Science.gov

Sample records for adenovirus ad vector

  1. Adenovirus replication-competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc).

    PubMed

    Habib, Nagy A; Mitry, Ragai; Seth, Prem; Kuppuswamy, Mohan; Doronin, Konstantin; Toth, Karoly; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M

    2002-08-01

    The successful clinical application of adenovirus (Ad) in cancer control has been of limited success because of the current inability to infect the majority of cancer cells with a large amount of vector. In this study, we show that when human lung tumors growing in immunodeficient nude mice were coinfected with a replication-defective (RD) Ad vector expressing green fluorescent protein and a replication-competent (RC) Ad vector named KD3, KD3 enhanced the expression of green fluorescent protein throughout the tumor. Also, KD3 and another RC vector named KD1 complemented the expression of luciferase from a RD vector in a human liver tumor xenotransplant in nude mice. Altogether, these results suggest that the combination of a RD vector with a RC vector might be a more effective treatment for cancer than either vector alone due to more widespread dissemination of the virus.

  2. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5.

    PubMed

    Holterman, Lennart; Vogels, Ronald; van der Vlugt, Remko; Sieuwerts, Martijn; Grimbergen, Jos; Kaspers, Jorn; Geelen, Eric; van der Helm, Esmeralda; Lemckert, Angelique; Gillissen, Gert; Verhaagh, Sandra; Custers, Jerome; Zuijdgeest, David; Berkhout, Ben; Bakker, Margreet; Quax, Paul; Goudsmit, Jaap; Havenga, Menzo

    2004-12-01

    A novel plasmid-based adenovirus vector system that enables manufacturing of replication-incompetent (DeltaE1) adenovirus type 11 (Ad11)-based vectors is described. Ad11 vectors are produced on PER.C6/55K cells yielding high-titer vector batches after purification. Ad11 seroprevalence proves to be significantly lower than that of Ad5, and neutralizing antibody titers against Ad11 are low. Ad11 seroprevalence among human immunodeficiency virus-positive (HIV(+)) individuals is as low as that among HIV(-) individuals, independent of the level of immune suppression. The low level of coinciding seroprevalence between Ad11 and Ad35 in addition to a lack of correlation between high neutralizing antibody titers towards either adenovirus strongly suggest that the limited humoral cross-reactive immunity between these two highly related B viruses appears not to preclude the use of both vectors in the same individual. Ad11 transduces primary cells including smooth muscle cells, synoviocytes, and dendritic cells and cardiovascular tissues with higher efficiency than Ad5. Ad11 and Ad35 appear to have a similar tropism as judged by green fluorescent protein expression levels determined by using a panel of cancer cell lines. In addition, Ad5 preimmunization did not significantly affect Ad11-mediated transduction in C57BL/6 mice. We therefore conclude that the Ad11-based vector represents a novel and useful candidate gene transfer vehicle for vaccination and gene therapy.

  3. Adenovirus serotype 35 vector-induced innate immune responses in dendritic cells derived from wild-type and human CD46-transgenic mice: Comparison with a fiber-substituted Ad vector containing fiber proteins of Ad serotype 35.

    PubMed

    Sakurai, Fuminori; Nakashima, Kazuko; Yamaguchi, Tomoko; Ichinose, Takako; Kawabata, Kenji; Hayakawa, Takao; Mizuguchi, Hiroyuki

    2010-12-01

    Recently, much attention has focused on replication-incompetent adenovirus (Ad) vectors containing fiber proteins derived from species B Ad serotype 35 (Ad35) (Ad5F35) and Ad vectors fully constructed from Ad35 as vaccine vectors expressing antigens. However, differences in the transduction properties, including the induction of innate immunity, of Ad5F35 and Ad35 vectors have not been properly and fully examined, partly because the transduction properties of these Ad vectors should be evaluated using nonhuman primates or human CD46-transgenic (CD46TG) mice, which ubiquitously express the primary receptor of Ad35, human CD46, in a pattern similar to that of humans. In the present study, we evaluated innate immune responses of mouse dendritic cells (mDCs) derived from bone marrow cells of wild-type (WT) and CD46TG mice following transduction with Ad serotype 5 (Ad5), fiber-substituted Ad5F35, or Ad35 vectors. Ad5F35 and Ad35 vectors mediated more efficient transduction in mDCs derived from CD46TG mice (CD46TG-mDCs) than did Ad5 vectors. Upregulation of costimulatory molecules and inflammatory cytokine induction by Ad5F35 and Ad35 vectors were significantly higher than those by Ad5 vectors in CD46TG-mDCs. However, the induction properties of the innate immune responses were different between Ad5F35 and Ad35 vectors. Ad35 vectors induced higher levels of costimulatory molecule expression and inflammatory cytokine production than did Ad5F35 vectors in CD46TG-mDCs. Furthermore, intravenous administration of Ad35 vectors in WT and CD46TG mice resulted in higher levels of serum interleukin (IL)-6 and IL-12 compared with administration of Ad5F35 vectors, which exhibited almost mock-transduced levels of these inflammatory cytokines. This study indicates that innate immune responses by Ad35 and Ad5F35 vectors are distinct even although both Ad vectors recognize human CD46 as a receptor.

  4. Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice

    PubMed Central

    Dicks, Matthew D. J.; Spencer, Alexandra J.; Coughlan, Lynda; Bauza, Karolis; Gilbert, Sarah C.; Hill, Adrian V. S.; Cottingham, Matthew G.

    2015-01-01

    Replication defective adenoviruses are promising vectors for the delivery of vaccine antigens. However, the potential of a vector to elicit transgene-specific adaptive immune responses is largely dependent on the viral serotype used. HAdV-5 (Human adenovirus C) vectors are more immunogenic than chimpanzee adenovirus vectors from species Human adenovirus E (ChAdOx1 and AdC68) in mice, though the mechanisms responsible for these differences in immunogenicity remain poorly understood. In this study, superior immunogenicity was associated with markedly higher levels of transgene expression in vivo, particularly within draining lymph nodes. To investigate the viral factors contributing to these phenotypes, we generated recombinant ChAdOx1 vectors by exchanging components of the viral capsid reported to be principally involved in cell entry with the corresponding sequences from HAdV-5. Remarkably, pseudotyping with the HAdV-5 fiber and/or penton RGD loop had little to no effect on in vivo transgene expression or transgene-specific adaptive immune responses despite considerable species-specific sequence heterogeneity in these components. Our results suggest that mechanisms governing vector transduction after intramuscular administration in mice may be different from those described in vitro. PMID:26576856

  5. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  6. Vaccine Design: Replication-Defective Adenovirus Vectors.

    PubMed

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies.

  7. [Construction of replication-deficient recombinant adenovirus vector with hTFPI-2 gene by AdMax system and expression in U937 monocytes in vitro].

    PubMed

    Pan, Junjie; Shi, Haiming; Luo, Xinping; Ma, Duan; Liang, Wang; Zhang, Jin; Zhu, Jun; Li, Jian

    2011-04-01

    We tried to construct and identify the recombinant replication-deficient adenovirus vector coding for human tissue factor pathway inhibitor 2 (hTFPI-2) gene by AdMax system in HEK293 cells. Firstly, we obtained hTFPI-2 gene from the recombinant plasmid pIRES2-EGFP-TFPI-2 by PCR using primers with restriction endonuclease site of EcoRI or SacI. After digesting the hTFPI-2 gene and plasmid PDC316-IRES-EGFP shuttle vector, we ligated them with T4 ligase and formed the recombinant shuttle vector PDC316-IRES-EGFP-hTFPI-2. It was confirmed that the ligation product was inserted the gene of hTFPI-2 correctly by sequencing. Then we took cotransfection of HEK293 cells with the recombinant shuttle vector and genomic plasmid pBHGloxdeltaE1,3Cre by liposome lipofectamine2000, and finished the package of recombinant adenovirus Ad-hTFPI-2. The results of the PCR test and restriction endonuclease digestion confirmed the successful construction of the recombinants Ad-hTFPI-2. Furthermore, we measured the titre of Ad-hTFPI-2 with the aid of green fluorescence protein expression after multiplication and purification. The titre was 0.931 x 10(12) pfu/ml. Finally, we infected U937 monocytes by purified Ad-hTFPI-2, and determined the infection efficiency and the TFPI-2's level and activity. The efficiency of Ad-hTFPI-2 infection in U937 cells was 89.33%. After infected by Ad-hTFPI-2, the TFPI-2's level in supernatant increased about 7 fold. Also the TFPI-2 in supernatant had activities of inhibiting trypsin and plasmin. The recombinant adenovirus with the hTFPI-2 gene was constructed successfully. It will be helpful for the further investigation of its potentiality to be applied in antiatherosclerosis.

  8. An Oncotropic Adenovirus Vector System for Breast Cancer Treatment

    DTIC Science & Technology

    2005-09-01

    AD Award Number: DAMD17-03-1-0629 TITLE: An Oncotropic Adenovirus Vector System for Breast Cancer Treatment PRINCIPAL INVESTIGATOR: Igor P. Dmitriev...Aug 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Oncotropic Adenovirus Vector System for Breast Cancer Treatment 5b. GRANT NUMBER DAMD17-03-1...epithelial cells, the origin of most human cancers. However, realization of the full potential of Ad vectors for targeted cancer treatment is currently

  9. Viral Vector Production: Adenovirus.

    PubMed

    Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S

    2016-01-01

    Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.

  10. Chimpanzee Adenovirus Vector Ebola Vaccine.

    PubMed

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Coates, Emily E; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2017-03-09

    Background The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. Methods We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10(10) particle units or 2×10(11) particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. Results In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10(11) particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10(11) particle-unit dose than in the group that received the 2×10(10) particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×10(11) particle-unit dose than among those who received the 2×10(10) particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×10(11) particle-unit dose. Conclusions Reactogenicity and immune responses

  11. [Gene engineering of the adenovirus vector].

    PubMed

    Kondo, Saki; Terashima, Miho; Fukuda, Hiromitsu; Saito, Izumu; Kanegae, Yumi

    2007-06-01

    The adenovirus vector is very attractive tool not only for the gene therapy but also for the basic sciences. However, because a construction method of this vector had been complex, only limited scientists had constructed and enjoyed the benefits. Recently, various methods were developed and the researchers came to be able to choose an efficient method, which is the COS-TPC method, or a concise procedure, which is the intact-genome transfection method (in vitro ligation method). Here we described not only these methods but also new method to construct the various Ads simultaneously using the recombinase-mediated cassette exchange (RMCE) by the site-specific recombinase. And also we want to refer the possibility to the worth of the vector, especially the vector of the expression-switch.

  12. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGES

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; ...

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  13. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    SciTech Connect

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette; Barouch, Dan H.

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.

  14. Adenovirus Vectors Targeting Distinct Cell Types in the Retina

    PubMed Central

    Sweigard, J. Harry; Cashman, Siobhan M.

    2010-01-01

    Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5ΔRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5ΔRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5ΔRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5ΔRGD vectors. PMID:19892875

  15. Recombinant adenovirus vectors for gene therapy and clinical trials.

    PubMed

    Nász, I; Adám, E

    2001-01-01

    In the last decade adenovirus (AdV) vectors have emerged as promising technology in gene therapy. They have been used for genetic modification of a variety of somatic cells in vitro and in vivo. They have been widely used as gene delivery vectors in experiments both with curative and preventive purposes. AdV vectors have been used in the experimental and in some extent in the clinical gene therapy of a variety of cancers. The combination of recombinant AdV technology with chemotherapy (pro drug system) seems to be promising, too. AdV vectors offer several advantages over other vectors. Replication defective vectors can be produced in very high titers (10(11) pfu/ml) thus allowing a substantially greater efficiency of direct gene transfer; they have the capacity to infect both replicating and nonreplicating (quiescent) cells from a variety of tissues and species. Several important limitations of adenovirus mediated gene transfer are also known, such as the relatively short-term (transient) expression of foreign genes, induction of the host humoral and cellular immune response to viral proteins and viral infected cells, which may substantially inhibit the effect of repeated treatment with AdV vectors, the limited cloning capacity and the lack of target cell specificity. However, the well-understood structure, molecular biology and host cell interactions of AdV-s offer some potential solutions to these limitations.

  16. Protection of chickens against avian influenza with non-replicating adenovirus-vectored vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding a H7 hemagglutinin gene from a low pathogenic North American isolate (AdChNY94.H7). Chickens vaccinate...

  17. A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

    PubMed Central

    Farrow, Anitra L.; Peng, Binghao J.; Gu, Linlin; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2016-01-01

    Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease. PMID:26978385

  18. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    PubMed

    Gao, Dong-sheng; Li, Xiao-jing; Wan, Wen-yan; Li, Hong-jie; Wang, Xiao-xue; Yang, Xia; Li, Yong-tao; Chang, Hong-tao; Chen, Lu; Wang, Chuan-qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry.

  19. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors.

    PubMed

    Seregin, Sergey S; Amalfitano, Andrea

    2009-12-01

    Adenovirus (Ad)-based vectors offer several benefits showing their potential for use in a variety of vaccine applications. Recombinant Ad-based vaccines possess potent immunogenic potential, capable of generating humoral and cellular immune responses to a variety of pathogen-specific antigens expressed by the vectors. Ad5 vectors can be readily produced, allowing for usage in thousands of clinical trial subjects. This is now coupled with a history of safe clinical use in the vaccine setting. However, traditional Ad5-based vaccines may not be generating optimal antigen-specific immune responses, and generate diminished antigen-specific immune responses when pre-existing Ad5 immunity is present. These limitations have driven initiation of several approaches to improve the efficacy of Ad-based vaccines, and/or allow modified vaccines to overcome pre-existing Ad immunity. These include: generation of chemically modified Ad5 capsids; generation of chimeric Ads; complete replacement of Ad5-based vaccine platforms with alternative (human and non-human origin) Ad serotypes, and Ad5 genome modification approaches that attempt to retain the native Ad5 capsid, while simultaneously improving the efficacy of the platform as well as minimizing the effect of pre-existing Ad immunity. Here we discuss recent advances in- and limitations of each of these approaches, relative to their abilities to overcome pre-existing Ad immunity.

  20. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  1. Progress on adenovirus-vectored universal influenza vaccines

    PubMed Central

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8+ T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides ‘self-adjuvanting’ activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  2. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    SciTech Connect

    Gokumakulapalle, Madhuri; Mei, Ya-Fang

    2016-08-15

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  3. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses

    PubMed Central

    Crosby, Catherine M.; Matchett, William E.; Anguiano-Zarate, Stephanie S.; Parks, Christopher A.; Weaver, Eric A.; Pease, Larry R.; Webby, Richard J.

    2016-01-01

    ABSTRACT Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed “single-cycle” adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro. SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as “needle-free” mucosal vaccines. IMPORTANCE Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold

  4. Production of high-capacity adenovirus vectors.

    PubMed

    Kreppel, Florian

    2014-01-01

    High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.

  5. Adenovirus dodecahedron, a new vector for human gene transfer.

    PubMed

    Fender, P; Ruigrok, R W; Gout, E; Buffet, S; Chroboczek, J

    1997-01-01

    Recombinant adenovirus is one of most efficient delivery vehicles for gene therapy. However, the initial enthusiasm for the use of recombinant adenovirus for gene therapy has been tempered by strong immune responses that develop to the virus and virus-infected cells. Even though recombinant adenoviruses are replication-defective, they introduce into the recipient cell, together with the gene of interest, viral genetes that might lead to fortuitous recombination if the recipient is infected by wild-type adenovirus. We propose the use of a dodecahedron made of adenovirus pentons or penton bases as an alternative vector for human gene therapy. The penton is a complex of two oligomeric proteins, a penton base and fiber, involved in the cell attachment, internalization, and liberation of virus into the cytoplasm. The dodecahedron retains many of the advantages of adenovirus for gene transfer such as efficiency of entry, efficient release of DNA from endosomes, and wide range of cell and tissue targets. Because it consists of only one or two adenovirus proteins instead of the 11 contained in an adenovirus virion and it does not contain the viral genome, it is potentially a safer alternative to recombinant adenovirus.

  6. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43

    PubMed Central

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J.; Gagea, Mihai; Fox, Patricia S.; Bassett, Roland L.; Ladbury, John E.; Braun, Michael B.; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-01-01

    Unique molecular properties of species D adenoviruses (Ads)—the most diverse yet underexplored group of Ads—have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies. PMID:27462785

  7. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector.

    PubMed

    Sun, Baodong; Chen, Y-T; Bird, Andrew; Xu, Fang; Hou, Yang-Xun; Amalfitano, Andrea; Koeberl, Dwight D

    2003-04-01

    We have developed an improved method for packaging adeno-associated virus (AAV) vectors with a replication-defective adenovirus-AAV (Ad-AAV) hybrid virus. The AAV vector encoding human acid alpha-glucosidase (hGAA) was cloned into an E1, polymerase/preterminal protein-deleted adenovirus, such that it is packaged as an Ad vector. Importantly, the Ad-AAV hybrid cannot replicate during AAV vector packaging in 293 cells, because of deletion of polymerase/preterminal protein. The residual Ad-AAV in the AAV vector stock was reduced to <1 infectious particle per 10(10) AAV vector particles. These modifications resulted in approximately 30-fold increased packaging of the AAV vector for the hybrid Ad-AAV vector method as compared with standard transfection-only methods. Similarly improved packaging was demonstrated for pseudotyping the AAV vector as AAV6, and for AAV vector packaging with a second Ad-AAV vector encoding canine glucose-6-phosphatase. Liver-targeted delivery of either the Ad-AAV hybrid or AAV vector particles in acid alpha-glucosidase-knockout (GAA-KO) mice revealed secretion of hGAA with the Ad-AAV vector, and sustained secretion of hGAA with an AAV vector in hGAA-tolerant GAA-KO mice. Further development of hybrid Ad-AAV vectors could offer distinct advantages for gene therapy in glycogen storage diseases.

  8. Gene targeting with a replication-defective adenovirus vector.

    PubMed Central

    Fujita, A; Sakagami, K; Kanegae, Y; Saito, I; Kobayashi, I

    1995-01-01

    Wide application of the gene-targeting technique has been hampered by its low level of efficiency. A replication-defective adenovirus vector was used for efficient delivery of donor DNA in order to bypass this problem. Homologous recombination was selected between a donor neo gene inserted in the adenovirus vector and a target mutant neo gene on a nuclear papillomavirus plasmid. These recombinant adenoviruses allowed gene transfer to 100% of the treated cells without impairing their viability. Homologous recombinants were obtained at a level of frequency much higher than that obtained by electroporation or a calcium phosphate procedure. The structure of the recombinants was analyzed in detail after recovery in an Escherichia coli strain. All of the recombinants examined had experienced a precise correction of the mutant neo gene. Some of them had a nonhomologous rearrangement of their sequences as well. One type of nonhomologous recombination took place at the end of the donor-target homology. The vector adenovirus DNA was inserted into some of the products obtained at a high multiplicity of infection. The insertion was at the end of the donor-target homology with a concomitant insertion of a 10-bp-long filler sequence in one of the recombinants. The possible relationship between these rearrangements and the homologous recombination is discussed. These results demonstrate the applicability of adenovirus-mediated gene delivery in gene targeting and gene therapy. PMID:7666520

  9. Adenovirus vector delivery stimulates natural killer cell recognition

    PubMed Central

    Tomasec, Peter; Wang, Eddie C. Y.; Groh, Veronika; Spies, Thomas; McSharry, Brian P.; Aicheler, Rebecca J.; Stanton, Richard J.; Wilkinson, Gavin W. G.

    2007-01-01

    We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function. NKG2D is ubiquitously expressed on NK cells and CD8+ T cells. Significantly, γ-irradiation of the vector eliminated the effect, suggesting that breakthrough expression from the vector induces at least some of the pro-inflammatory responses of unknown aetiology following the application of RDAd vectors during in vivo gene delivery. PMID:17374753

  10. [Adenovirus vectors and their clinical application in gene therapy].

    PubMed

    Adám, E; Nász, I

    2001-09-23

    The potential therapeutic application of the gene transfer technology with adenovirus vectors seems to be enormous. Adenovirus vectors offer several advantages over other vectors, but several important limitations of adenovirus mediated gene transfer are also known. Great number of studies in inherited diseases and in different cancer therapy clinical trials have provided information of critical importance for design of efficient clinical protocols. Clinical trials have been extended to the treatment of many other diseases, too. There are about thirty currently active gene therapy protocols for the treatment only of HIV-1 infection in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are in risk of infection, to develop preventive or therapeutic vaccines for patients with AIDS and other infectious diseases. Gene therapy represents one of the most important developments in oncology, however, before this can be realised as standard treatment the technical problems of gene delivery and higher safety must be overcome. The early--first and second generation--adenovirus vectors are now likely to be phased out for most diseases, and further experiments seem to be necessary. It might be change to the third generation or other, more modern vector application in clinical trials, as the helper dependent vectors. Almost all transcriptional unit is removed from the DNA of these vectors ("gutless vectors"), therefore they cannot reproduce, give higher gene expression and far less inflammatory. Despite the latest achievement reported in vector design it is not possible to predict yet to what extent and when gene therapy will be effective.

  11. Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28.

    PubMed

    Kahl, Christoph A; Bonnell, Jessica; Hiriyanna, Suja; Fultz, Megan; Nyberg-Hoffman, Cassandra; Chen, Ping; King, C Richter; Gall, Jason G D

    2010-08-09

    Adenovirus vaccine vectors derived from rare human serotypes have been shown to be less potent than serotype 5 (Ad5) at inducing immune responses to encoded antigens. To identify highly immunogenic adenovirus vectors, we assessed pro-inflammatory cytokine expression, binding to the CD46 receptor, and immunogenicity. Species D adenoviruses uniquely suppressed pro-inflammatory cytokines and induced high levels of type I interferon. Thus, it was unexpected that a vector derived from a representative serotype, Ad28, induced significantly higher transgene-specific T cell responses than an Ad35 vector. Prime-boost regimens with Ad28, Ad35, Ad14, or Ad5 significantly boosted T cell and antibody responses. The seroprevalence of Ad28 was confirmed to be <10% in the United States. Together, this shows that a rare human serotype-based vector can elicit strong immune responses, which was not predicted by in vitro results.

  12. An Update on Canine Adenovirus Type 2 and Its Vectors

    PubMed Central

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  13. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors.

    PubMed

    Liu, Qiang; Zaiss, Anne K; Colarusso, Pina; Patel, Kamala; Haljan, Gregory; Wickham, Thomas J; Muruve, Daniel A

    2003-05-01

    Adenovirus (Ad) vectors can produce inflammatory responses at high doses. Intravenous administration of an Ad vector expressing green fluorescent protein (AdGFP) to naive mice induced a biphasic pattern of liver cytokine/chemokine gene expression over 7 days. Tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2 (MIP-2), and interferon gamma-inducible protein 10 (IP-10) genes were upregulated, with two distinct peaks of mRNA expression occurring at 6 hr and 5 days. The administration of transcription-defective AdGFP particles induced the early but not the late peak of chemokine/cytokine gene expression, confirming that Ad vector-induced inflammation is capsid dependent in the early phase and transcription dependent in the late phase. To determine the role of adenoviral capsid motifs in the early phase, capsid-modified Ad vectors were employed. The intravenous administration of the RGD-deleted Ad vector AdL.PB*, the fiber mutant AdL.F*, or the double mutant AdL.F*PB* induced similar levels of cytokine/chemokine expression compared with the wild-type vector AdLuc. Kupffer cell blockade significantly reduced liver TNF-alpha, MIP-2, and IP-10 gene expression and liver inflammation after the administration of AdL.PB* or AdL.F*PB*. Fluorescence microscopy of AdLuc- and AdL.PB*-transduced liver at 1 hr revealed localization of Ad vectors to liver sinusoids in Kupffer cell-depleted mice. AdL.PB* induced less E-selectin and VCAM-1 gene expression in liver, confirming reduced endothelial activation in mice receiving RGD-deleted Ad vectors. In vitro studies of endothelial cells demonstrated reduced transduction and endothelial activation by AdL.PB* compared with AdLuc. These results demonstrate that adenovirus capsid RGD motifs are required for efficient transduction and endothelial cell activation. Altering vector tropism represents a feasible strategy to modulate the innate response to Ad vectors in nontargeted tissues.

  14. (13) C-metabolic flux analysis of human adenovirus infection: Implications for viral vector production.

    PubMed

    Carinhas, Nuno; Koshkin, Alexey; Pais, Daniel A M; Alves, Paula M; Teixeira, Ana P

    2017-01-01

    Adenoviruses are human pathogens increasingly used as gene therapy and vaccination vectors. However, their impact on cell metabolism is poorly characterized. We performed carbon labeling experiments with [1,2-(13) C]glucose or [U-(13) C]glutamine to evaluate metabolic alterations in the amniocyte-derived, E1-transformed 1G3 cell line during production of a human adenovirus type 5 vector (AdV5). Nonstationary (13) C-metabolic flux analysis revealed increased fluxes of glycolysis (17%) and markedly PPP (over fourfold) and cytosolic AcCoA formation (nearly twofold) following infection of growing cells. Interestingly, infection of growth-arrested cells increased overall carbon flow even more, including glutamine anaplerosis and TCA cycle activity (both over 1.5-fold), but was unable to stimulate the PPP and was associated with a steep drop in AdV5 replication (almost 80%). Our results underscore the importance of nucleic and fatty acid biosynthesis for adenovirus replication. Overall, we portray a metabolic blueprint of human adenovirus infection, highlighting similarities with other viruses and cancer, and suggest strategies to improve AdV5 production. Biotechnol. Bioeng. 2017;114: 195-207. © 2016 Wiley Periodicals, Inc.

  15. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  16. Replication-competent human adenovirus 11p vectors can propagate in Vero cells.

    PubMed

    Gokumakulapalle, Madhuri; Mei, Ya-Fang

    2016-08-01

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields.

  17. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley Fever vaccine in mice

    PubMed Central

    2013-01-01

    Background Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Methods Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. Results A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Conclusions Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials. PMID:24304565

  18. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    PubMed

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry.

  19. Impact of Natural IgM Concentration on Gene Therapy with Adenovirus Type 5 Vectors

    PubMed Central

    Qiu, Qi; Xu, Zhili; Tian, Jie; Moitra, Rituparna; Gunti, Sreenivasulu; Notkins, Abner L.

    2014-01-01

    Natural IgM inhibits gene transfer by adenovirus type 5 (Ad5) vectors. We show that polyreactive natural IgM antibodies bind to Ad5 and that inhibition of liver transduction by IgM depends on Kupffer cells. By manipulating IgM concentration in vivo, we demonstrate that IgM inhibits liver transduction in a concentration-dependent manner. We further show that differences in natural IgM between BALB/c and C57BL/6 mice contribute to lower efficiency of Ad5 gene transfer in BALB/c mice. PMID:25552715

  20. Adenovirus-derived vectors for prostate cancer gene therapy.

    PubMed

    de Vrij, Jeroen; Willemsen, Ralph A; Lindholm, Leif; Hoeben, Rob C; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Dautzenberg, Iris J C; de Ridder, Corrina; Dzojic, Helena; Erbacher, Patrick; Essand, Magnus; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Jennings, Ian; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nugent, Regina; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schenk-Braat, Ellen; Schooten, Erik; Seymour, Len; Slade, Michael; Szyjanowicz, Pio; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; van der Weel, Laura; van Weerden, Wytske; Wagner, Ernst; Zuber, Guy

    2010-07-01

    Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.

  1. Beyond Oncolytics: E1B55K-Deleted Adenovirus as a Vaccine Delivery Vector

    PubMed Central

    Thomas, Michael A.; Nyanhete, Tinashe; Tuero, Iskra; Venzon, David; Robert-Guroff, Marjorie

    2016-01-01

    Type 5 human adenoviruses (Ad5) deleted of genes encoding the early region 1B 55-kDa (E1B55K) protein including Onyx-015 (dl1520) and H101 are best known for their oncolytic potential. As a vaccine vector the E1B55K deletion may allow for the insertion of a transgene nearly 1,000 base pairs larger than now possible. This has the potential of extending the application for which the vectors are clinically known. However, the immune priming ability of E1B55K-deleted vectors is unknown, undermining our ability to gauge their usefulness in vaccine applications. For this reason, we created an E1B55K-deleted Ad5 vector expressing full-length single chain HIVBaLgp120 attached to a flexible linker and the first two domains of rhesus CD4 (rhFLSC) in exchange for the E3 region. In cell-based experiments the E1B55K-deleted vector promoted higher levels of innate immune signals including chemokines, cytokines, and the NKG2D ligands MIC A/B compared to an E1B55K wild-type vector expressing the same immunogen. Based on these results we evaluated the immune priming ability of the E1B55K-deleted vector in mice. The E1B55K-deleted vector promoted similar levels of Ad5-, HIVgp120, and rhFLSC-specific cellular and humoral immune responses as the E1B55K wild-type vector. In pre-clinical HIV-vaccine studies the wild-type vector has been employed as part of a very effective prime-boost strategy. This study demonstrates that E1B55K-deleted adenoviruses may serve as effective vaccine delivery vectors. PMID:27391605

  2. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    PubMed

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K; Boling, Susan; Carroll, Jennifer L; Li, Xiao-Lin; Rogers, Donna L; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V; Curiel, David T; Mathis, J Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  3. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens.

    PubMed

    Tatsis, Nia; Lasaro, Marcio O; Lin, Shih-Wen; Haut, Larissa H; Xiang, Zhi Q; Zhou, Dongming; Dimenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J; Silvestri, Guido; Ertl, Hildegund C; Betts, Michael R

    2009-05-15

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.

  4. Immobilization of 293 cells using porous support particles for adenovirus vector production

    PubMed Central

    Morishita, Naoya; Katsuda, Tomohisa; Kubo, Shuji; Gotoh, Akinobu

    2010-01-01

    Adenovirus vector production by anchorage-independent 293 cells immobilized using porous biomass support particles (BSPs) was investigated in static and shake-flask cultures for efficient large-scale production of adenovirus vectors for gene therapy applications. The density of cells immobilized within BSPs was evaluated by measuring their WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reduction activity. In shake-flask culture, 293-F cells, which were adapted to serum-free suspension culture, were not successfully retained within reticulated polyvinyl formal (PVF) resin BSPs (2 × 2 × 2 mm cubes) with matrices of relatively small pores (pore diameter 60 μm). When the BSPs were coated with a cationic polymer polyethyleneimine, a high cell density of more than 107 cells cm−3-BSP was achieved in both static and shake-flask cultures with regular replacement of the culture medium. After infection with an adenovirus vector carrying the enhanced green fluorescent protein gene (Ad EGFP), the specific Ad EGFP productivity of the immobilized cells was comparable to the maximal productivity of non-immobilized 293-F cells by maintaining favorable conditions in the culture environment. PMID:20140496

  5. Packaging capacity and stability of human adenovirus type 5 vectors.

    PubMed Central

    Bett, A J; Prevec, L; Graham, F L

    1993-01-01

    Adenovirus vectors are extensively used for high-level expression of proteins in mammalian cells and are receiving increasing attention for their potential use as live recombinant vaccines and as transducing viruses for use in gene therapy. Although it is commonly argued that one of the chief advantages of adenovirus vectors is their relative stability, this has not been thoroughly investigated. To examine the genetic stability of adenovirus type 5 vectors and in particular to examine the relationship between genetic stability and genome size, adenovirus vectors were constructed with inserts of 4.88 (herpes simplex virus type 1 gB), 4.10 (herpes simplex virus type 1 gB), or 3.82 (LacZ) kb combined with a 1.88-kb E3 deletion or with a newly generated 2.69-kb E3 deletion. The net excess of DNA over the wild-type (wt) genome size ranged from 1.13 to 3.00 kb or 3.1 to 8.3%. Analysis of these vectors during serial passage in tissue culture revealed that when the size exceeded 105% of the wt genome length by approximately 1.2 kb (4.88-kb insert combined with a 1.88-kb deletion), the resulting vector grew very poorly and underwent rapid rearrangement, resulting in loss of the insert after only a few passages. In contrast, vectors with inserts resulting in viral DNA close to or less than a net genome size of 105% of that of the wt grew well and were relatively stable. In general, viruses with genomes only slightly above 105% of that of the wt were unstable and the rapidity with which rearrangement occurred correlated with the size of the insert. These findings suggest that there is a relatively tight constraint on the amount of DNA which can be packaged into virions and that exceeding the limit results in a sharply decreased rate of virus growth. The resultant strong selection for variants which have undergone rearrangement, generating smaller genomes, is manifested as genetic instability of the virus population. Images PMID:8371349

  6. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  7. Syrian hamster tumor model to study oncolytic Ad5-based vectors.

    PubMed

    Dhar, Debanjan; Toth, Karoly; Wold, William S M

    2012-01-01

    Oncolytic (replicating) adenovirus (Ad) vectors are emerging as a promising form of a cancer therapy agent. There has been a need for an appropriate animal model to study oncolytic Ad since human Ad -replication is usually species specific. We have shown that Syrian (golden) hamsters are an appropriate animal model to study human Ad5-based vectors. Syrian hamsters are immunocompetent, and they allow human Ad5 replication in normal tissues as well as in Syrian hamster cancer cells. The development of the Syrian hamster as a model to study oncolytic Ad vectors has opened avenues to explore the role of host immune response and preexisting immunity in Ad vector efficacy and toxicity/biodistribution following Ad vector administration. Since most of the normal tissues in the Syrian hamster are permissive for human Ad5 replication, Ad vectors can be studied in the context of orthotopic cancer model developed in Syrian hamsters.

  8. Intracellular Signaling and Desmoglein 2 Shedding Triggered by Human Adenoviruses Ad3, Ad14, and Ad14P1

    PubMed Central

    Wang, Hongjie; Ducournau, Corinne; Saydaminova, Kamola; Richter, Maximilian; Yumul, Roma; Ho, Martin; Carter, Darrick; Zubieta, Chloé

    2015-01-01

    ABSTRACT We recently discovered that desmoglein 2 (DSG2) is a receptor for human adenovirus species B serotypes Ad3, Ad7, Ad11, and Ad14. Ad3 is considered to be a widely distributed human pathogen. Ad3 binding to DSG2 triggers the transient opening of epithelial junctions. Here, we further delineate the mechanism that leads to DSG2-mediated epithelial junction opening in cells exposed to Ad3 and recombinant Ad3 fiber proteins. We identified an Ad3 fiber knob-dependent pathway that involves the phosphorylation of mitogen-activated protein (MAP) kinases triggering the activation of the matrix-metalloproteinase ADAM17. ADAM17, in turn, cleaves the extracellular domain of DSG2 that links epithelial cells together. The shed DSG2 domain can be detected in cell culture supernatant and also in serum of mice with established human xenograft tumors. We then extended our studies to Ad14 and Ad14P1. Ad14 is an important research and clinical object because of the recent appearance of a new, more pathogenic strain (Ad14P1). In a human epithelial cancer xenograft model, Ad14P1 showed more efficient viral spread and oncolysis than Ad14. Here, we tested the hypothesis that a mutation in the Ad14P1 fiber knob could account for the differences between the two strains. While our X-ray crystallography studies suggested an altered three-dimensional (3D) structure of the Ad14P1 fiber knob in the F-G loop region, this did not significantly change the fiber knob affinity to DSG2 or the intracellular signaling and DSG2 shedding in epithelial cancer cells. IMPORTANCE A number of widely distributed adenoviruses use the epithelial junction protein DSG2 as a receptor for infection and lateral spread. Interaction with DSG2 allows the virus not only to enter cells but also to open epithelial junctions which form a physical barrier to virus spread. Our study elucidates the mechanism beyond virus-triggered junction opening with a focus on adenovirus serotype 3. Ad3 binds to DSG2 with its fiber

  9. The structural basis for the integrity of adenovirus Ad3 dodecahedron.

    PubMed

    Szolajska, Ewa; Burmeister, Wim P; Zochowska, Monika; Nerlo, Barbara; Andreev, Igor; Schoehn, Guy; Andrieu, Jean-Pierre; Fender, Pascal; Naskalska, Antonina; Zubieta, Chloe; Cusack, Stephen; Chroboczek, Jadwiga

    2012-01-01

    During the viral life cycle adenoviruses produce excess capsid proteins. Human adenovirus serotype 3 (Ad3) synthesizes predominantly an excess of free pentons, the complexes of pentameric penton base and trimeric fiber proteins, which are responsible for virus penetration. In infected cells Ad3 pentons spontaneously assemble into dodecahedral virus-like nano-particles containing twelve pentons. They also form in insect cells during expression in the baculovirus system. Similarly, in the absence of fiber protein dodecahedric particles built of 12 penton base pentamers can be produced. Both kinds of dodecahedra show remarkable efficiency of intracellular penetration and can be engineered to deliver several millions of foreign cargo molecules to a single target cell. For this reason, they are of great interest as a delivery vector. In order to successfully manipulate this potential vector for drug and/or gene delivery, an understanding of the molecular basis of vector assembly and integrity is critical. Crystallographic data in conjunction with site-directed mutagenesis and biochemical analysis provide a model for the molecular determinants of dodecamer particle assembly and the requirements for stability. The 3.8 Å crystal structure of Ad3 penton base dodecamer (Dd) shows that the dodecahedric structure is stabilized by strand-swapping between neighboring penton base molecules. Such N-terminal strand-swapping does not occur for Dd of Ad2, a serotype which does not form Dd under physiological conditions. This unique stabilization of the Ad3 dodecamer is controlled by residues 59-61 located at the site of strand switching, the residues involved in putative salt bridges between pentamers and by the disordered N-terminus (residues 1-47), as confirmed by site directed mutagenesis and biochemical analysis of mutant and wild type protein. We also provide evidence that the distal N-terminal residues are externally exposed and available for attaching cargo.

  10. Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector.

    PubMed Central

    O'Neal, W. K.; Zhou, H.; Morral, N.; Langston, C.; Parks, R. J.; Graham, F. L.; Kochanek, S.; Beaudet, A. L.

    2000-01-01

    BACKGROUND: Certain gene therapy protocols may require multiple administrations of vectors to achieve therapeutic benefit to the patient. This may be especially relevant for vectors such as adenoviral vectors that do not integrate into the host chromosome. Because immunocompetent animal models used for gene transfer studies develop neutralizing antibodies to adenoviral vectors after a single administration, little is known about how repeat administrations of vectors might affect transgene expression and vector toxicity. MATERIALS AND METHODS: We used mice deficient in the membrane spanning region of immunoglobulin (IgM), which do not develop antibodies, to evaluate the effect of repeated intravenous administration of first-generation and helper-dependent adenoviral vectors expressing human alpha 1-antitrypsin (hAAT). The duration and levels of transgene expression were evaluated after repeated administration of vectors. Toxicity was assessed by measuring the level of liver enzymes in the serum and the degrees of hepatocyte hypertrophy and proliferation. RESULTS: We found that previous administration of first-generation adenoviral vectors can alter the response to subsequent doses. These alterations included an increase in transgene expression early (within 1 and 3 days), followed by a rapid drop in expression by day 7. In addition, previous administrations of first-generation vectors led to an increase in toxicity of subsequent doses, as indicated by a rise in liver enzymes and an increase in hepatocyte proliferation. In contrast to first-generation vectors, use of the helper-dependent adenovirus vector, Ad-STK109, which contained no viral coding regions, did not lead to increased toxicity after multiple administrations. CONCLUSIONS: We conclude that the response of the host to adenoviral vectors can be altered after repeated administration, compared with the response after the initial vector dose. In addition, these experiments provide further evidence for the

  11. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) sero-type O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa empty capsids. Swine inoculated with Ad5-O1Man developed an FMDV-specific neutralizing antibody response as compared to animals inoculated wi...

  12. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals

    PubMed Central

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-01-01

    Background Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. Methods HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. Results All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Conclusions Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted. PMID:26587311

  13. Comparison between Sendai virus and adenovirus vectors to transduce HIV-1 genes into human dendritic cells.

    PubMed

    Hosoya, Noriaki; Miura, Toshiyuki; Kawana-Tachikawa, Ai; Koibuchi, Tomohiko; Shioda, Tatsuo; Odawara, Takashi; Nakamura, Tetsuya; Kitamura, Yoshihiro; Kano, Munehide; Kato, Atsushi; Hasegawa, Mamoru; Nagai, Yoshiyuki; Iwamoto, Aikichi

    2008-03-01

    Immuno-genetherapy using dendritic cells (DCs) can be applied to human immunodeficiency virus type 1 (HIV-1) infection. Sendai virus (SeV) has unique features such as cytoplasmic replication and high protein expression as a vector for genetic manipulation. In this study, we compared the efficiency of inducing green fluorescent protein (GFP) and HIV-1 gene expression in human monocyte-derived DCs between SeV and adenovirus (AdV). Human monocyte-derived DCs infected with SeV showed the maximum gene expression 24 hr after infection at a multiplicity of infection (MOI) of 2. Although SeV vector showed higher cytopathic effect on DCs than AdV, SeV vector induced maximum gene expression earlier and at much lower MOI. In terms of cell surface phenotype, both SeV and AdV vectors induced DC maturation. DCs infected with SeV as well as AdV elicited HIV-1 specific T-cell responses detected by interferon gamma (IFN-gamma) enzyme-linked immunospot (Elispot). Our data suggest that SeV could be one of the reliable vectors for immuno-genetherapy for HIV-1 infected patients.

  14. Improving gene transfer in human renal carcinoma cells: Utilization of adenovirus vectors containing chimeric type 5 and type 35 fiber proteins

    PubMed Central

    ACHARYA, BISHNU; TERAO, SHUJI; SUZUKI, TORU; NAOE, MICHIO; HAMADA, KATSUYUKI; MIZUGUCHI, HIROYUKI; GOTOH, AKINOBU

    2010-01-01

    The transduction efficacy of adenovirus serotype 5 (Ad5) vector in human renal carcinoma cells is generally low due to the down-regulated expression of Coxsackie and adenovirus receptor (CAR) in target cells. By contrast, the infectivity of adenovirus serotype 35 vectors depends on the binding rate to CD46 receptor, independent of CAR. In this study, we examined whether an adenovirus vector containing chimeric type 5 and type 35 fiber proteins (Ad5/F35) increases transduction efficiency compared to Ad5 vector in human renal carcinoma cells in vitro. The expression of CAR was much lower in the human renal carcinoma cells than in control HEK293 cells. By contrast, the expression of CD46 was similar and perhaps at a higher level in the human renal carcinoma cells than in the HEK293 cells. The transduction efficacy of Ad5/F35 vector was dramatically higher compared to that of Ad5 in human renal carcinoma cells, and was correlated to the expression of CD46. Thus, Ad5/35 vector may be useful for the development of novel gene therapy approaches to renal cell carcinoma. PMID:22993573

  15. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  16. Optimization of adenovirus vectors for transduction in embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Tashiro, Katsuhisa

    2011-01-01

      Because embryonic stem (ES) cells and induced pluripotent stem (iPS) cells can differentiate into various types of cells in vitro, they are considered as a valuable model to understand the processes involved in the differentiation into functional cells as well as an unlimited source of cells for therapeutic applications. Efficient gene transduction method is one of the powerful tools for the basic researches and for differentiating ES and iPS cells into lineage-committed cells. Recently, we have developed an adenovirus (Ad) vector for efficient transduction into ES and iPS cells. We showed that Ad vectors containing the cytomegalovirus enhancer/β-actin promoter with β-actin intron (CA) promoter or the elongation factor (EF)-1α promoter were the appropriate for the transduction into ES and iPS cells. We also found that enforced expression of a PPARγ gene or a Runx2 gene into mouse ES and iPS cells by an optimized Ad vector markedly augmented the differentiation of adipocytes or osteoblasts, respectively. Thus, a gene transfer technique using an Ad vector could be an advantage for the regulation of stem cell differentiation and could be applied to regenerative medicine based on ES and iPS cells.

  17. Direct selection of targeted adenovirus vectors by random peptide display on the fiber knob.

    PubMed

    Miura, Y; Yoshida, K; Nishimoto, T; Hatanaka, K; Ohnami, S; Asaka, M; Douglas, J T; Curiel, D T; Yoshida, T; Aoki, K

    2007-10-01

    Targeting of gene transfer at the level of cell entry is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success because proper targeting ligand-receptor systems on the cells of interest are generally unknown. Systematic approaches to generate adenovirus vectors targeting any given cell type need to be developed to achieve this goal. Here, we constructed an adenovirus library that was generated by a Cre-lox-mediated in vitro recombination between an adenoviral fiber-modified plasmid library and genomic DNA to display random peptides on a fiber knob. As proof of concept, we screened the adenovirus display library on a glioma cell line and observed selection of several particular peptide sequences. The targeted vector carrying the most frequently isolated peptide significantly enhanced gene transduction in the glioma cell line but not in many other cell lines. Because the insertion of a pre-selected peptide into a fiber knob often fails to generate an adenovirus vector, the selection of targeting peptides is highly useful in the context of the adenoviral capsid. This vector-screening system can facilitate the development of a targeted adenovirus vector for a variety of applications in medicine.

  18. [Producing recombinant adenovirus encoding green fluorescent protein (Ad-GFP) by suspension cultured HEK-293 N3S cells].

    PubMed

    Tian, Bo; Wu, Bin; Zhang, Qun-Wei; Bi, Jian-Jin; Wang, Lan; Zhu, Bao-Zhen; Geng, Yue; Wu, Zu-Ze

    2007-09-01

    Adenovirus vectors are one of the most promising gene transfer systems. They are of great value for gene therapy because these vectors achieve temporal high-level transgene expression and high gene transfer efficiency. To meet increasing needs of adenovirus vectors for gene therapy programs, parallel development of efficient, scalable and reproducible production processes is required. Perfusion cultivation of 293 cells is one of the most commonly used methods to produce adenovirus vectors and it is suitable for industrialized production specially. Experimental studies had been carried out to produce recombinant adenovirus containing the green fluorescent protein gene (Ad-GFP) by perfusion cultivation of HEK-293 N3S cells in a 5L stirring bioreactors. Perfusion rate was 1-2 volume/day. To infect the 293 N3S cells with Ad-GFP at the density of (2-4) x 10(6) cells/ ml. The time of collecting cells was 48 hours post infection. After three rounds of freeze/thaw and centrifugation, the crude viral lysates were stored at--80 degrees C until use. Then to get the Ad-GFP products by 2 x CsCl-gradient purification. The purity of the products was determined by the A260/A280 ratio and a high performance liquid chromatography (HPLC) assay. The infective titer was determined by a TCID50 assay. The culture term was 10-12 days. The infectious titer, the number of virus particle and the ratio of infectious titer to virus particle for the product were 1.0 x 10(11) IU/mL, 1.68 x 10(12) VP/mL and 6.0% IU/VP respectively. The A260/A280 ratio was 1.33, and the purity determined by HPLC was 99.2%. The cell specific productivity was around 1000 IU/cell. By perfusion cultivation of 293 N3S cells in a 5L stirring bioreactors, we established the production process for Ad-GFP, which paves a way to produce other recombinant adenovirus for gene therapy.

  19. Transcellular targeting of fiber- and hexon-modified adenovirus vectors across the brain microvascular endothelial cells in vitro.

    PubMed

    Laakkonen, Johanna P; Engler, Tatjana; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Olivier; Kreppel, Florian; Kochanek, Stefan

    2012-01-01

    In central nervous system (CNS)-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular delivery of targeted adenovirus (Ad) vectors across the blood-brain barrier (BBB) in vitro models. As a proof-of-principle ligand, maleimide-activated full-length human transferrin (hTf) was covalently attached to cysteine-modified Ad serotype 5 vectors either to its fiber or hexon protein. In transcytosis experiments, hTf-coupled vectors were shown to be redirected across the BBB models, the transcytosis activity of the vectors being dependent on the location of the capsid modification and the in vitro model used. The transduction efficiency of hTf-targeted vectors decreased significantly in confluent, polarized cells, indicating that the intracellular route of the vectors differed between unpolarized and polarized cells. After transcellular delivery the majority of the hTf-modified vectors remained intact and partly capable of gene transfer. Altogether, our results demonstrate that i) covalent attachment of a ligand to Ad capsid can mediate transcellular targeting across the cerebral endothelium in vitro, ii) the attachment site of the ligand influences its transcytosis efficiency and iii) combined genetic/chemical modification of Ad vector can be used as a versatile platform for the development of Ad vectors for transcellular targeting.

  20. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  1. Gene therapy of experimental malignant mesothelioma using adenovirus vectors encoding the HSVtk gene.

    PubMed

    Esandi, M C; van Someren, G D; Vincent, A J; van Bekkum, D W; Valerio, D; Bout, A; Noteboom, J L

    1997-04-01

    Replication-defective adenovirus vectors were generated in which the gene of interest (lacZ, luciferase or HSV-tk) is driven by the adenovirus major late promoter (MLP) or the human cytomegalovirus immediate-early gene promoter/enhancer (CMV). In vitro experiments with rat (II-45) and human (MERO 25) mesothelioma cell lines revealed that the CMV promoter was stronger than the MLP promoter regarding levels of expression of the luciferase reporter gene and ganciclovir (GCV) killing efficiency after tk gene transfer. Following administration of IG.Ad.CMV.lacZ recombinant adenovirus (Introgene, IG) into the pleural cavity of Fischer rats with established mesothelioma, a widespread distribution of infectious virus particles through the thorax contents was demonstrated. However, a relatively small proportion of tumor cells were transduced. Nevertheless, a strong tumor growth inhibition was observed following treatment with IG.Ad.CMV.TK recombinant adenovirus and GCV. Separate groups of rats inoculated on day 0 with 10(5) II-45 cells in the pleural cavity, received 7 x 10(9) infectious particles of IG.Ad. CMV.TK on day 1, day 2, day 4 or day 8. One day after virus administration, 25 mg/kg GCV or PBS (controls) was injected i.p. (intraperitoneally) twice daily. On day 15, all animals were killed. Significant tumor regression, equivalent to 5 log cell kill, occurred in the treated rats suggesting an impressive bystander effect. In a survival study, animals were treated 9 days after inoculation of 10(5) tumor cells with IG.Ad.CMV.TK and a 14 days course of GCV. This treatment prolonged symptom-free survival time from 19 days in the controls to 33 days in the treated group. These responses can be best explained by assuming continued tk expression in or around the tumor tissue during GCV treatment. Our results confirm and extend earlier findings with the same model and demonstrate the potential of the herpes simplex virus thymidine kinase suicide gene therapy as a local

  2. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology

    PubMed Central

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    AIM To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. METHODS Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. RESULTS The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. CONCLUSION We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia. PMID:27672590

  3. Chimeric adenovirus type 5/35 vector encoding SIV gag and HIV env genes affords protective immunity against the simian/human immunodeficiency virus in monkeys.

