persistent correction of chloride current in well-differentiated primary cultures of human airway epithelial cells derived from CF patients. Combining the emerging technologies of DNA transposon-based vectors with well-studied adenoviral and AAV delivery provides new tools for in vivo gene transfer and presents an exciting opportunity to increase the delivery efficiency for therapeutic genes such as CFTR. PMID:25557623

  19. E1(-)E4(+) adenoviral gene transfer vectors function as a "pro-life" signal to promote survival of primary human endothelial cells.

    PubMed

    Ramalingam, R; Rafii, S; Worgall, S; Brough, D E; Crystal, R G

    1999-05-01

    Although endothelial cells are quiescent and long-lived in vivo, when they are removed from blood vessels and cultured in vitro they die within days to weeks. In studies of the interaction of E1(-)E4(+) replication-deficient adenovirus (Ad) vectors and human endothelium, the cells remained quiescent and were viable for prolonged periods. Evaluation of these cultures showed that E1(-)E4(+) Ad vectors provide an "antiapoptotic" signal that, in association with an increase in the ratio of Bcl2 to Bax levels, induces the endothelial cells to enter a state of "suspended animation," remaining viable for at least 30 days, even in the absence of serum and growth factors. Although the mechanisms initiating these events are unclear, the antiapoptoic signal requires the presence of E4 genes in the vector genome, suggesting that one or more E4 open reading frames of subgroup C Ad initiate a "pro-life" program that modifies cultured endothelial cells to survive for prolonged periods.

  20. Protein Kinase Cδ Targets Mitochondria, Alters Mitochondrial Membrane Potential, and Induces Apoptosis in Normal and Neoplastic Keratinocytes When Overexpressed by an Adenoviral Vector

    PubMed Central

    Li, Luowei; Lorenzo, Patricia S.; Bogi, Krisztina; Blumberg, Peter M.; Yuspa, Stuart H.

    1999-01-01

    Inactivation of protein kinase Cδ (PKCδ) is associated with resistance to terminal cell death in epidermal tumor cells, suggesting that activation of PKCδ in normal epidermis may be a component of a cell death pathway. To test this hypothesis, we constructed an adenovirus vector carrying an epitope-tagged PKCδ under a cytomegalovirus promoter to overexpress PKCδ in normal and neoplastic keratinocytes. While PKCδ overexpression was detected by immunoblotting in keratinocytes, the expression level of other PKC isozymes, including PKCα, PKCɛ, PKCζ, and PKCη, did not change. Calcium-independent PKC-specific kinase activity increased after infection of keratinocytes with the PKCδ adenovirus. Activation of PKCδ by 12-O-tetradecanoylphorbol-13-acetate (TPA) at a nanomolar concentration was lethal to normal and neoplastic mouse and human keratinocytes overexpressing PKCδ. Lethality was inhibited by PKC selective inhibitors, GF109203X and Ro-32-0432. TPA-induced cell death was apoptotic as evidenced by morphological criteria, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay, DNA fragmentation, and increased caspase activity. Subcellular fractionation indicated that PKCδ translocated to a mitochondrial enriched fraction after TPA activation, and this finding was confirmed by confocal microscopy of cells expressing a transfected PKCδ-green fluorescent protein fusion protein. Furthermore, activation of PKCδ in keratinocytes altered mitochondrial membrane potential, as indicated by rhodamine-123 fluorescence. Mitochondrial inhibitors, rotenone and antimycin A, reduced TPA-induced cell death in PKCδ-overexpressing keratinocytes. These results indicate that PKCδ can initiate a death pathway in keratinocytes that involves direct interaction with mitochondria and alterations of mitochondrial function. PMID:10567579

  1. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  2. Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

    PubMed Central

    Allen, Susan; Than, Soe; Adams, Elizabeth M.; Graham, Barney S.; Koup, Richard A.; Bailer, Robert T.; Smith, Carol; Dally, Len; Tarragona-Fiol, Tony; Bergin, Philip J.; Hayes, Peter; Ho, Martin; Loughran, Kelley; Komaroff, Wendy; Stevens, Gwynneth; Thomson, Helen; Boaz, Mark J.; Cox, Josephine H.; Schmidt, Claudia; Gilmour, Jill; Nabel, Gary J.; Fast, Patricia

    2010-01-01

    Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial

  3. Readministration of adenoviral gene delivery to dopamine neurons.

    PubMed

    Gonzalez, Sarah C; McMenamin, Margaret M; Charlton, Harry M; Goodman, James; Lantos, Tibor; Simpson, Christine; Wood, Matthew J A

    2007-10-01

    An approach currently being explored as treatment for Parkinson's disease is gene therapy. An important question concerns the duration of transgene expression in dopamine neurons and the issues of vector persistence, neuronal damage and the feasibility of readministering vector to the same neuronal population. We show, using an adenoviral vector expressing the LacZ reporter gene, that transgene expression declined over time but with minimal loss of dopamine neurons or vector DNA. Readministration of vector resulted in low levels of transgene delivery to the neurons. Moreover, the neurons to which vector had already been delivered were unable to transport the retrograde tracer fluorogold. Our findings indicate that transgene expression declined in dopamine neurons despite the persistence of virus, and the capacity to readminister vector to these neurons was limited. PMID:17885611

  4. Homologous Boosting with Adenoviral Serotype 5 HIV Vaccine (rAd5) Vector Can Boost Antibody Responses despite Preexisting Vector-Specific Immunity in a Randomized Phase I Clinical Trial

    PubMed Central

    Sarwar, Uzma N.; Novik, Laura; Enama, Mary E.; Plummer, Sarah A.; Koup, Richard A.; Nason, Martha C.; Bailer, Robert T.; McDermott, Adrian B.; Roederer, Mario; Mascola, John R.; Ledgerwood, Julie E.; Graham, Barney S.

    2014-01-01

    Background Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods Thirty-one adults, 18–55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 1010 PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity. Trial Registration Clinicaltrials.gov NCT00709605 NCT00709605 PMID:25264782

  5. Magnetically Responsive Biodegradable Nanoparticles Enhance Adenoviral Gene Transfer in Cultured Smooth Muscle and Endothelial Cells

    PubMed Central

    Chorny, Michael; Fishbein, Ilia; Alferiev, Ivan; Levy, Robert J.

    2012-01-01

    Replication-defective adenoviral (Ad) vectors have shown promise as a tool for gene delivery-based therapeutic applications. Their clinical use is however limited by therapeutically suboptimal transduction levels in cell types expressing low levels of Coxsackie-Ad receptor (CAR), the primary receptor responsible for the cell entry of the virus, and by systemic adverse reactions. Targeted delivery achievable with Ad complexed with biodegradable magnetically responsive nanoparticles (MNP) may therefore be instrumental for improving both the safety and efficiency of these vectors. Our hypothesis was that magnetically driven delivery of Ad affinity-bound to biodegradable MNP can substantially increase transgene expression in CAR deficient vascular cells in culture. Fluorescently labeled MNP were formulated from polylactide with inclusion of iron oxide and surface-modified with the D1 domain of CAR as an affinity linker. MNP cellular uptake and GFP reporter transgene expression were assayed fluorimetrically in cultured endothelial and smooth muscle cells using λex/λem of 540 nm/575 nm and 485 nm/535 nm, respectively. Stable vector-specific association of Ad with MNP resulted in formation of MNP–Ad complexes displaying rapid cell binding kinetics following a brief exposure to a high gradient magnetic field with resultant gene transfer levels significantly increased compared to free vector or nonmagnetic control treatment. Multiple regression analysis suggested a mechanism of MNP–Ad mediated transduction distinct from that of free Ad, and confirmed the major contribution of the complexes to the gene transfer under magnetic conditions. The magnetically enhanced transduction was achieved without compromising the cell viability or growth kinetics. The enhancement of adenoviral gene delivery by affinity complexation with biodegradable MNP represents a promising approach with a potential to extend the applicability of the viral gene therapeutic strategies. PMID:19496618

  6. System for Automated Calibration of Vector Modulators

    NASA Technical Reports Server (NTRS)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create

  7. Adjuvants and vector systems for allergy vaccines.

    PubMed

    Moingeon, Philippe; Lombardi, Vincent; Saint-Lu, Nathalie; Tourdot, Sophie; Bodo, Véronique; Mascarell, Laurent

    2011-05-01

    Allergen-specific immunotherapy represents a curative treatment of type I allergies. Subcutaneous immunotherapy is conducted with allergens adsorbed on aluminum hydroxide or calcium phosphate particles, whereas sublingual immunotherapy relies on high doses of soluble allergen without any immunopotentiator. There is a potential benefit of adjuvants enhancing regulatory and Th1 CD4+T cell responses during specific immunotherapy. Molecules affecting dendritic cells favor the induction of T regulatory cell and Th1 responses and represent valid candidate adjuvants for allergy vaccines. Furthermore, the interest in viruslike particles and mucoadhesive particulate vector systems, which may better address the allergen(s) to tolerogenic antigen-presenting cells, is documented.

  8. Lipid- and adenoviral-mediated gene transfer into AIDS-Kaposi's sarcoma cell lines.

    PubMed

    Campain, J A; Matassa, A A; Felgner, P L; Barnhart, K M; Curiel, D T; Harrison, G S

    1998-01-01

    Kaposi's sarcoma (KS) is the most frequent malignancy occurring in HIV-positive individuals. AIDS-KS is a more aggressive disease than the classical form, frequently having a rapid clinical course with numerous serious complications. Current systemic treatments for KS, such as chemotherapy and the administration of biological modifiers, are complicated by both the drug resistance of the tumor and the dose-limiting toxicity of the reagents. The relative accessibility of many KS lesions makes the disease a particularly attractive candidate for in vivo gene therapy protocols. In this regard, we are interested in delivering conditionally toxic suicide and/or antiangiogenic vectors to accomplish targeted cell death selectively in AIDS-KS cells. To this end, we examined both cationic lipid- and adenoviral-mediated DNA transfection methods. Using the firefly luciferase reporter gene, we optimized numerous variables known to be important in lipid-mediated DNA transfection, including lipid formulation, the amount of lipid and DNA, lipid/DNA ratio, and cell concentration. Under optimal transfection conditions, approximately 5-25% of KS cells expressed the introduced DNA sequences. Adenoviral-mediated DNA delivery was more efficient than lipid delivery in 4 of 5 primary KS cell lines. Two of the lines (RW248 and RW376) were transduced by adenovirus at frequencies approaching 100%; two cell lines (CVU-1 and RW80) gave efficiencies of 20-35%. Two immortalized KS cell lines (KS Y-1 and KS SLK) were poorly infected, giving a transduction efficiency of <5%. These findings demonstrate that gene transfer into AIDS-KS cells is feasible, and suggest that vector strategies may be permissive for translating gene therapy approaches for the disease.

  9. Ray vector fields, prismatic effect, and thick astigmatic optical systems.

    PubMed

    Harris, W F

    1996-06-01

    The application of the concept of ray vector fields to optical systems is reexamined. Paraxial or linear optics defines a four-dimensional ray vector field for any optical system: the vector field maps the incident ray vector into the emergent ray vector. In the case of thin systems, including thin astigmatic lenses, one can define a vector field of reduced dimensionality: the vector field is two-dimensional and maps the ray's incident position into the change in reduced direction. When the index of refraction is the same before and after a thin system, the change in reduced direction is the reduced deflection through the system or the reduced prismatic effect. Contrary to what has recently been claimed, this type of two-dimensional vector field does not apply in general to thick systems. However, a number of different types of two-dimensional vector fields can be defined for various particular classes of optical systems. Thick systems differ qualitatively from thin systems. They do not have equivalent thin lenses and cannot generally be replaced by thin lenses. Equations are derived for the change in reduced direction and deflection for a ray through optical systems in general and through separated two- and three-lens systems in particular. PMID:8807654

  10. Adenoviral-mediated RNA interference targeting URG11 inhibits growth of human hepatocellular carcinoma.

    PubMed

    Fan, Rui; Li, Xiaohua; Du, Wenqi; Zou, Xue; Du, Rui; Zhao, Lina; Luo, Guanhong; Mo, Ping; Xia, Lin; Pan, Yanglin; Shi, Yongquan; Lian, Zhaorui; Feitelson, Mark A; Nie, Yongzhan; Liu, Jie; Fan, Daiming

    2011-06-15

    Hepatocellular carcinoma (HCC) is the second most common malignancy in Asia, with a 5-year survival rate of less than 5% due to high recurrence after surgery and resistance to chemotherapy. A variety of therapeutic interventions to treat HCC, particularly gene therapy, have recently been investigated in tumor model systems to provide a more complete understanding of hepatocarcinogenesis and effectively design therapeutic strategies to treat this disease. In our study, we constructed an adenoviral vector expressing small interfering RNA (siRNA) targeting a newly discovered gene named upregulated gene 11 (URG11). We introduced this vector into HCC cells to investigate the role of URG11 in HCC carcinogenesis. We observed that upon URG11 knockdown, HCC cell proliferation was inhibited through downregulation of several G1-S phase related molecules including cyclin D1 and apoptosis was induced as a result of Bcl-2 downregulation. Besides decreased expression of cyclin D1, CDK4, pRb and Bcl-2, URG11 also suppressed several other proteins including CAPN9, which was identified by cDNA microarray and 2D gel electrophoresis. Moreover, Ad-URG11-siRNA significantly suppressed HCC tumor growth in nude mice. In conclusion, Ad-URG11-siRNA can significantly suppress HCC tumor growth in vitro and in vivo by silencing the URG11 gene, and the use of this vector for gene therapy may represent a novel strategy to treat human HCC.

  11. Polyethyleneimine-coating enhances adenoviral transduction of mesenchymal stem cells.

    PubMed

    Yao, Xinglei; Zhou, Na; Wan, Li; Su, Xiaodong; Sun, Zhao; Mizuguchi, Hiroyuki; Yoshioka, Yasuo; Nakagawa, Shinsaku; Zhao, Robert Chunhua; Gao, Jian-Qing

    2014-05-01

    Mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential, which makes them attractive targets for regenerative medicine applications. Efficient gene transfer into MSCs is essential for basic research in developmental biology and for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors (CARs), but not into MSCs, which lack CAR expression. To overcome this problem, an Adv coated with cationic polymer polyethyleneimine (PEI) was developed. In this study, we demonstrated that PEI coating with an optimal ratio can enhance adenoviral transduction of MSCs without cytotoxicity. We also investigated the physicochemical properties and internalization mechanisms of the PEI-coated Adv. These results could help to evaluate the potentiality of the PEI-coated Adv as a prototype vector for efficient and safe transduction into MSCs. PMID:24727452

  12. Early osteoblastic differentiation induced by dexamethasone enhances adenoviral gene delivery to marrow stromal cells.

    PubMed

    Blum, Jeremy S; Parrott, M Brandon; Mikos, Antonios G; Barry, Michael A

    2004-03-01

    We investigated the implications of induced osteogenic differentiation on gene delivery in multipotent rat marrow stromal cells (MSCs). Prior to genetic manipulation cells were cultured with or without osteogenic supplements (5x10(-8) M dexamethasone, 160 microM l-ascorbic acid 2-phosphate, and 10 mM beta-glycerophosphate). Comparison of liposome, retroviral, and adenoviral vectors demonstrated that all three vectors could mediate gene delivery to primary rat MSCs. When these vectors were applied in the absence or presence of osteogenic supplements, we found that MSCs differentiated prior to transduction with adenovirus type 5 vectors produced a 300% increase in transgene expression compared to MSCs that were not exposed to osteogenic supplements. This differentiation effect appeared specific to adenoviral mediated gene delivery, since there was minimal increase in retroviral gene delivery and no increase in liposome gene delivery when MSCs were treated with osteogenic supplements. In addition, we also determined this increase in transgene production to occur at a higher concentration of dexamethasone (5x10(-8) M) in the culture medium of MSCs prior to adenoviral transduction. We found that this increased transgene production could be extended to the osteogenic protein, human bone morphogenetic protein 2 (hBMP-2). When delivered by an adenoviral vector, hBMP-2 transgene production could be increased from 1.4 ng/10(5) cells/3 days to 4.3 ng/10(5) cells/3 days by culture of MSCs with osteogenic supplements prior to transduction. These results indicate that the utility of MSCs as a therapeutic protein delivery mechanism through genetic manipulation can be enhanced by pre-culture of these cells with dexamethasone. PMID:15013104

  13. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens.

    PubMed

    Afkhami, Sam; Yao, Yushi; Xing, Zhou

    2016-01-01

    Adenoviruses represent the most widely used viral-vectored platform for vaccine design, showing a great potential in the fight against intracellular infectious diseases to which either there is a lack of effective vaccines or the traditional vaccination strategy is suboptimal. The extensive understanding of the molecular biology of adenoviruses has made the new technologies and reagents available to efficient generation of adenoviral-vectored vaccines for both preclinical and clinical evaluation. The novel adenoviral vectors including nonhuman adenoviral vectors have emerged to be the further improved vectors for vaccine design. In this review, we discuss the latest adenoviral technologies and their utilization in vaccine development. We particularly focus on the application of adenoviral-vectored vaccines in mucosal immunization strategies against mucosal pathogens including Mycobacterium tuberculosis, flu virus, and human immunodeficiency virus. PMID:27162933

  14. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens

    PubMed Central

    Afkhami, Sam; Yao, Yushi; Xing, Zhou

    2016-01-01

    Adenoviruses represent the most widely used viral-vectored platform for vaccine design, showing a great potential in the fight against intracellular infectious diseases to which either there is a lack of effective vaccines or the traditional vaccination strategy is suboptimal. The extensive understanding of the molecular biology of adenoviruses has made the new technologies and reagents available to efficient generation of adenoviral-vectored vaccines for both preclinical and clinical evaluation. The novel adenoviral vectors including nonhuman adenoviral vectors have emerged to be the further improved vectors for vaccine design. In this review, we discuss the latest adenoviral technologies and their utilization in vaccine development. We particularly focus on the application of adenoviral-vectored vaccines in mucosal immunization strategies against mucosal pathogens including Mycobacterium tuberculosis, flu virus, and human immunodeficiency virus. PMID:27162933

  15. Vector polarons in a degenerate electron system

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Foell, Charles A.

    2004-08-01

    We consider a one-dimensional model of an electron in a doubly (or nearly) degenerate band that interacts with elastic distortions. We show that the electron equations of motion reduce to a set of coupled nonlinear Schrödinger equations. For the case of interband electron-phonon coupling stemming from local Jahn-Teller interactions, multicomponent self-localized polaron solutions-vector polarons- are described and classified. The phase diagram for the different types of vector polarons in this model is presented. By interpreting the components of the orbital doublet as those of spin- (1)/(2) , our results can also be used to describe bound magnetic polarons.

  16. Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system.

    PubMed

    Souza, Sandra C; Muliro, Kizito V; Liscum, Laura; Lien, Ping; Yamamoto, Mia T; Schaffer, Jean E; Dallal, Gerard E; Wang, Xinzhong; Kraemer, Fredric B; Obin, Martin; Greenberg, Andrew S

    2002-03-01

    Perilipin (Peri) A is a phosphoprotein located at the surface of intracellular lipid droplets in adipocytes. Activation of cyclic AMP-dependent protein kinase (PKA) results in the phosphorylation of Peri A and hormone-sensitive lipase (HSL), the predominant lipase in adipocytes, with concurrent stimulation of adipocyte lipolysis. To investigate the relative contributions of Peri A and HSL in basal and PKA-mediated lipolysis, we utilized NIH 3T3 fibroblasts lacking Peri A and HSL but stably overexpressing acyl-CoA synthetase 1 (ACS1) and fatty acid transport protein 1 (FATP1). When incubated with exogenous fatty acids, ACS1/FATP1 cells accumulated 5 times more triacylglycerol (TG) as compared with NIH 3T3 fibroblasts. Adenoviral-mediated expression of Peri A in ACS1/FATP1 cells enhanced TG accumulation and inhibited lipolysis, whereas expression of HSL fused to green fluorescent protein (GFPHSL) reduced TG accumulation and enhanced lipolysis. Forskolin treatment induced Peri A hyperphosphorylation and abrogated the inhibitory effect of Peri A on lipolysis. Expression of a mutated Peri A Delta 3 (Ser to Ala substitutions at PKA consensus sites Ser-81, Ser-222, and Ser-276) reduced Peri A hyperphosphorylation and blocked constitutive and forskolin-stimulated lipolysis. Thus, perilipin expression and phosphorylation state are critical regulators of lipid storage and hydrolysis in ACS1/FATP1 cells. PMID:11751901

  17. Space transportation system solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1979-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, fail-safe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system has completed the major portion of qualification and verification tests and is prepared to be cleared for the first Shuttle flight (STS-1). Substantiation data will include analytical and test data.

  18. Space Transportation System solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1980-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, failsafe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system completed the required qualification and verification tests and is certified for the intended application. Substantiation data include analytical and test data.

  19. Viral Vectors for Gene Delivery to the Central Nervous System

    PubMed Central

    Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude

    2011-01-01

    The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604

  20. Immunocompromised Children with Severe Adenoviral Respiratory Infection

    PubMed Central

    Tylka, Joanna C.; McCrory, Michael C.; Gertz, Shira J.; Custer, Jason W.; Spaeder, Michael C.

    2016-01-01

    Purpose. To investigate the impact of severe respiratory adenoviral infection on morbidity and case fatality in immunocompromised children. Methods. Combined retrospective-prospective cohort study of patients admitted to the intensive care unit (ICU) in four children's hospitals with severe adenoviral respiratory infection and an immunocompromised state between August 2009 and October 2013. We performed a secondary case control analysis, matching our cohort 1 : 1 by age and severity of illness score with immunocompetent patients also with severe respiratory adenoviral infection. Results. Nineteen immunocompromised patients were included in our analysis. Eleven patients (58%) did not survive to hospital discharge. Case fatality was associated with cause of immunocompromised state (p = 0.015), multiple organ dysfunction syndrome (p = 0.001), requirement of renal replacement therapy (p = 0.01), ICU admission severity of illness score (p = 0.011), and treatment with cidofovir (p = 0.005). Immunocompromised patients were more likely than matched controls to have multiple organ dysfunction syndrome (p = 0.01), require renal replacement therapy (p = 0.02), and not survive to hospital discharge (p = 0.004). One year after infection, 43% of immunocompromised survivors required chronic mechanical ventilator support. Conclusions. There is substantial case fatality as well as short- and long-term morbidity associated with severe adenoviral respiratory infection in immunocompromised children. PMID:27242924

  1. Regulation of the Target Protein (Transgene) Expression in the Adenovirus Vector Using Agonists of Toll-Like Receptors

    PubMed Central

    Bagaev, A. V.; Pichugin, A. V.; Lebedeva, E. S.; Lysenko, A. A.; Shmarov, M. M.; Logunov, D. Yu.; Naroditsky, B. S.; Ataullakhanov, R. I.; Khaitov, R. M.; Gintsburg, A. L.

    2014-01-01

    Replication-defective adenoviral vectors are effective molecular tools for both gene therapy and gene vaccination. Using such vectors one can deliver and express target genes in different epithelial, liver, hematopoietic and immune system cells of animal and human origin. The success of gene therapy and gene vaccination depends on the production intensity of the target protein encoded by the transgene. In this work, we studied influence of Toll-like receptors (TLR) agonists on transduction and expression efficacy of adenoviral vectors in animal and human antigen-presenting cells. We found that agonists of TLR2, 4, 5, 7, 8 and 9 significantly enhance a production of the target protein in cells transduced with adenoviral vector having the target gene insert. The enhancement was observed in dendritic cells and macrophages expressing cytoplasmic (GFP), membrane (HA) or secretory (SEAP) proteins encoded by the respective rAd-vectors. Experiments in mice showed that enhancement of the transgene expression can be achieved in the organism of animals using a pharmaceutical-grade TLR4-agonist. In contrast to other TLR-agonists, the agonist of TLR3 substantially suppressed the expression of transgene in cells transduced with adenoviral vectors having insert of GFP or SEAP target genes. We propose that the enhancement of transgene expression is linked to the activation of MyD88→ NF-kB, while the inhibition of transgene expression depends on TRIF→ IRF signaling pathways. Both of these pathways jointly exploited by TLR4-agonists lead to the enhancement of transgene expression due to the dominant role of the MyD88→ NF-kB signaling. PMID:25558392

  2. Exploring various flux vector splittings for the magnetohydrodynamic system

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Montecinos, Gino I.; Toro, Eleuterio F.

    2016-04-01

    In this paper we explore flux vector splittings for the MHD system of equations. Our approach follows the strategy that was initially put forward in Toro and Vázquez-Cendón (2012) [55]. We split the flux vector into an advected sub-system and a pressure sub-system. The eigenvalues and eigenvectors of the split sub-systems are then studied for physical suitability. Not all flux vector splittings for MHD yield physically meaningful results. We find one that is completely useless, another that is only marginally useful and one that should work well in all regimes where the MHD equations are used. Unfortunately, this successful flux vector splitting turns out to be different from the Zha-Bilgen flux vector splitting. The eigenvalues and eigenvectors of this favorable FVS are explored in great detail in this paper. The pressure sub-system holds the key to finding a successful flux vector splitting. The eigenstructure of the successful flux vector splitting for MHD is thoroughly explored and orthonormalized left and right eigenvectors are explicitly catalogued. We present a novel approach to the solution of the Riemann problem formed by the pressure sub-system for the MHD equations. Once the pressure sub-system is solved, the advection sub-system follows naturally. Our method also works very well for the Euler system. Our FVS successfully captures isolated, stationary contact discontinuities in MHD. However, we explain why any FVS for MHD is not adept at capturing isolated, stationary Alfvenic discontinuities. Several stringent one-dimensional Riemann problems are presented to show that the method works successfully and can effectively capture the full panoply of wave structures that arise in MHD. This includes compound waves and switch-on and switch-off shocks that arise because of the non-convex nature of the MHD system.

  3. Method and system for efficiently searching an encoded vector index

    DOEpatents

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  4. Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection.

    PubMed

    Samrat, Subodh Kumar; Vedi, Satish; Singh, Shakti; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2015-01-01

    Multispecific, broad, and potent T cell responses have been correlated with viral clearance in hepatitis C virus (HCV) infection. However, the majority of infected patients develop chronic infection, suggesting that natural infection mostly leads to development of inefficient T cell immunity. Multiple mechanisms of immune modulation and evasion have been shown in HCV infection through various investigations. This study examined the generation and modulation of T cell responses against core and frameshift (F) proteins of HCV. A single immunization of mice with replication incompetent recombinant adenovirus vectors encoding for F or core antigens induces poor T cell responses and leads to generation of CD4+ and CD8+ T cells with low granzyme B (GrB) expression. These T cells have impaired GrB enzyme activity and are unable to kill peptide loaded target cells. The low intracellular expression of GrB is not due to degranulation of cytotoxic granules containing cytotoxic T cells. Addition of exogenous IL-2 in in vitro cultures leads to partial recovery of GrB production, whereas immunization with the Toll-like receptor (TLR) agonist poly I:C leads to complete restoration of GrB expression in both CD4+ and CD8+ T cells. Thus, a possible new strategy of T cell modulation is recognized wherein effector T cells are caused to be dysfunctional by HCV-derived antigens F or core, and strategies are also delineated to overcome this dysfunction. These studies are important in the investigation of prophylactic vaccine and immunotherapy strategies for HCV infection.

  5. Rapid titration of adenoviral infectivity by flow cytometry in batch culture of infected HEK293 cells.

    PubMed

    Gueret, Vincent; Negrete-Virgen, Juan A; Lyddiatt, Andrew; Al-Rubeai, Mohamed

    2002-01-01

    There is a constant and growing interest in exploitingadenoviruses as vectors for gene therapy when transientexpression of a therapeutic protein is necessary. Therequirement for an increased viral titre has prompted asearch for techniques by which this virus may be assayedwith greater speed and simplicity. Conventional plaqueassay for quantification of adenoviral vectors titre incurrent use is laborious and time-consuming (up to 14days). We report herein a method for the monitoring ofadenovirus expressing green fluorescent protein thatincorporates rapid and easy sample handling by means offlow cytometric analysis. Cells (HEK293) were infectedwith adenovirus at various multiplicity of infection(MOI), harvested 17 to 20 h post infection and analysedby flow cytometry. Assumptions were made that onefluorescent cell was infected by a single infectiousparticle at a relatively low MOI. The adenoviral titrewas subsequently estimated from cell analysis in arelatively short time. The results obtained with an E1-complementing cell line (HEK293) were compared with thatobtained using a non-complementing cell line (A549). APoisson distribution successfully modelled the profile ofinfection as a function of MOI. This provided a betterunderstanding of adenoviral infection at the earlieststage possible. Monitoring of GFP fluorescence and viruspropagation in a batch culture of infected cells wassubsequently used as a practical application of thevalidated method.

  6. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  7. Design of an ion thruster movable grid thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

    2004-08-01

    Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

  8. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination.

  9. Gene drive systems for insect disease vectors.

    PubMed

    Sinkins, Steven P; Gould, Fred

    2006-06-01

    The elegant mechanisms by which naturally occurring selfish genetic elements, such as transposable elements, meiotic drive genes, homing endonuclease genes and Wolbachia, spread at the expense of their hosts provide some of the most fascinating and remarkable subjects in evolutionary genetics. These elements also have enormous untapped potential to be used in the control of some of the world's most devastating diseases. Effective gene drive systems for spreading genes that can block the transmission of insect-borne pathogens are much needed. Here we explore the potential of natural gene drive systems and discuss the artificial constructs that could be envisaged for this purpose.

  10. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge.

  11. Experimental Design for Vector Output Systems

    PubMed Central

    Banks, H.T.; Rehm, K.L.

