Sample records for adenovirus encoding human

  1. Cell transformation by human adenoviruses.

    PubMed

    Endter, C; Dobner, T

    2004-01-01

    The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.

  2. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  3. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  4. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

    PubMed Central

    Machitani, Mitsuhiro; Sakurai, Fuminori; Wakabayashi, Keisaku; Tomita, Kyoko; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-01

    In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells. PMID:27273616

  5. Immunizing Patients With Metastatic Melanoma Using Recombinant Adenoviruses Encoding MART-1 or gp100 Melanoma Antigens

    PubMed Central

    Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.

    2008-01-01

    Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627

  6. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    PubMed

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  7. Hexons from adenovirus serotypes 5 and 48 differentially protect adenovirus vectors from neutralization by mouse and human serum

    PubMed Central

    Harmon, Andrew W.; Moitra, Rituparna; Xu, Zhili

    2018-01-01

    Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors. PMID:29401488

  8. Human Papillomavirus E6E7-Mediated Adenovirus Cell Killing: Selectivity of Mutant Adenovirus Replication in Organotypic Cultures of Human Keratinocytes

    PubMed Central

    Balagué, Cristina; Noya, Francisco; Alemany, Ramon; Chow, Louise T.; Curiel, David T.

    2001-01-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells. PMID:11462032

  9. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  10. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange

  11. Isolation and Characterization of Adenoviruses Persistently Shed from the Gastrointestinal Tract of Non-Human Primates

    PubMed Central

    Kryazhimskiy, Sergey; Grant, Rebecca; Calcedo, Roberto; Yuan, Xin; Keough, Martin; Sandhu, Arbans; Wang, Qiang; Medina-Jaszek, C. Angelica; Plotkin, Joshua B.; Wilson, James M.

    2009-01-01

    Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors. PMID:19578438

  12. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  13. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  14. Species-Specific Identification of Human Adenoviruses in Sewage.

    PubMed

    Wieczorek, Magdalena; Krzysztoszek, Arleta; Witek, Agnieszka

    2015-01-01

    Human adenovirus (HAdV) diversity in sewage was assessed by species-specific molecular methods. Samples of raw sewage were collected in 14 sewage disposal systems from January to December 2011, in Poland. HAdVs were detected in 92.1% of the analysed sewage samples and was significantly higher at cities of over 100 000 inhabitants. HAdV DNA was detected in sewage during all seasons. The most abundant species identified were HAdV-F (average 89.6%) and -A (average 19.6%), which are associated with intestine infections. Adenoviruses from B species were not detected. The result of the present study demonstrate that human adenoviruses are consistently present in sewage in Poland, demonstrating the importance of an adequate treatment before the disposal in the environment. Multiple HAdV species identified in raw sewage provide new information about HAdV circulation in the Polish population.

  15. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    PubMed

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  16. Co-infection with human polyomavirus BK enhances gene expression and replication of human adenovirus.

    PubMed

    Bil-Lula, Iwona; Woźniak, Mieczysław

    2018-03-26

    Immunocompromised patients are susceptible to multiple viral infections. Relevant interactions between co-infecting viruses might result from viral regulatory genes which trans-activate or repress the expression of host cell genes as well as the genes of any co-infecting virus. The aim of the current study was to show that the replication of human adenovirus 5 is enhanced by co-infection with BK polyomavirus and is associated with increased expression of proteins including early region 4 open reading frame 1 and both the large tumor antigen and small tumor antigen. Clinical samples of whole blood and urine from 156 hematopoietic stem cell transplant recipients were tested. We also inoculated adenocarcinomic human alveolar basal epithelial cells with both human adenovirus 5 and BK polyomavirus to evaluate if co-infection of viruses affected their replication. Data showed that adenovirus load was significantly higher in the plasma (mean 7.5 x 10 3  ± 8.5 x 10 2 copies/ml) and urine (mean 1.9 x 10 3  ± 8.0 x 10 2 copies/ml) of samples from patients with co-infections, in comparison to samples from patients with isolated adenovirus infection. In vitro co-infection led to an increased (8.6 times) expression of the adenovirus early region 4 open reading frame gene 48 hours post-inoculation. The expression of the early region 4 open reading frame gene positively correlated with the expression of BK polyomavirus large tumor antigen (r = 0.90, p < 0.0001) and small tumor antigen (r = 0.83, p < 0.001) genes. The enhanced expression of the early region 4 open reading frame gene due to co-infection with BK polyomavirus was associated with enhanced adenovirus, but not BK polyomavirus, replication. The current study provides evidence that co-infection of adenovirus and BK polyomavirus contributes to enhanced adenovirus replication. Data obtained from this study may have significant importance in the clinical setting.

  17. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  18. The relevance of coagulation factor X protection of adenoviruses in human sera

    PubMed Central

    Duffy, M R; Doszpoly, A; Turner, G; Nicklin, S A; Baker, A H

    2016-01-01

    Intravenous delivery of adenoviruses is the optimal route for many gene therapy applications. Once in the blood, coagulation factor X (FX) binds to the adenovirus capsid and protects the virion from natural antibody and classical complement-mediated neutralisation in mice. However, to date, no studies have examined the relevance of this FX/viral immune protective mechanism in human samples. In this study, we assessed the effects of blocking FX on adenovirus type 5 (Ad5) activity in the presence of human serum. FX prevented human IgM binding directly to the virus. In individual human sera samples (n=25), approximately half of those screened inhibited adenovirus transduction only when the Ad5–FX interaction was blocked, demonstrating that FX protected the virus from neutralising components in a large proportion of human sera. In contrast, the remainder of sera tested had no inhibitory effects on Ad5 transduction and FX armament was not required for effective gene transfer. In human sera in which FX had a protective role, Ad5 induced lower levels of complement activation in the presence of FX. We therefore demonstrate for the first time the importance of Ad–FX protection in human samples and highlight subject variability and species-specific differences as key considerations for adenoviral gene therapy. PMID:27014840

  19. Silencing GIRK4 expression in human atrial myocytes by adenovirus-delivered small hairpin RNA.

    PubMed

    Liu, Xiongtao; Yang, Jian; Shang, Fujun; Hong, Changming; Guo, Wangang; Wang, Bing; Zheng, Qiangsun

    2009-07-01

    GIRK4 has been shown to be a subunit of I(KACh), and the use of GIRK4 in human atrial myocytes to treat arrhythmia remains an important research pursuit. Adenovirus-delivered small hairpin RNA (shRNA) has been used to mediate gene knockdown in mouse cardiocytes, yet there is no information on the successful application of this technique in human cardiocytes. In the current study, we used a siRNA validation system to select the most efficient sequence for silencing GIRK4. To this end, adenovirus-delivered shRNA, which expresses this sequence, was used to silence GIRK4 expression in human atrial myocytes. Finally, the feasibility, challenges, and results of silencing GIRK4 expression were evaluated by RT-PCR, western blotting, and the voltage-clamp technique. The levels of mRNA and protein were depressed significantly in cells infected by adenovirus-delivered shRNA against GIRK4, approximately 86.3% and 51.1% lower than those cells infected by adenovirus-delivered nonsense shRNA, respectively. At the same time, I(KACh) densities were decreased 53% by adenovirus-delivered shRNA against GIRK4. In summary, adenovirus-delivered shRNA against GIRK4 mediated efficient GIRK4 knockdown in human atrial myocytes and decreased I(KACh) densities. As such, these data indicated that adenovirus-delivered shRNA against GIRK4 is a potential tool for treating arrhythmia.

  20. Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    DTIC Science & Technology

    2006-06-01

    21. Geisbert TW, Hensley LE , Larsen T, Young HA, Reed DS, et al. (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that...Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT

  1. Oral vaccination with an adenovirus-vectored vaccine protects against botulism

    PubMed Central

    Chen, Shan; Xu, Qingfu; Zeng, Mingtao

    2013-01-01

    We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×104 to 1×107 plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×107 pfu adenovirus, has shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×106 pfu adenovirus or greater were completely protected against challenge with 100×MLD50 of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism. PMID:23295065

  2. Efficacy of severe acute respiratory syndrome vaccine based on a nonhuman primate adenovirus in the presence of immunity against human adenovirus.

    PubMed

    Zhi, Yan; Figueredo, Joanita; Kobinger, Gary P; Hagan, Heather; Calcedo, Roberto; Miller, James R; Gao, Guangping; Wilson, James M

    2006-05-01

    Replication-deficient human adenovirus type 5 (AdH5) vectors can induce strong transgene product-specific cellular and humoral responses. However, many adult humans have neutralizing antibodies (NAbs) against AdH5 as a result of natural infection with this virus. Therefore, a chimpanzee adenovirus C7 (AdC7) vector was developed to circumvent interference by preexisting immunity to AdH5. This study evaluated the impact of preexisting immunity to human adenovirus on the efficacy of adenovirus-based vaccines against the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). Efficacy was assessed after intramuscular injection of the vector into mice and was measured as the frequency of SARS-CoV-specific T cells and NAbs against SARS-CoV. Immunogenicity of the AdH5-based vaccine was significantly attenuated or completely abolished when the preexisting anti-AdH5 NAb titer was higher than 40. Because 27% of human serum samples from the United States tested so far have an anti-AdH5 NAb titer higher than 40, our results suggested that a significant percentage of humans with preexisting anti-AdH5 immunity would not be candidates for vaccination with an AdH5-based genetic vaccine. In contrast, preexisting anti-AdH5 NAbs have a minimal effect on the potency of the AdC7-based genetic vaccine. Taken together, our studies warrant the further development of AdC7 as a vaccine carrier for human trials.

  3. Prevalence and Quantitation of Species C Adenovirus DNA in Human Mucosal Lymphocytes

    PubMed Central

    Garnett, C. T.; Erdman, D.; Xu, W.; Gooding, Linda R.

    2002-01-01

    The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 × 106 copies of the adenovirus genome/107 cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form. PMID:12368303

  4. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C., E-mail: ertl@wistar.upenn.edu

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protectsmore » against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.« less

  5. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  6. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-α-glucosidase

    PubMed Central

    Amalfitano, A.; McVie-Wylie, A. J.; Hu, H.; Dawson, T. L.; Raben, N.; Plotz, P.; Chen, Y. T.

    1999-01-01

    This report demonstrates that a single intravenous administration of a gene therapy vector can potentially result in the correction of all affected muscles in a mouse model of a human genetic muscle disease. These results were achieved by capitalizing both on the positive attributes of modified adenovirus-based vectoring systems and receptor-mediated lysosomal targeting of enzymes. The muscle disease treated, glycogen storage disease type II, is a lysosomal storage disorder that manifests as a progressive myopathy, secondary to massive glycogen accumulations in the skeletal and/or cardiac muscles of affected individuals. We demonstrated that a single intravenous administration of a modified Ad vector encoding human acid α-glucosidase (GAA) resulted in efficient hepatic transduction and secretion of high levels of the precursor GAA proenzyme into the plasma of treated animals. Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed. As a result, systemic decreases (and correction) of the glycogen accumulations in a variety of muscle tissues was demonstrated. This model can potentially be expanded to include the treatment of other lysosomal enzyme disorders. Lessons learned from systemic genetic therapy of muscle disorders also should have implications for other muscle diseases, such as the muscular dystrophies. PMID:10430861

  7. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge.

    PubMed

    Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J

    2014-10-01

    Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.

  8. An adenovirus-vectored nasal vaccine confers rapid and sustained protection against anthrax in a single-dose regimen.

    PubMed

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S; Baillie, Leslie W; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.

  9. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    PubMed Central

    Tian, Xingui; Ma, Qiang; Jiang, Zaixue; Huang, Junfeng; Liu, Qian; Lu, Xiaomei; Luo, Qingming; Zhou, Rong

    2015-01-01

    Human adenovirus type 55 (HAdV55) is a newly identified re-emergent acute respiratory disease (ARD) pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152), A55R2 (residues 179 to 187), A55R4 (residues 247 to 259) and A55R7 (residues 429 to 443), were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3) and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis. PMID:26516903

  10. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    PubMed Central

    Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R.; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine. PMID:23100479

  11. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    PubMed

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  12. Production of recombinant adenovirus containing human interlukin-4 gene.