    PubMed

    Someya, Kenji; Xin, Ke-Qin; Ami, Yasushi; Izumi, Yasuyuki; Mizuguchi, Hiroyuki; Ohta, Shinrai; Yamamoto, Naoki; Honda, Mitsuo; Okuda, Kenji

    2007-10-25

    Replication-defective adenovirus type 5 (Ad5) vector-based vaccines are widely known to induce strong immunity against immunodeficiency viruses. To exploit this immunogenicity while overcoming the potential problem of preexisting immunity against human adenoviruses type 5, we developed a recombinant chimeric adenovirus type 5 with type 35 fiber vector (rAd5/35). We initially produced a simian immunodeficiency virus (SIV) gag DNA plasmid (rDNA-Gag), a human immunodeficiency virus type 1 (HIV-1) 89.6 env DNA plasmid (rDNA-Env) and a recombinant Ad5/35 vector encoding the SIV gag and HIV env gene (rAd5/35-Gag and rAd5/35-Env). Prime-boost vaccination with rDNA-Gag and -Env followed by high doses of rAd5/35-Gag and -Env elicited higher levels of cellular immune responses than did rDNAs or rAd5/35s alone. When challenged with a pathogenic simian human immunodeficiency virus (SHIV), animals receiving a prime-boost regimen or rAd5/35s alone maintained a higher number of CD4(+) T cells and remarkably suppressed plasma viral RNA loads. These findings suggest the clinical promise of an rAd5/35 vector-based vaccine.

  4. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors

    PubMed Central

    Crosby, Catherine M.; Barry, Michael A.

    2017-01-01

    Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed “single cycle” Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad

  5. Lac-regulated system for generating adenovirus 5 vaccine vectors expressing cytolytic human immunodeficiency virus 1 genes.

    PubMed

    Zhao, Chunxia; Crews, Charles Jefferson; Derdeyn, Cynthia A; Blackwell, Jerry L

    2009-09-01

    Adenovirus (Ad) vectors have been developed as human immunodeficiency-1 (HIV-1) vaccine vectors because they consistently induce immune responses in preclinical animal models and human trials. Strong promoters and codon-optimization are often used to enhance vaccine-induced HIV-1 gene expression and immunogenicity. However, if the transgene is inherently cytotoxic in the cell line used to produce the vector, and is expressed at high levels, it is difficult to rescue a stable Ad HIV-1 vaccine vector. Therefore we hypothesized that generation of Ad vaccine vectors expressing cytotoxic genes, such as HIV-1 env, would be more efficient if expression of the transgene was down-regulated during Ad rescue. To test this hypothesis, a Lac repressor-operator system was applied to regulate expression of reporter luciferase and HIV-1 env transgenes during Ad rescue. The results demonstrate that during Ad rescue, constitutive expression of the Lac repressor in 293 cells reduced transgene expression levels to approximately 5% of that observed in the absence of regulation. Furthermore, Lac-regulation translated into more efficient Ad rescue compared to traditional 293 cells. Importantly, Ad vectors rescued with this system showed high levels of transgene expression when transduced into cells that lack the Lac repressor protein. The Lac-regulated system also facilitated the rescue of modified Ad vectors that have non-native receptor tropism. These tropism-modified Ad vectors infect a broader range of cell types than the unmodified Ad, which could increase their effectiveness as a vaccine vector. Overall, the Lac-regulated system described here (i) is backwards compatible with Ad vector methods that employ bacterial-mediated homologous recombination, (ii) is adaptable for the engineering of tropism-modified Ad vectors, and (iii) does not require co-expression of regulatory genes from the vector or the addition of exogenous chemicals to induce or repress transgene expression. This

  6. Electrostatic Interactions between Complement Regulator CD46(SCR1-2) and Adenovirus Ad11/Ad21 Fiber Protein Knob

    PubMed Central

    Chen, Carl Z.; Gorham, Ronald D.; Gaieb, Zied; Morikis, Dimitrios

    2015-01-01

    Adenoviruses bind to a variety of human cells to cause infection. Both the B2 adenovirus 11 and B1 adenovirus 21 use protein knobs to bind to complement regulator CD46(SCR1-2) in order to gain entry into host cells. In each complex, the two proteins are highly negatively charged but bind to each other at an interface with oppositely charged surface patches. We computationally generated single-alanine mutants of charged residues in the complexes CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. We used electrostatic clustering and Poisson-Boltzmann free energy calculations to propose a hypothesis on the role of electrostatics in association. Our results delineate specific interfacial electrostatic interactions that are critical for association in both CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. These results will serve as a predictive tool in the selection of mutants with desired binding affinity in experimental mutagenesis studies. This study will also serve as a foundation for the design of inhibitors to treat adenovirus infections. PMID:26357573

  7. Electrostatic Interactions between Complement Regulator CD46(SCR1-2) and Adenovirus Ad11/Ad21 Fiber Protein Knob.

    PubMed

    Chen, Carl Z; Gorham, Ronald D; Gaieb, Zied; Morikis, Dimitrios

    2015-01-01

    Adenoviruses bind to a variety of human cells to cause infection. Both the B2 adenovirus 11 and B1 adenovirus 21 use protein knobs to bind to complement regulator CD46(SCR1-2) in order to gain entry into host cells. In each complex, the two proteins are highly negatively charged but bind to each other at an interface with oppositely charged surface patches. We computationally generated single-alanine mutants of charged residues in the complexes CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. We used electrostatic clustering and Poisson-Boltzmann free energy calculations to propose a hypothesis on the role of electrostatics in association. Our results delineate specific interfacial electrostatic interactions that are critical for association in both CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. These results will serve as a predictive tool in the selection of mutants with desired binding affinity in experimental mutagenesis studies. This study will also serve as a foundation for the design of inhibitors to treat adenovirus infections.

  8. Toxic activity of the CdtB component of Haemophilus ducreyi cytolethal distending toxin expressed from an adenovirus 5 vector.

    PubMed

    Wising, Catharina; Magnusson, Maria; Ahlman, Karin; Lindholm, Leif; Lagergård, Teresa

    2010-02-01

    The Haemophilus ducreyi cytolethal distending toxin (HdCDT) catalytic subunit CdtB has DNase-like activity and mediates DNA damage after its delivery into target cells. We constructed a replication-deficient adenovirus type 5 (Ad5) vector expressing CdtB and investigated the toxic properties of this vector on HeLa cells. Ad5CdtB caused loss of cell viability, morphologic changes, and cell cycle arrest, findings similar to HdCDT intoxication. This confirmed that CdtB is responsible for the toxicity of the holotoxin when expressed in cells following transduction by an adenoviral vector, and indicated a possible potential of this novel strategy in studies of activity of intracellular products and in gene therapy of cancer.

  9. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    SciTech Connect

    Wang Danher; Hevey, Michael; Juompan, Laure Y.; Trubey, Charles M.; Raja, Nicholas U.; Deitz, Stephen B.; Woraratanadharm, Jan; Luo Min; Yu Hong; Swain, Benjamin M.; Moore, Kevin M.; Dong, John Y. . E-mail: dongj@genphar.com

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10{sup 7} pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.

  10. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle

    PubMed Central

    Medina, Gisselle N.; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J.

    2015-01-01

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4+ and CD8+ gamma interferon (IFN-γ)+ cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle. PMID:26607309

  11. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle.

    PubMed

    Medina, Gisselle N; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J; de los Santos, Teresa

    2015-11-25

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4(+) and CD8(+) gamma interferon (IFN-γ)(+) cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle.

  12. Prevention of hepatic ischemia-reperfusion injury by pre-administration of catalase-expressing adenovirus vectors.

    PubMed

    Ushitora, Masahiro; Sakurai, Fuminori; Yamaguchi, Tomoko; Nakamura, Shin-ichiro; Kondoh, Masuo; Yagi, Kiyohito; Kawabata, Kenji; Mizuguchi, Hiroyuki

    2010-03-19

    Liver ischemia/reperfusion (I/R) injury, which is mainly caused by the generation of reactive oxygen species (ROS) during the reperfusion, remains an important clinical problem associated with liver transplantation and major liver surgery. Therefore, ROS should be detoxified to prevent hepatic I/R-induced injury. Delivery of antioxidant genes into liver is considered to be promising for prevention of hepatic I/R injury; however, therapeutic effects of antioxidant gene transfer to the liver have not been fully examined. The aim of this study was to examine whether adenovirus (Ad) vector-mediated catalase gene transfer in the liver is an effective approach for scavenging ROS and preventing hepatic I/R injury. Intravenous administration of Ad vectors expressing catalase, which is an antioxidant enzyme scavenging H(2)O(2), resulted in a significant increase in catalase activity in the liver. Pre-injection of catalase-expressing Ad vectors dramatically prevented I/R-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic necrosis. The livers were also protected in another liver injury model, CCl(4)-induced liver injury, by catalase-expressing Ad vectors. Furthermore, the survival rates of mice subjected to both partial hepatectomy and I/R treatment were improved by pre-injection of catalase-expressing Ad vectors. On the other hand, control Ad vectors expressing beta-galactosidase did not show any significant preventive effects in the liver on the models of I/R-induced or CCl(4)-induced hepatic injury described above. These results indicate that hepatic delivery of the catalase gene by Ad vectors is a promising approach for the prevention of oxidative stress-induced liver injury.

  13. Truncated Active Human Matrix Metalloproteinase-8 Delivered by a Chimeric Adenovirus-Hepatitis B Virus Vector Ameliorates Rat Liver Cirrhosis

    PubMed Central

    Wang, Zihua; Li, Dong; Kang, Fubiao; Li, Haijun; Li, Baosheng; Cao, Zhichen; Nassal, Michael; Sun, Dianxing

    2013-01-01

    Background Liver cirrhosis is a potentially life-threatening disease caused by progressive displacement of functional hepatocytes by fibrous tissue. The underlying fibrosis is often driven by chronic infection with hepatitis B virus (HBV). Matrix metalloproteinases including MMP-8 are crucial for excess collagen degradation. In a rat model of liver cirrhosis, MMP-8 delivery by an adenovirus (Ad) vector achieved significant amelioration of fibrosis but application of Ad vectors in humans is subject to various issues, including a lack of intrinsic liver specificity. Methods HBV is highly liver-specific and its principal suitability as liver-specific gene transfer vector is established. HBV vectors have a limited insertion capacity and are replication-defective. Conversely, in an HBV infected cell vector replication may be rescued in trans by the resident virus, allowing conditional vector amplification and spreading. Capitalizing on a resident pathogen to help in its elimination and/or in treating its pathogenic consequences would provide a novel strategy. However, resident HBV may also reduce susceptibility to HBV vector superinfection. Thus a size-compatible truncated MMP-8 (tMMP8) gene was cloned into an HBV vector which was then used to generate a chimeric Ad-HBV shuttle vector that is not subject to superinfection exclusion. Rats with thioacetamide-induced liver cirrhosis were injected with the chimera to evaluate therapeutic efficacy. Results Our data demonstrate that infectious HBV vector particles can be obtained via trans-complementation by wild-type virus, and that the tMMP8 HBV vector can efficiently be shuttled by an Ad vector into cirrhotic rat livers. There it exerted a comparable beneficial effect on fibrosis and hepatocyte proliferation markers as a conventional full-length MMP-8Ad vector. Conclusions Though the rat cirrhosis model does not allow assessing in vivo HBV vector amplification these results advocate the further development of Ad

  14. Adenovirus Vectors Block Human Immunodeficiency Virus–1 Replication in Human Alveolar Macrophages by Inhibition of the Long Terminal Repeat

    PubMed Central

    Kaner, Robert J.; Santiago, Francisco; Rahaghi, Franck; Michaels, Elizabeth; Moore, John P.; Crystal, Ronald G.

    2010-01-01

    Heterologous viruses may transactivate or suppress human immunodeficiency virus (HIV)–1 replication. An adenovirus type 5 gene transfer vector (Ad5) HIV-1 vaccine was recently evaluated in a clinical trial, without efficacy. In this context, it is relevant to ask what effect Ad vectors have on HIV-1 replication, particularly in cells that are part of the innate immune system. Infection of HIV-1–infected human alveolar macrophages (AMs) obtained from HIV-1+ individuals with an Ad vector containing no transgene (AdNull) resulted in dose-responsive inhibition of endogenous HIV-1 replication. HIV-1 replication in normal AMs infected with HIV-1 in vitro was inhibited by AdNull with a similar dose response. Ad reduced AM HIV-1 replication up to 14 days after HIV-1 infection. Fully HIV-1–infected AMs were treated with 3′-azido-3′-deoxythymidine, after which Ad infection still inhibited HIV-1 replication, suggesting a postentry step was affected. Substantial HIV-1 DNA was still produced after Ad infection, as quantified by TaqMan real-time PCR, suggesting that the replication block occurred after reverse transcription. AdNull blocked HIV-1 long terminal repeat (LTR) transcription, as assessed by an vesicular stomatitis virus G protein pseudotyped HIV-1 LTR luciferase construct. The formation of HIV-1 DNA integrated into the host chromosome was not inhibited by Ad, as quantified by a two-step TaqMan real-time PCR assay, implying a postintegration block to HIV-1 replication. These data indicate that Ad vectors are inhibitory to HIV-1 replication in human AMs based, in part, on their ability to inhibit LTR-driven transcription. PMID:19805482

  15. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity

    PubMed Central

    Anghelina, Daniela; Lam, Eric

    2016-01-01

    ABSTRACT Infection by adenovirus, a nonenveloped DNA virus, induces antiviral innate and adaptive immune responses. Studies of transformed human and murine cell lines using short hairpin RNA (shRNA) knockdown strategies identified cyclic guanine adenine synthase (cGAS) as a pattern recognition receptor (PRR) that contributes to the antiadenovirus response. Here we demonstrate how the cGAS/STING cascade influences the antiviral innate and adaptive immune responses in a murine knockout model. Using knockout bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMOs), we determined that cGAS and STING are essential to the induction of the antiadenovirus response in these antigen-presenting cells (APCs) in vitro. We next determined how the cGAS/STING cascade impacts the antiviral response following systemic administration of a recombinant adenovirus type 5 vector (rAd5V). Infection of cGAS−/− and STING−/− mice results in a compromised early antiviral innate response compared to that in wild-type (WT) controls: significantly lower levels of beta interferon (IFN-β) secretion, low levels of proinflammatory chemokine induction, and reduced levels of antiviral transcript induction in hepatic tissue. At 24 h postinfection, levels of viral DNA and reporter gene expression in the liver were similar in all strains. At 28 days postinfection, clearance of infected hepatocytes in cGAS or STING knockout mice was comparable to that in WT C57BL/6 mice. Levels of neutralizing anti-Ad5V antibody were modestly reduced in infected cGAS mice. These data support a dominant role for the cGAS/STING cascade in the early innate antiviral inflammatory response to adenovirus vectors. However, loss of the cGAS/STING pathway did not affect viral clearance, and cGAS deficiency had a modest influence on the magnitude of the antiviral humoral immune response to adenovirus infections. IMPORTANCE The detection of viral infection by host sentinel immune cells

  16. Correction of a deletion mutant by gene targeting with an adenovirus vector.

    PubMed Central

    Wang, Q; Taylor, M W

    1993-01-01

    The usefulness of adenovirus type 5 as a vector for homologous recombination was examined in CHO cells by using the adenine phosphoribosyltransferase (aprt) gene. Infection of a hemizygous CHO APRT- cell line containing a 3-bp deletion in exon 5 of the aprt gene with a recombinant adenovirus containing the wild-type gene resulted in restoration of the APRT+ phenotype at a frequency of 10(-5) to 10(-6) per infected cell. A relatively high frequency (approximately 6 to 20%) of the transductants appears to result from a homologous recombination event. The mutation on the chromosomal aprt gene is corrected in the homologous recombinants, and APRT expression is restored to a normal hemizygous level. Neither adenovirus nor exogenous promoter sequences are detected in the homologous recombinants. The remaining transductants result from random integration of the aprt gene with the adenovirus sequence. A number of adenovirus vectors containing different promoter sequences linked to the hamster aprt gene were constructed. A possible role for the promoter region in the homologous recombination event was indicated by the lack of homologous recombination in constructs lacking an active promoter. Images PMID:8423811

  17. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  18. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    PubMed Central

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  19. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1

    PubMed Central

    Benlahrech, Adel; Harris, Julian; Meiser, Andrea; Papagatsias, Timos; Hornig, Julia; Hayes, Peter; Lieber, Andre; Athanasopoulos, Takis; Bachy, Veronique; Csomor, Eszter; Daniels, Rod; Fisher, Kerry; Gotch, Frances; Seymour, Len; Logan, Karen; Barbagallo, Romina; Klavinskis, Linda; Dickson, George; Patterson, Steven

    2009-01-01

    In the recently halted HIV type 1 (HIV-1) vaccine STEP trial, individuals that were seropositive for adenovirus serotype 5 (Ad5) showed increased rates of HIV-1 infection on vaccination with an Ad5 vaccine. We propose that this was due to activation and expansion of Ad5-specific mucosal-homing memory CD4 T cells. To test this hypothesis, Ad5 and Ad11 antibody titers were measured in 20 healthy volunteers. Dendritic cells (DCs) from these individuals were pulsed with replication defective Ad5 or Ad11 and co-cultured with autologous lymphocytes. Cytokine profiles, proliferative capacity, mucosal migration potential, and susceptibility to HIV infection of the adenovirus-stimulated memory CD4 T cells were measured. Stimulation of T cells from healthy Ad5-seropositive but Ad11-seronegative individuals with Ad5, or serologically distinct Ad11 vectors induced preferential expansion of adenovirus memory CD4 T cells expressing α4β7 integrins and CCR9, indicating a mucosal-homing phenotype. CD4 T-cell proliferation and IFN-γ production in response to Ad stimulation correlated with Ad5 antibody titers. However, Ad5 serostatus did not correlate with total cytokine production upon challenge with Ad5 or Ad11. Expanded Ad5 and Ad11 memory CD4 T cells showed an increase in CCR5 expression and higher susceptibility to infection by R5 tropic HIV-1. This suggests that adenoviral-based vaccination against HIV-1 in individuals with preexisting immunity against Ad5 results in preferential expansion of HIV-susceptible activated CD4 T cells that home to mucosal tissues, increases the number of virus targets, and leads to a higher susceptibility to HIV acquisition. PMID:19918060

  20. Genome Sequence of a Cynomolgus Macaque Adenovirus (CynAdV-1) Isolate from a Primate Colony in the United Kingdom.

    PubMed

    Zeng, Zhiwei; Zhang, Jing; Jing, Shuping; Cheng, Zetao; Bofill-Mas, Silvia; Maluquer de Motes, Carlos; Hundesa, Ayalkibet; Girones, Rosina; Seto, Donald; Zhang, Qiwei

    2016-11-03

    The genome sequence of a simian adenovirus from a cynomolgus macaque, denoted CynAdV-1, is presented here. Phylogenetic analysis supports CynAdV-1 in an independent clade, comprising a new simian adenovirus (SAdV) species. These genome data are critical for understanding the evolution and relationships of primate adenoviruses, including zoonosis and emergent human pathogens.

  1. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    SciTech Connect

    Campos, Samuel K.; Barry, Michael A. . E-mail: mab@bcm.edu

    2006-06-05

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon.

  2. Efficient genome replication of hepatitis B virus using adenovirus vector: a compact pregenomic RNA-expression unit

    PubMed Central

    Suzuki, Mariko; Kondo, Saki; Yamasaki, Manabu; Matsuda, Norie; Nomoto, Akio; Suzuki, Tetsuro; Saito, Izumu; Kanegae, Yumi

    2017-01-01

    The complicated replication mechanisms of hepatitis B virus (HBV) have impeded HBV studies and anti-HBV therapy development as well. Herein we report efficient genome replication of HBV applying adenovirus vectors (AdVs) showing high transduction efficiency. Even in primary hepatocytes derived from humanized mice the transduction efficiencies using AdVs were 450-fold higher compared than those using plasmids. By using an expression unit consisting of the CMV promoter, 1.03-copy HBV genome and foreign poly(A) signal, we successfully generated an improved AdV (HBV103-AdV) that efficiently provided 58 times more pregenomic RNA than previously reported AdVs. The HBV103-AdV-mediated HBV replication was easily and precisely detected using quantitative real-time PCR in primary hepatocytes as well as in HepG2 cells. Notably, when the AdV containing replication-defective HBV genome of 1.14 copy was transduced, we observed that HBV DNA-containing circular molecules (pseudo-ccc DNA) were produced, which were probably generated through homologous recombination. However, the replication-defective HBV103-AdV hardly yielded the pseudo-ccc, probably because the repeated sequences are vey short. Additionally, the efficacies of entecavir and lamivudine were quantitatively evaluated using this system at only 4 days postinfection with HBV103-AdVs. Therefore, this system offers high production of HBV genome replication and thus could become used widely. PMID:28157182

  3. Adenovirus capsid-display of the retro-oriented human complement inhibitor DAF reduces Ad vector–triggered immune responses in vitro and in vivo

    PubMed Central

    Seregin, Sergey S.; Aldhamen, Yasser A.; Appledorn, Daniel M.; Hartman, Zachary C.; Schuldt, Nathaniel J.; Scott, Jeannine; Godbehere, Sarah; Jiang, Haixiang; Frank, Michael M.

    2010-01-01

    Adenovirus (Ad) vectors are widely used in human clinical trials. However, at higher dosages, Ad vector–triggered innate toxicities remain a major obstacle to many applications. Ad interactions with the complement system significantly contribute to innate immune responses in several models of Ad-mediated gene transfer. We constructed a novel class of Ad vectors, genetically engineered to “capsid-display” native and retro-oriented versions of the human complement inhibitor decay-accelerating factor (DAF), as a fusion protein from the C-terminus of the Ad capsid protein IX. In contrast to conventional Ad vectors, DAF-displaying Ads dramatically minimized complement activation in vitro and complement-dependent immune responses in vivo. DAF-displaying Ads did not trigger thrombocytopenia, minimized endothelial cell activation, and had diminished inductions of proinflammatory cytokine and chemokine responses. The retro-oriented display of DAF facilitated the greatest improvements in vivo, with diminished activation of innate immune cells, such as dendritic and natural killer cells. In conclusion, Ad vectors can capsid-display proteins in a manner that not only retains the functionality of the displayed proteins but also potentially can be harnessed to improve the efficacy of this important gene transfer platform for numerous gene transfer applications. PMID:20511542

  4. Tropism modification of adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 41 short-fiber knob domain.

    PubMed

    Hesse, Andrea; Kosmides, Daniela; Kontermann, Roland E; Nettelbeck, Dirk M

    2007-03-01

    Recombinant adenoviruses have emerged as promising agents in therapeutic gene transfer, genetic vaccination, and viral oncolysis. Therapeutic applications of adenoviruses, however, would benefit substantially from targeted virus cell entry, for example, into cancer or immune cells, as opposed to the broad tropism that adenoviruses naturally possess. Such tropism modification of adenoviruses requires the deletion of their natural cell binding properties and the incorporation of cell binding ligands. The short fibers of subgroup F adenoviruses have recently been suggested as a tool for genetic adenovirus detargeting based on the reduced infectivity of corresponding adenovectors with chimeric fibers in vitro and in vivo. The goal of our study was to determine functional insertion sites for peptide ligands in the adenovirus serotype 41 (Ad41) short fiber knob. With a model peptide, CDCRGDCFC, we could demonstrate that ligand incorporation into three of five analyzed loops of the knob, namely, EG, HI, and IJ, is feasible without a loss of fiber trimerization. The resulting adenovectors showed enhanced infectivity for various cell types, which was superior to that of viruses with the same peptide fused to the fiber C terminus. Strategies to further augment gene transfer efficacy by extension of the fiber shaft, insertion of tandem copies of the ligand peptide, or extension of the ligand-flanking linkers failed, indicating that precise ligand positioning is pivotal. Our study establishes that internal ligand incorporation into a short-shafted adenovirus fiber is feasible and suggests the Ad41 short fiber with ligand insertion into the top (IJ loop) or side (EG and HI loops) of the knob domain as a novel platform for genetic targeting of therapeutic adenoviruses.

  5. Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    DTIC Science & Technology

    2006-06-01

    Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs Nancy J. Sullivan 1...Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified...should be addressed. E-mail: gnabel@nih.gov [ These authors contributed equally to this work. A B S T R A C T Background Ebola virus causes a hemorrhagic

  6. A Genetically Engineered Adenovirus Vector Targeted to CD40 Mediates Transduction of Canine Dendritic Cells and Promotes Antigen-Specific Immune Responses In Vivo

    PubMed Central

    Thacker, Erin E.; Nakayama, Masaharu; Smith, Bruce F.; Bird, R. Curtis; Muminova, Zhanat; Strong, Theresa; Timares, Laura; Korokhov, Nikolay; O'Neill, Ann Marie; de Gruijl, Tanja D.; Glasgow, Joel N.; Tani, Kenzaburo; Curiel, David T.

    2009-01-01

    Targeting viral vectors encoding tumor-associated antigens to dendritic cells (DCs) in vivo is likely to enhance the effectiveness of immunotherapeutic cancer vaccines. We have previously shown that genetic modification of adenovirus (Ad) 5 to incorporate CD40 ligand (CD40L) rather than native fiber allows selective transduction and activation of DCs in vitro. Here, we examine the capacity of this targeted vector to induce immune responses to the tumor antigen CEA in a stringent in vivo canine model. CD40-targeted Ad5 transduced canine DCs via the CD40-CD40L pathway in vitro, and following vaccination of healthy dogs, CD40-targeted Ad5 induced strong anti-CEA cellular and humoral responses. These data validate the canine model for future translational studies and suggest targeting of Ad5 vectors to CD40 for in vivo delivery of tumor antigens to DCs is a feasible approach for successful cancer therapy. PMID:19786146

  7. In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors

    PubMed Central

    Richter, Maximilian; Saydaminova, Kamola; Yumul, Roma; Krishnan, Rohini; Liu, Jing; Nagy, Eniko-Eva; Singh, Manvendra; Izsvák, Zsuzsanna; Cattaneo, Roberto; Uckert, Wolfgang; Palmer, Donna; Ng, Philip; Haworth, Kevin G.; Kiem, Hans-Peter; Ehrhardt, Anja; Papayannopoulou, Thalia

    2016-01-01

    Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin−Sca1+Kit− cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy. PMID:27554082

  8. Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine.

    PubMed

    Pandey, Aseem; Singh, Neetu; Vemula, Sai V; Couëtil, Laurent; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2012-01-01

    The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (<520 virus-neutralization titer) induced by priming mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines.

  9. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors

    PubMed Central

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-01-01

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors. PMID:26934960

  10. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors.

    PubMed

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-03-03

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors.

  11. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    translation and, thus, never become available to the disulfide isomerases, the ER-localized enzymes that facilitate the formation of the disulfide bonds...duplexes and cloned into Bael-cut expression vectors. Upon transformation of Ecoli , colonies containing recombinant plasmids were identified by PCR...R. L. Crowell, and R. W. Finberg. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320-3. 6

  12. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    PubMed

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy.

  13. Adenovirus as a gene therapy vector for hematopoietic cells.

    PubMed

    Marini, F C; Yu, Q; Wickham, T; Kovesdi, I; Andreeff, M

    2000-06-01

    Adenovirus (Adv)-mediated gene transfer has recently gained new attention as a means to deliver genes for hematopoietic stem cell (HSC) or progenitor cell gene therapy. In the past, HSCs have been regarded as poor Adv targets, mainly because they lack the specific Adv receptors required for efficient and productive Adv infection. In addition, the nonintegrating nature of Adv has prevented its application to HSC and bone marrow transduction protocols where long-term expression is required. There is even controversy as to whether Adv can infect hematopoietic cells at all. In fact, the ability of Adv to infect epithelium-based targets and its inability to effectively transfect HSCs have been used in the development of eradication schemes that use Adv to preferentially infect and "purge" tumor cell-contaminating HSC grafts. However, there are data supporting the existence of productive Adv infections into HSCs. Such protocols involve the application of cytokine mixtures, high multiplicities of infection, long incubation periods, and more recently, immunological and genetic modifications to Adv itself to enable it to efficiently transfer genes into HSCs. This is a rapidly growing field, both in terms of techniques and applications. This review examines the two sides of the Adv/CD34 controversy as well as the current developments in this field.

  14. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m(2) was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V.

  15. New Conditionally Replicating Adenovirus Vectors for Breast Cancer Therapy

    DTIC Science & Technology

    2009-09-01

    Baculovirus Construct Description of Mutation I664V Ad5 Pol – pAcgp67A Protein Production in SF9 insect cells I664M Ad5 Pol – pAcgp67A “” I664S...out in SF9 insect cells (Figure 3). Figure 3: Expression of Ad pol proteins in insect cells LEGEND: 3µg of recombinant baculovirus DNA was...transfected with Cellfectin (Invitrogen) in SF9 insect cells. Three days later the recombinant baculoviruses were collected and used for viral

  16. Vector sequences are not detected in tumor tissue from research subjects with ornithine transcarbamylase deficiency who previously received adenovirus gene transfer.

    PubMed

    Zhong, Li; Li, Shaoyong; Li, Mengxin; Xie, Jun; Zhang, Yu; Lee, Brendan; Batshaw, Mark L; Wilson, James M; Gao, Guangping

    2013-09-01

    A 66-year-old woman heterozygous for a mutation in the ornithine transcarbamylase gene (Otc) participated in a phase I gene therapy trial for OTC deficiency. She received an adenovirus (Ad) vector expressing the functional OTC gene by intraportal perfusion. Fourteen years later she developed and subsequently died of hepatocellular carcinoma. A second subject, a 45-year-old woman, enrolled in the same trial presented with colon cancer 15 years later. We sought to investigate a possible association between the development of a tumor and prior adenoviral gene transfer in these two subjects. We developed and validated a sensitive nested polymerase chain reaction assay for recovering recombinant Ad sequences from host tissues. Using this method, we could not detect any Ad vector DNA in either tumor or normal tissue from the two patients. Our results are informative in ruling out the possibility that the adenoviral vector might have contributed to the development of cancer in those two subjects.

  17. The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform

    NASA Astrophysics Data System (ADS)

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Balint, Joseph P.

    2015-05-01

    Based upon advances in gene sequencing and construction, it is now possible to identify specific genes or sequences thereof for gene delivery applications. Recombinant adenovirus serotype-5 (Ad5) viral vectors have been utilized in the settings of gene therapy, vaccination, and immunotherapy but have encountered clinical challenges because they are recognized as foreign entities to the host. This recognition leads to an immunologic clearance of the vector that contains the inserted gene of interest and prevents effective immunization(s). We have reported on a new Ad5-based viral vector technology that can be utilized as an immunization modality to induce immune responses even in the presence of Ad5 vector immunity. We have reported successful immunization and immunotherapy results to infectious diseases and cancers. This improved recombinant viral platform (Ad5 [E1-, E2b-]) can now be utilized in the development of multiple vaccines and immunotherapies.

  18. BTK gene targeting by homologous recombination using a helper-dependent adenovirus/adeno-associated virus hybrid vector.

    PubMed

    Yamamoto, H; Ishimura, M; Ochiai, M; Takada, H; Kusuhara, K; Nakatsu, Y; Tsuzuki, T; Mitani, K; Hara, T

    2016-02-01

    X-linked agammaglobulinemia (XLA) is one of the most common humoral immunodeficiencies, which is caused by mutations in Bruton's tyrosine kinase (BTK) gene. To examine the possibility of using gene therapy for XLA, we constructed a helper-dependent adenovirus/adeno-associated virus BTK targeting vector (HD-Ad.AAV BTK vector) composed of a genomic sequence containing BTK exons 6-19 and a green fluorescence protein-hygromycin cassette driven by a cytomegalovirus promoter. We first used NALM-6, a human male pre-B acute lymphoblastic leukemia cell line, as a recipient to measure the efficiency of gene targeting by homologous recombination. We identified 10 clones with the homologous recombination of the BTK gene among 107 hygromycin-resistant stable clones isolated from two independent experiments. We next used cord blood CD34⁺ cells as the recipient cells for the gene targeting. We isolated colonies grown in medium containing cytokines and hygromycin. We found that the targeting of the BTK gene occurred in four of the 755 hygromycin-resistant colonies. Importantly, the gene targeting was also observed in CD19⁺ lymphoid progenitor cells that were differentiated from the homologous recombinant CD34⁺ cells during growth in selection media. Our study shows the potential for the BTK gene therapy using the HD-Ad.AAV BTK vector via homologous recombination in hematopoietic stem cells.

  19. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    PubMed Central

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  20. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects.

    PubMed

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-04-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with (3)H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>10(5)) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited 'extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction.

  1. Adenovirus serotype 5 vaccine vectors trigger IL-27-dependent inhibitory CD4+ T cell responses that impair CD8+ T cell function

    PubMed Central

    Larocca, Rafael A.; Provine, Nicholas M.; Aid, Malika; Iampietro, M. Justin; Borducchi, Erica N.; Badamchi-Zadeh, Alexander; Abbink, Peter; Ng’ang’a, David; Bricault, Christine A.; Blass, Eryn; Penaloza-MacMaster, Pablo; Stephenson, Kathryn E.; Barouch, Dan H.

    2017-01-01

    Adenovirus serotype 5 (Ad5) vaccine vectors elicit robust CD8+ T cell responses, but these responses typically exhibit a partially exhausted phenotype. However, the immunologic mechanism by which Ad5 vectors induce dysfunctional CD8+ T cells has not previously been elucidated. Here we demonstrate that, following immunization of B6 mice, Ad5 vectors elicit antigen-specific IL-10+CD4+ T cells with a distinct transcriptional profile in a dose-dependent fashion. In rhesus monkeys, we similarly observed upregulated expression of IL-10 and PD-1 by CD4+ T cells following Ad5 vaccination. These cells markedly suppressed vaccine-elicited CD8+ T cell responses in vivo and IL-10 blockade increased the frequency and functionality of antigen-specific CD8+ T cells as well as improved protective efficacy against challenge with recombinant Listeria monocytogenes. Moreover, induction of these inhibitory IL-10+CD4+ T cells correlated with IL-27 expression and IL-27 blockade substantially improved CD4+ T cell functionality. These data highlight a role for IL-27 in the induction of inhibitory IL-10+CD4+ T cells, which suppress CD8+ T cell magnitude and function following Ad5 vector immunization. A deeper understanding of the cytokine networks and transcriptional profiles induced by vaccine vectors should lead to strategies to improve the immunogenicity and protective efficacy of viral vector-based vaccines. PMID:28239679

  2. Construction of human BMP2-IRES-HIF1αmu adenovirus expression vector and its expression in mesenchymal stem cells.

    PubMed

    Liu, Danping; Hu, Liang; Zhang, Zheng; Li, Quan Ying; Wang, Guoxian

    2013-02-01

    The present study aimed to construct a novel recombinant adenovirus expression vector Ad-BMP2-IRES-HIF1αmu that expresses human bone morphogenetic protein (BMP2) and mutant hypoxia-inducible factor 1α, and investigated its effects in promoting neogenesis of bone and angiogenesis. The recombinant adenovirus BMP2, HIF1αmu and pIRES2-EGFP expression vectors were constructed and transfected into HEK293A cells. The groups were divided into group A, transfection with Ad-BMP2-IRES-HIF1αmu; group B, transfection with Ad-HIF1αmu-IRES-hrGFP-1; group C, transfection with Ad-BMP2-IRES-hrGFP-1; group D, transfection with Ad-IRES-hrGFP-1; group E, not transfected. Adenovirus liquid was transferred into rabbit mesenchymal stem cells (MSCs) pretreated with dexamethasone at the best multiplicity of infection (MOI). The mRNA and protein expression of BMP2 and HIF1α were detected by RT-PCR and western blot analysis. Adenovirus was successfully packaged. The expression level of HIF1α mRNA in group A and B was markedly higher than that in groups C, D and E, showing a significant difference (P<0.01). There was a significant difference in the expression level of BMP2 mRNA between group A and C (P<0.05) and this was markedly higher than that in groups B, D and E (P<0.01). The protein expression level of HIF1α in group A and B was markedly higher than that in groups C, D and E (P<0.01). The protein expression level of BMP2 in group A and C was markedly higher than that in groups B, D and E (P<0.01). The human BMP2-IRES-HIF1αmu adenovirus expression vector was successfully constructed and the experimental groups formed bone and blood vessels prior to the positive and negative control groups.

  3. Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors.

    PubMed

    Mitchell, M; Jerebtsova, M; Batshaw, M L; Newman, K; Ye, X

    2000-12-01

    We have developed a micro-injection technique to deliver recombinant adenovirus and AAV to mouse fetuses at day 15 after conception. Several routes of delivery, including injections to the amniotic fluid, the front limb, the placenta, the liver, and the retro-orbital venus plexus, were tested using an E1-deleted recombinant adenovirus (Ad.CBlacZ) or a recombinant adeno-associated virus (AAV.CMVlacZ) carrying a beta-galactosidase (lacZ) gene. Injection of Ad.CBlacZ into the amniotic cavity led to transgene expression in the skin and in the digestive tract of the fetuses. Injection of Ad.CBlacZ in the front limb resulted in LacZ expression in all major muscle groups around the injection site and at low levels in the liver. The other three routes of delivery, ie intra-placental, intra-hepatic and retro-orbital injections of Ad.CBlacZ, all led to lacZ expression predominantly in the liver. Further studies revealed a maximal tolerant dose (defined as the highest viral dose with < or =20% mortality in the injected fetuses) of 1 x 10(9) particles per fetus for intra- hepatic injections, 3 x 10(9) particles per fetus for intra-placental injection, 1 x 1010 particles per fetus for retro-orbital and intra-amniotic injections, and 2 x 10(10) particle per fetus for intra-muscular injection. The adenovirus-mediated lacZ expression in liver and muscle persisted for at least 6 weeks. Intra-muscular injection of AAV.CMVlacZ also resulted in lacZ expression in the muscle up to 3 months after birth with no indication of cellular immune response at the injection site. Taken together, our results demonstrated that prolonged transgene expression can be achieved by in utero gene transfer using either adenoviral or AAV vectors. The distribution of virus-mediated gene transfer appeared to determined mostly by the route of viral administration.

  4. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine.

    PubMed

    Diaz-San Segundo, Fayna; Dias, Camila C; Moraes, Mauro P; Weiss, Marcelo; Perez-Martin, Eva; Salazar, Andres M; Grubman, Marvin J; de los Santos, Teresa

    2014-11-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FMDV challenge by 7 days post-vaccination. However, since relatively large amounts of Ad5-CI-A24-2B are required to induce protection this strategy could be costly for livestock production. Poly ICLC is a synthetic double stranded RNA that activates multiple innate and adaptive immune pathways. In this study, we have tested for the first time, the adjuvant effect of poly ICLC in combination with Ad5-CI-A24-2B in swine. We found that the combination resulted in a reduction of the vaccine protective dose by 80-fold. Interestingly, the lowest dose of Ad5-CI-A24-2B plus 1mg of poly ICLC protected animals against challenge even in the absence of detectable FMDV-specific neutralizing antibodies at the time of challenge.

  5. Functional characterization of a PEI-CyD-FA-coated adenovirus as delivery vector for gene therapy.

    PubMed

    Yao, Hong; Chen, Shih-Chi; Shen, Zan; Huang, Yun-Chao; Zhu, Xiao; Wang, Xiao-mei; Jiang, Wenqi; Wang, Zi-Feng; Bian, Xiu-Wu; Ling, Eng-Ang; Kung, Hsiang-fu; Lin, Marie C

    2013-01-01

    The recombinant adenovirus is evolving as a promising gene delivery vector for gene therapy due to its efficiency in transducing different genes into most types of cells. However, the host-immune response elicited by primary inoculation of an adenovirus can cause rapid clearance of the vector, impairing the efficacy of the adenovirus and hence obstructing its clinical application. We have previously synthesized a biodegradable co-polymer consisting of a low molecular weight PEI (MW 600 Da), cross-linked with β-cyclodextrin, and conjugated with folic acid (PEI-CyD-FA, named H1). Here we report that coating the adenovirus vector (Adv) with H1 (H1/rAdv) could significantly improve both the efficacy and biosafety of Adv. Enhanced transfection efficiency as well as prolonged duration of gene expression were clearly demonstrated either by intratumoral or systemic injection of a single dose of H1/rAdv in immunocompetent mice. Importantly, repeated injections of H1/rAdv did not reduce the transfection efficiency in immunocompetent mice. Furthermore, H1 transformed the surface charge of the adenovirus capsomers from negative to positive in physiological solution, suggesting that H1 coated the capsid protein of the adenovirus. This could shelter the epitopes of capsid proteins of the adenovirus, resulting in a reduced host-immune response and enhanced transfection efficiency. Taken together, these findings suggest that H1/rAdv is an effective gene delivery system superior to the adenovirus alone and that it could be considered as a preferred vehicle for gene therapy.

  6. Intranasal inoculation with an adenovirus vaccine encoding ten repeats of Aβ3-10 reduces AD-like pathology and cognitive impairment in Tg-APPswe/PSEN1dE9 mice.

    PubMed

    Li, Yu; Ma, Ying; Zong, Li-Xia; Xing, Xiao-Na; Guo, Rong; Jiang, Tong-Zi; Sha, Sha; Liu, Li; Cao, Yun-Peng

    2012-08-15

    To develop a safe and efficient vaccine for AD treatment, we constructed an adenovirus vector vaccine encoding ten repeats of Aβ3-10 and CpG motif as a molecular adjuvant. We demonstrated that therapeutic immunization with Ad-10×Aβ3-10-CpG elicits Aβ3-10 specific Th2-polarized immune response with high titers of anti-Aβ antibodies in APPswe/PSEN1dE9 mice, which in turn reduced Aβ deposits in brains and cognitive impairment. In addition, Ad-10×Aβ3-10-CpG reduced astrocytosis without increasing the incidence of microhemorrhage. Our findings of this study raise the possibility that the adenovirus vaccine Ad-10×Aβ3-10-CpG would be a safe and effective alternative for AD immunotherapy.

  7. Expression of the fusogenic p14 FAST protein from a replication-defective adenovirus vector does not provide a therapeutic benefit in an immunocompetent mouse model of cancer

    PubMed Central

    Wong, C M; Nash, L A; Del Papa, J; Poulin, K L; Falls, T; Bell, J C; Parks, R J

    2016-01-01

    When injected directly into a tumor mass, adenovirus (Ad) vectors only transduce cells immediately along the injection tract. Expression of fusogenic proteins from the Ad vector can lead to syncytium formation, which efficiently spreads the therapeutic effect. Fusogenic proteins can also cause cancer cell death directly, and enhance the release of exosome-like particles containing tumor-associated antigens, which boosts the anti-tumor immune response. In this study, we have examined whether delivery of an early region 1 (E1)-deleted, replication-defective Ad vector encoding the reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein can provide therapeutic efficacy in an immunocompetent mouse tumor model. A high multiplicity of infection of AdFAST is required to induce cell fusion in mouse mammary carcinoma 4T1 cells in vitro, and FAST protein expression caused a modest reduction in cell membrane integrity and metabolic activity compared with cells infected with a control vector. Cells expressing FAST protein released significantly higher quantities of exosomes. In immunocompetent Balb/C mice harboring subcutaneous 4T1 tumors, AdFAST did not induce detectable cancer cell fusion, promote tumor regression or prolong mouse survival compared with untreated mice. This study suggests that in the context of the 4T1 model, Ad-mediated FAST protein expression did not elicit a therapeutic effect. PMID:27740615

  8. Chimpanzee adenovirus and MVA-vectored respiratory syncytial virus vaccine is safe and expands humoral and cellular immunity in adults

    PubMed Central

    Green, CA; Scarselli, E; Sande, CJ; Thompson, AJ; de Lara, CM; Taylor, K; Haworth, K; Del Sorbo, M; Angus, B; Siani, L; Di Marco, S; Traboni, C; Folgori, A; Colloca, S; Capone, S; Vitelli, A; Cortese, R; Klenerman, P; Nicosia, A; Pollard, AJ

    2015-01-01

    Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication defective viral vectors encoding the RSV proteins F, N and M2-1 for the induction of humoral and cellular responses. We performed an open-label, dose-escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intra-muscular and intra-nasal administration of the adenoviral vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralising antibody titres rose in response to intramuscular (IM) prime with PanAd3-RSV, and after IM boost for individuals primed by the intra-nasal (IN) route. Circulating anti-F IgG and IgA antibody secreting cells (ASCs) were observed after IM prime and IM boost. RSV-specific T-cell responses were increased after IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. IFNγ secretion after boost was from both CD4+ and CD8+ T-cells, without detectable Th2 cytokines that have been previously associated with immune pathogenesis following exposure to RSV after formalin inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease. PMID:26268313

  9. Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells.

    PubMed

    Xie, Hong; Hu, Jia; Pan, Huan; Lou, Yaxin; Lv, Ping; Chen, Yingyu

    2014-02-01

    FAM176A (family with sequence similarity 176 member A) is a novel molecule related to programmed cell death. A decreased expression of FAM176A has been found in several types of human tumors in including lung cancers. In the present study, we investigated the biological activities of FAM176A on the human non-small cell lung cancer cell line H1299 cells. We constructed a recombinant adenovirus 5-FAM176A vector (Ad5-FAM176A) and evaluated the expression and anti-tumor activities in vitro. Cell viability analysis revealed that the adenovirus-mediated increase of FAM176A inhibited the growth of the tumor cells in a dose- and time-dependent manner. This inhibitory effect was mediated by both autophagy and apoptosis that involved caspase activation. In addition, cell cycle analysis suggested that Ad5-FAM176A could induce cell cycle arrest at the G2/M phase, all of which suggested that adenovirus-mediated FAM176A gene transfer might present a new therapeutic approach for lung cancer treatment.

  10. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  11. Vaccine-Induced Immunity in Baboons by Using DNA and Replication-Incompetent Adenovirus Type 5 Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    PubMed Central

    Casimiro, Danilo R.; Tang, Aimin; Chen, Ling; Fu, Tong-Ming; Evans, Robert K.; Davies, Mary-Ellen; Freed, Daniel C.; Hurni, William; Aste-Amezaga, Jose M.; Guan, Liming; Long, Romnie; Huang, Lingyi; Harris, Virginia; Nawrocki, Denise K.; Mach, Henryk; Troutman, Robert D.; Isopi, Lynne A.; Murthy, Krishna K.; Rice, Karen; Wilson, Keith A.; Volkin, David B.; Emini, Emilio A.; Shiver, John W.

    2003-01-01

    The cellular immunogenicity of formulated plasmid DNA and replication-defective human adenovirus serotype 5 (Ad5) vaccine vectors expressing a codon-optimized human immunodeficiency virus type 1 gag gene was examined in baboons. The Ad5 vaccine was capable of inducing consistently strong, long-lived CD8+-biased T-cell responses and in vitro cytotoxic activities. The DNA vaccine-elicited immune responses were weaker than those elicited by the Ad5 vaccine and highly variable; formulation with chemical adjuvants led to moderate increases in the levels of Gag-specific T cells. Increasing the DNA-primed responses with booster doses of either Ad5 or modified vaccinia virus Ankara vaccines suggests a difference in the relative levels of cytotoxic and helper responses. The implications of these results are discussed. PMID:12805466

  12. Vector condensate and AdS soliton instability induced by a magnetic field

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Li, Li; Li, Li-Fang; Wu, You

    2014-01-01

    We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied magnetic field can lead to the condensate of the vector field and the AdS soliton instability. As a result, a vortex lattice structure forms in the spatial directions perpendicular to the applied magnetic field. As a comparison, we also discuss the vector condensate in the Einstein-SU(2) Yang-Mills theory and find that in the setup of the present paper, the Einstein-Maxwell-complex vector field model is a generalization of the SU(2) model in the sense that the vector field has a general mass and gyromagnetic ratio.

  13. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  14. CXCL12 retargeting of an adenovirus vector to cancer cells using a bispecific adapter

    PubMed Central

    Bhatia, Shilpa; O’Bryan, Samia M; Rivera, Angel A; Curiel, David T; Mathis, J Michael

    2016-01-01

    Ad vectors are promising delivery vehicles for cancer therapeutic interventions. However, their application is limited by promiscuous tissue tropism and hepatotoxicity. This limitation can be avoided by altering the native tropism of Ads so that they can be redirected to the target cells through alternate cellular receptors. The CXCR4 chemokine receptor belongs to a large superfamily of G-protein-coupled receptors and is known to be upregulated in a wide variety of cancers, including breast cancer and melanoma. These receptors have been associated with cancer cell survival, progression, and metastasis. In the current study, an Ad to cancer cells overexpressing CXCR4 by using a bispecific adapter, sCAR-CXCL12, was retargeted. The sCAR-CXCL12 adapter contained the soluble ectodomain form of the native Ad5 receptor (sCAR), which was fused to a mature human chemokine ligand, CXCL12, through a short peptide linker. A dramatic increase in the infectivity of cancer cells using a targeted Ad vector compared with an untargeted vector was observed. Furthermore, sCAR-CXCL12 attenuated Ad infection of liver ex vivo and in vivo and enhanced Ad vector infection of xenograft tumors implanted in immunodeficient SCID-bg mice. Thus, the sCAR-CXCL12 adapter could be used to retarget Ad vectors to chemokine receptor-positive tumors. PMID:27957479

  15. CXCL12 retargeting of an adenovirus vector to cancer cells using a bispecific adapter.

    PubMed

    Bhatia, Shilpa; O'Bryan, Samia M; Rivera, Angel A; Curiel, David T; Mathis, J Michael

    2016-01-01

    Ad vectors are promising delivery vehicles for cancer therapeutic interventions. However, their application is limited by promiscuous tissue tropism and hepatotoxicity. This limitation can be avoided by altering the native tropism of Ads so that they can be redirected to the target cells through alternate cellular receptors. The CXCR4 chemokine receptor belongs to a large superfamily of G-protein-coupled receptors and is known to be upregulated in a wide variety of cancers, including breast cancer and melanoma. These receptors have been associated with cancer cell survival, progression, and metastasis. In the current study, an Ad to cancer cells overexpressing CXCR4 by using a bispecific adapter, sCAR-CXCL12, was retargeted. The sCAR-CXCL12 adapter contained the soluble ectodomain form of the native Ad5 receptor (sCAR), which was fused to a mature human chemokine ligand, CXCL12, through a short peptide linker. A dramatic increase in the infectivity of cancer cells using a targeted Ad vector compared with an untargeted vector was observed. Furthermore, sCAR-CXCL12 attenuated Ad infection of liver ex vivo and in vivo and enhanced Ad vector infection of xenograft tumors implanted in immunodeficient SCID-bg mice. Thus, the sCAR-CXCL12 adapter could be used to retarget Ad vectors to chemokine receptor-positive tumors.

  16. Receptor-targeted recombinant adenovirus conglomerates: a novel molecular conjugate vector with improved expression characteristics.