    2013-01-01

    We formulate an optimal design problem for the selection of best states to observe and optimal sampling times for parameter estimation or inverse problems involving complex nonlinear dynamical systems. An iterative algorithm for implementation of the resulting methodology is proposed. Its use and efficacy is illustrated on two applied problems of practical interest: (i) dynamic models of HIV progression and (ii) modeling of the Calvin cycle in plant metabolism and growth. PMID:24563655

  12. Inducible suicide vector systems for Trypanosoma cruzi.

    PubMed

    Ma, Yanfen; Weiss, Louis M; Huang, Huan

    2015-06-01

    Chagas disease caused by Trypanosoma cruzi is a major neglected tropical parasitic disease. The pathogenesis of this infection remains disputable. There is no suitable vaccine for the prevention. Attenuated live vaccines can provide strong protection against infection; however, there are the concerns about latent infection or reversion to virulence in such attenuated strains. A method to induce T. cruzi death would provide a critical tool for research into the pathophysiological mechanisms and provide a novel design of safe live attenuated vaccines. We established effective inducible systems for T. cruzi employing the degradation domain based on the Escherichia coli dihydrofolate reductase (ecDHFR). The DHFR degradation domain (DDD) can be stabilized by trimethoprim-lactate and can be used to express detrimental or toxic proteins. T. cruzi lines with Alpha-toxin, Cecropin A and GFP under the control of DDD with a hemagglutinin tag (HA) were developed. Interestingly, amastigotes bearing GFP-DDDHA, Alpha-toxin-DDDHA, Cecropin A-DDDHA and DDDHA all resulted in inducible cell death with these fusions, indicating that DDDHA protein is also detrimental to amastigotes. Furthermore, these strains were attenuated in mouse experiments producing no pathological changes and inoculation with these DDDHA strains in mice provided strong protection against lethal wild type infection.

  13. Vector disparity sensor with vergence control for active vision systems.

    PubMed

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  14. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    PubMed Central

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737

  15. The Role of Endosomal Escape and Mitogen-Activated Protein Kinases in Adenoviral Activation of the Innate Immune Response

    PubMed Central

    Smith, Jeffrey S.; Xu, Zhili; Tian, Jie; Palmer, Donna J.; Ng, Philip; Byrnes, Andrew P.

    2011-01-01

    Adenoviral vectors (AdV) activate multiple signaling pathways associated with innate immune responses, including mitogen-activated protein kinases (MAPKs). In this study, we investigated how systemically-injected AdVs activate two MAPK pathways (p38 and ERK) and the contribution of these kinases to AdV-induced cytokine and chemokine responses in mice. Mice were injected intravenously either with a helper-dependent Ad2 vector that does not express viral genes or transgenes, or with the Ad2 mutant ts1, which is defective in endosomal escape. We found that AdV induced rapid phosphorylation of p38 and ERK as well as a significant cytokine response, but ts1 failed to activate p38 or ERK and induced only a limited cytokine response. These results demonstrate that endosomal escape of virions is a critical step in the induction of these innate pathways and responses. We then examined the roles of p38 and ERK pathways in the innate cytokine response by administering specific kinase inhibitors to mice prior to AdV. The cytokine and chemokine response to AdV was only modestly suppressed by a p38 inhibitor, while an ERK inhibitor has mixed effects, lowering some cytokines and elevating others. Thus, even though p38 and ERK are rapidly activated after i.v. injection of AdV, cytokine and chemokine responses are mostly independent of these kinases. PMID:22046344

  16. Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium

    PubMed Central

    Hooley, R P; Paterson, M; Brown, P; Kerr, K; Saunders, P T K

    2009-01-01

    Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. This paper describes a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems. PMID:18955374

  17. Calibration of SQUID vector magnetometers in full tensor gradiometry systems

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Stolz, R.; Chwala, A.; Krech, W.; Meyer, H.-G.; Kukowski, N.

    2014-08-01

    Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.

  18. Application of unsymmetric block Lanczos vectors in system identification

    NASA Astrophysics Data System (ADS)

    Kim, H. M., Jr.; Craig, R. R.

    1992-10-01

    This paper demonstrates a new system identification approach of using Lanczos coordinates in place of modal coordinates. Identified experimental Lanczos vectors can be directly used in many structural dynamics analysis applications. A multi-input, multi-output frequency-domain technique was used to extract system matrices and an unsymmetric block Lanczos algorithm was used to reduce the order of the experimental model. A cantilever beam example showed promising results, indicating that a new system identification approach using Lanczos coordinates is worthy of further study.

  19. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  20. Vector diffraction and polarization effects in an optical disk system.

    PubMed

    Yeh, W H; Li, L; Mansuripur, M

    1998-10-10

    The track pitch of current optical disks is comparable with the wavelength of the laser source. In this domain of the pitch-to-wavelength ratio, the complex-diffraction amplitudes are different for different incident polarization states, and the validity of the scalar diffraction theory is questionable. Furthermore, the use of multilayer coatings and high-numerical-aperture beams in modern optical disk technology inevitably entails the excitation of surface waves, which can disturb the baseball pattern significantly. To describe the interaction of a focused beam with a grooved multilayer system fully, it is necessary to have a rigorous vector theory. We use a rigorous vector theory to model the diffraction of light at the optical disk. We present the simulation and the experimental results and demonstrate the ability of this approach to predict or model accurately all essential features of beam-disk interaction, including the polarization effects and the excitation of surface waves. PMID:18301517

  1. Vector Diffraction and Polarization Effects in an Optical Disk System

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hung; Li, Lifeng; Mansuripur, M.

    1998-10-01

    The track pitch of current optical disks is comparable with the wavelength of the laser source. In this domain of the pitch-to-wavelength ratio, the complex-diffraction amplitudes are different for different incident polarization states, and the validity of the scalar diffraction theory is questionable. Furthermore, the use of multilayer coatings and high-numerical-aperture beams in modern optical disk technology inevitably entails the excitation of surface waves, which can disturb the baseball pattern significantly. To describe the interaction of a focused beam with a grooved multilayer system fully, it is necessary to have a rigorous vector theory. We use a rigorous vector theory to model the diffraction of light at the optical disk. We present the simulation and the experimental results and demonstrate the ability of this approach to predict or model accurately all essential features of beam disk interaction, including the polarization effects and the excitation of surface waves.

  2. Vector diffraction and polarization effects in an optical disk system.

    PubMed

    Yeh, W H; Li, L; Mansuripur, M

    1998-10-10

    The track pitch of current optical disks is comparable with the wavelength of the laser source. In this domain of the pitch-to-wavelength ratio, the complex-diffraction amplitudes are different for different incident polarization states, and the validity of the scalar diffraction theory is questionable. Furthermore, the use of multilayer coatings and high-numerical-aperture beams in modern optical disk technology inevitably entails the excitation of surface waves, which can disturb the baseball pattern significantly. To describe the interaction of a focused beam with a grooved multilayer system fully, it is necessary to have a rigorous vector theory. We use a rigorous vector theory to model the diffraction of light at the optical disk. We present the simulation and the experimental results and demonstrate the ability of this approach to predict or model accurately all essential features of beam-disk interaction, including the polarization effects and the excitation of surface waves.

  3. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    PubMed

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  4. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    SciTech Connect

    Campos, Samuel K.; Barry, Michael A. . E-mail: mab@bcm.edu

    2006-06-05

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon.

  5. Bacterial vectors and delivery systems in cancer therapy.

    PubMed

    Gardlik, Roman; Fruehauf, Johannes H

    2010-10-01

    Live bacterial vectors may be useful tools for the development of novel cancer therapies that can be added to the repertoire of existing drugs. Several bacterial strains effectively colonize solid tumors and act as antitumor therapeutics. The naturally occurring tumor-colonizing characteristics of bacterial species such as Salmonella sp, Clostridium sp and Escherichia coli can be further modified by genetic manipulations, making these bacterial systems excellent vehicles for the production and targeted delivery of therapeutic molecules into cancer cells. This feature review summarizes recent research on cancer therapy using genetically modified bacteria. Different approaches - bactofection, DNA vaccination, and bacterially mediated protein and RNAi delivery - in which modified bacteria are used as anticancer therapeutics, are discussed.

  6. Predicting Computer System Failures Using Support Vector Machines

    SciTech Connect

    Fulp, Errin W.; Fink, Glenn A.; Haack, Jereme N.

    2008-12-07

    Mitigating the impact of computer failure is possible if accurate failure predictions are provided. Resources, applications, and services can be scheduled around predicted failure and limit the impact. Such strategies are especially important for multi-computer systems, such as compute clusters, that experience a higher rate failure due to the large number of components. However providing accurate predictions with sufficient lead time remains a challenging problem. This paper describes a new spectrum-kernel Support Vector Machine (SVM) approach to predict failure events based on system log files. These files contain messages that represent a change of system state. While a single message in the file may not be sufficient for predicting failure, a sequence or pattern of messages may be. The approach described in this paper will use a sliding window (sub-sequence) of messages to predict the likelihood of failure. The frequency representation of the message sub-sequences observed are then used as input to the SVM that associates the messages to a class of failed or non-failed system. Experimental results using actual system log files from a Linux-based compute cluster indicate the proposed SVM approach can predict hard disk failure with an accuracy of 76% one day in advance.

  7. Linear matrix inequalities for analysis and control of linear vector second-order systems

    SciTech Connect

    Adegas, Fabiano D.; Stoustrup, Jakob

    2014-10-06

    Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems. The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form.

  8. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    PubMed Central

    Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard

    2015-01-01

    Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065

  9. Comparative Analysis of Transposable Element Vector Systems in Human Cells

    PubMed Central

    Grabundzija, Ivana; Irgang, Markus; Mátés, Lajos; Belay, Eyayu; Matrai, Janka; Gogol-Döring, Andreas; Kawakami, Koichi; Chen, Wei; Ruiz, Patricia; Chuah, Marinee K. L.; VandenDriessche, Thierry; Izsvák, Zsuzsanna; Ivics, Zoltán

    2010-01-01

    Transposon-based gene vectors have become indispensable tools in vertebrate genetics for applications ranging from insertional mutagenesis and transgenesis in model species to gene therapy in humans. The transposon toolkit is expanding, but a careful, side-by-side characterization of the diverse transposon systems has been lacking. Here we compared the Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposons with respect to overall activity, overproduction inhibition (OPI), target site selection, transgene copy number as well as long-term expression in human cells. SB was the most efficient system under conditions where the availability of the transposon DNA is limiting the transposition reaction including hard-to-transfect hematopoietic stem/progenitor cells (HSCs), and the most sensitive to OPI, underpinning the need for careful optimization of the transposon components. SB and PB were about equally active, and both more efficient than Tol2, under nonrestrictive conditions. All three systems provided long-term transgene expression in human cells with minimal signs of silencing. Indeed, mapping of Tol2 insertion sites revealed significant underrepresentation within chromosomal regions with H3K27me3 histone marks typically associated with transcriptionally repressed heterochromatin. SB, Tol2, and PB constitute complementary research tools for gene transfer in mammalian cells with important implications for fundamental and translational research. PMID:20372108

  10. Strategies to enhance transductional efficiency of adenoviral-based gene transfer to primary human fibroblasts and keratinocytes as a platform in dermal wounds

    PubMed Central

    Stoff, Alexander; Rivera, Angel A.; Banerjee, N. S.; Mathis, J. Michael; Espinosa-de-los-Monteros, Antonio; Le, Long P.; De la Torre, Jorge I.; Vasconez, Luis O.; Broker, Thomas R.; Richter, Dirk F.; Stoff-Khalili, Mariam A.; Curiel, David T.

    2007-01-01

    Genetically modified keratinocytes and fibroblasts are suitable for delivery of therapeutic genes capable of modifying the wound healing process. However, efficient gene delivery is a prerequisite for successful gene therapy of wounds. Whereas adenoviral vectors (Ads) exhibit superior levels of in vivo gene transfer, their transductional efficiency to cells resident within wounds may nonetheless be suboptimal, due to deficiency of the primary adenovirus receptor, coxsackie-adenovirus receptor (CAR). We explored CAR-independent transduction to fibroblasts and keratinocytes using a panel of CAR-independent fiber-modified Ads to determine enhancement of infectivity. These fiber-modified adenoviral vectors included Ad 3 knob (Ad5/3), canine Ad serotype 2 knob (Ad5CAV-2), RGD (Ad5.RGD), polylysine (Ad5.pK7), or both RGD and polylysine (Ad5.RGD.pK7). To evaluate whether transduction efficiencies of the fiber-modified adenoviral vectors correlated with the expression of their putative receptors on keratinocytes and fibroblasts, we analyzed the mRNA levels of CAR, αυ integrin, syndecan-1, and glypican-1 using quantitative polymerase chain reaction. Analysis of luciferase and green fluorescent protein transgene expression showed superior transduction efficiency of Ad5.pK7 in keratinocytes and Ad5.RGD.pK7 in fibroblasts. mRNA expression of αυ integrin, syndecan-1 and glypican-1 was significantly higher in primary fibroblasts than CAR. In keratinocytes, syndecan-1 expression was significantly higher than all the other receptors tested. Significant infectivity enhancement was achieved in keratinocytes and fibroblasts using fiber-modified adenoviral vectors. These strategies to enhance infectivity may help to achieve higher clinical efficacy of wound gene therapy. PMID:17014674

  11. In the rat liver, Adenoviral gene transfer efficiency is comparable to AAV.

    PubMed

    Montenegro-Miranda, P S; Pichard, V; Aubert, D; Ten Bloemendaal, L; Duijst, S; de Waart, D R; Ferry, N; Bosma, P J

    2014-02-01

    Adenoviral (AdV) and Adenovirus-associated viral (AAV) vectors both are used for in vivo gene therapy of inherited liver disorders, such as Crigler-Najjar syndrome type 1. In a relevant animal model, the Gunn rat, both vectors efficiently correct the severe hyperbilirubinemia characteristic of this liver disorder. Although the clinical use of AAV is more advanced, as demonstrated by the successful phase 1 trial in hemophilia B patients, because of its large cloning capacity AdV remains an attractive option. A direct comparison of the efficacy of these two vectors in the liver in a relevant disease model has not been reported. Aim of this study was to compare the efficiency of clinically applicable doses of both vectors in the Gunn rat. AdV or scAAV (self-complimentary AAV) ferrying identical liver-specific expression cassettes of the therapeutic gene, UGT1A1, were injected into the tail vein. As the titration methods of these two vectors are very different, a comparison based on vector titers is not valid. Therefore, their efficacy was compared by determining the amount of vector genomes delivered to the liver required for therapeutic correction of serum bilirubin. Like AAV, the liver-specific first-generation AdV also provided sustained correction in this relevant disease model. UGT1A1 mRNA expression provided per genome was comparable for both vectors. Flanking the expression cassette in AdV with AAV-ITRs (inverted terminal repeats), increased UGT1A1 mRNA expression eightfold which resulted in a significant improvement of efficacy. Compared with AAV, less AdV genomes were needed for complete correction of hyperbilirubinemia.

  12. A versatile modular vector system for rapid combinatorial mammalian genetics.

    PubMed

    Albers, Joachim; Danzer, Claudia; Rechsteiner, Markus; Lehmann, Holger; Brandt, Laura P; Hejhal, Tomas; Catalano, Antonella; Busenhart, Philipp; Gonçalves, Ana Filipa; Brandt, Simone; Bode, Peter K; Bode-Lesniewska, Beata; Wild, Peter J; Frew, Ian J

    2015-04-01

    Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.

  13. A versatile modular vector system for rapid combinatorial mammalian genetics

    PubMed Central

    Albers, Joachim; Danzer, Claudia; Rechsteiner, Markus; Lehmann, Holger; Brandt, Laura P.; Hejhal, Tomas; Catalano, Antonella; Busenhart, Philipp; Gonçalves, Ana Filipa; Brandt, Simone; Bode, Peter K.; Bode-Lesniewska, Beata; Wild, Peter J.; Frew, Ian J.

    2015-01-01

    Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases. PMID:25751063

  14. A versatile modular vector system for rapid combinatorial mammalian genetics.

    PubMed

    Albers, Joachim; Danzer, Claudia; Rechsteiner, Markus; Lehmann, Holger; Brandt, Laura P; Hejhal, Tomas; Catalano, Antonella; Busenhart, Philipp; Gonçalves, Ana Filipa; Brandt, Simone; Bode, Peter K; Bode-Lesniewska, Beata; Wild, Peter J; Frew, Ian J

    2015-04-01

    Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases. PMID:25751063

  15. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    PubMed

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  16. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy.

    PubMed

    Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-07-01

    Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.

  17. Using a geographical-information-system-based decision support to enhance malaria vector control in zambia.

    PubMed

    Chanda, Emmanuel; Mukonka, Victor Munyongwe; Mthembu, David; Kamuliwo, Mulakwa; Coetzer, Sarel; Shinondo, Cecilia Jill

    2012-01-01

    Geographic information systems (GISs) with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS) has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control.

  18. Adenoviral expression of murine serum amyloid A proteins to study amyloid fibrillogenesis.

    PubMed

    Kindy, M S; King, A R; Yu, J; Gerardot, C; Whitley, J; de Beer, F C

    1998-06-15

    Serum amyloid A (SAA) proteins are one of the most inducible acute-phase reactants and are precursors of secondary amyloidosis. In the mouse, SAA1 and SAA2 are induced in approximately equal quantities in response to amyloid induction models. These two isotypes differ in only 9 of 103 amino acid residues; however, only SAA2 is selectively deposited into amyloid fibrils. SAA expression in the CE/J mouse species is an exception in that gene duplication did not occur and the CE/J variant is a hybrid molecule sharing features of SAA1 and SAA2. However, even though it is more closely related to SAA2 it is not deposited as amyloid fibrils. We have developed an adenoviral vector system to overexpress SAA proteins in cell culture to determine the ability of these proteins to form amyloid fibrils, and to study the structural features in relation to amyloid formation. Both the SAA2 and CE/J SAA proteins were synthesized in large quantities and purified to homogeneity. Electron microscopic analysis of the SAA proteins revealed that the SAA2 protein was capable of forming amyloid fibrils, whereas the CE/J SAA was incapable. Radiolabelled SAAs were associated with normal or acute-phase high-density lipoproteins (HDLs); we examined them for their clearance from the circulation. In normal mice, SAA2 had a half-life of 70 min and CE/J SAA had a half-life of 120 min; however, in amyloid mice 50% of the SAA2 cleared in 55 min, compared with 135 min for the CE/J protein. When the SAA proteins were associated with acute-phase HDLs, SAA2 clearance was decreased to 60 min in normal mice compared with 30 min in amyloidogenic mice. Both normal and acute-phase HDLs were capable of depositing SAA2 into preformed amyloid fibrils, whereas the CE/J protein did not become associated with amyloid fibrils. This established approach opens the doors for large-scale SAA production and for the examination of specific amino acids involved in the fibrillogenic capability of the SAA2 molecule in vitro

  19. Elucidating the Potential of Plant Rhabdoviruses as Vector Expressions Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize fine streak virus (MFSV) is a member of the genus Nucleorhabdovirus that is transmitted by the leafhopper Graminella nigrifons. The virus replicates in both its maize host and its insect vector. To determine whether Drosophila S2 cells support the production of full-length MFSV proteins, we ...

  20. Implementation of iterative methods for large sparse nonsymmetric linear systems on a parallel vector machine

    SciTech Connect

    Ma, S.; Chronopoulos, A.T. )

    1990-01-01

    This paper reports on the restructure of three outstanding iterative methods for large space nonsymmetric linear systems. These methods are CGS (conjugate gradient squared), CRS (conjugate residual squared), and Orthomin(k). The restructured methods are more suitable for vector and parallel processing. The authors implemented these methods on a parallel vector system. The linear systems for the numerical tests are obtained from discretizing four two- dimensional elliptic partial differential equations by finite difference and finite element methods. A vectorizable and parallelizable version of incomplete LU preconditioning is used. The authors restructured the subroutines to enhance the data locality in vector machines with storage hierarchy. Speedup was measured for multitasking by four processors.

  1. Biosensor method and system based on feature vector extraction

    SciTech Connect

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  2. Dynamic reduction of dimensions of a document vector in a document search and retrieval system

    DOEpatents

    Jiao, Yu; Potok, Thomas E.

    2011-05-03

    The method and system of the invention involves processing each new document (20) coming into the system into a document vector (16), and creating a document vector with reduced dimensionality (17) for comparison with the data model (15) without recomputing the data model (15). These operations are carried out by a first computer (11) while a second computer (12) updates the data model (18), which can be comprised of an initial large group of documents (19) and is premised on the computing an initial data model (13, 14, 15) to provide a reference point for determining document vectors from documents processed from the data stream (20).

  3. Lentiviral Vector-Mediated RNA Silencing in the Central Nervous System

    PubMed Central

    Foster, Edmund; Moon, Lawrence D.F.

    2014-01-01

    Abstract RNA silencing is an established method for investigating gene function and has attracted particular interest because of the potential for generating RNA-based therapeutics. Using lentiviral vectors as an efficient delivery system that offers stable, long-term expression in postmitotic cells further enhances the applicability of an RNA-based gene therapy for the CNS. In this review we provide an overview of both lentiviral vectors and RNA silencing along with design considerations for generating lentiviral vectors capable of RNA silencing. We go on to describe the current preclinical data regarding lentiviral vector-mediated RNA silencing for CNS disorders and discuss the concerns of side effects associated with lentiviral vectors and small interfering RNAs and how these might be mitigated. PMID:24090197

  4. Construction and Characterization of an in-vivo Linear Covalently Closed DNA Vector Production System

    PubMed Central

    2012-01-01

    Background While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. Results We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called “Super Sequence”, and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc—linear covalently closed (Tel/TelN-cell), or mini ccc—circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 105 fold lower viability than that seen with the ccc counterpart. Conclusion We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of “minicircle” DNA vectors and virtually eliminate the potential for undesirable vector integration events. PMID:23216697

  5. Disseminated adenoviral infection masquerading as lower urinary tract voiding dysfunction in a kidney transplant recipient.

    PubMed

    Aboumohamed, Ahmed; Flechner, Stuart M; Chiesa-Vottero, Andres; Srinivas, Titte R; Mossad, Sherif B

    2014-11-01

    Viral infections continue to cause significant morbidity in immunosuppressed kidney transplant patients. Although cytomegalovirus, Epstein-Barr virus and polyoma "BK" virus are more frequently encountered, the Adenovirus can cause multi-organ system infections, and may be difficult to diagnose because it is not often considered in the initial work up in kidney transplant recipients. We present an unusual case of a kidney recipient 1 year post-transplant with disseminated adenoviral infection, who had an initial presentation of lower urinary tract voiding dysfunction with hematuria and sterile pyuria. This progressed to a severe tubulointerstitial nephritis and acute kidney injury that improved with reduction of immunosuppression. Serial blood viral loads are useful for monitoring the course of infection. Urinary adenoviral infection should be considered in the differential diagnosis whenever a kidney transplant recipient presents with unexplained lower tract voiding dysfunction, hematuria, and sterile pyuria. The allograft kidney and bladder can be targets of viral proliferation. Early diagnosis with reduction of immunosuppressive therapy is essential to clear the virus and maintain allograft function. PMID:23816478

  6. A method for verifying a vector-based text classification system.

    PubMed

    Lu, Chris J; Humphrey, Susanne M; Browne, Allen C

    2008-01-01

    Journal Descriptor Indexing (JDI) is a vector-based text classification system developed at NLM (National Library of Medicine), originally in Lisp and now as a Java tool. Consequently, a testing suite was developed to verify training set data and results of the JDI tool. A methodology was developed and implemented to compare two sets of JD vectors, resulting in a single index (from 0 - 1) measuring their similarity. This methodology is fast, effective, and accurate. PMID:18998786

  7. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  8. Fast and Accurate Support Vector Machines on Large Scale Systems

    SciTech Connect

    Vishnu, Abhinav; Narasimhan, Jayenthi; Holder, Larry; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-09-08

    Support Vector Machines (SVM) is a supervised Machine Learning and Data Mining (MLDM) algorithm, which has become ubiquitous largely due to its high accuracy and obliviousness to dimensionality. The objective of SVM is to find an optimal boundary --- also known as hyperplane --- which separates the samples (examples in a dataset) of different classes by a maximum margin. Usually, very few samples contribute to the definition of the boundary. However, existing parallel algorithms use the entire dataset for finding the boundary, which is sub-optimal for performance reasons. In this paper, we propose a novel distributed memory algorithm to eliminate the samples which do not contribute to the boundary definition in SVM. We propose several heuristics, which range from early (aggressive) to late (conservative) elimination of the samples, such that the overall time for generating the boundary is reduced considerably. In a few cases, a sample may be eliminated (shrunk) pre-emptively --- potentially resulting in an incorrect boundary. We propose a scalable approach to synchronize the necessary data structures such that the proposed algorithm maintains its accuracy. We consider the necessary trade-offs of single/multiple synchronization using in-depth time-space complexity analysis. We implement the proposed algorithm using MPI and compare it with libsvm--- de facto sequential SVM software --- which we enhance with OpenMP for multi-core/many-core parallelism. Our proposed approach shows excellent efficiency using up to 4096 processes on several large datasets such as UCI HIGGS Boson dataset and Offending URL dataset.

  9. Experimental study of Bloch vector analysis in nonlinear, finite, dissipative systems

    SciTech Connect

    D'Aguanno, G.; Mattiucci, N.; Larciprete, M. C.; Belardini, A.; Fazio, E.; Centini, M.; Sibilia, C.; Bloemer, M. J.; Buganov, O.

    2010-01-15

    We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta{sub 2}O{sub 5} thin-film multilayer samples and shown the importance of the phase matching calculated through the Bloch vector. The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays, metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results clearly suggest that even in these forefront fields the Bloch vector continues to play an essential role.

  10. A New Type of Adenovirus Vector That Utilizes Homologous Recombination To Achieve Tumor-Specific Replication

    PubMed Central

    Bernt, Kathrin; Liang, Min; Ye, Xun; Ni, Shaoheng; Li, Zong-Yi; Ye, Sheng Long; Hu, Fang; Lieber, André

    2002-01-01

    We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application. PMID:12368342

  11. SIMULTANEOUSLY SPARSE SOLUTIONS TO LINEAR INVERSE PROBLEMS WITH MULTIPLE SYSTEM MATRICES AND A SINGLE OBSERVATION VECTOR*

    PubMed Central

    ZELINSKI, ADAM C.; GOYAL, VIVEK K.; ADALSTEINSSON, ELFAR

    2010-01-01

    A problem that arises in slice-selective magnetic resonance imaging (MRI) radio-frequency (RF) excitation pulse design is abstracted as a novel linear inverse problem with a simultaneous sparsity constraint. Multiple unknown signal vectors are to be determined, where each passes through a different system matrix and the results are added to yield a single observation vector. Given the matrices and lone observation, the objective is to find a simultaneously sparse set of unknown vectors that approximately solves the system. We refer to this as the multiple-system single-output (MSSO) simultaneous sparse approximation problem. This manuscript contrasts the MSSO problem with other simultaneous sparsity problems and conducts an initial exploration of algorithms with which to solve it. Greedy algorithms and techniques based on convex relaxation are derived and compared empirically. Experiments involve sparsity pattern recovery in noiseless and noisy settings and MRI RF pulse design. PMID:20445814

  12. An efficient Foxtail mosaic virus vector system with reduced environmental risk

    PubMed Central

    2010-01-01

    Background Plant viral vectors offer high-yield expression of pharmaceutical and commercially important proteins with a minimum of cost and preparation time. The use of Agrobacterium tumefaciens has been introduced to deliver the viral vector as a transgene to each plant cell via a simple, nonsterile infiltration technique called "agroinoculation". With agroinoculation, a full length, systemically moving virus is no longer necessary for excellent protein yield, since the viral transgene is transcribed and replicates in every infiltrated cell. Viral genes may therefore be deleted to decrease the potential for accidental spread and persistence of the viral vector in the environment. Results In this study, both the coat protein (CP) and triple gene block (TGB) genetic segments were eliminated from Foxtail mosaic virus to create the "FECT" vector series, comprising a deletion of 29% of the genome. This viral vector is highly crippled and expresses little or no marker gene within the inoculated leaf. However, when co-agroinoculated with a silencing suppressor (p19 or HcPro), FECT expressed GFP at 40% total soluble protein in the tobacco host, Nicotiana benthamiana. The modified FoMV vector retained the full-length replicase ORF, the TGB1 subgenomic RNA leader sequence and either 0, 22 or 40 bases of TGB1 ORF (in vectors FECT0, FECT22 and FECT40, respectively). As well as N. benthamiana, infection of legumes was demonstrated. Despite many attempts, expression of GFP via syringe agroinoculation of various grass species was very low, reflecting the low Agrobacterium-mediated transformation rate of monocots. Conclusions The FECT/40 vector expresses foreign genes at a very high level, and yet has a greatly reduced biohazard potential. It can form no virions and can effectively replicate only in a plant with suppressed silencing. PMID:21162736

  13. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  14. Optical systems design with integrated rigorous vector diffraction

    NASA Astrophysics Data System (ADS)

    Kleemann, Bernd H.; Ruoff, Johannes; Seeßelberg, Markus; Kaltenbach, Johannes-Maria; Menke, Christoph; Dobschal, Hans-Jürgen

    2005-09-01

    Depending on the specific application of a diffractive optical element (DOE), its polarization impact on the optical system must be taken into account. This may be necessary in imaging as well as in illumination optics, e. g., in miniaturized integrated optics or in high-resolution photolithographic projection systems. Sometimes, polarization effects are unwanted and therefore an exact characterization of their influences is necessary; in other cases a high polarization effect is the goal. It is well known how to calculate the point spread function (PSF) of a single diffractive micro-Fresnel lens. To do the same for a complete optical system with source, lenses, coatings, mirrors, gratings and diffractive elements, a 3D electrical field propagation along the geometric optical path is introduced into the ray-trace based optical systems design software in order to incorporate the entire electromagnetic polarization effects from the source to the image plane. Our software also considers the complex diffraction amplitudes including polarization effects from DOEs provided by rigorous electromagnetic methods. Together with a plane wave decomposition and with the local linear grating assumption, we are able to rigorously investigate the impact of e. g. polarization effects on the PSF of the whole optical system. Using this approach we analyze a hybrid diffractive-refractive microscope objective for mask inspection systems at 193 nm. Additionally we investigate focal properties of a sample diffractive blue laser disc pickup system.