    PubMed

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-11-01

    Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics.

  13. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  14. Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells.

    PubMed

    Westerberg, Sonja; Hagbom, Marie; Rajan, Anandi; Loitto, Vesa; Persson, B David; Allard, Annika; Nordgren, Johan; Sharma, Sumit; Magnusson, Karl-Eric; Arnberg, Niklas; Svensson, Lennart

    2018-04-01

    Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells. IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41

  15. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGES

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; ...

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  16. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  17. Avian Influenza Vaccination in Chickens and Pigs with Replication-Competent Adenovirus–Free Human Recombinant Adenovirus 5

    PubMed Central

    Toro, Haroldo; van Ginkel, Frederik W.; Tang, De-chu C.; Schemera, Bettina; Rodning, Soren; Newton, Joseph

    2010-01-01

    SUMMARY Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland–derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a “mixing vessel” for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636

  18. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    PubMed Central

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette

    2014-01-01

    ABSTRACT Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. PMID:25410856

  19. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    PubMed Central

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. Materials and Methods In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Results Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. Conclusion This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics. PMID:23493491

  20. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    USDA-ARS?s Scientific Manuscript database

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  1. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    PubMed

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    PubMed

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  3. Genomic stability of adipogenic human adenovirus 36.

    PubMed

    Nam, J-H; Na, H-N; Atkinson, R L; Dhurandhar, N V

    2014-02-01

    Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.

  4. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  5. Immune responses in macaques to a prototype recombinant adenovirus live oral human papillomavirus 16 vaccine.

    PubMed

    Berg, Michael G; Adams, Robert J; Gambhira, Ratish; Siracusa, Mark C; Scott, Alan L; Roden, Richard B S; Ketner, Gary

    2014-09-01

    Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Atomic Structures of Minor Proteins VI and VII in the Human Adenovirus.

    PubMed

    Dai, Xinghong; Wu, Lily; Sun, Ren; Zhou, Z Hong

    2017-10-04

    Human adenoviruses (Ad) are dsDNA viruses associated with infectious diseases, yet better known as tools for gene delivery and oncolytic anti-cancer therapy. Atomic structures of Ad provide the basis for the development of antivirals and for engineering efforts towards more effective applications. Since 2010, atomic models of human Ad5 have been independently derived from photographic film cryoEM and X-ray crystallography, but discrepancies exist concerning the assignment of cement proteins IIIa, VIII and IX. To clarify these discrepancies, here we have employed the technology of direct electron-counting to obtain a cryoEM structure of human Ad5 at 3.2 Å resolution. Our improved structure unambiguously confirmed our previous cryoEM models of proteins IIIa, VIII and IX and explained the likely cause of conflict in the crystallography models. The improved structure also allows the identification of three new components in the cavities of hexons - the cleaved N-terminus of precursor protein VI (pVIn), the cleaved N-terminus of precursor protein VII (pVIIn2), and mature protein VI. The binding of pVIIn2--by extension that of genome-condensing pVII--to hexons is consistent with the previously proposed dsDNA genome-capsid co-assembly for adenoviruses, which resembles that of ssRNA viruses but differs from the well-established mechanism of pumping dsDNA into a preformed protein capsid, as exemplified by tailed bacteriophages and herpesviruses. IMPORTANCE Adenovirus is a double-edged sword to humans - as a widespread pathogen and a bioengineering tool for anti-cancer and gene therapy. Atomic structure of the virus provides the basis for antiviral and application developments, but conflicting atomic models from conventional/film cryoEM and X-ray crystallography for important cement proteins IIIa, VIII, and IX have caused confusion. Using the cutting-edge cryoEM technology with electron counting, we improved the structure of human adenovirus type 5 and confirmed our

  7. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn; Zhou, Ling; Zhang, Yan-ling

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endomore » via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.« less

  8. Therapeutic effect of targeted Fas-expressing adenoviruses method combining γδ T cells in a mouse model of human ovarian carcinoma.

    PubMed

    Zeng, Dingyuan; Lin, Jiajing; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2018-02-01

    The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.

  9. Comparison of human and monkey cells for the ability to attenuate transcripts that begin at the adenovirus major late promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiberg, M.; Aloni, Y.; Levine, A.J.

    1989-09-01

    Late transcription from the adenovirus major late promoter can terminate prematurely at a site 182 to 188 nucleotides downstream. Experiments have been designed, with run-on transcription in nuclei in vitro or riboprobe protection of RNA obtained both in vivo and in vitro, that demonstrate that the ratio of attenuator RNA to readthrough RNA is greater in monkey cells (CV-1) than in human cells (HeLa). This may explain, in part, why the human adenoviruses replicate more poorly in CV-1 cells than in HeLa cells. A mutant adenovirus that replicates better than wild-type virus in monkey cells produces less of the attenuatormore » RNA than wild-type adenovirus does in monkey cells. Monkey cell extracts have been shown to contain a factor that, when added to human cell extracts transcribing adenovirus DNA in vitro, increases the production of attenuator RNA in these reactions. These observations help to explain a portion of the block to the production of infectious adenoviruses in monkey cells.« less

  10. A novel psittacine adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis: zoonosis associated with virus-bacterium coinfection in birds.

    PubMed

    To, Kelvin K W; Tse, Herman; Chan, Wan-Mui; Choi, Garnet K Y; Zhang, Anna J X; Sridhar, Siddharth; Wong, Sally C Y; Chan, Jasper F W; Chan, Andy S F; Woo, Patrick C Y; Lau, Susanna K P; Lo, Janice Y C; Chan, Kwok-Hung; Cheng, Vincent C C; Yuen, Kwok-Yung

    2014-12-01

    Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1) was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs) with sequence similarity to known adenoviral genes, and six additional ORFs at the 3' end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3-54.0% for the DNA polymerase, 64.6-70.7% for the penton protein, and 66.1-74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention and should be

  11. A Novel Psittacine Adenovirus Identified During an Outbreak of Avian Chlamydiosis and Human Psittacosis: Zoonosis Associated with Virus-Bacterium Coinfection in Birds

    PubMed Central

    Chan, Wan-Mui; Choi, Garnet K. Y.; Zhang, Anna J. X.; Sridhar, Siddharth; Wong, Sally C. Y.; Chan, Jasper F. W.; Chan, Andy S. F.; Woo, Patrick C. Y.; Lau, Susanna K. P.; Lo, Janice Y. C.; Chan, Kwok-Hung; Cheng, Vincent C. C.; Yuen, Kwok-Yung

    2014-01-01

    Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1) was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs) with sequence similarity to known adenoviral genes, and six additional ORFs at the 3′ end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3–54.0% for the DNA polymerase, 64.6–70.7% for the penton protein, and 66.1–74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention and should

  12. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes

    PubMed Central

    Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.

    2014-01-01

    The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418

  13. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  14. Relative transport of human adenovirus and MS2 in porous media

    EPA Science Inventory

    Human adenovirus (HAdV) is the most prevalent enteric virus found in the water environment by numerous monitoring studies and MS2 is the most common surrogate used for previous virus transport studies. However, the current knowledge on the transport behavior of HAdV in porous med...

  15. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  16. Incidence of adenoviruses in raw and treated water.

    PubMed

    Van Heerden, Juanita; Ehlers, Marthie M; Van Zyl, Walda B; Grabow, Wilhelm O K

    2003-09-01

    Adenoviruses are of major public health importance and are associated with a variety of clinical manifestations, i.e. gastroenteritis, eye infections and respiratory infections. The importance of water in the epidemiology of adenoviruses and the potential health risks constituted by adenoviruses in water sources and supplies are widely recognised. This study was conducted to assess the incidence of human adenoviruses in raw and treated water systems. Various raw and treated water were routinely monitored for the presence of adenoviruses, over a 1-year period (July 2000-June 2001). The supplies were derived from acceptable quality surface water sources using treatment processes, which conform to international standards for the production of safe drinking water. Adenoviruses were detected by firstly amplifying the viruses in cell cultures and then amplifying the extracted nucleic acids of these viruses using molecular techniques (nested PCR). The results indicated human adenoviruses present in 13 (12.75%) of the raw and 9 (4.41%) of the treated water samples tested. The combination of cell culture and nested PCR has proved to be a quick and reliable method for the detection of adenoviruses in water environments.

  17. Requirement of Sur2 for Efficient Replication of Mouse Adenovirus Type 1

    PubMed Central

    Fang, Lei; Stevens, Jennitte L.; Berk, Arnold J.; Spindler, Katherine R.

    2004-01-01

    Mouse adenovirus type 1 (MAV-1) early region 1A (E1A) encodes a virulence gene in viral infection of mice. To broaden our understanding of the functions of E1A in MAV-1 pathogenesis, an unbiased experimental approach, glutathione S-transferase (GST) pulldown, was used to screen for cellular proteins that interact with E1A protein. We identified mouse Sur2, a subunit of Mediator complex, as a protein that binds to MAV-1 E1A. The interaction between Sur2 and MAV-1 E1A was confirmed in virus-infected cells. Conserved region 3 (CR3) of MAV-1 E1A was mapped as the region required for Sur2-E1A interaction, as is the case for human adenovirus E1A. Although it has been proposed that human adenovirus E1A recruits the Mediator complex to transactivate transcription of viral early genes, Sur2 function in adenovirus replication has not been directly tested previously. Studies on the functions of Sur2 with mouse embryonic fibroblasts (MEFs) showed that there was a multiplicity-dependent growth defect of MAV-1 in Sur2−/− MEFs compared to Sur2+/+ MEFs. Comparison of the viral DNA and viral mRNA levels in Sur2+/+ and Sur2−/− MEFs confirmed that Sur2 was important for efficient viral replication. The viral replication defects in Sur2−/− MEFs appeared to be due at least in part to a defect in viral early gene transcription. PMID:15542641

  18. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    PubMed

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  19. A quasi-atomic model of human adenovirus type 5 capsid

    PubMed Central

    Fabry, Céline M S; Rosa-Calatrava, Manuel; Conway, James F; Zubieta, Chloé; Cusack, Stephen; Ruigrok, Rob W H; Schoehn, Guy

    2005-01-01

    Adenoviruses infect a wide range of vertebrates including humans. Their icosahedral capsids are composed of three major proteins: the trimeric hexon forms the facets and the penton, a noncovalent complex of the pentameric penton base and trimeric fibre proteins, is located at the 12 capsid vertices. Several proteins (IIIa, VI, VIII and IX) stabilise the capsid. We have obtained a 10 Å resolution map of the human adenovirus 5 by image analysis from cryo-electron micrographs (cryoEMs). This map, in combination with the X-ray structures of the penton base and hexon, was used to build a quasi-atomic model of the arrangement of the two major capsid components and to analyse the hexon–hexon and hexon–penton interactions. The secondary proteins, notably VIII, were located by comparing cryoEM maps of native and pIX deletion mutant virions. Minor proteins IX and IIIa are located on the outside of the capsid, whereas protein VIII is organised with a T=2 lattice on the inner face of the capsid. The capsid organisation is compared with the known X-ray structure of bacteriophage PRD1. PMID:15861131

  20. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  1. Influence of Inorganic Ions and Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, influence of solution chemistries to the transport properties (aggregation and attachment behavior) of human adenovirus (HAdV) was investigated. Results showed isoelectric point (IEP) of HAdV in different salt conditions varied minimally, and it ranged from pH 3.5 ...

  2. Therapeutic Effect of Recombinant Adenovirus Encoding Interferon-γ in a Murine Model of Progressive Pulmonary Tuberculosis.