    PubMed Central

    Schwarzenberger, P; Hunt, J D; Robert, E; Theodossiou, C; Kolls, J K

    1997-01-01

    To develop improved strategies for gene transfer to hematopoietic cells, we have explored targeted gene transfer using molecular conjugate vectors (MCVs). MCVs are constructed by condensing plasmid DNA containing the gene of interest with polylysine (PL), PL linked to a replication-incompetent adenovirus (endosomolytic agent), and PL linked to streptavidin for targeting with biotinylated ligands. In this report, we compare gene transfer to K562 cells by using the previously described transferrin-targeted MCV (Trans-MCV) to a novel transferrin-targeted MCV. In the novel MCV, the transferred gene (luciferase) is in the genome of recombinant replication-incompetent adenovirus (recMCV), which also acts as the endosomolytic agent. The level of luciferase gene expression was fivefold higher in K562 cells transfected with Trans-recMCV than in cells transfected with Trans-MCV. Furthermore, targeted transfection with recMCV resulted in prolonged luciferase expression that declined 14 to 20 days after transfection, in comparison with Trans-MCV, where luciferase expression declined by 4 to 8 days. Moreover, targeted transfection of K562 cells with the Trans-recMCV resulted in persistent luciferase gene expression for 6 months. Analysis of luciferase gene expression in K562 single-cell clones that were subcloned 5 weeks after transfection with Trans-recMCV showed that 35 to 50% of the single-cell clones had intermediate to high levels of luciferase gene expression that was stable for 6 months, with the remaining clones showing low or no luciferase gene expression. Stable gene expression was associated with integration of adenovirus sequences into genomic DNA. PMID:9343214

  17. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    PubMed Central

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  18. Long-term correction of glycogen storage disease type II with a hybrid Ad-AAV vector.

    PubMed

    Sun, Bao-dong; Chen, Y-T; Bird, Andrew; Amalfitano, Andrea; Koeberl, Dwight D

    2003-02-01

    We administered an adenovirus-adeno-associated virus (Ad-AAV) vector encoding human acid alpha-glucosidase (hGAA) to acid alpha-glucosidase-knockout (GAA-KO) mice on day 3 of life by gastrocnemius injection. In contrast to previous results for muscle-targeted Ad vector in adult GAA-KO mice, the muscles of the hindlimb showed reduced glycogen content and persistent hGAA for as long as 6 months after neonatal Ad-AAV vector administration. Not only the injected gastrocnemius muscles, but also the hamstrings and quadriceps muscles produced therapeutic levels of hGAA as a result of widespread transduction with the Ad-AAV vector; moreover, hGAA activity was 50-fold elevated as compared to normal mice. Vector RNA was detected in the hindlimb muscles, the hearts, and the livers by northern blot analysis and/or by RT-PCR for as long as 6 months. The low levels of hGAA detected in the heart were attributable to transduction with the Ad-AAV vector, not to secretion of hGAA by the injected muscle and uptake by the heart. Finally, although an antibody response to hGAA was present, it did not prevent the correction of glycogen storage in the skeletal muscle of GAA-KO mice.

  19. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions.

    PubMed

    Harvey, Ben-Gary; Maroni, Jaman; O'Donoghue, Kelley A; Chu, Karen W; Muscat, Jolene C; Pippo, Allison L; Wright, Connie E; Hollmann, Charleen; Wisnivesky, Juan P; Kessler, Paul D; Rasmussen, Henrik S; Rosengart, Todd K; Crystal, Ronald G

    2002-01-01

    To help define the safety profile of the use of adenovirus (Ad) gene transfer vectors in humans, this report summarizes our experience since April 1993 of the local administration of E1(-)/E3(-) Ad vectors to humans using low (<10(9) particle units) or intermediate (10(9)-10(11) particle units) doses. Included in the study are 90 individuals and 12 controls, with diverse comorbid conditions, including cystic fibrosis, colon cancer metastatic to liver, severe coronary artery disease, and peripheral vascular disease, as well as normals. These individuals received 140 different administrations of vector, with up to seven administrations to a single individual. The vectors used include three different transgenes (human cystic fibrosis transmembrane conductance regulator cDNA, E. coli cytosine deaminase gene, and the human vascular endothelial growth factor 121 cDNA) administered by six different routes (nasal epithelium, bronchial epithelium, percutaneous to solid tumor, intradermal, epicardial injection of the myocardium, and skeletal muscle). The total population was followed for 130.4 patient-years. The study assesses adverse events, common laboratory tests, and long-term follow-up, including incidence of death or development of malignancy. The total group incidence of major adverse events linked to an Ad vector was 0.7%. There were no deaths attributable to the Ad vectors per se, and the incidence of malignancy was within that expected for the population. Overall, the observations are consistent with the concept that local administration of low and intermediate doses of Ad vectors appears to be well tolerated.

  20. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics.

    PubMed

    Puntel, Mariana; Muhammad, A K M G; Candolfi, Marianela; Salem, Alireza; Yagiz, Kader; Farrokhi, Catherine; Kroeger, Kurt M; Xiong, Weidong; Curtin, James F; Liu, Chunyan; Bondale, Niyati S; Lerner, Jonathan; Pechnick, Robert N; Palmer, Donna; Ng, Philip; Lowenstein, Pedro R; Castro, Maria G

    2010-06-01

    Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.

  1. Use of recombinant adenovirus vectored consensus IFN-α to avert severe arenavirus infection.

    PubMed

    Gowen, Brian B; Ennis, Jane; Russell, Andrew; Sefing, Eric J; Wong, Min-Hui; Turner, Jeffrey

    2011-01-01

    Several arenaviruses can cause viral hemorrhagic fever, a severe disease with case-fatality rates in hospitalized individuals ranging from 15-30%. Because of limited prophylaxis and treatment options, new medical countermeasures are needed for these viruses classified by the National Institutes of Allergy and Infectious Diseases (NIAID) as top priority biodefense Category A pathogens. Recombinant consensus interferon alpha (cIFN-α) is a licensed protein with broad clinical appeal. However, while cIFN-α has great therapeutic value, its utility for biodefense applications is hindered by its short in vivo half-life, mode and frequency of administration, and costly production. To address these limitations, we describe the use of DEF201, a replication-deficient adenovirus vector that drives the expression of cIFN-α, for pre- and post-exposure prophylaxis of acute arenaviral infection modeled in hamsters. Intranasal administration of DEF201 24 h prior to challenge with Pichindé virus (PICV) was highly effective at protecting animals from mortality and preventing viral replication and liver-associated disease. A significant protective effect was still observed with a single dosing of DEF201 given two weeks prior to PICV challenge. DEF201 was also efficacious when administered as a treatment 24 to 48 h post-virus exposure. The protective effect of DEF201 was largely attributed to the expression of cIFN-α, as dosing with a control empty vector adenovirus did not protect hamsters from lethal PICV challenge. Effective countermeasures that are highly stable, easily administered, and elicit long lasting protective immunity are much needed for arena and other viral infections. The DEF201 technology has the potential to address all of these issues and may serve as a broad-spectrum antiviral to enhance host defense against a number of viral pathogens.

  2. Replicating adenovirus vector prime/protein boost strategies for HIV vaccine development

    PubMed Central

    Patterson, L. Jean; Robert-Guroff, Marjorie

    2008-01-01

    Background In the last few years the HIV vaccine field has moved forward a number of promising vaccine candidates into human clinical trials. Objective In this review we briefly discuss the advances made in vaccine development and HIV pathogenesis and give an overview of the body of work our lab has generated in multiple animal models on replication-competent Ad recombinant vaccines. Methods Emphasis is placed on comparative examination of vaccine components, routes of immunization and challenge models using replicating Ad vectors. Results/conclusion The overall findings make the case that replicating Ad vectors are superior in priming multiple arms of the immune system, and in conjunction with protein boosting, have resulted in dramatic protective efficacy leading to their advancement to phase 1 trials. Implications of the recent halting of the Merck Ad5-HIV phase 2b clinical trial for our vaccine approach and other vectored vaccines are discussed. PMID:18694354

  3. Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge.

    PubMed

    Sun, Jialei; Ennis, Jane; Turner, Jeffrey D; Chu, Justin Jang Hann

    2016-10-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth diseases as well as neurological complications in young children. Interferon (IFN) can inhibit the replication of many viruses with low cytotoxic effects. Previously, an adenovirus vectored mouse interferon-α (DEF201), subtype 5, was generated by Wu et al, 2007. In this study, the antiviral effects of DEF201 against EV71 were evaluated in a murine model. 6-day-old BALB/c mice were administered a single dose of DEF201 before or after infection with lethal dose of EV71. The survival rate, clinical symptoms, tissue viral loads and histology pathogenesis were evaluated. IFN gene expression following a single dose of DEF201 maintained high concentrations of 100-9000 pg/mL for more than 7 days in mice serum. Pre-infection administration of a single dose of 10(6) PFU of DEF201 offered full protection of the mice against EV71 infection compared with the empty Ad5 vector control. In addition, virus load in DEF201-treated mice muscle tissue was significantly decreased as compared with empty vector control. Histopathology analysis revealed that DEF201 significantly prevented the development of severe tissue damage with reduction of viral antigen in the murine muscle tissue. Post-infection treatment at 6 h offered full protection and partial protection at 12 h, indicating that DEF201 could be used as an anti-EV71 therapeutic agent in early stage of EV71 infection. In addition, our study showed that DEF201 enhanced the neutralization ability of serum in EV71-vaccinated mice, implying that DEF201 could promote the production of specific anti-EV71 antibodies. In conclusion, single dose of DEF201 is highly efficacious as a prophylactic agent against EV71 infection in vivo.

  4. Preclinical safety assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer.

    PubMed

    Schenk, Ellen; Essand, Magnus; Kraaij, Robert; Adamson, Rachel; Maitland, Norman J; Bangma, Chris H

    2014-03-01

    Prostate cancer is the most common malignancy in the Western world. Patients can be cured only when the tumor has not metastasized outside the prostate. However, treatment with curative intent fails in a significant number of men, often resulting in untreatable progressive disease with a fatal outcome. Oncolytic adenovirus therapy may be a promising adjuvant treatment to reduce local failure or the outgrowth of micrometastatic disease. Within the European gene therapy consortium GIANT, we have developed a novel prostate-specific oncolytic adenovirus: Ad[I/PPT-E1A]. This adenovirus specifically kills prostate cells via prostate-specific replication. This article describes the clinical development of Ad[I/PPT-E1A] with particular reference to the preclinical safety assessment of this novel virus. The preclinical safety assessment involved an efficacy study in a human orthotopic xenograft mouse model, a specificity study in human primary cells, and a toxicity study in normal mice. These studies confirmed that Ad[I/PPT-E1A] efficiently kills prostate tumor cells in vivo, is not harmful to other organs, and is well tolerated in mice after systemic delivery. The safety, as well as the immunological effects of Ad[I/PPT-E1A] as a local adjuvant therapy, will now be studied in a phase I dose-escalating trial in patients with localized prostate cancer who are scheduled for curative radical prostatectomy and can be used as an updated paradigm for similar therapeutic viruses.

  5. Analysis of risk factors for local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions.

    PubMed

    Crystal, Ronald G; Harvey, Ben-Gary; Wisnivesky, Juan P; O'Donoghue, Kelley A; Chu, Karen W; Maroni, Jaman; Muscat, Jolene C; Pippo, Allison L; Wright, Connie E; Kaner, Robert J; Leopold, Philip L; Kessler, Paul D; Rasmussen, Henrik S; Rosengart, Todd K; Hollmann, Charleen

    2002-01-01

    In this study we analyze the adverse events and abnormal laboratory parameters following local administration of low (<10(9) particle units) and intermediate (10(9)-10(11) particle units) single and repetitive doses (140 total) of E1(-)E3(-) adenovirus (Ad) gene transfer vectors administered to the respiratory epithelium, solid tumors, skin, myocardium, and skeletal muscle in eight gene transfer trials since April 1993. In the accompanying paper by Harvey et al., (Hum. Gene Ther. 2002; 13:15-63), we conclude that for the total group, no deaths were attributable to the Ad vectors per se, and the incidence of major adverse events likely caused by an Ad vector was 0.7%. The present study analyzes the trials as a group to evaluate risk factors for the adverse events, abnormal values among laboratory parameters, and known deaths. Ten putative risk factors were assessed, including "patient-related" (age, sex, comorbid index and pretherapy anti-Ad antibodies), "vector-related" (dose, route, transgene, and number of vector administrations), and "trial-related" (trial in which the individual was enrolled, and whether surgery was part of the trial). While assessment of each factor individually suggested several possible associations with adverse events, abnormal laboratory parameters, or deaths, multivariate analysis identified only age, comorbid index, and surgery (comorbid index for death; age and surgery for non-death adverse events) as variables significantly associated with increased risk for a major (severity scale 3-4 of 4) adverse event for individuals enrolled in these gene transfer trials. Importantly, multivariate analysis suggested that vector-related parameters, including dose, route, transgene, or number of vector administrations at the doses and routes evaluated in these studies, do not appear to be significant risk factors for a major adverse event. With the caveat that these are phase I, uncontrolled trials, we conclude that (1) there is no definitive risk

  6. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    PubMed

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines.

  7. Identification of Novel Inverted Terminal Repeat (ITR) Deletions of Human Adenovirus (AD) From Infected Host: Virulent Ads Containing Mixed Populations of Genomic Sequences

    DTIC Science & Technology

    2006-11-01

    INTRODUCTION Acute respiratory disease ( ARD ) in military personnel is the most significant cause of morbidity, hospitalizations, and work-time loss...vaccination program in 1990s, recurrent epidemic outbreaks of human adenovirus-associated acute respiratory diseases ( ARD ) caused mainly by the new Ad4...type 4 acute respiratory disease in military trainees:report of an outbreak during a lapse in vaccination. J. Infect Dis 179:1531-1533. 3. Berge, T.O

  8. Core labeling of adenovirus with EGFP

    SciTech Connect

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T. . E-mail: curiel@uab.edu

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.

  9. Waterborne adenovirus.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    Adenoviruses are associated with numerous disease outbreaks, particularly those involving d-cares, schools, children's camps, hospitals and other health care centers, and military settings. In addition, adenoviruses have been responsible for many recreational water outbreaks, including a great number of swimming pool outbreaks than any other waterborne virus (Gerba and Enriquez 1997). Two drinking water outbreaks have been documented for adenovirus (Divizia et al. 2004; Kukkula et al. 1997) but none for food. Of the 51 known adenovirus serotypes, one third are associated with human disease, while other infections are asymptomatic. Human disease associated with adenovirus infections include gastroenteritis, respiratory infections, eye infections, acute hemorrhagic cystitis, and meningoencephalitis (Table 2). Children and the immunocompromised are more severely impacted by adenovirus infections. Subsequently, adenovirus is included in the EPA's Drinking Water Contaminant Candidate List (CCL), which is a list of unregulated contaminants found in public water systems that may pose a risk to public health (National Research Council 1999). Adenoviruses have been detected in various waters worldwide including wastewater, river water, oceans, and swimming pools (Hurst et al. 1988; Irving and Smith 1981; Pina et al. 1998). Adenoviruses typically outnumber the enteroviruses, when both are detected in surface waters. Chapron et al. (2000) found that 38% of 29 surface water samples were positive for infectious Ad40 and Ad41. Data are lacking regarding the occurrence of adenovirus in water in the US, particularly for groundwater and drinking water. Studies have shown, however, that adenoviruses survive longer in water than enteroviruses and hepatitis A virus (Enriquez et al. 1995), which may be due to their double-stranded DNA. Risk assessments have been conducted on waterborne adenovirus (Crabtree et al. 1997; van Heerden et al. 2005c). Using dose-response data for inhalation

  10. Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy.

    PubMed

    Yao, Xing-Lei; Yoshioka, Yasuo; Ruan, Gui-Xin; Chen, Yu-Zhe; Mizuguchi, Hiroyuki; Mukai, Yohei; Okada, Naoki; Gao, Jian-Qing; Nakagawa, Shinsaku

    2012-08-13

    We have previously developed a novel adenovirus vector (Adv) that targeted tumor tissues/vasculatures after systemic administration. The surface of this Adv is conjugated with CGKRK tumor homing peptide by the cross-linking reaction of polyethyleneglycol (PEG). In this study, we showed that the condition of PEG modification was important to minimize the gene expression in normal tissues after systemic treatment. When Adv was modified only with PEG-linked CGKRK, its luciferase expression was enhanced even in the liver tissue, as well as the tumor tissue. However, in the reaction with the mixture of non-cross-linking PEG and PEG-linked CGKRK, we found out that the best modification could suppress its gene expression in the liver, without losing that in the tumor. We also studied the internalization mechanisms of CGKRK-conjugated Adv. Results suggested that there is a specific interaction of the CGKRK peptide with a receptor at the cell surface enabling efficient internalization of CGKRK-conjugated Adv. The presence of cell-surface heparan sulfate is important receptor for the cellular binding and uptake of CGKRK-conjugated Adv. Moreover, macropinocytosis-mediated endocytosis is also important in endocytosis of CGKRK-conjugated Adv, aside from clathrin-mediated and caveolae-mediated endocytosis. These results could help evaluate the potentiality of CGKRK-conjugated Adv as a prototype vector with suitable efficacy and safety for systemic cancer gene therapy.

  11. Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C

    PubMed Central

    Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim

    2013-01-01

    Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical

  12. Replication-incompetent adenovirus vector-mediated MDA-7/IL-24 selectively induces growth suppression and apoptosis of hepatoma cell Line SMMC-7721.

    PubMed

    Wang, Congjun; Xue, Xinbo; Yi, Jilin; Wu, Zaide; Chen, Kun; Zheng, Jianwei; Ji, Wenwei; Yu, Yuan

    2008-02-01

    In order to investigate the effect of replication-incompetent adenovirus vector expressing MDA-7/IL-24 on tumor growth and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721 and normal liver cell line L02, the recombinant replication-incompetent Ad.mda-7 virus vector was constructed and infected into the HCC cell line SMMC-7721 and normal liver cell line L02. RT-PCR was performed to examine the expression of MDA-7 mRNA. The concentrations of MDA-7/IL-4 in culture supernatants were determined by using ELISA. MTT and Hoechst staining assay were applied to observe the inhibitory and killing effects of MDA-7 on the HCC cells. By using flow cytometry, the apoptosis, cell cycle and proliferation of SMMC-7721 and L02 cells were measured. The results showed recombinant replication-incompetent virus expressing MDA-7/IL-24 was constructed successfully, and RT-PCR revealed that it could mediate the high expression of the exogenous gene MDA-7/IL-24 in SMMC-7721 and L02 cells. The expression of MDA-7/IL-24 proteins in the culture supernatant was detectable by ELISA. Ad.mda-7 infection induced apoptosis and growth suppression in SMMC-7721 cells and an increased percentage of HCC cells in the G2/M phase of the cell cycle, but not in L02 cells. It was concluded that mda-7/IL-24 gene, mediated with replication-incompetent adenovirus vector, could selectively induce growth suppression and apoptosis in HCC cell line SMMC-7721 but without any toxic side-effect on normal liver line L02.

  13. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response.

    PubMed

    Moraes, Mauro Pires; Segundo, Fayna Diaz-San; Dias, Camila C; Pena, Lindomar; Grubman, Marvin J

    2011-11-28

    We previously demonstrated that an adenovirus-based foot-and-mouth disease virus (FMDV) serotype A24 capsid subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but in a similar approach using swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1C, the animals were only partially protected when challenged at 21 days post-vaccination (dpv). Recently, we demonstrated that inclusion of the complete coding region of nonstructural protein 2B in the Ad5-A24 vector resulted in improved immune responses in pigs. We also found that inclusion of a modified CMV promoter (pCI), Ad5-CI-A24-2B, enhanced the efficacy of the vector. To address the limited immunogenicity of Ad5-O1C, we have produced a new set of Ad5 vectors with the complete 2B coding region under the control of either the original or the modified version of the CMV promoter, Ad5-O1C-2B, or Ad5-CI-O1C-2B, respectively. To evaluate the potency and efficacy of the new vectors we performed 2 sets of experiments in cattle. In the first experiment we compared the original vector with vectors containing the pCI promoter and partial or full-length 2B. All groups were challenged, intradermally in the tongue, at 21 dpv with FMDV O1C. We found that in all vaccinated groups 2 of 4 animals were protected from clinical disease. In the second experiment we directly compared the efficacy of vectors with a partial or full-length 2B under the control of the original CMV promoter. While all animals in the control group developed clinical disease, 2 of 4 animals in the group receiving Ad5-O1C vaccine and 3 of 4 animals in the group receiving Ad5-O1C-2B vaccine were completely protected after challenge. We also observed a 100-fold reduction of virus shedding in Ad5-O1C vaccinated animals and the group receiving Ad5-O1C-2B had an additional 10-fold reduction compared with the Ad5-O1C vaccinated group. There was no difference

  14. Human adenovirus-vectored foot-and-mouth disease vaccines: establishment of a vaccine product profile through in vitro testing.

    PubMed

    Brake, D A; McIlhaney, M; Miller, T; Christianson, K; Keene, A; Lohnas, G; Purcell, C; Neilan, J; Schutta, C; Barrera, J; Burrage, T; Brough, D E; Butman, B T

    2012-01-01

    Next generation, foot-and-mouth disease (FMD) molecular vaccines based on replication deficient human adenovirus serotype 5 viral vectored delivery of FMD capsid genes (AdFMD) are being developed by the United States Dept. of Homeland Security and industry partners. The strategic goal of this program is to develop AdFMD licensed vaccines for the USA National Veterinary Stockpile for use, if needed, as emergency response tools during an FMD outbreak. This vaccine platform provides a unique opportunity to develop a set of in vitro analytical parameters to generate an AdFMD vaccine product profile to replace the current lot release test for traditional, inactivated FMD vaccines that requires FMDV challenge in livestock. The possibility of an indirect FMD vaccine potency test based on a serological alternative was initially investigated for a lead vaccine candidate, Adt.A24. Results show that serum virus neutralization (SVN) based serology testing for Adt.A24 vaccine lot release is not feasible, at least not in the context of vaccine potency assessment at one week post-vaccination. Thus, an in vitro infectious titer assay (tissue culture infectious dose 50, TCID50) which measures FMD infectious (protein expression) titer was established. Pre-validation results show acceptable assay variability and linearity and these data support further studies to validate the TCID50 assay as a potential potency release test. In addition, a quantitative physiochemical assay (HPLC) and three immunochemical assays (Fluorescent Focus-Forming Unit (FFU); tissue culture expression dose 50 (TCED50); Western blot) were developed for potential use as in vitro assays to monitor AdFMD vaccine lot-to-lot consistency and other potential applications. These results demonstrate the feasibility of using a traditional modified-live vaccine virus infectivity assay in combination with a set of physiochemical and immunochemical tests to build a vaccine product profile that will ensure the each Ad

  15. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX.

    PubMed

    Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J

    2010-10-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.

  16. Retargeting of Adenovirus Vectors through Genetic Fusion of a Single-Chain or Single-Domain Antibody to Capsid Protein IX ▿

    PubMed Central

    Poulin, Kathy L.; Lanthier, Robert M.; Smith, Adam C.; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L.; O'Meara, Ryan W.; Kothary, Rashmi; Lorimer, Ian A.; Parks, Robin J.

    2010-01-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions. PMID:20631131

  17. Canine adenovirus based rabies vaccines.

    PubMed

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control.

  18. Genetic modification of human embryonic stem cells with adenoviral vectors: differences of infectability between lines and correlation of infectability with expression of the coxsackie and adenovirus receptor.

    PubMed

    Brokhman, Irina; Pomp, Oz; Fishman, Lital; Tennenbaum, Tamar; Amit, Michal; Itzkovitz-Eldor, Joseph; Goldstein, Ronald S

    2009-04-01

    Adenovirus is an efficient vector for expression of transgenes in dividing and nondividing cells. However, very few studies of human embryonic stem cells (hESCs) have utilized adenoviral vectors. We examine here the ability of adenovirus to infect naive hESCs and the differentiated derivatives of multiple hESC lines. We found a striking variation in adenovirus infection rates between lines. The variability in infection rates was positively correlated with the expression of the coxsackievirus and adenovirus receptor, but not that of alpha(nu)-integrin. Adenoviral infection did not interfere with the expression of pluripotency markers, even after passaging. In addition, infection did not affect differentiation of hESC-derived neural precursors in vitro. We also found that green fluorescent protein expression mediated by adenovirus can be a useful marker for tracking hESC in xenografts. We conclude that adenovirus is a practical vector for genetic modification of naive hESC from most, but not all lines, but may be more generally useful for gene transfer into differentiated derivatives of hESC lines.

  19. Single dose adenovirus vectored vaccine induces a potent and long-lasting immune response against rabbit hemorrhagic disease virus after parenteral or mucosal administration.

    PubMed

    Fernández, Erlinda; Toledo, Jorge R; Chiong, Maylin; Parra, Francisco; Rodríguez, Elsa; Montero, Carlos; Méndez, Lídice; Capucci, Lorenzo; Farnós, Omar

    2011-08-15

    Rabbit hemorrhagic disease virus (RHDV) is the etiological agent of a lethal and contagious disease of rabbits that remains as a serious problem worldwide. As this virus does not replicate in cell culture systems, the capsid protein gene has been expressed in heterologous hosts or inserted in replication-competent viruses in order to obtain non-conventional RHDV vaccines. However, due to technological or safety issues, current RHDV vaccines are still prepared from organs of infected rabbits. In this work, two human type 5 derived replication-defective adenoviruses encoding the rabbit hemorrhagic disease virus VP60 capsid protein were constructed. The recombinant protein was expressed as a multimer in mouse and rabbit cell lines at levels that ranged from approximately 120 to 160 mg/L of culture. Mice intravenously or subcutaneously inoculated with a single 10(8) gene transfer units (GTU) dose of the AdVP60 vector (designed for VP60 intracellular expression) seroconverted at days 7 and 14 post-immunization, respectively. This vector generated a stronger response than that obtained with a second vector (AdVP60sec) designed for VP60 secretion. Rabbits were then immunized by parenteral or mucosal routes with a single 10(9)GTU dose of the AdVP60 and the antibody response was evaluated using a competition ELISA specific for RHDV or RHDVa. Protective hemagglutination inhibition (HI) titers were also promptly detected and IgG antibodies corresponding with inhibition percentages over 85% persisted up to one year in all rabbits, independently of the immunization route employed. These levels were similar to those elicited with inactivated RHDV or with VP60 obtained from yeast or insect cells. IgA specific antibodies were only found in saliva of rabbits immunized by intranasal instillation. The feasibility of VP60 production and vaccination of rabbits with replication-defective adenoviral vectors was demonstrated.

  20. Vaccination With Heterologous HIV-1 Envelope Sequences and Heterologous Adenovirus Vectors Increases T-Cell Responses to Conserved Regions: HVTN 083

    PubMed Central

    Walsh, Stephen R.; Moodie, Zoe; Fiore-Gartland, Andrew J.; Morgan, Cecilia; Wilck, Marissa B.; Hammer, Scott M.; Buchbinder, Susan P.; Kalams, Spyros A.; Goepfert, Paul A.; Mulligan, Mark J.; Keefer, Michael C.; Baden, Lindsey R.; Swann, Edith M.; Grant, Shannon; Ahmed, Hasan; Li, Fusheng; Hertz, Tomer; Self, Steven G.; Friedrich, David; Frahm, Nicole; Liao, Hua-Xin; Montefiori, David C.; Tomaras, Georgia D.; McElrath, M. Juliana; Hural, John; Graham, Barney S.; Jin, Xia

    2016-01-01

    Background. Increasing the breadth of human immunodeficiency virus type 1 (HIV-1) vaccine-elicited immune responses or targeting conserved regions may improve coverage of circulating strains. HIV Vaccine Trials Network 083 tested whether cellular immune responses with these features are induced by prime-boost strategies, using heterologous vectors, heterologous inserts, or a combination of both. Methods. A total of 180 participants were randomly assigned to receive combinations of adenovirus vectors (Ad5 or Ad35) and HIV-1 envelope (Env) gene inserts (clade A or B) in a prime-boost regimen. Results. T-cell responses to heterologous and homologous insert regimens targeted a similar number of epitopes (ratio of means, 1.0; 95% confidence interval [CI], .6–1.6; P = .91), but heterologous insert regimens induced significantly more epitopes that were shared between EnvA and EnvB than homologous insert regimens (ratio of means, 2.7; 95% CI, 1.2–5.7; P = .01). Participants in the heterologous versus homologous insert groups had T-cell responses that targeted epitopes with greater evolutionary conservation (mean entropy [±SD], 0.32 ± 0.1 bits; P = .003), and epitopes recognized by responders provided higher coverage (49%; P = .035). Heterologous vector regimens had higher numbers of total, EnvA, and EnvB epitopes than homologous vector regimens (P = .02, .044, and .045, respectively). Conclusions. These data demonstrate that vaccination with heterologous insert prime boosting increased T-cell responses to shared epitopes, while heterologous vector prime boosting increased the number of T-cell epitopes recognized. Clinical Trials Registration. NCT01095224. PMID:26475930

  1. Safety studies on an adenovirus recombinant vaccine for rabies (AdRG1.3-ONRAB) in target and non-target species.

    PubMed

    Knowles, M Kimberly; Nadin-Davis, Susan A; Sheen, Mary; Rosatte, Rick; Mueller, Rudi; Beresford, Andrew

    2009-11-05

    A replication-competent human adenovirus vector in which the rabies virus glycoprotein gene was inserted (AdRG1.3-ONRAB) was given by direct instillation into the oral cavity to representatives of three wildlife vector species of concern in Ontario (red fox, raccoon and striped skunk) and to a variety of non-target wildlife species, domestic and laboratory species. Despite use of a relatively high dose of vaccine, no untoward clinical signs were observed. Subsequent to vaccine exposure, detection of vaccine virus in lung, spleen, intestine, liver, kidney and brain of each animal was attempted using an ONRAB-specific assay combining PCR with Southern blotting (PCR-SB). Of the 1280 tissue samples obtained from vaccinates or contact animals, 18 (1.4%) were found to be PCR-SB positive. Virus isolation attempts were performed utilizing cell culture for all PCR-SB positive tissues and a selection of PCR-SB negative tissues. Histological examination performed on all PCR-SB positive tissues failed to identify lesions attributed to the vaccine. A quantitative real-time PCR was used to determine the excretion of the vaccine in feces and in the oral cavity with 0.8% of oral swabs and 6.8% of fecal specimens found to be positive. The low rates of recovery of vaccine virus from tissues, feces and the oral cavity suggest that the likelihood of ONRAB causing a negative impact on wildlife species is unlikely.

  2. Corrective GUSB transfer to the canine mucopolysaccharidosis VII cornea using a helper-dependent canine adenovirus vector.

    PubMed

    Serratrice, Nicolas; Cubizolle, Aurelie; Ibanes, Sandy; Mestre-Francés, Nadine; Bayo-Puxan, Neus; Creyssels, Sophie; Gennetier, Aurelie; Bernex, Florence; Verdier, Jean-Michel; Haskins, Mark E; Couderc, Guilhem; Malecaze, Francois; Kalatzis, Vasiliki; Kremer, Eric J

    2014-05-10

    Corneal transparency is maintained, in part, by specialized fibroblasts called keratocytes, which reside in the fibrous lamellae of the stroma. Corneal clouding, a condition that impairs visual acuity, is associated with numerous diseases, including mucopolysaccharidosis (MPS) type VII. MPS VII is due to deficiency in β-glucuronidase (β-glu) enzymatic activity, which leads to accumulation of glycosaminoglycans (GAGs), and secondary accumulation of gangliosides. Here, we tested the efficacy of canine adenovirus type 2 (CAV-2) vectors to transduce keratocyte in vivo in mice and nonhuman primates, and ex vivo in dog and human corneal explants. Following efficacy studies, we asked if we could treat corneal clouding by the injection a helper-dependent (HD) CAV-2 vector (HD-RIGIE) harboring the human cDNA coding for β-glu (GUSB) in the canine MPS VII cornea. β-Glu activity, GAG content, and lysosome morphology and physiopathology were analyzed. We found that HD-RIGIE injections efficiently transduced coxsackievirus adenovirus receptor-expressing keratocytes in the four species and, compared to mock-injected controls, improved the pathology in the canine MPS VII cornea. The key criterion to corrective therapy was the steady controlled release of β-glu and its diffusion throughout the collagen-dense stroma. These data support the continued evaluation of HD CAV-2 vectors to treat diseases affecting corneal keratocytes.

  3. Spontaneous mutants of the adenovirus-simian virus 40 hybrid, Ad2/sup +/ND3, that grow efficiently in monkey cells

    SciTech Connect

    Anderson, C.W.

    1981-05-01

    An attempt was made to isolate spontaneous mutants of adenovirus type 2 and of the adenovirus-SV40 hybrids, Ad2/sup +/ND3 and Ad2/sup +/ND5, that would grow efficiently on monkey cells. Virus stocks were serially passaged through the semipermissive established monkey line CV-1. After five serial passages in the absence of intentional mutagenesis, only stocks of Ad2/sup +/ND3 yielded significant numbers of variants that plaqued with similar efficiency on human and on monkey cell monolayers. Four independent Ad2/sup +/ND3 variants, designated hr600, hr601, hr602, and hr603, have been isolated and partially characterized. No difference was found between the genomes of these variants and the genome of parental Ad2/sup +/ND3 by restriction enzyme analysis or by the analysis of heteroduplexes between Ad2/sup +/ND3 (or variant) DNA and DNA of the hybrid Ad2/sup +/ND1.

  4. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins.

    PubMed

    Wu, Jie; Chen, Ke-DA; Gao, Meng; Chen, Gang; Jin, Su-Feng; Zhuang, Fang-Cheng; Wu, Xiao-Hong; Jiang, Yun-Shui; Li, Jian-Bo

    2015-04-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×10(9) IU/ml and 3.0×10(9) IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 10(9) IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ(2)MSB=20.00 and χ(2)WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development.

  5. Intranasal Mucosal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances the Protection of BCG-Primed Guinea Pigs against Pulmonary Tuberculosis

    PubMed Central

    Xing, Zhou; McFarland, Christine T.; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMurray, David N.

    2009-01-01

    Background Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Methods and Findings Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. Conclusions Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials. PMID:19516906

  6. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  7. Influence of cell physiological state on gene delivery to T lymphocytes by chimeric adenovirus Ad5F35

    PubMed Central

    Zhang, Wen-feng; Shao, Hong-wei; Wu, Feng-lin; Xie, Xin; Li, Zhu-Ming; Bo, Hua-Ben; Shen, Han; Wang, Teng; Huang, Shu-lin

    2016-01-01

    Adoptive transfer of genetically-modified T cells is a promising approach for treatment of both human malignancies and viral infections. Due to its ability to efficiently infect lymphocytes, the chimeric adenovirus Ad5F35 is potentially useful as an immunotherapeutic for the genetic modification of T cells. In previous studies, it was found that the infection efficiency of Ad5F35 was significantly increased without enhanced expression of the viral receptor after T cell stimulation; however, little is known about the underlying mechanism. Nonetheless, cell physiology has long been thought to affect viral infection. Therefore, we aimed to uncover the physiologic changes responsible for the increased infection efficiency of Ad5F35 following T cell stimulation. Given the complexity of intracellular transport we analyzed viral binding, entry, and escape using a Jurkat T cell model and found that both cell membrane fluidity and endosomal escape of Ad5F35 were altered under different physiological states. This, in turn, resulted in differences in the amount of virus entering cells and reaching the cytoplasm. These results provide additional insight into the molecular mechanisms underlying Ad5F35 infection of T cells and consequently, will help further the clinical application of genetically-modified T cells for immunotherapy. PMID:26972139

  8. Effect of ammonia production on intracellular pH: Consequent effect on adenovirus vector production.

    PubMed

    Ferreira, T B; Carrondo, M J T; Alves, P M

    2007-05-01

    Recombinant adenoviral vectors (AdV) have proven to be highly efficient for the delivery and expression of foreign genes in a broad spectrum of cell types and species both for vaccination and gene therapy in a number of specific applications. In this study, the effect of ammonia production on intracellular pH (pH(i)) and consequently inhibition of AdV production at high cell densities is assessed. Different specific ammonia production rates were obtained for 293 cells adapted to grow in glutamate supplemented medium (non-ammoniagenic medium) as compared with 293 cells growing in glutamine supplemented medium (ammoniagenic medium); pH(i) was observed to be lower during cell growth and AdV production at both high and low CCI in the ammoniagenic medium, where the specific ammonia production rate is higher. In addition, after infection at CCI of 3x10(6)cell/ml, the cell viability decreased significantly in the ammoniagenic medium, attributed to the activation of an acidic pathway of apoptosis. Furthermore, AdV DNA was observed to be degraded at the observed pH(i) in the ammoniagenic medium, decreasing significantly the amount of AdV DNA available for encapsulation. To elucidate the pH(i) effect upon AdV production, 293 cells were infected at a CCI of 1 x 10(6)cell/ml in the non-ammoniagenic medium with a manipulated pH(i) as observed at the time of infection at CCI of 3 x 10(6)cell/ml in the ammoniagenic (pH(i) 7.0) and non-ammoniagenic (pH(i) 7.3) media; AdV volumetric productivities were observed to be lower when the cells were exposed to the lower pH(i). Thus, the importance of controlling all the factors contributing to pH(i) on AdV production, such as ammonia production, has been established.

  9. A Phase I Double Blind, Placebo-Controlled, Randomized Study of a Multigenic HIV-1 Adenovirus Subtype 35 Vector Vaccine in Healthy Uninfected Adults

    PubMed Central

    Hayes, Peter; Gill, Dilbinder; Kopycinski, Jakub; Cheeseman, Hannah; Cashin-Cox, Michelle; Naarding, Marloes; Clark, Lorna; Fernandez, Natalia; Bunce, Catherine A.; Hay, Christine M.; Welsh, Sabrina; Komaroff, Wendy; Hachaambwa, Lottie; Tarragona-Fiol, Tony; Sayeed, Eddy; Zachariah, Devika; Ackland, James; Loughran, Kelley; Barin, Burc; Cormier, Emmanuel; Cox, Josephine H.; Fast, Patricia; Excler, Jean-Louis

    2012-01-01

    Background We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. Methods Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×109 (A), 2×1010 (B), 2×1011 (C), or Ad35-GRIN 1×1010 (D) viral particles. Results No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A–D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 106 PBMC to any antigen was 78–139 across Groups A–C and 158–174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A–C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. Conclusion/Significance Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination

  10. A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression.

    PubMed

    Rubinchik, S; Wang, D; Yu, H; Fan, F; Luo, M; Norris, J S; Dong, J Y

    2001-11-01

    Cell-type-restricted transgene expression delivered by adenovirus vectors is highly desirable for gene therapy of cancer, as it can limit cytotoxic gene expression to tumor cells. However, many tumor- and tissue-specific promoters are weaker than the constitutively active promoters and are thus less effective. To combine cell-type specificity with high-level regulated transgene expression, we have developed a complex adenoviral vector. We have placed the tetracycline transactivator gene under the control of a prostate-specific ARR2PB promoter, and a mouse Tnfsf6 (encoding FASL)-GFP fusion gene under the control of the tetracycline responsive promoter. We have incorporated both expression cassettes into a single construct. We show that FASL-GFP expression from this vector is essentially restricted to prostate cancer cells, in which it can be regulated by doxycycline. Higher levels of prostate-specific FASL-GFP expression were generated by this approach than by driving the FASL-GFP expression directly with ARR2PB. More FASL-GFP expression correlated with greater induction of apoptosis in prostate cancer LNCaP cells. Mouse studies confirmed that systemic delivery of both the prostate-specific and the prostate-specific/tet-regulated vectors was well tolerated at doses that were lethal for FASL-GFP vector with CMV promoter. This strategy should be able to improve the safety and efficacy of cancer gene therapy using other cytotoxic genes as well.

  11. Mucosal vaccination by adenoviruses displaying reovirus sigma 1.

    PubMed

    Weaver, Eric A; Camacho, Zenaido T; Hillestad, Matthew L; Crosby, Catherine M; Turner, Mallory A; Guenzel, Adam J; Fadel, Hind J; Mercier, George T; Barry, Michael A

    2015-08-01

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination.

  12. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  13. TheQ1 Influence of Innate and Pre-Existing Immunity on Adenovirus Therapy

    PubMed Central

    Zaiss, Anne K.; Machado, Hidevaldo B.; Herschman, Harvey R.

    2010-01-01

    Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre-existing Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing antibodies that bind virus and block target cell transduction can be developed; Furthermore, memory T cell and humoral responses to Ad5 are associated with increased toxicity, raising safety concerns for therapeutic adenovirus vectors in immunized hosts. Most preclinical studies have been performed in naïve animals; although pre-existing immunity is among the greatest hurdles for adenovirus therapies, it is also one of the most neglected experimentally. Here we summarize findings using adenovirus vectors in naïve animals, in Ad-immunized animals and in clinical trials, and review strategies proposed to overcome innate immune responses and pre-existing immunity. PMID:19711370

  14. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  15. Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model

    PubMed Central

    Subramanian, T.; Strebeck, Frank F.; West, Cheri L.; Varvares, Mark; Chinnadurai, G.

    2015-01-01

    Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9, 10-dimethyl-1, 2-benzanthracene (DMBA). These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55K (which are defective in the expression of either E1B-19K alone or both E1B-19K and E1B-55K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intra-tumoral administration of HAdV5 E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers. PMID:24874842

  16. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  17. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-Ad-IU-1

    DTIC Science & Technology

    2005-05-01

    PSMA postivie LNCaP and C4-2 cells. 6 Task 3. Investigate the capability of m6 to drive adenovirus replication in a prostate cancer-specific manner...of PSES to direct adenovirus replication , and HSV-TK gene, a pro-drug enzyme gene, under the control of another copy of PSES enhancer to restrict

  18. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  19. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    SciTech Connect

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  20. Adding and Subtracting Vectors: The Problem with the Arrow Representation

    ERIC Educational Resources Information Center

    Heckler, Andrew F.; Scaife, Thomas M.

    2015-01-01

    A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding…

  1. Oncolytic virotherapy for osteosarcoma using midkine promoter-regulated adenoviruses.

    PubMed

    Takagi-Kimura, M; Yamano, T; Tagawa, M; Kubo, S

    2014-03-01

    Oncolytic virotherapy using adenoviruses has potential therapeutic benefits for a variety of cancers. We recently developed MOA5, a tumor-specific midkine promoter-regulated oncolytic vector based on human adenovirus serotype 5 (Ad5). We modified the binding tropism of MOA5 by replacing the cell-binding domain of the Ad5 fiber knob with that from another adenovirus serotype 35 (Ad35); the resulting vector was designated MOA35. Here we evaluated the therapeutic efficacies of MOA5 and MOA35 for human osteosarcoma. Midkine mRNA expression and its promoter activity was significantly high in five human osteosarcoma cell lines, but was restricted in normal cells. Very low levels of adenovirus cellular receptor coxsackievirus/adenovirus receptor (CAR) (Ad5 receptor) expression were observed in MNNG-HOS and MG-63 cells, whereas high levels of CAR expression were seen in the other osteosarcoma cell lines. By contrast, CD46 (Ad35 receptor) was highly expressed in all osteosarcoma cell lines. Infectivity and in vitro cytocidal effect of MOA35 was significantly enhanced in MNNG-HOS and MG-63 cells compared with MOA5, although the cytocidal effects of MOA5 were sometimes higher in high CAR-expressing cell lines. In MG-63 xenograft models, MOA35 significantly enhanced antitumor effects compared with MOA5. Our findings indicate that MOA5 and MOA35 allow tailored virotherapy and facilitate more effective treatments for osteosarcoma.

  2. Evaluation of Novel Large Cut-Off Ultrafiltration Membranes for Adenovirus Serotype 5 (Ad5) Concentration

    PubMed Central

    Peixoto, Cristina; Roederstein, Susanne; Schleuss, Tobias; Alves, Paula M.; Mota, José P. B.; Carrondo, Manuel J. T.

    2014-01-01

    The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF) is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i) membrane materials, namely polyethersulfone (PES), regenerated cellulose (RC), and highly cross-linked RC (xRC), (ii) nominal cut-off, and (iii) UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed. PMID:25546428

  3. Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Sun, B; Bird, A; Chen, Y T; Oka, K; Chan, L

    2007-07-01

    Genetic deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, also known as von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia and growth retardation. We tested whether helper-dependent adenovirus (HDAd)-mediated hepatic delivery of G6Pase would lead to prolonged survival and sustained correction of the metabolic abnormalities in G6Pase knockout (KO) mice, a model for a severe form of GSD-Ia. An HDAd vector encoding G6Pase was administered intravenously (2 or 5 x 10(12)vector particles/kg) to 2-week-old (w.o.) G6Pase-KO mice. Following HDAd vector administration survival was prolonged to a median of 7 months, in contrast to untreated affected mice that did not survive past 3 weeks of age. G6Pase levels increased more than tenfold between 3 days and 28 weeks after HDAd injection (P < 0.03). The weights of untreated 2 w.o. G6Pase-KO mice were approximately half those of their unaffected littermates, and treatment stimulated their growth to the size of wild-type mice. Severe hypoglycemia and hypercholesterolemia, which are hallmarks of GSD-Ia both in humans and in mice, were also restored to normalcy by the treatment. Glycogen accumulation in the liver was markedly reduced. The efficacy of HDAd-G6Pase treatment in reversing the physiological and biochemical abnormalities associated with GSD-Ia in affected G6Pase-KO mice justifies further preclinical evaluation in murine and canine models of GSD-Ia.

  4. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine.

    PubMed

    Liu, Ye; Zhang, Shoufeng; Ma, Guangpeng; Zhang, Fei; Hu, Rongliang

    2008-10-03

    Rabies infections in swine have been reported occasionally in recent years in certain geographic locations. Although a protective vaccine consisting of inactivated rabies virus is available for use in swine, searching for a more economically viable formulation for use in developing countries is always a priority. This work describes the testing of a canine adenovirus that expresses a rabies viral epitope (CAV-2-E3Delta-RGP) in a porcine rabies model. The data presented here show that the recombinant viral vaccine was effective in protecting swine against rabies if administered intramuscularly, but not orally or intranasally, and that protection was probably related to the development of a humoral response that lasted at least 28 weeks. Following vaccination, no behavioral abnormalities were observed in vaccinated swine and virus particles were not detected in either tissues or body fluids, indicating that this formulation was safe. The recombinant virus stimulated an effective level of antibody response in the immunized swine after a single intramuscular inoculation.

  5. Capsid-like Arrays in Crystals of Chimpanzee Adenovirus Hexon

    SciTech Connect

    Xue,F.; Burnett, R.

    2006-01-01

    The major coat protein, hexon, from a chimpanzee adenovirus (AdC68) is of interest as a target for vaccine vector modification. AdC68 hexon has been crystallized in the orthorhombic space group C222 with unit cell dimensions of a = 90.8 Angstroms, b = 433.0 Angstroms, c = 159.3 Angstroms, and one trimer (3 x 104,942 Da) in the asymmetric unit. The crystals diffract to 2.1 Angstroms resolution. Initial studies reveal that the molecular arrangement is quite unlike that in hexon crystals for human adenovirus. In the AdC68 crystals, hexon trimers are parallel and pack closely in two-dimensional continuous arrays similar to those formed on electron microscope grids. The AdC68 crystals are the first in which adenovirus hexon has molecular interactions that mimic those used in constructing the viral capsid.

  6. Six-Month Assessment of a Phase I Trial of Angiogenic Gene Therapy for the Treatment of Coronary Artery Disease Using Direct Intramyocardial Administration of an Adenovirus Vector Expressing the VEGF121 cDNA

    PubMed Central

    Rosengart, Todd K.; Lee, Leonard Y.; Patel, Shailen R.; Kligfield, Paul D.; Okin, Peter M.; Hackett, Neil R.; Isom, O. Wayne; Crystal, Ronald G.

    1999-01-01

    Objective To summarize the 6-month follow-up of a cohort of patients with clinically significant coronary artery disease who received direct myocardial injection of an E1−E3− adenovirus (Ad) gene transfer vector (AdGVVEGF121.10) expressing the human vascular endothelial growth factor (VEGF) 121 cDNA to induce therapeutic angiogenesis. Background Therapeutic angiogenesis describes a novel approach to the treatment of vascular occlusive disease that uses the administration of growth factors known to induce neovascularization of ischemic tissues. Methods Direct myocardial injection of AdGVVEGF121.10 into an area of reversible ischemia was carried out in 21 patients as an adjunct to conventional coronary artery bypass grafting (group A, n = 15) or as sole therapy using a minithoracotomy (group B, n = 6). Results No evidence of systemic or cardiac-related adverse events related to vector administration was observed up to 6 months after therapy. Trends toward improvement in angina class and exercise treadmill testing at 6-month follow-up in the sole therapy group suggest the effects of this therapy are persistent for ≥6 months. Conclusions This study suggests that direct myocardial administration of AdGVVEGF121.10 appears to be well tolerated in patients with clinically significant coronary artery disease. Initiation of phase II evaluation of this therapy appears warranted. PMID:10522716

  7. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  8. Human herpesvirus 7 infection of lymphoid and myeloid cell lines transduced with an adenovirus vector containing the CD4 gene.

    PubMed Central

    Yasukawa, M; Inoue, Y; Ohminami, H; Sada, E; Miyake, K; Tohyama, T; Shimada, T; Fujita, S

    1997-01-01

    It has been reported recently that CD4 is a major component of the receptor for human herpesvirus 7 (HHV-7), which has been newly identified as a T-lymphotropic virus. To investigate further the role of CD4 in HHV-7 infection, we examined the susceptibility to HHV-7 infection of various CD4-negative or weakly positive cell lines into which the cDNA for CD4 was transferred using an adenovirus vector (Adex1CACD4). Of 13 cell lines transduced with Adex1CACD4, including T-lymphoid, B-lymphoid, monocytoid, and myeloid cell lines, one T-lymphoid cell line, one monocytoid cell line, and two cell lines established from the blast crisis of chronic myelogenous leukemia showed high susceptibility to HHV-7 infection. Taken together with the results of previous studies, these data suggest strongly that CD4 is a major component of the binding receptor for HHV-7. This study also shows that HHV-7 may be able to infect CD4-positive hematopoietic precursor cells as well as T lymphocytes. PMID:8995705

  9. Comparison of efficiency between FLPe and Cre for recombinase-mediated cassette exchange in vitro and in adenovirus vector production.

    PubMed

    Takata, Yuki; Kondo, Saki; Goda, Naoki; Kanegae, Yumi; Saito, Izumu

    2011-07-01

    Cre and FLP recombinases mediate not only specific deletions and insertions, but also the recombinase-mediated cassette exchange (RMCE) reaction, which is used in cell biotechnology including ES cells and mouse genetics. However, comparison of efficiencies for Cre and FLP in RMCE has not been made. We here examined the detailed process of RMCE with Cre and FLP in vitro using mutant loxP 2272 and three mutant FRTs (FRT G, FRT H, and FRT F3) and then quantitatively compared the RMCE reactions in vitro. Interestingly, in the in vitro reactions, the RMCE efficiency of Cre reached a plateau level of approximately 5% and did not proceed further, whereas that of FLPe reached approximately 12-13%, showing that FLPe reached a higher level of efficiency than Cre possibly when they were supplied at a very high concentration. Moreover, we quantitatively compared the production efficiency of E1-deleted adenovirus vector using the RMCE method with Cre or FLP. The results showed that FLPe was again found more efficient than Cre in RMCE reaction. Thus, although Cre is considered more active than, or similar to, FLPe, it may not be necessarily true for RMCE reaction. Possible reasons explaining these results are discussed.