  15. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system

    NASA Technical Reports Server (NTRS)

    Raphael, David

    1995-01-01

    This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.

  16. Analysis and design of prisms using the derivatives of a ray. Part II: the derivatives of boundary variable vector with respect to system variable vector.

    PubMed

    Lin, Psang Dain

    2013-06-20

    To evaluate the merit function of an optical system, it is necessary to determine the first- and second-order derivative matrices of the boundary variable vector with respect to the system variable vector. Accordingly, the present study proposes a computationally efficient method for determining both matrices for optical systems containing only flat boundary surfaces. The validity of the proposed method is demonstrated by means of two illustrative prism design problems. In general, the results show that the proposed method can provide efficient search directions in many gradient-based optical design optimization methods.

  17. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    The design of a complete vector measurement system being tested over 560-635 GHz is presented. The topics include: 1) Current State-of-the-Art in Vector Measurements; 2) Submillimeter Active Imaging Requirements; 3) 600 GHz Vector Measurement System; 4) 450 MHz IF Signal; 5) 450 MHz IF signal @ 1 kHz Res. BW; 6) 450 MHz IF Signal Mixed with Shifted 450 MHz Reference Signal; 7) Reference Signal Offset Generator; 8) Cavity Bandpass Filter; 9) Miniature Multistage Helical Filter; 10) X36 450 MHz Multiplier; 11) 600 GHz Test Setup; 12) 600 GHz Transmit Module; 13) 600 GHz Receive Module; 14) Performance Tests: Amplitude Stability & Dynamic Range; 15) Performance Tests: Phase Stability; 16) Stability at Imaging Bandwidths; 17) Phase Measurement Verification; and 18) The Next Step: Imaging.

  18. Targeting the central nervous system with herpes simplex virus / Sleeping Beauty hybrid amplicon vectors.

    PubMed

    de Silva, Suresh; Bowers, William J

    2011-10-01

    The pursuits of sustainable treatments for diseases and disorders that afflict the central nervous system (CNS) have proven challenging for the field of viral vector-based gene therapy. However, recent advances in viral vector technology coupled with efficient delivery methods have opened up new avenues that show promise at the preclinical testing stage. The development of the Herpes Simplex Virus/Sleeping Beauty (HSV/SB) hybrid vector represents such an advance for devising treatments targeting the CNS with its potential for stably integrating large transgenomic segments of DNA within the genomes of transduced cells. In utero administration of this hybrid vector into the embryonic mouse brain has revealed the capacity for widespread transgene dissemination due to the targeting of a neuronal precursor cell population. This unique feature has provided the means to stably express a transgene throughout the brain for prolonged periods, which is a prerequisite for the treatment of progressive CNS disorders. In this review we provide a comprehensive breakdown of the characteristics of the HSV/SB vector system and how it can be efficiently employed in the derivation of CNS-targeted gene therapeutic strategies.

  19. A novel intranuclear RNA vector system for long-term stem cell modification.

    PubMed

    Ikeda, Y; Makino, A; Matchett, W E; Holditch, S J; Lu, B; Dietz, A B; Tomonaga, K

    2016-03-01

    Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells, while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671

  20. A novel intranuclear RNA vector system for long-term stem cell modification

    PubMed Central

    Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo

    2015-01-01

    Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671

  1. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    PubMed Central

    Singh, Shailbala; Nehete, Pramod N.; Yang, Guojun; He, Hong; Nehete, Bharti; Hanley, Patrick W.; Barry, Michael A.; Sastry, K. Jagannadha

    2014-01-01

    Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer), a synthetic glycolipid agonist of natural killer T (NKT) cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors. PMID:25553254

  2. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors.

    PubMed

    Li, Shaoyong; Ling, Chen; Zhong, Li; Li, Mengxin; Su, Qin; He, Ran; Tang, Qiushi; Greiner, Dale L; Shultz, Leonard D; Brehm, Michael A; Flotte, Terence R; Mueller, Christian; Srivastava, Arun; Gao, Guangping

    2015-12-01

    Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.

  3. Boost OCR accuracy using iVector based system combination approach

    NASA Astrophysics Data System (ADS)

    Peng, Xujun; Cao, Huaigu; Natarajan, Prem

    2015-01-01

    Optical character recognition (OCR) is a challenging task because most existing preprocessing approaches are sensitive to writing style, writing material, noises and image resolution. Thus, a single recognition system cannot address all factors of real document images. In this paper, we describe an approach to combine diverse recognition systems by using iVector based features, which is a newly developed method in the field of speaker verification. Prior to system combination, document images are preprocessed and text line images are extracted with different approaches for each system, where iVector is transformed from a high-dimensional supervector of each text line and is used to predict the accuracy of OCR. We merge hypotheses from multiple recognition systems according to the overlap ratio and the predicted OCR score of text line images. We present evaluation results on an Arabic document database where the proposed method is compared against the single best OCR system using word error rate (WER) metric.

  4. Uncertainty Analysis of the Single-Vector Force Balance Calibration System

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Liu, Tianshu

    2002-01-01

    This paper presents an uncertainty analysis of the Single-Vector Force Balance Calibration System (SVS). This study is focused on the uncertainty involved in setting the independent variables during the calibration experiment. By knowing the uncertainty in the calibration system, the fundamental limits of the calibration accuracy of a particular balance can be determined. A brief description of the SVS mechanical system is provided. A mathematical model is developed to describe the mechanical system elements. A sensitivity analysis of these parameters is carried out through numerical simulations to assess the sensitivity of the total uncertainty to the elemental error sources. These sensitivity coefficients provide valuable information regarding the relative significance of the elemental sources of error. An example calculation of the total uncertainty for a specific balance is provided. Results from this uncertainty analysis are specific to the Single-Vector System, but the approach is broad in nature and therefore applicable to other measurement and calibration systems.

  5. Infection with an apathogenic fowl adenovirus serotype-1 strain (CELO) prevents adenoviral gizzard erosion in broilers.

    PubMed

    Grafl, Beatrice; Prokofieva, Irina; Wernsdorf, Patricia; Steinborn, Ralf; Hess, Michael

    2014-08-01

    Gizzard erosion in broilers due to an infection with virulent fowl adenovirus serotype 1 (FAdV-1) is an emerging disease. Although experimental studies were performed, a possible prevention strategy was not reported so far. The present study was set up to determine (i) a possible influence of birds' age at time of inoculation on the pathogenicity of a European FAdV-1 field strain (PA7127), (ii) the virulence of a apathogenic FAdV-1 strain (CELO), and (iii) its capability to protect SPF broilers from adenoviral gizzard erosion caused by the field virus. Oral infection of birds with PA7127 at 1-, 10- and 21-days of life, resulted in reduced weight gain compared to non-infected birds, with significance for birds infected at day-old. Independent of the birds' age at time of inoculation, clinical signs appearing approximately one week after challenge coincided with gizzard lesions. Birds infected exclusively with CELO at the first day of life did not show any clinical signs or pathological changes in the gizzard, confirming the apathogenicity of this European FAdV-1. A similar result was obtained for birds orally infected at the first day of life with CELO and challenged three weeks later with the pathogenic PA7127 strain. Therefore, complete protection of adenoviral gizzard erosion in broilers by vaccination of day-old birds could be demonstrated for the first time, although virus excretion was detected post challenge. Establishment of an amplification refractory mutation system quantitative PCR (ARMS-qPCR) facilitated the identification of the FAdV-1 strain and presence of challenges virus was confirmed in one sample.

  6. Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors

    ERIC Educational Resources Information Center

    Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor

    2016-01-01

    Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…

  7. Algorithms for solving large sparse systems of simultaneous linear equations on vector processors

    NASA Technical Reports Server (NTRS)

    David, R. E.

    1984-01-01

    Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.

  8. Barriers to non-viral vector-mediated gene delivery in the nervous system.

    PubMed

    Pérez-Martínez, Francisco C; Guerra, Javier; Posadas, Inmaculada; Ceña, Valentín

    2011-08-01

    Efficient methods for cell line transfection are well described, but, for primary neurons, a high-yield method different from those relying on viral vectors is lacking. Viral transfection has several drawbacks, such as the complexity of vector preparation, safety concerns, and the generation of immune and inflammatory responses when used in vivo. However, one of the main problems for the use of non-viral gene vectors for neuronal transfection is their low efficiency when compared with viral vectors. Transgene expression, or siRNA delivery mediated by non-viral vectors, is the result of multiple processes related to cellular membrane crossing, intracellular traffic, and/or nuclear delivery of the genetic material cargo. This review will deal with the barriers that different nanoparticles (cationic lipids, polyethyleneimine, dendrimers and carbon nanotubes) must overcome to efficiently deliver their cargo to central nervous system cells, including internalization into the neurons, interaction with intracellular organelles such as lysosomes, and transport across the nuclear membrane of the neuron in the case of DNA transfection. Furthermore, when used in vivo, the nanoparticles should efficiently cross the blood-brain barrier to reach the target cells in the brain.

  9. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  10. Development of cup-shaped micro-electromechanical systems-based vector hydrophone

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Liu, Yuan; Zhang, Guojun; Wang, Renxin; Xue, Chenyang; Zhang, Wendong; Liu, Jun

    2016-09-01

    Similar to the vital performance factors, the receiving sensitivity and the bandwidth exist interactively in the micro-electromechanical systems (MEMS)-based vector hydrophones. Some existing methods can improve the sensitivity of the hydrophone, but these improvements are usually gained at a cost of the bandwidth. However, the cup-shaped MEMS vector hydrophone that is presented in this paper can improve its sensitivity while retaining a sufficient bandwidth. The cup-shaped structure acts as a new sensing unit in the MEMS vector hydrophone, replacing the bionic columnar hair that was previously used for sensing. The relationships between the parameters of the cup-shaped structure and the sensitivity of the vector hydrophone were determined by a theoretical deduction. In addition, simulation analyses were performed, and optimized structural parameters were obtained in this work. ANSYS 15.0 simulation was used to derive the optimum characteristics for the cup-shaped structure. The results of the calibration experiments showed that the sensitivity reached up to -188.5 dB (gain of 40 dB, 1 kHz, 0 dB@1 V/μPa), and the bandwidth was in the 20 Hz-1 kHz range, which is sufficient for an underwater acoustic detection at low frequencies. This work has, thus, proved that the cup-shaped vector hydrophone has superior properties for the engineering applications.

  11. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: A novel approach to topological defects in a vector order parameter system

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Rong; Rong, Shu-Jun; Zhu, Tao

    2009-07-01

    Based on Duan's topological current theory, we propose a novel approach to study the topological properties of topological defects in a two-dimensional complex vector order parameter system. This method shows explicitly the fine topological structure of defects. The branch processes of defects in the vector order parameter system have also been investigated with this method.

  12. Linearized oncolytic adenoviral plasmid DNA delivered by bioreducible polymers

    PubMed Central

    Kim, Jaesung; Kim, Pyung-Hwan; Nam, Hye Yeong; Lee, Jung-Sun; Yun, Chae-Ok; Kim, Sung Wan

    2011-01-01

    As an effort to overcome limits of adenovirus (Ad) as a systemic delivery vector for cancer therapy, we developed a novel system using oncolytic Ad plasmid DNA with two bioreducible polymers: arginine-grafted bioreducible poly(disulfide amine)polymer (ABP) and PEG5k-conjugated ABP (ABP5k) in expectation of oncolytic effect caused by progeny viral production followed by replication. The linearized Ad DNAs for active viral replication polyplexed with each polymer were able to replicate only in humancancer cells and produce progeny viruses. The non-immunogenic polymers delivering the DNAs markedly elicited to evade the innate and adaptive immune response. The biodistribution ratio of the polyplexes administered systemically was approximately 99% decreased in liver when compared with naked Ad. Moreover, tumor-to-liver ratio of the Ad DNA delivered by ABP or ABP5k was significantly elevated at 229- or 419-fold greater than that of naked Ad, respectively. The ABP5k improved the chance of the DNA to localize within tumor versus liver with 1.8-fold increased ratio. In conclusion, the innovative and simple system for delivering oncolytic Ad plasmid DNA with the bioreducible polymers, skipping time-consuming steps such as generation and characterization of oncolytic Ad vectors, can be utilized as an alternative approach for cancer therapy. PMID:22207073

  13. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector.

    PubMed

    Choudhury, Sourav R; Harris, Anne F; Cabral, Damien J; Keeler, Allison M; Sapp, Ellen; Ferreira, Jennifer S; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Su, Qin; Stoica, Lorelei; DiFiglia, Marian; Aronin, Neil; Martin, Douglas R; Gao, Guangping; Sena-Esteves, Miguel

    2016-04-01

    Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.

  14. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system

    NASA Technical Reports Server (NTRS)

    Currier, S. F.; Powell, W. R.

    1986-01-01

    The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.

  15. Examination of New Vector Control System of Permanent Magnet Synchronous Motor for High-Speed Drives

    NASA Astrophysics Data System (ADS)

    Tobari, Kazuaki; Endo, Tsunehiro; Iwaji, Yoshitaka; Ito, Yoshiki

    A new vector control system for permanent magnet synchronous motor drives has been developed. To stabilize the current control loop in the high rotating speed region, a novel configuration of current controller is introduced. The unique characteristic of the proposed current controller is that the current regulator is connected to the conventional motor model in a series. By analyzing the transfer characteristics of the control, it became clear that the influence of the coupling component between d-q axes can be deleted theoretically if the control parameters are set properly. Stability and torque response of the proposed vector control system were improved. Effectiveness of the proposed controller was demonstrated by a time domain simulation and, some experiments. In addition, the robustness of the controlling system was investigated in some experiments.

  16. Comparison of strategies for the production of FMDV empty capsids using the baculovirus vector system.

    PubMed

    Ruiz, V; Mignaqui, A C; Nuñez, M C; Reytor, E; Escribano, J M; Wigdorovitz, A

    2014-11-01

    Recombinant FMDV empty capsids have been produced in insect cells and larvae using the baculovirus expression system, although protein yield and efficiency of capsid assembly have been highly variable. In this work, two strategies were compared for the expression of FMDV A/Arg/01 empty capsids: infection with a dual-promoter baculovirus vector coding for the capsid precursor (P12A) and the protease 3C under the control of the polyhedrin and p10 promoters, respectively (BacP12A-3C), or a single-promoter vector coding the P12A3C cassette (BacP12A3C). Expression levels and assembly into empty capsids were analyzed in insect cells and larvae. We observed that the use of the single-promoter vector allowed higher levels of expression both in insect cells and larvae. Recombinant capsid proteins produced by both vectors were recognized by monoclonal antibodies (mAbs) directed against conformational epitopes of FMDV A/Arg/01 and proved to self-assemble into empty capsids (75S) and pentamers (12S) when analyzed by sucrose gradient centrifugation.

  17. "Lollipop-shaped" high-sensitivity Microelectromechanical Systems vector hydrophone based on Parylene encapsulation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun

    2015-07-01

    This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.

  18. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.

    PubMed

    Jiang, Ping; Yang, Huajun; Mao, Shengqian

    2015-10-01

    A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system. PMID:26480125

  19. Upgrades to the NOAA/NESDIS automated Cloud-Motion Vector system

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Menzel, W. Paul; Hayden, Christopher M.; Wanzong, Steve; Velden, Christopher S.

    1993-01-01

    The latest version of the automated cloud motion vector software has yielded significant improvements in the quality of the GOES cloud-drift winds produced operationally by NESDIS. Cloud motion vectors resulting from the automated system are now equal or superior in quality to those which had the benefit of manual quality control a few years ago. The single most important factor in this improvement has been the upgraded auto-editor. Improved tracer selection procedures eliminate targets in difficult regions and allow a higher target density and therefore enhanced coverage in areas of interest. The incorporation of the H2O-intercept height assignment method allows an adequate representation of the heights of semi-transparent clouds in the absence of a CO2-absorption channel. Finally, GOES-8 water-vapor motion winds resulting from the automated system are superior to any done previously by NESDIS and should now be considered as an operational product.

  20. Passage from scalar to vector optics and the Mukunda-Simon-Sudarshan theory for paraxial systems

    NASA Astrophysics Data System (ADS)

    Khan, Sameen Ahmed

    2016-09-01

    The way to generalize scalar to wave optics, thus including polarization in the treatment consistent with the Maxwell equations was shown by Mukunda, Simon and Sudarshan for paraxial systems, based on a group theoretical analysis. Here, the Mukunda-Simon-Sudarshan (MSS) theory for the passage from scalar to vector optics is derived by casting the basic formalism in a framework very similar to the Dirac electron theory. The resulting formalism is suitable for extending the MSS-theory beyond the paraxial approximation.

  1. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  2. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  3. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  4. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    SciTech Connect

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  5. Treatment of multifocal breast cancer by systemic delivery of dual-targeted adeno-associated viral vectors.

    PubMed

    Trepel, M; Körbelin, J; Spies, E; Heckmann, M B; Hunger, A; Fehse, B; Katus, H A; Kleinschmidt, J A; Müller, O J; Michelfelder, S

    2015-10-01

    Adeno-associated viral (AAV) vectors yield high potential for clinical gene therapy but, like for other vectors systems, they frequently do not sufficiently transduce the target tissue and their unspecific tropism prevents their application for multifocal diseases such as disseminated cancer. Targeted AAV vectors have been obtained from random AAV display peptide libraries but so far, all vector variants selected from AAV libraries upon systemic administration in vivo retained some collateral tropism, frequently the heart. Here we explored, if this impediment can be overcome by microRNA-regulated transgene cassettes as the combination of library-derived capsid targeting and micro-RNA control has not been evaluated so far. We used a tumor-targeted AAV capsid variant (ESGLSQS) selected from random AAV-display peptide libraries in vivo with remaining off-target tropism toward the heart and regulated targeted transgene expression in vivo by complementary target elements for heart-specific microRNA (miRT-1d). Although this vector still maintained its strong transduction capacity for tumor target tissue after intravenous injection, transgene expression in the heart was almost completely abrogated. This strong and completely tumor-specific transgene expression was used for therapeutic gene transfer in an aggressive multifocal, transgenic, polyoma middle T-induced, murine breast cancer model. A therapeutic suicide gene, delivered systemically by this dual-targeted AAV vector to multifocal breast cancer, significantly inhibited tumor growth after one single vector administration while avoiding side effects compared with untargeted vectors.

  6. Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase 1 Clinical Trial

    PubMed Central

    Ghulam Muhammad, A.K.M.; Xiong, Weidong; Puntel, Mariana; Farrokhi, Catherine; Kroeger, Kurt M.; Salem, Alireza; Lacayo, Liliana; Pechnick, Robert N.; Kelson, Kyle R.; Palmer, Donna; Ng, Philip; Liu, Chunyan; Lowenstein, Pedro R.

    2012-01-01

    Abstract Adenoviral vectors (Ads) have been evaluated in clinical trials for glioma. However, systemic immunity against the vectors can hamper therapeutic efficacy. We demonstrated that combined immunostimulation and cytotoxic gene therapy provides long-term survival in preclinical glioma models. Because helper-dependent high-capacity Ads (HC-Ads) elicit sustained transgene expression, in the presence of antiadenoviral immunity, we engineered HC-Ads encoding conditional cytotoxic herpes simplex type 1 thymidine kinase and immunostimulatory cytokine Fms-like tyrosine kinase ligand-3 under the control of the TetOn system. Escalating doses of combined HC-Ads (1×108, 1×109, and 1×1010 viral particles [VP]) were delivered into the rat brain. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points after vector delivery. Histopathological analysis did not reveal any evidence of toxicity or long-term inflammation at the lower doses tested. Vector genomes were restricted to the injection site. Serum chemistry did not uncover adverse systemic side effects at any of the doses tested. Taken together, our data indicate that doses of up to 1×109 VP of each HC-Ad can be safely administered into the normal brain. This comprehensive toxicity and biodistribution study will lay the foundations for implementation of a phase 1 clinical trial for GBM using HC-Ads. PMID:22950971

  7. Immunogenicity and protective efficacy of a recombinant adenoviral based vaccine expressing heat-stable enterotoxin (STa) and K99 adhesion antigen of enterotoxigenic Escherichia coli in mice.

    PubMed

    Deng, Guangcun; Li, Wu; Wu, Xiaoling; Bao, Shaowen; Zeng, Jin; Zhao, Ning; Luo, Meihui; Liu, Xiaoming; Wang, Yujiong

    2015-12-01

    The diarrheal disease of domestic animals or in humans caused by enterotoxigenic Escherichia coli (ETEC) infections remains a major issue for public health in developing countries. Unfortunately, there is no effective vaccine available for preventing from an ETEC infection. Therefore, the development of a safe and effective vaccine against ETEC is urgently needed. In the present study, A recombinant adenoviral vector Ad5-STa-K99 that capable of expressing a fusion protein of heat-stable enterotoxin (STa) and K99 adhesion antigen of ETEC was generated and its immunogenicity was evaluated in a murine model. The intestinal mucosal secretory IgA(sIgA), serum anti-STa-K99 antibody responses, antigen-specific CD4(+) and CD8(+) T cells frequencies, as well as T-cell proliferation of mice immunized with the viral vector were determined as immunological indexes. The results demonstrated that Ad5-STa-K99 was able to enhance humoral responses with a dramatically augmented antigen-specific serum IgG antibody, and an elevated production of intestinal sIgA in immunized mice, suggesting the elicitation of both of humoral and mucosal immune responses. In addition, this adenoviral vector could significantly promote splenic T cell proliferation and increase the frequencies of CD4(+) and CD8(+) T cell populations in mice, indicative of a capacity to activate T cell responses. More importantly, vaccination of the Ad5-STa-K99 showed a potential to evoke a protective effect from ETEC challenge in mice. These data indicate that the Ad5-STa-K99 is a highly immunogenic vector able to induce a broad range of antigen-specific immune responses in vivo, and evoke a protective immune response against ETEC infections, implying that it may be a novel vaccine candidate warranted for further investigation.

  8. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.

    PubMed

    Ablain, Julien; Durand, Ellen M; Yang, Song; Zhou, Yi; Zon, Leonard I

    2015-03-23

    CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish, it allows the rapid generation of knockout lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knockout and greatly broadens the scope of loss-of-function studies in zebrafish.

  9. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.

    PubMed

    Ablain, Julien; Durand, Ellen M; Yang, Song; Zhou, Yi; Zon, Leonard I

    2015-03-23

    CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish, it allows the rapid generation of knockout lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knockout and greatly broadens the scope of loss-of-function studies in zebrafish. PMID:25752963

  10. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  11. Integration Profile and Safety of an Adenovirus Hybrid-Vector Utilizing Hyperactive Sleeping Beauty Transposase for Somatic Integration

    PubMed Central

    Zhang, Wenli; Muck-Hausl, Martin; Wang, Jichang; Sun, Chuanbo; Gebbing, Maren; Miskey, Csaba; Ivics, Zoltan; Izsvak, Zsuzsanna; Ehrhardt, Anja

    2013-01-01

    We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models. PMID:24124483

  12. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  13. Vector measure for the intelligence of a Question-Answering (Q-A) system

    SciTech Connect

    Srivastava, A.; Rajaraman, V.

    1995-05-01

    The problem of quantification of intelligence of humans, and of intelligent systems, has been a challenging and controversial topic. IQ tests have been traditionally used to quantify human intelligence based on results of test designed by psychologists. It is in general very difficult to quantify intelligence. In this paper we consider a simple Question-Answering (Q-A) system and use this to quantify intelligence. We quantify intelligence as a vector with three components. The components consist of a measure of knowledge in asking questions, effectiveness of questions asked, and correctness of deduction. We formalize these parameters and have conducted experiments on humans to measure these parameters. 20 refs.

  14. A simplified vector system for visualization of localized RNAs in Schizosaccharomyces pombe.

    PubMed

    Takeuchi-Andoh, Tomoko; Ohba, Sayaka; Shinoda, Yu; Fuchita, Ayako; Hayashi, Sachiko; Nishiyoshi, Emi; Terouchi, Nobuyuki; Tani, Tokio

    2016-07-01

    RNA localization is an important event that is essential for the polarization and differentiation of a cell. Although several methods are currently used to detect localized RNAs, a simplified detection system has not yet been developed for Schizosaccharomyces pombe. In the present study, we describe a new vector system for the visualization of localized RNAs in S. pombe using a U1A-tag-GFP system. A pREP1-U1A-tag vector plasmid to express U1A-tagged RNA and a pREP2-U1AGFP plasmid to produce a U1A-GFP fusion protein were constructed for this system. Since the U1A-GFP protein binds U1A-tagged RNA, fluorescence is observed at the location of U1A-tagged RNA in cells expressing both of these. The nucleolar localization of U3 snoRNA was successfully detected using this system, and a novel RNA localized at the DNA region of the nucleus was found by screening localized RNAs. This system will accelerate the study of localized RNAs in S. pombe.

  15. A simplified vector system for visualization of localized RNAs in Schizosaccharomyces pombe.

    PubMed

    Takeuchi-Andoh, Tomoko; Ohba, Sayaka; Shinoda, Yu; Fuchita, Ayako; Hayashi, Sachiko; Nishiyoshi, Emi; Terouchi, Nobuyuki; Tani, Tokio

    2016-07-01

    RNA localization is an important event that is essential for the polarization and differentiation of a cell. Although several methods are currently used to detect localized RNAs, a simplified detection system has not yet been developed for Schizosaccharomyces pombe. In the present study, we describe a new vector system for the visualization of localized RNAs in S. pombe using a U1A-tag-GFP system. A pREP1-U1A-tag vector plasmid to express U1A-tagged RNA and a pREP2-U1AGFP plasmid to produce a U1A-GFP fusion protein were constructed for this system. Since the U1A-GFP protein binds U1A-tagged RNA, fluorescence is observed at the location of U1A-tagged RNA in cells expressing both of these. The nucleolar localization of U3 snoRNA was successfully detected using this system, and a novel RNA localized at the DNA region of the nucleus was found by screening localized RNAs. This system will accelerate the study of localized RNAs in S. pombe. PMID:26979837

  16. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy

    PubMed Central

    Weymann, Alexander; Arif, Rawa; Weber, Antje; Zaradzki, Marcin; Richter, Karsten; Ensminger, Stephan; Robinson, Peter Nicholas; Wagner, Andreas H.; Karck, Matthias; Kallenbach, Klaus

    2016-01-01

    Objectives Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis. Methods We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM). Results IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1

  17. Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats.

    PubMed

    Yin, G; Chen, J; Wei, S; Wang, H; Chen, Q; Lin, Y; Hu, J; Luo, E

    2015-08-01

    This study investigated the efficacy of human osteoprotegerin (hOPG) transgene to accelerate osteointegration of titanium implant in ovariectomized (OVX) rats. Bone marrow stromal cells transduced with Ad-hOPG-EGFP could sustainedly express hOPG. Osteoclast precursor RAW264.7 cells treated by the hOPG were examined by tartrate-resistant acid phosphatase (TRAP) staining and bone slice resorption assay. The results showed differentiation and function of osteoclasts were significantly suppressed by hOPG in vitro. Ad-hOPG-EGFP was locally administered to the bone defect prior to implant placement in OVX and sham rats. After 3, 7, 28 days of implantation, the femurs were harvested for molecular and histological analyses. Successful transgene expression was confirmed by western blot and cryosectioning. A significant reduction in TRAP+ numbers was detected in Ad-hOPG-EGFP group. Real-time reverse transcriptase-PCR examination revealed that hOPG transgene markedly diminished the expression of cathepsin K and receptor activator for nuclear factor-κ B ligand in vivo. The transgene hOPG modification revealed a marked increasing osteointegration and restored implant stability in OVX rats (P<0.01), compared with the control groups (Ad-EGFP or sterilized phosphate-buffered saline) 28 days after implantation. In conclusion, hOPG via direct adenovirus-mediated gene transfer could accelerate osteointegration of titanium implants in OVX rats. Osteoprotegerin gene therapy may be an effective strategy to osteointegration of implants under osteoporotic conditions.

  18. Development of hybrid viral vectors for gene therapy.

    PubMed

    Huang, Shuohao; Kamihira, Masamichi

    2013-01-01

    Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.

  19. Optimization of a one-step heat-inducible in vivo mini DNA vector production system.

    PubMed

    Nafissi, Nafiseh; Sum, Chi Hong; Wettig, Shawn; Slavcev, Roderick A

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called "Super Sequences" that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system

  20. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  1. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  2. Isolation and Characterization of Anti-Adenoviral Secondary Metabolites from Marine Actinobacteria

    PubMed Central

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-01

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure. PMID:24477283

  3. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1

    SciTech Connect

    Ugai, Hideyo; Dobbins, George C.; Wang, Minghui; Le, Long P.; Matthews, David A.; Curiel, David T.

    2012-10-25

    Adenoviral infection induces nucleoplasmic redistribution of a nucleolar nucleophosmin 1/NPM1/B23.1. NPM1 is preferentially localized in the nucleoli of normal cells, whereas it is also present at the nuclear matrix in cancer cells. However, the biological roles of NPM1 during infection are unknown. Here, by analyzing a pV-deletion mutant, Ad5-dV/TSB, we demonstrate that pV promotes the NPM1 translocation from the nucleoli to the nucleoplasm in normal cells, and the NPM1 translocation is correlated with adenoviral replication. Lack of pV causes a dramatic reduction of adenoviral replication in normal cells, but not cancer cells, and Ad5-dV/TSB was defective in viral assembly in normal cells. NPM1 knockdown inhibits adenoviral replication, suggesting an involvement of NPM1 in adenoviral biology. Further, we show that NPM1 interacts with empty adenovirus particles which are an intermediate during virion maturation by immunoelectron microscopy. Collectively, these data implicate that pV participates in a process of viral assembly through NPM1.