    PubMed

    Mata-Espinosa, Dulce A; Mendoza-Rodríguez, Valentin; Aguilar-León, Diana; Rosales, Ricardo; López-Casillas, Fernando; Hernández-Pando, Rogelio

    2008-06-01

    We constructed recombinant adenoviruses encoding murine interferon-γ (AdIFNγ) and tested its therapeutic efficiency in a well characterized model of progressive pulmonary tuberculosis (TB) in Balb/c mice, infected through the trachea with the laboratory drug-susceptible H37Rv strain or multidrug-resistant (MDR) clinical isolate. When the disease was in a late phase, 2 months after infection, we administered by intratracheal cannulation a single dose [1.7 × 10 9 plaque forming units (pfu)] of AdIFNγ or the control adenovirus. Groups of mice were killed at different time-points and the lungs were examined to determine bacilli colony forming units (CFU), cytokine/chemokine gene expression, and CD4/CD8 subpopulations, and also subjected to automated histomorphometry. In comparison with the control group, after 2 weeks of treatment and during the next 6 months, AdIFNγ-treated animals infected with either the H37Rv strain or the MDR strain showed significantly lower bacilli loads and tissue damage (pneumonia), higher expressions of IFN-γ, tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS), and bigger granulomas. When compared with the results from conventional chemotherapy or AdIFNγ treatment alone, the combined treatment with AdIFNγ plus conventional chemotherapy shortened the time taken for reduction of bacillary load. This shows that gene therapy with AdIFNγ efficiently reconstituted the protective immune response and controlled the progress of pulmonary TB produced by MDR or non-MDR strains. Copyright © 2008 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  3. Full genome sequence analysis of a novel adenovirus of rhesus macaque origin indicates a new simian adenovirus type and species.

    PubMed

    Malouli, Daniel; Howell, Grant L; Legasse, Alfred W; Kahl, Christoph; Axthelm, Michael K; Hansen, Scott G; Früh, Klaus

    2014-09-01

    Multiple novel simian adenoviruses have been isolated over the past years and their potential to cross the species barrier and infect the human population is an ever present threat. Here we describe the isolation and full genome sequencing of a novel simian adenovirus (SAdV) isolated from the urine of two independent, never co-housed, late stage simian immunodeficiency virus (SIV)-infected rhesus macaques. The viral genome sequences revealed a novel type with a unique genome length, GC content, E3 region and DNA polymerase amino acid sequence that is sufficiently distinct from all currently known human- or simian adenovirus species to warrant classifying these isolates as a novel species of simian adenovirus. This new species, termed Simian mastadenovirus D (SAdV-D), displays the standard genome organization for the genus Mastadenovirus containing only one copy of the fiber gene which sets it apart from the old world monkey adenovirus species HAdV-G, SAdV-B and SAdV-C.

  4. Effect of organic carbon on sorption of human adenovirus to soil particles and laboratory containers

    EPA Science Inventory

    A key factor controlling the relationship between virus release and human exposure is how virus particles interact with soils, sediments and other solid particles in the environment and in engineered treatment systems. Finding no previous investigations of human adenovirus (HAdV)...

  5. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  6. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    PubMed

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  7. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  8. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  9. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  10. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  11. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  12. Adenovirus 36 DNA in human adipose tissue.

    PubMed

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  13. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  14. Taxonomy proposal for Old World monkey adenoviruses: characterisation of several non-human, non-ape primate adenovirus lineages.

    PubMed

    Pantó, Laura; Podgorski, Iva I; Jánoska, Máté; Márkó, Orsolya; Harrach, Balázs

    2015-12-01

    A species classification regarding Old World monkey adenoviruses is proposed. We determined the nucleotide sequences of PCR-amplified fragments from the genes of the IVa2, DNA-dependent DNA polymerase, penton base, and hexon proteins from every simian adenovirus (SAdV) serotype that originated from Old World monkeys for which the full genome sequence had not yet been published. We confirmed that the majority of Old Word monkey SAdVs belong to two previously established species. Interestingly, one is the most recently established human AdV species, Human mastadenovirus G, which includes a single human virus, HAdV-52, as well as SAdV-1, -2, -7, -11, -12, and -15. The other approved species, Simian mastadenovirus A includes SAdV-3, -4, -6, -9, -10, -14, and -48. Several SAdVs (SAdV-5, -8, -49, -50) together with baboon AdV-1 and rhesus monkey AdV strains A1139, A1163, A1173, A1258, A1285, A1296, A1312, A1327 and A1335 have been proposed to be classified into an additional species, Simian mastadenovirus B. Another proposed species, Simian mastadenovirus C has been described for SAdV-19, baboon AdV-2/4 and -3. Our study revealed the existence of four additional AdV lineages. The corresponding new candidate species are Simian mastadenovirus D (for SAdV-13), Simian mastadenovirus E (for SAdV-16), Simian mastadenovirus F (for SAdV-17 and -18), and Simian mastadenovirus G (for SAdV-20). Several biological and genomic properties, such as the host origin, haemagglutination profile, number of fibre genes, and G+C content of the genome, strongly support this classification. Three SAdV strains originating from the American Type Culture Collection turned out to be mixtures of at least two virus types, either of the same species (SAdV-12 and -15 types from Human mastadenovirus G) or of two different species (SAdV-5 types from Simian mastadenovirus B and Human mastadenovirus G).

  15. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin.

    PubMed

    Skog, Johan; Mei, Ya-Fang; Wadell, Göran

    2002-06-01

    Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.

  16. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    PubMed Central

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  17. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  18. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  19. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses.

    PubMed Central

    Shemesh, J; Rotem-Yehudar, R; Ehrlich, R

    1991-01-01

    Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404

  20. Contrasting Effects of Human, Canine, and Hybrid Adenovirus Vectors on the Phenotypical and Functional Maturation of Human Dendritic Cells: Implications for Clinical Efficacy▿

    PubMed Central

    Perreau, Matthieu; Mennechet, Franck; Serratrice, Nicolas; Glasgow, Joel N.; Curiel, David T.; Wodrich, Harald; Kremer, Eric J.

    2007-01-01

    Antipathogen immune responses create a balance between immunity, tolerance, and immune evasion. However, during gene therapy most viral vectors are delivered in substantial doses and are incapable of expressing gene products that reduce the host's ability to detect transduced cells. Gene transfer efficacy is also modified by the in vivo transduction of dendritic cells (DC), which notably increases the immunogenicity of virions and vector-encoded genes. In this study, we evaluated parameters that are relevant to the use of canine adenovirus serotype 2 (CAV-2) vectors in the clinical setting by assaying their effect on human monocyte-derived DC (hMoDC). We compared CAV-2 to human adenovirus (HAd) vectors containing the wild-type virion, functional deletions in the penton base RGD motif, and the CAV-2 fiber knob. In contrast to the HAd type 5 (HAd5)-based vectors, CAV-2 poorly transduced hMoDC, provoked minimal upregulation of major histocompatibility complex class I/II and costimulatory molecules (CD40, CD80, and CD86), and induced negligible morphological changes indicative of DC maturation. Functional maturation assay results (e.g., reduced antigen uptake; tumor necrosis factor alpha, interleukin-1β [IL-1β], gamma interferon [IFN-γ], IL-10, IL-12, and IFN-α/β secretion; and stimulation of heterologous T-cell proliferation) were also significantly lower for CAV-2. Our data suggested that this was due, in part, to the use of an alternative receptor and a block in vesicular escape. Additionally, HAd5 vector-induced hMoDC maturation was independent of the aforementioned cytokines. Paradoxically, an HAd5/CAV-2 hybrid vector induced the greatest phenotypical and functional maturation of hMoDC. Our data suggest that CAV-2 and the HAd5/CAV-2 vector may be the antithesis of Adenoviridae immunogenicity and that each may have specific clinical advantages. PMID:17229706

  1. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Nevels, Michael; Dobner, Thomas

    2007-01-01

    The last 50 yr of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells and athymic nude mice.

  2. Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor.

    PubMed Central

    Ding, J; McGrath, W J; Sweet, R M; Mangel, W F

    1996-01-01

    The three-dimensional structure of the human adenovirus-2 proteinase complexed with its 11 amino acid cofactor, pVIc, was determined at 2.6 A resolution by X-ray crystallographic analysis. The fold of this protein has not been seen before. However, it represents an example of either subtly divergent or powerfully convergent evolution, because the active site contains a Cys-His-Glu triplet and oxyanion hole in an arrangement similar to that in papain. Thus, the adenovirus proteinase represents a new, fifth group of enzymes that contain catalytic triads. pVIc, which extends a beta-sheet in the main chain, is distant from the active site, yet its binding increases the catalytic rate constant 300-fold for substrate hydrolysis. The structure reveals several potential targets for antiviral therapy. Images PMID:8617222

  3. Acute effect of infection by adipogenic human adenovirus Ad36

    PubMed Central

    Pasarica, Magdalena; Loiler, Scott; Dhurandhar, Nikhil V.

    2009-01-01

    Human adenovirus Ad36 is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. We inoculated rats with Ad36, UV-inactivated Ad36 or mock-infected. Four-days later, Ad36-infected rats showed 23% greater epididymal fat pad weight and viral mRNA, the viral DNA could also be detected in tissues viz. the liver, brain, and adipose tissue. Intranasal or intra-peritoneal routes of viral inoculations showed similar tissue affinity. Serum cytokine response was remarkably down regulated. Ad36 acutely suppresses systemic immune response and spreads widely. This information will help to determine Ad36 tissue tropism and its metabolic consequences. PMID:18830560

  4. Immunogenicity and protective efficacy of a replication-defective infectious bronchitis virus vaccine using an adenovirus vector and administered in ovo.

    PubMed

    Zeshan, Basit; Zhang, Lili; Bai, Juan; Wang, Xinglong; Xu, Jiarong; Jiang, Ping

    2010-06-01

    In ovo vaccination remains an attractive option for a cost effective, uniform and mass application of vaccines for commercial poultry. However, the vaccines which can be delivered safely by this method are limited and there is no currently licensed embryo-safe vaccine against infectious bronchitis virus (IBV). In this study, a recombinant adenovirus expressing the S1 gene of nephropathogenic IBV (rAd-S1) was constructed and the immune responses and protective efficacy against homologous challenge were evaluated after in ovo vaccination. The results showed that the rAd-S1 led to dramatic augmentation of humoral and cellular responses in birds vaccinated in ovo followed by an intramuscular inoculation. Both IFN-gamma and IL-4 in chicken's lymphocytes were produced by this strategy. Following challenge with IBV, the chickens vaccinated with recombinant adenovirus showed fewer nephropathic lesions and less severe clinical signs as compared to those receiving wild-type adenovirus or PBS. The construction of non-replicating human adenovirus vector encoding S1 gene of IBV and its in ovo delivery demonstrated the potential of an alternative vaccination strategy against IBV. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    PubMed

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  6. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    PubMed Central

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  7. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  8. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  9. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells

    PubMed Central

    Cateau, Estelle; Leveque, Nicolas; Kaaki, Sihem; Beby-Defaux, Agnès; Rodier, Marie-Hélène

    2017-01-01

    Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments. PMID:28591183

  10. Processing of human cytomegalovirus glycoprotein B in recombinant adenovirus-infected cells.

    PubMed

    Marshall, G S; Fenger, D P; Stout, G G; Knights, M E; Hunt, L A

    1996-07-01

    Intracellular processing of human cytomegalovirus (HCMV) glycoprotein B (gB; gpUL55) expressed by a recombinant adenovirus (Ad-gB) was studied in human A549 cells as processing events could affect immunogenicity when such viruses are used as live-recombinant vaccines. Cleavage of [35S]methionine-labelled gp13O into gp93 and gp55 reached a maximum after a 3 h chase. Cleavage was completely inhibited by brefeldin A, suggesting that processing normally occurs as a late Golgi or post-Golgi event. Uncleaved gp 130 remained completely sensitive to endo-beta-N-acetylglucosaminidase H (Endo-H) in untreated cells following long chase periods, indicating high-mannose oligosaccharides at all of the 18 N-linked glycosylation sites (Asn-X-Ser/Thr) and retention in the endoplasmic reticulum. Endo-H analysis of gp55 from swainsonine-treated and untreated cells was consistent with glycosylation at all three potential sites, with two oligosaccharides remaining sensitive to Endo-H and one being processed to Endo-H resistance. The heavily glycosylated N-terminal gp93 subunit was not detected by [35S]methionine-labelling but was easily detected along with gp55 after labelling with [3H]mannose. No cleavage of gp 130 was observed in analogous pulse-chase radiolabelling of Ad-gB-infected human fibroblasts, even though these cells are permissive for HCMV replication and can process the native gB molecule. Processing of gB in recombinant adenovirus-infected A549 cells was generally similar to that previously reported for native gB in HCMV-infected fibroblasts.