  10. Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens.

    PubMed

    Sánchez Ramos, Oliberto; González Pose, Alain; Gómez-Puerta, Silvia; Noda Gomez, Julia; Vega Redondo, Armando; Águila Benites, Julio César; Suárez Amarán, Lester; Parra, Natalie C; Toledo Alonso, Jorge R

    2011-05-01

    Recombinant adenoviral vectors have emerged as an attractive system for veterinary vaccines development. However, for poultry vaccination a very important criterion for an ideal vaccine is its low cost. The objective of this study was to test the ability of chicken CD154 to enhance the immunogenicity of an adenoviral vector-based vaccine against avian influenza virus in order to reduce the amount of antigen required to induce an effective immune response in avian. Chickens were vaccinated with three different doses of adenoviral vectors encoding either HA (AdHA), or HA fused to extracellular domain chicken's CD154 (AdHACD). Hemagglutination inhibition (HI) assay and relative quantification of IFN-γ showed that the adenoviral vector encoding for the chimeric antigen is able to elicit an improved humoral and cellular immune response, which demonstrated that CD154 can be used as a molecular adjuvant allowing to reduce in about 50-fold the amount of adenoviral vector vaccine required to induce an effective immune response.

  11. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs

    PubMed Central

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude. PMID:23127366

  12. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    PubMed

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  13. Adenovirus structure.

    PubMed

    Rux, John J; Burnett, Roger M

    2004-12-01

    Structural studies continue to play an essential role as the focus of adenovirus research shifts in emphasis from basic biology to adenovirus-based vector technologies. A crucial step in developing novel therapeutics for gene replacement, cancer, and vaccines is often to modify the virion. Such engineered changes are designed to retarget the virus, or to reduce the immunological responses to infection. These efforts are far more effective when they are based on detailed structural knowledge. This minireview provides a brief summary of the wealth of information that has been obtained from the combined application of X-ray crystallography and electron microscopy. This knowledge now includes a good working model for the architectural organization of the virion, and atomic resolution molecular structures for all the major capsid proteins, hexon, penton, and fiber. We highlight new developments, which include the structure of the penton base and the discovery that adenovirus has several relatives. We sketch how the structural information can be used to engineer novel virions and conclude with the prospects for future progress.

  14. Adding and subtracting vectors: The problem with the arrow representation

    NASA Astrophysics Data System (ADS)

    Heckler, Andrew F.; Scaife, Thomas M.

    2015-06-01

    A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding of vector addition and subtraction in both the arrow and algebraic notation (using i ^, j ^, k ^) in generic mathematical and physics contexts. First, we replicated a number of previous findings of student difficulties in the arrow format and discovered several additional difficulties, including the finding that different relative arrow orientations can prompt different solution paths and different kinds of mistakes, which suggests that students need to practice with a variety of relative orientations. Most importantly, we found that average performance in the i j k format was typically excellent and often much better than performance in the arrow format in either the generic or physics contexts. Further, while we find that the arrow format tends to prompt students to a more physically intuitive solution path, we also find that, when prompted, student solutions in the i j k format also display significant physical insights into the problem. We also find a hierarchy in correct answering between the two formats, with correct answering in the i j k format being more fundamental than for the arrow format. Overall, the results suggest that many student difficulties with these simple vector problems lie with the arrow representation itself. For instruction, these results imply that introducing the i j k notation (or some equivalent) with the arrow notation concurrently may be a very useful way to improve student performance as well as help students to learn physics concepts involving vector addition and subtraction.

  15. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of

  16. Adenovirus vector carrying REIC/DKK-3 gene: neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy

    PubMed Central

    Kumon, H; Ariyoshi, Y; Sasaki, K; Sadahira, T; Araki, M; Ebara, S; Yanai, H; Watanabe, M; Nasu, Y

    2016-01-01

    As the First-In-Human study of in situ gene therapy using an adenovirus vector carrying the human REIC (reduced expression in immortalized cell)/Dkk-3 gene (Ad-REIC), we conducted neoadjuvant intraprostatic injections in patients with high-risk localized prostate cancer undergoing radical prostatectomy (RP). Patients with recurrence probability of 35% or more within 5 years following RP, as calculated by Kattan's nomogram, were enrolled. Patients received two ultrasound-guided intratumoral injections at 2-week intervals, followed by RP 6 weeks after the second injection. After confirming the safety of the therapeutic interventions with initially planned three escalating doses of 1.0 × 1010, 1.0 × 1011 and 1.0 × 1012 viral particles (vp) in 1.0–1.2 ml (n=3, 3 and 6), an additional higher dose of 3.0 × 1012 vp in 3.6 ml (n=6) was further studied. All four DLs including the additional dose level-4 (DL-4) were feasible with no adverse events, except for grade 1 or 2 transient fever. Laboratory toxicities were grade 1 or 2 elevated aspartate transaminase/alanine transaminase (n=4). Regarding antitumor activities, cytopathic effects (tumor degeneration with cytolysis and pyknosis) and remarkable tumor-infiltrating lymphocytes in the targeted tumor areas were detected in a clear dose-dependent manner. Consequently, biochemical recurrence-free survival in DL-4 was significantly more favorable than in patient groups DL-1+2+3. PMID:27767086

  17. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    University of Zurich, Switzerland) on developing designed ankyrin repeat protein ligands (DARPins) specific for Ad fiber knob domain, which will be used as...facilitate the identification of the human tumor xenografts grown in mice and also to allow for non- invasive monitoring of tumor growth , we made a...ψ NeoR PCMV hRluc-EGFP Figure 6. Schematic representation of LhRLuc-EGFP genome. LTR – long terminal repeat , ψ - packaging signal, NeoR – G418

  18. Adenovirus DNA replication in vitro: site-directed mutagenesis of the nuclear factor I binding site of the Ad2 origin.

    PubMed Central

    de Vries, E; van Driel, W; Tromp, M; van Boom, J; van der Vliet, P C

    1985-01-01

    The template requirements for efficient adenovirus DNA replication were studied in vitro in a reconstituted system with cloned DNA fragments, containing the Ad2 origin region, as templates. Replication is enhanced by nuclear factor I, a cellular protein that binds specifically to the Ad2 origin. This stimulation is shown to be strongly dependent on the concentration of the adenovirus DNA binding protein. Using synthetic oligonucleotides we have constructed plasmids with base substitutions in the nuclear factor I binding region. Footprint analysis and competition filter binding studies show that two of the three small blocks of conserved nucleotides in this region are involved in the binding of nuclear factor I. The binding affinity can be influenced by the base composition of the degenerate region just outside these two blocks. In vitro initiation and DNA chain elongation experiments with the mutants demonstrate that binding of nuclear factor I to the Ad2 origin is necessary for stimulation. However, binding alone is not always sufficient since a mutation which only slightly disturbs binding is strongly impaired in stimulation of DNA replication by nuclear factor I. Images PMID:4040630

  19. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response.

    PubMed

    Zaiss, Anne K; Vilaysane, Akosua; Cotter, Matthew J; Clark, Sharon A; Meijndert, H Christopher; Colarusso, Pina; Yates, Robin M; Petrilli, Virginie; Tschopp, Jurg; Muruve, Daniel A

    2009-06-01

    Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.

  20. The adenovirus type 2-simian virus 40 hybrid virus Ad2+ND4 requires deletion variants to grow in monkey cells.

    PubMed Central

    Lewis, A M; Westphal, H

    1983-01-01

    The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous

  1. Preclinical pharmacology and toxicology study of Ad-hTERT-E1a-Apoptin, a novel dual cancer-specific oncolytic adenovirus

    SciTech Connect

    Qi, Yanxin; Guo, Huanhuan; Hu, Ningning; He, Dongyun; Zhang, Shi; Chu, Yunjie; Huang, Yubin; Li, Xiao; Sun, LiLi; Jin, Ningyi

    2014-10-15

    Clinical studies have demonstrated that conditionally replicating adenovirus is safe. We constructed an oncolytic adenovirus, Ad-hTERT-E1a-Apoptin, using a cancer-specific promoter (human telomerase reverse transcriptase promoter, hTERTp) and a cancer cell-selective apoptosis-inducing gene (Apoptin). Ad-hTERT-E1a-Apoptin was proven effective both in vitro and in vivo in our previous study. In this study, the preclinical safety profiles of Ad-hTERT-E1a-Apoptin in animal models were investigated. At doses of 5.0 × 10{sup 8}, 2.5 × 10{sup 9}, and 1.25 × 10{sup 10} viral particles (VP)/kg, Ad-hTERT-E1a-Apoptin had no adverse effects on mouse behavior, muscle cooperation, sedative effect, digestive system, and nervous systems, or on beagle cardiovascular and respiratory systems at 5.0 × 10{sup 8}, 2.5 × 10{sup 9}, and 1.25 × 10{sup 10} VP/kg doses. In acute toxicity tests in mice, the maximum tolerated dose > 5 × 10{sup 10} VP/kg. There was no inflammation or ulceration at the injection sites within two weeks. In repeat-dose toxicological studies, the no observable adverse effect levels of Ad-hTERT-E1a-Apoptin in rats (1.25 × 10{sup 10} VP/kg) and beagles (2.5 × 10{sup 9} VP/kg) were 62.5- and 12.5-fold of the proposed clinical dose, respectively. The anti-virus antibody was produced in animal sera. Bone marrow examination revealed no histopathological changes. Guinea pigs sensitized by three repeated intraperitoneal injections of 1.35 × 10{sup 10} VP/mL Ad-hTERT-E1a-Apoptin each and challenged by one intravenous injection of 1.67 × 10{sup 8} VP/kg Ad-hTERT-E1a-Apoptin did not exhibit any sign of systemic anaphylaxis. Our data from different animal models suggest that Ad-hTERT-E1a-Apoptin is a safe anti-tumor therapeutic agent. - Highlights: • We use the rodents and non-rodents animal models to evaluation Ad-hTERT-E1a-Apoptin. • Ad-hTERT-E1a-Apoptin is a safe anti-tumor therapeutic agent. • Demonstrate the safety and feasibility dose of injected Ad

  2. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    PubMed Central

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV. PMID:26751211

  3. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines.

    PubMed

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV.

  4. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    SciTech Connect

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  5. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia.

    PubMed

    Crane, B; Luo, X; Demaster, A; Williams, K D; Kozink, D M; Zhang, P; Brown, T T; Pinto, C R; Oka, K; Sun, F; Jackson, M W; Chan, L; Koeberl, D D

    2012-04-01

    Glycogen storage disease type Ia (GSD-Ia) stems from glucose-6-phosphatase (G6Pase) deficiency and causes hypoglycemia, hepatomegaly, hypercholesterolemia and lactic acidemia. Three dogs with GSD-Ia were initially treated with a helper-dependent adenovirus encoding a human G6Pase transgene (HDAd-cG6Pase serotype 5) on postnatal day 3. Unlike untreated dogs with GSD-Ia, all three dogs initially maintained normal blood glucose levels. After 6-22 months, vector-treated dogs developed hypoglycemia, anorexia and lethargy, suggesting that the HDAd-cG6Pase serotype 5 vector had lost efficacy. Liver biopsies collected at this time revealed significantly elevated hepatic G6Pase activity and reduced glycogen content, when compared with affected dogs treated only by frequent feeding. Subsequently, the HDAd-cG6Pase serotype 2 vector was administered to two dogs, and hypoglycemia was reversed; however, renal dysfunction and recurrent hypoglycemia complicated their management. Administration of a serotype 2 HDAd vector prolonged survival in one GSD-Ia dog to 12 months of age and 36 months of age in the other, but the persistence of long-term complications limited HDAd vectors in the canine model for GSD-Ia.

  6. Canine Recombinant Adenovirus Vector Induces an Immunogenicity-Related Gene Expression Profile in Skin-Migrated CD11b+ -Type DCs

    PubMed Central

    Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b+ -type and CD103+ -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b+ -type DCs was far higher and broader than in the CD103+ -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b+ -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b+ DC type is more responsive to CAV2 than the CD103+ DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  7. A rotating hairy AdS3 black hole with the metric having only one Killing vector field

    NASA Astrophysics Data System (ADS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2015-08-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ɛ of the scalar field, up to O( ɛ 4). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.

  8. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    PubMed

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes; Bassi, Maria Rosaria; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2012-01-01

    Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii). To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  9. Gauge theories on A(dS) space and Killing vectors

    SciTech Connect

    Banerjee, Rabin Majhi, Bibhas Ranjan

    2008-03-15

    We provide a general technique for collectively analysing a manifestly covariant formulation of non-abelian gauge theories on both anti-de Sitter as well as de Sitter spaces. This is done by stereographically projecting the corresponding theories, defined on a flat Minkowski space, onto the surface of the A(dS) hyperboloid. The gauge and matter fields in the two descriptions are mapped by conformal Killing vectors and conformal Killing spinors, respectively. A bilinear map connecting the spinors with the vector is established. Different forms of gauge fixing conditions and their equivalence are discussed. The U(1) axial anomaly as well as the non-abelian covariant and consistent chiral anomalies on A(dS) space are obtained. Electric-magnetic duality is demonstrated. The zero curvature limit is shown to yield consistent findings.

  10. A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys.

    PubMed

    Karen, Kasey A; Deal, Cailin; Adams, Robert J; Nielsen, Carolyn; Ward, Cameron; Espinosa, Diego A; Xie, Jane; Zavala, Fidel; Ketner, Gary

    2015-01-01

    Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization.

  11. Full vector archaeomagnetic data and Bayesian modelling for 1300 to 1750 AD

    NASA Astrophysics Data System (ADS)

    Schnepp, E.; Lanos, P.; Chauvin, A.

    2009-04-01

    The data base of geomagnetic palaeointensities obtained from archaeological artefacts is poor and very scattered for Western and Central Europe. High precision palaeointensities have been determined from a single archaeological site in Lübeck (Germany) where a sequence of 25 bread-oven-floors has been preserved in a bakery from medieval times until today. Age dating confines the time interval from about 1300 AD to about 1750 AD. Palaeomagnetic directions have been determined from each oven-floor (Schnepp et al., JGR, 2003). Palaeointensity was measured from selected specimens with the double-heating Thellier method and reliable palaeointensity results have been obtained. Tests for thermoremanent magnetisation anisotropy have been performed, but did not show a significant change, while a cooling rate correction was not necessary. 22 mean palaeointensity values derived from the oven-floors show maxima in the 15th and early 17th century AD, followed by a decrease of palaeointensity of about 25% until 1750 AD. The Thellier experiments provided also new characteristic remanent magnetisation directions which were included in the data set. Mean directions have been recalculated. Palaeointensity together with the directions represent a record of about 450 years full vector secular variation. From this full vector data set a secular variation curve has been calculated using a Bayesian modelling taking dating errors, all errors on the field vector and stratigraphy into account. A smooth curve with an error envelope was obtained which compares very well with the gufm1 geomagnetic model (Jackson et al., Phil. Trans. R. Soc. Lond. A, 2000) obtained from historical observations starting at 1600 AD. Comparison of the marginal curve obtained for palaeointensity with a selected data set of archaeomagnetic intensities from Western and Central Europe will be discussed.

  12. Enhanced Peptide of Prostate Cancer Using Targeted Adenoviral Vectors

    DTIC Science & Technology

    2005-06-01

    greater than that observed in tumors injected with control adenovirus (1.4 - 1..6% ID/g). Another adenovirus encoding for both SSTR2 and cytosine deaminase ...for treating prostate cancer xenografts which involves the use of an adenoviral vector encoding for both SSTR2 and the cytosine deaminase (CD) enzyme...SSTR2 and bacterial cytosine deaminase (CD) was performed in a manner similar to that previously described. The AdEasy system was used to generate the

  13. The search for adenovirus 14 in children in Houston, Texas.

    PubMed

    Laham, Federico R; Jewell, Alan M; Schoonover, Shauna L; Demmler, Gail J; Piedra, Pedro A

    2008-07-01

    Adenovirus (Ad)14 has recently emerged in the United States causing outbreaks of severe respiratory disease. To determine if Ad14 circulated in Houston, Texas, during the same time as an outbreak in military recruits in nearby San Antonio, 215 pediatric adenovirus isolates were serotyped using microneutralization. None were Ad14; Ad1, Ad2, and Ad3 were the most common identified serotypes.

  14. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-AD-IU-1

    DTIC Science & Technology

    2006-05-01

    prominently expressed in androgen independent prostate cancers . The goal of this research is to develop a novel therapeutic agent, Ad-IU-1, using PSES...better killing activity than TK against prostate cancer cells. We are on the process of constructing FCYttk-armed prostate restricted replicative...S RY( - ) S RY( - ) S RY( - ) LN 1 7 LN 1 8 LN 1 9 INTRODUCTION Metastatic human prostate cancer (PC) is commonly treated by hormone, radiation

  15. Selective effects of a fiber chimeric conditionally replicative adenovirus armed with hep27 gene on renal cancer cell.

    PubMed

    Fang, Lin; Cheng, Qian; Liu, Wenshun; Zhang, Jie; Ge, Yan; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-06-02

    ASBTARCT Adenoviruses mediated cancer gene therapies are widely investigated and show a promising effect on cancer treatment. However, efficient gene transfer varies among different cancer cell lines based on the expression of coxsakie adenovirus receptor (CAR). Hep27, a member of dehydrogenase/reductase (SDR) family, can bind to Mdm2, resulting in the attenuation of Mdm2-mediated p53 degradation. Here we constructed a fiber chimeric adenovirus carrying hep27 gene (F5/35-ZD55-Hep27), in which the fiber protein of 5-serotype adenovirus (Ad5) was substituted by that of 35-serotype adenovirus (Ad35), aiming to facilitate the infection for renal cancer cells and develop the role of hep27 in cancer therapy. We evaluated the CAR and CD46 (a membrane cofactor protein for Ad35) expression in four kinds of renal cancer cells and assessed the relationship between receptors and infection efficiency. 5/35 fiber-modified adenovirus had a much promising infectivity compared with Ad5-based vector in renal cancer cells. F5/35-ZD55-Hep27 had enhanced antitumor activity against human renal cancer cells compared to the other groups. Further, hep27 mediated p53 and cleaved-PARP upregulation and mdm2 downregulation was involved and caused increased apoptosis. Moreover, F5/35-ZD55-Hep27 significantly suppressed tumor growth in subcutaneous renal cancer cell xenograft models. Our data demonstrated that 5/35 fiber-modified adenovirus F5/35-ZD55-Hep27 transferred into renal cancers efficiently and increased p53 to induce cancer cell apoptosis. Thus 5/35 fiber-modified adenoviral vector F5/35-ZD55-Hep27 might a promising vector and antitumor reagent for renal cancer gene therapy.

  16. Directed adenovirus evolution using engineered mutator viral polymerases

    PubMed Central

    Uil, Taco G.; Vellinga, Jort; de Vrij, Jeroen; van den Hengel, Sanne K.; Rabelink, Martijn J. W. E.; Cramer, Steve J.; Eekels, Julia J. M.; Ariyurek, Yavuz; van Galen, Michiel; Hoeben, Rob C.

    2011-01-01

    Adenoviruses (Ads) are the most frequently used viruses for oncolytic and gene therapy purposes. Most Ad-based vectors have been generated through rational design. Although this led to significant vector improvements, it is often hampered by an insufficient understanding of Ad’s intricate functions and interactions. Here, to evade this issue, we adopted a novel, mutator Ad polymerase-based, ‘accelerated-evolution’ approach that can serve as general method to generate or optimize adenoviral vectors. First, we site specifically substituted Ad polymerase residues located in either the nucleotide binding pocket or the exonuclease domain. This yielded several polymerase mutants that, while fully supportive of viral replication, increased Ad’s intrinsic mutation rate. Mutator activities of these mutants were revealed by performing deep sequencing on pools of replicated viruses. The strongest identified mutators carried replacements of residues implicated in ssDNA binding at the exonuclease active site. Next, we exploited these mutators to generate the genetic diversity required for directed Ad evolution. Using this new forward genetics approach, we isolated viral mutants with improved cytolytic activity. These mutants revealed a common mutation in a splice acceptor site preceding the gene for the adenovirus death protein (ADP). Accordingly, the isolated viruses showed high and untimely expression of ADP, correlating with a severe deregulation of E3 transcript splicing. PMID:21138963

  17. Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile

    PubMed Central

    2013-01-01

    Background Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression. Methods Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3). Results Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies. Conclusions We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer. PMID:23937994

  18. Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting

    PubMed Central

    Khare, Reeti; Chen, Christopher Y; Weaver, Eric A; Barry, Michael A

    2011-01-01

    Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral “sinks” must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect. PMID:21453281

  19. Biodistribution and inflammatory profiles of novel penton and hexon double-mutant serotype 5 adenoviruses

    PubMed Central

    Bradshaw, Angela C.; Coughlan, Lynda; Miller, Ashley M.; Alba, Raul; van Rooijen, Nico; Nicklin, Stuart A.; Baker, Andrew H.

    2012-01-01

    The use of adenovirus serotype 5 (Ad5) vectors in the clinical setting is severely hampered by the profound liver tropism observed after intravascular delivery coupled with the pronounced inflammatory and innate immune response elicited by these vectors. Liver transduction by circulating Ad5 virions is mediated by a high-affinity interaction between the capsid hexon protein and blood coagulation factor X (FX), whilst penton–αvintegrin interactions are thought to contribute to the induction of anti-Ad5 inflammatory and innate immune responses. To overcome these limitations, we sought to develop and characterise for the first time novel Ad5 vectors possessing mutations ablating both hexon:FX and penton:integrin interactions. As expected, intravascular administration of the FX binding-ablated Ad5HVR5*HVR7*E451Q vector (AdT*) resulted in significantly reduced liver transduction in vivo compared to Ad5. In macrophage-depleted mice, increased spleen uptake of AdT* was accompanied by an elevation in the levels of several inflammatory mediators. However ablation of the penton RGD motif in the AdT* vector background (AdT*RGE) resulted in a significant 5-fold reduction in spleen uptake and attenuated the antiviral inflammatory response. A reduction in spleen uptake and inflammatory activation was also observed in animals after intravascular administration of Ad5RGE compared to the parental Ad5 vector, with reduced co-localisation of the viral beta-galactosidase transgene with MAdCAM-1 + sinus-lining endothelial cells. Our detailed assessment of these novel adenoviruses indicates that penton base RGE mutation in combination with FX binding-ablation may be a viable strategy to attenuate the undesired liver uptake and pro-inflammatory responses to Ad5 vectors after intravascular delivery. PMID:22626939

  20. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    PubMed Central

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  1. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice

    PubMed Central

    Liu, Shan; Jackson, Andrew; Beloor, Jagadish; Kumar, Priti; Sutton, Richard E.

    2015-01-01

    Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4+ T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans. PMID:25953321

  2. Novel HDAd/EBV Reprogramming Vector and Highly Efficient Ad/CRISPR-Cas Sickle Cell Disease Gene Correction

    PubMed Central

    Li, Chao; Ding, Lei; Sun, Chiao-Wang; Wu, Li-Chen; Zhou, Dewang; Pawlik, Kevin M.; Khodadadi-Jamayran, Alireza; Westin, Erik; Goldman, Frederick D.; Townes, Tim M.

    2016-01-01

    CRISPR/Cas enhanced correction of the sickle cell disease (SCD) genetic defect in patient-specific induced Pluripotent Stem Cells (iPSCs) provides a potential gene therapy for this debilitating disease. An advantage of this approach is that corrected iPSCs that are free of off-target modifications can be identified before differentiating the cells into hematopoietic progenitors for transplantation. In order for this approach to be practical, iPSC generation must be rapid and efficient. Therefore, we developed a novel helper-dependent adenovirus/Epstein-Barr virus (HDAd/EBV) hybrid reprogramming vector, rCLAE-R6, that delivers six reprogramming factors episomally. HDAd/EBV transduction of keratinocytes from SCD patients resulted in footprint-free iPSCs with high efficiency. Subsequently, the sickle mutation was corrected by delivering CRISPR/Cas9 with adenovirus followed by nucleoporation with a 70 nt single-stranded oligodeoxynucleotide (ssODN) correction template. Correction efficiencies of up to 67.9% (βA/[βS+βA]) were obtained. Whole-genome sequencing (WGS) of corrected iPSC lines demonstrated no CRISPR/Cas modifications in 1467 potential off-target sites and no modifications in tumor suppressor genes or other genes associated with pathologies. These results demonstrate that adenoviral delivery of reprogramming factors and CRISPR/Cas provides a rapid and efficient method of deriving gene-corrected, patient-specific iPSCs for therapeutic applications. PMID:27460639

  3. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    PubMed

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  4. STAT1 Interaction with E3-14.7K in Monocytes Affects the Efficacy of Oncolytic Adenovirus

    PubMed Central

    Spurrell, Emma; Gangeswaran, Rathi; Wang, Pengju; Cao, Fengyu; Gao, Dongling; Feng, Baisui; Wold, William; Tollefson, Ann

    2014-01-01

    Oncolytic viruses based on adenovirus type 5 (Ad5) have been developed as a new class of therapeutic agents for cancers that are resistant to conventional therapies. Clinical experience shows that these agents are safe, but virotherapy alone has not achieved long-term cure in cancer patients. The vast majority of oncolytic adenoviruses used in clinical trials to date have deletion of the E3B genes. It has been demonstrated that the antitumor potency of the E3B-deleted mutant (dl309) is inferior to adenovirus with E3B genes intact. Tumors treated with dl309 show markedly greater macrophage infiltration than E3B-intact adenovirus. However, the functional mechanisms for this were not previously known. Here, we demonstrate that deletion of E3B genes increases production of chemokines by monocytes after adenovirus infection and increases monocyte migration. The E3B 14,700-Da protein (E3B-14.7K) inhibits STAT1 function by preventing its phosphorylation and nuclear translocation. The STAT1 inhibitor, fludarabine, rescues the effect of E3B-14.7K deletion by downregulating target chemokine expression in human and murine monocytes and results in an enhanced antitumor efficacy with dl309 in vivo. These findings have important implications for clinical use of E3B-deleted oncolytic adenovirus and other E3B-deleted adenovirus vector-based therapy. PMID:24335311

  5. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  6. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy

    PubMed Central

    Farzad, Lisa; Cerullo, Vincenzo; Yagyu, Shigeki; Bertin, Terry; Hemminki, Akseli; Rooney, Cliona; Lee, Brendan; Suzuki, Masataka

    2014-01-01

    Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy. PMID:27119096

  7. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge.

    PubMed

    Schutta, Christopher; Barrera, José; Pisano, Melia; Zsak, Laszlo; Grubman, Marvin J; Mayr, Gregory A; Moraes, Mauro P; Kamicker, Barbara J; Brake, David A; Ettyreddy, Damodar; Brough, Douglas E; Butman, Bryan T; Neilan, John G

    2016-06-08

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge.

  8. Adenovirus Vector-Induced CD8+ T Effector Memory Cell Differentiation and Recirculation, But Not Proliferation, Are Important for Protective Immunity Against Experimental Trypanosoma cruzi Infection

    PubMed Central

    Vasconcelos, José Ronnie; Dominguez, Mariana R.; Neves, Ramon L.; Ersching, Jonatan; Araújo, Adriano; Santos, Luara I.; Virgilio, Fernando S.; Machado, Alexandre V.; Bruna-Romero, Oscar; Gazzinelli, Ricardo T.

    2014-01-01

    Abstract Heterologous prime-boost vaccination using plasmid DNA followed by replication-defective adenovirus vector generates a large number of specific CD8+ T effector memory (TEM) cells that provide long-term immunity against a variety of pathogens. In the present study, we initially characterized the frequency, phenotype, and function of these T cells in vaccinated mice that were subjected to infectious challenge with the human protozoan parasite Trypanosoma cruzi. We observed that the frequency of the specific CD8+ T cells in the spleens of the vaccinated mice increased after challenge. Specific TEM cells differentiated into cells with a KLRG1High CD27Low CD43Low CD183LowT-betHigh EomesLow phenotype and capable to produce simultaneously the antiparasitic mediators IFNγ and TNF. Using the gzmBCreERT2/ROSA26EYFP transgenic mouse line, in which the cells that express Granzyme B after immunization, are indelibly labeled with enhanced yellow fluorescent protein, we confirmed that CD8+ T cells present after challenge were indeed TEM cells that had been induced by vaccination. Subsequently, we observed that the in vivo increase in the frequency of the specific CD8+ T cells was not because of an anamnestic immune response. Most importantly, after challenge, the increase in the frequency of specific cells and the protective immunity they mediate were insensitive to treatment with the cytostatic toxic agent hydroxyurea. We have previously described that the administration of the drug FTY720, which reduces lymphocyte recirculation, severely impairs protective immunity, and our evidence supports the model that when large amounts of antigen-experienced CD8+ TEM cells are present after heterologous prime-boost vaccination, differentiation, and recirculation, rather than proliferation, are key for the resultant protective immunity. PMID:24568548

  9. Fiber-modified adenovirus for central nervous system Parkinson's disease gene therapy.

    PubMed

    Lewis, Travis B; Glasgow, Joel N; Harms, Ashley S; Standaert, David G; Curiel, David T

    2014-08-21

    Gene-based therapies for neurological diseases continue to develop briskly. As disease mechanisms are elucidated, flexible gene delivery platforms incorporating transcriptional regulatory elements, therapeutic genes and targeted delivery are required for the safety and efficacy of these approaches. Adenovirus serotype 5 (Ad5)-based vectors can carry large genetic payloads to provide this flexibility, but do not transduce neuronal cells efficiently. To address this, we have developed a tropism-modified Ad5 vector with neuron-selective targeting properties for evaluation in models of Parkinson disease therapy. A panel of tropism-modified Ad5 vectors was screened for enhanced gene delivery in a neuroblastoma cell line model system. We used these observations to design and construct an unbiased Ad vector platform, consisting of an unmodified Ad5 and a tropism-modified Ad5 vector containing the fiber knob domain from canine Ad serotype 2 (Ad5-CGW-CK2). Delivery to the substantia nigra or striatum showed that this vector produced a neuronally-restricted pattern of gene expression. Many of the transduced neurons were from regions with afferent projections to the injection site, implicating that the vector binds the presynaptic terminal resulting in presynaptic transduction. We show that Ad5-CGW-CK2 can selectively transduce neurons in the brain and hypothesize that this modular platform is potentially adaptable to clinical use.

  10. Enhanced Protection against Ebola Virus Mediated by an Improved Adenovirus-Based Vaccine

    PubMed Central

    Tran, Kaylie N.; Croyle, Maria A.; Strong, James E.; Feldmann, Heinz; Kobinger, Gary P.

    2009-01-01

    Background The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Methodology/Principal Findings Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. Conclusions/Significance We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation

  11. Systemic Delivery of an Oncolytic Adenovirus Expressing Decorin for the Treatment of Breast Cancer Bone Metastases.

    PubMed

    Yang, Yuefeng; Xu, Weidong; Neill, Thomas; Hu, Zebin; Wang, Chi-Hsiung; Xiao, Xianghui; Stock, Stuart R; Guise, Theresa; Yun, Chae-Ok; Brendler, Charles B; Iozzo, Renato V; Seth, Prem

    2015-12-01

    The development of novel therapies for breast cancer bone metastasis is a major unmet medical need. Toward that end, we have constructed an oncolytic adenovirus, Ad.dcn, and a nonreplicating adenovirus, Ad(E1-).dcn, both containing the human decorin gene. Our in vitro studies showed that Ad.dcn produced high levels of viral replication and the decorin protein in the breast tumor cells. Ad(E1-).dcn-mediated decorin expression in MDA-MB-231 cells downregulated the expression of Met, β-catenin, and vascular endothelial growth factor A, all of which are recognized decorin targets and play pivotal roles in the progression of breast tumor growth and metastasis. Adenoviral-mediated decorin expression inhibited cell migration and induced mitochondrial autophagy in MDA-MB-231 cells. Mice bearing MDA-MB-231-luc skeletal metastases were systemically administered with the viral vectors, and skeletal tumor growth was monitored over time. The results of bioluminescence imaging and X-ray radiography indicated that Ad.dcn and Ad(E1-).dcn significantly inhibited the progression of bone metastases. At the terminal time point, histomorphometric analysis, micro-computed tomography, and bone destruction biomarkers showed that Ad.dcn and Ad(E1-).dcn reduced tumor burden and inhibited bone destruction. A nonreplicating adenovirus Ad(E1-).luc expressing the luciferase 2 gene had no significant effect on inhibiting bone metastases, and in several assays, Ad.dcn and Ad(E1-).dcn were better than Ad.luc, a replicating virus expressing the luciferase 2 gene. Our data suggest that adenoviral replication coupled with decorin expression could produce effective antitumor responses in a MDA-MB-231 bone metastasis model of breast cancer. Thus, Ad.dcn could potentially be developed as a candidate gene therapy vector for treating breast cancer bone metastases.

  12. Capsid-Incorporation of Antigens into Adenovirus Capsid Proteins for a Vaccine Approach

    PubMed Central

    Matthews, Qiana L.

    2010-01-01

    Some viral vectors are potent inducers of cellular and humoral responses; therefore, viral vectors can be used to vaccinate against cancer or infectious diseases. This report will focus on adenovirus (Ad)-based vectors. Traditional viral-vector vaccination embodies the concept that the vector uses the host-cell machinery to express antigens that are encoded as transgenes within the viral vector. Several preclinical successes have used this approach in animal model systems. However, in some instances, these conventional Ad-based vaccines have yielded suboptimal clinical results. These suboptimal results are ascribed, in part, to preexisting Ad serotype 5 (Ad5) immunity. To address this issue, the “antigen capsid-incorporation” strategy has been developed to circumvent the drawbacks associated with conventional transgene expression of antigens by Ad vectors. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. Incorporating immunogenic peptides into the Ad capsid offers potential advantages. Importantly, vaccination by means of the antigen capsid-incorporated approach results in a strong humoral response, similar to the response generated by native Ad capsid proteins. This strategy also allows for the boosting of antigenic specific responses. This strategy may be the way forward for improved vaccine schemes, especially for those infections requiring a strong humoral antigenic response. PMID:21047139

  13. Enhanced therapeutic efficacy of an adenovirus-PEI-bile-acid complex in tumors with low coxsackie and adenovirus receptor expression.

    PubMed

    Lee, Cho-Hee; Kasala, Dayananda; Na, Youjin; Lee, Min Sang; Kim, Sung Wan; Jeong, Ji Hoon; Yun, Chae-Ok

    2014-07-01

    Adenovirus (Ad) is a potential vehicle for cancer gene therapy. However, cells that express low levels of the coxsackie and adenovirus receptor (CAR) demonstrate poor Ad infection efficiency. We developed a bile acid-conjugated poly(ethyleneimine) (DA3)-coated Ad complex (Ad/DA3) to enhance Ad transduction efficiency. The size distribution and zeta potential of Ad/DA3 increased to 324 ± 3.08 nm and 10.13 ± 0.21 mV, respectively, compared with those of naked Ad (108 ± 2.26 nm and -17.7 ± 1.5 mV). The transduction efficiency of Ad/DA3 increased in a DA3 polymer concentration-dependent manner. Enhanced gene transfer by Ad/DA3 was more evident in CAR-moderate and CAR-negative cancer cells. Competition assays with a CAR-specific antibody revealed that internalization of Ad/DA3 was not mediated primarily by CAR but involved clathrin-, caveolae-, and macropinocytosis-mediated endocytosis. Cancer cell death was significantly increased when oncolytic Ad and DA3 were complexed (RdB-KOX/DA3) compared to that of naked oncolytic Ad and was inversely proportional to CAR levels. Importantly, RdB-KOX/DA3 significantly enhanced apoptosis, reduced angiogenesis, reduced proliferation, and increased active viral replication in human tumor xenografts compared to that of naked Ad. These results demonstrate that a hybrid vector system can increase the efficacy of oncolytic Ad virotherapy, particularly in CAR-limited tumors.

  14. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  15. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  16. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    SciTech Connect

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A.

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.

  17. Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells*

    PubMed Central

    Luo, Xu-wei; Liu, Kang; Chen, Zhu; Zhao, Ming; Han, Xiao-wei; Bai, Yi-guang; Feng, Gang

    2016-01-01

    Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular matrix (ECM) expression in human degenerative disc nucleus pulposus (NP) cells, and explore a candidate gene therapy method for intervertebral disc degeneration (IDD). Methods: Human NP cells of a degenerative disc were isolated, cultured, and infected with Ad-GDF-5 using the AdEasy-1 adenovirus vector system. On Days 3, 7, 14, and 21, the contents of the sulfated glycosaminoglycan (sGAG), deoxyribonucleic acid (DNA) and hydroxyproline (Hyp), synthesis of proteoglycan and collagen II, gene expression of collagen II and aggrecan, and NP cell proliferation were assessed. Results: The adenovirus was an effective vehicle for gene delivery with prolonged expression of GDF-5. Biochemical analysis revealed increased sGAG and Hyp contents in human NP cells infected by Ad-GDF-5 whereas there was no conspicuous change in basal medium (BM) or Ad-green fluorescent protein (GFP) groups. Only cells in the Ad-GDF-5 group promoted the production of ECM, as demonstrated by the secretion of proteoglycan and up-regulation of collagen II and aggrecan at both protein and mRNA levels. The NP cell proliferation was significantly promoted. Conclusions: The data suggest that Ad-GDF-5 gene therapy is a potential treatment for IDD, which restores the functions of degenerative intervertebral disc through enhancing the ECM production of human NP cells. PMID:26739524

  18. Combination therapy with conditionally replicating adenovirus and replication defective adenovirus.

    PubMed

    Lee, Choon-Taek; Park, Kyung-Ho; Yanagisawa, Kiyoshi; Adachi, Yasushi; Ohm, Joyce E; Nadaf, Sorena; Dikov, Mikhail M; Curiel, David T; Carbone, David P

    2004-09-15

    Low gene transfer rate is the most substantial hurdle in the practical application of gene therapy. One strategy to improve transfer efficiency is the use of a conditionally replicating adenovirus (CRAD) that can selectively replicate in tumor cells. We hypothesized that conventional E1-deleted adenoviruses (ad) can become replication-competent when cotransduced with a CRAD to selectively supply E1 in trans in tumors. The resulting selective production of large numbers of the E1-deleted ad within the tumor mass will increase the transduction efficiency. We used a CRAD (Delta24RGD) that produces a mutant E1 without the ability to bind retinoblastoma but retaining viral replication competence in cancer cells with a defective pRb/p16. Ad-lacZ, adenovirus-luciferase (ad-luc), and adenovirus insulin-like growth factor-1R/dominant-negative (ad-IGF-1R/dn; 482, 950) are E1-deleted replication-defective adenoviruses. The combination of CRAD and ad-lacZ increased the transduction efficiency of lacZ to 100% from 15% observed with ad-lacZ alone. Transfer of media of CRAD and ad-lacZ cotransduced cells induced the transfer of lacZ (media transferable bystander effect). Combination of CRAD and ad-IGF-1R/dn increased the production of truncated IGF-1R or soluble IGF-1R > 10 times compared with transduction with ad-IGF-1R/dn alone. Combined intratumoral injection of CRAD and ad-luc increased the luciferase expression about 70 times compared with ad-luc alone without substantial systemic spread. Combined intratumoral injection of CRAD and ad-IGF-1R/482 induced stronger growth suppression of established lung cancer xenografts than single injections. The combination of CRAD and E1-deleted ad induced tumor-specific replication of CRAD and E1-deleted ad and increased the transduction rate and therapeutic efficacy of these viruses in model tumors.

  19. Polyethylene glycol modification of adenovirus reduces platelet activation, endothelial cell activation, and thrombocytopenia.

    PubMed

    Hofherr, Sean E; Mok, Hoyin; Gushiken, Francisca C; Lopez, Jose A; Barry, Michael A

    2007-09-01

    Thrombocytopenia is one of the complications for in vivo administration of adenovirus serotype 5 (Ad5) vectors after intravenous injection. In this paper, we investigated the mechanism of Ad5-induced thrombocytopenia and how these effects are attenuated by polyethylene glycol (PEG) modification of Ad5 (Ad-PEG). After intravenous injection, accelerated platelet loss was observed in Ad-injected mice but not in their Ad-PEG-injected counterparts. This platelet loss induced by Ad5 corresponded with increases in coagulation D-dimer levels, splenomegaly, and, later, production of megakaryocytes in the bone marrow. In contrast, these responses were blunted or ablated after injection of Ad-PEG. Ad5 activated both platelets and endothelial cells directly in vitro as evidenced by induction of P-selectin and the formation of von Willebrand factor-platelet strings and in vivo as evidenced by the induction of E-selectin messenger RNA. PEGylation blunted these observed activations. These data suggest that Ad5 may induce thrombocytopenia by direct activation of endothelial cells in addition to its direct effects on platelets. This link provides an important clue for the understanding of the mechanisms of thrombocytopenia associated with Ad5. Given that PEGylation blunted interactions of Ad with platelets and endothelial cells, reduced D-dimer formation, reduced thrombocytopenia, and reduced splenomegaly, these data suggest that this simple vector modification may have utility to improve the safety of Ad vectors for human gene therapy.

  20. Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus

    PubMed Central

    Doronin, Konstantin; Shashkova, Elena V.; May, Shannon M.; Hofherr, Sean E.

    2009-01-01

    Abstract Oncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection. PEGylation with 20-kDa PEG was as efficient at detargeting adenovirus from Kupffer cells and hepatocytes as virus predosing and warfarin. Bioluminescence imaging of virus distribution in two xenograft tumor models in nude mice demonstrated that PEGylation with 20-kDa PEG reduced liver infection 19- to 90-fold. Tumor transduction levels were similar for vectors PEGylated with 20-kDa PEG and unPEGylated vectors. Anticancer efficacy after a single intravenous injection was retained at the level of unmodified vector in large established prostate carcinoma xenografts, resulting in complete elimination of tumors in all animals and long-term tumor-free survival. Anticancer efficacy after a single intravenous injection was increased in large established hepatocellular carcinoma xenografts, resulting in significant prolongation of survival as compared with unmodified vector. The increase in efficacy was comparable to that obtained with predosing and warfarin pretreatment, significantly extending the median of survival. Shielding adenovirus with 20-kDa PEG may be a useful approach to improve the therapeutic window of oncolytic adenovirus after systemic delivery to primary and metastatic tumor sites. PMID:19469693

  1. Intratumoral Injection of an Adenovirus Expressing Interleukin 2 Induces Regression and Immunity in a Murine Breast Cancer Model

    NASA Astrophysics Data System (ADS)

    Addison, Christina L.; Braciak, Todd; Ralston, Robert; Muller, William J.; Gauldie, Jack; Graham, Frank L.

    1995-08-01

    Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers.

  2. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    PubMed Central

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L.; Bellamy, Scarlett L.; Betts, Michael R.

    2014-01-01

    ABSTRACT The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4+ T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4+ T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4+ T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4+ T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination. IMPORTANCE The possibility that vaccination with a human adenovirus 5 vector increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of human immunodeficiency virus (HIV) acquisition within the Step trial. In this study, we tested whether vaccination with a rhesus macaque-derived adenoviral vector in rhesus macaques enhances mucosal CD4+ T cell activation, the main cell target of simian immunodeficiency virus (SIV)/HIV. The results showed that vaccination with an adenoviral vector indeed increases activation of mucosal CD4+ T cells and potentially increases susceptibility to SIV

  3. Adenoviral vector-based strategies against infectious disease and cancer

    PubMed Central

    Zhang, Chao; Zhou, Dongming

    2016-01-01

    ABSTRACT Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review, we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based vaccines are also discussed. PMID:27105067

  4. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy.

    PubMed

    Choi, Joung-Woo; Park, Ji Won; Na, Youjin; Jung, Soo-Jung; Hwang, June Kyu; Choi, Dongho; Lee, Kyeong Geun; Yun, Chae-Ok

    2015-10-01

    Adenovirus (Ad) is a widely used vector for cancer gene therapy but its therapeutic efficacy is limited by low coxsackievirus and adenovirus receptor (CAR) expression in tumors and non-specifically targeted infection. Ad infectivity and specificity can be markedly improved by creating Ad-magnetic nanoparticles cluster complexes and directing their migration with an external magnetic field (MGF). We electrostatically complexed GFP-expressing, replication-incompetent Ad (dAd) with PEGylated and cross-linked iron oxide nanoparticles (PCION), generating dAd-PCION complexes. The dAd-PCION showed increased transduction efficiency, independent of CAR expression, in the absence or presence of an MGF. Cancer cell killing and intracellular oncolytic Ad (HmT)-PCION replication significantly increased with MGF exposure. Site-directed, magnetically-targeted delivery of the HmT-PCION elicited significantly greater therapeutic efficacy versus treatment with naked HmT or HmT-PCION without MGF in CAR-negative MCF7 tumors. Immunohistochemical tumor analysis showed increased oncolytic Ad replication in tumors following infection by HmT-PCION using an MGF. Whole-body bioluminescence imaging of tumor-bearing mice showed a 450-fold increased tumor-to-liver ratio for HmT-PCION with, versus without, MGF. These results demonstrate the feasibility and potential of external MGF-responsive PCION-coated oncolytic Ads as smart hybrid vectors for cancer gene therapy.

  5. Ad-mTERT-delta19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner.

    PubMed

    Kim, Eunhee; Kim, Joo-Hang; Shin, Ha-Youn; Lee, Hansaem; Yang, Jai Myung; Kim, Jungho; Sohn, Joo-Hyuk; Kim, Hoguen; Yun, Chae-Ok

    2003-10-10

    Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, functions to stabilize telomere length during chromosomal replication. Previous studies have shown that hTERT promoter is highly active in most tumor and immortal cell lines but inactive in normal somatic cell types. The use of wild-type hTERT promoter, however, may be limited by its inability to direct high level and cancer cell-specific expression necessary for effective targeted gene therapy. To improve cancer cell specificity and the strength of the hTERT promoter, a modified hTERT, m-hTERT promoter was generated in which additional copies of c-Myc and Sp1 binding sites were incorporated adjacent to the promoter. As assessed using relative lacZ expression, hTERT and m-hTERT promoter activity was significantly upregulated in cancer cells but not in normal cells, and within these upregulated cancer cells, m-hTERT promoter strength was substantially higher than that of the wild-type hTERT. Next, to restrict viral replication to tumor cells, a conditional replication-competent adenoviruses, Ad-TERT-Delta19 and Ad-mTERT-delta19 were generated in which the E1A gene, which is essential for viral replication, was placed under the control of the hTERT and m-hTERT promoter, respectively. While the wild-type Ad-TERT-delta19 replicated in and induced cytopathic effect in cancer and in some normal cell lines, Ad-mTERT-delta19 enhanced viral replication and cytopathic effect only in cancer cells. Furthermore, the growth of established human cervical carcinoma in nude mice was significantly suppressed by intratumoral injection of Ad-mTERT-delta19. Taken together, present results strongly suggest that the use of the m-hTERT promoter is not only useful in the regulation of therapeutic gene expression but also that replication-competent oncolytic adenovirus under the control of the m-hTERT promoter may be a new promising tool for the treatment of human malignancies.

  6. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease.

    PubMed

    Lu, Zengjun; Bao, Huifang; Cao, Yimei; Sun, Pu; Guo, Jianhun; Li, Pinghua; Bai, Xingwen; Chen, Yingli; Xie, Baoxia; Li, Dong; Liu, Zaixin; Xie, Qingge

    2008-12-19

    Two recombinant adenoviruses were constructed expressing foot-and-mouth disease virus (FMDV) capsid and 3C/3CD proteins in replicative deficient human adenovirus type 5 vector. Guinea pigs vaccinated with 1-3 x 10(8)TCID(50) Ad-P12x3C recombinant adenovirus were completely protected against 10,000GID(50) homologous virulent FMDV challenge 25 days post vaccination (dpv). Ad-P12x3CD vaccinated guinea pigs were only partially protected. Swine were vaccinated once with 1x10(9)TCID(50) Ad-P12x3C hybrid virus and challenged 28 days later. Three of four vaccinated swine were completely protected against 200 pig 50% infectious doses (ID(50)) of homologous FMDV challenge, and vaccinated pigs developed specific cellular and humoral immune responses. The immune effect of Ad-P12x3C in swine further indicated that the recombinant adenovirus was highly efficient in transferring the foreign gene. This approach may thus be a very hopeful tool for developing FMD live virus vector vaccine.

  7. Studies on the Interaction of Tumor-Derived HD5 Alpha Defensins with Adenoviruses and Implications for Oncolytic Adenovirus Therapy.

    PubMed

    Vragniau, Charles; Hübner, Jens-Martin; Beidler, Peter; Gil, Sucheol; Saydaminova, Kamola; Lu, Zhuo-Zhuang; Yumul, Roma; Wang, Hongjie; Richter, Maximilian; Sova, Pavel; Drescher, Charles; Fender, Pascal; Lieber, André

    2017-03-15

    Defensins are small antimicrobial peptides capable of neutralizing human adenovirus (HAdV) in vitro by binding capsid proteins and blocking endosomal escape of virus. In humans, the alpha defensin HD5 is produced by specialized epithelial cells of the gastrointestinal and genito-urinary tracts. Here, we demonstrate, using patient biopsy specimens, that HD5 is also expressed as an active, secreted peptide by epithelial ovarian and lung cancer cells in situ This finding prompted us to study the role of HD5 in infection and spread of replication-competent, oncolytic HAdV type 3 (HAdV3). HAdV3 produces large amounts of penton-dodecahedra (PtDd), virus-like particles, during replication. We have previously shown that PtDd are involved in opening epithelial junctions, thus facilitating lateral spread of de novo-produced virions. Here, we describe a second function of PtDd, namely, the blocking of HD5. A central tool to prove that viral PtDd neutralize HD5 and support spread of progeny virus was an HAdV3 mutant virus in which formation of PtDd was disabled (mut-Ad3GFP, where GFP is green fluorescent protein). We demonstrated that viral spread of mut-Ad3GFP was blocked by synthetic HD5 whereas that of the wild-type (wt) form (wt-Ad3GFP) was only minimally impacted. In human colon cancer Caco-2 cells, induction of cellular HD5 expression by fibroblast growth factor 9 (FGF9) significantly inhibited viral spread and progeny virus production of mut-Ad3GFP but not of wt-Ad3GFP. Finally, the ectopic expression of HD5 in tumor cells diminished the in vivo oncolytic activity of mut-Ad3GFP but not of wt-Ad3GFP. These data suggest a new mechanism of HAdV3 to overcome innate antiviral host responses. Our study has implications for oncolytic adenovirus therapy.IMPORTANCE Previously, it has been reported that human defensin HD5 inactivates specific human adenoviruses by binding to capsid proteins and blocking endosomal escape of virus. The central new findings described in our

  8. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements.

    PubMed

    Hwang, Ji-Eun; Joung, Jae Young; Shin, Seung-Phil; Choi, Moon-Kyung; Kim, Jeong Eun; Kim, Yon Hui; Park, Weon Seo; Lee, Sang-Jin; Lee, Kang Hyun

    2016-03-01

    Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker.