  4. Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, F. Landis

    1997-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  5. Modelling a Voice Activated Speaker Identification System using MFCC-Pitch-Formant Vector

    NASA Astrophysics Data System (ADS)

    Sengupta, Avik; Ghosh, Rabindranath

    2012-03-01

    The paper presents the model of an automatic speaker identification system which will recognize users based on their voice. The system will be relatively independent of spoken words but will rely on the voice quality of a user i.e. use speech independent voice recognition. The basic approach was to create a front end system which will identify speech parameters of particular users and create speech feature vectors which will later be used to train a back-propagation neural network for the recognition phase. Mel-frequency cepstrum coefficients and linear predictive coding coefficients have been used, along with Pitch and Formants, for feature extraction. The main area of focus of the paper is to outline the optimum set of speech features which form the most reliable model for an automatic speaker identification system.

  6. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies

    PubMed Central

    Uusi-Kerttula, Hanni; Legut, Mateusz; Davies, James; Jones, Rachel; Hudson, Emma; Hanna, Louise; Stanton, Richard J.; Chester, John D.

    2015-01-01

    Abstract Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCARlow/EGFRhigh cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of

  7. Lac-regulated system for generating adenovirus 5 vaccine vectors expressing cytolytic human immunodeficiency virus 1 genes

    PubMed Central

    Zhao, Chunxia; Crews, Charles Jefferson; Derdeyn, Cynthia A.; Blackwell, Jerry L.

    2009-01-01

    Adenovirus (Ad) vectors have been developed as human immunodeficiency-1 (HIV-1) vaccine vectors because they consistently induce immune responses in preclinical animal models and human trials. Strong promoters and codon-optimization are often used to enhance vaccine-induced HIV-1 gene expression and immunogenicity. However, if the transgene is inherently cytotoxic in the cell line used to produce the vector, and is expressed at high levels, it is difficult to rescue a stable Ad HIV-1 vaccine vector. Therefore we hypothesized that generation of Ad vaccine vectors expressing cytotoxic genes, such as HIV-1 env, would be more efficient if expression of the transgene was down regulated during Ad rescue. To test this hypothesis, a Lac repressor-operator system was applied to regulate expression of reporter luciferase and HIV-1 env transgenes during Ad rescue. The results demonstrate that during Ad rescue, constitutive expression of the Lac repressor in 293 cells reduced transgene expression levels to approximately 5% of that observed in the absence of regulation. Furthermore, Lag-regulation translated into more efficient Ad rescue compared to traditional 293 cells. Importantly, Ad vectors rescued with this system showed high levels of transgene expression when transduced into cells that lack the Lac repressor protein. The Lac-regulated system also facilitated the rescue of modified Ad vectors that have non-native receptor tropism. These tropism-modified Ad vectors infect a broader range of cell types than the unmodified Ad, which could increase their effectiveness as a vaccine vector. Overall, the Lac-regulated system described here (i) is backwards compatible with Ad vector methods that employ bacterial-mediated homologous recombination (ii) is adaptable for the engineering of tropism-modified Ad vectors and (iii) does not require co-expression of regulatory genes from the vector or the addition of exogenous chemicals to induce or repress transgene expression. This

  8. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  9. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo

    PubMed Central

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-01-01

    Here we describe “Supernova” series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain. PMID:27775045

  10. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system.

    PubMed

    Yang, Ya; Zhu, Guang; Zhang, Hulin; Chen, Jun; Zhong, Xiandai; Lin, Zong-Hong; Su, Yuanjie; Bai, Peng; Wen, Xiaonan; Wang, Zhong Lin

    2013-10-22

    We report a triboelectric nanogenerator (TENG) that plays dual roles as a sustainable power source by harvesting wind energy and as a self-powered wind vector sensor system for wind speed and direction detection. By utilizing the wind-induced resonance vibration of a fluorinated ethylene-propylene film between two aluminum foils, the integrated TENGs with dimensions of 2.5 cm × 2.5 cm × 22 cm deliver an output voltage up to 100 V, an output current of 1.6 μA, and a corresponding output power of 0.16 mW under an external load of 100 MΩ, which can be used to directly light up tens of commercial light-emitting diodes. Furthermore, a self-powered wind vector sensor system has been developed based on the rationally designed TENGs, which is capable of detecting the wind direction and speed with a sensitivity of 0.09 μA/(m/s). This work greatly expands the applicability of TENGs as power sources for self-sustained electronics and also self-powered sensor systems for ambient wind detection.

  11. A vector-product information retrieval system adapted to heterogeneous, distributed computing environments

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.

    1991-01-01

    Vector-product information retrieval (IR) systems produce retrieval results superior to all other searching methods but presently have no commercial implementations beyond the personal computer environment. The NASA Electronic Library Systems (NELS) provides a ranked list of the most likely relevant objects in collections in response to a natural language query. Additionally, the system is constructed using standards and tools (Unix, X-Windows, Notif, and TCP/IP) that permit its operation in organizations that possess many different hosts, workstations, and platforms. There are no known commercial equivalents to this product at this time. The product has applications in all corporate management environments, particularly those that are information intensive, such as finance, manufacturing, biotechnology, and research and development.

  12. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  13. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries.

    PubMed

    Terrón-González, L; Medina, C; Limón-Mortés, M C; Santero, E

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance.

  14. WKB theory of wave tunneling for Hermitian and nearly Hermitian vector systems of integral equations

    NASA Astrophysics Data System (ADS)

    Kull, H. J.; Kashuba, R. J.; Berk, H. L.

    1989-11-01

    A general theory of wave tunneling in one dimension for Hermitian and nearly Hermitian vector systems of integral equations is presented. It describes mode conversion in terms of the general dielectric tensor of the medium and properly accounts for the forward and backward nature of the waves without regard to specific models. Energy conservation in the WKB approximation can be obtained for general Hermitian systems by the use of modified Furry rules that are similar to those used by Heading for second-order differential equations. Wave energy absorption can then be calculated perturbatively using the conservation properties of the dominant Hermitian operator. Operational graphical rules are developed to construct global wave solutions and to determine the direction of energy flow for spatially disconnected roots. In principle, these rules could be applied to systems with arbitrary mode complexity. Coupling coefficients for wave tunneling problems with up to four interacting modes are calculated explicitly.

  15. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    PubMed

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.

  16. Prototype Early Warning Systems for Vector-Borne Diseases in Europe

    PubMed Central

    Semenza, Jan C.

    2015-01-01

    Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats. PMID:26042370

  17. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    SciTech Connect

    Haario, Heikki; Kalachev, Leonid; Hakkarainen, Janne

    2015-06-15

    Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. We modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.

  18. Prototype early warning systems for vector-borne diseases in Europe.

    PubMed

    Semenza, Jan C

    2015-06-01

    Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats.

  19. Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1

    PubMed Central

    Shen, Fanxia; Mao, Lei; Zhu, Wan; Lawton, Michael T.; Pechan, Peter; Colosi, Peter; Wu, Zhijian; Scaria, Abraham; Su, Hua

    2015-01-01

    The soluble vascular endothelial growth factor (VEGF) receptor 1 (sFLT1) has been tested in both animals and humans for anti-angiogenic therapies, e.g., age-related macular degeneration. We hypothesized that adeno-associated viral vector (AAV)-mediated sFLT1 expression could be used to inhibit abnormal brain angiogenesis. We tested the anti-angiogenic effect of sFLT1 and the feasibility of using AAV serotype 9 to deliver sFLT1 through intravenous injection (IV) to the brain angiogenic region. AAV vectors were packaged in AAV serotypes 1 and 2 (stereotactic injection) and 9 (IV-injection). Brain angiogenesis was induced in adult mice through stereotactic injection of AAV1-VEGF. AAV2-sFLT02 containing sFLT1 VEGF-binding domain (domain 2) was injected into the brain angiogenic region, and AAV9-sFLT1 was injected into the jugular vein at the time of or 4 weeks after AAV1-VEGF injection. We showed that AAV2-sFLT02 inhibited brain angiogenesis at both time points. Intravenous injection of AAV9-sFLT1 inhibited angiogenesis only when the vector was injected 4 weeks after angiogenic induction. Neither lymphocyte infiltration nor neuron loss was observed in AAV9-sFLT1-treated mice. Our data show that systemically delivered AAV9-sFLT1 inhibits angiogenesis in the mouse brain, which could be utilized to treat brain angiogenic diseases such as brain arteriovenous malformation. PMID:26090874

  20. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae.

    PubMed

    Christophides, George K; Vlachou, Dina; Kafatos, Fotis C

    2004-04-01

    In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best-studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow-up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial 'smart sprays' capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.

  1. An efficient transgenic system by TA cloning vectors and RNAi for C. elegans

    SciTech Connect

    Gengyo-Ando, Keiko; Yoshina, Sawako; Inoue, Hideshi; Mitani, Shohei . E-mail: mitani1@research.twmu.ac.jp

    2006-11-03

    In the nematode, transgenic analyses have been performed by microinjection of DNA from various sources into the syncytium gonad. To expedite these transgenic analyses, we solved two potential problems in this work. First, we constructed an efficient TA-cloning vector system which is useful for any promoter. By amplifying the genomic DNA fragments which contain regulatory sequences with or without the coding region, we could easily construct plasmids expressing fluorescent protein fusion without considering restriction sites. We could dissect motor neurons with three colors in a single animal. Second, we used feeding RNAi to isolate transgenic strains which express lag-2::venus fusion gene. We found that the fusion protein is toxic when ectopically expressed in embryos but is functional to rescue a loss of function mutant in the lag-2 gene. Thus, the transgenic system described here should be useful to examine the protein function in the nematode.

  2. Complex-optical-field lidar system for range and vector velocity measurement.

    PubMed

    Gao, Shuang; O'Sullivan, Maurice; Hui, Rongqing

    2012-11-01

    A coherent lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in-phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation in which the positive and the negative optical sidebands can carry independent modulation waveforms. A fiber-optic 90° hybrid is used in the lidar receiver for coherent heterodyne detection and to recover the complex optical field. By loading a constant modulation frequency on the lower optical sideband and a wideband linear frequency chirp on the upper sideband, vector velocity and target distance can be measured independently. The wide modulation bandwidth of this lidar system also enabled unprecedented range resolution and the capability of measuring high velocity unambiguously. PMID:23187404

  3. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    NASA Technical Reports Server (NTRS)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  4. Performance Evaluation of Lattice-Boltzmann MagnetohydrodynamicsSimulations on Modern Parallel Vector Systems

    SciTech Connect

    Carter, Jonathan; Oliker, Leonid

    2006-01-09

    The last decade has witnessed a rapid proliferation of superscalarcache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on such platforms has become major concern in high performance computing. The latest generation of custom-built parallel vector systems have the potential to address this concern for numerical algorithms with sufficient regularity in their computational structure. In this work, we explore two and three dimensional implementations of a lattice-Boltzmann magnetohydrodynamics (MHD) physics application, on some of today's most powerful supercomputing platforms. Results compare performance between the vector-based Cray X1, Earth Simulator, and newly-released NEC SX-8, with the commodity-based superscalar platforms of the IBM Power3, IntelItanium2, and AMD Opteron. Overall results show that the SX-8 attains unprecedented aggregate performance across our evaluated applications.

  5. Time-variant analysis of rotorcraft systems dynamics - An exploitation of vector processors

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, M.; Shareef, N. H.

    1993-01-01

    In this paper a generalized algorithmic procedure is presented for handling constraints in mechanical transmissions. The latter are treated as multibody systems of interconnected rigid/flexible bodies. The constraint Jacobian matrices are generated automatically and suitably updated in time, depending on the geometrical and kinematical constraint conditions describing the interconnection between shafts or gears. The type of constraints are classified based on the interconnection of the bodies by assuming that one or more points of contact exist between them. The effects due to elastic deformation of the flexible bodies are included by allowing each body element to undergo small deformations. The procedure is based on recursively formulated Kane's dynamical equations of motion and the finite element method, including the concept of geometrical stiffening effects. The method is implemented on an IBM-3090-600j vector processor with pipe-lining capabilities. A significant increase in the speed of execution is achieved by vectorizing the developed code in computationally intensive areas. An example consisting of two meshing disks rotating at high angular velocity is presented. Applications are intended for the study of the dynamic behavior of helicopter transmissions.

  6. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  7. Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoLi; Liang, DaKai; Zeng, Jie; Asundi, Anand

    2012-02-01

    Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise.

  8. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems

    PubMed Central

    Mandic, D. P.; Ryan, K.; Basu, B.; Pakrashi, V.

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  9. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems.

    PubMed

    Jaksic, V; Mandic, D P; Ryan, K; Basu, B; Pakrashi, V

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  10. Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds.

    PubMed

    Stoff, Alexander; Rivera, Angel A; Mathis, J Michael; Moore, Steven T; Banerjee, N S; Everts, Maaike; Espinosa-de-los-Monteros, Antonio; Novak, Zdenek; Vasconez, Luis O; Broker, Thomas R; Richter, Dirk F; Feldman, Dale; Siegal, Gene P; Stoff-Khalili, Mariam A; Curiel, David T

    2007-05-01

    Fibromodulin, a member of the small leucine-rich proteoglycan family, has been recently suggested as a biologically significant mediator of fetal scarless repair. To assess the role of fibromodulin in the tissue remodeling, we constructed an adenoviral vector expressing human fibromodulin cDNA. We evaluated the effect of adenovirus-mediated overexpression of fibromodulin in vitro on transforming growth factors and metalloproteinases in fibroblasts and in vivo on full-thickness incisional wounds in a rabbit model. In vitro, we found that Ad-Fibromodulin induced a decrease of expression of TGF-beta(1) and TGF-beta(2) precursor proteins, but an increase in expression of TGF-beta(3) precursor protein and TGF-beta type II receptor. In addition, fibromodulin overexpression resulted in decreased MMP-1 and MMP-3 protein secretion but increased MMP-2, TIMP-1, and TIMP-2 secretion, whereas MMP-9 and MMP-13 were not influenced by fibromodulin overexpression. In vivo evaluation by histopathology and tensile strength demonstrated that Ad-Fibromodulin administration could ameliorate wound healing in incisional wounds. In conclusion, although the mechanism of scar formation in adult wounds remains incompletely understood, we found that fibromodulin overexpression improves wound healing in vivo, suggesting that fibromodulin may be a key mediator in reduced scarring.

  11. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice

    PubMed Central

    Moayeri, Mahtab; Tremblay, Jacqueline M.; Debatis, Michelle; Dmitriev, Igor P.; Kashentseva, Elena A.; Yeh, Anthony J.; Cheung, Gordon Y. C.; Curiel, David T.; Leppla, Stephen

    2016-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. PMID:26740390

  12. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    PubMed Central

    2010-01-01

    Background Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time. Methods Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis. Results We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed. Conclusions Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals. PMID:21176193

  13. Performance Evaluation of Plasma and Astrophysics Applications onModern Parallel Vector Systems

    SciTech Connect

    Carter, Jonathan; Oliker, Leonid; Shalf, John

    2005-10-28

    The last decade has witnessed a rapid proliferation ofsuperscalar cache-based microprocessors to build high-endcomputing (HEC)platforms, primarily because of their generality,scalability, and costeffectiveness. However, the growing gap between sustained and peakperformance for full-scale scientific applications on such platforms hasbecome major concern in highperformance computing. The latest generationof custom-built parallel vector systems have the potential to addressthis concern for numerical algorithms with sufficient regularity in theircomputational structure. In this work, we explore two and threedimensional implementations of a plasma physics application, as well as aleading astrophysics package on some of today's most powerfulsupercomputing platforms. Results compare performance between the thevector-based Cray X1, EarthSimulator, and newly-released NEC SX- 8, withthe commodity-based superscalar platforms of the IBM Power3, IntelItanium2, and AMDOpteron. Overall results show that the SX-8 attainsunprecedented aggregate performance across our evaluatedapplications.

  14. The prevalence of adenoviral conjunctivitis at the Clinical Hospital of the State University of Campinas, Brazil

    PubMed Central

    Pinto, Roberto Damian Pacheco; Lira, Rodrigo Pessoa Cavalcanti; Arieta, Carlos Eduardo Leite; de Castro, Rosane Silvestre; Bonon, Sandra Helena Alves

    2015-01-01

    OBJECTIVES: Viral conjunctivitis is a common, highly contagious disease that is often caused by an adenovirus. The aim of this study was to evaluate the prevalence of adenoviral conjunctivitis by analyzing data from a prospective clinical study of 122 consecutively enrolled patients who were treated at the Clinical Hospital of the State University of Campinas (UNICAMP) after a clinical diagnosis of infectious conjunctivitis between November 2011 and June 2012. METHODS: Polymerase chain reaction was used to evaluate all cases of clinically diagnosed infectious conjunctivitis and based on the laboratory findings, the prevalence of adenoviral infections was determined. The incidence of subepithelial corneal infiltrates was also investigated. RESULTS: Of the 122 patients with acute infectious conjunctivitis included, 72 had positive polymerase chain reaction results for adenoviruses and 17 patients developed subepithelial corneal infiltrates (13.93%). CONCLUSIONS: The polymerase chain reaction revealed that the prevalence of adenoviral conjunctivitis was 59% in all patients who presented with a clinical diagnosis of infectious conjunctivitis from November 2011 to June 2012. The prevalence of adenoviral conjunctivitis in the study population was similar to its prevalence in other regions of the world. PMID:26602522

  15. Protein Transduction Domains Fused to Virus Receptors Improve Cellular Virus Uptake and Enhance Oncolysis by Tumor-Specific Replicating Vectors

    PubMed Central

    Kühnel, Florian; Schulte, Bernd; Wirth, Thomas; Woller, Norman; Schäfers, Sonja; Zender, Lars; Manns, Michael; Kubicka, Stefan

    2004-01-01

    Expression of cellular receptors determines viral tropism and limits gene delivery by viral vectors. Protein transduction domains (PTDs) have been shown to deliver proteins, antisense oligonucleotides, liposomes, or plasmid DNA into cells. In our study, we investigated the role of several PTD motifs in adenoviral infection. When physiologically expressed, a PTD from human immunodeficiency virus transactivator of transcription (Tat) did not improve adenoviral infection. We therefore fused PTDs to the ectodomain of the coxsackievirus-adenovirus receptor (CARex) to attach PTDs to adenoviral fiber knobs. CARex-Tat and CARex-VP22 allowed efficient adenoviral infection in nonpermissive cells and significantly improved viral uptake rates in permissive cells. Dose-dependent competition of CARex-PTD-mediated infection using CARex and inhibition experiments with heparin showed that binding of CARex-PTD to both adenoviral fiber and cellular glycosaminoglycans is essential for the improvement of infection. CARex-PTD-treated adenoviruses retained their properties after density gradient ultracentrifugation, indicating stable binding of CARex-PTD to adenoviral particles. Consequently, the mechanism of CARex-PTD-mediated infection involves coating of the viral fiber knobs by CARex-PTD, rather than placement of CARex domains on cell surfaces. Expression of CARex-PTDs led to enhanced lysis of permissive and nonpermissive tumor cells by replicating adenoviruses, indicating that CARex-PTDs are valuable tools to improve the efficacy of oncolytic therapy. Together, our study shows that CARex-PTDs facilitate gene transfer in nonpermissive cells and improve viral uptake at reduced titers and infection times. The data suggest that PTDs fused to virus binding receptors may be a valuable tool to overcome natural tropism of vectors and could be of great interest for gene therapeutic approaches. PMID:15564483

  16. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi.

    PubMed

    Taracena, Mabel L; Oliveira, Pedro L; Almendares, Olivia; Umaña, Claudia; Lowenberger, Carl; Dotson, Ellen M; Paiva-Silva, Gabriela O; Pennington, Pamela M

    2015-02-01

    Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 10(7) CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control. PMID:25675102

  17. Object Recognition System-on-Chip Using the Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Reyna-Rojas, Roberto; Houzet, Dominique; Dragomirescu, Daniela; Carlier, Florent; Ouadjaout, Salim

    2005-12-01

    The first aim of this work is to propose the design of a system-on-chip (SoC) platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC) vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM) used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  18. Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi

    PubMed Central

    Taracena, Mabel L.; Oliveira, Pedro L.; Almendares, Olivia; Umaña, Claudia; Lowenberger, Carl; Dotson, Ellen M.; Paiva-Silva, Gabriela O.; Pennington, Pamela M.

    2015-01-01

    Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control. PMID:25675102

  19. Development of marine magnetic vector measurement system using AUV and deep-towed vehicle

    NASA Astrophysics Data System (ADS)

    Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.; Nishimura, K.; Baba, H.

    2012-04-01

    Marine magnetic survey is one of useful methods in order to investigate the nature of the oceanic crust. Most of the data are, however, intensity of the geomagnetic field without its direction. Therefore we cannot properly apply a physical formula describing the relation between magnetic field and magnetization to analyses of the data. With this problem, Isezaki (1986) developed a shipboard three-component magnetometer which measures the geomagnetic vector at the sea. On the other hand, geophysical surveys near the seafloor have been more and more necessary in order to show the details of the oceanic crust. For instance, development of seabed resources like hydrothermal deposits needs higher resolution surveys compared with conventional surveys at the sea for accurate estimation of abundance of the resources. From these viewpoints, we have been developing a measurement system of the deep-sea geomagnetic vector using AUV and deep-towed vehicle. The measurement system consists of two 3-axis flux-gate magnetometers, an Overhauser magnetometer, an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this measurement system can measure three components and intensity of the geomagnetic field in the deep-sea. In 2009, the first test of the measurement system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the measurement system was tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was

  20. Results of solar electric thrust vector control system design, development and tests

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

  1. Combining nonlinear multiresolution system and vector quantization for still image compression

    SciTech Connect

    Wong, Y.

    1993-12-17

    It is popular to use multiresolution systems for image coding and compression. However, general-purpose techniques such as filter banks and wavelets are linear. While these systems are rigorous, nonlinear features in the signals cannot be utilized in a single entity for compression. Linear filters are known to blur the edges. Thus, the low-resolution images are typically blurred, carrying little information. We propose and demonstrate that edge-preserving filters such as median filters can be used in generating a multiresolution system using the Laplacian pyramid. The signals in the detail images are small and localized to the edge areas. Principal component vector quantization (PCVQ) is used to encode the detail images. PCVQ is a tree-structured VQ which allows fast codebook design and encoding/decoding. In encoding, the quantization error at each level is fed back through the pyramid to the previous level so that ultimately all the error is confined to the first level. With simple coding methods, we demonstrate that images with PSNR 33 dB can be obtained at 0.66 bpp without the use of entropy coding. When the rate is decreased to 0.25 bpp, the PSNR of 30 dB can still be achieved. Combined with an earlier result, our work demonstrate that nonlinear filters can be used for multiresolution systems and image coding.

  2. Recent Developments and Status of the Langley Single Vector Balance Calibration System (SVS)

    NASA Technical Reports Server (NTRS)

    Jones, Shirley M.; Rhew, Ray D.

    2004-01-01

    The Langley Research Center (LaRC) Single Vector Balance Calibration System (SVS) was first introduced in 2000 by Peter Parker. The SVS combines the Design of Experiments (DOE) methodology with a novel load application system. Since that time three systems have been designed and developed with different load range capabilities (ranging from 2 pounds to 3,000 pounds). Approximately fifteen balances have been calibrated and their data compared to conventional techniques. This paper will present results of these comparisons, based on the mathematical models and accuracies, and discuss differences that were observed. In addition, changes in the implementation of the initial load schedules developed using DOE will be highlighted. One of the principles behind DOE is randomization. The initial loading schedules used to date have been randomized in the traditional DOE sense but not for repeat calibrations or experiments. Implementation of this randomization within blocks and its impact on data quality will be reviewed. Areas of potential future development will be presented which include changes in the centers to include loads with the force position system in the pure error estimates.

  3. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Janne; Haario, Heikki; Kalachev, Leonid

    2016-04-01

    It is difficult to distinguish systematic trends from natural variability of data in many important applications, such as weather or climate systems. The practical challenge of estimating parameters in chaotic systems is related to the fact that a fixed model parameter does not correspond to a unique model integration, but to a set of quite different solutions as obtained for example by setting slightly different initial values. But while all such trajectories are different, they approximate the same underlying attractor and should be considered in this sense equivalent. In this paper, we propose a statistical approach to quantify such "sameness" of trajectories, and to distinguish trajectories that are significantly different. Various formulations of fractal dimensions have been developed to characterize the geometry of such attractors. The aim of this paper is to modify one of these, the so-called correlation dimension, to develop a way to quantify the variability of samples of an attractor by mapping the respective phase space trajectories onto vectors, whose statistical distribution can be empirically estimated. The distributions turn out to be Gaussian, which provide us a well-defined statistical tool to compare the trajectories. We use the approach for the task of parameter estimation of chaotic systems. The methodology is illustrated using computational examples for both low and high dimensional systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.

  4. Imaging theory of an aplanatic system with a stratified medium based on the method for a vector coherent transfer function.

    PubMed

    Guo, Hanming; Zhuang, Songlin; Chen, Jiabi; Liang, Zhongcheng

    2006-10-15

    A simple formalism relating image fields to object fields, similar to that of the scalar and paraxial case, is presented for an aplanatic system obeying the sine condition, which shows that the vector plane-wave spectrum of image fields is equal to the product of the vector coherent transfer function due to the x- and y-polarized point electric field source and the scalar spectrum of the corresponding transverse object fields. Utilizing this formula and dyadic Green's function, a rigorous imaging theory of an aplanatic system for the point electric current source through a stratified medium is readily developed.

  5. Imaging theory of an aplanatic system with a stratified medium based on the method for a vector coherent transfer function

    NASA Astrophysics Data System (ADS)

    Guo, Hanming; Zhuang, Songlin; Chen, Jiabi; Liang, Zhongcheng

    2006-10-01

    A simple formalism relating image fields to object fields, similar to that of the scalar and paraxial case, is presented for an aplanatic system obeying the sine condition, which shows that the vector plane-wave spectrum of image fields is equal to the product of the vector coherent transfer function due to the x- and y-polarized point electric field source and the scalar spectrum of the corresponding transverse object fields. Utilizing this formula and dyadic Green's function, a rigorous imaging theory of an aplanatic system for the point electric current source through a stratified medium is readily developed.

  6. The Impact of Satellite Atmospheric Motion Vectors in the GMAO GEOS-5 Global Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Gelaro, R. D.; Merkova, D.; Tai, King-Sheng; McCarty, W.

    2012-01-01

    The impact of satellite-derived atmospheric motion vectors (AMVs) on numerical weather forecasts is examined using the GEOS-5 global atmospheric data assimilation system. Cycling data assimilation experiments, including twice-daily 5-day forecasts, are conducted for two 6-week periods during the 2010 Atlantic hurricane season and 2010-2011Northern Hemisphere winter season. Results from a control experiment that includes all AMVs and other data types assimilated operationally in GEOS-5 are compared with those from an experiment in which the GEOS-5 AMVs (only) are replaced by ones produced by the U. S. Navy?s NAVDAS-AR atmospheric data assimilation system. The Navy AMVs are assimilated in their entirety as well as in various subset combinations. The primary objective of these experiments is to determine whether aspects of the NAVDAS-AR data selection and quality control procedure, especially the use of carefully averaged ("super-ob?) wind vectors and large volume of AMVs, explain the typically larger beneficial impact of these data in the Navy system as compared with most other forecast systems. Adjoint-based observation impact calculations are assessed and compared with traditional metrics such as forecast geopotential height anomaly correlations and observation-minus-forecast departures. Results so far indicate that that the greater number of NRL AMVs is primarily responsible for their larger impact, although superobing also appears to be beneficial. Map views show that the impact obtained from assimilation of the NRL AMVs is more uniformly beneficial, perhaps due to the averaging of individual observations in creating the super-obs. While the NRL AMVs have a much larger impact in GEOS-5 than do the control AMVs, their impact is still smaller than in the Navy forecast system, suggesting that the mix of observations may play an important role in modulating the impact of any one data type. At the same time, reducing the number of satellite radiances assimilated in

  7. [Construction and Identification of the Bait Vector Containing Duck Circovirus Cap Gene for the Yeast Two-hybrid System].

    PubMed

    Xu, Yu; Zhang, Zhilong; Lu, Yanyan; Zhang, Lei; Li, Pengfei; Jia, Renyong

    2015-05-01

    To construct a bait expression vector containing the duck circovirus Cap gene for use in the yeast two-hybrid system, the whole cap codon-optimized gene was inserted into pGBKT7 vector and confirmed by PCR, restriction enzyme digestion, and sequence analysis. After transformation into a Y2HGold yeast strain, the expression of Cap protein was analyzed by Western blotting. Toxicity and self-activation of the bait protein were detected using different dropout minimal base. PCR reaction, restriction enzyme digestion, and sequencing analyses indicated that the duck circovirus Cap gene was correctly inserted into pG- BKT7. Western blotting showed that the whole Cap protein was expressed. The recombinant bait protein had no toxicity and self-activation. Therefore, the bait vector with the Cap gene was constructed successfully, providing a foundation for future screening for interacting proteins in the yeast two-hybrid system.

  8. Coding potential and transcript analysis of fowl adenovirus 4: insight into upstream ORFs as common sequence features in adenoviral transcripts.