  11. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    PubMed Central

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  12. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model.

    PubMed

    Simão, D; Pinto, C; Fernandes, P; Peddie, C J; Piersanti, S; Collinson, L M; Salinas, S; Saggio, I; Schiavo, G; Kremer, E J; Brito, C; Alves, P M

    2016-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in preclinical tests. For clinical translation, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, whereas human adenovirus type 5 (HAdV5) showed increased tropism toward glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity.

  13. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    PubMed

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  14. Inhibition of TRAIL-Induced Apoptosis and Forced Internalization of TRAIL Receptor 1 by Adenovirus Proteins

    PubMed Central

    Tollefson, Ann E.; Toth, Karoly; Doronin, Konstantin; Kuppuswamy, Mohan; Doronina, Oksana A.; Lichtenstein, Drew L.; Hermiston, Terry W.; Smith, Craig A.; Wold, William S. M.

    2001-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  15. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the studymore » of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.« less

  16. Detection of Bovine and Porcine Adenoviruses for Tracing the Source of Fecal Contamination

    PubMed Central

    Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina

    2004-01-01

    In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies. PMID:15006765

  17. Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination.

    PubMed

    Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina

    2004-03-01

    In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.

  18. Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes.

    PubMed

    Lee, Tim W R; Blair, G Eric; Matthews, David A

    2003-12-01

    During adenovirus infection, following capsid dissociation, core protein VII enters the host cell nucleus complexed with adenovirus DNA. In order to determine whether protein VII may have an active role in this nuclear import, regions of the preVII gene were amplified by PCR, and further oligonucleotide mutants were designed with site-directed mutation of codons for the basic amino acids arginine and lysine. Fragments were cloned into a mammalian expression plasmid to express the peptides as N-terminal fusions to enhanced green fluorescent protein. Results demonstrate that preVII protein contains both nuclear and nucleolar targeting sequences. Such signals may be important in the delivery of adenovirus DNA to the host cell nucleus during adenovirus infection. Furthermore, the data suggest that protein VII may bind to human chromosomes by means of two distinct domains, one sharing homology with the N-terminal regulatory tail of histone H3.

  19. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    PubMed

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adenovirus E1A and E1B-19K Proteins Protect Human Hepatoma Cells from Transforming Growth Factor β1-induced Apoptosis

    PubMed Central

    Tarakanova, Vera L.; Wold, William S. M.

    2009-01-01

    Primary and some transformed hepatocytes undergo apoptosis in response to transforming growth factor β1 (TGFβ). We report that infection with species C human adenovirus conferred resistance to TGFβ-induced apoptosis in human hepatocellular carcinoma cells (Huh-7). Protection against TGFβ-mediated cell death in adenovirus-infected cells correlated with the maintenance of normal nuclear morphology, lack of pro-caspases 8 and 3 processing, maintenance of the mitochondrial membrane potential, and lack of cellular DNA degradation. The TGFβ pro-apoptotic signaling pathway was blocked upstream of mitochondria in adenovirus-infected cells. Both the N-terminal sequences of the E1A proteins and the E1B-19K protein were necessary to protect infected cells against TGFβ-induced apoptosis. PMID:19854227

  1. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  2. The complete genome sequence of human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a unique fiber gene.

    PubMed

    Kaján, Győző L; Kajon, Adriana E; Pinto, Alexis Castillo; Bartha, Dániel; Arnberg, Niklas

    2017-10-15

    A novel human adenovirus was isolated from a pediatric case of acute respiratory disease in Panama City, Panama in 2011. The clinical isolate was initially identified as an intertypic recombinant based on hexon and fiber gene sequencing. Based on the analysis of its complete genome sequence, the novel complex recombinant Human mastadenovirus D (HAdV-D) strain was classified into a new HAdV type: HAdV-84, and it was designated Adenovirus D human/PAN/P309886/2011/84[P43H17F84]. HAdV-D types possess usually an ocular or gastrointestinal tropism, and respiratory association is scarcely reported. The virus has a novel fiber type, most closely related to, but still clearly distant from that of HAdV-36. The predicted fiber is hypothesised to bind sialic acid with lower affinity compared to HAdV-37. Bioinformatic analysis of the complete genomic sequence of HAdV-84 revealed multiple homologous recombination events and provided deeper insight into HAdV evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adenovirus-based genetic vaccines for biodefense.

    PubMed

    Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G

    2005-02-01

    The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.

  4. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival

    PubMed Central

    Miller, Daniel L; Myers, Chad L; Rickards, Brenden; Coller, Hilary A; Flint, S Jane

    2007-01-01

    Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors. PMID:17430596

  5. Pre-Transplant Screening for Latent Adenovirus in Donors and Recipients

    PubMed Central

    Piatti, Gabriella

    2016-01-01

    Human adenoviruses are frequent cause of slight self-limiting infections in immune competent subjects, while causing life-threatening and disseminated diseases in immunocompromised patients, particularly in the subjects affected by acquired immunodeficiency syndrome and in bone marrow and organ transplant recipients. Here, infections interest lungs, liver, encephalon, heart, kidney and gastro enteric tract. To date, human adenoviruses comprise 51 serotypes grouped into seven species, among which species C especially possesses the capability to persist in infected tissues. From numerous works, it emerges that in the recipient, because of loss of immune-competence, both primary infection, via the graft or from the environment, and reactivated endogenous viruses can be responsible for transplantation related adenovirus disease. The transplants management should include the evaluation of anti-adenovirus pre-transplant screening similar to that concerning cytomegalovirus. The serological screening on cytomegalovirus immunity is currently performed to prevent viral reactivation from grafts and recipient, the viral spread and dissemination to different organs and apparatus, and potentially lethal outcome. PMID:27006724

  6. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    PubMed

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  7. Severe Infections with Human Adenovirus 7d in 2 Adults in Family, Illinois, USA, 2014

    PubMed Central

    Ison, Michael G.

    2016-01-01

    Human adenovirus 7d, a genomic variant with no reported circulation in the United States, was isolated from 2 adults with severe respiratory infections in Illinois. Molecular typing identified a close relationship with strains of the same genome type isolated from cases of respiratory disease in several provinces of China since 2009. PMID:26982199

  8. Outbreaks of epidemic keratoconjunctivitis caused by human adenovirus type 8 in the Tibet Autonomous Region of China in 2016

    PubMed Central

    mei, Hong; Li, Hong; ga, Dan zeng gong; jie, Guo; chi, Mi ma bu; Zhang, Sheng; Ma, Chaofeng

    2017-01-01

    From April to November 2016, two outbreaks of epidemic keratoconjunctivitis (EKC) occurred successively at primary and middle schools in the Tibet Autonomous Region of China, and a total of 197 clinically diagnosed cases were reported. Real-time PCR analyses confirmed that human adenovirus (HAdV) infection was related to these outbreaks. Further studies involving sequence determination and phylogenetic analysis based on the penton base, hexon, and fiber genes indicated that human adenovirus type 8 (HAdV-8), belonging to species D, was responsible for the outbreaks. This is the first report of a HAdV-8 associated EKC outbreak in mainland of China, and the results of this study are expected to provide support for future research into HAdV-8 in China. PMID:28915257

  9. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector

    PubMed Central

    Lichtenstein, DL; Spencer, JF; Doronin, K; Patra, D; Meyer, JM; Shashkova, EV; Kuppuswamy, M; Dhar, D; Thomas, MA; Tollefson, AE; Zumstein, LA; Wold, WSM; Toth, K

    2012-01-01

    Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 × 1010 viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007. PMID:19197324

  10. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector.

    PubMed

    Lichtenstein, D L; Spencer, J F; Doronin, K; Patra, D; Meyer, J M; Shashkova, E V; Kuppuswamy, M; Dhar, D; Thomas, M A; Tollefson, A E; Zumstein, L A; Wold, W S M; Toth, K

    2009-08-01

    Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 x 10(10) viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007.

  11. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines.

    PubMed

    Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong

    2015-01-01

    The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.

  12. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3.

    PubMed

    Sirena, Dominique; Ruzsics, Zsolt; Schaffner, Walter; Greber, Urs F; Hemmi, Silvio

    2005-12-20

    Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.

  13. Chicken adenovirus (CELO virus) particles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants.

    PubMed Central

    Cotten, M; Wagner, E; Zatloukal, K; Birnstiel, M L

    1993-01-01

    Delivery of genes via receptor-mediated endocytosis is severely limited by the poor exit of endocytosed DNA from the endosome. A large enhancement in delivery efficiency has been obtained by including human adenovirus particles in the delivery system. This enhancement is probably a function of the natural adenovirus entry mechanism, which must include passage through or disruption of the endosomal membrane. In an effort to identify safer virus particles useful in this application, we have tested the chicken adenovirus CELO virus for its ability to augment receptor-mediated gene delivery. We report here that CELO virus possesses pH-dependent, liposome disruption activity similar to that of human adenovirus type 5. Furthermore, the chicken adenovirus can be used to augment receptor-mediated gene delivery to levels comparable to those found for the human adenovirus when it is physically linked to polylysine ligand-condensed DNA particles. The chicken adenovirus has the advantage of being produced inexpensively in embryonated eggs, and the virus is naturally replication defective in mammalian cells, even in the presence of wild-type human adenovirus. Images PMID:8099627

  14. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte–macrophage colony-stimulating factor in experimental pulmonary tuberculosis

    PubMed Central

    Francisco-Cruz, A.; Mata-Espinosa, D.; Estrada-Parra, S.; Xing, Z.; Hernández-Pando, R.

    2013-01-01

    Summary BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte–macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. PMID:23379435

  15. Tracking Human Adenovirus Inactivation by Gamma Radiation under Different Environmental Conditions

    PubMed Central

    Pimenta, Andreia I.; Guerreiro, Duarte; Madureira, Joana; Margaça, Fernanda M. A.

    2016-01-01

    ABSTRACT Adenovirus is the most prevalent enteric virus in waters worldwide due to its environmental stability, which leads to public health concerns. Mitigation strategies are therefore required. The aim of this study was to assess the inactivation of human adenovirus type 5 (HAdV-5) by gamma radiation in aqueous environments. Various substrates with different organic loads, including domestic wastewater, were inoculated with HAdV-5 either individually or in a viral pool (with murine norovirus type 1 [MNV-1]) and were irradiated in a Cobalt-60 irradiator at several gamma radiation doses (0.9 to 10.8 kGy). The infectivity of viral particles, before and after irradiation, was tested by plaque assay using A549 cells. D10 values (dose required to inactivate 90% of a population or the dose of irradiation needed to produce a 1 log10 reduction in the population) were estimated for each substrate based on virus infectivity inactivation exponential kinetics. The capability of two detection methods, nested PCR and enzyme-linked immunosorbent assay (ELISA), to track inactivated viral particles was also assessed. After irradiation at 3.5 kGy, a reduction of the HAdV-5 titer of 4 log PFU/ml on substrates with lower organic loads was obtained, but in highly organic matrixes, the virus titer reduction was only 1 log PFU/ml. The D10 values of HAdV-5 in high organic substrates were significantly higher than in water suspensions. The obtained results point out some discrepancies between nested PCR, ELISA, and plaque assay on the assessments of HAdV-5 inactivation. These results suggest that the inactivation of HAdV-5 by gamma radiation, in aqueous environments, is significantly affected by substrate composition. This study highlights the virucidal potential of gamma radiation that may be used as a disinfection treatment for sustainable water supplies. IMPORTANCE Human adenovirus (HAdV) is the most prevalent of the enteric viruses in environmental waters worldwide. The purposes of

  16. [Hybrids of human and monkey adenoviruses (adeno-adeno hybrids) that can reproduce in monkey cells: biological and molecular genetic peculiarities].