  9. Adenovirus-Mediated FKHRL1/TM Sensitizes Melanoma Cells to Apoptosis Induced by Temozolomide

    PubMed Central

    Egger, Michael E.; McNally, Lacey R.; Nitz, Jonathan; McMasters, Kelly M.

    2014-01-01

    Abstract Melanoma exhibits variable resistance to the alkylating agent temozolomide (TMZ). We evaluated the potential of adenovirus expressing forkhead human transcription factor like 1 triple mutant (Ad-FKHRL1/TM) to sensitize melanoma cells to TMZ. Four melanoma cell lines were treated with Ad-FKHRL1/TM and TMZ, alone or in combination. Apoptosis was assessed by activation and inhibition of caspase pathway, nuclei fragmentation, and annexin V staining. The potential therapeutic efficacy of Ad-FKHRL1/TM with TMZ was also assessed in a mouse melanoma xenograft model. Combination therapy of Ad-FKHRL1/TM and TMZ resulted in greater cell killing (<20% cell viability) compared with single therapy and controls (p<0.05). Combination indices of Ad-FKHRL1/TM and TMZ therapy indicated significant (p<0.05) synergistic killing effect. Greater apoptosis induction was found in cells treated with Ad-FKHRL1/TM and TMZ than with Ad-FKHRL1/TM or TMZ-treated cells alone. Treatment with TMZ enhanced adenovirus transgene expression in a cell type-dependent manner. In an in vivo model, combination therapy of Ad-FKHRL1/TM with TMZ results in greater tumor growth reduction in comparison with single treatments. We suggest that Ad-FKHRL1/TM is a promising vector to sensitize melanoma cells to TMZ, and that a combination of both approaches would be effective in the clinical setting. PMID:25238278

  10. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  11. Unabated Adenovirus Replication following Activation of the cGAS/STING-Dependent Antiviral Response in Human Cells

    PubMed Central

    Lam, Eric

    2014-01-01

    ABSTRACT The cGAS/STING DNA sensing complex has recently been established as a predominant pathogen recognition receptor (PRR) for DNA-directed type I interferon (IFN) innate immune activation. Using replication-defective adenovirus vectors and replication-competent wild-type adenovirus, we have modeled the influence of the cGAS/STING cascade in permissive human cell lines (A549, HeLa, ARPE19, and THP1). Wild-type adenovirus induced efficient early activation of the cGAS/STING cascade in a cell-specific manner. In all responsive cell lines, cGAS/STING short hairpin RNA (shRNA) knockdown resulted in a loss of TBK1 and interferon response factor 3 (IRF3) activation, a lack of beta interferon transcript induction, loss of interferon-dependent STAT1 activation, and diminished induction of interferon-stimulated genes (ISGs). Adenoviruses that infect through the coxsackievirus-adenovirus receptor (CAR) (Ad2 and Ad5) and the CD46 (Ad35) and desmoglein-2 (Ad7) viral receptors all induce the cGAS/STING/TBK1/IRF3 cascade. The magnitude of the IRF3/IFN/ISG antiviral response was strongly influenced by serotype, with Ad35>Ad7>Ad2. For each serotype, no enhancement of viral DNA replication or virus production occurred in cGAS or STING shRNA-targeted cell line pools. We found no replication advantage in permissive cell lines that do not trigger the cGAS/STING cascade following infection. The cGAS/STING/TBK1/IRF3 cascade was not a direct target of viral antihost strategies, and we found no evidence that Ad stimulation of the cGAS/STING DNA response had an impact on viral replication efficiency. IMPORTANCE This study shows for the first time that the cGAS DNA sensor directs a dominant IRF3/IFN/ISG antiviral response to adenovirus in human cell lines. Activation of cGAS occurs with viruses that infect through different high-affinity receptors (CAR, CD46, and desmoglein-2), and the magnitude of the cGAS/STING DNA response cascade is influenced by serotype-specific functions

  12. Cell-Surface Integrins and CAR Are Both Essential for Adenovirus Type 5 Transduction of Canine Cells of Lymphocytic Origin.

    PubMed

    Agarwal, Payal; Gammon, Elizabeth A; Sajib, Abdul Mohin; Sandey, Maninder; Smith, Bruce F

    2017-01-01

    Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvβ3, αvβ5). Ad5's wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvβ3, αvβ5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17-71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvβ3 and αvβ5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17-71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17-71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address the

  13. Cell-Surface Integrins and CAR Are Both Essential for Adenovirus Type 5 Transduction of Canine Cells of Lymphocytic Origin

    PubMed Central

    Gammon, Elizabeth A.; Sajib, Abdul Mohin; Sandey, Maninder; Smith, Bruce F.

    2017-01-01

    Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvβ3, αvβ5). Ad5’s wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvβ3, αvβ5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17–71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvβ3 and αvβ5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17–71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17–71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address

  14. The transduction of Coxsackie and Adenovirus Receptor-negative cells and protection against neutralizing antibodies by HPMA-co-oligolysine copolymer-coated adenovirus

    PubMed Central

    Wang, Chung-Huei K.; Chan, Leslie W.; Johnson, Russell N.; Chu, David S.H.; Shi, Julie; Schellinger, Joan G.; Lieber, Andre; Pun, Suzie H.

    2011-01-01

    Adenoviral (AdV) gene vectors offer efficient nucleic acid transfer into both dividing and non-dividing cells. However issues such as vector immunogenicity, toxicity and restricted transduction to receptor-expressing cells have prevented broad clinical translation of these constructs. To address this issue, engineered AdV have been prepared by both genetic and chemical manipulation. In this work, a polymer-coated Ad5 formulation is optimized by evaluating a series of N-(2-hydroxypropyl) methacrylamide (HPMA)-co-oligolysine copolymers synthesized by living polymerization techniques. This synthesis approach was used to generate highly controlled and well-defined polymers with varying peptide length (K5, K10 and K15), polymer molecular weight, and degradability to coat the viral capsid. The optimal formulation was not affected by the presence of serum during transduction and significantly increased Ad5 transduction of several cell types that lack the Coxsackie and Adenovirus Receptor (CAR) by up to 6-fold compared to unmodified AdV. Polymer-coated Ad5 also retained high transduction capability in the presence of Ad5 neutralizing antibodies. The critical role of heparan sulfate proteoglycans (HSPGs) in mediating cell binding and internalization of polymer-coated AdV was also demonstrated by evaluating transduction in HSPG-defective recombinant CHO cells. The formulations developed here are attractive vectors for ex vivo gene transfer in applications such as cell therapy. In addition, this platform for adenoviral modification allows for facile introduction of alternative targeting ligands. PMID:21959008

  15. Construction and characterization of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75

    PubMed Central

    Kumar, Ramesh; Sreenivasa, B. P.; Tamilselvan, R. P.

    2015-01-01

    Aim: Generation of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus (FMDV) capsid protein genes along with full-length 2B, 3B and 3Cpro and its characterization. Materials and Methods: FMD viral RNA isolation, cDNA synthesis, and polymerase chain reaction were performed to synthesize expression cassettes (P1-2AB3BCwt and P1-2AB3BCm) followed by cloning in pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were transformed with the recombinant pShuttle-CMV to produce recombinant adenoviral plasmids. HEK-293 cells were transfected with the recombinant adenoviral plasmids to generate recombinant adenoviruses (hAd5/P1-2AB3BCwt and hAd5/P1-2AB3BCm). Expression of the target proteins was analyzed by sandwich ELISA and indirect immunofluorescence assay. The recombinant adenoviruses were purified and concentrated by CsCl density gradient ultracentrifugation. Growth kinetics and thermostability of the recombinant adenoviruses were compared with that of non-recombinant replication-defective adenovirus (dAd5). Results: The recombinant adenoviruses containing capsid protein genes of the FMDV O/IND/R2/75 were generated and amplified in HEK-293 cells. The titer of the recombinant adenoviruses was approximately 108, 109.5 and 1011 TCID50/ml in supernatant media, cell lysate and CsCl purified preparation, respectively. Expression of the FMDV capsid protein was detectable in sandwich ELISA and confirmed by immunofluorescence assay. Growth kinetics of the recombinant adenoviruses did not reveal a significant difference when compared with that of dAd5. A decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded in the virus titers during 60 h incubation period and found to be statistically significant (p<0.01). Conclusion: Recombinant adenoviruses expressing capsid proteins of the FMDV O/IND/R2/75 were constructed and produced in high titers. In vitro expression of the target proteins in the adenovirus vector system was detected by

  16. Adenovirus vector-based incorporation of a photo-cross-linkable amino acid into proteins in human primary cells and cancerous cell lines

    PubMed Central

    Kita, Ayami; Hino, Nobumasa; Higashi, Sakiko; Hirota, Kohji; Narumi, Ryohei; Adachi, Jun; Takafuji, Kazuaki; Ishimoto, Kenji; Okada, Yoshiaki; Sakamoto, Kensaku; Tomonaga, Takeshi; Takashima, Seiji; Mizuguchi, Hiroyuki; Doi, Takefumi

    2016-01-01

    The site-specific incorporation of cross-linkable designer amino acids into proteins is useful for covalently bonding protein complexes upon exposure to light. This technology can be used to study networks of protein-protein interactions in living cells; however, to date it has only been applicable for use with a narrow range of cell types, due to the limited availability of plasmid-based transfection protocols. In the present study, we achieved adenovirus-based expression of a variant of an archaeal pyrrolysyl-tRNA synthetase and UAG-recognising tRNA pair, which was used to incorporate unnatural amino acids into proteins at sites defined by in-frame UAG codons within genes. As such, the site-specific photo-cross-linking method is now applicable to a wide variety of mammalian cells. In addition, we repositioned the reactive substituent of a useful photo-cross-linker, Nε-(para-trifluoromethyl-diazirinyl-benzyloxycarbonyl)-l-lysine (pTmdZLys), to the meta position, which improved its availability at low concentration. Finally, we successfully applied this system to analyse the formation of a protein complex in response to a growth signal in human cancerous cells and human umbilical vein endothelial cells. This adenovirus-based system, together with the newly designed cross-linkable amino acid, will facilitate studies on molecular interactions in various cell lines of medical interest. PMID:27833131

  17. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma

    SciTech Connect

    Puntel, Mariana; Ghulam, Muhammad A.K.M.; Farrokhi, Catherine; VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley; Kroeger, Kurt M.; Salem, Alireza; Lacayo, Liliana; Pechnick, Robert N.; Kelson, Kyle R.; Kaur, Sukhpreet; Kennedy, Sean; Palmer, Donna; Ng, Philip; and others

    2013-05-01

    Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ► High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ► HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ► We performed a dose escalation study at

  18. Short-fiber protein of ad40 confers enteric tropism and protection against acidic gastrointestinal conditions.

    PubMed

    Rodríguez, Ester; Romero, Carolina; Río, Adolfo; Miralles, Marta; Raventós, Aida; Planells, Laura; Burgueño, Joan F; Hamada, Hirofumi; Perales, Jose Carlos; Bosch, Assumpció; Gassull, Miguel Angel; Fernández, Ester; Chillon, Miguel

    2013-08-01

    The lack of vectors for selective gene delivery to the intestine has hampered the development of gene therapy strategies for intestinal diseases. We hypothesized that chimeric adenoviruses of Ad5 (species C) displaying proteins of the naturally enteric Ad40 (species F) might hold the intestinal tropism of the species F and thus be useful for gene delivery to the intestine. As oral-fecal dissemination of enteric adenovirus must withstand the conditions encountered in the gastrointestinal tract, we studied the resistance of chimeric Ad5 carrying the short-fiber protein of Ad40 to acid milieu and proteases and found that the Ad40 short fiber confers resistance to inactivation in acidic conditions and that AdF/40S was further activated upon exposure to low pH. In contrast, the chimeric AdF/40S exhibited only a slightly higher protease resistance compared with Ad5 to proteases present in simulated gastric juice. Then, the biodistribution of different chimeric adenoviruses by oral, rectal, and intravenous routes was tested. Expression of reporter β-galactosidase was measured in extracts of 15 different organs 3 days after administration. Our results indicate that among the chimeric viruses, only intrarectally given AdF/40S infected the colon (preferentially enteroendocrine cells and macrophages) and to a lesser extent, the small intestine, whereas Ad5 infectivity was very poor in all tissues. Additional in vitro experiments showed improved infectivity of AdF/40S also in different human epithelial cell lines. Therefore, our results point at the chimeric adenovirus AdF/40S as an interesting vector for selective gene delivery to treat intestinal diseases.

  19. Localization of neutralization epitopes on adenovirus fiber knob from species C.

    PubMed

    Lang, Shuai; Wang, Lizheng; Wang, Zixuan; Zhu, Rui; Yan, Jingyi; Wang, Baoming; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Zhou, Yan; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-04-01

    Although potential neutralization epitopes on the fiber knob of adenovirus (AdV) serotype 2 (Ad2) and Ad5 have been revealed, few studies have been carried out to identify neutralization epitopes on the knob from a broader panel of AdV serotypes. In this study, based on sequence and structural analysis of knobs from Ad1, Ad2, Ad5 and Ad6 (all from species C), several trimeric chimeric knob proteins were expressed in Escherichia coli to identify the locations of neutralization epitopes on the knobs by analysing their reactivity with mouse and rabbit polyclonal sera raised against AdVs and human sera with natural AdV infection. The dominant neutralization epitopes were located mainly in the N-terminal part of knobs from Ad1, Ad2 and Ad5, but they seemed to be located in the C-terminal part of the Ad6 knob, with some individual differences in rabbit and human populations. Our study adds to our understanding of humoral immune responses to AdVs and will facilitate the construction of more desirable capsid-modified recombinant Ad5 vectors.

  20. Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: Implications for ovarian cancer therapy

    SciTech Connect

    Thoma, Clemens; Bachy, Veronique; Seaton, Patricia; Green, Nicola K.; Greaves, David R.; Klavinskis, Linda; Seymour, Leonard W.; Morrison, Joanne

    2013-12-15

    In a phase II/III clinical trial intraperitoneal (i.p.) administration of a group C adenovirus vector (Ad5) caused bowel adhesion formation, perforation and obstruction. However, we had found that i.p. group B, in contrast to group C adenoviruses, did not cause adhesions in nude BALB/c ovarian cancer models, prompting further investigation. Ex vivo, group B Ad11 caused lower inflammatory responses than Ad5 on BALB/c peritoneal macrophages. In vivo, i.p. Ad11 triggered short-term cytokine and cellular responses equal to Ad5 in both human CD46-positive and -negative mice. In contrast, in a long-term study of repeated i.p. administration, Ad11 caused no/mild, whereas Ad5 induced moderate/severe adhesions and substantial liver toxicity accompanied by elevated levels of IFNγ and VEGF and loss of i.p. macrophages, regardless of CD46 expression. It appears that, although i.p. Ad11 evokes immediate inflammation similar to Ad5, repeated administration of Ad11 is better tolerated and long-term fibrotic tissue remodelling is reduced. - Highlights: • i.p. Ad11 causes less long-term intraperitoneal inflammation than Ad5 in CD46-transgenic mice. • Ex vivo BALB/c peritoneal macrophages express less RANTES after Ad11 than Ad3 or Ad5 treatment. • In vivo, cytokine and cellular responses 6 h after i.p. Ad11 are equal to Ad5. • In contrast, after repeated i.p. application, Ad5, but not Ad11, causes severe i.p. toxicity. • The use of Ad11 instead of Ad5 might increase patient safety in future virotherapy of ovarian cancer.

  1. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    PubMed

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma.

  2. Determination of particle heterogeneity and stability of recombinant adenovirus by analytical ultracentrifugation in CsCl gradients.

    PubMed

    Yang, Xiaoyu; Agarwala, Shilpi; Ravindran, Sundari; Vellekamp, Gary

    2008-02-01

    Recombinant adenoviruses (rAd), widely used as vectors for gene therapy, are generally purified by column chromatography and frequently contain empty capsids and other aberrant forms of virus particles. To determine particle heterogeneity we utilized analytical ultracentrifugation (AUC) in CsCl density gradients. Preparations of three different rAd vectors were assessed. AUC was able to resolve multiple density forms including two empty capsid types in various virus preparations. One unusual density form (form V), was noninfectious and lacked protein VI. AUC was able to quantify empty capsids and monitor their removal during process development. Their relative concentrations were reduced by either addition of an immobilized zinc affinity chromatography (IZAC) step or by extension of the infection time. The Adenovirus Reference Material (ARM), a wild-type Ad5, had 2.2% empty capsids and no other detectable minor particle forms. Finally, AUC was utilized to monitor the thermal instability of the three rAd vectors via the transformations of different density forms. The vector and empty capsids containing protein IX were more stable than those without IX. Together, these results exemplify AUC in CsCl density gradients as a valuable technique for evaluating product particle heterogeneity and stability.

  3. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. PMID:24475024

  4. Use of dodecahedron "VLPs" as an alternative to the whole adenovirus.

    PubMed

    Fender, Pascal

    2014-01-01

    During human adenovirus type 3 (Ad3) infection, an excess of penton base and fiber proteins are produced. These form dodecahedral particles composed of 12 pentamers of penton base and 12 trimers of fiber protein. Beside this "natural" expression, the adenovirus dodecahedron can be expressed in the heterologous baculovirus system in two forms: a fiber-devoid dodecahedron made only of 12 penton bases (called base-dodecahedron: Bs-Dd) and the fiber-containing dodecahedron (called penton dodecahedron: Pt-Dd). These particles partly mimic the adenoviral cellular entry pathway but are devoid of genetic information making them an unusual tool for basic research or applications. We report here how these particles are expressed and purified, the labeling method for trafficking studies as well as their use in molecular interaction studies. The potential of these particles for biotechnological applications is under evaluation, making their study a "niche" along side traditional adenoviral vectors.

  5. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy.

    PubMed

    Wang, Weiguo; Ji, Weidan; Hu, Huanzhang; Ma, Juming; Li, Xiaoya; Mei, Weiqun; Xu, Yang; Hu, Huizhen; Yan, Yan; Song, Qizhe; Li, Zhigang; Su, Changqing

    2014-01-15

    Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.

  6. Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression.

    PubMed Central

    Bruder, J T; Kovesdi, I

    1997-01-01

    Previous studies have shown that airway administration of adenovirus or adenovirus vectors results in a dose-dependent inflammatory response which limits the duration of transgene expression. We explored the possibility that adenovirus infection triggers signal transduction pathways that induce the synthesis of cytokines and thus contribute to the early inflammatory response. Since stimulation of the Raf/mitogen-activated protein kinase (MAPK) pathway activates transcription factors that control the expression of inflammatory cytokines, we examined the activation of this pathway following adenovirus infection. Adenovirus infection induced the rapid activation of Raf-1 and a transient increase in the tyrosine phosphorylation and activation of p42mapk at early times postinfection. Activation of the Raf/MAPK pathway by adenovirus is likely triggered by the infection process, since it occurred rapidly and with various mutant adenoviruses and adenovirus vectors. Moreover, interleukin-8 (IL-8) mRNA accumulation was evident at 20 min postinfection and was induced even in the presence of cycloheximide. Both MAPK activation and IL-8 production were inhibited by forskolin, a potent inhibitor of Raf-1. These results suggest that adenovirus-induced Raf/MAPK activation contributes to IL-8 production. Adenovirus-induced activation of the Raf/MAPK signaling pathway and IL-8 production may play critical roles in the inflammation observed following in vivo administration of adenovirus vectors for gene therapy. PMID:8985363

  7. Adenovirus DNA polymerase is a phosphoprotein.

    PubMed

    Ramachandra, M; Nakano, R; Mohan, P M; Rawitch, A B; Padmanabhan, R

    1993-01-05

    Biological activities of many of the eukaryotic DNA replication proteins are modulated by protein phosphorylation. Investigations of the phosphorylation of adenovirus DNA polymerase (AdPol) have been difficult mainly because of its low level of synthesis in adenovirus-infected HeLa cells. However, when AdPol was overproduced using the recombinant vaccinia virus (RV-AdPol) and the baculovirus expression systems, or by a large scale metabolic labeling of adenovirus 2-infected HeLa cells (native AdPol), in vivo phosphorylation of AdPol could be demonstrated. Phosphoamino acid analysis of [32P]AdPol indicated the presence of phosphoserine independent of the source of AdPol. Comparison of tryptic peptide maps of native AdPol and RV-AdPol revealed that the majority of phosphopeptides were common. Fractionation by high performance liquid chromatography and sequencing of one of the major phosphopeptides revealed serine 67 as a site of phosphorylation. Interestingly, this site is located close to the nuclear localization signal of AdPol and has a consensus substrate recognition sequence for histone H1 (cdc2-related) kinases and mitogen-activated protein kinases. Dephosphorylation of AdPol with calf intestinal alkaline phosphatase resulted in significant decrease in its activity in the in vitro DNA replication initiation assay, suggesting that phosphorylation is important for its biological activity.

  8. Ammonium sulphate precipitation of recombinant adenovirus from culture medium: an easy method to increase the total virus yield.

    PubMed

    Schagen, F H; Rademaker, H J; Rabelink, M J; van Ormondt, H; Fallaux, F J; van der Eb, A J; Hoeben, R C

    2000-09-01

    In the majority of the methods for purifying and concentrating recombinant adenoviruses (rAds) the virus that is associated with the helper cells is harvested, while the virus that is present in the cell-culture medium is discarded. During routine propagation of adenovirus type-5 vectors at optimised conditions we noted that, on average, 47% of the total amount of virus is present in the culture medium. To recover and concentrate these rAds from the medium, we devised a method, which is based on ammonium sulphate ((NH4)2SO4) precipitation. At 40% (NH4)2SO4 saturation, 95 +/- 6% of the available virus precipitates from the medium, while the majority of the protein (85%) remains in solution. In contrast to adenovirus precipitation with polyethylene glycol, the (NH4)2SO4 precipitation technique allows collection of precipitated rAds by filtration. We demonstrate here that (NH4)2SO4 precipitation of rAds from cell-culture medium is a simple and fast technique that can be used in combination with standard virus isolation methods to increase the yields of rAds.

  9. Isolation and Characterization of Adenoviruses Persistently Shed from the Gastrointestinal Tract of Non-Human Primates

    PubMed Central

    Kryazhimskiy, Sergey; Grant, Rebecca; Calcedo, Roberto; Yuan, Xin; Keough, Martin; Sandhu, Arbans; Wang, Qiang; Medina-Jaszek, C. Angelica; Plotkin, Joshua B.; Wilson, James M.

    2009-01-01

    Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors. PMID:19578438

  10. Protection against Enterovirus 71 with Neutralizing Epitope Incorporation within Adenovirus Type 3 Hexon

    PubMed Central

    Tian, Xingui; Su, Xiaobo; Li, Xiao; Li, Haitao; Li, Ting; Zhou, Zhichao; Zhong, Tianhua; Zhou, Rong

    2012-01-01

    Enterovirus 71 (EV71) is responsible for hand, foot and mouth disease with high mortality among children. Various neutralizing B cell epitopes of EV71 have been identified as potential vaccine candidates. Capsid-incorporation of antigens into adenovirus (Ad) has been developed for a novel vaccine approach. We constructed Ad3-based EV71 vaccine vectors by incorporating a neutralizing epitope SP70 containing 15 amino acids derived from capsid protein VP1 of EV71 within the different surface-exposed domains of the capsid protein hexon of Ad3EGFP, a recombinant adenovirus type 3 (Ad3) expressing enhanced green fluorescence protein. Thermostability and growth kinetic assays suggested that the SP70 epitope incorporation into hypervariable region (HVR1, HVR2, or HVR7) of the hexon did not affect Ad fitness. The SP70 epitopes were thought to be exposed on all hexon-modified intact virion surfaces. Repeated administration of BALB/c mice with the modified Ads resulted in boosting of the anti-SP70 humoral immune response. Importantly, the modified Ads immunization of mother mice conferred protection in vivo to neonatal mice against the lethal EV71 challenge, and the modified Ads-immunized mice serum also conferred passive protection against the lethal challenge in newborn mice. Compared with the recombinant GST-fused SP70 protein immunization, immunization with the Ads containing SP70 in HVR1 or HVR2 elicited higher SP70-specific IgG titers, higher neutralization titers, and conferred more effective protection to neonatal mice. Thus, this study provides valuable information for hexon-modified Ad3 vector development as a promising EV71 vaccine candidate and as an epitope-delivering vehicle for other pathogens. PMID:22848478

  11. Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration.

    PubMed

    Kim, Pyung-Hwan; Kim, Jaesung; Kim, Tae-il; Nam, Hye Yeong; Yockman, James W; Kim, Minjung; Kim, Sung Wan; Yun, Chae-Ok

    2011-12-01

    Systemic administration of adenovirus (Ad) vectors is complicated by host immune responses and viral accumulation in the liver, resulting in a short circulatory virus half-life, low efficacy, and host side effects. Ad surface modification is thus required to enhance safety and therapeutic efficacy. An arginine-grafted bioreducible polymer (ABP) was chemically conjugated to the Ad surface, generating Ad-ΔE1/GFP-ABP. A hepatocellular carcinoma [HCC]-selective oncolytic Ad complex, YKL-1001-ABP, was also generated. Transduction efficiency of Ad-ΔE1/GFP-ABP was enhanced compared to naked Ad-ΔE1/GFP. YKL-1001-ABP elicited an enhanced and specific killing effect in liver cancer cells (Huh7 and HepG2) expressing α-fetoprotein (AFP). Compared with naked Ad, systemic administration of ABP-conjugated Ad resulted in reduced liver toxicity and interleukin (IL)-6 production in vitro and in vivo. Ad-ΔE1/GFP-ABP was more resistant to the neutralizing effects of human serum compared to naked Ad-ΔE1/GFP. ABP conjugation extended blood circulation time 45-fold and reduced anti-Ad Ab neutralization. Moreover, systemic administration of YKL-1001-ABP markedly suppressed growth of Huh7 hepatocellular carcinoma. These results demonstrate that chemical conjugation of ABP to the Ad surface improves safety and efficacy, indicating that ABP-conjugated Ad is a potentially useful cancer therapeutic agent to target cancer via systemic administration.

  12. Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system.

    PubMed

    Venkatraman, Giri; Behrens, Maik; Pyrski, Martina; Margolis, Frank L

    2005-09-01

    Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.

  13. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression.

    PubMed

    Hemminki, A; Belousova, N; Zinn, K R; Liu, B; Wang, M; Chaudhuri, T R; Rogers, B E; Buchsbaum, D J; Siegal, G P; Barnes, M N; Gomez-Navarro, J; Curiel, D T; Alvarez, R D

    2001-09-01

    The adenovirus (Ad) is a useful vector for cancer gene therapy due to its unparalleled gene transfer efficiency to dividing and quiescent cells. Primary cancer cells, however, often have highly variable or low levels of the requisite coxsackie-adenovirus receptor (CAR). Also, assessment of gene transfer and vector persistence has been logistically difficult in human clinical trials. We describe here two novel bicistronic adenoviral (Ad) vectors, AdTKSSTR and RGDTKSSTR, which contain the herpes simplex virus thymidine kinase gene (TK) for molecular chemotherapy and bystander effect. In addition, the viruses contain the human somatostatin receptor subtype-2 gene (SSTR2), the expression of which can be noninvasively imaged. We enhanced the infectivity of RGDTKSSTR by genetically incorporating the RGD-4C motif into the HI-loop of the fiber. This allows the virus to circumvent CAR deficiency by binding to alpha(v)beta(3) and alpha(v)beta(5) integrins, which are highly expressed on most ovarian cancers. The expanded tropism of RGDTKSSTR results in increased infectivity of purified primary ovarian cancer cells and allows enhanced gene transfer in the presence of malignant ascites containing anti-Ad antibodies. RGDTKSSTR may be a useful agent for treating ovarian cancer in clinical trials.

  14. Adenovirus vector-mediated Gli1 siRNA induces growth inhibition and apoptosis in human pancreatic cancer with Smo-dependent or Smo-independent Hh pathway activation in vitro and in vivo.

    PubMed

    Guo, Jiefang; Gao, Jun; Li, Zhaoshen; Gong, Yanfang; Man, Xiaohua; Jin, Jing; Wu, Hongyu

    2013-10-10

    Activation of Hedgehog (Hh) signaling pathway is a core molecular mechanism in pancreatic carcinogenesis. However, the inhibition of upstream Hh signals does not inhibit the growth of a subset of pancreatic cancer (PC). This study was to examine the effect of siRNA targeting Gli1, the downstream component of Hh pathway, on PC cells and to provide some insight into the underlying mechanisms. A Gli1siRNA-expressing adenovirus (Ad-U6-Gli1siRNA) was constructed, and its effect on PC cells was investigated in vitro and in vivo. Gli1 was expressed in 83.3% (20/24) PC tissues, whereas no expression was found in normal pancreatic ductal epithelium. Gli1 was expressed in SW1990 and CFPAC cells in which Smo was completely absent, as well as in PaTu8988, Panc-1 and BxPC-3 cells in which Smo was concomitantly present. Ad-U6-Gli1siRNA induced cell growth inhibition, strong G0/G1 cell cycle arrest and apoptosis in all five human PC cell lines. Meanwhile, Ad-U6-Gli1siRNA significantly suppressed the expression of Gli1, Ptch1 and two target genes, Cyclin D2 and Bcl-2, in all five lines. Furthermore, two tumor xenograft nude mice models were established by subcutaneously injecting Smo-positive Panc-1 cells or Smo-negative SW1990 cells. The in vivo experimental results demonstrated that Ad-U6-Gli1siRNA inhibited the growth of both Panc1-derived and SW1990-derived tumors and induced cell apoptosis. Our study indicates that Gli1-targeting siRNA could induce growth inhibition and apoptosis in PC through knockdown of Gli1 and its target genes; and this method may represent a more effective therapeutic strategy for PC with Smo-dependent or Smo-independent Hh pathway activation.

  15. Safety Profiles and Antitumor Efficacy of Oncolytic Adenovirus Coated with Bioreducible Polymer in the Treatment of a CAR Negative Tumor Model

    PubMed Central

    2015-01-01

    Adenovirus (Ad) vectors show promise as cancer gene therapy delivery vehicles, but immunogenic safety concerns and coxsackie and adenovirus receptor (CAR)-dependency have limited their use. Alternately, biocompatible and bioreducible nonviral vectors, including arginine-grafted cationic polymers, have been shown to deliver nucleic acids through a cell penetration peptide (CPP) and protein transduction domain (PTD) effect. We utilized the advantages of both viral and nonviral vectors to develop a hybrid gene delivery vehicle by coating Ad with mPEG-PEI-g-Arg-S-S-Arg-g-PEI-mPEG (Ad/PPSA). Characterization of Ad/PPSA particle size and zeta potential showed an overall size and cationic charge increase in a polymer concentration-dependent manner. Ad/PPSA also showed a marked transduction efficiency increase in both CAR-negative and -positive cells compared to naked Ad. Competition assays demonstrated that Ad/PPSA produced higher transgene expression levels than naked Ad and achieved CAR-independent transduction. Oncolytic Ad (DWP418)/PPSA was able to overcome the nonspecificity of polymer-only therapies by demonstrating cancer-specific killing effects. Furthermore, the DWP418/PPSA nanocomplex elicited a 2.24-fold greater antitumor efficacy than naked Ad in vivo. This was supported by immunohistochemical confirmation of Ad E1As accumulation in MCF7 xenografted tumors. Lastly, intravenous injection of DWP418/PPSA elicited less innate immune response compared to naked Ad, evaluated by interleukin-6 cytokine release into the serum. The increased antitumor effect and improved vector targeting to both CAR-negative and -positive cells make DWP418/PPSA a promising tool for cancer gene therapy. PMID:25400213

  16. Safety profiles and antitumor efficacy of oncolytic adenovirus coated with bioreducible polymer in the treatment of a CAR negative tumor model.

    PubMed

    Jung, Soo-Jung; Kasala, Dayananda; Choi, Joung-Woo; Lee, Soo-Hwan; Hwang, June Kyu; Kim, Sung Wan; Yun, Chae-Ok

    2015-01-12

    Adenovirus (Ad) vectors show promise as cancer gene therapy delivery vehicles, but immunogenic safety concerns and coxsackie and adenovirus receptor (CAR)-dependency have limited their use. Alternately, biocompatible and bioreducible nonviral vectors, including arginine-grafted cationic polymers, have been shown to deliver nucleic acids through a cell penetration peptide (CPP) and protein transduction domain (PTD) effect. We utilized the advantages of both viral and nonviral vectors to develop a hybrid gene delivery vehicle by coating Ad with mPEG-PEI-g-Arg-S-S-Arg-g-PEI-mPEG (Ad/PPSA). Characterization of Ad/PPSA particle size and zeta potential showed an overall size and cationic charge increase in a polymer concentration-dependent manner. Ad/PPSA also showed a marked transduction efficiency increase in both CAR-negative and -positive cells compared to naked Ad. Competition assays demonstrated that Ad/PPSA produced higher transgene expression levels than naked Ad and achieved CAR-independent transduction. Oncolytic Ad (DWP418)/PPSA was able to overcome the nonspecificity of polymer-only therapies by demonstrating cancer-specific killing effects. Furthermore, the DWP418/PPSA nanocomplex elicited a 2.24-fold greater antitumor efficacy than naked Ad in vivo. This was supported by immunohistochemical confirmation of Ad E1As accumulation in MCF7 xenografted tumors. Lastly, intravenous injection of DWP418/PPSA elicited less innate immune response compared to naked Ad, evaluated by interleukin-6 cytokine release into the serum. The increased antitumor effect and improved vector targeting to both CAR-negative and -positive cells make DWP418/PPSA a promising tool for cancer gene therapy.

  17. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    SciTech Connect

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  18. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    SciTech Connect

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; Hu, Zebin; Cleveland, Elyse; Wu, Ying; Hutten, Ryan; Xiao, Xianghui; Stock, Stuart R.; Shevrin, Daniel; Kaul, Karen; Brendler, Charles; Iozzo, Renato V.; Seth, Prem

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle to establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.

  19. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    DOE PAGES

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; ...

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle tomore » establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.« less

  20. Dramatic Decline of Respiratory Illness Among US Military Recruits After the Renewed Use of Adenovirus Vaccines

    DTIC Science & Technology

    2014-10-01

    Naval Health Research Center Dramatic Decline of Respiratory Illness Among US Military Recruits After the Renewed Use of Adenovirus Vaccines ...Renewed Use of Adenovirus Vaccines Jennifer M. Radin,1,2 Anthony W. Hawksworth,1 Patrick J. Blair,1 Dennis J. Faix,3 Rema Raman,4 Kevin L. Russell,5...hiatus, oral vaccines against adenovirus types 4 (Ad4) and 7 (Ad7) were again produced and administered to US military recruits. This study examined the

  1. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival

    PubMed Central

    Miller, Daniel L; Myers, Chad L; Rickards, Brenden; Coller, Hilary A; Flint, S Jane

    2007-01-01

    Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors. PMID:17430596

  2. MicroRNA-Mediated Suppression of Oncolytic Adenovirus Replication in Human Liver

    PubMed Central

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3′ untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver. PMID:23349911

  3. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    PubMed

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  4. A novel adenovirus in Chinstrap penguins (Pygoscelis antarctica) in Antarctica.

    PubMed

    Lee, Sook-Young; Kim, Jeong-Hoon; Park, Yon Mi; Shin, Ok Sarah; Kim, Hankyeom; Choi, Han-Gu; Song, Jin-Won

    2014-05-07

    Adenoviruses (family Adenoviridae) infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica), collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1), showed nucleotide (amino acid) sequence identity of 71.8% (65.5%) with South Polar skua 1 (SPSAdV-1), 71% (70%) with raptor adenovirus 1 (RAdV-1), 71.4% (67.6%) with turkey adenovirus 3 (TAdV-3) and 61% (61.6%) with frog adenovirus 1 (FrAdV-1). Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™) cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins.

  5. Use of an Automated Image Processing Program to Quantify Recombinant Adenovirus Particles

    NASA Astrophysics Data System (ADS)

    Obenauer-Kutner, Linda J.; Halperin, Rebecca; Ihnat, Peter M.; Tully, Christopher P.; Bordens, Ronald W.; Grace, Michael J.

    2005-02-01

    Electron microscopy has a pivotal role as an analytical tool in pharmaceutical research. However, digital image data have proven to be too large for efficient quantitative analysis. We describe here the development and application of an automated image processing (AIP) program that rapidly quantifies shape measurements of recombinant adenovirus (rAd) obtained from digitized field emission scanning electron microscope (FESEM) images. The program was written using the macro-recording features within Image-Pro® Plus software. The macro program, which is linked to a Microsoft Excel spreadsheet, consists of a series of subroutines designed to automatically measure rAd vector objects from the FESEM images. The application and utility of this macro program has enabled us to rapidly and efficiently analyze very large data sets of rAd samples while minimizing operator time.

  6. Co-vaccination with adeno-associated virus vectors encoding human papillomavirus 16 L1 proteins and adenovirus encoding murine GM-CSF can elicit strong and prolonged neutralizing antibody.

    PubMed

    Liu, Dai-Wei; Chang, Junn-Liang; Tsao, Yeou-Ping; Huang, Chien-Wei; Kuo, Shu-Wen; Chen, Show-Li

    2005-01-01

    Non-infectious human papillomavirus-like particles (VLPs), encoded by the major capsid gene L1, have been shown to be effective as vaccines to prevent cervical cancer. We have developed the genetic immunization of the L1 gene to induce a neutralizing antibody. We constructed and generated a recombinant adeno-associated virus encoding human papillomavirus (HPV) 16 L1 protein that could form virus-like particles in transduced cells. Previous reports have demonstrated that the formation of VLP is necessary to induce high titers of neutralizing antibodies to protect an animal from viral challenge. Therefore, we carried out a single intramuscular (i.m.) injection with recombinant adeno-associated virus encoding HPV-16 L1 protein (rAAV-16L1) in BALB/c mice, which ultimately produced stronger and more prolonged neutralizing L1 antibodies, when compared to the DNA vaccine. Immunohistochemistry showed that the accumulation of antigen presenting cells, such as macrophages and dendritic cells, in rAAV-16L1 and L1 DNA-injected muscle fibers may be due to the L1 protein expression, but not to AAV infection. When compared to the L1 VLP vaccine, however, the titers of neutralizing L1 antibodies induced by VLP were higher than those induced by rAAV-16L1. Co-vaccinating with rAAV-16L1 and adenovirus encoding murine GM-CSF (rAAV-16L1/rAd-mGM-CSF) induced comparable higher levels of neutralizing L1 antibodies with those of VLP. This implies that a single i.m. co-injection with rAAV-16L1/rAd-mGM-CSF can achieve the same vaccine effect as a VLP vaccine requiring 3 booster injections.

  7. Differential Specificity and Immunogenicity of Adenovirus Type 5 Neutralizing Antibodies Elicited by Natural Infection or Immunization▿

    PubMed Central

    Cheng, Cheng; Gall, Jason G. D.; Nason, Martha; King, C. Richter; Koup, Richard A.; Roederer, Mario; McElrath, M. Juliana; Morgan, Cecilia A.; Churchyard, Gavin; Baden, Lindsey R.; Duerr, Ann C.; Keefer, Michael C.; Graham, Barney S.; Nabel, Gary J.

    2010-01-01

    A recent clinical trial of a T-cell-based AIDS vaccine delivered with recombinant adenovirus type 5 (rAd5) vectors showed no efficacy in lowering viral load and was associated with increased risk of human immunodeficiency virus type 1 (HIV-1) infection. Preexisting immunity to Ad5 in humans could therefore affect both immunogenicity and vaccine efficacy. We hypothesized that vaccine-induced immunity is differentially affected, depending on whether subjects were exposed to Ad5 by natural infection or by vaccination. Serum samples from vaccine trial subjects receiving a DNA/rAd5 AIDS vaccine with or without prior immunity to Ad5 were examined for the specificity of their Ad5 neutralizing antibodies and their effect on HIV-1 immune responses. Here, we report that rAd5 neutralizing antibodies were directed to different components of the virion, depending on whether they were elicited by natural infection or vaccination in HIV vaccine trial subjects. Neutralizing antibodies elicited by natural infection were directed largely to the Ad5 fiber, while exposure to rAd5 through vaccination elicited antibodies primarily to capsid proteins other than fiber. Notably, preexisting immunity to Ad5 fiber from natural infection significantly reduced the CD4 and CD8 cell responses to HIV Gag after DNA/rAd5 vaccination. The specificity of Ad5 neutralizing antibodies therefore differs depending on the route of exposure, and natural Ad5 infection compromises Ad5 vaccine-induced immunity to weak immunogens, such as HIV-1 Gag. These results have implications for future AIDS vaccine trials and the design of next-generation gene-based vaccine vectors. PMID:19846512

  8. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  9. Combined Therapy with Cytokine-Induced Killer Cells and Oncolytic Adenovirus Expressing IL-12 Induce Enhanced Antitumor Activity in Liver Tumor Model

    PubMed Central

    Shan, Juanjuan; Shen, Junjie; Liu, Limei; Xu, Yanmin; Xia, Feng; Bie, Ping; Zhang, Xia; Cui, Youhong; Bian, Xiu-wu; Qian, Cheng

    2012-01-01

    Both adoptive immunotherapy and gene therapy hold a great promise for treatment of malignancies. However, these strategies exhibit limited anti-tumor activity, when they are used alone. In this study, we explore whether combination of cytokine-induced killer (CIK) adoptive immunotherapy with oncolytic adenovirus-mediated transfer of human interleukin-12 (hIL-12) gene induce the enhanced antitumor potency. Our results showed that oncolytic adenovirus carrying hIL-12 (AdCN205-IL12) could produce high levels of hIL-12 in liver cancer cells, as compared with replication-defective adenovirus expressing hIL-12 (Ad-IL12). AdCN205-IL12 could specifically induce cytotoxocity to liver cancer cells. Combination of CIK cells with AdCN205-IL12 could induce higher antitumor activity to liver cancer cells in vitro than that induced by either CIK or AdCN205-IL12 alone, or combination of CIK and control vector AdCN205-GFP. Furthermore, treatment of the established liver tumors with the combined therapy of CIK cells and AdCN205-IL12 resulted in tumor regression and long-term survival. High level expression of hIL-12 in tumor tissues could increase traffic of CIK cells to tumor tissues and enhance their antitumor activities. Our study provides a novel strategy for the therapy of cancer by the combination of CIK adoptive immunotherapy with oncolytic adenovirus-mediated transfer of immune stimulatory molecule hIL-12. PMID:23028626

  10. Emerging adenoviral vectors for stable correction of genetic disorders.

    PubMed

    Jager, Lorenz; Ehrhardt, Anja

    2007-08-01

    Recent drawbacks in treating patients with severe combined immunodeficiency disorders with retroviral vectors underline the importance of generating novel tools for stable transduction of mammalian cells. Substantial progress has been made over the recent years which may offer important steps towards stable and more importantly safer correction of genetic diseases. This article discusses recent advances for stable transduction of target cells based on adenoviral gene transfer. There is accumulating evidence that recombinant adenoviral vectors (AdVs) based on various human serotypes with a broad cellular tropism and adenoviruses (Ads) from different species will play an important role in future gene therapy applications. In combination with recombinant AdVs for somatic integration these gene transfer vectors offer high transduction efficiencies with potentially safer integration patterns. Other approaches for persistent transgene expression include excision of stable episomes from the adenoviral vector genome, but also long-term persistence of the complete adenoviral vector genome as an episomal DNA molecule was demonstrated and exemplified by the treatment of various genetic diseases in small and large animal models. This review displays advantages but also limitations of these Ad based vector systems. This is the perfect time to pursue such approaches because alternative strategies for stable transduction of mammalian cells undergoing many cell divisions are urgently needed. Looking into the future, we believe that a combination of different components from different viral vectors in concert with non-viral vector systems will be successful in designing significantly optimized transfer vehicles for a broad range of different genetic diseases.

  11. Adenovirus-mediated interleukin (IL)-24 immunotherapy for cancer.

    PubMed

    Ramesh, Rajagopal; Ioannides, Constantine G; Roth, Jack A; Chada, Sunil

    2010-01-01

    Interleukin-24 (IL-24) is a member of the IL-10 cytokine family. IL-24, also known as melanoma differentiation associated gene 7 (mda-7), is a unique cytokine in that it has cytokine properties and functions as a novel tumor suppressor gene. Studies by us and other investigators using viral and non-viral vectors have demonstrated IL-24 overexpression in human cancer cells inhibited tumor growth both in vitro and in vivo. A majority of these studies using immunodeficient animal models have focused on demonstrating the direct anticancer properties of IL-24. Very few studies have focused on studying the immunotherapeutic properties of IL-24 despite it being reported to function as a Th1 cytokine. A phase I clinical trial using an adenovirus vector expressing IL-24 (Ad-IL24/INGN241) reported Ad-IL24 treatment of cancer patients resulted in changes in cytokines and T cells. However, well-designed and detailed preclinical studies to support the clinical findings are warranted. Demonstrating immune modulation by IL-24 will provide a rationale for developing IL-24-based immunotherapeutic approaches for cancer treatment.In the present chapter, we provide experimental details for conducting IL-24-based immunotherapy studies. As it is not possible for the authors to cover all of the information the authors recommend reading other immunology-based literature and procedures for a better understanding of conducting preclinical studies.

  12. Polyethylene glycol-grafted polyethylenimine used to enhance adenovirus gene delivery.

    PubMed

    Singarapu, Kumar; Pal, Ivy; Ramsey, Joshua D

    2013-07-01

    An improved adenoviral-based gene delivery vector was developed by complexing adenovirus (Ad) with a biocompatible, grafted copolymer PEG-g-PEI composed of polyethylene glycol (PEG) and polyethylenimine (PEI). Although an Ad-based gene vector is considered relatively safe, its native tropism, tendency to elicit an immune response, and susceptibility to inactivating antibodies makes the virus less than ideal. The goal of the current study was to determine whether Ad could be complexed with a PEG-g-PEI copolymer that would enable the virus to transduce cells lacking the Ad receptor, while avoiding the issues commonly associated with PEI. A copolymer library was synthesized using 2 kDa PEG and either linear or branched PEI (25 kDa) with a PEG to PEI grafting ratio of 10, 20, or 30. The results of the study indicate that PEG-g-PEI/Ad complexes are indeed able to transduce CAR-negative NIH 3T3 cells. The results also demonstrate that the PEG-g-PEI/Ad complexes are less toxic, less hemolytic, and more appropriately sized than PEI/Ad complexes.

  13. IMMUNOFLUORESCENT STUDIES OF THE POTENTIATION OF AN ADENOVIRUS-ASSOCIATED VIRUS BY ADENOVIRUS 7

    PubMed Central

    Blacklow, Neil R.; Hoggan, M. David; Rowe, Wallace P.

    1967-01-01

    A quantitative immunofluorescent procedure for detection of viral antigen was used to study the potentiation of AAV-1 by Ad.7. AAV viral antigen formed only when the cells were also infected with adenovirus, and only in cell culture systems in which the adenovirus infection proceeded to completion. Ad. 7 infection of AGMK. cell cultures did not potentiate AAV unless the Ad. 7 infection was itself potentiated by SV40. Dose-response studies indicated that a single AAV particle and a single infectious Ad. 7 particle sufficed to initiate AAV antigen synthesis. Sequential inoculation studies showed that AAV antigen formed simultaneously with Ad. 7 viral antigen when the AAV was inoculated any time between 15 hr before to 10 hr after the Ad. 7, both antigens appearing about 15 hr after inoculation of Ad. 7. The AAV-1 antigen formation had a minimum latent period of 5 hr, as seen with Ad. 7 preinfection of 10 hr or more. When UV-irradiated Ad. 7 was used as helper, the AAV antigen still appeared simultaneously with the Ad. 7 viral antigen, even though the latter was delayed by 23 hr compared to nonirradiated virus. When the early replicative events of both viruses were allowed to proceed in FUDR-inhibited cells, and then the FUDR inhibition was reversed, AAV antigen formed within 2 hr, which was 3 hr before the Ad. 7 viral antigen appeared. It was inferred that the event in the adenovirus cycle that renders a cell competent to synthesize AAV occurs after the 10th hr and may be temporally associated with replication of the adenovirus DNA. PMID:4225814

  14. Effects of Nasal or Pulmonary Delivered Treatments with an Adenovirus Vectored Interferon (mDEF201) on Respiratory and Systemic Infections in Mice Caused by Cowpox and Vaccinia Viruses

    PubMed Central

    Smee, Donald F.; Wong, Min-Hui; Hurst, Brett L.; Ennis, Jane; Turner, Jeffrey D.

    2013-01-01

    An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201) was evaluated for efficacy against lethal cowpox (Brighton strain) and vaccinia (WR strain) virus respiratory and systemic infections in mice. Two routes of mDEF201 administration were used, nasal sinus (5-µl) and pulmonary (50-µl), to compare differences in efficacy, since the preferred treatment of humans would be in a relatively small volume delivered intranasally. Lower respiratory infections (LRI), upper respiratory infections (URI), and systemic infections were induced by 50-µl intranasal, 10-µl intranasal, and 100-µl intraperitoneal virus challenges, respectively. mDEF201 treatments were given prophylactically either 24 h (short term) or 56d (long-term) prior to virus challenge. Single nasal sinus treatments of 106 and 107 PFU/mouse of mDEF201 protected all mice from vaccinia-induced LRI mortality (comparable to published studies with pulmonary delivered mDEF201). Systemic vaccinia infections responded significantly better to nasal sinus delivered mDEF201 than to pulmonary treatments. Cowpox LRI infections responded to 107 mDEF201 treatments, but a 106 dose was only weakly protective. Cowpox URI infections were equally treatable by nasal sinus and pulmonary delivered mDEF201 at 107 PFU/mouse. Dose-responsive prophylaxis with mDEF201, given one time only 56 d prior to initiating a vaccinia virus LRI infection, was 100% protective from 105 to 107 PFU/mouse. Improvements in lung hemorrhage score and lung weight were evident, as were decreases in liver, lung, and spleen virus titers. Thus, mDEF201 was able to treat different vaccinia and cowpox virus infections using both nasal sinus and pulmonary treatment regimens, supporting its development for humans. PMID:23874722

  15. Hepatocyte Heparan Sulfate Is Required for Adeno-Associated Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo

    PubMed Central

    Zaiss, Anne K.; Foley, Erin M.; Lawrence, Roger; Schneider, Lina S.; Hoveida, Hamidreza; Secrest, Patrick; Catapang, Arthur B.; Yamaguchi, Yu; Alemany, Ramon; Shayakhmetov, Dmitry M.; Esko, Jeffrey D.