    PubMed

    Griffin, Bryan D; Nagy, Eva

    2011-06-01

    Recombinant fowl adenoviruses (FAdVs) have been successfully used as veterinary vaccine vectors. However, insufficient definitions of the protein-coding and non-coding regions and an incomplete understanding of virus-host interactions limit the progress of next-generation vectors. FAdVs are known to cause several diseases of poultry. Certain isolates of species FAdV-C are the aetiological agent of inclusion body hepatitis/hydropericardium syndrome (IBH/HPS). In this study, we report the complete 45667 bp genome sequence of FAdV-4 of species FAdV-C. Assessment of the protein-coding potential of FAdV-4 was carried out with the Bio-Dictionary-based Gene Finder together with an evaluation of sequence conservation among species FAdV-A and FAdV-D. On this basis, 46 potentially protein-coding ORFs were identified. Of these, 33 and 13 ORFs were assigned high and low protein-coding potential, respectively. Homologues of the ancestral adenoviral genes were, with few exceptions, assigned high protein-coding potential. ORFs that were unique to the FAdVs were differentiated into high and low protein-coding potential groups. Notable putative genes with high protein-coding capacity included the previously unreported fiber 1, hypothetical 10.3K and hypothetical 10.5K genes. Transcript analysis revealed that several of the small ORFs less than 300 nt in length that were assigned low coding potential contributed to upstream ORFs (uORFs) in important mRNAs, including the ORF22 mRNA. Subsequent analysis of the previously reported transcripts of FAdV-1, FAdV-9, human adenovirus 2 and bovine adenovirus 3 identified widespread uORFs in AdV mRNAs that have the potential to act as important translational regulatory elements.

  9. Use of a Closed Culture System to Improve the Safety of Lentiviral Vector Production.

    PubMed

    Wu, Tao; Bour, Gaëtan; Durand, Sarah; Lindner, Véronique; Gossé, Francine; Zona, Laetitia; Certoux, Jean-Marie; Diana, Michele; Baumert, Thomas F; Marescaux, Jacques; Mutter, Didier; Pessaux, Patrick; Robinet, Eric

    2015-12-01

    We evaluated the possibility of introducing a combination of six oncogenes into primary porcine hepatocytes (PPH) using a lentiviral vector (LV)-mediated gene transfer in order to develop a porcine hepatocellular carcinoma model based on autologous transplantation of ex vivo-transformed hepatocytes. The six oncogenes were introduced into three plasmids, hence enabling the production of LVs encoding a luciferase reporter gene and hTERT+p53(DD), cyclinD1+CDK4(R24C), and c-myc(T58A)+HRas(G21V) genes, respectively. In order to improve the protection of the laboratory personnel manipulating such LVs, we used a compact cell culture cassette (CliniCell(®) device) as a closed cell culture system. We demonstrated that the CliniCell device allows to produce LVs, through plasmid transfection of 293T cells, and, after transfer to a second cassette, to transduce PPH with a similar efficacy as conventional open cell culture systems such as flasks or Petri dishes. Additionally, it is possible to cryopreserve at -80°C the transduced cells, directly in the CliniCell device used for the transduction. In conclusion, the use of a closed culture system for the safe handling of oncogene-encoding LVs lays the foundation for the development of porcine tumor models based on the autologous transplantation of ex vivo-transformed primary cells. PMID:26467420

  10. Microvesicle-associated AAV Vector as a Novel Gene Delivery System

    PubMed Central

    Maguire, Casey A; Balaj, Leonora; Sivaraman, Sarada; Crommentuijn, Matheus HW; Ericsson, Maria; Mincheva-Nilsson, Lucia; Baranov, Vladimir; Gianni, Davide; Tannous, Bakhos A; Sena-Esteves, Miguel; Breakefield, Xandra O; Skog, Johan

    2012-01-01

    Adeno-associated virus (AAV) vectors have shown remarkable efficiency for gene delivery to cultured cells and in animal models of human disease. However, limitations to AAV vectored gene transfer exist after intravenous transfer, including off-target gene delivery (e.g., liver) and low transduction of target tissue. Here, we show that during production, a fraction of AAV vectors are associated with microvesicles/exosomes, termed vexosomes (vector-exosomes). AAV capsids associated with the surface and in the interior of microvesicles were visualized using electron microscopy. In cultured cells, vexosomes outperformed conventionally purified AAV vectors in transduction efficiency. We found that purified vexosomes were more resistant to a neutralizing anti-AAV antibody compared to conventionally purified AAV. Finally, we show that vexosomes bound to magnetic beads can be attracted to a magnetized area in cultured cells. Vexosomes represent a unique entity which offers a promising strategy to improve gene delivery. PMID:22314290

  11. A novel balanced-lethal host-vector system based on glmS.

    PubMed

    Kim, Kwangsoo; Jeong, Jae Ho; Lim, Daejin; Hong, Yeongjin; Yun, Misun; Min, Jung-Joon; Kwak, Sahng-June; Choy, Hyon E

    2013-01-01

    During the last decade, an increasing number of papers have described the use of various genera of bacteria, including E. coli and S. typhimurium, in the treatment of cancer. This is primarily due to the facts that not only are these bacteria capable of accumulating in the tumor mass, but they can also be engineered to deliver specific therapeutic proteins directly to the tumor site. However, a major obstacle exists in that bacteria because the plasmid carrying the therapeutic gene is not needed for bacterial survival, these plasmids are often lost from the bacteria. Here, we report the development of a balanced-lethal host-vector system based on deletion of the glmS gene in E. coli and S. typhimurium. This system takes advantage of the phenotype of the GlmS(-) mutant, which undergoes lysis in animal systems that lack the nutrients required for proliferation of the mutant bacteria, D-glucosamine (GlcN) or N-acetyl-D-glucosamine (GlcNAc), components necessary for peptidoglycan synthesis. We demonstrate that plasmids carrying a glmS gene (GlmS(+)p) complemented the phenotype of the GlmS(-) mutant, and that GlmS(+) p was maintained faithfully both in vitro and in an animal system in the absence of selection pressure. This was further verified by bioluminescent signals from GlmS (+)pLux carried in bacteria that accumulated in grafted tumor tissue in a mouse model. The signal was up to several hundred-fold stronger than that from the control plasmid, pLux, due to faithful maintenance of the plasmid. We believe this system will allow to package a therapeutic gene onto an expression plasmid for bacterial delivery to the tumor site without subsequent loss of plasmid expression as well as to quantify bioluminescent bacteria using in vivo imaging by providing a direct correlation between photon flux and bacterial number.

  12. Short-term prediction of the horizontal wind vector within a wake vortex warning system

    NASA Astrophysics Data System (ADS)

    Frech, Michael; Holzäpfel, Frank; Gerz, Thomas; Konopka, Jens

    2002-03-01

    A wake vortex warning system (WVWS) has been developed for Frankfurt Airport. This airport has two parallel runways which are separated by 518 m, a distance too short to operate them independently because wake vortices may be advected to the adjacent runway. The objective of the WVWS is to enable operation with reduced separation between two aircraft approaching the parallel runways during appropriate wind conditions. The WVWS applies a statistical persistence model to predict the crosswind within a 20-minute period. One of the main problems identified in the old WVWS is discontinuity between successive forecasts. These forecast breakdowns were not acceptable to air traffic controllers. At least part of the problem was related to the fact that the forecast was solely based on the prediction of crosswind. A new method is developed on the basis of 523 days of sonic anemometer measurements at Frankfurt Airport. It is demonstrated that the prediction of the horizontal wind vector avoids these difficulties and significantly improves the system's performance.

  13. Off-the-shelf adenoviral-mediated immunotherapy via bicistronic expression of tumor antigen and iMyD88/CD40 adjuvant.

    PubMed

    Kemnade, Jan Ole; Seethammagari, Mamatha; Narayanan, Priya; Levitt, Jonathan M; McCormick, Alison A; Spencer, David M

    2012-07-01

    Recent modest successes in ex vivo dendritic cell (DC) immunotherapy have motivated continued innovation in the area of DC manipulation and activation. Although ex vivo vaccine approaches continue to be proving grounds for new DC manipulation techniques, the intrinsic limits of ex vivo therapy, including high cost, minimal standardization, cumbersome delivery, and poor accessibility, incentivizes the development of vaccines compatible with in vivo DC targeting. We describe here a method to co-deliver both tumor-specific antigen (TSA) and an iMyD88/CD40 adjuvant (iMC), to DCs that combines toll-like receptor (TLR) and CD40 signaling. In this study, we demonstrate that simple TSA delivery via adenoviral vectors results in strong antitumor immunity. Addition of iMC delivered in a separate vector is insufficient to enhance this effect. However, when delivered simultaneously with TSA in a single bicistronic vector (BV), iMC is able to significantly enhance antigen-specific cytotoxic T-cell (CTL) responses and inhibit established tumor growth. This study demonstrates the spatial-temporal importance of concurrent DC activation and TSA presentation. Further, it demonstrates the feasibility of in vivo molecular enhancement of DCs necessary for effective antitumor immune responses.

  14. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  15. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention. PMID:27088393

  16. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  17. Adenoviral-E2F-1 radiosensitizes p53{sup wild-type} and p53{sup null} human prostate cancer cells

    SciTech Connect

    Nguyen, Khanh H.; Hachem, Paul; Khor, L.-Y.; Salem, Naji; Hunt, Kelly K.; Calkins, Peter R.; Pollack, Alan . E-mail: Alan.Pollack@fccc.edu

    2005-09-01

    Purpose: E2F-1 is a transcription factor that enhances the radiosensitivity of various cell lines by inducing apoptosis. However, there are conflicting data concerning whether this enhancement is mediated via p53 dependent pathways. Additionally, the role of E2F-1 in the response of human prostate cancer to radiation has not been well characterized. In this study, we investigated the effect of Adenoviral-E2F-1 (Ad-E2F-1) on the radiosensitivity of p53{sup wild-type} (LNCaP) and p53{sup null} (PC3) prostate cancer cell lines. Methods and Materials: LNCaP and PC3 cells were transduced with Ad-E2F-1, Adenoviral-Luciferase (Ad-Luc) control vector, or Adenoviral-p53 (Ad-p53). Expression of E2F-1 and p53 was examined by Western blot analysis. Annexin V and caspase 3 + 7 assays were performed to estimate the levels of apoptosis. Clonogenic survival assays were used to determine overall cell death. Statistical significance was determined by analysis of variance, using the Bonferroni method to correct for multiple comparisons. Results: Western blot analysis confirmed the efficacy of transductions with Ad-E2F-1 and Ad-p53. Ad-E2F-1 transduction significantly enhanced apoptosis and decreased clonogenic survival in both cell lines. These effects were compounded by the addition of RT. Although E2F-1-mediated radiosensitization was independent of p53 status, this effect was more pronounced in p53{sup wild-type} LNCaP cells. When PC3 cells were treated with Ad-p53 in combination with RT and Ad-E2F-1, there was at least an additive reduction in clonogenic survival. Conclusions: Our results suggest that Ad-E2F-1 significantly enhances the response of p53{sup wild-type} and p53{sup null} prostate cancer cells to radiation therapy, although radiosensitization is more pronounced in the presence of p53. Ad-E2F-1 may be a useful adjunct to radiation therapy in the treatment of prostate cancer.

  18. Vectorization of a Treecode

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    1990-03-01

    Vectorized algorithms for the force calculation and tree construction in the Barnes-Hut tree algorithm are described. The basic idea for the vectorization of the force calculation is to vectorize the tree traversal across particles, so that all particles in the system traverse the tree simultaneously. The tree construction algorithm also makes use of the fact that particles can be treated in parallel. Thus these algorithms take advantage of the internal parallelism in the N-body system and the tree algorithm most effectively. As a natural result, these algorithms can be used on a wide range of vector/parallel architectures, including current supercomputers and highly parallel architectures such as the Connection Machine. The vectorized code runs about five times faster than the non-vector code on a Cyber 205 for an N-body system with N = 8192.

  19. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  20. Delivery of herpes simplex virus-based vectors to the nervous system.

    PubMed

    Goss, James R; Natsume, Atsushi; Wolfe, Darren; Mata, Marina; Glorioso, Joseph C; Fink, David J

    2004-01-01

    Gene transfer to the nervous system is an attractive option to treat a wide variety of neurological insults. The expression of trophic factor and/or antiapoptotic genes may be beneficial in halting the slow neurodegeneration in such conditions as Parkinson's disease (4,5), the rapid neuronal cell death following trauma to the brain or spinal cord (6,7), or in treating peripheral neuropathies associated with diabetes or use of chemotherapeutic agents (8,9). Introduction of dominant-negative mutant genes or antisense RNA to treat diseases such as Huntington's disease, or transfer of genes to replace lost or mutated endogenous proteins to treat disorders such as lysosomal storage diseases, may prove useful. In addition, gene transfer to overexpress endogenous antinociceptive proteins has great potential in pain management. The problem faced by all of these applications is finding a suitable methodology that will facilitate the transfer of exogenous genes to the appropriate nerve cells; virusbased vectors have proven quite efficient in transferring genes to many different cell types.

  1. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    PubMed Central

    Wang, Shuihua; Ji, Genlin; Dong, Zhengchao

    2013-01-01

    Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM. PMID:24163610

  2. Family system dynamics and type 1 diabetic glycemic variability: a vector-auto-regressive model.

    PubMed

    Günther, Moritz Philipp; Winker, Peter; Böttcher, Claudia; Brosig, Burkhard

    2013-06-01

    Statistical approaches rooted in econometric methodology, so far foreign to the psychiatric and psychological realms have provided exciting and substantial new insights into complex mind-body interactions over time and individuals. Over 120 days, this structured diary study explored the mutual interactions of emotions within a classic 3-person family system with its Type 1 diabetic adolescent's daily blood glucose variability. Glycemic variability was measured through daily standard deviations of blood glucose determinations (at least 3 per day). Emotions were captured individually utilizing the self-assessment manikin on affective valence (negative-positive), activation (calm-excited), and control (dominated-dominant). Auto- and cross-correlating the stationary absolute (level) values of the mutually interacting parallel time series data sets through vector autoregression (VAR, grounded in econometric theory) allowed for the formulation of 2 concordant models. Applying Cholesky Impulse Response Analysis at a 95% confidence interval, we provided evidence for an adolescent being happy, calm, and in control to exhibit less glycemic variability and hence diabetic derailment. A nondominating mother and a happy father seemed to also reduce glycemic variability. Random shocks increasing glycemic variability affected only the adolescent and her father: In 1 model, the male parent felt in charge; in the other, he calmed down while his daughter turned sad. All reactions to external shocks lasted for less than 4 full days. Extant literature on affect and glycemic variability in Type 1 diabetic adolescents as well as challenges arising from introducing econometric theory to the field were discussed.

  3. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  4. Gene Therapy Delivery Systems for Enhancing Viral and Nonviral Vectors for Cardiac Diseases: Current Concepts and Future Applications

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Williams, Richard D.

    2013-01-01

    Abstract Gene therapy is one of the most promising fields for developing new treatments for the advanced stages of ischemic and monogenetic, particularly autosomal or X-linked recessive, cardiomyopathies. The remarkable ongoing efforts in advancing various targets have largely been inspired by the results that have been achieved in several notable gene therapy trials, such as the hemophilia B and Leber's congenital amaurosis. Rate-limiting problems preventing successful clinical application in the cardiac disease area, however, are primarily attributable to inefficient gene transfer, host responses, and the lack of sustainable therapeutic transgene expression. It is arguable that these problems are directly correlated with the choice of vector, dose level, and associated cardiac delivery approach as a whole treatment system. Essentially, a delicate balance exists in maximizing gene transfer required for efficacy while remaining within safety limits. Therefore, the development of safe, effective, and clinically applicable gene delivery techniques for selected nonviral and viral vectors will certainly be invaluable in obtaining future regulatory approvals. The choice of gene transfer vector, dose level, and the delivery system are likely to be critical determinants of therapeutic efficacy. It is here that the interactions between vector uptake and trafficking, delivery route means, and the host's physical limits must be considered synergistically for a successful treatment course. PMID:24164239

  5. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications.

    PubMed

    Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R

    2013-11-01

    Gene therapy is one of the most promising fields for developing new treatments for the advanced stages of ischemic and monogenetic, particularly autosomal or X-linked recessive, cardiomyopathies. The remarkable ongoing efforts in advancing various targets have largely been inspired by the results that have been achieved in several notable gene therapy trials, such as the hemophilia B and Leber's congenital amaurosis. Rate-limiting problems preventing successful clinical application in the cardiac disease area, however, are primarily attributable to inefficient gene transfer, host responses, and the lack of sustainable therapeutic transgene expression. It is arguable that these problems are directly correlated with the choice of vector, dose level, and associated cardiac delivery approach as a whole treatment system. Essentially, a delicate balance exists in maximizing gene transfer required for efficacy while remaining within safety limits. Therefore, the development of safe, effective, and clinically applicable gene delivery techniques for selected nonviral and viral vectors will certainly be invaluable in obtaining future regulatory approvals. The choice of gene transfer vector, dose level, and the delivery system are likely to be critical determinants of therapeutic efficacy. It is here that the interactions between vector uptake and trafficking, delivery route means, and the host's physical limits must be considered synergistically for a successful treatment course.

  6. Treatment for retinopathy of prematurity in an infant with adenoviral conjunctivitis.

    PubMed

    Gunay, Murat; Celik, Gokhan; Con, Rahim

    2015-01-01

    Retinopathy of prematurity (ROP) has been a major problematic disorder during childhood. Laser photocoagulation (LPC) has been proven to be effective in most of the ROP cases. Adenoviral conjunctivitis (AVC) is responsible for epidemics among adult and pediatric population. It has also been reported to be a cause of outbreaks in neonatal intensive care units (NICU) several times. We herein demonstrate a case with AVC who underwent LPC for ROP. And we discuss the treatment methodology in such cases.

  7. Inhibition of apoptosis reduces immunogeneic potential of adenoviral-treated syngeneic liver grafts.

    PubMed

    Puellmann, Kerstin; Beham, Alexander; Kienle, Klaus; Vogel, Mandy; Schlitt, Hans Juergen; Jauch, Karl Walter; Rentsch, Markus

    2006-11-27

    Effects of adenoviral therapy and reduced apoptosis on immune response were investigated in a rat liver transplantation model after prolonged ischemia-reperfusion. Liver donors were treated i.v. either with an adenoviral construct, expressing bcl-2, green-fluorescent-protein, or doxycyclin. Intrahepatic apoptosis was assessed by terminal transferase dUTP nick end labeling assay. The intrahepatic presence of CD4, CD8a, CD163, immunoglobulin (Ig)beta, tumor necrosis factor (TNF)-alpha and myeloperoxidase (MPO) was quantified by realtime polymerase chain reaction at 24 hours and seven days after transplantation. Bcl-2 expression abrogated the TNF-alpha elevation and reduced apoptosis of hepatocytes and sinusoidal endothelial cells as compared to advCMV green fluorescent protein. No effects on CD4, CD8a, CD163 and MPO expression were noticed in bcl-2 pretreated livers, whereas Igbeta was slightly enhanced compared to controls. Adenoviral infected liver grafts trigger an immune response but reduced apoptosis resulted in down-regulation of TNF-alpha. Thus, bcl-2 transfer might simultaneously reduce graft ischemia reperfusion injury and immunogenicity. PMID:17130789

  8. Long-term inducible expression in striatal neurons from helper virus-free HSV-1 vectors that contain the tetracycline-inducible promoter system

    PubMed Central

    Gao, Qingshen; Sun, Mei; Wang, Xiaodan; Zhang, Guo-rong; Geller, Alfred I.

    2006-01-01

    Direct gene transfer into neurons in the brain via a virus vector system has potential for both examining neuronal physiology and for developing gene therapy treatments for neurological diseases. Many of these applications require precise control of the levels of recombinant gene expression. The preferred method for controlling the levels of expression is by use of an inducible promoter system, and the tetracycline (tet)-inducible promoter system is the preferred system. Helper virus-free Herpes Simplex Virus (HSV-1) vectors have a number of the advantages, including their large size and efficient gene transfer. Also, we have reported long-term (14 months) expression from HSV-1 vectors that contain a modified neurofilament heavy gene promoter. A number of studies have reported short-term, inducible expression from helper virus-containing HSV-1 vector systems. However, long-term, inducible expression has not been reported using HSV-1 vectors. The goal of this study was to obtain long-term, inducible expression from helper virus-free HSV-1 vectors. We examined two different vector designs for adapting the tet promoter system to HSV-1 vectors. One design was an autoregulatory design; one transcription unit used a tet-regulated promoter to express the tet-regulated transcription factor tet-off, and another transcription unit used a tet-regulated promoter to express the Lac Z gene. In the other vector design, one transcription unit used the modified neurofilament heavy gene promoter to express tet-off, and another transcription unit used a tet-regulated promoter to express the Lac Z gene. The results showed that both vector designs supported inducible expression in cultured fibroblast or neuronal cell lines and for a short time (4 days) in the rat striatum. Of note, only the vector design that used the modified neurofilament promoter to express tet-off supported long-term (2 months) inducible expression in striatal neurons. PMID:16545782

  9. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system.

    PubMed

    Zacchigna, Serena; Zentilin, Lorena; Giacca, Mauro

    2014-05-23

    The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.

  10. Vector insert-targeted integrative antisense expression system for plasmid stabilization.

    PubMed

    Luke, Jeremy M; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2011-01-01

    Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides. PMID:20607625

  11. Cancer Screening by Systemic Administration of a Gene Delivery Vector Encoding Tumor-Selective Secretable Biomarker Expression

    PubMed Central

    Browne, Andrew W.; Leddon, Jennifer L.; Currier, Mark A.; Williams, Jon P.; Frischer, Jason S.; Collins, Margaret H.; Ahn, Chong H.; Cripe, Timothy P.

    2011-01-01

    Cancer biomarkers facilitate screening and early detection but are known for only a few cancer types. We demonstrated the principle of inducing tumors to secrete a serum biomarker using a systemically administered gene delivery vector that targets tumors for selective expression of an engineered cassette. We exploited tumor-selective replication of a conditionally replicative Herpes simplex virus (HSV) combined with a replication-dependent late viral promoter to achieve tumor-selective biomarker expression as an example gene delivery vector. Virus replication, cytotoxicity and biomarker production were low in quiescent normal human foreskin keratinocytes and high in cancer cells in vitro. Following intravenous injection of virus >90% of tumor-bearing mice exhibited higher levels of biomarker than non-tumor-bearing mice and upon necropsy, we detected virus exclusively in tumors. Our strategy of forcing tumors to secrete a serum biomarker could be useful for cancer screening in high-risk patients, and possibly for monitoring response to therapy. In addition, because oncolytic vectors for tumor specific gene delivery are cytotoxic, they may supplement our screening strategy as a “theragnostic” agent. The cancer screening approach presented in this work introduces a paradigm shift in the utility of gene delivery which we foresee being improved by alternative vectors targeting gene delivery and expression to tumors. Refining this approach will usher a new era for clinical cancer screening that may be implemented in the developed and undeveloped world. PMID:21589655

  12. Brevipalpus mites (Acari: Tenuipalpidae): vectors of invasive, non-systemic cytoplasmic and nuclear viruses in plants.

    PubMed

    Rodrigues, Jose Carlos Verle; Childers, Carl C

    2013-02-01

    Multi-directional interactions occur among plant hosts, Brevipalpus mites and the plant viruses they transmit. Such interactions should be considered when evaluating the severity of a disease such as citrus leprosis. The current understanding of Brevipalpus-transmitted viruses relies on the capability of the vector to transmit the disease, the persistence of the virus in the host plant and the ability of the disease to spread. Previously, we discussed the Citrus leprosis virus (CiLV) and its importance and spread over the past decade into new areas of South and Central America, most recently into southern Mexico and Belize. Here, we address key questions to better understand the biology of the mite vector, fitness costs, and the peculiarities of Brevipalpus mite reproduction, virus survival, transmissibility and spread, and the expansion of the host plant range of Brevipalpus species vectoring the disease.

  13. Brevipalpus mites (Acari: Tenuipalpidae): vectors of invasive, non-systemic cytoplasmic and nuclear viruses in plants.

    PubMed

    Rodrigues, Jose Carlos Verle; Childers, Carl C

    2013-02-01

    Multi-directional interactions occur among plant hosts, Brevipalpus mites and the plant viruses they transmit. Such interactions should be considered when evaluating the severity of a disease such as citrus leprosis. The current understanding of Brevipalpus-transmitted viruses relies on the capability of the vector to transmit the disease, the persistence of the virus in the host plant and the ability of the disease to spread. Previously, we discussed the Citrus leprosis virus (CiLV) and its importance and spread over the past decade into new areas of South and Central America, most recently into southern Mexico and Belize. Here, we address key questions to better understand the biology of the mite vector, fitness costs, and the peculiarities of Brevipalpus mite reproduction, virus survival, transmissibility and spread, and the expansion of the host plant range of Brevipalpus species vectoring the disease. PMID:23203501

  14. Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the

  15. CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics.

    PubMed

    Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro

    2014-01-27

    We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.

  16. Split vector systems for ultra-targeted gene delivery: a contrivance to achieve ethical assurance of somatic gene therapy in vivo.

    PubMed

    Tolmachov, Oleg E

    2014-08-01

    Tightly controlled spatial localisation of therapeutic gene delivery is essential to maximize the benefits of somatic gene therapy in vivo and to reduce its undesired effects on the 'bystander' cell populations, most importantly germline cells. Indeed, complete ethical assurance of somatic gene therapy can only be achieved with ultra-targeted gene delivery, which excludes the risk of inadvertent germline gene transfer. Thus, it is desired to supplement existing strategies of physical focusing and biological (cell-specific) targeting of gene delivery with an additional principle for the rigid control over spread of gene transfer within the body. In this paper I advance the concept of 'combinatorial' targeting of therapeutic gene transfer in vivo. I hypothesize that it is possible to engineer complex gene delivery vector systems consisting of several components, each one of them capable of independent spread within the human body but incapable of independent facilitation of gene transfer. As the gene delivery augmented by such split vector systems would be reliant on the simultaneous availability of all the vector system components at a predetermined body site, it is envisaged that higher order reaction kinetics required for the assembly of the functional gene transfer configuration would sharpen spatial localisation of gene transfer via curtailing the blurring effect of the vector spread within the body. A particular implementation of such split vector system could be obtained through supplementing a viral therapeutic gene vector with a separate auxiliary vector carrying a non-integrative and non-replicative form of a gene (e.g., mRNA) coding for a cellular receptor of the therapeutic vector component. Gene-transfer-enabling components of the vector system, which would be delivered separately from the vector component loaded with the therapeutic gene cargo, could also be cell-membrane-insertion-proficient receptors, elements of artificial transmembrane channels

  17. Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and ostectomy models.

    PubMed

    Ishihara, Akikazu; Shields, Kathleen M; Litsky, Alan S; Mattoon, John S; Weisbrode, Steven E; Bartlett, Jeffrey S; Bertone, Alicia L

    2008-06-01

    This study evaluated healing of equine metatarsal osteotomies and ostectomies in response to percutaneous injection of adenoviral (Ad) bone morphogenetic protein (BMP)-2, Ad-BMP-6, or beta-galactosidase protein vector control (Ad-LacZ) administered 14 days after surgery. Radiographic and quantitative computed tomographic assessment of bone formation indicated greater and earlier mineralized callus in both the osteotomies and ostectomies of the metatarsi injected with Ad-BMP-2 or Ad-BMP-6. Peak torque to failure and torsional stiffness were greater in osteotomies treated with Ad-BMP-2 than Ad-BMP-6, and both Ad-BMP-2- and Ad-BMP-6-treated osteotomies were greater than Ad-LacZ or untreated osteotomies. Gene expression of ostectomy mineralized callus 8 weeks after surgery indicated upregulation of genes related to osteogenesis compared to intact metatarsal bone. Expression of transforming growth factor beta-1, cathepsin H, and gelsolin-like capping protein were greater in Ad-BMP-2- and Ad-BMP-6-treated callus compared to Ad-LacZ-treated or untreated callus. Evidence of tissue biodistribution of adenovirus in distant organs was not identified by quantitative PCR, despite increased serum antiadenoviral vector antibody. This study demonstrated a greater relative potency of Ad-BMP-2 over Ad-BMP-6 in accelerating osteotomy healing when administered in this regimen, although both genes were effective at increasing bone at both osteotomy and ostectomy sites.

  18. A high-throughput protein expression system in Pichia pastoris using a newly developed episomal vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe here the construction of a Gateway-compatible vector, pBGP1-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. pBGP1-DEST directs the synthesis of a fusion protein consisting of the N-terminal signal and pro-sequence...

  19. Supplementary and Enrichment Series: The System of Vectors. Teachers' Commentary. SP-7.

    ERIC Educational Resources Information Center

    Kalman, Karl, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include directed line segments, applications to geometry, vectors and scalars, components, inner product,…

  20. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    PubMed

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors. PMID:26519158

  1. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi.

    PubMed

    Watanabe, Colin; Cuellar, Trinna L; Haley, Benjamin

    2016-01-01

    Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme.

  2. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  3. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model.