    PubMed

    Grinenko, N F; Savitskaia, N V; Pashvykina, G V; Al'tshteĭn, A D

    2003-06-01

    A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.

  17. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  18. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  19. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  20. The Role of Hexon Protein as a Molecular Mold in Patterning the Protein IX Organization in Human Adenoviruses.

    PubMed

    Reddy, Vijay S

    2017-09-01

    Adenoviruses are respiratory, ocular and enteric pathogens that form complex capsids, which are assembled from seven different structural proteins and composed of several core proteins that closely interact with the packaged dsDNA genome. The recent near-atomic resolution structures revealed that the interlacing continuous hexagonal network formed by the protein IX molecules is conserved among different human adenoviruses (HAdVs), but not in non-HAdVs. In this report, we propose a distinct role for the hexon protein as a "molecular mold" in enabling the formation of such hexagonal protein IX network that has been shown to preserve the stability and infectivity of HAdVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome

    PubMed Central

    Avgousti, Daphne C.; Della Fera, Ashley N.; Otter, Clayton J.; Herrmann, Christin; Pancholi, Neha J.

    2017-01-01

    ABSTRACT Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that

  2. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    PubMed

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  3. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, A; Mata-Espinosa, D; Estrada-Parra, S; Xing, Z; Hernández-Pando, R

    2013-03-01

    BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte-macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. © 2012 British Society for Immunology.

  4. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    PubMed

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p < 0.05, ANCOVA) in comparison to the separate processes or the simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  5. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain.

    PubMed Central

    Stevenson, S C; Rollence, M; White, B; Weaver, L; McClelland, A

    1995-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber

  6. Detection of a putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragments from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease.

    PubMed

    Lakatos, Béla; Hornyák, Ákos; Demeter, Zoltán; Forgách, Petra; Kennedy, Frances; Rusvai, Miklós

    2017-12-01

    Adenoviral nucleic acid was detected by polymerase chain reaction (PCR) in formalin-fixed paraffin-embedded tissue samples of a cat that had suffered from disseminated adenovirus infection. The identity of the amplified products from the hexon and DNA-dependent DNA polymerase genes was confirmed by DNA sequencing. The sequences were clearly distinguishable from corresponding hexon and polymerase sequences of other mastadenoviruses, including human adenoviruses. These results suggest the possible existence of a distinct feline adenovirus.

  7. Experimental Cross-Species Infection of Common Marmosets by Titi Monkey Adenovirus

    PubMed Central

    Chen, Eunice C.; Liu, Maria; Brasky, Kathleen M.; Lanford, Robert E.; Kelly, Kristi R.; Bales, Karen L.; Schnurr, David P.; Canfield, Don R.; Patterson, Jean L.; Chiu, Charles Y.

    2013-01-01

    Adenoviruses are DNA viruses that infect a number of vertebrate hosts and are associated with both sporadic and epidemic disease in humans. We previously identified a novel adenovirus, titi monkey adenovirus (TMAdV), as the cause of a fulminant pneumonia outbreak in a colony of titi monkeys (Callicebus cupreus) at a national primate center in 2009. Serological evidence of infection by TMAdV was also found in a human researcher at the facility and household family member, raising concerns for potential cross-species transmission of the virus. Here we present experimental evidence of cross-species TMAdV infection in common marmosets (Callithrix jacchus). Nasal inoculation of a cell cultured-adapted TMAdV strain into three marmosets produced an acute, mild respiratory illness characterized by low-grade fever, reduced activity, anorexia, and sneezing. An increase in virus-specific neutralization antibody titers accompanied the development of clinical signs. Although serially collected nasal swabs were positive for TMAdV for at least 8 days, all 3 infected marmosets spontaneously recovered by day 12 post-inoculation, and persistence of the virus in tissues could not be established. Thus, the pathogenesis of experimental inoculation of TMAdV in common marmosets resembled the mild, self-limiting respiratory infection typically seen in immunocompetent human hosts rather than the rapidly progressive, fatal pneumonia observed in 19 of 23 titi monkeys during the prior 2009 outbreak. These findings further establish the potential for adenovirus cross-species transmission and provide the basis for development of a monkey model useful for assessing the zoonotic potential of adenoviruses. PMID:23894316

  8. ADV36 adipogenic adenovirus in human liver disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  9. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    PubMed

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  10. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.

    PubMed

    Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G

    2008-12-01

    With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.

  11. Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells.

    PubMed

    Turner, Mallory A; Middha, Sumit; Hofherr, Sean E; Barry, Michael A

    2015-12-01

    Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head

  12. E1A promoter of bovine adenovirus type 3.

    PubMed

    Xing, Li; Tikoo, Suresh Kumar

    2006-12-01

    Conserved motifs of eukaryotic gene promoters, such as TATA box and CAAT box sequences, of E1A of human adenoviruses (e.g human adenovirus 5) lie between the left inverted terminal repeat (ITR) and the ATG of E1A. However, analysis of the left end of the bovine adenovirus 3 (BAdV-3) genome revealed that the conserved sequences of the E1A promoter are present only in the ITR. As such, the promoter activity of ITR was tested in the context of a BAdV-3 vector or a plasmid-based system. Different regions of the left end of the BAdV-3 genome initiated transcription of the red fluorescent protein gene in a plasmid-based system. Moreover, BAdV-3 mutants in which the open reading frame of E1A was placed immediately downstream of the ITR produced E1A transcript and could be propagated in non-E1A-complementing Madin-Darby bovine kidney cells. These results suggest that the left ITR contains the sole BAdV-3 E1A promoter.

  13. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2018-05-01

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  14. Efficacy of gene-therapy based on adenovirus encoding granulocyte-macrophage colony-stimulating factor in drug-sensitive and drug-resistant experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, Alejandro; Mata-Espinosa, Dulce; Ramos-Espinosa, Octavio; Marquina-Castillo, Brenda; Estrada-Parra, Sergio; Xing, Zhou; Hernández-Pando, Rogelio

    2016-09-01

    Tuberculosis (TB), although a curable disease, remains a major cause of morbidity and mortality worldwide. It is necessary to develop a short-term therapy with reduced drug toxicity in order to improve adherence rate and control disease burden. Granulocyte-macrophage colony-stimulating factor (GM-CSF) may be a key cytokine in the treatment of pulmonary TB since it primes the activation and differentiation of myeloid and non-myeloid precursor cells, inducing the release of protective Th1 cytokines. In this work, we administrated by intratracheal route recombinant adenoviruses encoding GM-CSF (AdGM-CSF). This treatment produced significant bacterial elimination when administered in a single dose at 60 days of infection with drug sensitive or drug resistant Mtb strains in a murine model of progressive disease. Moreover, AdGM-CSF combined with primary antibiotics produced more rapid elimination of pulmonary bacterial burdens than conventional chemotherapy suggesting that this form of treatment could shorten the conventional treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Novel Human Adenovirus Causing Nosocomial Epidemic Keratoconjunctivitis▿

    PubMed Central

    Ishiko, Hiroaki; Shimada, Yasushi; Konno, Tsunetada; Hayashi, Akio; Ohguchi, Takeshi; Tagawa, Yoshitsugu; Aoki, Koki; Ohno, Shigeaki; Yamazaki, Shudo

    2008-01-01

    In 2000, we encountered cases of nosocomial infections with epidemic keratoconjunctivitis (EKC) at a university hospital in Kobe, in the western part of Japan. Two human adenovirus (HAdV) strains, Kobe-H and Kobe-S, were isolated from patients with nosocomial EKC infection. They were untypeable by existing neutralizing antisera; however, the isolate was neutralized with homologous antisera. We then encountered several cases of EKC due to nosocomial infections in eye clinics in different parts of Japan. A total of 80 HAdVs were isolated from patients with EKC at eight different hospitals. The partial hexon gene sequences of the isolates were determined and compared to those of the prototype strains of 51 serotypes. All isolates had identical partial hexon nucleotide sequences. Phylogenetic analysis classified these isolates into species of HAdV-D. The isolates showed 93.9 to 96.7% nucleotide identity with HAdV-D prototype strains, while all 32 HAdV-D prototype strains ranged from 93.2 to 99.2% identity. The sequences of the loop 2 and fiber knob regions from the representative strain, Kobe-H, were dissimilar in all prototype strains of 51 serotypes. We believe that this virus is a novel serotype of HAdV that causes EKC. PMID:18385435

  16. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  17. Screening for adenoviruses in haematological neoplasia: High prevalence in mantle cell lymphoma.

    PubMed

    Kosulin, Karin; Rauch, Margit; Ambros, Peter F; Pötschger, Ulrike; Chott, Andreas; Jäger, Ulrich; Drach, Johannes; Nader, Alexander; Lion, Thomas

    2014-02-01

    Human adenoviruses possess oncogenic capacity which is well documented in mammalian animal models, but their possible implication in human malignancy has remained enigmatic. Following primary infection, adenoviruses can persist in a latent state in lymphocytes where the virus is apparently able to evade immune surveillance. In the present study, we have employed a broad-spectrum adenovirus polymerase chain reaction (PCR) assay to systematically screen more than 200 diagnostic specimens of different lymphoid malignancies including acute lymphocytic leukaemia (n=50), chronic lymphocytic leukaemia (n=50), various types of malignant lymphoma (n=100) and multiple myeloma (n=11) for the presence of adenoviral sequences. While most entities analysed revealed negative findings in virtually all specimens tested, adenoviral DNA was detected in 15/36 (42%) mantle cell lymphomas investigated. The most prevalent adenoviral species detected was C, and less commonly B. Adenovirus-positive findings in patients with mantle cell lymphoma were made at different sites including bone marrow (n=7), intestine (n=5), lymph nodes (n=2) and tonsillar tissue (n=1). The presence of adenoviral sequences identified by PCR was confirmed in individual cells by fluorescence in-situ hybridisation (FISH). The frequent observation of adenoviruses in mantle cell lymphoma is intriguings, and raises questions about their possible involvement in the pathogenesis of this lymphoid malignancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Adenovirus-mediated human paraoxonase1 gene transfer to provide protection against the toxicity of the organophosphorus pesticide toxicant diazoxon.

    PubMed

    Duysen, E G; Parikh, K; Aleti, V; Manne, V; Lockridge, O; Chilukuri, N

    2011-03-01

    Human paraoxonase1 (hPON1) is a potential therapeutic against the toxicity of organophosphorus (OP) pesticides and chemical warfare nerve agents. We tested whether PON1 gene transfer using adenovirus provides protection against the toxicity of the OP diazoxon. Using an adenovirus construct containing hPON1 gene, we showed elevated levels of recombinant hPON1 in vitro in 293A cells and in vivo in mice. The recombinant enzyme was secreted by 293A cells into culture medium and into the systemic circulation of mice. Western blotting revealed that the virally expressed hPON1 had the expected molecular weight of 45 kDa. Recombinant hPON1 in mice was in complex with mouse high-density lipoprotein (HDL) and migrated more slowly than endogenous hPON1 in the human HDL complex. Mice injected with adenovirus expressed PON1 at 600-3480 U ml(-1) on day 5 post-treatment, which is 8-50-fold above endogenous. Six mice expressing hPON1 survived 2LD(50) doses of diazoxon. Four of the six mice survived a second dose of diazoxon (for a total of 4LD(50)) administered 24 h later. In contrast, none of the three mice in the control group survived one 2LD(50) dose. These results show that hPON1 in mice functions as a prophylactic and offers significant protection against lethal doses of diazoxon.

  19. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients.