    2015-01-01

    ABSTRACT Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes. Ext1HEP mutant mice exhibit an 8-fold reduction of heparan sulfate in primary hepatocytes and a 5-fold reduction of heparan sulfate in whole liver tissue. Conditional hepatocyte Ext1 gene deletion greatly reduced AAV2 liver transduction following intravenous injection. Ad5 transduction requires blood coagulation factor X (FX); FX binds to the Ad5 capsid hexon protein and bridges the virus to HSPGs on the cell surface. Ad5.FX transduction was abrogated in primary hepatocytes from Ext1HEP mice. However, in contrast to the case with AAV2, Ad5 transduction was not significantly reduced in the livers of Ext1HEP mice. FX remained essential for Ad5 transduction in vivo in Ext1HEP mice. We conclude that while AAV2 requires HSPGs for entry into mouse hepatocytes, HSPGs are dispensable for Ad5 hepatocyte transduction in vivo. This study reopens the question of how adenovirus enters cells in vivo. IMPORTANCE Our understanding of how viruses enter cells, and how they can be used as therapeutic vectors to manage disease, begins with identification of the cell surface receptors to which viruses bind and which mediate viral entry. Both adeno-associated virus 2 and adenovirus 5 are currently thought to enter hepatocytes in vivo through heparan sulfate proteoglycans (HSPGs). However, direct evidence for these conclusions is lacking. Experiments presented herein, in which hepatic heparan sulfate synthesis was genetically abolished, demonstrated that HSPGs are not likely to function as hepatocyte Ad5 receptors in vivo. The data also demonstrate that HSPGs are required for hepatocyte transduction by AAV2. These

  16. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  17. Adenovirus (For Parents)

    MedlinePlus

    ... common in late winter, spring, and early summer conjunctivitis (pinkeye) and pharyngoconjunctival fever caused by adenovirus tend to ... cystitis usually resolves on its own. Eye infections: Pinkeye (conjunctivitis) is a mild inflammation of the conjunctiva ( ...

  18. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  19. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  20. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  1. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  2. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  3. Inhibition of telomerase RNA (hTR) in cervical cancer by adenovirus-delivered siRNA.

    PubMed

    Li, Y; Li, H; Yao, G; Li, W; Wang, F; Jiang, Z; Li, M

    2007-08-01

    Small interfering RNA (siRNA) has become a powerful tool for selectively silencing gene expression in cultured mammalian cells. In this study, a 67-bp oligonucleotide encoding human telomerase RNA (hTR) was introduced into pSIREN, a shuttle vector for construction of recombinant adenovirus. Then the U6-RNA promoter and siRNA-encoding insert were cut out from the pSIREN and subcloned into pAdeno-X to construct the plasmid pAd-hTR. After the pAd-hTR was transfected into a mammalian cell line HEK-293, adenovirus carrying the hTR-targeting siRNA (Ad-hTR-siRNA) was obtained. We performed a series of experiments to demonstrate silencing of the telomerase mediated by Ad-hTR-siRNA in HeLa cells. Compared with control virus (Ad-NT-siRNA), Ad-hTR-siRNA significantly reduced both hTR mRNA level (by 70.21%) and telomerase activity (by 58.87%) in HeLa cells. Moreover, it induced apoptosis in HeLa cells. Treatment of subcutaneous tumor xenografted with Ad-hTR-siRNA could slow down tumor growth, at least partially due to the induction of apoptosis (P<0.05) in vivo. Taken together, our results demonstrated efficient and specific knockdown of telomerase in HeLa cell line by the hTR siRNA, and indicated the prospect of applying this siRNA expressing recombinant adenovirus system in cancer gene therapy.

  4. A serological survey of human adenovirus serotype 2 and 5 circulating pediatric populations in Changchun, China, 2011

    PubMed Central

    2012-01-01

    Background Efficacy of recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to be limited by high titers of pre-existing Ad5 neutralizing antibodies (NAbs) in the developing world. Results Using a secreted embryonic alkaline phosphatase (SEAP) neutralization assay, 50% serum neutralization titers against rAd2 and rAd5 vectors were measured in samples from 274 infants and young children in northeast China. The pediatric population was found to be 59.6% and 43.3% seropositive for rAd2 and rAd5, respectively. Of all participants, 44.9% had moderate and high (> 200) and 25.6% had high (>1000) Ad2 NAb titers, compared with the corresponding rates of 26.6% and 9.3% against Ad5. Marked age-dependent increases in NAb titers to both Ad serotypes were observed across five age groups, with the exception of infants in the 0-6-month group commonly having relatively high titers due to pre-existing maternal antibodies. Conclusions Our data suggest that Ad-based therapies may be suitible for children in the 7-12-month age range in this region. PMID:23176136

  5. Aminoclay as a highly effective cationic vehicle for enhancing adenovirus-mediated gene transfer through nanobiohybrid complex formation.

    PubMed

    Kim, Soo-Yeon; Lee, Sang-Jin; Han, Hyo-Kyung; Lim, Soo-Jeong

    2017-02-01

    Electrostatic complexation of adenovirus (Ad) with cationic lipids or polymers has been shown to be an effective means for overcoming the limitations of adenoviral vectors and enhancing gene-transfer efficacy. However, such complexation causes cytotoxicity, limiting the use of this strategy. The present study explored the potential of 3-aminopropyl functionalized magnesium phyllosilicate (aminoclay) as a cationic vehicle for improving Ad-mediated gene transfer without inducing cytotoxicity. Aminoclay complexation produced a dose-dependent increase in Ad-mediated transgene expression in both Ad infection-sensitive and -refractory cells, thereby greatly lowering the Ad dose required for transgene expression. Unlike the case for cationic lipids (Lipofectamine) or polymers (Polybrene), the enhancement effect of aminoclay was not accompanied by significant cytotoxicity regardless of cell lines and it was not observed for nonviral plasmid vectors. Physical characterization studies revealed that nanobiohybrid complexes formed between aminoclay and Ad particles through electrostatic interactions, creating aggregates of Ad particles whose surface was shielded with aminoclay nanosheet oligomers. It appears that aminoclay complexation changes the surface charge of Ad particles from a negative to a highly positive value and thus increases Ad binding to cellular membranes, thereby providing an additional cellular entry mechanism, namely caveolae-dependent endocytosis. Aminoclay-Ad nanobiohybrids may serve as a next-generation efficient, versatile and biocompatible gene-delivery carrier.

  6. Homologous Boosting with Adenoviral Serotype 5 HIV Vaccine (rAd5) Vector Can Boost Antibody Responses despite Preexisting Vector-Specific Immunity in a Randomized Phase I Clinical Trial

    PubMed Central

    Sarwar, Uzma N.; Novik, Laura; Enama, Mary E.; Plummer, Sarah A.; Koup, Richard A.; Nason, Martha C.; Bailer, Robert T.; McDermott, Adrian B.; Roederer, Mario; Mascola, John R.; Ledgerwood, Julie E.; Graham, Barney S.

    2014-01-01

    Background Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods Thirty-one adults, 18–55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 1010 PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity. Trial Registration Clinicaltrials.gov NCT00709605 NCT00709605 PMID:25264782

  7. Endothelial Progenitors as Vectors for Systemic Gene Therapy of Breast Cancer

    DTIC Science & Technology

    2004-08-01

    EPCs can also be isolated from the peripheral blood, umbilical cord blood, and fetal liver.7 The goal of this study was to evaluate the...vessels from bone marrow-derived endothelial progenitor cells, or EPCs.4,5 EPCs, isolated from bone marrow, peripheral blood, or umbilical cord blood...isolated and enriched from fresh human blood, (2) blood-isolated EPCs can be efficiently “loaded” with therapeutic adenovirus (Ad) vectors, (4) the

  8. Viral vectors and vaccines. 16-19 November 1998, Williamsburg, Virginia, USA.

    PubMed

    Seaver, S S

    1999-02-01

    The fifth annual meeting of the Williamsburg BioProcessing Foundation, now renamed as Viral Vectors and Vaccines, attracted over 200 attendees. Besides the regular roster of speakers, the meeting featured 36 vendor booths, a whole morning devoted to 30-min vendor presentations and several posters. The extensive use of adenovirus (Ad) in gene therapy was evident from the number of talks on the subject.

  9. Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and de novo-synthesized virus particles.

    PubMed

    Li, H; Haviv, Y S; Derdeyn, C A; Lam, J; Coolidge, C; Hunter, E; Curiel, D T; Blackwell, J L

    2001-12-10

    Conditionally replicative adenovirus (CRAd) vectors are designed for specific oncolytic replication in tumor tissues with concomitant sparing of normal cells. As such, CRAds offer an unprecedented level of anticancer potential for malignancies that have been refractory to previous cancer gene therapy interventions. CRAd efficacy may, however, be compromised by inefficient dispersion of the replicating vector within the tumor tissue. To address this issue, we evaluated the utility of a fusogenic membrane glycoprotein (FMG), which induces the fusion of neighboring cellular membranes to form multinucleated syncytia. We hypothesized that the FMG-mediated syncytia would facilitate dispersion of the adenovirus (Ad) gene products and viral progeny. To test this, human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, which induce syncytia in the presence of CD4+ target cells, were expressed by an Ad (Ad5HIVenv) in permissive (CD4-positive) and nonpermissive (CD4-negative) cell lines. After validating this Ad-FMG model, the efficiency of Ad replication in the presence or absence of syncytia was evaluated. The results demonstrated that syncytium formation was compatible with Ad replication and dramatically increased the dispersion of virus gene products within the cytoplasm of the syncytia as well as viral particles in the nuclei of the syncytial mass. Moreover, progeny virions were released more efficiently from syncytia compared with nonsyncytial cells. These data demonstrate the utility of FMGs as a dispersion agent and suggest that FMGs can improve the efficacy of CRAd gene therapy.

  10. MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor.

    PubMed

    Broder, Howard; Anderson, Andrea; Kremen, Thomas J; Odesa, Sylvia K; Liau, Linda M

    2003-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that have been shown to play a critical role in the initiation of host immune responses against tumor antigens. In this study, a recombinant adenovirus vector encoding the melanoma-associated antigen, MART-1, was used to transduce murine DCs, which were then tested for their ability to activate cytotoxic T lymphocytes (CTLs) and induce protective immunity against B16 melanoma tumor cells implanted intracranially. Genetic modifications of murine bone marrow-derived DCs to express MART-1 was achieved through the use of an E1-deficient, recombinant adenovirus vector. Sixty-two C57BL/6 mice were immunized subcutaneously with AdVMART-1-transduced DCs (n = 23), untransduced DCs (n = 17), or sterile saline (n = 22). Using the B16 murine melanoma, which naturally expresses the MART-1 antigen, all the mice were then challenged intracranially with viable, unmodified syngeneic B16 tumor cells 7 days later. Splenocytes from representative animals in each group were harvested for standard cytotoxicity (CTL) and enzyme-linked immunospot (ELISPOT) assays. The remaining mice were followed for survival. Immunization of C57BL/6 mice with DCs transduced with an adenoviral vector encoding the MART-1 antigen elicited the development of antigen-specific CTL responses. As evidenced by a prolonged survival curve when compared to control-immunized mice with intracranial B16 tumors, AdMART-1-DC vaccination was able to elicit partial protection against central nervous system tumor challenge in vivo.

  11. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection

    PubMed Central

    Wechman, Stephen L.; Rao, Xiao-Mei; Cheng, Pei-Hsin; Gomez-Gutierrez, Jorge G.; McMasters, Kelly M.; Zhou, H. Sam

    2016-01-01

    Oncolytic adenoviruses (Ads) have been shown to be safe and have great potential for the treatment of solid tumors. However, the therapeutic efficacy of Ads is antagonized by limited spread within solid tumors. To develop Ads with enhanced spread, viral particles of an E1-wildtype Ad5 dl309 was repeatedly treated with UV type C irradiation and selected for the efficient replication and release from cancer cells. After 72 cycles of treatment and cancer selection, AdUV was isolated. This vector has displayed many favorable characteristics for oncolytic therapy. AdUV was shown to lyse cancer cells more effectively than both E1-deleted and E1-wildtype Ads. This enhanced cancer cell lysis appeared to be related to increased AdUV replication in and release from infected cancer cells. AdUV-treated A549 cells displayed greater expression of the autophagy marker LC3-II during oncolysis and formed larger viral plaques upon cancer cell monolayers, indicating increased virus spread among cancer cells. This study indicates the potential of this approach of irradiation of entire viral particles for the development of oncolytic viruses with designated therapeutic properties. PMID:27314377

  12. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  13. The Change of Immunoactivity of Dendritic Cells Induced by Mouse 4-1BBL Recombinant Adenovirus

    PubMed Central

    Youlin, Kuang; Xiaodong, Weng; Zhiyuan, Chen; Hengcheng, Zhu; Hui, Chen; Botao, Jiang

    2010-01-01

    Purpose The purpose of this study is to construct a recombinant adenovirus vector carrying mouse 4-1BBL and observe its effects in dendritic cells. Materials and Methods Mouse 4-1BBL cDNA was taken from the plasmid pcDNA3-m4-1BBL and subcloned into adenovirus shuttle plasmid pAdTrack-CMV, and then transformed into competent BJ5183 with plasmid pAdEasy-1. After recombination in E. coli, Ad-4-1BBL was packaged and amplified in HEK 293 cells. The expression of 4-1BBL in Ad-4-1BBL-transfected mouse prostate cancer cell line RM-1 was detected by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. After the co-culture of dendritic cells (DCs) with Ad-4-1BBL-transfected RM-1 cells, interleukin (IL)-6 and IL-12 production were assessed by enzyme-linked immunosorbent assay (ELISA) and co-stimulatary moleculs (CD80 and CD86) on DCs were analyzed by flow cytometry. Results The levels of IL-6 (3,960 pg/mL) and IL-12 (249 pg/mL) production in Ad-m4-1BBL-pulsed DCs were more than those in none-pulsed DCs. The differences were statistically significant (p < 0.05). The expression of co-stimulatary molecules (CD80 and CD86) was up-regulated in Ad-m4-1BBL-pulsed DCs. Conclusion The results indicated the recombinant mouse 4-1BBL can effectively activate DCs. PMID:20499429

  14. Adenovirus-receptor interaction with human lymphocytes.

    PubMed

    Mentel, R; Döpping, G; Wegner, U; Seidel, W; Liebermann, H; Döhner, L

    1997-03-01

    Lymphocytes play a key role in cell-mediated immunity and are host cells for several viral and bacterial pathogens. Their importance in adenovirus (Ad) infections is not yet fully understood. The initial event, the attachment of Ad to lymphocytes and their subsets, was examined using flow cytometry. The study included analysis of stimulated T cells in binding assays with FITC-labeled Ad fiber. The results confirm that native peripheral lymphocytes express very small amounts of Ad receptors. Stimulation with PHA and interleukin 2 induced the expression. The presence of Ad DNA as a sign of internalization in stimulated cells was demonstrated using the polymerase chain reaction. The findings suggest that lymphocytes after stimulation can turn into target cells for Ad. This is particularly important if there are indications for persistence of Ad, and in the case of immunocompromised patients severe, life-threatening diseases can develop.

  15. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle.

    PubMed

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V S; Charleston, Bryan; Warimwe, George M

    2016-04-29

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species.

  16. Complete genome sequences of pigeon adenovirus 1 and duck adenovirus 2 extend the number of species within the genus Aviadenovirus.

    PubMed

    Marek, Ana; Kaján, Győző L; Kosiol, Carolin; Harrach, Balázs; Schlötterer, Christian; Hess, Michael

    2014-08-01

    Complete genomes of the first isolates of pigeon adenovirus 1 (PiAdV-1) and Muscovy duck adenovirus (duck adenovirus 2, DAdV-2) were sequenced. The PiAdV-1 genome is 45,480bp long, and has a gene organization most similar to turkey adenovirus 1. Near the left end of the genome, it lacks ORF0, ORF1A, ORF1B and ORF1C, and possesses ORF52, whereas six novel genes were found near the right end. The DAdV-2 genome is 43,734bp long, and has a gene organization similar to that of goose adenovirus 4 (GoAdV-4). It lacks ORF51, ORF1C and ORF54, and possesses ORF55A and five other novel genes. PiAdV-1 and DAdV-2 genomes contain two and one fiber genes, respectively. Genome organization, G+C content, molecular phylogeny and host type confirm the need to establish two novel species (Pigeon aviadenovirus A and Duck aviadenovirus B) within the genus Aviadenovirus. Phylogenetic data show that DAdV-2 is most closely related to GoAdV-4.

  17. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections.

  18. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  19. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  20. [Deletion of IV a2 gene from adenoviral genome by lambda-Red recombinase system and packaging of the recombinant adenovirus].

    PubMed

    Liu, Yun-Fan; Yu, Chi-Jie; Wang, Gang; Tian, Wen-Hong; Lu, Yue; Liu, Xue-Rong; Dong, Xiao-Yan; Zheng, Gang; Shen, Wei; Wu, Xiao-Bing; Ruan, Li

    2011-05-01

    This investigation is to delete the most of the coding sequence (1104 bp) of the IV a2 gene in an adenovirus genome by a lambda-Red recombinase system-mediated PCR-targeting approach and rescue a recombinant adenovirus with IV a2 deletion. First, the template pAK of PCR targeting, containing kanamycin cassette, was constructed. Then, a linear fragment for PCR targeting, which had 39 bp homologous arms at both of its terminus, was amplified by PCR from the pAK. The pFG140 and the linear fragment were electroporated into E. coli BW25113/pIJ790 sequentially and the recombinant pFG140-deltaIV a2 (1104) was established by homologous recombination between the linear fragment and the pFG140 with aid of X-Red recombinase. The precise deletion of 1 104 bp fragment from IV a2 was confirmed by restriction endonucleases digestion and DNA sequencing. ORF of IV a2 was amplified by PCR from pFG140 and then cloned into the pAAV2neo vector. The recombinant adenovirus Ad5delta IV a2 (1104) was rescued by co-transfection of pFG140-deltaIV a2 (1104) and pAAV2neo-IV a2 into HEK293 cells. It was shown by Western Blot that IV a2 could not be detected in the Ad5deltaIV a2 (1104)- infected HEK293 cells. This study established a PCR-targeting strategy for manipulating adenovirus genome directly by a lambda-Red recombinase system, and a recombinant adenovirus with IV a2 deletion was obtained.

  1. A Plasmodium vivax plasmid DNA- and adenovirus-vectored malaria vaccine encoding blood stage antigens AMA1 and MSP142 in a prime/boost heterologous immunization regimen partially protects Aotus monkeys against blood stage challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-02-08

    Malaria is caused by parasites of the genus Plasmodium that are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of P. falciparum it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside of Africa, stressing the importance of developing a vaccine against malaria. In this study we assess the immunogenicity and protective efficacy of two P. vivax antigens, AMA1 and MSP142 in a recombinant DNA plasmid prime/adenoviral vector (Ad) boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with DNA alone, Ad alone, prime/boost regimens of each antigen, prime/boost with both antigens, and empty vector controls, and then subjected to blood stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, based on their ability to induced the longest pre-patent period and time to peak parasitemia; the lowest peak and mean parasitemia; the smallest area under the parasitemia curve and the highest self-cured rate. Overall, pre-challenge MSP1 antibody titers strongly correlated with decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, P. vivax plasmid DNA/Ad5 vaccine encoding blood stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen, provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and regimen for further development.

  2. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    PubMed Central

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-01-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma. PMID:27625116

  3. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  4. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  5. Location of the Origin of DNA Replication in Adenovirus Type 2

    PubMed Central

    Horwitz, Marshall S.

    1974-01-01

    Utilizing the isolated left and right halves of both adenovirus type 2 and the nondefective adenovirus simian virus 40 hybrid (Ad2+ND1), studies were undertaken to find the site on the DNA molecules at which replication begins. The data are consistent with several models which include an initiation event at both ends and bidirectional growth. PMID:4363250

  6. Fibroblast growth factor 2-retargeted adenoviral vectors exhibit a modified biolocalization pattern and display reduced toxicity relative to native adenoviral vectors.

    PubMed

    Printz, M A; Gonzalez, A M; Cunningham, M; Gu, D L; Ong, M; Pierce, G F; Aukerman, S L

    2000-01-01

    Targeted vectors provide a number of advantages for systemic and local gene delivery strategies. Several groups have investigated the utility of using various ligands to alter the tropism of adenovirus (Ad) vectors. We have previously demonstrated that fibroblast growth factor (FGF) ligands can specifically target DNA transfection and Ad transduction through high-affinity FGF receptors (FGFRs). FGFRs are overexpressed in abnormally proliferating tissues, such as malignancies. The present studies explore the effects of retargeting with FGF2 on the tissue localization pattern and the systemic toxicity of Ad in mice. Results of semiquantitative PCR analyses indicate that the distribution of FGF2-Ad vector genome sequences after intravenous administration in mice is altered. Markedly lower amounts (10- to 20-fold) of FGF2-Ad localize to the liver when compared with native Ad. This decrease in liver deposition translates into a significant reduction in subsequent toxicity as measured by serum transaminases and histopathology in mice injected with FGF2-AdHSV-thymidine kinase with and without ganciclovir administration. In an intraperitoneal model of ovarian cancer, FGF2-Ad generates increased transgene expression in tumor tissue when compared with Ad. Taken together, these results indicate that the retargeting of Ad with FGF2 results in a more efficient vector system for systemic and regional gene therapy applications, with concomitant lower levels of systemic toxicity.

  7. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  8. A myeloid cell-binding adenovirus efficiently targets gene transfer to the lung and escapes liver tropism

    PubMed Central

    Alberti, Michael O.; Deshane, Jessy S.; Chaplin, David D.; Pereboeva, Larisa; Curiel, David T.; Roth, Justin C.

    2013-01-01

    Specific and efficient gene delivery to the lung has been hampered by liver sequestration of adenovirus serotype 5 (Ad5) vectors. The complexity of Ad5 liver tropism has largely been unraveled, permitting improved efficacy of Ad5 gene delivery. However, Kupffer cell (KC) scavenging and elimination of Ad5 still represent major obstacles to lung gene delivery strategies. KC uptake substantially reduces bioavailability of Ad5 for target tissues and compensatory dose escalation leads to acute hepatotoxicity and a potent innate immune response. Here we report a novel lung-targeting strategy through redirection of Ad5 binding to the concentrated leukocyte pool within the pulmonary microvasculature. We demonstrate that this leukocyte-binding approach retargets Ad5 specifically to lung endothelial cells and prevents KC uptake and hepatocyte transduction, resulting in 165 000-fold enhanced lung-targeting, compared to Ad5. Additionally, myeloid cell-specific binding is preserved in single cell lung suspensions and only Ad.MBP-coated myeloid cells achieved efficient endothelial cell transduction ex vivo. These findings demonstrate that KC sequestration of Ad5 can be prevented through more efficient uptake of virions in target tissues and suggest endothelial transduction is achieved by leukocyte-mediated “hand-off” of Ad. PMID:23171918

  9. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle.

  10. Identification of HI-like loop in CELO adenovirus fiber for incorporation of receptor binding motifs.

    PubMed

    Logunov, Denis Y; Zubkova, Olga V; Karyagina-Zhulina, Anna S; Shuvalova, Eugenia A; Karpov, Andrei P; Shmarov, Maxim M; Tutykhina, Irina L; Alyapkina, Yulia S; Grezina, Natalia M; Zinovieva, Natalia A; Ernst, Lev K; Gintsburg, Alexsandr L; Naroditsky, Boris S

    2007-09-01

    Vectors based on the chicken embryo lethal orphan (CELO) avian adenovirus (Ad) have two attractive properties for gene transfer applications: resistance to preformed immune responses to human Ads and the ability to grow in chicken embryos, allowing low-cost production of recombinant viruses. However, a major limitation of this technology is that CELO vectors demonstrate decreased efficiency of gene transfer into cells expressing low levels of the coxsackie-Ad receptor (CAR). In order to improve the efficacy of gene transfer into CAR-deficient cells, we modified viral tropism via genetic alteration of the CELO fiber 1 protein. The alphav integrin-binding motif (RGD) was incorporated at two different sites of the fiber 1 knob domain, within an HI-like loop that we identified and at the C terminus. Recombinant fiber-modified CELO viruses were constructed containing secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein genes as reporter genes. Our data show that insertion of the RGD motif within the HI-like loop of the fiber resulted in significant enhancement of gene transfer into CAR-negative and CAR-deficient cells. In contrast, CELO vectors containing the RGD motif at the fiber 1 C terminus showed reduced transduction of all cell lines. CELO viruses modified with RGD at the HI-like loop transduced the SEAP reporter gene into rabbit mammary gland cells in vivo with an efficiency significantly greater than that of unmodified CELO vector and similar to that of Ad type 5 vector. These results illustrate the potential for efficient CELO-mediated gene transfer into a broad range of cell types through modification of the identified HI-like loop of the fiber 1 protein.

  11. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    SciTech Connect

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam; Abu-Asab, Mones S.; Wildner, Oliver; Miles, Brian K.; Yim, Kevin C.; Ramanan, Vijay; Prince, Gregory A.; Morris, John C.

    2007-12-05

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the study of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.

  12. The Evaluation of Polyhexamethylene Biguanide (PHMB) as a Disinfectant for Adenovirus

    PubMed Central

    Romanowski, Eric G.; Yates, Kathleen A.; O’Connor, Katherine E.; Mah, Francis S.; Shanks, Robert M. Q.; Kowalski, Regis P.

    2013-01-01

    Purpose Swimming pools can be a vector for transmission of adenovirus ocular infections. Polyhexamethylene biguanide (PHMB) is a disinfectant used in swimming pools and hot tubs. The current study determined whether PHMB is an effective disinfectant against ocular adenovirus serotypes at a concentration used to disinfect swimming pools and hot tubs. Methods The direct disinfecting activity of PHMB was determined in triplicate assays by incubating nine human adenovirus types (1, 2, 3, 4, 5, 7a, 8, 19, and 37) with 50 and 0 PPM (µg/ml) of PHMB for 24 hours at room temperature, to simulate swimming pool temperatures, or 40°C, to simulate hot tub temperatures. Plaque assays determined adenovirus titers after incubation. Titers were Log10 converted and mean ± standard deviation Log10 reductions from controls were calculated. Virucidal (greater than 99.9%) decreases in mean adenovirus titers after PHMB treatment were determined for each adenovirus type and temperature tested. Results At room temperature, 50 PPM of PHMB produced mean reductions in titers less than 1 Log10 for all adenovirus types tested. At 40°C, 50 PPM of PHMB produced mean reductions in titers less than 1 Log10 for two adenovirus types and greater than 1 Log10, but less than 3 Log10, for seven of nine adenovirus types. Conclusions 50 PPM of PHMB was not virucidal against adenovirus at temperatures consistent with swimming pools or hot tubs. Clinical Relevance Recreational water maintained and sanitized with PHMB has the potential to serve as a vector for the transmission of ocular adenovirus infections. PMID:23450376

  13. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    PubMed Central

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  14. Selective modification of adenovirus replication can be achieved through rational mutagenesis of the adenovirus type 5 DNA polymerase.

    PubMed

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek; Dewhurst, Stephen

    2012-10-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates.

  15. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    SciTech Connect

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  16. Coexpression of the simian immunodeficiency virus Env and Rev proteins by a recombinant human adenovirus host range mutant.

    PubMed Central

    Cheng, S M; Lee, S G; Ronchetti-Blume, M; Virk, K P; Mizutani, S; Eichberg, J W; Davis, A; Hung, P P; Hirsch, V M; Chanock, R M

    1992-01-01

    Recombinant human adenoviruses (Ads) that replicate in the intestinal tract offer a novel, yet practical, means of immunoprophylaxis against a wide variety of viral and bacterial pathogens. For some infectious agents such as human immunodeficiency virus (HIV), the potential for residual infectious material in vaccine preparations must be eliminated. Therefore, recombinant human Ads that express noninfectious HIV or other microbial proteins are attractive vaccine candidates. To test such an approach for HIV, we chose an experimental model of AIDS based on simian immunodeficiency virus (SIV) infection of macaques. Our data demonstrate that the SIV Env gene products are expressed in cultured cells after infection with a recombinant Ad containing both SIV env and rev genes. An E3 deletion vector derived from a mutant of human Ad serotype 5 that efficiently replicates in both human and monkey cells was used to bypass the usual host range restriction of Ad infection. In addition, we show that the SIV rev gene is properly spliced from a single SIV subgenomic DNA fragment and that the Rev protein is expressed in recombinant Ad-SIV-infected human as well as monkey cells. The expression of SIV gene products in suitable live Ad vectors provides an excellent system for studying the regulation of SIV gene expression in cultured cells and evaluating the immunogenicity and protective efficacy of SIV proteins in macaques. Images PMID:1404612

  17. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters.

    PubMed

    Dreier, Birgit; Honegger, Annemarie; Hess, Christian; Nagy-Davidescu, Gabriela; Mittl, Peer R E; Grütter, Markus G; Belousova, Natalya; Mikheeva, Galina; Krasnykh, Victor; Plückthun, Andreas

    2013-03-05

    Adenoviruses (Ads) have shown promise as vectors for gene delivery in clinical trials. Efficient viral targeting to a tissue of choice requires both ablation of the virus' original tropism and engineering of an efficient receptor-mediated uptake by a specific cell population. We have developed a series of adapters binding to the virus with such high affinity that they remain fully bound for >10 d, block its natural receptor binding site and mediate interaction with a surface receptor of choice. The adapter contains two fused modules, both consisting of designed ankyrin repeat proteins (DARPins), one binding to the fiber knob of adenovirus serotype 5 and the other binding to various tumor markers. By solving the crystal structure of the complex of the trimeric knob with three bound DARPins at 1.95-Å resolution, we could use computer modeling to design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from the lambdoid phage 21. We arrived at a module which binds the knob like a trimeric clamp. When this clamp was fused with DARPins of varying specificities, it enabled adenovirus serotype 5-mediated delivery of a transgene in a human epidermal growth factor receptor 2-, epidermal growth factor receptor-, or epithelial cell adhesion molecule-dependent manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With these adapters, efficiently produced in Escherichia coli, Ad can be converted rapidly to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads with different payloads thus can be retargeted readily to many cell types of choice.

  18. Adenoviral vectors modified by heparin-polyethyleneimine nanogels enhance targeting to the lung and show therapeutic potential for pulmonary metastasis in vivo.

    PubMed

    Wei, Wei; Mu, Yandong; Li, XiaoPeng; Gou, MaLing; Zhang, HaiLong; Luo, ShunTao; Men, Ke; Mao, YongQiu; Qian, ZhiYong; Yang, Li

    2011-12-01

    Polyethyleneimine (PEI) is a well-known cationic polymer that has previously been shown to have significant potential to deliver genes in vitro and in vivo. However, PEI is non-degradable and exhibits a high cytotoxicity as its molecular weight increases. The clinical application for systemic administration of adenoviral (Ad) vectors is limited, as these vectors do not efficiently penetrate solid tumor masses due to a common deficiency of Coxsackie Adenovirus Receptor (CAR) on the tumor surface. In this study, we conjugated low molecular weight PEI (Mn = 1,800) to heparin (Mn = 4,000-6,000) to create a new type of cationic degradable nanogel (HPEI) that was then used to modify Ad vectors. The resulting HPEI-Ad complexes were used to infect CT26 and HeLa cells in vitro. Additionally, the HPEI-Ad complexes were administrated in vivo via intravenous injection, and tissue distribution was assessed using luciferase assays; the therapeutic potential of HPEI-Ad complexes for pulmonary metastasis mediated by CT26 cells was also investigated. In vitro, HPEI-Ad complexes enhanced the transfection efficiency in CT26 cells, reaching 36.3% compared with 0.1% of the native adenovirus. In vivo, HPEI-Ad complexes exhibited greater affinity for lung tissue than the native adenovirus and effectively inhibited the growth of pulmonary metastases mediated by CT26 cells. Our results indicate that Ad vectors modified by HPEI nanogels to form HPEI-Ad complexes enhanced transfection efficiency in CT26 cells that lacked CAR, targeted to the lung and demostrated a potential therapy for pulmonary metastasis.

  19. T cells induced by recombinant chimpanzee adenovirus alone and in prime-boost regimens decrease chimeric EcoHIV/NDK challenge virus load.

    PubMed

    Roshorm, Yaowaluck; Cottingham, Mathew G; Potash, Mary-Jane; Volsky, David J; Hanke, Tomáš

    2012-12-01

    The popularity of nonreplicating adenoviruses of chimpanzee origin (ChAdVs) as vectors for subunit vaccines is on the rise. This is mainly for their excellent safety and impressive immunogenicity observed in human studies to date. Here, we recloned the chimpanzee adenovirus sero type 68 (ChAdV-68), also designated SAdV-25 and AdC68, genome and demonstrated its straightforward genetic manipulation facilitated by the use of bacterial artificial chromosome recombineering. To generate the ChAdV68.GagB vaccine, the HIV-1 consensus clade B Gag-derived Tg was inserted into the E1 region. In part confirming previous observations, the ChAdV68.GagB vaccine alone and in heterologous prime-boost regimens with plasmid DNA- and modified vaccinia virus Ankara (MVA)-vectored vaccines induced robust polyfunctional HIV-1-specific CD8(+) and CD4(+) T-cell responses with a gut-homing phenotype. Importantly, we showed that when a single epitope is expressed as an immunodominant CD8(+) T-cell determinant, responses elicited by ChAdV68.GagB alone and in combination lowered surrogate challenge EcoHIV/NDK (where EcoHIV is chimeric ecotropic HIV) virus load in mice both at the peak T-cell frequencies 2 weeks after vaccination and 16 weeks later indicating development of protective effector memory. These results parallel the immunogenicity of similar vaccine regimens in macaques and an ongoing phase I/IIa trial in humans, and support further development of vaccines vectored by ChAdVs.

  20. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice.

    PubMed

    Gu, D L; Gonzalez, A M; Printz, M A; Doukas, J; Ying, W; D'Andrea, M; Hoganson, D K; Curiel, D T; Douglas, J T; Sosnowski, B A; Baird, A; Aukerman, S L; Pierce, G F

    1999-06-01

    Adenovirus (Ad) have been used as vectors to deliver genes to a wide variety of tissues. Despite achieving high expression levels in vivo, Ad vectors display normal tissue toxicity, transient expression, and antivector immune responses that limit therapeutic potential. To circumvent these problems, several retargeting strategies to abrogate native tropism and redirect Ad uptake through defined receptors have been attempted. Despite success in cell culture, in vivo results have generally not shown sufficient selectivity for target tissues. We have previously identified (C. K. Goldman et al., Cancer Res., 57: 1447-1451, 1997) the fibroblast growth factor (FGF) ligand and receptor families as conferring sufficient specificity and binding affinity to be useful for targeting DNA in vivo. In the present studies, we retargeted Ad using basic FGF (FGF2) as a targeting ligand. Cellular uptake is redirected through high-affinity FGF receptors (FGFRs) and not the more ubiquitous lower-affinity Ad receptors. Initial in vitro experiments demonstrated a 10- to 100-fold increase in gene expression in numerous FGFR positive (FGFR+) cell lines using FGF2-Ad when compared with Ad. To determine whether increased selectivity could be detected in vivo, FGF2-Ad was administered i.v. to normal mice. FGF2-Ad demonstrates markedly decreased hepatic toxicity and liver transgene expression compared with Ad treatment. Importantly, FGF2-Ad encoding the herpes simplex virus thymidine kinase (TK) gene transduces Ad-resistant FGFR+ tumor cells both ex vivo and in vivo, which results in substantially enhanced survival (180-260%) when the prodrug ganciclovir is administered. Because FGFRs are up-regulated on many types of malignant or injured cells, this broadly useful method to redirect native Ad tropism and to increase the potency of gene expression may offer significant therapeutic advantages.

  1. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  2. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  3. Characterization of a novel adenovirus isolated from a skunk.

    PubMed

    Kozak, Robert A; Ackford, James G; Slaine, Patrick; Li, Aimin; Carman, Susy; Campbell, Doug; Welch, M Katherine; Kropinski, Andrew M; Nagy, Éva

    2015-11-01

    Adenoviruses are a ubiquitous group of viruses that have been found in a wide range of hosts. A novel adenovirus from a skunk suffering from acute hepatitis was isolated and its DNA genome sequenced. The analysis revealed this virus to be a new member of the genus Mastadenovirus, with a genome of 31,848 bp in length containing 30 genes predicted to encode proteins, and with a G+C content of 49.0%. Global genomic organization indicated SkAdV-1 was similar in organization to bat and canine adenoviruses, and phylogenetic comparison suggested these viruses shared a common ancestor. SkAdV-1 demonstrated an ability to replicate in several mammalian liver cell lines suggesting a potential tropism for this virus.

  4. Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future?

    PubMed

    Smaill, Fiona; Xing, Zhou

    2014-08-01

    Despite progress in managing TB, there were 8.6 million new cases in 2012. To control TB will require a more effective vaccine than BCG, new drugs and better diagnostic tests. Recombinant replication-defective adenoviruses expressing foreign DNA have been studied as vaccines. We developed and evaluated a recombinant replication-deficient human Ad5 vector expressing Ag85A (Ad5Ag85A) as a TB vaccine in animal models and a Phase I human study. Animal models of Ad5Ag85A show markedly improved protection over BCG alone and immunization via the respiratory route provides the best type of protection. In humans, intramuscular vaccination was safe; Ad5Ag85A was immunogenic and stimulated polyfunctional T cell responses, more potently in previously BCG-vaccinated volunteers. Pre-existing Ad5 antibodies did not dampen the response. Given its potency, Ad5-based TB vaccines are well-positioned to be delivered to the respiratory tract, induce local lung immunity to control TB, and inform innovative approaches to new TB vaccination strategies.

  5. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers

    PubMed Central

    Kwon, Se-Young; Moon, Changjong; Kim, Kwonseop; Lee, Keesook; Lee, Sang-Jin; Hemmi, Silvio; Joo, Young-Eun; Kim, Min Soo; Jung, Chaeyong

    2016-01-01

    CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients. PMID:27203670

  6. Dendritic cells serve as a “Trojan horse” for oncolytic adenovirus delivery in the treatment of mouse prostate cancer

    PubMed Central

    Li, Zhao-lun; Liang, Xuan; Li, He-cheng; Wang, Zi-ming; Chong, Tie

    2016-01-01

    Aim: Adenovirus-mediated gene therapy is a novel therapeutic approach for the treatment of cancer, in which replication of the virus itself is the anticancer method. However, the success of this novel therapy is limited due to inefficient delivery of the virus to the target sites. In this study, we used dendritic cells (DCs) as carriers for conditionally replicating adenoviruses (CRAds) in targeting prostate carcinoma (PCa). Methods: Four types of CRAds, including Ad-PC (without PCa-specific promoter and a recombinant human tumor necrosis factor, rmhTNF, sequence), Ad-PC-rmhTNF (without PCa-specific promoter), Ad-PPC-NCS (without an rmhTNF sequence) and Ad-PPC-rmhTNF, were constructed. The androgen-insensitive mouse PCa RM-1 cells were co-cultured with CRAd-loading DCs, and the viability of RM-1 cells was examined using MTT assay. The in vivo effects of CRAd-loading DCs on PCa were evaluated in RM-1 xenograft mouse model. Results: Two PCa-specific CRAds (Ad-PPC-NCS, Ad-PPC-rmhTNF) exhibited more potent suppression on the viability of RM-1 cells in vitro than the PCa-non-specific CRAds (Ad-PC, Ad-PC-rmhTNF). In PCa-bearing mice, intravenous injection of the PCa-specific CRAd-loading DCs significantly inhibited the growth of xenografted tumors, extended the survival time, and induced T-cell activation. Additionally, the rmhTNF-containing CRAds exhibited greater tumor killing ability than CRAds without rmhTNF. Conclusion: DCs may be an effective vector for the delivery of CRAds in the treatment of PCa. PMID:27345628

  7. Adenovirus E1B 19-Kilodalton Protein Modulates Innate Immunity through Apoptotic Mimicry

    PubMed Central

    Grigera, Fernando; Ucker, David S.; Cook, James L.

    2014-01-01

    ABSTRACT Cells that undergo apoptosis in response to chemical or physical stimuli repress inflammatory reactions, but cells that undergo nonapoptotic death in response to such stimuli lack this activity. Whether cells dying from viral infection exhibit a cell death-type modulatory effect on inflammatory reactions is unknown. We compared the effects on macrophage inflammatory responses of cells dying an apoptotic or a nonapoptotic death as a result of adenoviral infection. The results were exactly opposite to the predictions from the conventional paradigm. Cells dying by apoptosis induced by infection with an adenovirus type 5 (Ad5) E1B 19-kilodalton (E1B 19K) gene deletion mutant did not repress macrophage NF-κB activation or cytokine responses to proinflammatory stimuli, whereas cells dying a nonapoptotic death from infection with E1B 19K-competent, wild-type Ad5 repressed these macrophage inflammatory responses as well as cells undergoing classical apoptosis in response to chemical injury. The immunorepressive, E1B 19K-related cell death activity depended upon direct contact of the virally infected corpses with responder macrophages. Replacement of the viral E1B 19K gene with the mammalian Bcl-2 gene in cis restored the nonapoptotic, immunorepressive cell death activity of virally infected cells. These results define a novel function of the antiapoptotic, adenoviral E1B 19K protein that may limit local host innate immune inflammation during accumulation of virally infected cells at sites of infection and suggest that E1B 19K-deleted, replicating adenoviral vectors might induce greater inflammatory responses to virally infected cells than E1B 19K-positive vectors, because of the net effect of their loss-of-function mutation. IMPORTANCE We observed that cells dying a nonapoptotic cell death induced by adenovirus infection repressed macrophage proinflammatory responses while cells dying by apoptosis induced by infection with an E1B 19K deletion mutant virus did not

  8. Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses.

    PubMed

    Wang, Dan; Mou, Haiwei; Li, Shaoyong; Li, Yingxiang; Hough, Soren; Tran, Karen; Li, Jia; Yin, Hao; Anderson, Daniel G; Sontheimer, Erik J; Weng, Zhiping; Gao, Guangping; Xue, Wen

    2015-07-01

    CRISPR/Cas9 derived from the bacterial adaptive immunity pathway is a powerful tool for genome editing, but the safety profiles of in vivo delivered Cas9 (including host immune responses to the bacterial Cas9 protein) have not been comprehensively investigated in model organisms. Nonalcoholic steatohepatitis (NASH) is a prevalent human liver disease characterized by excessive fat accumulation in the liver. In this study, we used adenovirus (Ad) vector to deliver a Streptococcus pyogenes-derived Cas9 system (SpCas9) targeting Pten, a gene involved in NASH and a negative regulator of the PI3K-AKT pathway, in mouse liver. We found that the Ad vector mediated efficient Pten gene editing even in the presence of typical Ad vector-associated immunotoxicity in the liver. Four months after vector infusion, mice receiving the Pten gene-editing Ad vector showed massive hepatomegaly and features of NASH, consistent with the phenotypes following Cre-loxP-induced Pten deficiency in mouse liver. We also detected induction of humoral immunity against SpCas9 and the potential presence of an SpCas9-specific cellular immune response. Our findings provide a strategy to model human liver diseases in mice and highlight the importance considering Cas9-specific immune responses in future translational studies involving in vivo delivery of CRISPR/Cas9.

  9. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    PubMed Central

    Hulin-Curtis, S L; Uusi-Kerttula, H; Jones, R; Hanna, L; Chester, J D; Parker, A L

    2016-01-01

    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer. PMID:27229159

  10. Adenoviral vectors coated with PAMAM dendrimer conjugates allow CAR independent virus uptake and targeting to the EGF receptor.

    PubMed

    Vetter, Alexandra; Virdi, Kulpreet S; Espenlaub, Sigrid; Rödl, Wolfgang; Wagner, Ernst; Holm, Per S; Scheu, Christina; Kreppel, Florian; Spitzweg, Christine; Ogris, Manfred

    2013-02-04

    Adenovirus type 5 (Ad) is an efficient gene vector with high gene transduction potential, but its efficiency depends on its native cell receptors coxsackie- and adenovirus receptor (CAR) for cell attachment and α(v)β(3/5) integrins for internalization. To enable transduction of CAR negative cancer cell lines, we have coated the negatively charged Ad by noncovalent charge interaction with cationic PAMAM (polyamidoamine) dendrimers. The specificity for tumor cell infection was increased by targeting the coated Ad to the epidermal growth factor receptor using the peptide ligand GE11, which was coupled to the PAMAM dendrimer via a 2 kDa PEG spacer. Particles were examined by measuring surface charge and size, the degree of coating was determined by transmission electron microscopy. The net positive charge of PAMAM coated Ad enhanced cellular binding and uptake leading to increased transduction efficiency, especially in low to medium CAR expressing cancer cell lines using enhanced green fluorescent protein or luciferase as transgene. While PAMAM coated Ad allowed for efficient internalization, coating with linear polyethylenimine induced excessive particle aggregation, elevated cellular toxicity and lowered transduction efficiency. PAMAM coating of Ad enabled successful transduction of cells in vitro even in the presence of neutralizing antibodies. Taken together, this study clearly proves noncovalent, charge-based coating of Ad vectors with ligand-equipped dendrimers as a viable strategy for efficient transduction of cells otherwise refractory to Ad infection.

  11. Structure and uncoating of immature adenovirus

    PubMed Central

    Pérez-Berná, Ana J.; Marabini, Roberto; Scheres, Sjors H. W.; Menéndez-Conejero, Rosa; Dmitriev, Igor P.; Curiel, David T.; Mangel, Walter F.; Flint, S. Jane; Martín, Carmen San

    2009-01-01

    Summary Maturation via proteolytical processing is a common trait in the viral world, and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins, but ends with proteolytically processed versions in the mature virion; and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytical processing are not infectious. We present the 3D structure of immature adenovirus particles, as represented by the thermosensitive mutant Ad2 ts1 grown under non-permissive conditions, and compare it with the mature capsid. Our 3DEM maps at subnanometer resolution indicate that adenovirus maturation does not involve large scale conformational changes in the capsid. Difference maps reveal the location of unprocessed peptides pIIIa and pVI and help to define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged. PMID:19563809

  12. Treatment of leptomeningeal metastases in a rat model using a recombinant adenovirus containing the HSV-tk gene.

    PubMed

    Vincent, A J; Esandi, M D; van Someren, G; Noteboom, J L; Avezaat, C J; Vecht, C; Smitt, P A; van Bekkum, D W; Valerio, D; Hoogerbrugge, P M; Bout, A

    1996-10-01

    The authors constructed recombinant adenoviral vectors to investigate their potential for gene therapy treatment of leptomeningeal metastases. Several human cell lines that were derived from tumors occurring as leptomeningeal metastases and that were infected in vitro with major late promoter recombinant adenovirus containing the luciferase (luc) gene (IG.Ad.MLP.luc) showed high levels of expression. When these human tumor cell lines were infected in vitro with recombinant adenovirus harboring the herpes simplex virus-thymidine kinase (HSV-tk) gene (IG.Ad.MLP.TK), they were highly sensitive to the killing effects of ganciclovir (GCV). Transduction efficiency of leptomeningeal tumor cells in vivo was assessed by injecting 9-L rat brain tumor cells into the cerebrospinal fluid of Fischer rats via the cisterna magna. After 3 days, recombinant adenovirus containing the lacZ reporter gene (IG.Ad.MLP.lacZ) was injected via the same route. Six days after tumor cell injection, expression of the reporter gene was observed in tumor cells along the total neural axis. Subsequently, rats with leptomeningeal metastases were treated 3 days after tumor cell injection with HSV-tk. Beginning on the next day, GCV was injected intraperitoneally for 10 days. The rats that developed neurological symptoms were killed immediately. The symptom-free latency of every rat was determined. The rats treated with HSV-tk and subsequent GCV had significantly longer (p < 0.01) symptom-free latency than all control groups. This study demonstrates the feasibility and efficacy of this therapeutic approach in a rat model. Clinically, it should be used in the palliative treatment of patients with leptomeningeal metastases.

  13. Selective transduction of mature DC in human skin and lymph nodes by CD80/CD86-targeted fiber-modified adenovirus-5/3.

    PubMed

    van de Ven, Rieneke; Lindenberg, Jelle J; Oosterhoff, Dinja; van den Tol, M Petrousjka; Rosalia, Rodney A; Murakami, Miho; Everts, Maaike; Scheffer, George L; Scheper, Rik J; de Gruijl, Tanja D; Curiel, David T

    2009-01-01

    In vivo targeting of dendritic cells (DC) represents an attractive alternative to currently apply ex vivo DC-based genetic tumor vaccination protocols. Finding the optimal vector for in vivo targeting of DC is important for such strategies. We, therefore, tested a panel of subgroup C/B chimeric and fiber-modified adenoviruses (Ads) for their relative capacity to transduce human DC. We made use of in vitro generated Langerhans cells, and of ex vivo human skin and melanoma-draining lymph node derived DC. Of the tested viruses the C/B-chimeric adenovirus serotype 5 (Ad5)/3 virus most efficiently transduced in vitro generated Langerhans cells. In addition, Ad5/3 preferentially targeted mature myeloid DC from human skin and draining lymph node and transduced them at significantly higher frequencies than Ad5. In addition, Ad5/3 was more specific for mature human skin-derived CD1a+ CD83+ DC than the previously reported DC-transducing C/B-chimeric vector Ad5/35, infecting less bystander cells. It was previously reported that Ad5/3 transduced human monocyte-derived DC by binding to the B7 molecules CD80 and CD86. High-efficiency transduction of mature skin-derived DC was similarly shown to be mediated through binding to CD80/CD86 and not to interfere with subsequent T-cell priming. We conclude that Ad5/3, in combination with DC-activating adjuvants, represents a promising therapeutic tool for the in vivo transduction of mature DC, and may be less likely to induce unwanted side effects such as immune tolerance through the infection of nonprofessional antigen-presenting cells.

  14. 78 FR 3906 - Prospective Grant of a Co-Exclusive License: Adenovirus-Based Controls and Calibrators for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... October 24, 2000, and entitled ``Replication Deficient Recombinant Adenovirus Vector'' to Life... recombinant constructs as controls and calibrators for molecular diagnostics for infectious disease agents...-0220; Email: Reichmau@mail.nih.gov . SUPPLEMENTARY INFORMATION: The invention relates to...

  15. Elasticity and Binding of Adenovirus

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Negishi, Atsuko; Seeger, Adam; McCarty, Doug; Taylor, Russell; Samulshi, Jude; Superfine, Richard

    1999-11-01

    Adenovirus was the first human virus found to cause the transformation of cells and is one of the more common vectors being used for the development of gene therapy. As such, much is known about the viral structure and genome; however, the events of the early infection cycle, such as binding of the virus to the cell membrane and the release of genetic material from the capsid, for this and other nonenveloped viruses, are not fully understood. With the atomic force microscope (AFM) we are able to image the virus in both air and liquids, allowing us to change the surrounding environment, varying such physiologically relevant parameters as osmolality or pH. We additionally have the ability to do manipulations on single virus particles in these environments using the nanoManipulator. The nanoManipulator is an advanced interface for AFM that allows real time three dimensional rendering of the topographical data, allows the sample surface to be non-destructively felt using a hand held stylus that responds to the information being sensed at the tip, and allows controlled modification of the surface. Using this tool we have translated single virions over various surfaces, allowing us to measure the adhesion between the capsid and these surfaces. Additionally, we are able to place the tip directly atop individual viruses and measure their elasticity under a compressive load being supplied by that tip. We can explore how this property changes as a function of the properties of the surrounding liquid.