    PubMed

    Bertone, A L; Pittman, D D; Bouxsein, M L; Li, J; Clancy, B; Seeherman, H J

    2004-11-01

    This study evaluated healing of rabbit bilateral ulnar osteotomies 6 and 8 weeks after surgery in response to percutaneous injection of transgenic adenoviral (Ad) bone morphogenetic protein-6 (BMP-6) vector or green fluorescent protein vector control (Ad-GFP) administered 7 days after surgery compared to untreated osteotomy controls. The amount, composition and biomechanical properties of the healing bone repair tissue were compared among groups and to historical data for intact rabbit ulnae obtained from similar studies at the same institution. Quantitative computed tomography was used to determine area, density and mineral content of the mineralized callus in the harvested ulnae. Maximum torque, torsional stiffness, and energy absorbed to failure were determined at 1.5 degrees /s. Calcified sections of excised ulnae (5 microm) were stained with Goldner's Trichrome and Von Kossa, and evaluated for callus composition, maturity, cortical continuity, and osteotomy bridging. Radiographic assessment of bone formation indicated greater mineralized callus in the ulnae injected with Ad-hBMP-6 as early as 1 week after treatment (2 weeks after surgery) compared to untreated osteotomy ulnae (p < 0.006) and Ad-GFP treated osteotomy ulnae (p < 0.002). Quantitative computed tomography confirmed greater bone area and bone mineral content at the osteotomy at 6 weeks in Ad-BMP-6 treated osteotomy as compared to untreated osteotomy ulnae (p < 0.001) and Ad-GFP treated osteotomy ulnae (p < 0.01). Ad-BMP-6 treated osteotomy ulnae were stronger (p < 0.001 and 0.003) and stiffer (p < 0.004 and 0.003) in torsion at 6 weeks than untreated osteotomy ulnae or Ad-GFP treated osteotomy ulnae, respectively. Maximum torque, torsional stiffness, and energy absorbed to failure were greater in Ad-BMP-6 treated osteotomy ulnae compared to their respective untreated contralateral osteotomy ulnae at 8 weeks [p < 0.03]. Maximum torque and torsional stiffness in the Ad-BMP-6 treated osteotomy ulnae

  4. On numerical techniques for the transformation to an orthogonal coordinate system aligned with a vector field

    SciTech Connect

    CASTILLO,JOSE E.; OTTO,JAMES S.

    2000-02-11

    The authors explore the use of variational grid-generation to perform alignment of a grid with a given vector field. Variational methods have proven to be a powerful class of grid-generators, but when they are used in alignment, difficulties may arise in treating boundaries due to an incompatibility between geometry and vector field. In this paper, a refinement of the procedure of iterating boundary values is presented. It allows one to control the quality of the grid in the face of the above-mentioned incompatibility. This procedure may be incorporated into any variational alignment algorithm. The authors demonstrate its use with respect to a new quasi-variational alignment method having a particularly simple structure. The latter method is comparable to Knupp's method (see [7]), but avoids use of the Winslow equations.

  5. Gain in computational efficiency by vectorization in the dynamic simulation of multi-body systems

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Shareef, N. H.

    1991-01-01

    An improved technique for the identification and extraction of the exact quantities associated with the degrees of freedom at the element as well as the flexible body level is presented. It is implemented in the dynamic equations of motions based on the recursive formulation of Kane et al. (1987) and presented in a matrix form, integrating the concepts of strain energy, the finite-element approach, modal analysis, and reduction of equations. This technique eliminates the CPU intensive matrix multiplication operations in the code's hot spots for the dynamic simulation of the interconnected rigid and flexible bodies. A study of a simple robot with flexible links is presented by comparing the execution times on a scalar machine and a vector-processor with and without vector options. Performance figures demonstrating the substantial gains achieved by the technique are plotted.

  6. Concepts for the design of a completely active helicopter isolation system using output vector feedback

    NASA Technical Reports Server (NTRS)

    Schulz, G.

    1977-01-01

    The theory of output vector feedback (a few measured quantities) is used to derive completely active oscillation isolation functions for helicopters. These feedback controller concepts are tested with various versions of the BO 105 helicopter and their performance is demonstrated. A compensation of the vibrational excitations from the rotor and harmonics of the number of blades are considered. There is also a fast and automatic trim function for maneuvers.

  7. The Development of a Novel Mycobacterium-Escherichia coli Shuttle Vector System Using pMyong2, a Linear Plasmid from Mycobacterium yongonense DSM 45126T

    PubMed Central

    Lee, Hyungki; Kim, Byoung-Jun; Kim, Bo-Ram; Kook, Yoon-Hoh; Kim, Bum-Joon

    2015-01-01

    The Mycobacterium-Escherichia coli shuttle vector system, equipped with the pAL5000 replicon, is widely used for heterologous gene expression and gene delivery in mycobacteria. Despite its extensive use, this system has certain limitations, which has led to the development of alternative mycobacterial vector systems. The present study describes the molecular structure and expression profiles of a novel 18-kb linear plasmid, pMyong2, from Mycobacterium yongonense. Sixteen open reading frames and a putative origin of replication were identified, and the compatibility of the pMyong2 and pAL5000 vector systems was demonstrated. In recombinant Mycobacterium smegmatis (rSmeg), the pMyong2 vector system showed a copy number that was approximately 37 times greater than that of pAL5000. Furthermore, pMyong2 increased the mRNA and protein expression of the human macrophage migration inhibitory factor (hMIF) over pAL5000 levels by approximately 10-fold and 50-fold, respectively, demonstrating the potential utility of the pMyong2 vector system in heterologous gene expression in mycobacteria. Successful delivery of the EGFP gene into mammalian cells via rSmeg carrying the pMyong2 vector system was also observed, demonstrating the feasibility of this system for DNA delivery. In conclusion, the pMyong2 vector system could be effectively used not only for the in vivo delivery of recombinant protein and DNA but also for mycobacterial genetic studies as an alternative or a complement to the pAL5000 vector system. PMID:25822634

  8. The development of a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, a linear plasmid from Mycobacterium yongonense DSM 45126T.

    PubMed

    Lee, Hyungki; Kim, Byoung-Jun; Kim, Bo-Ram; Kook, Yoon-Hoh; Kim, Bum-Joon

    2015-01-01

    The Mycobacterium-Escherichia coli shuttle vector system, equipped with the pAL5000 replicon, is widely used for heterologous gene expression and gene delivery in mycobacteria. Despite its extensive use, this system has certain limitations, which has led to the development of alternative mycobacterial vector systems. The present study describes the molecular structure and expression profiles of a novel 18-kb linear plasmid, pMyong2, from Mycobacterium yongonense. Sixteen open reading frames and a putative origin of replication were identified, and the compatibility of the pMyong2 and pAL5000 vector systems was demonstrated. In recombinant Mycobacterium smegmatis (rSmeg), the pMyong2 vector system showed a copy number that was approximately 37 times greater than that of pAL5000. Furthermore, pMyong2 increased the mRNA and protein expression of the human macrophage migration inhibitory factor (hMIF) over pAL5000 levels by approximately 10-fold and 50-fold, respectively, demonstrating the potential utility of the pMyong2 vector system in heterologous gene expression in mycobacteria. Successful delivery of the EGFP gene into mammalian cells via rSmeg carrying the pMyong2 vector system was also observed, demonstrating the feasibility of this system for DNA delivery. In conclusion, the pMyong2 vector system could be effectively used not only for the in vivo delivery of recombinant protein and DNA but also for mycobacterial genetic studies as an alternative or a complement to the pAL5000 vector system.

  9. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  10. Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system.

    PubMed

    Godinho, Bruno M D C; McCarthy, David J; Torres-Fuentes, Cristina; Beltrán, Caroll J; McCarthy, Joanna; Quinlan, Aoife; Ogier, Julien R; Darcy, Raphael; O'Driscoll, Caitriona M; Cryan, John F

    2014-01-01

    Progression of RNA interference-based gene silencing technologies for the treatment of disorders of the central nervous system (CNS) depends on the availability of efficient non-toxic nanocarriers. Despite advances in the field of nanotechnology undesired and non-specific interactions with different brain-cell types occur and are poorly investigated. To this end, we studied the cytotoxic and neuroinflammatory effects of widely-used transfection reagents and modified amphiphilic β-cyclodextrins (CDs). All non-viral vectors formed positively charged nanoparticles with distinctive physicochemical properties. Differential and significant cytotoxic effects were observed among commercially available cationic vectors, whereas CDs induced limited disruptions of cellular membrane integrity and mitochondrial dehydrogenase activity. Interestingly, murine derived BV2 microglia cells and a rat striatal in vitro model of Huntington's disease (ST14A-HTT120Q) were more susceptible to toxicity than human U87 astroglioma cells. BV2 microglia presented significant increases in cytokine, toll-like receptor 2 and cyclooxygenase-2 gene expression after transfection with selected commercial vectors but not with CD.siRNA nanoparticles. Non-viral siRNA nanoparticles formulated with G6 polyamidoamine (PAMAM) also significantly increased cytokine gene expression in the brain following injections into the mouse striatum. Together our data identify modified CDs as nanosystems that enable siRNA delivery to the brain with low levels of cytotoxicity and immunological activation. PMID:24138827

  11. Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain.

    PubMed

    Serguera, C; Bemelmans, A-P

    2014-12-01

    The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors.

  12. Vector platforms for gene therapy of inherited retinopathies

    PubMed Central

    Trapani, Ivana; Puppo, Agostina; Auricchio, Alberto

    2014-01-01

    Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina’s compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs’ limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations. PMID:25124745

  13. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  14. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  15. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  16. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  17. Design of optical systems using derivatives of rays: derivatives of variable vector of spherical boundary surfaces with respect to system variable vector.

    PubMed

    Lin, Psang Dain

    2013-10-20

    A computational scheme based on differential geometry was proposed in a previous study [Appl. Opt.52, 4151 (2013)] for determining the first- and second-order derivative matrices of a skew ray reflected/refracted at a flat boundary surface. The present study extends this methodology to the case of a skew ray reflected/refracted at a spherical boundary surface. The validity of the proposed approach is demonstrated using two retro-reflectors for illustration purposes. The results show that the proposed method provides an effective means of determining the search direction required to minimize the merit function during the optimization stage of the optical system design process.

  18. Design of optical systems using derivatives of rays: derivatives of variable vector of spherical boundary surfaces with respect to system variable vector.

    PubMed

    Lin, Psang Dain

    2013-10-20

    A computational scheme based on differential geometry was proposed in a previous study [Appl. Opt.52, 4151 (2013)] for determining the first- and second-order derivative matrices of a skew ray reflected/refracted at a flat boundary surface. The present study extends this methodology to the case of a skew ray reflected/refracted at a spherical boundary surface. The validity of the proposed approach is demonstrated using two retro-reflectors for illustration purposes. The results show that the proposed method provides an effective means of determining the search direction required to minimize the merit function during the optimization stage of the optical system design process. PMID:24216581

  19. Vector processing unit

    SciTech Connect

    Garcia, L.C.; Tjon-Pian-Gi, D.C.; Tucker, S.G.; Zajac, M.W.

    1988-12-13

    This patent describes a data processing system comprising: memory means for storing instruction words of operands; a central processing unit (CPU) connected to the memory means for fetching and decoding instructions and controlling execution of instructions, including transfer of operands to and from the memory means, the control of execution of instructions is effected by a CPU clock and microprogram control means connected to the CPU clock for generating periodic execution control signals in synchronism with the CPU clock; vector processing means tightly coupled to the CPU for effecting data processing on vector data; and interconnection means, connecting the CPU and the vector processing means, including operand transfer lines for transfer of vector data between the CPU and the vector processing means, control lines, status lines for signalling conditions of the vector processor means to the CPU, and a vector timing signal line connected to one of the execution control signals from the microprogram control means, whereby the vector processing means receives periodic execution control signals at the clock rate and is synchronized with the CPU clock on a clock pulse by clock pulse basis during execution of instructions.

  20. Design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    SciTech Connect

    Samba, A.S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  1. W-band OFDM Radio-over-Fiber system with power detector for vector signal down-conversion.

    PubMed

    Lin, Chun-Ting; Wu, Meng-Fan; Ho, Chun-Hung; Li, Che-Hao; Lin, Chi-Hsiang; Huang, Hou-Tzu

    2015-06-01

    This Letter proposes a W-band OFDM RoF system at 103.5 GHz employing power detector to support vector signal down-conversion. Additional RF tone is generated and transmitted from central office to replace the local oscillator at a wireless receiver. With a proper frequency gap and power ratio between the RF tone and the OFDM-modulated signal, the impact from signal-to-signal beating interference can be minimized. The data rate can achieve a 40 Gbps 16 QAM OFDM signal over 25 km fiber and 2 m wireless transmission. PMID:26030536

  2. Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae.

    PubMed

    Desoignies, Nicolas; Schramme, Florence; Ongena, Marc; Legrève, Anne

    2013-05-01

    The control of rhizomania, one of the most important diseases of sugar beet caused by the Beet necrotic yellow vein virus, remains limited to varietal resistance. In this study, we investigated the putative action of Bacillus amylolequifaciens lipopeptides in achieving rhizomania biocontrol through the control of the virus vector Polymyxa betae. Some lipopeptides that are produced by bacteria, especially by plant growth-promoting rhizobacteria, have been found to induce systemic resistance in plants. We tested the impact of the elicitation of systemic resistance in sugar beet through lipopeptides on infection by P. betae. Lipopeptides were shown to effectively induce systemic resistance in both the roots and leaves of sugar beet, resulting in a significant reduction in P. betae infection. This article provides the first evidence that induced systemic resistance can reduce infection of sugar beet by P. betae.

  3. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  4. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  5. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    SciTech Connect

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B. )

    1990-11-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.

  6. Errors in radiance calculations induced by using scalar rather than Stokes vector theory in a realistic atmosphere-ocean system

    NASA Astrophysics Data System (ADS)

    Kattawar, George W.; Adams, Charles N.

    1990-09-01

    Virtually all calculations to date dealing with radiance calculations in an atmosphere-ocean system have been performed using a scalar theory approach where polarization effects have been neglected. This approach is always in error; however, neither the nature nor the magnitude of the errors induced has been studied. We have written a large scale Monte Carlo program to calculate the complete four component Stokes vector at any region in a fully inhomogenous atmosphere ocean system with inclusion of a stochastic interface. The program uses as input the Mueller matrices for both the aerosols in the atmosphere as well as the hydrosols in the ocean. The Mueller matrix for the stochastic interface is also accurately accounted for. The correlated sampling technique is used to compute radiance distributions for both the scalar and the Stokes vector formulations in a single computer run, thus allowing a direct comparison of the errors induced. Results will be presented for a realistic atmosphere-ocean system where Rayleigh scattering is assumed for both the atmosphere and ocean

  7. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.

    PubMed

    Jaya, T; Dheeba, J; Singh, N Albert

    2015-12-01

    Diabetic retinopathy is a major cause of vision loss in diabetic patients. Currently, there is a need for making decisions using intelligent computer algorithms when screening a large volume of data. This paper presents an expert decision-making system designed using a fuzzy support vector machine (FSVM) classifier to detect hard exudates in fundus images. The optic discs in the colour fundus images are segmented to avoid false alarms using morphological operations and based on circular Hough transform. To discriminate between the exudates and the non-exudates pixels, colour and texture features are extracted from the images. These features are given as input to the FSVM classifier. The classifier analysed 200 retinal images collected from diabetic retinopathy screening programmes. The tests made on the retinal images show that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and features sets, the area under the receiver operating characteristic curve reached 0.9606, which corresponds to a sensitivity of 94.1% with a specificity of 90.0%. The results suggest that detecting hard exudates using FSVM contribute to computer-assisted detection of diabetic retinopathy and as a decision support system for ophthalmologists.

  8. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  9. Adenoviral protein VII packages intracellular viral DNA throughout the early phase of infection.

    PubMed Central

    Chatterjee, P K; Vayda, M E; Flint, S J

    1986-01-01

    The proteins associated with parental, adenoviral DNA in productively-infected HeLa cells have been examined both directly and indirectly. HeLa cells infected with 32P-labelled Ad2 were irradiated with u.v. light at various points in the infectious cycle. Following degradation of the DNA, nuclear proteins carrying cross-linked nucleotides, or oligonucleotides, were distinguished from virion phosphoproteins by the resistance of their 32P radioactivity to 1 M NaOH. The major core protein of the virion, protein VII, was found to be associated with viral DNA throughout infection, even when cells were infected at a multiplicity of 0.14. Micrococcal nuclease digestion of intranuclear viral DNA 4 h after infection liberated two nucleoprotein particles containing viral DNA, neither of which co-migrated with HeLa cell mononucleosomes. These results indicate that core protein VII remains associated with parental adenoviral DNA during productive infections. The observation that protein VII can be cross-linked to DNA in cells infected at very low multiplicity, together with the results of a comparison of proteins cross-linkable to viral DNA in cells infected by wild-type virus and a non-infectious mutant containing the precursor to protein VII, suggest that nucleoproteins comprising viral DNA and protein VII must be the templates for expression of pre-early and early viral genes. Images Fig. 1. Fig. 3. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3743550

  10. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  11. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  12. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  13. Altered hyaluronic acid content in tear fluid of patients with adenoviral conjunctivitis.

    PubMed

    Dreyfuss, Juliana L; Regatieri, Caio V; Coelho, Bruno; Barbosa, José B; De Freitas, Denise; Nader, Helena B; Martins, João R

    2015-03-01

    The adenoviral conjunctivitis is one of the biggest causes of conjunctival infection in the world. Conjunctivitis causes relatively nonspecific symptoms, as hyperaemia and chemosis. Even after biomicroscopy, complex laboratory tests, such as viral culture, are necessary to identify the pathogen or its etiology. To contribute to the better understanding of the pathobiology of the adenoviral conjunctivitis, the tear fluids of patients with unilateral acute adenovirus conjunctivitis (UAAC), normal donors (control) and patients with allergic conjunctivitis were analyzed. Tear samples were collected with Schirmer strips from control, allergic conjunctivitis and UAAC patients, diagnosed by clinical signs. UAAC tears were tested positive in viral cultures. After the elution, HA was quantified using an ELISA-like fluorometric assay and the protein profile was determined by SDS-PAGE. A profound increase in the HA tear content in UAAC patients was found when compared to control and ALC. This HA increase in UAAC tears remarkably was not observed in tears from contralateral eyes without clinical signs, nor in allergic conjunctivitis. In addition a distinct profile of UAAC tear proteins was observed in patients with UAAC. The quantification of HA in the tear fluid is a rapid, sensitive and specific test. This molecule might be a biomarker candidate for acute conjunctivitis.

  14. Adenoviral infection or deferoxamine? Two approaches to overexpress VEGF in beta-cell lines.

    PubMed

    Langlois, Allan; Bietiger, William; Sencier, Marie-Christine; Maillard, Elisa; Pinget, Michel; Kessler, Laurence; Sigrist, Severine

    2009-07-01

    Rapid and adequate revascularization of transplanted islets is important for their survival and function during transplantation. Vascular endothelial growth factor (VEGF) could play a critical role with respect to islet revascularization. The aim of this study was to compare two strategies that are used to overexpress VEGF in beta-cells: (1) gene therapy through adenoviral infection and (2) a pharmacological approach using deferoxamine (DFO). beta-Cell lines from rat insulinoma (RINm5F) were either infected using an adenovirus encoding the gene of human VEGF 165 or incubated with DFO. One day after treatment, the viability of RINm5F cells was preserved with 10 micromol/L of DFO (103.95 +/- 5.66% toward control; n = 4). In addition, adenoviral infection maintained the viability of cells for all the concentrations used. In both treatments, overexpression of VEGF was in a comparable level. Finally, the ratio of Bax/Bcl-2 indicated that the apoptosis increased in infected beta-cells whereas treatment with DFO seems to be antiapoptotic. Our results suggest that the use of DFO could be a realistic approach to improve the vascularization of islets during transplantation. PMID:19527112

  15. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  16. Adenoviral Gene Transfer of PLD1-D4 Enhances Insulin Sensitivity in Mice by Disrupting Phospholipase D1 Interaction with PED/PEA-15

    PubMed Central

    Fiory, Francesca; Nigro, Cecilia; Ulianich, Luca; Castanò, Ilenia; D’Esposito, Vittoria; Terracciano, Daniela; Pastore, Lucio; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2013-01-01

    Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1). Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4) restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15) by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance. PMID:23585839

  17. Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors.

    PubMed

    Zhou, Qi; Uhlig, Katharina M; Muth, Anke; Kimpel, Janine; Lévy, Camille; Münch, Robert C; Seifried, Janna; Pfeiffer, Anett; Trkola, Alexandra; Coulibaly, Cheick; von Laer, Dorothee; Wels, Winfried S; Hartwig, Udo F; Verhoeyen, Els; Buchholz, Christian J

    2015-09-01

    Playing a central role in both innate and adaptive immunity, CD4(+) T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4(+) cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4(+) but not CD4(-) cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood by flow cytometry demonstrated exclusive gene transfer into CD4(+) human lymphocytes. In bone marrow and spleen, memory T cells were preferentially hit. Toward therapeutic applications, we also show that CD4-LV can be used for HIV gene therapy, as well as for tumor therapy, by delivering chimeric Ag receptors. The potential for in vivo delivery of the FOXP3 gene was also demonstrated, making CD4-LV a powerful tool for inducible regulatory T cell generation. In summary, our work demonstrates the exclusive gene transfer into a T cell subset upon systemic vector administration opening an avenue toward novel strategies in immunotherapy.

  18. Modifications to the INSM1 promoter to preserve specificity and activity for use in adenoviral gene therapy of neuroendocrine carcinomas.

    PubMed

    Akerstrom, V; Chen, C; Lan, M S; Breslin, M B

    2012-12-01

    The INSM1 gene encodes a transcriptional repressor that is exclusively expressed in neuronal and neuroendocrine tissue during embryonic development that is re-activated in neuroendocrine tumors. Using the 1.7 kbp INSM1 promoter, an adenoviral HSV thymidine kinase gene therapy was tested for the treatment of neuroendocrine tumors. An unforeseen interference on the INSM1 promoter specificity from the adenoviral genome was observed. Attempts were made to protect the INSM1 promoter from the influence of essential adenoviral sequences and to further enhance the tissue specificity of the INSM1 promoter region. Using the chicken β-globin HS4 insulator sequence, we eliminated off-target tissue expression from the Ad-INSM1 promoter-luciferase2 constructs in vivo. In addition, inclusion of two copies of the mouse nicotinic acetylcholine receptor (n(AchR)) neuronal-restrictive silencer element (NRSE) reduced nonspecific activation of the INSM1 promoter both in vitro and in vivo. Further, inclusion of both the HS4 insulator with the n(AchR) 2 × NRSE modification showed a two log increase in luciferase activity measured from the NCI-H1155 xenograft tumors compared with the original adenovirus construct. The alterations increase the therapeutic potential of adenoviral INSM1 promoter-driven suicide gene therapy for the treatment of a variety of neuroendocrine tumors. PMID:23079673

  19. A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells

    PubMed Central

    Buo, Atum M; Williams, Mark S; Kerr, Jaclyn P; Stains, Joseph P

    2016-01-01

    We report here a method for the use of poly-l-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. PMID:27547486

  20. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    ClinicalTrials.gov

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  1. Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines

    NASA Astrophysics Data System (ADS)

    Sadat Hashemipour, Maryam; Soleimani, Seyed Ali

    2016-01-01

    Artificial immune system (AIS) algorithm based on clonal selection method can be defined as a soft computing method inspired by theoretical immune system in order to solve science and engineering problems. Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure along with the feature selection significantly impacts on the classification accuracy rate. In this study, AIS based on Adaptive Clonal Selection (AISACS) algorithm has been used to optimise the SVM parameters and feature subset selection without degrading the SVM classification accuracy. Several public datasets of University of California Irvine machine learning (UCI) repository are employed to calculate the classification accuracy rate in order to evaluate the AISACS approach then it was compared with grid search algorithm and Genetic Algorithm (GA) approach. The experimental results show that the feature reduction rate and running time of the AISACS approach are better than the GA approach.

  2. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  3. Moving Kriging shape function modeling of vector TARMA models for modal identification of linear time-varying structural systems

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Liu, Li; Zhou, Si-Da; Ma, Zhi-Sai

    2015-10-01

    This work proposes a Moving Kriging (MK) shape function modeling method for modal identification of linear time-varying (LTV) structural systems based on vector time-dependent autoregressive moving average (VTARMA) models. It aims to avoid the functional subspaces selection of the conventional functional series VTARMA (FS-VTARMA) models. Instead of the common basis functions, it constructs the time-varying coefficients on the time nodes with the MK shape functions in a compact support domain. The merit of the MK shape function is to determine its shape parameters upon vector random vibration signals adaptively. Model identification is effectively dealt with through an optimization scheme that decomposes the identification problem into two subproblems: estimating model parameters via two-stage least squares (2SLS) method and estimating shape function parameters via a discrete-continuous-variable hybrid optimization. In addition, the model order selection is achieved by the optimization scheme. This method has been validated by a Monte Carlo study of simulation case and further by an experimental test case, and the performance and potential advantages are illustrated.

  4. Features classification using support vector machine for a facial expression recognition system

    NASA Astrophysics Data System (ADS)

    Patil, Rajesh A.; Sahula, Vineet; Mandal, Atanendu S.

    2012-10-01

    A methodology for automatic facial expression recognition in image sequences is proposed, which makes use of the Candide wire frame model and an active appearance algorithm for tracking, and support vector machine (SVM) for classification. A face is detected automatically from the given image sequence and by adapting the Candide wire frame model properly on the first frame of face image sequence, facial features in the subsequent frames are tracked using an active appearance algorithm. The algorithm adapts the Candide wire frame model to the face in each of the frames and then automatically tracks the grid in consecutive video frames over time. We require that first frame of the image sequence corresponds to the neutral facial expression, while the last frame of the image sequence corresponds to greatest intensity of facial expression. The geometrical displacement of Candide wire frame nodes, defined as the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as an input to the SVM, which classify the facial expression into one of the classes viz happy, surprise, sadness, anger, disgust, and fear.

  5. Application of Diagnostic Analysis Tools to the Ares I Thrust Vector Control System

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Johnson, Stephen B.

    2010-01-01

    The NASA Ares I Crew Launch Vehicle is being designed to support missions to the International Space Station (ISS), to the Moon, and beyond. The Ares I is undergoing design and development utilizing commercial-off-the-shelf tools and hardware when applicable, along with cutting edge launch technologies and state-of-the-art design and development. In support of the vehicle s design and development, the Ares Functional Fault Analysis group was tasked to develop an Ares Vehicle Diagnostic Model (AVDM) and to demonstrate the capability of that model to support failure-related analyses and design integration. One important component of the AVDM is the Upper Stage (US) Thrust Vector Control (TVC) diagnostic model-a representation of the failure space of the US TVC subsystem. This paper first presents an overview of the AVDM, its development approach, and the software used to implement the model and conduct diagnostic analysis. It then uses the US TVC diagnostic model to illustrate details of the development, implementation, analysis, and verification processes. Finally, the paper describes how the AVDM model can impact both design and ground operations, and how some of these impacts are being realized during discussions of US TVC diagnostic analyses with US TVC designers.

  6. Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods.

    PubMed

    Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T

    2012-02-01

    Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.

  7. The biological control of disease vectors.

    PubMed

    Okamoto, Kenichi W; Amarasekare, Priyanga

    2012-09-21

    Vector-borne diseases are common in nature and can have a large impact on humans, livestock and crops. Biological control of vectors using natural enemies or competitors can reduce vector density and hence disease transmission. However, the indirect interactions inherent in host-vector disease systems make it difficult to use traditional pest control theory to guide biological control of disease vectors. This necessitates a conceptual framework that explicitly considers a range of indirect interactions between the host-vector disease system and the vector's biological control agent. Here we conduct a comparative analysis of the efficacy of different types of biological control agents in controlling vector-borne diseases. We report three key findings. First, highly efficient predators and parasitoids of the vector prove to be effective biological control agents, but highly virulent pathogens of the vector also require a high transmission rate to be effective. Second, biocontrol agents can successfully reduce long-term host disease incidence even though they may fail to reduce long-term vector densities. Third, inundating a host-vector disease system with a natural enemy of the vector has little or no effect on reducing disease incidence, but inundating the system with a competitor of the vector has a large effect on reducing disease incidence. The comparative framework yields predictions that are useful in developing biological control strategies for vector-borne diseases. We discuss how these predictions can inform ongoing biological control efforts for host-vector disease systems.

  8. Lentiviral vectors.

    PubMed

    Giry-Laterrière, Marc; Verhoeyen, Els; Salmon, Patrick

    2011-01-01

    Lentiviral vectors have evolved over the last decade as powerful, reliable, and safe tools for stable gene transfer in a wide variety of mammalian cells. Contrary to other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells. In particular, lentivectors (LVs) derived from HIV-1 have gradually evolved to display many desirable features aimed at increasing both their safety and their versatility. This is why lentiviral vectors are becoming the most useful and promising tools for genetic engineering, to generate cells that can be used for research, diagnosis, and therapy. This chapter describes protocols and guidelines, for production and titration of LVs, which can be implemented in a research laboratory setting, with an emphasis on standardization in order to improve transposability of results between laboratories. We also discuss latest designs in LV technology.

  9. A baculoviral display system to assay viral entry.

    PubMed

    Iida, Manami; Yoshida, Takeshi; Watari, Akihiro; Yagi, Kiyohito; Hamakubo, Takao; Kondoh, Masuo

    2013-01-01

    In this study, we evaluated a baculoviral display system for analysis of viral entry by using a recombinant adenovirus (Ad) carrying a luciferase gene and budded baculovirus (BV) that displays the adenoviral receptor, coxsackievirus and adenovirus receptor (CAR). CAR-expressing B16 cells (B16-CAR cells) were infected with luciferase-expressing Ad vector in the presence of BV that expressed or lacked CAR (CAR-BV and mock-BV, respectively). Treatment with mock-BV even at doses as high as 5 µg/mL failed to attenuate the luciferase activity of B16-CAR cells. In contrast, treatment with CAR-BV with doses as low as 0.5 µg/mL significantly decreased the luciferase activity of infected cells, which reached 65% reduction at 5 µg/mL. These findings suggest that a receptor-displaying BV system could be used to evaluate viral infection. PMID:24189431

  10. Effective isotope labeling of proteins in a mammalian expression system.

    PubMed

    Sastry, Mallika; Bewley, Carole A; Kwong, Peter D

    2015-01-01

    Isotope labeling of biologically interesting proteins is a prerequisite for structural and dynamics studies by NMR spectroscopy. Many of these proteins require mammalian cofactors, chaperons, or posttranslational modifications such as myristoylation, glypiation, disulfide bond formation, or N- or O-linked glycosylation; and mammalian cells have the necessary machinery to produce them in their functional forms. Here, we describe recent advances in mammalian expression, including an efficient adenoviral vector-based system, for the production of isotopically labeled proteins. This system enables expression of mammalian proteins and their complexes, including proteins that require posttranslational modifications. We describe a roadmap to produce isotopically labeled (15)N and (13)C posttranslationally modified proteins, such as the outer domain of HIV-1 gp120, which has four disulfide bonds and 15 potential sites of N-linked glycosylation. These methods should allow NMR spectroscopic analysis of the structure and function of posttranslationally modified and secreted, cytoplasmic, or membrane-bound proteins.