    PubMed

    Zhao, Hua; Xu, Can; Luo, Xiaoli; Wei, Feng; Wang, Ning; Shi, Huiying; Ren, Xiubao

    2018-01-01

    Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P  < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P  = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P  < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 ( P  < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers

  20. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients

    PubMed Central

    Zhao, Hua; Xu, Can; Luo, Xiaoli; Wei, Feng; Wang, Ning; Shi, Huiying; Ren, Xiubao

    2018-01-01

    Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 (P < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers against

  1. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    PubMed

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  2. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    PubMed

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  3. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  4. Suppression of RNA Interference by Adenovirus Virus-Associated RNA†

    PubMed Central

    Andersson, M. Gunnar; Haasnoot, P. C. Joost; Xu, Ning; Berenjian, Saideh; Berkhout, Ben; Akusjärvi, Göran

    2005-01-01

    We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses defective in virus-associated (VA) RNA expression. The results show that the virus-associated RNAs, VA RNAI and VA RNAII, function as suppressors of RNAi by interfering with the activity of Dicer. The VA RNAs bind Dicer and function as competitive substrates squelching Dicer. Further, we show that VA RNAI and VA RNAII are processed by Dicer, both in vitro and during a lytic infection, and that the resulting short interfering RNAs (siRNAs) are incorporated into active RISC. Dicer cleaves the terminal stem of both VA RNAI and VA RNAII. However, whereas both strands of the VA RNAI-specific siRNA are incorporated into RISC, the 3′ strand of the VA RNAII-specific siRNA is selectively incorporated during a lytic infection. In summary, our work shows that adenovirus suppresses RNAi during a lytic infection and gives insight into the mechanisms of RNAi suppression by VA RNA. PMID:16014917

  5. Kinetics of Nucleic Acid Synthesis in Human Embryonic Kidney Cultures Infected with Adenovirus 2 or 12: Inhibition of Cellular Deoxyribonucleic Acid Synthesis

    PubMed Central

    Ledinko, Nada; Fong, Caroline K. Y.

    1969-01-01

    Infection of human embryonic kidney (HEK) cell cultures with adenovirus types 2 or 12 resulted in an initial drop in the rate of incorporation of 3H-thymidine into deoxyribonucleic acid (DNA) during the early latent period of virus growth, followed by a marked rise in label uptake. It was shown by cesium chloride isopycnic centrifugation that, after adenovirus 2 infection, there was a decrease in the rate of incorporation of thymidine into cellular DNA. Moreover, DNA-DNA hybridization experiments revealed that, by 28 to 32 hr after infection with either adenovirus 2 or 12, the amount of isolated pulse-labeled DNA capable of hybridizing with HEK cell DNA was reduced by approximately 60 to 70%. Autoradiographic measurements showed that the inhibition of cellular DNA synthesis was due to a decrease in the ability of an infected cell to synthesize DNA. The adenovirus-induced inhibition of host cell DNA synthesis was not due to degradation of cellular DNA. 3H-thymidine incorporated into cellular DNA at the time of infection remained acid-precipitable, and labeled material was not incorporated into viral DNA. Furthermore, when zone sedimentation through neutral or alkaline sucrose density gradients was employed, no detectable change was observed in the sedimentation rate of this cellular DNA at various times after infection with adenovirus 2 or 12. In addition, there was no increase in deoxyribonuclease activity in cells infected with either virus. Cultures infected for 38 hr with adenovirus 2 or 12 incorporated three to four times as much 3H-uridine into ribonucleic acid (RNA) as did non-infected cultures. Furthermore, the net RNA synthesized by infected cultures substantially exceeded that of control cultures. The activity of thymidine kinase was induced, but there was no stimulation of uridine kinase. PMID:5806981

  6. Open Reading Frame E3-10.9K of Subspecies B1 Human Adenoviruses Encodes a Family of Late Orthologous Proteins That Vary in Their Predicted Structural Features and Subcellular Localization ▿

    PubMed Central

    Frietze, Kathryn M.; Campos, Samuel K.; Kajon, Adriana E.

    2010-01-01

    Subspecies B1 human adenoviruses (HAdV-B1s) are important causative agents of acute respiratory disease, but the molecular bases of their distinct pathobiology are still poorly understood. Marked differences in genetic content between HAdV-B1s and the well-characterized HAdV-Cs that may contribute to distinct pathogenic properties map to the E3 region. Between the highly conserved E3-19K and E3-10.4K/RIDα open reading frames (ORFs), and in the same location as the HAdV-C ADP/E3-11.6K ORF, HAdV-B1s carry ORFs E3-20.1K and E3-20.5K and a polymorphic third ORF, designated E3-10.9K, that varies in the size of its predicted product among HAdV-B1 serotypes and genomic variants. As an initial effort to define the function of the E3-10.9K ORF, we carried out a biochemical characterization of E3-10.9K-encoded orthologous proteins and investigated their expression in infected cells. Sequence-based predictions suggested that E3-10.9K orthologs with a hydrophobic domain are integral membrane proteins. Ectopically expressed, C-terminally tagged (with enhanced green fluorescent protein [EGFP]) E3-10.9K and E3-9K localized primarily to the plasma membrane, while E3-7.7K localized primarily to a juxtanuclear compartment that could not be identified. EGFP fusion proteins with a hydrophobic domain were N and O glycosylated. EGFP-tagged E3-4.8K, which lacked the hydrophobic domain, displayed diffuse cellular localization similar to that of the EGFP control. E3-10.9K transcripts from the major late promoter were detected at late time points postinfection. A C-terminally hemagglutinin-tagged version of E3-9K was detected by immunoprecipitation at late times postinfection in the membrane fraction of mutant virus-infected cells. These data suggest a role for ORF E3-10.9K-encoded proteins at late stages of HAdV-B1 replication, with potentially important functional implications for the documented ORF polymorphism. PMID:20739542

  7. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.

    PubMed Central

    Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C

    1996-01-01

    A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763

  8. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter.

    PubMed

    Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R

    2007-06-01

    Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.

  9. A Molecular Epidemiology Survey of Respiratory Adenoviruses Circulating in Children Residing in Southern Palestine

    PubMed Central

    Qurei, Lina; Seto, Donald; Salah, Zaidoun; Azzeh, Maysa

    2012-01-01

    A molecular epidemiology survey was performed in order to establish and document the respiratory adenovirus pathogen profiles among children in Southern Palestine. Three hundred and thirty-eight hospitalized pediatric cases with adenovirus-associated respiratory tract infections were analyzed. Forty four cases out of the 338 were evaluated in more detail for the adenoviruses types present. All of the children resided in Southern Palestine, that is, in city, village and refugee camp environments within the districts of Hebron and Bethlehem. Human adenoviruses circulated throughout 2005–2010, with major outbreaks occurring in the spring months. A larger percent of the children diagnosed with adenoviral infections were male infants. DNA sequence analysis of the hexon genes from 44 samples revealed that several distinct adenovirus types circulated in the region; these were HAdV-C1, HAdV-C2, HAdV-B3 and HAdV-C5. However, not all of these types were detected within each year. This is the first study ever conducted in Palestine of the genetic epidemiology of respiratory adenovirus infections. PMID:22880092

  10. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  11. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    PubMed Central

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 108 infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD50) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax. PMID:24307239

  12. Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony.

    PubMed

    Chen, Eunice C; Yagi, Shigeo; Kelly, Kristi R; Mendoza, Sally P; Tarara, Ross P; Canfield, Don R; Maninger, Nicole; Rosenthal, Ann; Spinner, Abigail; Bales, Karen L; Schnurr, David P; Lerche, Nicholas W; Chiu, Charles Y

    2011-07-01

    Adenoviruses are DNA viruses that naturally infect many vertebrates, including humans and monkeys, and cause a wide range of clinical illnesses in humans. Infection from individual strains has conventionally been thought to be species-specific. Here we applied the Virochip, a pan-viral microarray, to identify a novel adenovirus (TMAdV, titi monkey adenovirus) as the cause of a deadly outbreak in a closed colony of New World monkeys (titi monkeys; Callicebus cupreus) at the California National Primate Research Center (CNPRC). Among 65 titi monkeys housed in a building, 23 (34%) developed upper respiratory symptoms that progressed to fulminant pneumonia and hepatitis, and 19 of 23 monkeys, or 83% of those infected, died or were humanely euthanized. Whole-genome sequencing of TMAdV revealed that this adenovirus is a new species and highly divergent, sharing <57% pairwise nucleotide identity with other adenoviruses. Cultivation of TMAdV was successful in a human A549 lung adenocarcinoma cell line, but not in primary or established monkey kidney cells. At the onset of the outbreak, the researcher in closest contact with the monkeys developed an acute respiratory illness, with symptoms persisting for 4 weeks, and had a convalescent serum sample seropositive for TMAdV. A clinically ill family member, despite having no contact with the CNPRC, also tested positive, and screening of a set of 81 random adult blood donors from the Western United States detected TMAdV-specific neutralizing antibodies in 2 individuals (2/81, or 2.5%). These findings raise the possibility of zoonotic infection by TMAdV and human-to-human transmission of the virus in the population. Given the unusually high case fatality rate from the outbreak (83%), it is unlikely that titi monkeys are the native host species for TMAdV, and the natural reservoir of the virus is still unknown. The discovery of TMAdV, a novel adenovirus with the capacity to infect both monkeys and humans, suggests that adenoviruses

  13. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Getting genetic access to natural adenovirus genomes to explore vector diversity.

    PubMed

    Zhang, Wenli; Ehrhardt, Anja

    2017-10-01

    Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.

  15. An Update on Canine Adenovirus Type 2 and Its Vectors

    PubMed Central

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  16. Transport of human adenoviruses in porous media

    NASA Astrophysics Data System (ADS)

    Kokkinos, Petros; Syngouna, Vasiliki I.; Tselepi, Maria A.; Bellou, Maria; Chrysikopoulos, Constantinos V.; Vantarakis, Apostolos

    2015-04-01

    Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public

  17. Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor.

    PubMed Central

    Zamanian, M; La Thangue, N B

    1992-01-01

    The retinoblastoma (Rb) gene product forms a complex with the cellular transcription factor DRTF1, a property assumed to be important for mediating negative growth control because certain viral oncogenes, such as adenovirus E1a, prevent this interaction and mutant Rb alleles, which have lost the capacity to regulate growth, encode proteins that fail to associate with DRTF1. In this study, we show that the wild-type Rb protein can specifically repress transcription from promoters driven by DRTF1 whereas a naturally occurring mutant Rb protein cannot. Furthermore, Rb-mediated transcriptional repression can be overridden by adenovirus E1a; this requires regions in E1a necessary for cellular transformation. The Rb protein therefore acts in trans to repress the transcriptional activity of DRTF1 whereas adenovirus E1a prevents this interaction and thus maintains DRTF1 in a constitutively active state. The Rb protein and adenovirus E1a therefore have opposite effects on the activity of a common molecular target. Transcriptional repression mediated by the Rb protein and inactivation of repression by the E1a protein are likely to play an important role in mediating their biological effects. Images PMID:1385776

  18. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer

    PubMed Central

    Zhu, Wei; Zhang, Hongwei; Shi, Yi; Song, Mangen; Zhu, Bijun; Wei, Lai

    2013-01-01

    Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising cancer therapeutic target due to its selective apoptosis-inducing effect in cancer cells. To efficiently deliver TRAIL to the tumor cells, an oncolytic adenovirus (p55-hTERT-HRE-TRAIL) carrying the TRAIL coding sequence was constructed. In the present study, we aimed to investigate the effect of p55-hTERT-HRE-TRAIL on the growth and metastasis of triple-negative breast cancer (TNBC). We observed that infection of the recombinant adenovirus resulted in expression of TRAIL and massive cell death in a TNBC cell line MDA-MB-231. This effect is much weaker in MCF-10A, which is a normal breast cell line. Administration of P55-HTERT-HRE-TRAIL significantly reduced orthotopic breast tumor growth and extended survival in a metastatic model. Our results suggest the oncolytic adenovirus armed with P55-HTERT-HRE-TRAIL, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of TNBC. PMID:24025362

  19. Effect of temperature and sunlight on the stability of human adenoviruses and MS2 as fecal contaminants on fresh produce surfaces.