  16. Adenovirus-mediated double suicide gene selectively kills gastric cancer cells.

    PubMed

    Luo, Xian-Run; Li, Jian-Sheng; Niu, Ying; Miao, Li

    2012-01-01

    The aim of this study was to evaluate the effect of the adenovirus-mediated double suicide gene (CD/TK) for selective killing of gastric cancer cells. Gastric cancer cells SCG7901 and normal gastric epithelial cell lines were infected by adenoviruses Ad-survivin/GFP and Ad-survivin/CD/TK. GFP expression and CD-TK were detected by fluorescence microscopy and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. After treatment of the infected cells with the pro-drugs ganciclovir (GCV) and/or 5-FC, the cell growth status was evaluated by methyl thiazolyl tetrazolium assay. Cell cycle changes were detected using flow cytometry. In nude mice bearing human gastric cancer, the recombinant adenovirus vector was injected directly into the tumor followed by an intraperitoneal injection of GCV and/or 5-FC. The subsequent tumor growth was then observed. The GFP gene driven by survivin could be expressed within the gastric cancer line SCG7901, but not in normal gastric epithelial cells. RT-PCR demonstrated the presence of the CD/TK gene product in the infected SCG7901 cells, but not in the infected normal gastric epithelial cells. The infected gastric cancer SCG7901, but not the gastric cells, was highly sensitive to the pro-drugs. The CD/TK fusion gene system showed significantly greater efficiency than either of the single suicide genes in killing the target cells (P<0.01). Treatment of the infected cells with the pro-drugs resulted in increased cell percentage in G0-Gl phase and decreased percentage in S phase. In nude mice bearing SCG7901 cells, treatment with the double suicide gene system significantly inhibited tumor growth, showing much stronger effects than either of the single suicide genes (P<0.01). The adenovirus-mediated CD/TK double suicide gene driven by survivin promoter combined with GCV an 5-FC treatment could be an effective therapy against experimental gastric cancer with much greater efficacy than the single suicide gene CD/TK combined

  17. Noninvasive visualization of adenovirus replication with a fluorescent reporter in the E3 region.

    PubMed

    Ono, Hidetaka A; Le, Long P; Davydova, Julia G; Gavrikova, Tatyana; Yamamoto, Masato

    2005-11-15

    To overcome the inefficacy and undesirable side effects of current cancer treatment strategies, conditionally replicative adenoviruses have been developed to exploit the unique mechanism of oncolysis afforded by tumor-specific viral replication. Despite rapid translation into clinical trials and the established safety of oncolytic adenoviruses, the in vivo function of these agents is not well understood due to lack of a noninvasive detection system for adenovirus replication. To address this issue, we propose the expression of a reporter from the adenovirus E3 region as a means to monitor replication. Adenovirus replication reporter vectors were constructed with the enhanced green fluorescent protein (EGFP) gene placed in the deleted E3 region under the control of the adenoviral major late promoter while retaining expression of the adenovirus death protein to conserve the native oncolytic capability of the virus. Strong EGFP fluorescence was detected from these vectors in a replication-dependent manner, which correlated with viral DNA replication. Fluorescence imaging in vivo confirmed the ability to noninvasively detect fluorescent signal during replication, which generally corresponded with the underlying level of viral DNA replication. EGFP representation of viral replication was further confirmed by Western blot comparison with the viral DNA content in the tumors. Imaging reporter expression controlled by the adenoviral major late promoter provides a viable approach to noninvasively monitor adenovirus replication in preclinical studies and has the potential for human application with clinically relevant imaging reporters.

  18. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  19. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non

  20. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia

    PubMed Central

    Liu, Hui; Li, Lu; Meng, Haitao; Qian, Qijun

    2013-01-01

    An attractive strategy among adenovirus-based oncolytic systems is to design adenoviral vectors to express pro-apoptotic genes, in which this gene-virotherapy approach significantly enhances tumor cell death by activating apoptotic pathways. However, the existence of cancer cells with apoptotic defects is one of the major obstacles in gene-virotherapy. Here, we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with simultaneous expression of Beclin-1, an autophagy gene, offers a therapeutic advantage for leukemia. A Beclin-1 cDNA was cloned in an oncolytic adenovirus with chimeric Ad5/11 fiber (SG511-BECN). SG511-BECN treatment induced significant autophagic cell death, and resulted in enhanced cell killing in a variety of leukemic cell lines and primary leukemic blasts. SG511-BECN effects were seen in chronic myeloid leukemia and acute myeloid leukemia with resistance to imatinib or chemotherapy, but exhibited much less cytotoxicity on normal cells. The SG511-BECN-induced autophagic cell death could be partially reversed by RNA interference knockdown of UVRAG, ATG5, and ATG7. We also showed that SG511-BECN strongly inhibited the growth of leukemic progenitors in vitro. In murine leukemia models, SG511-BECN prolonged the survival and decreased the xenograft tumor size by inducing autophagic cell death. Our results suggest that infection of leukemia cells with an oncolytic adenovirus overexpressing Beclin-1 can induce significant autophagic cell death and provide a new strategy for the elimination of leukemic cells via a unique mechanism of action distinct from apoptosis. PMID:23765161

  1. Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus

    PubMed Central

    Unzu, Carmen; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo

    2014-01-01

    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors. PMID:24465560

  2. Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus.

    PubMed

    Unzu, Carmen; Melero, Ignacio; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo; Fontanellas, Antonio

    2014-01-01

    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors.

  3. Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

    PubMed

    Wang, Ning; Zhang, Hongyu; Zhang, Bing-Qiang; Liu, Wei; Zhang, Zhonglin; Qiao, Min; Zhang, Hongmei; Deng, Fang; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Liao, Zhan; Zhang, Qian; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Deng, Youlin; Luu, Hue H; Haydon, Rex C; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell-based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured "mini-gut" organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D "mini-gut" organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.

  4. Ganciclovir Inhibits Human Adenovirus Replication and Pathogenicity in Permissive Immunosuppressed Syrian Hamsters

    PubMed Central

    Ying, Baoling; Tollefson, Ann E.; Spencer, Jacqueline F.; Balakrishnan, Lata; Dewhurst, Stephen; Capella, Cristina; Buller, R. Mark L.; Wold, William S. M.

    2014-01-01

    Adenovirus infections of immunocompromised patients can develop into deadly multiorgan or systemic disease. The virus is especially threatening for pediatric allogeneic hematopoietic stem cell transplant recipients; according to some studies, 10% or more of these patients succumb to disease resulting from adenovirus infection. At present, there is no drug approved for the treatment or prevention of adenovirus infections. Compounds that are approved to treat other virus infections are used off-label to combat adenovirus, but only anecdotal evidence of the efficacy of these drugs exists. Ganciclovir, a drug approved for the treatment of herpesvirus infection, was previously reported to be effective against human adenoviruses in vitro. To model adenovirus infections in immunocompromised humans, we examined ganciclovir's efficacy in immunosuppressed Syrian hamsters intravenously infected with type 5 human adenovirus (Ad5). This animal model is permissive for Ad5 replication, and the animals develop symptoms similar to those seen in humans. We demonstrate that ganciclovir suppresses Ad5 replication in the liver of infected hamsters and that it mitigates the consequences of Ad5 infections in these animals when administered prophylactically or therapeutically. We show that ganciclovir inhibits Ad5 DNA synthesis and late gene expression. The mechanism of action for the drug is not clear; preliminary data suggest that it exerts its antiadenoviral effect by directly inhibiting the adenoviral DNA polymerase. While more extensive studies are required, we believe that ganciclovir is a promising drug candidate to treat adenovirus infections. Brincidofovir, a drug with proven activity against Ad5, was used as a positive control in the prophylactic experiment. PMID:25224011

  5. Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed Syrian hamsters.

    PubMed

    Ying, Baoling; Tollefson, Ann E; Spencer, Jacqueline F; Balakrishnan, Lata; Dewhurst, Stephen; Capella, Cristina; Buller, R Mark L; Toth, Karoly; Wold, William S M

    2014-12-01

    Adenovirus infections of immunocompromised patients can develop into deadly multiorgan or systemic disease. The virus is especially threatening for pediatric allogeneic hematopoietic stem cell transplant recipients; according to some studies, 10% or more of these patients succumb to disease resulting from adenovirus infection. At present, there is no drug approved for the treatment or prevention of adenovirus infections. Compounds that are approved to treat other virus infections are used off-label to combat adenovirus, but only anecdotal evidence of the efficacy of these drugs exists. Ganciclovir, a drug approved for the treatment of herpesvirus infection, was previously reported to be effective against human adenoviruses in vitro. To model adenovirus infections in immunocompromised humans, we examined ganciclovir's efficacy in immunosuppressed Syrian hamsters intravenously infected with type 5 human adenovirus (Ad5). This animal model is permissive for Ad5 replication, and the animals develop symptoms similar to those seen in humans. We demonstrate that ganciclovir suppresses Ad5 replication in the liver of infected hamsters and that it mitigates the consequences of Ad5 infections in these animals when administered prophylactically or therapeutically. We show that ganciclovir inhibits Ad5 DNA synthesis and late gene expression. The mechanism of action for the drug is not clear; preliminary data suggest that it exerts its antiadenoviral effect by directly inhibiting the adenoviral DNA polymerase. While more extensive studies are required, we believe that ganciclovir is a promising drug candidate to treat adenovirus infections. Brincidofovir, a drug with proven activity against Ad5, was used as a positive control in the prophylactic experiment.

  6. Transcriptional Targeting of Primary and Metastatic Tumor Neovasculature by an Adenoviral Type 5 Roundabout4 Vector in Mice

    PubMed Central

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E.; Kaliberova, Lyudmila; Curiel, David T.; Arbeit, Jeffrey M.

    2013-01-01

    New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies. PMID:24376772

  7. Transcriptional targeting of primary and metastatic tumor neovasculature by an adenoviral type 5 roundabout4 vector in mice.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E; Kaliberova, Lyudmila; Curiel, David T; Arbeit, Jeffrey M

    2013-01-01

    New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies.

  8. An adenovirus-simian immunodeficiency virus env vaccine elicits humoral, cellular, and mucosal immune responses in rhesus macaques and decreases viral burden following vaginal challenge.

    PubMed Central

    Buge, S L; Richardson, E; Alipanah, S; Markham, P; Cheng, S; Kalyan, N; Miller, C J; Lubeck, M; Udem, S; Eldridge, J; Robert-Guroff, M

    1997-01-01

    Six female rhesus macaques were immunized orally and intranasally at 0 weeks and intratracheally at 12 weeks with an adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus SIVsm env recombinant and at 24 and 36 weeks with native SIVmac251 gp120 in Syntex adjuvant. Four macaques received the Ad5hr vector and adjuvant alone; two additional controls were naive. In vivo replication of the Ad5hr wild-type and recombinant vectors occurred with detection of Ad5 DNA in stool samples and/or nasal secretions in all macaques and increases in Ad5 neutralizing antibody in 9 of 10 macaques following Ad administrations. SIV-specific neutralizing antibodies appeared after the second recombinant immunization and rose to titers > 10,000 following the second subunit boost. Immunoglobulin G (IgG) and IgA antibodies able to bind gp120 developed in nasal and rectal secretions, and SIV-specific IgGs were also observed in vaginal secretions and saliva. T-cell proliferative responses to SIV gp140 and T-helper epitopes were sporadically detected in all immunized macaques. Following vaginal challenge with SIVmac251, transient or persistent infection resulted in both immunized and control monkeys. The mean viral burden in persistently infected immunized macaques was significantly decreased in the primary infection period compared to that of control macaques. These results establish in vivo use of the Ad5hr vector, which overcomes the host range restriction of human Ads for rhesus macaques, thereby providing a new model for evaluation of Ad-based vaccines. In addition, they show that a vaccine regimen using the Ad5hr-SIV env recombinant and gp120 subunit induces strong humoral, cellular, and mucosal immunity in rhesus macaques. The reduced viral burden achieved solely with an env-based vaccine supports further development of Ad-based vaccines comprising additional viral components for immune therapy and AIDS vaccine development. PMID:9343211

  9. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and antisera used in serological tests to identify antibodies to adenovirus in serum. Additionally... identify adenoviruses directly from clinical specimens. The identification aids in the diagnosis of disease caused by adenoviruses and provides epidemiological information on these diseases. Adenovirus...

  10. Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Buchsbaum, Donald J.; Curiel, David T.

    2014-01-01

    Pancreatic cancer is a significant clinical problem and novel therapeutic approaches are desperately needed. Recent advances in conditionally replicative adenovirus-based (CRAd) oncolytic virus design allow the application of CRAd vectors as a therapeutic strategy to efficiently target and eradicate chemoresistant pancreatic cancer cells thereby improving the efficacy of pancreatic cancer treatment. The goal of this study was to construct and validate the efficacy of an infectivity-enhanced, liver-untargeted, tumor-specific CRAd vector. A panel of CRAds has been derived which embody the C-X-C chemokine receptor type 4 promoter for conditional replication, two fiber complex mosaicism for targeting expansion, and hexon hypervariable region 7 (HVR7) modification for liver untargeting. We evaluated CRAds for cancer virotherapy using a human pancreatic tumor xenograft model. Employment of the fiber mosaic approach improved CRAd replication in pancreatic tumor xenografts. Substitution of the HVR7 of the Ad5 hexon for Ad serotype 3 hexon resulted in decreased liver tropism of systemically administrated CRAd. Obtained data demonstrated that employment of complex mosaicism increased efficacy of the combination of oncolytic virotherapy with chemotherapy in a human pancreatic tumor xenograft model. PMID:24903014

  11. Circumventing Antivector Immunity: Potential Use of Nonhuman Adenoviral Vectors

    PubMed Central

    Podgorski, Iva I.; Downes, Nicholas; Alemany, Ramon

    2014-01-01

    Abstract Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles. PMID:24499174

  12. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors.

    PubMed

    Lopez-Gordo, Estrella; Podgorski, Iva I; Downes, Nicholas; Alemany, Ramon

    2014-04-01

    Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.

  13. In vivo model of adeno-associated virus vector persistence and rescue.

    PubMed Central

    Afione, S A; Conrad, C K; Kearns, W G; Chunduru, S; Adams, R; Reynolds, T C; Guggino, W B; Cutting, G R; Carter, B J; Flotte, T R

    1996-01-01

    Gene therapy vectors based on human DNA viruses could be mobilized or rescued from individuals who are subsequently infected with the corresponding wild-type (wt) helper viruses. This phenomenon has been effectively modeled in vitro with both adenovirus (Ad) and adeno-associated virus (AAV) vectors but has not previously been studied in vivo. In the current study, we have developed an in vivo model to study the interactions of a recombinant AAV vector (AAV-CFTR) with wt AAV type 2 (AAV2) and a host range mutant Ad (Ad2HR405) for which monkey cells are permissive (D.E.Brough, S.A.Rice, S.Sell, and D.F.Klessig, J. Virol. 55:206-212, 1985). AAV-CFTR was administered to the respiratory epithelium of the nose or lung of rhesus macaques. Primary cells were harvested from the infusion site at time points up to 3 months after vector administration to confirm vector DNA persistence. Vector DNA was present in episomal form and could be rescued in vitro only by addition of wt AAV2 and Ad. In in vivo rescue studies, vector was administered before or after wt-AAV2 and Ad2HR405 infection, and the shedding of AAV-CFTR was examined. Ad2HR405 and wt-AAV2 infections were established in the nose with concomitant administration. wt-AAV2 replication occurred in the lung when virus was administered directly at a high titer to the lower respiratory tract. AAV-CFTR vector rescue was also observed in the latter setting. Although these studies were performed with small numbers of animals within each group, it appears that AAV-CFTR DNA persists in the primate respiratory tract and that this model may be useful for studies of recombinant AAV vector rescue. PMID:8627804

  14. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.

  15. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  16. Adenovirus-mediated transfer of a recombinant human alpha 1-antitrypsin cDNA to human endothelial cells.

    PubMed Central

    Lemarchand, P; Jaffe, H A; Danel, C; Cid, M C; Kleinman, H K; Stratford-Perricaudet, L D; Perricaudet, M; Pavirani, A; Lecocq, J P; Crystal, R G

    1992-01-01

    To evaluate the feasibility of using a replication-deficient recombinant adenovirus to transfer human genes to the human endothelium, human umbilical vein endothelial cells were infected in vitro with adenovirus vectors containing the lacZ gene or a human alpha 1-antitrypsin (alpha 1AT) cDNA. After in vitro infection with the lacZ adenovirus vector, cultured endothelial cells expressed beta-galactosidase. In parallel studies with the alpha 1AT adenovirus vector, infected cells expressed human alpha 1AT transcripts, as evidenced by in situ hybridization and Northern analysis, and de novo synthesized and secreted glycosylated, functional alpha 1AT within 6 hr of infection, as shown by [35S]methionine labeling and immunoprecipitation. Quantification of the culture supernatants demonstrated 0.3-0.6 micrograms of human alpha 1AT secreted per 10(6) cells in 24 hr, for at least 14 days after adenovirus vector infection. To demonstrate the feasibility of direct transfer of genes into endothelial cells in human blood vessels, lacZ or alpha 1AT adenovirus vectors were placed in the lumen of intact human umbilical veins ex vivo. Histologic evaluation of the veins after 24 hr demonstrated transfer and expression of the lacZ gene specifically to the endothelium. alpha 1AT adenovirus infection resulted both in expression of alpha 1AT transcripts in the endothelium and in de novo synthesis and secretion of alpha 1AT. Quantification of alpha 1AT in the vein perfusates showed average levels of 13 micrograms/ml after 24 hr. These observations strongly support the feasibility of in vivo human gene transfer to the endothelium mediated by replication-deficient adenovirus vectors. Images PMID:1631146

  17. Adenoviral Vector-Mediated Gene Therapy for Gliomas: Coming of Age

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Wilson, Thomas J.; Calinescu, Alexandra; Paran, Christopher; Kamran, Neha; Koschmann, Carl; Moreno-Ayala, Mariela A.; Assi, Hikmat; Lowenstein, Pedro R.

    2014-01-01

    Introduction Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults; it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates’ brain. Importantly Ads have been safely administered within the tumor resection cavity in humans. Areas Covered Background on GBM and Ad vectors; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally we discuss the results of the human clinical trials for GBM that have used adenoviral vectors. Expert Opinion The transduction characteristics of Ad vectors, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases, encourages the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although it is large randomized phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM. PMID:24773178

  18. Eliminating established tumor in nu/nu nude mice by a TRAIL-armed oncolytic adenovirus

    PubMed Central

    Dong, Fengqin; Wang, Li; Davis, John J.; Hu, Wenxian; Zhang, Lidong; Guo, Wei; Teraishi, Fuminori; Ji, Lin; Fang, Bingliang

    2006-01-01

    Purpose The tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) and oncolytic viruses have recently been investigated extensively for cancer therapy. However, preclinical and clinical studies have revealed that their clinical application is hampered by either weak anticancer activity or systemic toxicity. We examined whether the weaknesses of the two strategies can be overcome by integrating the TRAIL gene into an oncolytic vector. Experimental Design We constructed a TRAIL-expressing oncolytic adenovector designated Ad/TRAIL-E1. The expression of both the TRAIL and viral E1A genes is under the control of a synthetic promoter consisting of sequences from the human telomerase reverse transcriptase promoter and a minimal cytomegalovirus early promoter. The transgene expression, apoptosis induction, viral replication, antitumor activity and toxicity of Ad/TRAIL-E1 were determined in vitro and in vivo in comparison with control vectors. Results Ad/TRAIL-E1 elicited enhanced viral replication and/or stronger oncolytic effect in vitro in various human cancer cell lines than a TRAIL-expressing replication-defective adenovector or an oncolytic adenovector expressing green fluorescent protein. Intralesional administration of Ad/TRAIL-E1 eliminated all subcutaneous xenograft tumors established from a human non-small cell lung cancer cell line, H1299, on nu/nu nude mice, resulting in long-term tumor-free survival. Furthermore, we found no treatment-related toxicity. Conclusions Viral replication and antitumor activity of oncolytic adenovirus can be enhanced by the TRAIL gene and Ad/TRAIL-E1 could become a potent therapeutic agent for cancer therapy. PMID:16951242

  19. Serotype-specific neutralizing antibody epitopes of human adenovirus type 3 (HAdV-3) and HAdV-7 reside in multiple hexon hypervariable regions.

    PubMed

    Qiu, Hongling; Li, Xiao; Tian, Xingui; Zhou, Zhichao; Xing, Ke; Li, Haitao; Tang, Ni; Liu, Wenkuan; Bai, Peisheng; Zhou, Rong

    2012-08-01

    Human adenovirus types 3 and 7 (HAdV-3 and HAdV-7) occur epidemically and contribute greatly to respiratory diseases, but there is no currently available licensed recombinant HAdV-3/HAdV-7 bivalent vaccine. Identification of serotype-specific neutralizing antibody (NAb) epitopes for HAdV-3 and HAdV-7 will be beneficial for development of recombinant HAdV-3/HAdV-7 bivalent vaccines. In this study, four NAb epitopes within hexon hypervariable regions (HVRs) were predicted for HAdV-3 and HAdV-7, respectively, by using bioinformatics. Eight hexon chimeric adenovirus vectors with the alternation of only one predicted neutralizing epitope were constructed. Further in vitro and in vivo neutralization assays indicated that E2 (residing in HVR2) and E3 (residing in HVR5) are NAb epitopes for HAdV-7, and E3 plays a more important role in generating NAb responses. Cross-neutralization assays indicated that all four predicted epitopes, R1 to R4, are NAb epitopes for HAdV-3, and R1 (residing in HVR1) plays the most important role in generating NAb responses. Humoral immune responses elicited by the recombinant rAdH7R1 (containing the R1 epitope) were significantly and durably suppressed by HAdV-3-specific NAbs. Surprisingly, the rAdΔE3GFP-specific neutralizing epitope responses induced by rAdMHE3 (R3 replaced by E3) and rAdMHE4 (R4 replaced by E4) were weaker than those of rAdMHE1 (R1 replaced by E1) or rAdMHE2 (R2 relaced by E2) in vitro and in vivo. Furthermore, rAdMHE4 replicated more slowly in HEp-2 cells, and the final yield was about 10-fold lower than that of rAdΔE3GFP. The current findings contribute not only to the development of new adenovirus vaccine candidates, but also to the construction of new gene delivery vectors.

  20. Adenovirus with DNA Packaging Gene Mutations Increased Virus Release

    PubMed Central

    Wechman, Stephen L.; Rao, Xiao-Mei; McMasters, Kelly M.; Zhou, Heshan Sam

    2016-01-01

    Adenoviruses (Ads) have been extensively manipulated for the development of cancer selective replication, leading to cancer cell death or oncolysis. Clinical studies using E1-modified oncolytic Ads have shown that this therapeutic platform was safe, but with limited efficacy, indicating the necessity of targeting other viral genes for manipulation. To improve the therapeutic efficacy of oncolytic Ads, we treated the entire Ad genome repeatedly with UV-light and have isolated AdUV which efficiently lyses cancer cells as reported previously (Wechman, S. L. et al. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses 2016, 8, 6). In this report, we show that no mutations were observed in the early genes (E1 or E4) of AdUV while several mutations were observed within the Ad late genes which have structural or viral DNA packaging functions. This study also reported the increased release of AdUV from cancer cells. In this study, we found that AdUV inhibits tumor growth following intratumoral injection. These results indicate the potentially significant role of the viral late genes, in particular the DNA packaging genes, to enhance Ad oncolysis. PMID:27999391

  1. Effects of adenovirus-mediated expression of p27Kip1, p21Waf1 and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease.

    PubMed

    Turturro, Franceso; Arnold, Marilyn D; Frist, Audrey Y; Seth, Prem

    2002-06-01

    We investigated the response of SUDHL-1 and L428 cells, derived from t(2;5)-anaplastic large cell lymphoma (ALCL) and Hodgkin's disease (HD), respectively, to recombinant adenoviruses expressing cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 (Adp27), p21Waf1 (Adp21) and p16INK4A (Adp16). Cell cycle analysis of SUDHL-1 cells after 24 h of infection with 200 multiplicity of infection (MOI) of Adp27, Adp21, and Adp16, showed very high levels of cell debris in the subG1 area. The magnitude of cell debris-events was Adp27/Adp21 > Adp16. Cell cycle analysis of L428 cells revealed absence of cell debris and increased G2 phase in all the groups of cells tested as compared to the controls (mock and AdNull). A minimal increase in G1 phase was also evident in cells infected with Adp27 (52%) compared to uninfected cells (43%), AdNull (45%) and to cells infected with Adp21 (37%) and Adp16 (31%). The presence of significant levels of Coxsackie-adenovirus receptor (CAR) on the cell surface of L428 cells excluded the cell membrane-barrier as responsible for the differences in cell observed in response to the recombinant adenovirus-mediated CDKIs expression as compared to SUDHL-1. We also showed that the recombinant adenovirus-mediated cytotoxicity measured as apoptosis was MOI- and vector-dependent in SUDHL-1 cells at lower MOI (100). In conclusion, the therapeutic effect induced by recombinant adenoviruses expressing p27Kip1, p21Waf1 and p16INK4A is cell-dependent in cells derived from selected lymphoid malignancies. Biochemical cellular differences more than cell surface barriers seem to be responsible for differences in response to recombinant adenovirus-mediated expression of cytotoxic genes. Moreover, the cytotoxicity of recombinant adenoviruses expressing p27Kip1, p21Waf1 and p16INK4A may be further explored as a tool for gene therapy of t(2;5)-derived ALCL.

  2. Encapsulation of adenoviral vectors into chitosan-bile salt microparticles for mucosal vaccination.

    PubMed

    Lameiro, Maria Helena; Malpique, Rita; Silva, Ana Carina; Alves, Paula M; Melo, Eurico

    2006-11-01

    The objective of this study is the incorporation of adenoviral vectors into a microparticulate system adequate for mucosal delivery. Microencapsulation of the vectors was accomplished by ionotropic coacervation of chitosan, using bile salts as counter-anion. The process was optimized in order to promote high encapsulation efficiency, with a minimal loss of viral infectivity. The maintenance of sterility during all the encapsulation procedure was also taken into account. The principle relies on the simple addition of a solution containing adenoviral vectors to a solution of neutralized chitosan, under stirring. Some surfactants were added to the chitosan solution, to improve the efficiency of this process, such as Tween 80, and Pluronic F68 at 1% (w/v). Encapsulation efficiency higher than 84% was achieved with formulations containing sodium deoxycholate as counter-anion and Pluronic F68 as dispersant agent. The infectivity of the adenoviral vectors incorporated into microparticles was assessed by release assays in PBS and by direct inoculation in 293 and Caco-2 cells. The release in aqueous media was negligible but, when in contact with monolayers of the cells, an effective release of bioactive adenovirus was obtained. Our work shows that encapsulation in microparticles, not only appear to protect the adenovirus from the external medium, namely from low pH, but can also delay their release that is fully dependent on cell contact, an advantage for mucosal vaccination purposes. The formulations developed are able to maintain AdV infectivity and permit a delayed release of the bioactives that is promoted by digestion in situ of the microparticles by the cell monolayers. The onset of delivery is, that way, host-controlled. In view of these results, these formulations showed good properties for mucosal adenovirus delivery.

  3. Antigen capsid-display on human adenovirus 35 via pIX fusion is a potent vaccine platform

    PubMed Central

    van der Helm, Esmeralda; Spek, Dirk; Vorthoren, Lars; Serroyen, Jan; Kuipers, Harmjan; Schuitemaker, Hanneke; Zahn, Roland; Custers, Jerome; Vellinga, Jort

    2017-01-01

    Durable protection against complex pathogens is likely to require immunity that comprises both humoral and cellular responses. While heterologous prime-boost regimens based on recombinant, replication-incompetent Adenoviral vectors (AdV) and adjuvanted protein have been able to induce high levels of concomitant humoral and cellular responses, complex manufacturing and handling in the field may limit their success. To combine the benefits of genetic and protein-based vaccination within one vaccine construct and to facilitate their use, we generated Human Adenovirus 35 (HAdV35) vectors genetically encoding a model antigen based on the Plasmodium falciparum (P. falciparum) circumsporozoite (CS) protein and displaying a truncated version of the same antigen (CSshort) via protein IX on the capsid, with or without a flexible glycine-linker and/or a 45Å-spacer. The four tested pIX-antigen display variants were efficiently incorporated and presented on the HAdV35 capsid irrespective of whether a transgene was encoded or not. Transgene-expression and producibility of the display-/expression vectors were not impeded by the pIX-display. In mice, the pIX-modified vectors induced strong humoral antigen-specific immunity that increased with the inclusion of the linker-/spacer molecules, exceeded the responses induced by the genetic, transgene-expressing HAdV35 vector, and surpassed recombinant protein in potency. In addition, the pIX- display/expression vectors elicited high antigen-specific cellular immune responses that matched those of the genetic HAdV35 vector expressing CS. pIX-modified display-/expression HAdV vectors may therefore be a valuable technology for the development of vaccines against complex pathogens, especially in resource-limited settings. PMID:28362809

  4. Identification of a Nonstructural DNA-Binding Protein (DBP) as an Antigen with Diagnostic Potential for Human Adenovirus

    PubMed Central

    Zhou, Hongli; Wu, Chao; Paranhos-Baccalà, Gláucia; Vernet, Guy; Jin, Qi; Wang, Jianwei; Hung, Tao

    2013-01-01

    Background Human adenoviruses (HAdVs) have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. Methodology/Principal Findings In this study, a nonstructural antigenic protein, the DNA binding protein (DBP) of human adenovirus 5 and 35 (Ad5, Ad35) - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ2 =  44.9, P<0.01) the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. Conclusions/Significance The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis. PMID:23516396

  5. Pseudotyping Serotype 5 Adenovirus with the Fiber from Other Serotypes Uncovers a Key Role of the Fiber Protein in Adenovirus 5-Induced Thrombocytopenia.

    PubMed

    Raddi, Najat; Vigant, Frédéric; Wagner-Ballon, Oriane; Giraudier, Stéphane; Custers, Jerome; Hemmi, Silvio; Benihoud, Karim

    2016-02-01

    Adenovirus (Ad) infection in humans is associated with inflammatory responses and thrombocytopenia. Although several studies were conducted in mice models to understand molecular and cellular mechanisms of Ad-induced inflammatory responses, only few of them turned their interest toward the mechanisms of Ad-induced thrombocytopenia. Using different depletion methods, the present study ruled out any significant role of spleen, macrophages, and vitamin K-dependent factor in Ad-induced thrombocytopenia. Interestingly, mice displaying thrombocytopenia expressed high levels of cytokines/chemokines after Ad administration. Most importantly, pseudotyping adenovirus with the fiber protein from other serotypes was associated with reduction of both cytokine/chemokine production and thrombocytopenia. Altogether, our results suggest that capsid fiber protein (and more precisely its shaft) of Ad serotype 5 triggers the cytokine production that leads to Ad-induced thrombocytopenia.

  6. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-12-29

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).

  7. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  8. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use.

    PubMed

    Chang, Po-Chun; Cirelli, Joni A; Jin, Qiming; Seol, Yang-Jo; Sugai, James V; D'Silva, Nisha J; Danciu, Theodora E; Chandler, Lois A; Sosnowski, Barbara A; Giannobile, William V

    2009-05-01

    Platelet-derived growth factor (PDGF) gene therapy offers promise for tissue engineering of tooth-supporting alveolar bone defects. To date, limited information exists regarding the safety profile and systemic biodistribution of PDGF gene therapy vectors when delivered locally to periodontal osseous defects. The aim of this preclinical study was to determine the safety profile of adenovirus encoding the PDGF-B gene (AdPDGF-B) delivered in a collagen matrix to periodontal lesions. Standardized alveolar bone defects were created in rats, followed by delivery of matrix alone or containing AdPDGF-B at 5.5 x 10(8) or 5.5 x 10(9) plaque-forming units/ml. The regenerative response was confirmed histologically. Gross clinical observations, hematology, and blood chemistries were monitored to evaluate systemic involvement. Bioluminescence and quantitative polymerase chain reaction were used to assess vector biodistribution. No significant histopathological changes were noted during the investigation. Minor alterations in specific hematological and blood chemistries were seen; however, most parameters were within the normal range for all groups. Bioluminescence analysis revealed vector distribution at the axillary lymph nodes during the first 2 weeks with subsequent return to baseline levels. AdPDGF-B was well contained within the localized osseous defect area without viremia or distant organ involvement. These results indicate that AdPDGF-B delivered in a collagen matrix exhibits acceptable safety profiles for possible use in human clinical studies.

  9. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro.

    PubMed

    Chen, Nana; Zheng, Yang; Yin, Jianjian; Li, Xiujing; Zheng, Conglong

    2013-11-01

    Adenoviruses are associated with respiratory, ocular, or gastrointestinal disease. With various species and high morbidity, adenoviruses are increasingly recognized as significant viral pathogen among pediatric and immunocompromised patients. However, there is almost no specific drug for treatment. Silver nanoparticles are demonstrated to be virucidal against influenza A (H1N1) virus, human immunodeficiency virus and Hepatitis B virus. Currently, there is no data regarding whether the silver nanoparticles inhibit the adenovirus or not. The aim of this study is to investigate the effect of silver nanoparticles on adenovirus type 3 (Ad3). The results revealed that HeLa cells infected with silver nanoparticles treated Ad3 did not show obvious CPE. The viability of HeLa cells infected with silver nanoparticles treated Ad3 was significantly higher than that of cells infected with untreated Ad3. There was a significant difference of fluorescence intensity between the cells infected with silver nanoparticles treated and untreated Ad3. The transmission electron microscopy (TEM) showed that silver nanoparticles could directly damage the structure of Ad3 particle. The PCR amplification products of DNA isolated from silver nanoparticles treated Ad3 was decreased in a dose-dependent manner. The decreased DNA loads were also confirmed by real-time PCR experiment. The present study indicates silver nanoparticles exhibit remarkably inhibitory effects on Ad3 in vitro, which suggests silver nanoparticles could be a potential antiviral agent for inhibiting Ad3 infection.

  10. Radioisotopic imaging allows optimization of adenovirus lung deposition for cystic fibrosis gene therapy.

    PubMed

    Lerondel, S; Le Pape, A; Sené, C; Faure, L; Bernard, S; Diot, P; Nicolis, E; Mehtali, M; Lusky, M; Cabrini, G; Pavirani, A

    2001-01-01

    Cystic fibrosis is a common, heriditary disease resulting from mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Airway transfer of the CFTR gene is a potential strategy to treat or prevent the lung pathology that is the main cause of morbidity and mortality. Among the vectors used for gene therapy, adenoviruses have shown their ability to transfer the CFTR gene to respiratory epithelial cells, using either instillation or nebulization. Our objective was to characterize the lung deposition of aerosolized adenovirus by quantitative radioisotopic imaging, the only noninvasive technique allowing in vivo quantitation of inhaled drugs. We first labeled an adenovirus expressing human CFTR with the gamma-emitting radioisotope, technetium 99m (99mTc), and determined the best labeling conditions to allow preservation of virus bioactivity. We then administered the radioaerosol to baboons, determined lung regional deposition of 99mTc-labeled adenovirus, and compared the expression of CFTR transcripts 3 and 21 days after inhalation. The expression of vector-encoded mRNA ranged from 4 to 22% with respect to the endogenous CFTR mRNA depending on the lung segments. Moreover, we have developed a model using 99mTc-DTPA (diethylenetriamine pentaacetic acid), which can be used, as an alternative to adenovirus, to determine the profile of lung deposition of the vector. This study demonstrates that scintigraphy is a useful technique to achieve optimization of gene administration to the airways.

  11. Hybrid Nonviral/Viral Vector Systems for Improved piggyBac DNA Transposon In Vivo Delivery

    PubMed Central

    Cooney, Ashley L; Singh, Brajesh K; Sinn, Patrick L

    2015-01-01

    The DNA transposon piggyBac is a potential therapeutic agent for multiple genetic diseases such as cystic fibrosis (CF). Recombinant piggyBac transposon and transposase are typically codelivered by plasmid transfection; however, plasmid delivery is inefficient in somatic cells in vivo and is a barrier to the therapeutic application of transposon-based vector systems. Here, we investigate the potential for hybrid piggyBac/viral vectors to transduce cells and support transposase-mediated genomic integration of the transposon. We tested both adenovirus (Ad) and adeno-associated virus (AAV) as transposon delivery vehicles. An Ad vector expressing hyperactive insect piggyBac transposase (iPB7) was codelivered. We show transposase-dependent transposition activity and mapped integrations in mammalian cells in vitro and in vivo from each viral vector platform. We also demonstrate efficient and persistent transgene expression following nasal delivery of piggyBac/viral vectors to mice. Furthermore, using piggyBac/Ad expressing Cystic Fibrosis transmembrane Conductance Regulator (CFTR), we show persistent correction of chloride current in well-differentiated primary cultures of human airway epithelial cells derived from CF patients. Combining the emerging technologies of DNA transposon-based vectors with well-studied adenoviral and AAV delivery provides new tools for in vivo gene transfer and presents an exciting opportunity to increase the delivery efficiency for therapeutic genes such as CFTR. PMID:25557623

  12. Retargeting of Gene Expression Using Endothelium Specific Hexon Modified Adenoviral Vector

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Lu, Zhi Hong; Preuss, Meredith A.; Barnes, Justin A.; Stockard, Cecil R.; Grizzle, William E.; Arbeit, Jeffrey M.; Curiel, David T.

    2013-01-01

    Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter were characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution. PMID:24210128

  13. Retargeting of gene expression using endothelium specific hexon modified adenoviral vector.

    PubMed

    Kaliberov, Sergey A; Kaliberova, Lyudmila N; Hong Lu, Zhi; Preuss, Meredith A; Barnes, Justin A; Stockard, Cecil R; Grizzle, William E; Arbeit, Jeffrey M; Curiel, David T

    2013-12-01

    Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter was characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution.

  14. A New Human DSG2-Transgenic Mouse Model for Studying the Tropism and Pathology of Human Adenoviruses

    PubMed Central

    Wang, Hongjie; Beyer, Ines; Persson, Jonas; Song, Hui; Li, ZongYi; Richter, Maximilian; Cao, Hua; van Rensburg, Ruan; Yao, Xiaoying; Hudkins, Kelly; Yumul, Roma; Zhang, Xiao-Bing; Yu, Mujun; Fender, Pascal; Hemminki, Akseli

    2012-01-01

    We have recently reported that a group of human adenoviruses (HAdVs) uses desmoglein 2 (DSG2) as a receptor for infection. Among these are the widely distributed serotypes HAdV-B3 and HAdV-B7, as well as a newly emerged strain derived from HAdV-B14. These serotypes do not infect rodent cells and could not up until now be studied in small-animal models. We therefore generated transgenic mice containing the human DSG2 locus. These mice expressed human DSG2 (hDSG2) at a level and in a pattern similar to those found for humans and nonhuman primates. As an initial application of hDSG2-transgenic mice, we used a green fluorescent protein (GFP)-expressing HAdV-B3 vector (Ad3-GFP) and studied GFP transgene expression by quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry subsequent to intranasal and intravenous virus application. After intranasal application, we found efficient transduction of bronchial and alveolar epithelial cells in hDSG2-transgenic mice. Intravenous Ad3-GFP injection into hDSG2-transgenic mice resulted in hDSG2-dependent transduction of epithelial cells in the intestinal and colon mucosa. Our findings give an explanation for clinical symptoms associated with infection by DSG2-interacting HAdVs and provide a rationale for using Ad3-derived vectors in gene therapy. PMID:22457526

  15. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus

    PubMed Central

    Guo, Xiaojuan; Deng, Yao; Chen, Hong; Lan, Jiaming; Wang, Wen; Zou, Xiaohui; Hung, Tao; Lu, Zhuozhuang; Tan, Wenjie

    2015-01-01

    An ideal vaccine against mucosal pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) should confer sustained, protective immunity at both systemic and mucosal levels. Here, we evaluated the in vivo systemic and mucosal antigen-specific immune responses induced by a single intramuscular or intragastric administration of recombinant adenoviral type 5 (Ad5) or type 41 (Ad41) -based vaccines expressing the MERS-CoV spike (S) protein. Intragastric administration of either Ad5-S or Ad41-S induced antigen-specific IgG and neutralizing antibody in serum; however, antigen-specific T-cell responses were not detected. In contrast, after a single intramuscular dose of Ad5-S or Ad41-S, functional antigen-specific T-cell responses were elicited in the spleen and pulmonary lymphocytes of the mice, which persisted for several months. Both rAd-based vaccines administered intramuscularly induced systemic humoral immune responses (neutralizing IgG antibodies). Our results show that a single dose of Ad5-S- or Ad41-S-based vaccines represents an appealing strategy for the control of MERS-CoV infection and transmission. PMID:25762305

  16. A novel adenovirus of Western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Wevers, Diana; Leendertz, Fabian H; Scuda, Nelly; Boesch, Christophe; Robbins, Martha M; Head, Josephine; Ludwig, Carsten; Kühn, Joachim; Ehlers, Bernhard

    2010-11-05

    Adenoviruses (AdV) broadly infect vertebrate hosts including a variety of primates. We identified a novel AdV in the feces of captive gorillas by isolation in cell culture, electron microscopy and PCR. From the supernatants of infected cultures we amplified DNA polymerase (DPOL), preterminal protein (pTP) and hexon gene sequences with generic pan primate AdV PCR assays. The sequences in-between were amplified by long-distance PCRs of 2-10 kb length, resulting in a final sequence of 15.6 kb. Phylogenetic analysis placed the novel gorilla AdV into a cluster of primate AdVs belonging to the species Human adenovirus B (HAdV-B). Depending on the analyzed gene, its position within the cluster was variable. To further elucidate its origin, feces samples of wild gorillas were analyzed. AdV hexon sequences were detected which are indicative for three distinct and novel gorilla HAdV-B viruses, among them a virus nearly identical to the novel AdV isolated from captive gorillas. This shows that the discovered virus is a member of a group of HAdV-B viruses that naturally infect gorillas. The mixed phylogenetic clusters of gorilla, chimpanzee, bonobo and human AdVs within the HAdV-B species indicate that host switches may have been a component of the evolution of human and non-human primate HAdV-B viruses.

  17. Highly inducible expression from vectors containing multiple GRE's in CHO cells overexpressing the glucocorticoid receptor.

    PubMed Central

    Israel, D I; Kaufman, R J

    1989-01-01

    A conditional glucocorticoid-responsive expression vector system is described for highly inducible expression of heterologous genes in mammalian cells. This host-vector system requires high level expression of the glucocorticoid receptor (GR) protein in the host cell and multiple copies of the receptor binding site within the expression vector. Transfection and selection of Chinese hamster ovary cells with expression vectors encoding the rat GR yielded cell lines which express functional receptor at high levels. Insertion of multiple copies of the MMTV enhancer (glucocorticoid responsive element, GRE) into an Adenovirus major late promoter (AdMLP) based expression vector yielded greater than 1000-fold inducible expression by dexamethasone (dex) in transient DNA transfection assays. The induced expression level was 7-fold greater than that obtained with an AdMLP based vector containing an SV40 enhancer, but lacking GRE's. Vectors containing the SV40 enhancer in combination with multiple GRE's exhibited elevated basal expression in the absence of dex, but retained inducibility in both transient assays and after integration and amplification in the CHO genome. This expression system should be of general utility for studying gene regulation and for expressing heterologous genes in a regulatable fashion. Images PMID:2546123

  18. Rapid/sustained anti-anthrax passive immunity mediated by co-administration of Ad/AAV.

    PubMed

    De, Bishnu P; Hackett, Neil R; Crystal, Ronald G; Boyer, Julie L

    2008-01-01

    Achieving both immediate and sustained protection against diseases caused by bacterial toxins and extracellular pathogens is a challenge in developing biodefense therapeutics. We hypothesized that a single co-administration of an adenovirus (Ad) vector and an adeno-associated virus (AAV) vector, both expressing a pathogen-specific monoclonal antibody, would provide rapid, persistent passive immunotherapy against the pathogen. In order to test this strategy, we used the lethal toxin of Bacillus anthracis as a target of a monoclonal antibody directed against the protective antigen (PA) component of the toxin, using co-administration of an Ad vector encoding an anti-PA monoclonal antibody (AdalphaPA) and an AAV vector encoding an anti-PA monoclonal antibody (AAVrh.10alphaPA). As early as 1 day after co-administration of AdalphaPA and AAVrh.10alphaPA to mice, serum anti-PA antibody levels were detectable, and were sustained through 6 months. Importantly, animals that received both vectors were protected against toxin challenge as early as 1 day after administration and throughout the 6 month duration of the experiment. These data provide a new paradigm of genetic passive immunotherapy by co-administration of Ad and AAV vectors, each encoding a pathogen-specific monoclonal antibody, as an effective approach for both rapid and sustained protection against a bio-terror attack.

  19. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  20. Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents.

    PubMed

    Howard, Candace M; Forsberg, Flemming; Minimo, Corrado; Liu, Ji-Bin; Merton, Daniel A; Claudio, Pier Paolo

    2006-11-01

    We have evaluated if ultrasound imaging (US) and various commercially available contrast microbubbles can serve as a non-invasive systemically administered delivery vehicle for site-specific adenoviral-mediated gene transfer in vitro and in vivo. The contrast agents were tested for their ability to enclose and to protect an adenoviral vector carrying the GFP marker gene (Ad-GFP) into the microbubbles. We have also evaluated the ability of the innate immune system to inactivate free adenoviruses as well as unenclosed viruses adsorbed on the surface of the contrast agents and in turn the ability of the microbubbles to enclose and to protect the viral vectors from such agents. In vitro as well as in vivo, innate components of the immune system were able to serve as inactivating agents to clear free viral particles and unenclosed adenoviruses adsorbed on the microbubbles' surface. Systemic delivery of Ad-GFP enclosed into microbubbles in the tail vein of nude mice resulted in specific targeting of the GFP transgene. Both fluorescence microscopy and GFP immunohistochemistry demonstrated US guided specific transduction in the targeted cells only, with no uptake in either heart, lungs or liver using complement-pretreated Ad-GFP microbubbles. This approach enhances target specificity of US microbubble destruction as a delivery vehicle for viral-mediated gene transfer.

  1. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob

    PubMed Central

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-01-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 104 level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  2. SPOC1-Mediated Antiviral Host Cell Response Is Antagonized Early in Human Adenovirus Type 5 Infection

    PubMed Central

    Schreiner, Sabrina; Kinkley, Sarah; Bürck, Carolin; Mund, Andreas; Wimmer, Peter; Schubert, Tobias; Groitl, Peter; Will, Hans; Dobner, Thomas

    2013-01-01

    Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad) serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24–48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx) are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms eradicating incoming

  3. Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    PubMed Central

    Lewis, Travis B.; Glasgow, Joel N.; Glandon, Anya M.; Curiel, David T.; Standaert, David G.

    2010-01-01

    Background Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo. Methodology/Principal Findings Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. Conclusions/Significance These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development

  4. Effect of CD4 gene expression on adenovirus replication.

    PubMed Central

    Hotta, J; Shi, L; Ginsberg, H S

    1994-01-01

    The gene encoding the CD4 receptor was introduced into KB cells to establish the KBT4 cell line, a cell line susceptible to infection with human immunodeficiency virus type 1. Adenovirus replication was found to be significantly less in these cells than in the parental KB cells. Similar decreased adenovirus type 5 (Ad5) replication occurred in HeLaT4 cells compared with the original HeLa cells. The presence of CD4 did not alter the cell surface population of KB cell adenovirus receptors, since viral adsorption was similar in the two cell lines. Moreover, addition of soluble CD4 did not reduce viral replication in either KB or KBT4 infected cells. Uncoating of viral DNA was also unchanged in KBT4 cells compared with the parental KB cells. In contrast, migration to or entrance of viral DNA into nuclei and synthesis of early viral RNAs was delayed and reduced in KBT4 cells. These effects were more pronounced for Ad7 than for Ad5. The yields of infectious viruses were the same in both cell lines, however, after transfection of naked viral DNAs to initiate infection. These results imply that the expression of the CD4 gene in KBT4 cells interfered with passage of uncoated virus across endosomal vesicles and/or transfer of uncoated core viral DNA into the nucleus. Images PMID:7933112

  5. Effect of CD4 gene expression on adenovirus replication.

    PubMed

    Hotta, J; Shi, L; Ginsberg, H S

    1994-11-01

    The gene encoding the CD4 receptor was introduced into KB cells to establish the KBT4 cell line, a cell line susceptible to infection with human immunodeficiency virus type 1. Adenovirus replication was found to be significantly less in these cells than in the parental KB cells. Similar decreased adenovirus type 5 (Ad5) replication occurred in HeLaT4 cells compared with the original HeLa cells. The presence of CD4 did not alter the cell surface population of KB cell adenovirus receptors, since viral adsorption was similar in the two cell lines. Moreover, addition of soluble CD4 did not reduce viral replication in either KB or KBT4 infected cells. Uncoating of viral DNA was also unchanged in KBT4 cells compared with the parental KB cells. In contrast, migration to or entrance of viral DNA into nuclei and synthesis of early viral RNAs was delayed and reduced in KBT4 cells. These effects were more pronounced for Ad7 than for Ad5. The yields of infectious viruses were the same in both cell lines, however, after transfection of naked viral DNAs to initiate infection. These results imply that the expression of the CD4 gene in KBT4 cells interfered with passage of uncoated virus across endosomal vesicles and/or transfer of uncoated core viral DNA into the nucleus.

  6. Robust antigen-specific humoral immune responses to sublingually delivered adenoviral vectors encoding HIV-1 Env: association with mucoadhesion and efficient penetration of the sublingual barrier.

    PubMed

    Domm, William; Brooks, Lauren; Chung, Hung Li; Feng, Changyong; Bowers, William J; Watson, Gene; McGrath, James L; Dewhurst, Stephen

    2011-09-16

    The efficient induction of virus-specific mucosal antibodies is an important unmet objective in Human Immunodeficiency Virus Type-1 (HIV-1) vaccine research. One promising approach is sublingual (SL) immunization. We examined the effectiveness of SL delivery of two different viral vectors: (i) a recombinant adenovirus (rAd5), and (ii) a Herpes Simplex Virus Type-1 amplicon vector (HSV-1). Initial in vitro videomicroscopy experiments showed that rAd5 particles were trapped in saliva (i.e., that Ad5 was mucoadhesive) - unlike HSV-1 virions, which migrated freely in both saliva and water. In vivo imaging studies in mice revealed that only the rAd5 vector efficiently transduced the SL epithelium. Consistent with this, SL delivery of an rAd5 encoding HIV-1 envelope glycoprotein (Env) resulted in robust antigen-specific antibody responses in plasma and in vaginal washes, whereas SL delivery of a HSV-1 amplicon vector encoding HIV-1 Env failed to elicit Env-specific antibodies. In contrast, both vectors elicited equivalent humoral responses following intramuscular (IM) delivery. Finally, SL delivery of the rAd5:Env vector resulted in elevated levels of Env-specific serum IgA, and vaginal IgA and IgG, when compared to IM delivery of the same vector. These results findings shed light on vector properties (mucoadhesion, penetration of the sublingual barrier) which may be important for the induction of potent humoral immune responses following sublingual vector administration. Our data also show that SL delivery of an Env-encoding rAd5 vector can elicit a potent antigen-specific mucosal antibody response in the absence of adjuvant. Overall, these findings support the further exploration of the SL delivery route for HIV-1 vaccine delivery.