  11. Reducing computation in an i-vector speaker recognition system using a tree-structured universal background model

    SciTech Connect

    McClanahan, Richard; De Leon, Phillip L.

    2014-08-20

    The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, we can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.

  12. Reducing computation in an i-vector speaker recognition system using a tree-structured universal background model

    DOE PAGES

    McClanahan, Richard; De Leon, Phillip L.

    2014-08-20

    The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less

  13. Evaluation of modulation transfer function of optical lens system by support vector regression methodologies - A comparative study

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.

  14. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    PubMed

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies.

  15. A Modular Lentiviral and Retroviral Construction System to Rapidly Generate Vectors for Gene Expression and Gene Knockdown In Vitro and In Vivo

    PubMed Central

    Geiling, Benjamin; Vandal, Guillaume; Posner, Ada R.; de Bruyns, Angeline; Dutchak, Kendall L.; Garnett, Samantha; Dankort, David

    2013-01-01

    The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems. PMID:24146852

  16. pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS.

    PubMed

    Montesinos, Monica S; Chen, Zuxin; Young, Samuel M

    2011-12-01

    Fast onset and high-level neurospecific transgene expression in vivo is of importance for many areas in neuroscience, from basic to translational, and can significantly reduce the amount of vector load required to maintain transgene expression in vivo. In this study, we tested various cis elements to optimize transgene expression at transcriptional, posttranscriptional, and posttranslational levels and combined them together to create the high-level neuronal transgene expression cassette pUNISHER. Using a second-generation adenoviral vector system in combination with the pUNISHER cassette, we characterized its rate of onset of detectable expression and levels of expression compared with a neurospecific expression cassette driven by the 470-bp human synapsin promoter in vitro and in vivo. Our results demonstrate in primary neurons that the pUNISHER cassette, in a recombinant adenovirus type 5 background, led to a faster rate of onset of detectable transgene expression and higher level of transgene expression. More importantly, this cassette led to highly correlated neuronal expression in vivo and to stable transgene expression up to 30 days in the auditory brain stem with no toxicity on the characteristics of synaptic transmission and plasticity at the calyx of Held synapse. Thus the pUNISHER cassette is an ideal high-level neuronal expression cassette for use in vivo for neuroscience applications. PMID:21957229

  17. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching.

    PubMed

    Grubaugh, Nathan D; Weger-Lucarelli, James; Murrieta, Reyes A; Fauver, Joseph R; Garcia-Luna, Selene M; Prasad, Abhishek N; Black, William C; Ebel, Gregory D

    2016-04-13

    The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates.

  18. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  19. Combining support vector machines with linear quadratic regulator adaptation for the online design of an automotive active suspension system

    NASA Astrophysics Data System (ADS)

    Chiou, J.-S.; Liu, M.-T.

    2008-02-01

    As a powerful machine-learning approach to pattern recognition problems, the support vector machine (SVM) is known to easily allow generalization. More importantly, it works very well in a high-dimensional feature space. This paper presents a nonlinear active suspension controller which achieves a high level performance by compensating for actuator dynamics. We use a linear quadratic regulator (LQR) to ensure optimal control of nonlinear systems. An LQR is used to solve the problem of state feedback and an SVM is used to address the question of the estimation and examination of the state. These two are then combined and designed in a way that outputs feedback control. The real-time simulation demonstrates that an active suspension using the combined SVM-LQR controller provides passengers with a much more comfortable ride and better road handling.

  20. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching.

    PubMed

    Grubaugh, Nathan D; Weger-Lucarelli, James; Murrieta, Reyes A; Fauver, Joseph R; Garcia-Luna, Selene M; Prasad, Abhishek N; Black, William C; Ebel, Gregory D

    2016-04-13

    The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates. PMID:27049584

  1. Group V and X secretory phospholipase A2 prevents adenoviral infection in mammalian cells

    PubMed Central

    Mitsuishi, Michiko; Masuda, Seiko; Kudo, Ichiro; Murakami, Makoto

    2005-01-01

    sPLA2 (secretory phospholipase A2) enzymes have been implicated in various biological events, yet their precise physiological functions remain largely unresolved. In the present study we show that group V and X sPLA2s, which are two potent plasma membrane-acting sPLA2s, are capable of preventing host cells from being infected with an adenovirus. Bronchial epithelial cells and lung fibroblasts pre-expressing group V and X sPLA2s showed marked resistance to adenovirus-mediated gene delivery in a manner dependent on their catalytic activity. Although adenovirus particles were insensitive to recombinant group V and X sPLA2s, direct addition of these enzymes to 293A cells suppressed both number and size of adenovirus plaque formation. Group V and X sPLA2s retarded the entry of adenovirus into endosomes. Moreover, adenoviral infection was suppressed by LPC (lysophosphatidylcholine), a membrane-hydrolytic product of these sPLA2s. Thus hydrolysis of the plasma membrane by these sPLA2s may eventually lead to the protection of host cells from adenovirus entry. Given that group V and X sPLA2s are expressed in human airway epithelium and macrophages and that the expression of endogenous group V sPLA2 is upregulated by virus-related stimuli in these cells, our present results raise the possibility that group V and X sPLA2s may play a role in innate immunity against adenoviral infection in the respiratory tract. PMID:16146426

  2. Upper bounds for convergence rates of vector extrapolation methods on linear systems with initial iterations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Shapira, Yair

    1992-01-01

    The application of the minimal polynomial extrapolation (MPE) and the reduced rank extrapolation (RRE) to a vector sequence obtained by the linear iterative technique x(sub j) + 1 = Ax(sub j) = b,j = 1,2,..., is considered. Both methods produce a two dimensional array of approximations s(sub n,k) to the solution of the system (I - A)x = b. Here, s(sub n,k) is obtained from the vectors x(sub j), n is less than or equal to j is less than or equal to n + k + 1. It was observed in an earlier publication by the first author that the sequence s(sub n,k), k = 1,2,..., for n greater than 0, but fixed, possesses better convergence properties than the sequence s(sub 0,k), k = 1,2,.... A detailed theoretical explanation for this phenomenon is provided in the present work. This explanation is heavily based on approximations by incomplete polynomials. It is demonstrated by numerical examples when the matrix A is sparse that cycling with s(sub n,k) for n greater than 0, but fixed, produces better convergence rates and costs less computationally than cycling with s(sub 0,k). It is also illustrated numerically with a convection-diffusion problem that the former may produce excellent results where the latter may fail completely. As has been shown in an earlier publication, the results produced by s(sub 0,k) are identical to the corresponding results obtained by applying the Arnoldi method or generalized minimal residual scheme (GMRES) to the system (I - A)x = b.

  3. A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy.

    PubMed

    Tran, A; Ippoliti, C; Balenghien, T; Conte, A; Gely, M; Calistri, P; Goffredo, M; Baldet, T; Chevalier, V

    2013-11-01

    Rift Valley fever (RVF) is a severe mosquito-borne disease that is caused by a Phlebovirus (Bunyaviridae) and affects domestic ruminants and humans. Recently, its distribution widened, threatening Europe. The probability of the introduction and large-scale spread of Rift Valley fever virus (RVFV) in Europe is low, but localized RVF outbreaks may occur in areas where populations of ruminants and potential vectors are present. In this study, we assumed the introduction of the virus into Italy and focused on the risk of vector-borne transmission of RVFV to three main European potential hosts (cattle, sheep and goats). Five main potential mosquito vectors belonging to the Culex and Aedes genera that are present in Italy were identified in a literature review. We first modelled the geographical distribution of these five species based on expert knowledge and using land cover as a proxy of mosquito presence. The mosquito distribution maps were compared with field mosquito collections from Italy to validate the model. Next, the risk of RVFV transmission was modelled using a multicriteria evaluation (MCE) approach, integrating expert knowledge and the results of a literature review on host sensitivity and vector competence, feeding behaviour and abundance. A sensitivity analysis was performed to assess the robustness of the results with respect to expert choices. The resulting maps include (i) five maps of the vector distribution, (ii) a map of suitable areas for vector-borne transmission of RVFV and (iii) a map of the risk of RVFV vector-borne transmission to sensitive hosts given a viral introduction. Good agreement was found between the modelled presence probability and the observed presence or absence of each vector species. The resulting RVF risk map highlighted strong spatial heterogeneity and could be used to target surveillance. In conclusion, the geographical information system (GIS)-based MCE served as a valuable framework and a flexible tool for mapping the

  4. A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy.

    PubMed

    Tran, A; Ippoliti, C; Balenghien, T; Conte, A; Gely, M; Calistri, P; Goffredo, M; Baldet, T; Chevalier, V

    2013-11-01

    Rift Valley fever (RVF) is a severe mosquito-borne disease that is caused by a Phlebovirus (Bunyaviridae) and affects domestic ruminants and humans. Recently, its distribution widened, threatening Europe. The probability of the introduction and large-scale spread of Rift Valley fever virus (RVFV) in Europe is low, but localized RVF outbreaks may occur in areas where populations of ruminants and potential vectors are present. In this study, we assumed the introduction of the virus into Italy and focused on the risk of vector-borne transmission of RVFV to three main European potential hosts (cattle, sheep and goats). Five main potential mosquito vectors belonging to the Culex and Aedes genera that are present in Italy were identified in a literature review. We first modelled the geographical distribution of these five species based on expert knowledge and using land cover as a proxy of mosquito presence. The mosquito distribution maps were compared with field mosquito collections from Italy to validate the model. Next, the risk of RVFV transmission was modelled using a multicriteria evaluation (MCE) approach, integrating expert knowledge and the results of a literature review on host sensitivity and vector competence, feeding behaviour and abundance. A sensitivity analysis was performed to assess the robustness of the results with respect to expert choices. The resulting maps include (i) five maps of the vector distribution, (ii) a map of suitable areas for vector-borne transmission of RVFV and (iii) a map of the risk of RVFV vector-borne transmission to sensitive hosts given a viral introduction. Good agreement was found between the modelled presence probability and the observed presence or absence of each vector species. The resulting RVF risk map highlighted strong spatial heterogeneity and could be used to target surveillance. In conclusion, the geographical information system (GIS)-based MCE served as a valuable framework and a flexible tool for mapping the

  5. Sampling strategies based on singular vectors for assimilated models in ocean forecasting systems

    NASA Astrophysics Data System (ADS)

    Fattorini, Maria; Brandini, Carlo; Ortolani, Alberto

    2016-04-01

    Meteorological and oceanographic models do need observations, not only as a ground truth element to verify the quality of the models, but also to keep model forecast error acceptable: through data assimilation techniques which merge measured and modelled data, natural divergence of numerical solutions from reality can be reduced / controlled and a more reliable solution - called analysis - is computed. Although this concept is valid in general, its application, especially in oceanography, raises many problems due to three main reasons: the difficulties that have ocean models in reaching an acceptable state of equilibrium, the high measurements cost and the difficulties in realizing them. The performances of the data assimilation procedures depend on the particular observation networks in use, well beyond the background quality and the used assimilation method. In this study we will present some results concerning the great impact of the dataset configuration, in particular measurements position, on the evaluation of the overall forecasting reliability of an ocean model. The aim consists in identifying operational criteria to support the design of marine observation networks at regional scale. In order to identify the observation network able to minimize the forecast error, a methodology based on Singular Vectors Decomposition of the tangent linear model is proposed. Such a method can give strong indications on the local error dynamics. In addition, for the purpose of avoiding redundancy of information contained in the data, a minimal distance among data positions has been chosen on the base of a spatial correlation analysis of the hydrodynamic fields under investigation. This methodology has been applied for the choice of data positions starting from simplified models, like an ideal double-gyre model and a quasi-geostrophic one. Model configurations and data assimilation are based on available ROMS routines, where a variational assimilation algorithm (4D-var) is

  6. A Reliable In Vitro Fruiting System for Armillaria Mellea for Evaluation of Agrobacterium Tumefaciens Transformation Vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Armillaria mellea is a serious pathogen of horticultural and agricultural systems in Europe and North America. The lack of a reliable in vitro fruiting system has hindered research, and necessitated dependence on intermittently available wild-collected basidiospores. Here we describe a reliable, rep...

  7. Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems: Phase 1 and 2 feasibility study, conceptual design, and prototype development

    NASA Astrophysics Data System (ADS)

    Carroll, Steven; Fowler, Thomas; Peters, Edward; Power, Wendy; Reed, Michael

    1994-01-01

    The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies; Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system.The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements): a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

  8. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  9. Development of a Transformation System for Chlamydia trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector

    PubMed Central

    Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T.; Skilton, Rachel J.; Lambden, Paul R.; Clarke, Ian N.

    2011-01-01

    Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by

  10. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.

    PubMed

    Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Clarke, Ian N

    2011-09-01

    Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by

  11. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    SciTech Connect

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  12. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    PubMed

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  13. Efficient evaluation of impairment induced by distributed fiber Raman amplifier using error vector magnitude techniques in unrepeated coherent communication system

    NASA Astrophysics Data System (ADS)

    Shan, Yuanyuan; Sun, Junqiang

    2016-06-01

    We investigate the impairment induced by relative intensity noise (RIN) of Raman pump in an ultra-long unrepeated multi-level modulated coherent optical communication system. By adopting error vector magnitude (EVM) techniques, we proposed a simple and high efficient numerical method to calculate and analyze the impact of Raman pump RIN on the coherent receiver system. Both intensity and phase noise are taken into consideration in our numerical simulations when choosing Raman pump lasers with different RIN and using different signals. Our simulation result shows that higher-order phase-modulated signal is more sensitive to RIN of the Raman pump. Comparing to the phase noise, intensity noise induced by RIN of the Raman pump can generally be ignored. Apart from the well-known walk-off parameter, nonlinear parameters and Raman-gain coefficient also play important roles in the complex noise transfer process. Our calculation makes it possible to quickly and accurately evaluate the hybrid distributed fiber Raman amplification (DFRA) along with remotely-pumped erbium-doped fiber amplification (EDFA) in ultra-long unrepeated transmission systems.

  14. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics.

    PubMed

    Sari, Duygu; Gupta, Kapil; Thimiri Govinda Raj, Deepak Balaji; Aubert, Alice; Drncová, Petra; Garzoni, Frederic; Fitzgerald, Daniel; Berger, Imre

    2016-01-01

    Multiprotein complexes regulate most if not all cellular functions. Elucidating the structure and function of these complex cellular machines is essential for understanding biology. Moreover, multiprotein complexes by themselves constitute powerful reagents as biologics for the prevention and treatment of human diseases. Recombinant production by the baculovirus/insect cell expression system is particularly useful for expressing proteins of eukaryotic origin and their complexes. MultiBac, an advanced baculovirus/insect cell system, has been widely adopted in the last decade to produce multiprotein complexes with many subunits that were hitherto inaccessible, for academic and industrial research and development. The MultiBac system, its development and numerous applications are presented. Future opportunities for utilizing MultiBac to catalyze discovery are outlined. PMID:27165327

  15. Impact of Satellite Atmospheric Motion Vectors In the GMAO GEOS-5 Global Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Merkova, Dagmar

    2012-01-01

    The WMO and THORPEX co-sponsored fifth Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction will be organized by the Expert Team on the Evolution of the Global Observing System in Sedona, Arizona, United States, from 22 to 25 May 2012. Participants are expected to come from all the major NWP centres which are active in the area of impact studies. The workshop will be conducted in English. As for the first four workshops it is planned to produce a workshop report to be published as a WMO Technical Report that will include the papers submitted by the participants. The previous four workshops in this series took place in Geneva {April 1997), Toulouse (March 2000), Alpbach (March 2004) and Geneva (May 2008). Results from Observing System Experiments (OSEs), both with global and regional aspects were presented and conclusions were drawn concerning the contributions of the various components of the observing system to the large scale forecast skill at short and medium range (Workshop Proceedings were published as WMO World Weather Watch Technical Reports TD No. 868, 1034, 1228 and 1450). Since then, some significant changes and developments have affected the global observing system and more efforts have been devoted to meso-scale observing and assimilation systems. There has also been a trend toward using techniques other than OSEs to document data impact, such as adjoint-based sensitivity to observations or ensemble-based sensitivity. Field experiments have been carried out, in particular through the THORPEX project, and the use of targeted data has been assessed.

  16. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.

  17. A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Dziubanek, Adam J.

    2012-01-01

    The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

  18. Diversity of Thrips Species and Vectors of Tomato Spotted Wilt Virus in Tomato Production Systems in Kenya.

    PubMed

    Macharia, Isaac; Backhouse, David; Skilton, Rob; Ateka, Elijah; Wu, Shu-Biao; Njahira, Moses; Maina, Solomon; Harvey, Jagger

    2015-02-01

    Thrips have been recognized as primary vectors of tomato spotted wilt virus (TSWV) with Frankliniella occidentalis (Pergande) reported as the most important and efficient vector, while other species such as Thrips tabaci Lindeman also include populations that can vector the virus. A study was undertaken to establish the diversity of thrips and presence of vectors for TSWV in four major tomato production areas in Kenya. The cytochrome oxidase 1 (CO1) gene was used to generate sequences from thrips samples collected from tomatoes and weeds, and phylogenetic analysis done to establish the variation within potential vector populations. Ceratothripoides brunneus Bagnall was the predominant species of thrips in all areas. F. occidentalis and T. tabaci were abundant in Nakuru, Kirinyaga, and Loitokitok but not detected at Bungoma. Other vectors of tospoviruses identified in low numbers were Frankliniella schultzei (Trybom) and Scirtothrips dorsalis Hood. Variation was observed in T. tabaci, F. occidentalis, and F. schultzei. Kenyan specimens of T. tabaci from tomato belonged to the arrhenotokous group, while those of F. occidentalis clustered with the Western flower thrips G group. The detection of RNA of TSWV in both of these species of thrips supported the role they play as vectors. The study has demonstrated the high diversity of thrips species in tomato production and the occurrence of important vectors of TSWV and other tospoviruses. PMID:26470099

  19. Targeting the Immune System to Fight Cancer Using Chemical Receptor Homing Vectors Carrying Polyinosine/Cytosine (PolyIC).

    PubMed

    Levitzki, Alexander

    2012-01-01

    Cancer researchers have been looking for ways to harness the immune system and to reinstate immune surveillance, to kill cancer cells without collateral damage. Here we scan current approaches to targeting the immune system against cancer, and emphasize our own approach. We are using chemical vectors attached to a specific ligand, to introduce synthetic dsRNA, polyinosine/cytosine (polyIC), into tumors. The ligand binds to a receptor protein that is overexpressed on the surface of the tumor cells. Upon ligand binding, the receptor complex is internalized, introducing the polyIC into the cell. In this fashion a large amount of synthetic dsRNA can be internalized, leading to the activation of dsRNA-binding proteins, such as dsRNA dependent protein kinase (PKR), Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-1), and melanoma differentiation-associated gene 5 (MDA5). The simultaneous activation of these signaling proteins leads to the rapid demise of the targeted cell and to cytokine secretion. The cytokines lead to a strong bystander effect and to the recruitment of immune cells that converge upon the targeted cells. The bystander effects lead to the destruction of neighboring tumor cells not targeted themselves by the vector. Normal cells, being more robust than tumor cells, survive. This strategy has several advantages: (1) recruitment of the immune system is localized to the tumor. (2) The response is rapid, leading to fast tumor eradication. (3) The bystander effects lead to the eradication of tumor cells not harboring the target. (4) The multiplicity of pro-death signaling pathways elicited by PolyIC minimizes the likelihood of the emergence of resistance. In this chapter we focus on EGFR as the targeted receptor, which is overexpressed in many tumors. In principle, the strategy can be extended to other tumors that overexpress a protein that can be internalized by a ligand, which can be a small molecule, a single chain antibody, or an affibody

  20. Targeting the Immune System to Fight Cancer Using Chemical Receptor Homing Vectors Carrying Polyinosine/Cytosine (PolyIC)

    PubMed Central

    Levitzki, Alexander

    2012-01-01

    Cancer researchers have been looking for ways to harness the immune system and to reinstate immune surveillance, to kill cancer cells without collateral damage. Here we scan current approaches to targeting the immune system against cancer, and emphasize our own approach. We are using chemical vectors attached to a specific ligand, to introduce synthetic dsRNA, polyinosine/cytosine (polyIC), into tumors. The ligand binds to a receptor protein that is overexpressed on the surface of the tumor cells. Upon ligand binding, the receptor complex is internalized, introducing the polyIC into the cell. In this fashion a large amount of synthetic dsRNA can be internalized, leading to the activation of dsRNA-binding proteins, such as dsRNA dependent protein kinase (PKR), Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-1), and melanoma differentiation-associated gene 5 (MDA5). The simultaneous activation of these signaling proteins leads to the rapid demise of the targeted cell and to cytokine secretion. The cytokines lead to a strong bystander effect and to the recruitment of immune cells that converge upon the targeted cells. The bystander effects lead to the destruction of neighboring tumor cells not targeted themselves by the vector. Normal cells, being more robust than tumor cells, survive. This strategy has several advantages: (1) recruitment of the immune system is localized to the tumor. (2) The response is rapid, leading to fast tumor eradication. (3) The bystander effects lead to the eradication of tumor cells not harboring the target. (4) The multiplicity of pro-death signaling pathways elicited by PolyIC minimizes the likelihood of the emergence of resistance. In this chapter we focus on EGFR as the targeted receptor, which is overexpressed in many tumors. In principle, the strategy can be extended to other tumors that overexpress a protein that can be internalized by a ligand, which can be a small molecule, a single chain antibody, or an affibody

  1. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors.

    PubMed

    Lozano-Fuentes, Saul; Wedyan, Fadi; Hernandez-Garcia, Edgar; Sadhu, Devadatta; Ghosh, Sudipto; Bieman, James M; Tep-Chel, Diana; García-Rejón, Julián E; Eisen, Lars

    2013-07-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, Mexico, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network.

  2. Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors

    PubMed Central

    LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

    2014-01-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

  3. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    PubMed

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  4. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    PubMed

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission.

  5. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae

    PubMed Central

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene-drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years [AU please provide a real estimate, this seems vague]. We describe CRISPR-Cas9 endonuclease constructs that function as gene-drive systems in Anopheles gambiae, the main vector for malaria [AU:OK?]. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene-drive constructs designed to target and edit each gene [AU:OK?]. For each locus targeted we observed strong gene drive at the molecular level, with transmission rates to progeny of 91 to 99.6%. Population modelling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to control suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  6. Three-vector system for high-level functional expression of value-added co-products with xylose isomerase and xylulokinase in an industrial saccharomyces cerevisiae strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease rapidly produces large amounts of soluble functional protein. It provides high levels of expression for three different proteins sim...

  7. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions.

    PubMed

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  8. Chinese Automatic Question Answering System of Specific-domain Based on Vector Space Model

    NASA Astrophysics Data System (ADS)

    Hu, Haiqing; Ren, Fuji; Kuroiwa, Shingo

    In order to meet the demand to acquire necessary information efficiently from large electronic text, the Question and Answering (QA) technology to show a clear reply automatically to a question asked in the user's natural language has widely attracted attention in recent years. Although the research of QA system in China is later than that in western countries and Japan, it has attracted more and more attention recently. In this paper, we propose a Question-Answering construction, which synthesizes the answer retrieval to the questions asked most frequently based on common knowledge, and the document retrieval concerning sightseeing information. In order to improve reply accuracy, one must consider the synthetic model based on statistic VSM and the shallow semantic analysis, and the domain is limited to sightseeing information. A Chinese QA system about sightseeing based on the proposed method has been built. The result is obtained by evaluation experiments, where high accuracy can be achieved when the results of retrieval were regarded as correct, if the correct answer appeared among those of the top three resemblance degree. The experiments proved the efficiency of our method and it is feasible to develop Question-Answering technology based on this method.

  9. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  10. A vector system for efficient and economical switching of a ura4(+) module to three commonly used antibiotic marker cassettes in Schizosaccharomyces pombe.

    PubMed

    Chen, Yinghui; Chen, Lihua; An, Ke; Wang, Yamei; Jin, Quanwen

    2015-11-01

    We describe here the development of a set of plasmid vectors that allow simple, efficient and economical switching of a ura4(+) module in existing Schizosaccharomyces pombe strains to any of the three routinely used antibiotic marker cassettes, kanMX6, hphMX6 and natMX6. In principle, the applications of this system can also be extended to switching ura4(+) for additional MX6 module-based cassettes, such as bleMX6, as long as the antibiotic marker has been cloned into an ura4(+) module-switching vector. We illustrate the application of this set of vectors in exchange of the ura4(+) marker in existing strains with three antibiotic marker cassettes with high efficiency.

  11. The trophic responses of two different rodent-vector-plague systems to climate change.

    PubMed

    Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin

    2015-02-01

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change.

  12. Development of a Support Vector Machine - Based Image Analysis System for Focal Liver Lesions Classification in Magnetic Resonance Images

    NASA Astrophysics Data System (ADS)

    Gatos, I.; Tsantis, S.; Karamesini, M.; Skouroliakou, A.; Kagadis, G.

    2015-09-01

    Purpose: The design and implementation of a computer-based image analysis system employing the support vector machine (SVM) classifier system for the classification of Focal Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic Resonance (MR) images. Materials and Methods: The study comprised 92 patients; each one of them has undergone MRI performed on a Magnetom Concerto (Siemens). Typical signs on dynamic contrast-enhanced MRI and biopsies were employed towards a three class categorization of the 92 cases: 40-benign FLLs, 25-Hepatocellular Carcinomas (HCC) within Cirrhotic liver parenchyma and 27-liver metastases from Non-Cirrhotic liver. Prior to FLLs classification an automated lesion segmentation algorithm based on Marcov Random Fields was employed in order to acquire each FLL Region of Interest. 42 texture features derived from the gray-level histogram, co-occurrence and run-length matrices and 12 morphological features were obtained from each lesion. Stepwise multi-linear regression analysis was utilized to avoid feature redundancy leading to a feature subset that fed the multiclass SVM classifier designed for lesion classification. SVM System evaluation was performed by means of leave-one-out method and ROC analysis. Results: Maximum accuracy for all three classes (90.0%) was obtained by means of the Radial Basis Kernel Function and three textural features (Inverse- Different-Moment, Sum-Variance and Long-Run-Emphasis) that describe lesion's contrast, variability and shape complexity. Sensitivity values for the three classes were 92.5%, 81.5% and 96.2% respectively, whereas specificity values were 94.2%, 95.3% and 95.5%. The AUC value achieved for the selected subset was 0.89 with 0.81 - 0.94 confidence interval. Conclusion: The proposed SVM system exhibit promising results that could be utilized as a second opinion tool to the radiologist in order to decrease the time/cost of diagnosis and the need for patients to undergo invasive examination.

  13. A Telesurveillance System With Automatic Electrocardiogram Interpretation Based on Support Vector Machine and Rule-Based Processing

    PubMed Central

    Lin, Ching-Miao; Lai, Feipei; Ho, Yi-Lwun; Hung, Chi-Sheng

    2015-01-01

    Background Telehealth care is a global trend affecting clinical practice around the world. To mitigate the workload of health professionals and provide ubiquitous health care, a comprehensive surveillance system with value-added services based on information technologies must be established. Objective We conducted this study to describe our proposed telesurveillance system designed for monitoring and classifying electrocardiogram (ECG) signals and to evaluate the performance of ECG classification. Methods We established a telesurveillance system with an automatic ECG interpretation mechanism. The system included: (1) automatic ECG signal transmission via telecommunication, (2) ECG signal processing, including noise elimination, peak estimation, and feature extraction, (3) automatic ECG interpretation based on the support vector machine (SVM) classifier and rule-based processing, and (4) display of ECG signals and their analyzed results. We analyzed 213,420 ECG signals that were diagnosed by cardiologists as the gold standard to verify the classification performance. Results In the clinical ECG database from the Telehealth Center of the National Taiwan University Hospital (NTUH), the experimental results showed that the ECG classifier yielded a specificity value of 96.66% for normal rhythm detection, a sensitivity value of 98.50% for disease recognition, and an accuracy value of 81.17% for noise detection. For the detection performance of specific diseases, the recognition model mainly generated sensitivity values of 92.70% for atrial fibrillation, 89.10% for pacemaker rhythm, 88.60% for atrial premature contraction, 72.98% for T-wave inversion, 62.21% for atrial flutter, and 62.57% for first-degree atrioventricular block. Conclusions Through connected telehealth care devices, the telesurveillance system, and the automatic ECG interpretation system, this mechanism was intentionally designed for continuous decision-making support and is reliable enough to reduce the

  14. Inorganic chemistry calculations using HETV—a vectorized solver for the SO 42--NO 3--NH 4+ system based on the ISORROPIA algorithms

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Bouchet, V. S.; Nenes, A.