    PubMed

    Carratalà, Anna; Rodriguez-Manzano, Jesús; Hundesa, Ayalkibet; Rusiñol, Marta; Fresno, Sandra; Cook, Nigel; Girones, Rosina

    2013-06-17

    Determining the stability, or persistence in an infectious state, of foodborne viral pathogens attached to surfaces of soft fruits and salad vegetables is essential to underpin risk assessment studies in food safety. Here, we evaluate the effect of temperature and sunlight on the stability of infectious human adenoviruses type 2 and MS2 bacteriophages on lettuce and strawberry surfaces as representative fresh products. Human adenoviruses have been selected because of their double role as viral pathogens and viral indicators of human fecal contamination. Stability assays were performed with artificially contaminated fresh samples kept in the dark or under sunlight exposure at 4 and 30°C over 24h. The results indicate that temperature is the major factor affecting HAdV stability in fresh produce surfaces, effecting decay between 3 and 4 log after 24h at 30°C. The inactivation times to achieve a reduction between 1 and 4-log are calculated for each experimental condition. This work provides useful information to be considered for improving food safety regarding the transmission of foodborne viruses through supply chains. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  1. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    PubMed

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  2. Efficient Transformation of Primary Human Mesenchymal Stromal Cells by Adenovirus Early Region 1 Oncogenes.

    PubMed

    Speiseder, Thomas; Hofmann-Sieber, Helga; Rodríguez, Estefanía; Schellenberg, Anna; Akyüz, Nuray; Dierlamm, Judith; Spruss, Thilo; Lange, Claudia; Dobner, Thomas

    2017-01-01

    Previous observations that human amniotic fluid cells (AFC) can be transformed by human adenovirus type 5 (HAdV-5) E1A/E1B oncogenes prompted us to identify the target cells in the AFC population that are susceptible to transformation. Our results demonstrate that one cell type corresponding to mesenchymal stem/stroma cells (hMSCs) can be reproducibly transformed by HAdV-5 E1A/E1B oncogenes as efficiently as primary rodent cultures. HAdV-5 E1-transformed hMSCs exhibit all properties commonly associated with a high grade of oncogenic transformation, including enhanced cell proliferation, anchorage-independent growth, increased growth rate, and high telomerase activity as well as numerical and structural chromosomal aberrations. These data confirm previous work showing that HAdV preferentially transforms cells of mesenchymal origin in rodents. More importantly, they demonstrate for the first time that human cells with stem cell characteristics can be completely transformed by HAdV oncogenes in tissue culture with high efficiency. Our findings strongly support the hypothesis that undifferentiated progenitor cells or cells with stem cell-like properties are highly susceptible targets for HAdV-mediated cell transformation and suggest that virus-associated tumors in humans may originate, at least in part, from infections of these cell types. We expect that primary hMSCs will replace the primary rodent cultures in HAdV viral transformation studies and are confident that these investigations will continue to uncover general principles of viral oncogenesis that can be extended to human DNA tumor viruses as well. It is generally believed that transformation of primary human cells with HAdV-5 E1 oncogenes is very inefficient. However, a few cell lines have been successfully transformed with HAdV-5 E1A and E1B, indicating that there is a certain cell type which is susceptible to HAdV-mediated transformation. Interestingly, all those cell lines have been derived from human

  3. Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters.

    PubMed

    Toth, Karoly; Ying, Baoling; Tollefson, Ann E; Spencer, Jacqueline F; Balakrishnan, Lata; Sagartz, John E; Buller, Robert Mark L; Wold, William S M

    2015-03-23

    Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.

  4. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition.

    PubMed

    Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z

    2007-12-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.

  5. Cancer gene therapy with targeted adenoviruses.

    PubMed

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  6. Core labeling of adenovirus with EGFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Long P.; Le, Helen N.; Nelson, Amy R.

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expressionmore » vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.« less

  7. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.

    PubMed

    Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W

    1998-09-01

    The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.

  8. Identification of a New Human Adenovirus Protein Encoded by a Novel Late l-Strand Transcription Unit▿

    PubMed Central

    Tollefson, Ann E.; Ying, Baoling; Doronin, Konstantin; Sidor, Peter D.; Wold, William S. M.

    2007-01-01

    A short open reading frame named the “U exon,” located on the adenovirus (Ad) l-strand (for leftward transcription) between the early E3 region and the fiber gene, is conserved in mastadenoviruses. We have observed that Ad5 mutants with large deletions in E3 that infringe on the U exon display a mild growth defect, as well as an aberrant Ad E2 DNA-binding protein (DBP) intranuclear localization pattern and an apparent failure to organize replication centers during late infection. Mutants in which the U exon DNA is reconstructed have a reversed phenotype. Chow et al. (L. T. Chow et al., J. Mol. Biol. 134:265-303, 1979) described mRNAs initiating in the region of the U exon and spliced to downstream sequences in the late DBP mRNA leader and the DBP-coding region. We have cloned this mRNA (as cDNA) from Ad5 late mRNA; the predicted protein is 217 amino acids, initiating in the U exon and continuing in frame in the DBP leader and in the DBP-coding region but in a different reading frame from DBP. Polyclonal and monoclonal antibodies generated against the predicted U exon protein (UXP) showed that UXP is ∼24K in size by immunoblot and is a late protein. At 18 to 24 h postinfection, UXP is strongly associated with nucleoli and is found throughout the nucleus; later, UXP is associated with the periphery of replication centers, suggesting a function relevant to Ad DNA replication or RNA transcription. UXP is expressed by all four species C Ads. When expressed in transient transfections, UXP complements the aberrant DBP localization pattern of UXP-negative Ad5 mutants. Our data indicate that UXP is a previously unrecognized protein derived from a novel late l-strand transcription unit. PMID:17881437

  9. Adenovirus sequences required for replication in vivo.

    PubMed Central

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occupies the first 18 to 21 bp and includes sequences conserved between all adenovirus serotypes. The adjacent auxillary region extends past nucleotide 36 but not past nucleotide 67 and contains the binding site for nuclear factor I. Images PMID:2991857

  10. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans.

    PubMed

    Bramante, Simona; Koski, Anniina; Kipar, Anja; Diaconu, Iulia; Liikanen, Ilkka; Hemminki, Otto; Vassilev, Lotta; Parviainen, Suvi; Cerullo, Vincenzo; Pesonen, Saila K; Oksanen, Minna; Heiskanen, Raita; Rouvinen-Lagerström, Noora; Merisalo-Soikkeli, Maiju; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2014-08-01

    Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing. © 2013 UICC.

  11. In vitro transcription of adenovirus.

    PubMed Central

    Fire, A; Baker, C C; Manley, J L; Ziff, E B; Sharp, P A

    1981-01-01

    A series of recombinants of adenovirus DNA fragments and pBR322 was used to test the transcriptional activity of the nine known adenovirus promoters in a cell-free extract. Specific initiation was seen at all five early promoters as well as at the major late promotor and at the intermediate promoter for polypeptide IX. The system failed to recognize the two other adenovirus promoters, which were prominent in vivo only at intermediate and late stages in infection. Microheterogeneity of 5' termini at several adenovirus promoters, previously shown in vivo, was reproduced in the in vitro reaction and indeed appeared to result from heterogeneous initiation rather than 5' processing. To test for the presence of soluble factors involved in regulation of nRNA synthesis, the activity of extracts prepared from early and late stages of infection was compared on an assortment of viral promoter sites. Although mock and early extracts showed identical transcription patterns, extracts prepared from late stages gave 5- to 10-fold relative enhancement of the late and polypeptide IX promoters as compared with early promoters. Images PMID:7321101

  12. A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

    PubMed Central

    Farrow, Anitra L.; Peng, Binghao J.; Gu, Linlin; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2016-01-01

    Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease. PMID:26978385

  13. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    DOE PAGES

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; ...

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle tomore » establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.« less

  14. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum.

    PubMed

    Cianciola, Nicholas L; Chung, Stacey; Manor, Danny; Carlin, Cathleen R

    2017-03-15

    Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich "lipid rafts." Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes. IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune

  15. Immunologic and Genetic Selection of Adenovirus Vaccine Strains: Synthesis and Characterization of Adenovirus Antigens.

    DTIC Science & Technology

    1984-08-01

    exhibited strikingly different chromatographic characteristics. 2. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble...antigens. The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine , an acridine dye...chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis

  16. ☆DNA assembly technique simplifies the construction of infectious clone of fowl adenovirus.

    PubMed

    Zou, Xiao-Hui; Bi, Zhi-Xiang; Guo, Xiao-Juan; Zhang, Zun; Zhao, Yang; Wang, Min; Zhu, Ya-Lu; Jie, Hong-Ying; Yu, Yang; Hung, Tao; Lu, Zhuo-Zhuang

    2018-07-01

    Plasmid bearing adenovirus genome is generally constructed with the method of homologous recombination in E. coli BJ5183 strain. Here, we utilized Gibson gene assembly technique to generate infectious clone of fowl adenovirus 4 (FAdV-4). Primers flanked with partial inverted terminal repeat (ITR) sequence of FAdV-4 were synthesized to amplify a plasmid backbone containing kanamycin-resistant gene and pBR322 origin (KAN-ORI). DNA assembly was carried out by combining the KAN-ORI fragment, virus genomic DNA and DNA assembly master mix. E. coli competent cells were transformed with the assembled product, and plasmids (pKFAV4) were extracted and confirmed to contain viral genome by restriction analysis and sequencing. Virus was successfully rescued from linear pKFAV4-transfected chicken LMH cells. This approach was further verified in cloning of human adenovirus 5 genome. Our results indicated that DNA assembly technique simplified the construction of infectious clone of adenovirus, suggesting its possible application in virus traditional or reverse genetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Interaction of human adenoviruses and coliphages with kaolinite and bentonite.

    PubMed

    Bellou, Maria I; Syngouna, Vasiliki I; Tselepi, Maria A; Kokkinos, Petros A; Paparrodopoulos, Spyros C; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V

    2015-06-01

    Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor

  18. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    PubMed Central

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  19. Mechanisms of pathogenesis of emerging adenoviruses.

    PubMed

    Cook, James; Radke, Jay

    2017-01-01

    Periodic outbreaks of human adenovirus infections can cause severe illness in people with no known predisposing conditions. The reasons for this increased viral pathogenicity are uncertain. Adenoviruses are constantly undergoing mutation during circulation in the human population, but related phenotypic changes of the viruses are rarely detected because of the infrequency of such outbreaks and the limited biological studies of the emergent strains. Mutations and genetic recombinations have been identified in these new strains. However, the linkage between these genetic changes and increased pathogenicity is poorly understood. It has been observed recently that differences in virus-induced immunopathogenesis can be associated with altered expression of non-mutant viral genes associated with changes in viral modulation of the host innate immune response. Initial small animal studies indicate that these changes in viral gene expression can be associated with enhanced immunopathogenesis in vivo . Available evidence suggests the hypothesis that there is a critical threshold of expression of certain viral genes that determines both the sustainability of viral transmission in the human population and the enhancement of immunopathogenesis. Studies of this possibility will require extension of the analysis of outbreak viral strains from a sequencing-based focus to biological studies of relationships between viral gene expression and pathogenic responses. Advances in this area will require increased coordination among public health organizations, diagnostic microbiology laboratories, and research laboratories to identify, catalog, and systematically study differences between prototype and emergent viral strains that explain the increased pathogenicity that can occur during clinical outbreaks.