  7. Robust Antigen-Specific Humoral Immune Responses to Sublingually Delivered Adenoviral Vectors Encoding HIV-1 Env: Association with Mucoadhesion and Efficient Penetration of the Sublingual Barrier

    PubMed Central

    Domm, William; Brooks, Lauren; Chung, Hung Li; Feng, Changyong; Bowers, William J.; Watson, Gene; McGrath, James L.; Dewhurst, Stephen

    2011-01-01

    The efficient induction of virus-specific mucosal antibodies is an important unmet objective in Human Immunodeficiency Virus Type-1 (HIV-1) vaccine research. One promising approach is sublingual (SL) immunization. We examined the effectiveness of SL delivery of two different viral vectors: (i) a recombinant adenovirus (rAd5), and (ii) a Herpes Simplex Virus Type-1 amplicon vector (HSV-1). Initial in vitro videomicroscopy experiments showed that rAd5 particles were trapped in saliva (i.e., that Ad5 was mucoadhesive) - unlike HSV-1 virions, which migrated freely in both saliva and water. In vivo imaging studies in mice revealed that only the rAd5 vector efficiently transduced the SL epithelium. Consistent with this, SL delivery of an rAd5 encoding HIV-1 envelope glycoprotein (Env) resulted in robust antigen-specific antibody responses in plasma and in vaginal washes, whereas SL delivery of a HSV-1 amplicon vector encoding HIV-1 Env failed to elicit Env-specific antibodies. In contrast, both vectors elicited equivalent humoral responses following intramuscular (IM) delivery. Finally, SL delivery of the rAd5:Env vector resulted in elevated levels of Env-specific serum IgA, and vaginal IgA and IgG, when compared to IM delivery of the same vector. These results findings shed light on vector properties (mucoadhesion, penetration of the sublingual barrier) which may be important for the induction of potent humoral immune responses following sublingual vector administration. Our data also show that SL delivery of an Env-encoding rAd5 vector can elicit a potent antigen-specific mucosal antibody response in the absence of adjuvant. Overall, these findings support the further exploration of the SL delivery route for HIV-1 vaccine delivery. PMID:21801777

  8. Adenoviruses in the immunocompromised host.

    PubMed Central

    Hierholzer, J C

    1992-01-01

    Adenoviruses are among the many pathogens and opportunistic agents that cause serious infection in the congenitally immunocompromised, in patients undergoing immunosuppressive treatment for organ and tissue transplants and for cancers, and in human immunodeficiency virus-infected patients. Adenovirus infections in these patients tend to become disseminated and severe, and the serotypes involved are clustered according to the age of the patient and the nature of the immunosuppression. Over 300 adenovirus infections in immunocompromised patients, with an overall case fatality rate of 48%, are reviewed in this paper. Children with severe combined immunodeficiency syndrome and other primary immunodeficiencies are exposed to the serotypes of subgroups B and C that commonly infect young children, and thus their infections are due to types 1 to 7 and 31 of subgenus A. Children with bone marrow and liver transplants often have lung and liver adenovirus infections that are due to an expanded set of subgenus A, B, C, and E serotypes. Adults with kidney transplants have viruses of subgenus B, mostly types 11, 34, and 35, which cause cystitis. This review indicates that 11% of transplant recipients become infected with adenoviruses, with case fatality rates from 60% for bone marrow transplant patients to 18% for renal transplant patients. Patients with AIDS become infected with a diversity of serotypes of all subgenera because their adult age and life-style expose them to many adenoviruses, possibly resulting in antigenically intermediate strains that are not found elsewhere. Interestingly, isolates from the urine of AIDS patients are generally of subgenus B and comprise types 11, 21, 34, 35, and intermediate strains of these types, whereas isolates from stool are of subgenus D and comprise many rare, new, and intermediate strains that are untypeable for practical purposes. It has been estimated that adenoviruses cause active infection in 12% of AIDS patients and that 45% of

  9. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo.

    PubMed

    Sipo, I; Wang, X; Hurtado Picó, A; Suckau, L; Weger, S; Poller, W; Fechner, H

    2006-01-01

    Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, E(DeltaNLS)M, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.E(DeltaNLS)M and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.E(DeltaNLS)M and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.E(DeltaNLS)M and Ad.MEM in vivo. Induction of Ad.E(DeltaNLS)M inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. E(DeltaNLS)M and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

  10. A NOTCH-sensitive uPAR-regulated oncolytic adenovirus effectively suppresses pancreatic tumor growth and triggers synergistic anticancer effects with gemcitabine and nab-paclitaxel.

    PubMed

    Mato-Berciano, Ana; Raimondi, Giulia; Maliandi, Maria Victoria; Alemany, Ramon; Montoliu, Lluis; Fillat, Cristina

    2017-02-07

    Notch signaling pathway is an embryonic program that becomes reactivated in pancreatic cancer and contributes to cancer stem cell (CSC) maintenance. We explored the concept of oncolytic adenoviral activity in response to Notch activation signaling, in the context of a chimeric promoter with uPAR regulatory sequences, as a strategy to drive its activity in neoplastic and CSC. We explored the advantages of a chemo-virotherapy approach based on synergistic combinations. Regulatory sequences recognized by the transcriptional factor CSL upstream a minimal uPAR promoter were engineered in adenoviral vectors and in the oncolytic adenovirus AdNuPARmE1A. Viral response to Notch signaling, and viral potency in cell lines and pancreatic cancer stem cells (PCSC) was tested. Preclinical toxicity and antitumor efficacy in xenografts and Patient-derived xenografts (PDX) mouse models was evaluated, as unimodal or in combination with gemcitabine+nab-paclitaxel. Mechanistic studies were conducted to explore the synergism of combined therapies.We demonstrate that CSL-binding site optimized-engineered sequences respond to Notch activation in AdNuPARmLuc and AdNuPARmE1A. AdNuPARmE1A showed strong lytic effects in pancreatic cancer cell lines and PCSC. AdNuPARmE1A displayed attenuated activity in normal tissues, but robust antitumor effects in xenograft and PDX models, leading to a reduced capacity of treated tumors to form tumorspheres. Chemo-virotherapy treatment enlarged therapeutic response in both tumor models. Synergistic effects of the combination resulted from viral sensitization of apoptotic cell death triggered by chemotherapy.In summary we present a novel effective oncolytic adenovirus, AdNuPARmE1A that reduces PCSC and presents synergistic effects with gemcitabine and nab-paclitaxel, supporting further clinical development.

  11. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle

    PubMed Central

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V.S.; Charleston, Bryan; Warimwe, George M.

    2016-01-01

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 °C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the ‘cold chain’ vaccine (stored at −80 °C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species. PMID:27020712

  12. Therapeutic Vaccination With Recombinant Adenovirus Reduces Splenic Parasite Burden in Experimental Visceral Leishmaniasis

    PubMed Central

    Maroof, Asher; Brown, Najmeeyah; Smith, Barbara; Hodgkinson, Michael R.; Maxwell, Alice; Losch, Florian O.; Fritz, Ulrike; Walden, Peter; Lacey, Charles N. J.; Smith, Deborah F.; Aebischer, Toni

    2012-01-01

    Therapeutic vaccines, when used alone or in combination therapy with antileishmanial drugs, may have an important place in the control of a variety of forms of human leishmaniasis. Here, we describe the development of an adenovirus-based vaccine (Ad5-KH) comprising a synthetic haspb gene linked to a kmp11 gene via a viral 2A sequence. In nonvaccinated Leishmania donovani–infected BALB/c mice, HASPB- and KMP11-specific CD8+ T cell responses were undetectable, although IgG1 and IgG2a antibodies were evident. After therapeutic vaccination, antibody responses were boosted, and IFNγ+CD8+ T cell responses, particularly to HASPB, became apparent. A single vaccination with Ad5-KH inhibited splenic parasite growth by ∼66%, a level of efficacy comparable to that observed in early stage testing of clinically approved antileishmanial drugs in this model. These studies indicate the usefulness of adenoviral vectors to deliver leishmanial antigens in a potent and host protective manner to animals with existing L. donovani infection. PMID:22301630

  13. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis.

    PubMed

    Maroof, Asher; Brown, Najmeeyah; Smith, Barbara; Hodgkinson, Michael R; Maxwell, Alice; Losch, Florian O; Fritz, Ulrike; Walden, Peter; Lacey, Charles N J; Smith, Deborah F; Aebischer, Toni; Kaye, Paul M

    2012-03-01

    Therapeutic vaccines, when used alone or in combination therapy with antileishmanial drugs, may have an important place in the control of a variety of forms of human leishmaniasis. Here, we describe the development of an adenovirus-based vaccine (Ad5-KH) comprising a synthetic haspb gene linked to a kmp11 gene via a viral 2A sequence. In nonvaccinated Leishmania donovani-infected BALB/c mice, HASPB- and KMP11-specific CD8(+) T cell responses were undetectable, although IgG1 and IgG2a antibodies were evident. After therapeutic vaccination, antibody responses were boosted, and IFNγ(+)CD8(+) T cell responses, particularly to HASPB, became apparent. A single vaccination with Ad5-KH inhibited splenic parasite growth by ∼66%, a level of efficacy comparable to that observed in early stage testing of clinically approved antileishmanial drugs in this model. These studies indicate the usefulness of adenoviral vectors to deliver leishmanial antigens in a potent and host protective manner to animals with existing L. donovani infection.

  14. A bidirectional Tet-dependent promotor construct regulating the expression of E1A for tight control of oncolytic adenovirus replication.

    PubMed

    Fechner, Henry; Wang, Xiaomin; Picó, Almudena Hurtado; Wildner, Judith; Suckau, Lennart; Pinkert, Sandra; Sipo, Isaac; Weger, Stefan; Poller, Wolfgang

    2007-01-20

    Tight regulation of oncolytic adenoviruses (oAdV) represents an important requirement for their safe application. Here we describe a new doxycycline (Dox)-dependent oAdV with a bidirectional expression cassette, which drives the expression of the reverse tetracycline-controlled transactivator (rtTA(s)-M2) from a lung tumor-specific promoter and, in the opposite direction, the expression of the adenoviral E1A gene from a second generation TetO(7) sequence linked to an isolated TATA box. In H441 lung cancer cells, this oAdV showed a strictly Dox-dependent E1A expression, adenoviral replication, cell killing activity and a 450-fold induction of progeny virus production. The virus could be shut off again by withdrawal of Dox and, in contrast to a control oAdV expressing E1A directly from the SP-B promoter, did not replicate in non-target cells. However, the absolute values of virus production and the cell killing activity in the presence of the inducer were still reduced as compared to the control oAdV. The results demonstrate, for the first time, Dox-dependent oAdV replication from a single adenoviral vector genome. Future improvement of the Dox-dependent E1A regulation cassette should lead to the generation of an oAdV well suited to meet the demands for a highly regulated and efficient oncolytic virus for in vivo applications.

  15. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    PubMed

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+) T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+) T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+) T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  16. Induction of Specific Humoral and Cellular Immune Responses in a Mouse Model following Gene Fusion of HSP70C and Hantaan Virus Gn and S0.7 in an Adenoviral Vector

    PubMed Central

    Li, Kai; Wang, Fang; Zhang, Liang; Ye, Wei; Li, Puyuan; Zhang, Fanglin; Xu, Zhikai

    2014-01-01

    Heat shock proteins (HSPs) display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV) glycoprotein (GP) and nucleocapsid protein (NP) immunogenicity by heat shock protein 70 (HSP70), a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359–610 aa, HSP70C) to the Gn and 0.7 kb fragment of the NP (aa1–274-S0.7). C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7) and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV. PMID:24505421

  17. Molecular Characterization of a Lizard Adenovirus Reveals the First Atadenovirus with Two Fiber Genes and the First Adenovirus with Either One Short or Three Long Fibers per Penton

    PubMed Central

    Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária

    2014-01-01

    ABSTRACT Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins—one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton

  18. Novel adenovirus detected in kowari (Dasyuroides byrnei) with pneumonia.

    PubMed

    Gál, János; Mándoki, Míra; Sós, Endre; Kertész, Péter; Koroknai, Viktória; Bányai, Krisztián; Farkas, Szilvia L

    2017-02-15

    A male kowari (Dasyuroides byrnei) originating from a zoo facility was delivered for post mortem evaluation in Hungary. Acute lobar pneumonia with histopathologic changes resembling an adenovirus (AdV) infection was detected by light microscopic examination. The presence of an AdV was confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Although the exact taxonomic position of this novel marsupial origin virus could not be determined, pairwise identity analyses and phylogenetic calculations revealed that it is distantly related to other members in the family Adenoviridae.

  19. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting.

  20. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    SciTech Connect

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-12-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 +- 9.01 vs. 41.94 +- 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 +- 1303 vs. 1667 +- 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 +- 1084 vs. 1566 +- 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  1. Isolation of a novel adenovirus from California sea lions Zalophus californianus.

    PubMed

    Goldstein, T; Colegrove, K M; Hanson, M; Gulland, F M D

    2011-05-09

    Viral hepatitis associated with adenoviral infection has been reported in California sea lions Zalophus californianus admitted to rehabilitation centers along the California coast since the 1970s. Canine adenovirus 1 (CAdV-1) causes viral hepatitis in dogs and infects a number of wildlife species. Attempts to isolate the virus from previous sea lion hepatitis cases were unsuccessful, but as the hepatitis had morphologic features resembling canine infectious hepatitis, and since the virus has a wide host range, it was thought that perhaps the etiologic agent was CAdV-1. Here, we identify a novel adenovirus in 2 stranded California sea lions and associate the infection with viral hepatitis and endothelial cell infection. Phylogenetic analysis confirmed the classification of the sea lion adenovirus in the Mastadenovirus genus with the most similarity to tree shrew adenovirus 1 (TSAdV-1, 77%). However, as the sea lion adenovirus appeared to be equally distant from the other Mastadenovirus species based on phylogenetic analysis, results indicate that it represents an independent lineage and species. Although sequences from this novel virus, otarine adenovirus 1 (OtAdV-1), show some similarity to CAdV-1 and 2, it is clearly distinct and likely the cause of the viral hepatitis in the stranded California sea lions.

  2. Replication of adenovirus type 4 DNA by a purified fraction from infected cells.

    PubMed Central

    Temperley, S M; Hay, R T

    1991-01-01

    An extract from Adenovirus type 4 infected HeLa cells was fractionated by ion-exchange and DNA affinity chromatography. One fraction, which bound tightly to single stranded DNA, contained predominantly a protein of apparent molecular weight 65,000 and three less abundant proteins. Immunological cross-reactivity with adenovirus type 2 proteins confirmed the presence of preterminal protein and indicated that the abundant species was the virus coded DNA binding protein. This fraction contained an aphidicolin resistant DNA polymerase activity and in the presence of a linearised plasmid containing the adenovirus type 4 origin of DNA replication efficient transfer of dCMP onto preterminal protein, indicative of initiation, was observed. Furthermore, addition of all four deoxyribonucleotide triphosphates and an ATP regenerating system resulted in the elongation of initiated molecules to generate plasmid molecules covalently attached to preterminal protein. Adenovirus type 4 DNA binding protein was extensively purified from crude adenovirus-4 infected HeLa extract by immunoaffinity chromatography using a monoclonal antibody raised against adenovirus type 2 DNA binding protein. A low level of initiation of DNA replication was detected in the fraction depleted of DNA binding protein but activity was restored by addition of purified DNA binding protein. DNA binding protein therefore plays an important role in the initiation of Ad4 DNA replication. Images PMID:1829516

  3. Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection.

    PubMed

    Betts, Gareth; Poyntz, Hazel; Stylianou, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew; Hill, Adrian; McShane, Helen

    2012-01-01

    The Bacillus Calmette - Guerin (BCG) vaccine provides a critical but limited defense against Mycobacterium tuberculosis (M.tb). More than 60 years after the widespread introduction of BCG, there is an urgent need for a better vaccine. A large body of pre-clinical research continues to support ongoing clinical trials to assess whether viral vectors expressing M.tb antigens that are shared by BCG and M.tb, can be used alongside BCG to enhance protection. A major focus involves using multiple unique viral vectors to limit anti-vector immunity and thereby enhance responses to the insert antigen delivered. The successful introduction of viral vector vaccines to target M.tb and other pathogens will be reliant on reducing the costs when using multiple vectors and inhibiting the development of unwanted anti-vector responses that interfere with the response to insert antigen. This study examines methods to reduce the logistical costs of vaccination by mixing different viral vectors that share the same insert antigen in one vaccine; and whether combining different viral vectors reduces anti-vector immunity to improve immunogenicity to the insert antigen. Here we show that a homologous prime-boost regimen with a mixture of MVA (Modified Vaccinia virus Ankara) and Ad5 (human adenovirus type 5) vectors both expressing Ag85A in a single vaccine preparation is able to reduce anti-vector immunity, compared with a homologous prime-boost regimen with either vector alone. However, the level of immunogenicity induced by the homologous mixture remained comparable to that induced with single viral vectors and was less immunogenic than a heterologous Ad5 prime-MVA-boost regimen. These findings advance the understanding of how anti-vector immunity maybe reduced in viral vector vaccination regimens. Furthermore, an insight is provided to the impact on vaccine immunogenicity from altering vaccination methods to reduce the logistical demands of using separate vaccine preparations in the

  4. Intratracheal Instillation of High Dose Adenoviral Vectors Is Sufficient to Induce Lung Injury and Fibrosis in Mice

    PubMed Central

    Zhou, Qiyuan; Chen, Tianji; Bozkanat, Melike; Ibe, Joyce Christina F.; Christman, John W.; Raj, J. Usha; Zhou, Guofei

    2014-01-01

    Rationale Replication deficient adenoviruses (Ad) vectors are common tools in gene therapy. Since Ad vectors are known to activate innate and adaptive immunity, we investigated whether intratracheal administration of Ad vectors alone is sufficient to induce lung injury and pulmonary fibrosis. Methods We instilled Ad viruses ranging from 107 to 1.625×109 ifu/mouse as well as the same volume of PBS and bleomycin. 14 and 21 days after administration, we collected bronchoalveolar lavage fluid (BALF) and mouse lung tissues. We measured the protein concentration, total and differential cell counts, and TGF-β1 production, performed Trichrome staining and Sircol assay, determined gene and protein levels of profibrotic cytokines, MMPs, and Wnt signaling proteins, and conducted TUNEL staining and co-immunofluorescence for GFP and α-SMA staining. Results Instillation of high dose Ad vectors (1.625×109 ifu/mouse) into mouse lungs induced high levels of protein content, inflammatory cells, and TGF-β1 in BALF, comparable to those in bleomycin-instilled lungs. The collagen content and mRNA levels of Col1a1, Col1a2, PCNA, and α-SMA were also increased in the lungs. Instillation of both bleomycin and Ad vectors increased expression levels of TNFα and IL-1β but not IL-10. Instillation of bleomycin but not Ad increased the expression of IL-1α, IL-13 and IL-16. Treatment with bleomycin or Ad vectors increased expression levels of integrin α1, α5, and αv, MMP9, whereas treatment with bleomycin but not Ad vectors induced MMP2 expression levels. Both bleomycin and Ad vectors induced mRNA levels of Wnt2, 2b, 5b, and Lrp6. Intratracheal instillation of Ad viruses also induced DNA damages and Ad viral infection-mediated fibrosis is not limited to the infection sites. Conclusions Our results suggest that administration of Ad vectors induces an inflammatory response, lung injury, and pulmonary fibrosis in a dose dependent manner. PMID:25551570

  5. The induction of antigen-specific CTL by in situ Ad-REIC gene therapy.

    PubMed

    Ariyoshi, Y; Watanabe, M; Eikawa, S; Yamazaki, C; Sadahira, T; Hirata, T; Araki, M; Ebara, S; Nasu, Y; Udono, H; Kumon, H

    2016-05-01

    An adenovirus vector carrying the human Reduced Expression in Immortalized Cell (REIC)/Dkk-3 gene (Ad-REIC) mediates simultaneous induction of cancer-selective apoptosis and augmentation of anticancer immunity. In our preclinical and clinical studies, in situ Ad-REIC gene therapy showed remarkable direct and indirect antitumor effects to realize therapeutic cancer vaccines. We herein aimed to confirm the induction of tumor-associated antigen-specific cytotoxic T lymphocytes (CTLs) by Ad-REIC. Using an ovalbumin (OVA), a tumor-associated antigen, expressing E.G7 tumor-bearing mouse model, we investigated the induction and expansion of OVA-specific CTLs responsible for indirect, systemic effects of Ad-REIC. The intratumoral administration of Ad-REIC mediated clear antitumor effects with the accumulation of OVA-specific CTLs in the tumor tissues and spleen. The CD86-positive dendritic cells (DCs) were upregulated in the tumor draining lymph nodes of Ad-REIC-treated mice. In a dual tumor-bearing mouse model in the left and right back, Ad-REIC injection in one side significantly suppressed the tumor growth on both sides and significant infiltration of OVA-specific CTLs into non-injected tumor was also detected. Consequently, in situ Ad-REIC gene therapy is expected to realize a new-generation cancer vaccine via anticancer immune activation with DC and tumor antigen-specific CTL expansion.

  6. Protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing TgAMA1 as vaccines against Toxoplasma gondii infection in mice.

    PubMed

    Yu, Longzheng; Yamagishi, Junya; Zhang, Shoufa; Jin, Chunmei; Aboge, Gabriel Oluga; Zhang, Houshuang; Zhang, Guohong; Tanaka, Tetsuya; Fujisaki, Kozo; Nishikawa, Yoshifumi; Xuan, Xuenan

    2012-09-01

    A heterologous prime-boost strategy with priming plasmid DNA followed by recombinant virus expressing relevant antigens is known to stimulate protective immunity against intracellular parasites. In this study, we have evaluated a heterologous prime-boost strategy for immunizing mice against Toxoplasma gondii infection. Our results revealed that the prime-boost strategy using both plasmid DNA and adenoviral vector encoding TgAMA1 may stimulate both humoral and Th1/Th2 cellular immune responses specific for TgAMA1. Moreover, C57BL/6 mice immunized with the pAMA1/Ad5Null, pNull/Ad5AMA1, and pAMA1/Ad5AMA1 constructs showed survival rates of 12.5%, 37.5%, and 50%, respectively. In contrast, all the pNull/Ad5Null immunized mice died after infection with the PLK-GFP strain of T. gondii. Brain cyst burden was reduced by 23% in mice immunized with pAMA1/Ad5AMA1 compared with the pNull/Ad5AMA1 immunized mice. These results demonstrate that the heterologous DNA priming and recombinant adenovirus boost strategy may provide protective immunity against T. gondii infection.

  7. The relevance of coagulation factor X protection of adenoviruses in human sera.

    PubMed

    Duffy, M R; Doszpoly, A; Turner, G; Nicklin, S A; Baker, A H

    2016-07-01

    Intravenous delivery of adenoviruses is the optimal route for many gene therapy applications. Once in the blood, coagulation factor X (FX) binds to the adenovirus capsid and protects the virion from natural antibody and classical complement-mediated neutralisation in mice. However, to date, no studies have examined the relevance of this FX/viral immune protective mechanism in human samples. In this study, we assessed the effects of blocking FX on adenovirus type 5 (Ad5) activity in the presence of human serum. FX prevented human IgM binding directly to the virus. In individual human sera samples (n=25), approximately half of those screened inhibited adenovirus transduction only when the Ad5-FX interaction was blocked, demonstrating that FX protected the virus from neutralising components in a large proportion of human sera. In contrast, the remainder of sera tested had no inhibitory effects on Ad5 transduction and FX armament was not required for effective gene transfer. In human sera in which FX had a protective role, Ad5 induced lower levels of complement activation in the presence of FX. We therefore demonstrate for the first time the importance of Ad-FX protection in human samples and highlight subject variability and species-specific differences as key considerations for adenoviral gene therapy.

  8. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    PubMed Central

    Dasari, Vijayendra; Schuessler, Andrea; Smith, Corey; Wong, Yide; Miles, John J; Smyth, Mark J; Ambalathingal, George; Francis, Ross; Campbell, Scott; Chambers, Daniel; Khanna, Rajiv

    2016-01-01

    Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients. PMID:27606351

  9. Development of Multiplexed Real-Time Quantitative PCR Assay for Detecting Human Adenoviruses

    PubMed Central

    Huang, Meei-Li; Nguy, Long; Ferrenberg, James; Boeckh, Michael; Cent, Anne; Corey, Lawrence

    2008-01-01

    Adenoviruses (AdV) have been associated with a wide variety of human disease and are increasingly recognized as viral pathogens that can cause significant morbidity and mortality in immunocompromised patients. Early detection of AdV DNA in plasma and sterile fluids has been shown to be useful for identifying patients at risk for invasive AdV disease. Due to the large number of existing Adv types, few real-time quantitative AdV PCR assays published effectively cover all AdV types. We designed a series of AdV PCR primers and probes and empirically multiplexed them into two separate real-time PCR assays to quantitatively detect all 49 serotypes of human AdV (Types 1-49) available from ATCC. We then subsequently multiplexed all the primers and probes into one reaction. The sensitivity of these assays was determined to be less than 10 copies per reaction (500 copies/ml plasma). In a retrospective evaluation we detected all 84 clinical AdV isolates isolated in cell culture from patients undergoing hematopoietic stem cell transplant (HSCT) between 1981 and 1987. Prospective analysis of 46 consecutive clinical samples submitted for adenovirus testing showed greater sensitivity and equal specificity of the AdV PCR than viral culture. This real time PCR assay allows rapid, sensitive and specific quantification of all currently defined adenoviruses into either two or one multiplex assay for clinical samples. PMID:18707838

  10. Viral vector tropism for supporting cells in the developing murine cochlea.

    PubMed

    Sheffield, Abraham M; Gubbels, Samuel P; Hildebrand, Michael S; Newton, Stephen S; Chiorini, John A; Di Pasquale, Giovanni; Smith, Richard J H

    2011-07-01

    Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear.

  11. Adenovirus Early Proteins and Host Sumoylation

    PubMed Central

    Sohn, Sook-Young

    2016-01-01

    ABSTRACT The human adenovirus genome is transported into the nucleus, where viral gene transcription, viral DNA replication, and virion assembly take place. Posttranslational modifications by small ubiquitin-like modifiers (SUMOs) are implicated in the regulation of diverse cellular processes, particularly nuclear events. It is not surprising, therefore, that adenovirus modulates and utilizes the host sumoylation system. Adenovirus early proteins play an important role in establishing optimal host environments for virus replication within infected cells by stimulating the cell cycle and counteracting host antiviral defenses. Here, we review findings on the mechanisms and functional consequences of the interplay between human adenovirus early proteins and the host sumoylation system. PMID:27651358

  12. Role of DNA polymerase gamma in adenovirus DNA replication. Mechanism of inhibition by 2',3'-dideoxynucleoside 5'-triphosphates.

    PubMed

    van der Vliet, P C; Kwant, M M

    1981-04-28

    In contrast to cellular or SV40 DNA replication, adenovirus type 5 (Ad5) or type 2 (Ad2) DNA synthesis in isolated nuclei is strongly inhibited by low concentrations of 2',3'-dideoxythymidine 5'-triphosphate (ddTTP). On the basis of differential sensitivity of cellular DNA polymerases, a role of DNA polymerase gamma in adenovirus DNA replication has been proposed. We have investigated the mechanism of inhibition of adenovirus DNA synthesis, using [alpha-32P]ddTTP and other dNTP analogues. Both ddATP and ddGTP were as inhibitory as ddTTP, while ddCTP had an even stronger effect on adenovirus DNA replication. DNA polymerase alpha was resistant to all four ddNTP's, while DNA polymerase gamma was very sensitive. The inhibition by ddTTP in isolated infected nuclei was slowly reversible. [alpha-32P]ddTTP was incorporated into Ad5 DNA as a chain-terminating nucleotide, and the analogue could be used as a substrate by DNA polymerase gamma. Under similar conditions, incorporation in cellular DNA or using DNA polymerase alpha was not observed. The nucleoside analogues ddA and ddC suppressed adenovirus. DNA replication in intact cells and reduced plaque formation. These results provide further evidence for a function of DNA polymerase gamma in adenovirus DNA synthesis.

  13. Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis.

    PubMed

    Zhang, Xiong; Qi, Dong-Dong; Zhang, Ting-Ting; Chen, Qing-Xin; Wang, Guang-Zhi; Sui, Guang-Yu; Hao, Xue-Wei; Sun, Shouli; Song, Xue; Chen, Ying-Li

    2015-03-01

    The T42 peptide, generated from two active fragments of tumstatin, has been shown to have anti‑tumor activity. The adenoviral vector is the most frequently used vector in research and clinical trials for gene therapy. In the present study, the anti‑tumor activity of the T42 peptide and quadruple T42 (4xT42) peptide adenoviral vectors were elucidated for the first time, to the best of our knowledge. Human embryonic kidney 293 cells were infected with plasmid adenovirus (pAd)‑enhanced green fluorescent protein (EGFP)‑T42 or pAd‑EGFP‑4xT42 and the expression of the T42 and 4xT42 genes was confirmed by the identification of GFP expression and reverse transcription polymerase chain reaction experiments. The anti‑cancer effects of pAd‑EGFP‑T42 and pAd‑EGFP‑4xT42 on breast cancer cells in vivo and in vitro were subsequently investigated. The results indicated that the packaging of the recombinant adenoviruses with the viral titer was successful, following purification at 5x109 plaque forming units/ml. The results also revealed that the recombinant adenoviruses promoted apoptosis in MCF‑7 breast cancer cells and inhibited cancer growth. Through the analysis of caspase‑3, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein expression, it was demonstrated that the T42/4xT42 peptide may induce apoptosis via the mitochondrial pathway. In addition, mouse xenograft experiments confirmed that the T42 peptide inhibited tumor growth and reduced angiogenesis in vivo. In conclusion, the results of the present study indicated that the T42 and 4xT42 peptide genes, transfected by a recombinant adenovirus, may provide a potential novel strategy for the treatment of breast cancer.

  14. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    PubMed Central

    Tian, Xingui; Ma, Qiang; Jiang, Zaixue; Huang, Junfeng; Liu, Qian; Lu, Xiaomei; Luo, Qingming; Zhou, Rong

    2015-01-01

    Human adenovirus type 55 (HAdV55) is a newly identified re-emergent acute respiratory disease (ARD) pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152), A55R2 (residues 179 to 187), A55R4 (residues 247 to 259) and A55R7 (residues 429 to 443), were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3) and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis. PMID:26516903

  15. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans.

    PubMed

    Cerullo, Vincenzo; Koski, Anniina; Vähä-Koskela, Markus; Hemminki, Akseli

    2012-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.

  16. Viral Vector Effects on Exoenzyme C3 Transferase–Mediated Actin Disruption and on Outflow Facility

    PubMed Central

    Slauson, Sarah R.; Peters, Donna M.; Schwinn, Marie K.; Kaufman, Paul L.; Gabelt, B'Ann T.; Brandt, Curtis R.

    2015-01-01

    Purpose. Purified Clostridium botulinum exoenzyme C3 transferase (C3) effects on the actin cytoskeleton in human trabecular meshwork cells (HTM) and on the outflow facility response in monkey organ-cultured anterior segments (MOCAS) were determined in the presence or absence of viral vectors. Methods. Human adenovirus type 5 (AdV) and feline immunodeficiency virus (FIV) vectors were produced using kits. Cell soluble purified C3 (C3cs) was purchased commercially. Recombinant C3 (C3rec) cDNA was overexpressed in Escherichia coli and purified. The HTM cells were incubated with up to 10 μg/mL C3cs or with 5 μg of C3rec and/or viral vector (multiplicity of infection [MOI] = 25). Cells then were fixed and stained for actin. Outflow facility in MOCAS was measured at baseline, 4 hours, 24 hours, and 3 to 4 days following bolus injection of AdV (1.6 × 107 transducing units) and/or 2.5 μg C3rec. Results. The HTM cells treated for 4 hours with C3cs (all doses) or for 24 hours with C3rec developed a rounded morphology and lost stress fibers. Cells transduced with vectors alone showed no changes at any time point. Cells exposed to C3rec and cotransduced with either viral vector showed significant disruption of the actin cytoskeleton within 4 hours after exposure, which persisted at 24 hours. In MOCAS, the AdV vector alone had no effect on outflow facility, but enhanced the response to C3rec at 4 hours. Conclusions. Coadministration of viral vectors enhances the ability of C3 transferase to disrupt actin stress fiber formation in HTM cells and increase outflow facility in MOCAS. Viral vectors potentially could be used to increase the bioavailability of proteins for cells that are difficult to transfect. PMID:25783606

  17. Novel Adenoviruses in Wild Primates: a High Level of Genetic Diversity and Evidence of Zoonotic Transmissions ▿ †

    PubMed Central

    Wevers, Diana; Metzger, Sonja; Babweteera, Fred; Bieberbach, Marc; Boesch, Christophe; Cameron, Kenneth; Couacy-Hymann, Emmanuel; Cranfield, Mike; Gray, Maryke; Harris, Laurie A.; Head, Josephine; Jeffery, Kathryn; Knauf, Sascha; Lankester, Felix; Leendertz, Siv Aina J.; Lonsdorf, Elizabeth; Mugisha, Lawrence; Nitsche, Andreas; Reed, Patricia; Robbins, Martha; Travis, Dominic A.; Zommers, Zinta; Leendertz, Fabian H.; Ehlers, Bernhard

    2011-01-01

    Adenoviruses (AdVs) broadly infect vertebrate hosts, including a variety of nonhuman primates (NHPs). In the present study, we identified AdVs in NHPs living in their natural habitats, and through the combination of phylogenetic analyses and information on the habitats and epidemiological settings, we detected possible horizontal transmission events between NHPs and humans. Wild NHPs were analyzed with a pan-primate AdV-specific PCR using a degenerate nested primer set that targets the highly conserved adenovirus DNA polymerase gene. A plethora of novel AdV sequences were identified, representing at least 45 distinct AdVs. From the AdV-positive individuals, 29 nearly complete hexon genes were amplified and, based on phylogenetic analysis, tentatively allocated to all known human AdV species (Human adenovirus A to Human adenovirus G [HAdV-A to -G]) as well as to the only simian AdV species (Simian adenovirus A [SAdV-A]). Interestingly, five of the AdVs detected in great apes grouped into the HAdV-A, HAdV-D, HAdV-F, or SAdV-A clade. Furthermore, we report the first detection of AdVs in New World monkeys, clustering at the base of the primate AdV evolutionary tree. Most notably, six chimpanzee AdVs of species HAdV-A to HAdV-F revealed a remarkably close relationship to human AdVs, possibly indicating recent interspecies transmission events. PMID:21835802

  18. Three-vector system for high-level functional expression of value-added co-products with xylose isomerase and xylulokinase in an industrial saccharomyces cerevisiae strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease rapidly produces large amounts of soluble functional protein. It provides high levels of expression for three different proteins sim...

  19. Latest insights on adenovirus structure and assembly.

    PubMed

    San Martín, Carmen

    2012-05-01

    Adenovirus (AdV) capsid organization is considerably complex, not only because of its large size (~950 Å) and triangulation number (pseudo T = 25), but also because it contains four types of minor proteins in specialized locations modulating the quasi-equivalent icosahedral interactions. Up until 2009, only its major components (hexon, penton, and fiber) had separately been described in atomic detail. Their relationships within the virion, and the location of minor coat proteins, were inferred from combining the known crystal structures with increasingly more detailed cryo-electron microscopy (cryoEM) maps. There was no structural information on assembly intermediates. Later on that year, two reports described the structural differences between the mature and immature adenoviral particle, starting to shed light on the different stages of viral assembly, and giving further insights into the roles of core and minor coat proteins during morphogenesis [1,2]. Finally, in 2010, two papers describing the atomic resolution structure of the complete virion appeared [3,4]. These reports represent a veritable tour de force for two structural biology techniques: X-ray crystallography and cryoEM, as this is the largest macromolecular complex solved at high resolution by either of them. In particular, the cryoEM analysis provided an unprecedented clear picture of the complex protein networks shaping the icosahedral shell. Here I review these latest developments in the field of AdV structural studies.

  20. Latest Insights on Adenovirus Structure and Assembly

    PubMed Central

    San Martín, Carmen

    2012-01-01

    Adenovirus (AdV) capsid organization is considerably complex, not only because of its large size (~950 Å) and triangulation number (pseudo T = 25), but also because it contains four types of minor proteins in specialized locations modulating the quasi-equivalent icosahedral interactions. Up until 2009, only its major components (hexon, penton, and fiber) had separately been described in atomic detail. Their relationships within the virion, and the location of minor coat proteins, were inferred from combining the known crystal structures with increasingly more detailed cryo-electron microscopy (cryoEM) maps. There was no structural information on assembly intermediates. Later on that year, two reports described the structural differences between the mature and immature adenoviral particle, starting to shed light on the different stages of viral assembly, and giving further insights into the roles of core and minor coat proteins during morphogenesis [1,2]. Finally, in 2010, two papers describing the atomic resolution structure of the complete virion appeared [3,4]. These reports represent a veritable tour de force for two structural biology techniques: X-ray crystallography and cryoEM, as this is the largest macromolecular complex solved at high resolution by either of them. In particular, the cryoEM analysis provided an unprecedented clear picture of the complex protein networks shaping the icosahedral shell. Here I review these latest developments in the field of AdV structural studies. PMID:22754652

  1. Partial characterization of new adenoviruses found in lizards.

    PubMed

    Ball, Inna; Behncke, Helge; Schmidt, Volker; Geflügel, F T A; Papp, Tibor; Stöhr, Anke C; Marschang, Rachel E

    2014-06-01

    In the years 2011-2012, a consensus nested polymerase chain reaction was used for the detection of adenovirus (AdV) infection in reptiles. During this screening, three new AdVs were detected. One of these viruses was detected in three lizards from a group of green striped tree dragons (Japalura splendida). Another was detected in a green anole (Anolis carolinensis). A third virus was detected in a Jackson's chameleon (Chamaeleo jacksonii). Analysis of a portion of the DNA-dependent DNA polymerase genes of each of these viruses revealed that they all were different from one another and from all previously described reptilian AdVs. Phylogenetic analysis of the partial DNA polymerase gene sequence showed that all newly detected viruses clustered within the genus Atadenovirus. This is the first description of AdVs in these lizard species.

  2. A Regulatory Element Near the 3′ End of the Adeno-Associated Virus rep Gene Inhibits Adenovirus Replication in cis by Means of p40 Promoter-Associated Short Transcripts

    PubMed Central

    Hammer, Eva; Gonsior, Melanie; Stutika, Catrin; Heilbronn, Regine

    2016-01-01

    ABSTRACT Adeno-associated virus (AAV) has long been known to inhibit helper adenovirus (Ad) replication independently of AAV Rep protein expression. More recently, replication of Ad serotype 5 (Ad5)/AAV serotype 2 (AAV-2) hybrid vectors was shown to be inhibited in cis by a sequence near the 3′ end of AAV rep, termed the Rep inhibition sequence for adenoviral replication (RIS-Ad). RIS-Ad functions independently of Rep protein expression. Here we demonstrate that inhibition of adenoviral replication by RIS-Ad requires an active AAV p40 promoter and the 5′ half of the intron. In addition, Ad inhibition is critically dependent on the integrity of the p40 transcription start site (TSS) leading to short p40-associated transcripts. These do not give rise to effector molecules capable of inhibiting adenoviral replication in trans, like small polypeptides or microRNAs. Our data point to an inhibitory mechanism in which RNA polymerase II (Pol II) pauses directly downstream of the p40 promoter, leading to interference of the stalled Pol II transcription complex with the adenoviral replication machinery. Whereas inhibition by RIS-Ad is mediated exclusively in cis, it can be overcome by providing a replication-competent adenoviral genome in trans. Moreover, the inhibitory effect of RIS-Ad is not limited to AAV-2 but could also be shown for the corresponding regions of other AAV serotypes, including AAV-5. These findings have important implications for the future generation of Ad5/AAV hybrid vectors. IMPORTANCE Insertion of sequences from the 3′ part of the rep gene of adeno-associated virus (AAV) into the genome of its helper adenovirus strongly reduces adenoviral genome replication. We could show that this inhibition is mediated exclusively in cis without the involvement of trans-acting regulatory RNAs or polypeptides but nevertheless requires an active AAV-2 p40 promoter and p40-associated short transcripts. Our results suggest a novel inhibitory mechanism that has so

  3. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever

    PubMed Central

    Warimwe, George M.; Gesharisha, Joseph; Carr, B. Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K.; Al-dubaib, Musaad A.; Brun, Alejandro; Gilbert, Sarah C.; Nene, Vishvanath; Hill, Adrian V. S.

    2016-01-01

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A ‘One Health’ vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs. PMID:26847478

  4. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  5. Transport of human adenoviruses in porous media

    NASA Astrophysics Data System (ADS)

    Kokkinos, Petros; Syngouna, Vasiliki I.; Tselepi, Maria A.; Bellou, Maria; Chrysikopoulos, Constantinos V.; Vantarakis, Apostolos

    2015-04-01

    Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public

  6. Transforming Region of Group A, B, and C Adenoviruses: DNA Homology Studies with Twenty-Nine Human Adenovirus Serotypes

    PubMed Central

    Mackey, Jesse K.; Wold, William S. M.; Rigden, Patricia; Green, Maurice

    1979-01-01

    The 31 human adenovirus (Ad) serotypes form five groups based upon DNA genome homologies: group A (Ad12, 18, 31), group B (Ad3, 7, 11, 14, 16, 21), group C (Ad1, 2, 5, 6), group D (Ad8, 9, 10, 13, 15, 17, 19, 20, 22-30), and group E (Ad4) (M. Green, J. Mackey, W. Wold, and P. Rigden, Virology, in press). Group A Ads are highly oncogenic in newborn hamsters, group B Ads are weakly oncogenic, and other Ads are nononcogenic. However, most or all Ads transform cultured cells. We have studied the homology of Ad5, Ad7, and Ad12 transforming restriction endonuclease DNA fragments with DNAs of 29 Ad types. Ad5 HindIII-G (map position 0-7.3), Ad7 XhoI-C (map position 0-10.8), and Ad12 (strain Huie) EcoRI-C (map position 0-16) and SalI-C (map position 0-10.6) fragments were purified, labeled in vitro (nick translation), and annealed with DNAs of Ad1 to Ad16, Ad18 to Ad24, and Ad26 to Ad31. Hybrids were assayed by using hydroxylapatite. Ad5 HindIII-G hybridized 98 to 100% with DNAs of group C Ads, but only 1 to 15% with DNAs of other types. Ad7 XhoI-C fragment hybridized 85 to 99% with DNAs of group B Ads, but only 6 to 21% with DNAs of other types. Ad12 (Huie) EcoRI-C hybridized 53 to 68% with DNAs of five other Ad12 strains, 53% with Ad18 DNA, 56% with Ad31 DNA, but only 3 to 13% with DNAs of other types. In vitro-labeled Ad12 (Huie) SalI-C hybridized 35 to 71% with DNAs of 6 other Ad12 strains, 44% with Ad18 DNA, 52% with Ad31 DNA, but only 2 to 7% with DNAs Ad7, Ad2, Ad26, or Ad4. When assayed using S-1 nuclease, SalI-C annealed 17 to 44% with DNAs of group A Ads. The melting temperatures of the hybrids of Ad5 HindIII-G with all group C Ad DNAs were 84°C in 0.12 M sodium phosphate (pH 6.8). The melting temperature of the Ad12 (Huie) EcoRI-C hybrid with Ad12 (Huie) DNA was 83°C, but was only 71 to 77°C with DNAs of other group A Ads. Thus, group C and group B Ads both have very homologous transforming regions that are not represented in DNAs of non-group C Ads or non

  7. Valganciclovir Inhibits Human Adenovirus Replication and Pathology in Permissive Immunosuppressed Female and Male Syrian Hamsters

    PubMed Central

    Toth, Karoly; Ying, Baoling; Tollefson, Ann E.; Spencer, Jacqueline F.; Balakrishnan, Lata; Sagartz, John E.; Buller, Robert Mark L.; Wold, William S. M.

    2015-01-01

    Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients. PMID:25807051

  8. Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters.

    PubMed

    Toth, Karoly; Ying, Baoling; Tollefson, Ann E; Spencer, Jacqueline F; Balakrishnan, Lata; Sagartz, John E; Buller, Robert Mark L; Wold, William S M

    2015-03-23

    Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.

  9. Inactivation of human adenovirus by sequential disinfection with an alternative ultraviolet technology and monochloramine.

    PubMed

    Shin, Gwy-Am; Lee, Jung-Keun

    2010-07-01

    In an effort to reduce human exposure to adenoviruses through drinking water, we determined the effectiveness of sequential disinfection with an alternative ultraviolet (UV) technology (medium-pressure (MP) UV) and monochloramine. The results of this study showed that MP UV was much more effective than traditional UV technology (low-pressure (LP) UV) against human adenovirus 2 (Ad2). Specifically, an inactivation of approximately 3 log10 was achieved by a dose of 40 mJ/cm2 of MP UV compared to ~1 log10 by the same dose of LP UV. However, because of the ineffective inactivation of Ad2 by monochloramine, a very high dose (40 mJ/cm2) of MP UV and a very large Ct99 value (approximately 1200 mg/L.min) was still needed to achieve a significant inactivation (e.g., 4 log10) of Ad2. Also, it appears that the inactivation of Ad2 by monochloramine is not enhanced by prior exposure to MP UV. Overall, the results of this study indicated that, in spite of the enhanced effectiveness of alternative UV technologies on human adenoviruses, sequential disinfection with an alternative UV technology (MP UV) and monochloramine still may not provide adequate inactivation of human adenoviruses - especially at high pH and low temperature - in drinking water treatment processes.

  10. Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis.

    PubMed Central

    Roovers, D J; van der Lee, F M; van der Wees, J; Sussenbach, J S

    1993-01-01

    A series of adenovirus type 5 precursor terminal protein (pTP) and DNA polymerase (Ad pol) genes with linker insertion mutations were separately introduced into the vaccinia virus genome under the control of a late vaccinia virus promoter. The recombinant viruses were used for overexpression of the mutant genes in HeLa cells. In total, 22 different mutant pTP and 10 different Ad pol vaccinia virus recombinants were constructed, including some that expressed carboxyl-terminus-truncated forms of both proteins and one that produced the mutant H5ts149 Ad pol. To investigate the structure-function relationships of both proteins, extracts from cells infected with the recombinant viruses were tested for in vitro complementation of the initiation and elongation steps in adenovirus DNA replication. The results were in accordance with those of earlier in vivo experiments with these insertion mutants and indicate that multiple regions of both proteins are essential for adenovirus DNA replication. The carboxyl termini of both pTP and Ad pol were shown to be essential for proper functioning of these proteins during initiation of adenovirus DNA replication. Three different DNA replication-negative pTP mutants were shown to have residual activity in the initiation assay, suggesting not only that pTP is required for initiation but also that it may play a role in DNA replication after the deoxycytidylation step. Images PMID:8416372

  11. The relevance of coagulation factor X protection of adenoviruses in human sera

    PubMed Central

    Duffy, M R; Doszpoly, A; Turner, G; Nicklin, S A; Baker, A H

    2016-01-01

    Intravenous delivery of adenoviruses is the optimal route for many gene therapy applications. Once in the blood, coagulation factor X (FX) binds to the adenovirus capsid and protects the virion from natural antibody and classical complement-mediated neutralisation in mice. However, to date, no studies have examined the relevance of this FX/viral immune protective mechanism in human samples. In this study, we assessed the effects of blocking FX on adenovirus type 5 (Ad5) activity in the presence of human serum. FX prevented human IgM binding directly to the virus. In individual human sera samples (n=25), approximately half of those screened inhibited adenovirus transduction only when the Ad5–FX interaction was blocked, demonstrating that FX protected the virus from neutralising components in a large proportion of human sera. In contrast, the remainder of sera tested had no inhibitory effects on Ad5 transduction and FX armament was not required for effective gene transfer. In human sera in which FX had a protective role, Ad5 induced lower levels of complement activation in the presence of FX. We therefore demonstrate for the first time the importance of Ad–FX protection in human samples and highlight subject variability and species-specific differences as key considerations for adenoviral gene therapy. PMID:27014840

  12. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  13. Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

    PubMed Central

    Del Papa, Joshua; Parks, Robin J.

    2017-01-01

    Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics. PMID:28106842

  14. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: An open phase I/II trial in healthy adults in Russia

    PubMed Central

    Dolzhikova, I. V.; Zubkova, O. V.; Tukhvatulin, A. I.; Dzharullaeva, A. S.; Tukhvatulina, N. M.; Shcheblyakov, D. V.; Shmarov, M. M.; Tokarskaya, E. A.; Simakova, Y. V.; Egorova, D. A.; Scherbinin, D. N.; Tutykhina, I. L.; Lysenko, A. A.; Kostarnoy, A. V.; Gancheva, P. G.; Ozharovskaya, T. A.; Belugin, B. V.; Kolobukhina, L. V.; Pantyukhov, V. B.; Syromyatnikova, S. I.; Shatokhina, I. V.; Sizikova, T. V.; Rumyantseva, I. G.; Andrus, A. F.; Boyarskaya, N. V.; Voytyuk, A. N.; Babira, V. F.; Volchikhina, S. V.; Kutaev, D. A.; Bel'skih, A. N.; Zhdanov, K. V.; Zakharenko, S. M.; Borisevich, S. V.; Logunov, D. Y.; Naroditsky, B. S.; Gintsburg, A. L.

    2017-01-01

    ABSTRACT Ebola hemorrhagic fever, also known as Ebola virus disease or EVD, is one of the most dangerous viral diseases in humans and animals. In this open-label, dose-escalation clinical trial, we assessed the safety, side effects, and immunogenicity of a novel, heterologous prime-boost vaccine against Ebola, which was administered in 2 doses to 84 healthy adults of both sexes between 18 and 55 years. The vaccine consists of live-attenuated recombinant vesicular stomatitis virus (VSV) and adenovirus serotype-5 (Ad5) expressing Ebola envelope glycoprotein. The most common adverse event was pain at the injection site, although no serious adverse events were reported. The vaccine did not significantly impact blood, urine, and immune indices. Seroconversion rate was 100 %. Antigen-specific IgG geometric mean titer at day 42 was 3,277 (95 % confidence interval 2,401–4,473) in volunteers immunized at full dose. Neutralizing antibodies were detected in 93.1 % of volunteers immunized at full dose, with geometric mean titer 20. Antigen-sp