    The reactions and corresponding system of equations for the inorganic SO 42--NO 3--NH 4+ system have been studied with a new heterogeneous partitioning code, HETV. The code is based on the algorithms of ISORROPIA (Nenes et al., Aquat. Geochem. 4 (1998) 123; Atmos. Environ. 33 (1999) 1553), but was constructed for maximum computational efficiency on a vector supercomputer using the "vectorization by gridpoint" technique (Jacobson and Turco, Atmos. Environ. 28 (1994) 273). The new code was tested on two common computer architectures (vector supercomputers and UNIX workstations). The new code requires 1/38-1/89 of the processing time of the original ISORROPIA code on the vector supercomputer and produces equivalent results. A rigorous testing procedure was employed to compare the results of the two codes for conditions encompassing the typical range of SO 42-, NO 3- and NH 4+ concentrations found in the ambient atmosphere. The procedure was instrumental in the creation of several improvements to the numerical methods for the solution of the system of equations. Both the improvements and the testing procedure are described in detail, and are recommended for future code development of this nature.

  15. NLTE modeling of Stokes vector center-to-limb variations in the CN violet system

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Fluri, D. M.; Berdyugina, S. V.; Bianda, M.; Ramelli, R.

    2011-05-01

    Context. The solar surface magnetic field is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allow for measuring only a small fraction of the fractal-like structured magnetic field. The remaining hidden magnetic fields can only be accessed with the Hanle effect. Aims: Molecular lines are very convenient for applying the Hanle effect diagnostics thanks to the broad range of magnetic sensitivities in a narrow spectral region. With the UV version of the Zurich Imaging Polarimeter ZIMPOL II installed at the 45 cm telescope of the Istituto Ricerche Solari Locarno (IRSOL), we simultaneously observed intensity and linear polarization center-to-limb variations in two spectral regions containing the (0, 0) and (1, 1) bandheads of the CN B2Σ - X2Σ system. Here we present an analysis of these observations. Methods: We have implemented coherent scattering in molecular lines into an NLTE radiative transfer code. A two-step approach was used. First, we separately solved the statistical equilibrium equations and compute opacities and intensity while neglecting polarization. Then we used these quantities as input for calculating scattering polarization and the Hanle effect. Results: We have found that it is impossible to fit the intensity and polarization simultaneously at different limb angles in the framework of standard 1D modeling. The atmosphere models that provide correct intensity center-to-limb variations fail to fit linear polarization center-to-limb variations due to lacking radiation-field anisotropy. We had to increase the anisotropy by means of a specially introduced free parameter. This allows us to successfully interpret our observations. We discuss possible reasons for underestimating the anisotropy in the 1D modeling.

  16. Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum.

    PubMed

    Xie, Wei-Hong; Zhu, Cong-Cong; Zhang, Nai-Sheng; Li, Da-Wei; Yang, Wei-Dong; Liu, Jie-Sheng; Sathishkumar, Ramalingam; Li, Hong-Ye

    2014-10-01

    Plastids are ideal subcellular hosts for the expression of transgenes and have been successfully used for the production of different biopolymers, therapeutic proteins and industrial enzymes. Phaeodactylum tricornutum is a widely used aquatic feed species. In this study, we focused on developing a high-efficiency plastid expression system for P. tricornutum. In the plastid transformation vector, the site selected for integration was the transcriptionally active intergenic region present between the trnI and trnA genes, located in the IR (inverted repeat) regions of the plastid genome. Initially, a CAT reporter gene (encoding chloramphenicol acetyltransferase) was integrated at this site in the plastid genome. The expression of CAT in the transformed microalgae conferred resistance to the antibiotic chloramphenicol, which enabled growth in the selection media. Overall, the plastid transformation efficiency was found to be approximately one transplastomic colony per 1,000 microalgae cells. Subsequently, a heterologous gene expression cassette for high-level expression of the target gene was created and cloned between the homologous recombination elements. A TA cloning strategy based on the designed XcmI-XcmI sites could conveniently clone the heterologous gene. An eGFP (green fluorescent protein) reporter gene was used to test the expression level in the plastid system. The relatively high-level expression of eGFP without codon optimisation in stably transformed microalgae was determined to account for 0.12 % of the total soluble protein. Thus, this study presents the first and convenient plastid gene expression system for diatoms and represents an interesting tool to study diatom plastids. PMID:24763817

  17. Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers.

    PubMed

    Akram, Nik Ahmad; Isa, Dino; Rajkumar, Rajprasad; Lee, Lam Hong

    2014-08-01

    This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of "smart pigs" to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of "smart pigs" is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig.

  18. A review of thrust-vectoring in support of a V/STOL non-moving mechanical propulsion system

    NASA Astrophysics Data System (ADS)

    Páscoa, José C.; Dumas, Antonio; Trancossi, Michele; Stewart, Paul; Vucinic, Dean

    2013-09-01

    The advantages associated to Vertical Short-Take-Off and Landing (V/STOL) have been demonstrated since the early days of aviation, with the initial technolology being based on airships and later on helicopters and planes. Its operational advantages are enormous, being it in the field of military, humanitarian and rescue operations, or even in general aviation. Helicopters have limits in their maximum horizontal speed and classic V/STOL airplanes have problems associated with their large weight, due to the implementation of moving elements, when based on tilting rotors or turbojet vector mechanical oriented nozzles. A new alternative is proposed within the European Union Project ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle). The project introduces a novel scheme to orient the jet that is free of moving elements. This is based on a Coanda effect nozzle supported in two fluid streams, also incorporating boundary layer plasma actuators to achieve larger deflection angles. Herein we introduce a state-of-the-art review of the concepts that have been proposed in the framework of jet orienting propulsion systems. This review allows to demonstrate the advantages of the new concept in comparison to competing technologies in use at present day, or of competing technologies under development worldwide.

  19. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    PubMed

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  20. Development of a competitive PCR method for physical titration of recombinant EBV vector in a helper-dependent packaging system.

    PubMed

    Wang, J; Vos, J M

    2001-06-01

    Epstein-Barr virus (EBV) is a gamma-herpesvirus with B lymphotropism and a double-stranded DNA genome of 172 kb that is episomally maintained in permissive cells during latency. EBV-based vectors containing minimal cis elements for replication, amplification, and helper-dependent packaging in a producer cell line HH514 have been developed to deliver therapeutic/suicide transgenes as infectious viral particles (miniEBV) to EBV-transformed B lymphoblastoid cells or B lymphoma cells. A quantitative, competitive PCR-based assay was developed to determine the relative packaging efficiencies of miniEBV and helper P3HR1 coproduced in HH514 cells. This provides a rapid and accurate quantitation of the physical titer of the virus preparation, which helps preserve the biological titer of the virus preparation and increase the efficiency of transgene delivery by miniEBV infection. In addition, it provides a sensitive and accurate way to evaluate future development of a helper-free packaging system by detecting any possible helper virus contamination.

  1. Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers.

    PubMed

    Akram, Nik Ahmad; Isa, Dino; Rajkumar, Rajprasad; Lee, Lam Hong

    2014-08-01

    This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of "smart pigs" to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of "smart pigs" is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig. PMID:24792683

  2. Bright-dark vector soliton solutions for a generalized coupled Hirota system in the optical glass fiber

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Sun, Wen-Rong; Zhen, Hui-Ling; Shan, Wen-Rui

    2016-10-01

    Studied in this paper are the bright-dark vector soliton solutions for a generalized coupled Hirota system which describes the propagation for the high-intensity ultrashort pulses in the optical glass fiber. Beyond the existing bilinear forms, using an auxiliary function, we obtain the improved bilinear forms and bright-dark soliton solutions under two integrable constraints through the Hirota method and symbolic computation. With the help the analytic and graphic analysis, we study the soliton properties including the amplitudes, velocities and phase shifts, and show that the interactions for the bright-dark two solitons are elastic. For the bright-dark one soliton, parametric conditions that the dark component is "black" or "gray" are obtained. For the bright-dark two solitons, we find that the bright component is affected by the dark component background parameters during such an interaction, while the dark component is not affected by the bright component background parameters. Velocities for the bright-dark two solitons are inversely proportional to the higher-order effect parameter, but amplitudes and phase shifts are independent of it. Besides, the bound-state bright-dark two solitons are also presented.

  3. A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

    PubMed Central

    Farrow, Anitra L.; Peng, Binghao J.; Gu, Linlin; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2016-01-01

    Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease. PMID:26978385

  4. Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines

    PubMed Central

    Weaver, Eric A.; Nehete, Pramod N.; Buchl, Stephanie S.; Senac, Julien S.; Palmer, Donna; Ng, Philip; Sastry, K. Jagannadha; Barry, Michael A.

    2009-01-01

    All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors. HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further investigation as alternatives to FG vectors as gene-based vaccines. PMID:19333387

  5. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  6. A neural support vector machine.

    PubMed

    Jändel, Magnus

    2010-06-01

    Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested.

  7. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    PubMed Central

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  8. Dilated cardiomyopathy alters the expression patterns of CAR and other adenoviral receptors in human heart.

    PubMed

    Toivonen, Raine; Mäyränpää, Mikko I; Kovanen, Petri T; Savontaus, Mikko

    2010-03-01

    Gene therapy trials for heart failure have demonstrated the key role of efficient gene transfer in achieving therapeutic efficacy. An attractive approach to improve adenoviral gene transfer is to use alternative virus serotypes with modified tropism. We performed a detailed analysis of cardiac expression of receptors for several adenovirus serotypes with a focus on differential expression of CAR and CD46, as adenoviruses targeting these receptors have been used in various applications. Explanted hearts from patients with DCM and healthy donors were analyzed using Q-RT-PCR, western blot and immunohistochemistry. Q-RT-PCR and Western analyses revealed robust expression of all receptors except CD80 in normal hearts with lower expression levels in DCM. Immunohistochemical analyses demonstrated that CD46 expression was somewhat higher than CAR both in normal and DCM hearts with highest levels of expression in intramyocardial coronary vessels. Total CAR expression was upregulated in DCM. Triple staining on these vessels demonstrated that both CAR and CD46 were confined to the subendothelial layer in normal hearts. The situation was clearly different in DCM, where both CAR and CD46 were expressed by endothelial cells. The induction of expression of CAR and CD46 by endothelial cells in DCM suggests that viruses targeting these receptors could more easily gain entry to heart cells after intravascular administration. This finding thus has potential implications for the development of targeted gene therapy for heart failure.

  9. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  10. Adeno-associated virus protects the retinoblastoma family of proteins from adenoviral-induced functional inactivation.

    PubMed

    Batchu, Ramesh B; Shammas, Masood A; Wang, Jing Yi; Freeman, John; Rosen, Nancy; Munshi, Nikhil C

    2002-05-15

    Adeno-associated virus type 2 (AAV) is known to inhibit virally mediated oncogenic transformation. One of the early events of adenovirus (Ad) infection is the functional inactivation of cell cycle regulatory retinoblastoma (RB) family of proteins, which consists of retinoblastoma protein (pRB), p107, and p130. In an effort to understand the molecular basis of anti-oncogenic properties of AAV, we studied the effects of AAV expression on these proteins in cells infected with Ad. Western blot analysis showed that AAV interferes with the adenoviral-induced degradation and hyperphosphorylation of the pRB family of proteins in normal human fibroblasts as well as in HeLa and 293 cell lines. RNase protection assay showed enhanced expression of pocket protein gene by AAV expression. We also demonstrate that Rep proteins, the major AAV regulatory proteins, bind to E1A, the immediate early gene of Ad responsible for hyperphosphorylation and dissociation of pRB-E2F complex. This binding of AAV Rep proteins to E1A leads to decreased association between E1A and pRB leading to protection of pocket proteins from degradation, decreased expression of S phase genes and inhibition of cell cycle progression. These results suggest that the antiproliferative activity of AAV against Ad is mediated, at least in part, by effects of AAV Rep proteins on the Rb family of proteins.

  11. Novel mobilizable prokaryotic two-hybrid system vectors for high-throughput protein interaction mapping in Escherichia coli by bacterial conjugation

    PubMed Central

    Clarke, Paul; Cuív, Páraic Ó; O'Connell, Michael

    2005-01-01

    Since its initial description, the yeast two-hybrid (Y2H) system has been widely used for the detection and analysis of protein–protein interactions. Mating-based strategies have been developed permitting its application for automated proteomic interaction mapping projects using both exhaustive and high-throughput strategies. More recently, a number of prokaryotic two-hybrid (P2H) systems have been developed but, despite the many advantages such Escherichia coli-based systems have over the Y2H system, they have not yet been widely implemented for proteomic interaction mapping. This may be largely due to the fact that high-throughput strategies employing bacterial transformation are not as amenable to automation as Y2H mating-based strategies. Here, we describe the construction of novel conjugative P2H system vectors. These vectors carry a mobilization element of the IncPα group plasmid RP4 and can therefore be mobilized with high efficiency from an E.coli donor strain encoding all of the required transport functions in trans. We demonstrate how these vectors permit the exploitation of bacterial conjugation for technically simplified and automated proteomic interaction mapping strategies in E.coli, analogous to the mating-based strategies developed for the Y2H system. PMID:15687376

  12. Engineering and characterization of a symbiotic selection-marker-free vector-host system for therapeutic plasmid production.

    PubMed

    Shi, Xinchang; Wang, Junzhi

    2015-09-01

    The present study aimed to develop a symbiotic selection-marker-free plasmid and host system that would allow successful plasmid maintenance and amplification for use in gene therapy. Initially, the chromosomal aspartate‑semialdehyde dehydrogenase (asd) gene was disrupted in DH10B Escherichia coli using Red recombinase‑mediated homologous recombination. This method required the use of linear DNA fragments carrying kan‑kil genes, and/or homologous extensions to the targeted locus. The resultant auxotrophic cell wall‑deficient strain (DH10BΔasd) was evaluated as a symbiotic host for amplification of the marker‑free plasmid, allowing it to supply ASD activity. In order to construct the plasmid, an asd expression cassette was inserted, under the control of the nirB promoter, into a eukaryotic expression vector, and its kanamycin resistance gene was subsequently removed. The symbiotic plasmid and host system was assessed for numerous plasmid production and stability parameters, including structure, yield, plasmid‑retention rate, and bacterial storability, under various conditions. The presence of the plasmid was subsequently confirmed by growth test, restriction enzyme mapping, and sequencing. The plasmid yield and copy number produced in the symbiotic cells, in the absence of antibiotic selection, were shown to be similar to those produced under kanamycin selection, in the cells containing the precursor plasmid and kanamycin resistance gene. Furthermore, the results of the present study demonstrated that when inoculated with <1% inoculant volume, >98% of the cells in the culture retained the plasmid regardless of the number of passages. The strain was stable when stored at ‑70˚C, with negligible viability loss over 12 months. The constructed plasmid is stable and has potential in future gene therapy, while much work is still required.

  13. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binary vector system and selection cassettes.

    PubMed

    Bińka, Agnieszka; Orczyk, Wacław; Nadolska-Orczyk, Anna

    2012-02-01

    The influence of two binary vector systems, pGreen and pCAMBIA, on the Agrobacterium-mediated transformation ability of wheat and triticale was studied. Both vectors carried selection cassettes with bar or nptII driven by different promoters. Two cultivars of wheat, Kontesa and Torka, and one cultivar of triticale, Wanad, were tested. The transformation rates for the wheat cultivars ranged from 0.00 to 3.58% and from 0.00 to 6.79% for triticale. The best values for wheat were 3.58% for Kontesa and 3.14% for Torka, and these were obtained after transformation with the pGreen vector carrying the nptII selection gene under the control of 35S promoter. In the case of the bar selection system, the best transformation rates were, respectively, 1.46 and 1.79%. Such rates were obtained when the 35S::bar cassette was carried by the pCAMBIA vector; they were significantly lower with the pGreen vector. The triticale cultivar Wanad had its highest transformation rate after transformation with nptII driven by 35S in pCAMBIA. The bar selection system for the same triticale cultivar was better when the gene was driven by nos and the selection cassette was carried by pGreen. The integration of the transgenes was confirmed with at least three pairs of specific starters amplifying the fragments of nptII, bar, or gus. The expression of selection genes, measured by reverse transcriptase polymerase chain reaction (RT-PCR) in relation to the actin gene, was low, ranging from 0.00 to 0.63 for nptII and from 0.00 to 0.33 for bar. The highest relative transcript accumulation was observed for nptII driven by 35S and expressed in Kontesa that had been transformed with pGreen.

  14. Singular vectors of a linear imaging system as efficient channels for the ideal observer in detection tasks involving non-Gaussian distributed lumpy images

    NASA Astrophysics Data System (ADS)

    Witten, Joel M.; Park, Subok; Myers, Kyle J.

    2008-03-01

    The Bayesian ideal observer sets an upper bound for diagnostic performance of an imaging system in binary detection tasks. Thus, this observer should be used for image quality assessment whenever possible. However, it is difficult to compute ideal-observer performance because the probability density functions of the data, required for the observer, are often unknown in tasks involving complex backgrounds. Furthermore, the dimension of the integrals that need to be calculated for the observer is huge. To attempt to reduce the dimensionality of the problem, and yet still approximate ideal-observer performance, a channelized-ideal observer (CIO) with Laguerre-Gauss channels was previously investigated for detecting a Gaussian signal at a known location in non-Gaussian lumpy images. While the CIO with Laguerre-Gauss channels had, in some cases, approximated ideal-observer performance, there was still a gap between the mean performance of the ideal observer and the CIO. Moreover, it is not clear how to choose efficient channels for the ideal observer. In the current work, we investigate the use of singular vectors of a linear imaging system as efficient channels for the ideal observer in the same tasks. Singular value decomposition of the imaging system is performed to obtain its singular vectors. Singular vectors most relevant to the signal and background images are chosen as candidate channels. Results indicate that the singular vectors are not only more efficient than Laguerre-Gauss channels, but are also highly efficient for the ideal observer. The results further demonstrate that singular vectors strongly associated with the signal-only image are the most efficient channels.

  15. Symbolic Vector Analysis in Plasma Physics

    SciTech Connect

    Qin, H.; Rewoldt, G.; Tang, W.M.

    1997-10-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  16. Symbolic Vector Analysis in Plasma Physics

    SciTech Connect

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-09

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  17. Development of a Liver-specific Tet-On Inducible System for AAV Vectors and Its Application in the Treatment of Liver Cancer

    PubMed Central

    Vanrell, Lucia; Di Scala, Marianna; Blanco, Laura; Otano, Itziar; Gil-Farina, Irene; Baldim, Victor; Paneda, Astrid; Berraondo, Pedro; Beattie, Stuart G; Chtarto, Abdelwahed; Tenenbaum, Lilianne; Prieto, Jesús; Gonzalez-Aseguinolaza, Gloria

    2011-01-01

    Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (TetbidirAlb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (TetbidirCMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the TetbidirAlb was significantly higher than that of TetbidirCMV, whereas leakage of TetbidirAlb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tetbidir-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tetbidir-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer. PMID:21364542

  18. Study of Synthetic Vision Systems (SVS) and Velocity-vector Based Command Augmentation System (V-CAS) on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Liu, Dahai; Goodrich, Ken; Peak, Bob

    2006-01-01

    This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on single pilot performance (SPP). Specifically, we evaluated the benefits and interactions of two levels of terrain portrayal, guidance symbology, and control-system response type on SPP in the context of lower-landing minima (LLM) approaches. Performance measures consisted of flight technical error (FTE) and pilot perceived workload. In this study, pilot rating, control type, and guidance symbology were not found to significantly affect FTE or workload. It is likely that transfer from prior experience, limited scope of the evaluation task, specific implementation limitations, and limited sample size were major factors in obtaining these results.

  19. NOD2 Signaling Contributes to the Innate Immune Response Against Helper-Dependent Adenovirus Vectors Independently of MyD88 In Vivo

    PubMed Central

    Suzuki, Masataka; Cela, Racel; Bertin, Terry K.; Sule, Gautam; Cerullo, Vincenzo; Rodgers, John R.

    2011-01-01

    Abstract We previously demonstrated that Toll-like receptor/myeloid differentiation primary response gene 88 (MyD88) signaling is required for maximal innate and acquired [T helper cell type 1 (Th1)] immune responses following systemic administration of helper-dependent adenoviral vectors (HDAds). However, MyD88-deficient mice injected with HDAdLacZ exhibited only partial reduction of innate immune cytokine expression compared with wild-type mice, suggesting MyD88-independent pathways also respond to HDAds. We now show that NOD2, a nucleotide-binding and oligomerization domain (NOD)–like receptor known to detect muramyl dipeptides in bacterial peptidoglycans, also contributes to innate responses to HDAds, but not to humoral or Th1 immune responses. We established NOD2/MyD88 double-deficient mice that, when challenged with HDAds, showed a significant reduction of the innate response compared with mice deficient for either gene singly, suggesting that NOD2 signaling contributes to the innate response independently of MyD88 signaling following systemic administration of HDAds. In addition, NOD2-deficient mice exhibited significantly higher transgene expression than did wild-type mice at an early time point (before development of an acquired response), but not at a later time point (after development of an acquired response). These results indicate that the intracellular sensor NOD2 is required for innate responses to HDAds and can limit transgene expression during early phases of infection. PMID:21561248

  20. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  1. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis.

    PubMed

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C; Kocan, Katherine M; Šíma, Radek; López, Juan A; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-03-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  2. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis.

    PubMed

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C; Kocan, Katherine M; Šíma, Radek; López, Juan A; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-03-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  3. Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

    NASA Astrophysics Data System (ADS)

    Cheng, C. H. Arthur; Shkoller, Steve

    2016-09-01

    We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field u are prescribed in an open, bounded, Sobolev-class domain {Ω subseteq R^n} , and either the normal component {{u} \\cdot {N}} or the tangential components of the vector field {{u} × {N}} are prescribed on the boundary {partial Ω} . For {k > n/2} , we prove that u is in the Sobolev space {H^k+1(Ω)} if {Ω} is an {H^k+1} -domain, and the divergence, curl, and either the normal or tangential trace of u has sufficient regularity. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients, and with a rather general set of Dirichlet and Neumann boundary conditions. The resulting regularity theory for the vector u is fundamental in the analysis of free-boundary and moving interface problems in fluid dynamics.

  4. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome.

    PubMed

    Gleave, A P

    1992-12-01

    A versatile gene expression cartridge and binary vector system was constructed for use in Agrobacterium-mediated plant transformation. The expression cartridge of the primary cloning vector, pART7, comprises of cauliflower mosaic virus Cabb B-JI isolate 35S promoter, a multiple cloning site and the transcriptional termination region of the octopine synthase gene. The entire cartridge can be removed from pART7 as a Not I fragment and introduced directly into the binary vector, pART27, recombinants being selected by blue/white screening for beta-galactosidase. pART27 carries the RK2 minimal replicon for maintenance in Agrobacterium, the ColE1 origin of replication for high-copy maintenance in Escherichia coli and the Tn7 spectinomycin/streptomycin resistance gene as a bacterial selectable marker. The organisational structure of the T-DNA of pART27 has been constructed taking into account the right to left border, 5' to 3' model of T-DNA transfer. The T-DNA carries the chimaeric kanamycin resistance gene (nopaline synthase promoter-neomycin phosphotransferase-nopaline synthase terminator) distal to the right border relative to the lacZ' region. Utilisation of these vectors in Agrobacterium-mediated transformation of tobacco demonstrated efficient T-DNA transfer to the plant genome.

  5. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence

    PubMed Central

    Pryadkina, Marina; Lostal, William; Bourg, Nathalie; Charton, Karine; Roudaut, Carinne; Hirsch, Matthew L; Richard, Isabelle

    2015-01-01

    Recombinant adeno-associated virus (rAAV) is currently the best vector for gene delivery into the skeletal muscle. However, the 5-kb packaging size of this virus is a major obstacle for large gene transfer. This past decade, many different strategies were developed to circumvent this issue (concatemerization-splicing, overlapping vectors, hybrid dual or fragmented AAV). Loss of function mutations in the DYSF gene whose coding sequence is 6.2kb lead to progressive muscular dystrophies (LGMD2B: OMIM_253601; MM: OMIM_254130; DMAT: OMIM_606768). In this study, we compared large gene transfer techniques to deliver the DYSF gene into the skeletal muscle. After rAAV8s intramuscular injection into dysferlin deficient mice, we showed that the overlap strategy is the most effective approach to reconstitute a full-length messenger. After systemic administration, the level of dysferlin obtained on different muscles corresponded to 0.5- to 2-fold compared to the normal level. We further demonstrated that the overlapping vector set was efficient to correct the histopathology, resistance to eccentric contractions and whole body force in the dysferlin deficient mice. Altogether, these data indicate that using overlapping vectors could be a promising approach for a potential clinical treatment of dysferlinopathies. PMID:26029720

  6. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector.

    PubMed

    Yamaguchi, Shigeyuki; Kazuki, Yasuhiro; Nakayama, Yuji; Nanba, Eiji; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2011-01-01

    The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression. PMID:21390305

  7. Advances in lentiviral vectors: a patent review.

    PubMed

    Picanco-Castro, Virginia; de Sousa Russo-Carbolante, Elisa Maria; Tadeu Covas, Dimas

    2012-08-01

    Lentiviral vectors are at the forefront of gene delivery systems for research and clinical applications. These vectors have the ability to efficiently transduce nondividing and dividing cells, to insert large genetic segment in the host chromatin, and to sustain stable long-term transgene expression. Most of lentiviral vectors systems in use are derived from HIV-1. Numerous modifications in the basic HIV structure have been made to ensure safety and to promote efficiency to vectors. Lentiviral vectors can be pseudotyped with distinct viral envelopes that influence vector tropism and transduction efficiency. Moreover, these vectors can be used to reprogram cells and generate induced pluripotent stem cells. This review aims to show the patents that resulted in improved safety and efficacy of lentiviral vector with important implications for clinical trials.

  8. Performance evaluation of the IBM RISC (reduced instruction set computer) System/6000: Comparison of an optimized scalar processor with two vector processors

    SciTech Connect

    Simmons, M.L.; Wasserman, H.J.

    1990-01-01

    RISC System/6000 computers are workstations with a reduced instruction set processor recently developed by IBM. This report details the performance of the 6000-series computers as measured using a set of portable, standard-Fortran, computationally-intensive benchmark codes that represent the scientific workload at the Los Alamos National Laboratory. On all but three of our benchmark codes, the 40-ns RISC System was able to perform as well as a single Convex C-240 processor, a vector processor that also has a 40-ns clock cycle, and on these same codes, it performed as well as the FPS-500, a vector processor with a 30-ns clock cycle. 17 refs., 2 figs., 6 tabs.

  9. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator--Monte Carlo method.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2008-03-10

    A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three-dimensional atmosphere-ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.

  10. Solution to the problem of joint evaluation of the nonstationary model of GSP drift and the state vector of a navigation system

    NASA Astrophysics Data System (ADS)

    Pogorelov, V. A.; Sokolov, S. V.

    2013-05-01

    The solution to the problem of evaluation in real time of nonstationary coefficients of the polynomial model of drift of a gyro-stabilized platform (GSP) is considered. In order to solve this problem, the estimating equations for the state vector of the navigation system (NS) are derived taking into account correlations between the equations of the object and the observer. Evaluation of the coefficients of the model of the GSP drift is realized based on minimization of nonlinear probabilistic criteria.

  11. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  12. Form factor for a two-particle system within a relativistic quasipotential approach: Case of arbitrary masses and of a vector current

    SciTech Connect

    Chernichenko, Yu. D. E-mail: chyud@mail.ru

    2015-03-15

    A new relativistic form factor for a bound two-particle system was obtained for the case of a vector current. The present consideration was performed within the relativistic quasipotential approach based on the covariant Hamiltonian formulation of quantum field theory by going over to the three-dimensional relativistic configuration representation for the case of interaction between two relativistic spinless particles of arbitrary mass.

  13. Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids.

    PubMed

    Choi, Samjin; Moon, Sung Woon; Shin, Jae-Ho; Park, Hun-Kuk; Jin, Kyung-Hyun

    2014-11-18

    Cell culture and polymerase chain reaction are currently regarded as the gold standard for adenoviral conjunctivitis diagnosis. They maximize sensitivity and specificity but require several days to 3 weeks to get the results. The aim of this study is to determine the potential of Raman spectroscopy as a stand-alone analytical tool for clinical diagnosis of adenoviral conjunctivitis using human tear fluids. A drop-coating deposition surface enhanced Raman scattering (DCD-SERS) method was identified as the most effective method of proteomic analysis in tear biofluids. The proposed DCD-SERS method (using a 2-μL sample) led to Raman spectra with high reproducibility, noise-independence, and uniformity. Additionally, the spectra were independent of the volume of biofluids used and detection zones, including the ring, middle, and central zone, with the exception of the outer layer of the ring zone. Assessments with an intensity ratio of 1242-1342 cm(-1) achieved 100% sensitivity and 100% specificity in the central zone. Principal component analysis assessments achieved 0.9453 in the area under the receiver operating characteristic curve (AUC) as well as 93.3% sensitivity and 94.5% specificity in the central zone. Multi-Gaussian peak assessments showed that the differences between these two groups resulted from the reduction of the amide III α-helix structures of the proteins. The presence of adenovirus in tear fluids could be detected more accurately in the center of the sample than in the periphery. The DCD-SERS technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of adenoviral conjunctivitis. Therefore, we are hopeful that the DCD-SERS method will be approved for use in ophthalmological clinics in the near future.

  14. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  15. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.

  16. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs. PMID:26026665

  17. Marmosets as a preclinical model for testing “off-label” use of doxycycline to turn on Flt3L expression from high-capacity adenovirus vectors

    PubMed Central

    VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley; Krasinkiewicz, Johnny; Lemons, Rosemary; Appelman, Henry; Doherty, Robert; Palmer, Donna; Ng, Philip; Lowenstein, Pedro R; Castro, Maria G

    2014-01-01

    We developed a combined conditional cytotoxic, i.e., herpes simplex type 1-thymidine kinase (TK), plus immune-stimulatory, i.e., fms-like tyrosine kinase ligand-3–mediated gene therapy for glioblastoma multiforme (GBM). Therapeutic transgenes were encoded within high-capacity