  20. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    USDA-ARS?s Scientific Manuscript database

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  1. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    PubMed

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  2. Broad Spectrum Respiratory Pathogen Analysis of Throat Swabs from Military Recruits Reveals Interference Between Rhinoviruses and Adenoviruses

    DTIC Science & Technology

    2010-03-09

    this study, we explore the carriage rates and disease associations of adenovirus, enterovirus , rhinovirus, Streptococcus pneumoniae, Haemophilus...correlation with illness. Among the samples tested, only pathogens associated with FRI, such as adenovirus 4 and enterovirus 68, revealed strong temporal...In this study, RPM technology was used to explore the distribution of, and associations between, HAdV, picorna- viruses (HRV and human enterovirus [HEV

  3. A Novel Adenovirus in Chinstrap Penguins (Pygoscelis antarctica) in Antarctica

    PubMed Central

    Lee, Sook-Young; Kim, Jeong-Hoon; Park, Yon Mi; Shin, Ok Sarah; Kim, Hankyeom; Choi, Han-Gu; Song, Jin-Won

    2014-01-01

    Adenoviruses (family Adenoviridae) infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica), collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1), showed nucleotide (amino acid) sequence identity of 71.8% (65.5%) with South Polar skua 1 (SPSAdV-1), 71% (70%) with raptor adenovirus 1 (RAdV-1), 71.4% (67.6%) with turkey adenovirus 3 (TAdV-3) and 61% (61.6%) with frog adenovirus 1 (FrAdV-1). Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™) cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins. PMID:24811321

  4. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situatedmore » between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.« less

  5. Incidence of human adenoviruses and Hepatitis A virus in the final effluent of selected wastewater treatment plants in Eastern Cape Province, South Africa.

    PubMed

    Osuolale, Olayinka; Okoh, Anthony

    2015-06-24

    Municipal effluent constitutes a large reservoir of human enteric viruses and bacteria. Contemporary monitoring practices rely on indicator bacteria, and do not test for viruses. Different viruses, including Norwalk-like viruses, Hepatitis A virus (HAV), adenoviruses, and rotaviruses, are important agents of illnesses in humans. The burden of disease caused by adenoviruses manifests as pneumonia, bronchiolitis, otitis media, conjunctivitis, and tonsillitis, whereas HAV infection can manifest as acute inflammatory diseases of the liver, fever, anorexia, malaise, nausea, and abdominal discomfort, followed by jaundice and dark urine. The public health implications of these viruses depend upon the physiological status of the wastewater microbial community. The occurrence of human adenovirus (HAdV) and HAV was determined in the final effluents of five wastewater treatment plants (WWTPs) in the Eastern Cape, South Africa, over 12 months (September 2012-August 2013). The viruses were detected with real-time PCR, and conventional PCR was used for serotyping. Adenovirus was detected in effluent samples from all five WWTPs and in 64 % of the total samples, whereas HAV was not detected in any effluent sample. At WWPT-A, samples were collected from the final effluent tank (adenoviral concentrations ranged from 1.05 × 10(1) to 1.10 × 10(4) genome/L, with a 41.7 % detection rate) and the discharge point (adenoviral concentrations ranged between 1.2 × 10(1) and 2.8 × 10(4) genome/L, with a 54.5 % detection rate). At WWPT-B, HAdV was detected in 91.7 % of samples, with viral concentrations of 7.92 × 10(1)-2.37 × 10(5) genome/L. The HAdV concentrations at WWPT-C were 5.32 × 10(1)-2.20 × 10(5) genome/L, and the detection rate was 75 %. The adenoviral concentrations at WWPT-D were 1.23 × 10(3)-1.05 × 10(4) genome/L, and the detection rate was 66.7 %. At WWPT-E, the viral concentrations were 1.08 × 10(1)-5.16 × 10

  6. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    EPA Science Inventory

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  7. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity.

    PubMed

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Seong, Young Rim; Kim, Bum-Kyeng; Kim, Samyong; Im, Dong-Soo

    2004-06-01

    We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5'-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32-), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32- produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32- compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32- contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18. Copyright 2004 Nature Publishing Group

  8. Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica.

    PubMed

    Park, Yon Mi; Kim, Jeong-Hoon; Gu, Se Hun; Lee, Sook Young; Lee, Min-Goo; Kang, Yoon Kyoo; Kang, Sung-Ho; Kim, Hak Jun; Song, Jin-Won

    2012-01-05

    Adenoviruses have been identified in humans and a wide range of vertebrate animals, but not previously from the polar region. Here, we report the entire 26,340-bp genome of a novel adenovirus, detected by PCR, in tissues of six of nine South Polar skuas (Catharacta maccormicki), collected in Lake King Sejong, King George Island, Antarctica, from 2007 to 2009. The DNA polymerase, penton base, hexon and fiber genes of the South Polar skua adenovirus (SPSAdV) exhibited 68.3%, 75.4%, 74.9% and 48.0% nucleotide sequence similarity with their counterparts in turkey hemorrhagic enteritis virus. Phylogenetic analysis based on the entire genome revealed that SPSAdV belonged to the genus Siadenovirus, family Adenoviridae. This is the first evidence of a novel adenovirus, SPSAdV, from a large polar seabird (family Stercorariidae) in Antarctica. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

    PubMed

    Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A

    2018-06-01

    We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  10. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  11. Mapping of Adenovirus of serotype 3 fibre interaction to desmoglein 2 revealed a novel 'non-classical' mechanism of viral receptor engagement.

    PubMed

    Vassal-Stermann, Emilie; Mottet, Manon; Ducournau, Corinne; Iseni, Frédéric; Vragniau, Charles; Wang, Hongjie; Zubieta, Chloe; Lieber, André; Fender, Pascal

    2018-05-30

    High-affinity binding of the trimeric fibre protein to a cell surface primary receptor is a common feature shared by all adenovirus serotypes. Recently, a long elusive species B adenovirus receptor has been identified. Desmoglein 2 (DSG2) a component of desmosomal junction, has been reported to interact at high affinity with Human adenoviruses HAd3, HAd7, HAd11 and HAd14. Little is known with respect to the molecular interactions of adenovirus fibre with the DSG2 ectodomain. By using different DSG2 ectodomain constructs and biochemical and biophysical experiments, we report that the third extracellular cadherin domain (EC3) of DSG2 is critical for HAd3 fibre binding. Unexpectedly, stoichiometry studies using multi-angle laser light scattering (MALLS) and analytical ultra-centrifugation (AUC) revealed a non-classical 1:1 interaction (one DSG2 per trimeric fibre), thus differentiating 'DSG2-interacting' adenoviruses from other protein receptor interacting adenoviruses in their infection strategy.

  12. N-acetylcysteine augments adenovirus-mediated gene expression in human endothelial cells by enhancing transgene transcription and virus entry.

    PubMed

    Jornot, L; Morris, M A; Petersen, H; Moix, I; Rochat, T

    2002-01-01

    It has previously been shown that oxidants reduce the efficiency of adenoviral transduction in human umbilical vein endothelial cells (HUVECs). In this study, the effect of the antioxidant N-acetylcysteine (NAC) in adenovirus-mediated gene transfer has been investigated. HUVECs were pretreated or not with NAC, and infected with E1E3-deleted adenovirus (Ad) containing the LacZ gene expressed from the RSV-LTR promoter/enhancer in the presence and absence of NAC. Transgene expression was assessed at the protein level (histochemical staining, measurement of beta-Gal activity, and western blot), mRNA level (real-time RT-PCR) and gene level (nuclear run on) 24 h and 48 h after infection. Adenoviral DNA was quantitated by real-time PCR, and cell surface expression of Coxsackie/adenovirus receptors (CAR) was determined by FACS analysis. Pretreatment of cells with NAC prior to Ad infection enhanced beta-Gal activity by two-fold due to an increase in viral DNA, which was related to increased CAR expression. When NAC was present only during the post-infection period, a five-fold increase in beta-Gal activity and LacZ gene transcriptional activity was observed. When NAC was present during both the pretreatment and the post-infection period, beta-Gal activity was further enhanced, by 15-fold. Augmentation of beta-Gal activity was paralleled by an increase in beta-Gal protein and mRNA levels. NAC did not affect the half-life of LacZ mRNA. Pretreatment with NAC prior to Ad infection enhances virus entry, while treatment with NAC post-infection increases transgene transcription. This strategy permits the use of lower adenoviral loads and thus might be helpful for gene therapy of vascular diseases. Copyright 2001 John Wiley & Sons, Ltd.

  13. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  14. Complete regression of human malignant mesothelioma xenografts following local injection of midkine promoter-driven oncolytic adenovirus

    PubMed Central

    Kubo, Shuji; Kawasaki, Yoshiko; Yamaoka, Norie; Tagawa, Masatoshi; Kasahara, Noriyuki; Terada, Nobuyuki; Okamura, Haruki

    2010-01-01

    Background Malignant mesothelioma is a highly aggressive tumor with poor prognosis. Conventional therapies for mesothelioma are generally non-curative, and new treatment paradigms are urgently needed. We hypothesized that the tumor-specific midkine (Mdk) promoter could confer transcriptional targeting to oncolytic adenoviruses for effective treatment of malignant mesothelioma. Methods We analyzed Mdk expression by quantitative RT-PCR in six human mesothelioma cell lines, and tested Mdk promoter activity by luciferase reporter assay. Based on these data, we constructed a replication-selective oncolytic adenovirus, designated AdMdk-E1-iresTK, which contains an Mdk promoter-driven adenoviral E1 gene and HSV-thymidine kinase (TK) suicide gene, and CMV promoter-driven green fluorescent protein (GFP) marker gene. Selectivity of viral replication and cytolysis were characterized in normal vs. mesothelioma cells in vitro, and intratumoral spread and antitumor efficacy were investigated in vivo. Results Mdk promoter activity was restricted in normal cells, but highly activated in mesothelioma cell lines. AdMdk-E1-iresTK was seen to efficiently replicate, produce viral progeny, and spread in multiple mesothelioma cell lines. Lytic spread of AdMdk-E1-iresTK mediated efficient killing of these mesothelioma cells, and its in vitro cytocidal effect was significantly enhanced by treatment with the prodrug, ganciclovir. Intratumoral injection of AdMdk-E1-iresTK caused complete regression of MESO4 and MSTO human mesothelioma xenografts in athymic mice. In vivo fluorescence imaging demonstrated intratumoral spread of AdMdk-E1-iresTK-derived signals, which vanished after tumor eradication. Conclusions These data indicate that transcriptional targeting of viral replication by the Mdk promoter represents a promising general strategy for oncolytic virotherapy of cancers with upregulated Mdk expression, including malignant mesothelioma. PMID:20635326

  15. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    PubMed

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells. © 2015 Wiley Periodicals, Inc.

  16. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  17. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  18. Characterization of a new adenovirus isolated from black-tailed deer in California.

    PubMed

    Lehmkuhl, H D; Hobbs, L A; Woods, L W

    2001-01-01

    An adenovirus associated with systemic and localized vascular damage was demonstrated by transmission electron microscopy and immunohistochemistry in a newly recognized epizootic hemorrhagic disease in California black-tailed deer. In this study, we describe the cultural, physicochemical and serological characteristics of a virus isolated from lung using neonatal white-tail deer lung and turbinate cell cultures. The virus had the cultural, morphological and physicochemical characteristics of members of the Adenoviridae family. The virus would not replicate in low passage fetal bovine, caprine or ovine cells. Antiserum to the deer adenovirus, strain D94-2569, neutralized bovine adenovirus type-6 (BAdV-6), BAdV-7, and caprine adenovirus type-1 (GAdV-1). Antiserum to BAdV-6 did not neutralize the deer adenovirus but antiserum to BAdV-7 and GAdV-1 neutralized the deer adenovirus. Cross-neutralization with the other bovine, caprine and ovine adenovirus species was not observed. Restriction endonuclease patterns generated for the deer adenovirus were unique compared to those for the currently recognized bovine, caprine and ovine adenovirus types. Amino acid sequence alignments of the hexon gene from the deer adenovirus strain D94-2569 indicate that it is a member of the proposed new genus (Atadenovirus) of the Adenoviridae family. While closely related antigenically to BAdV-7 and GAdV-1, the deer adenovirus appears sufficiently distinct culturally and molecularly to justify consideration as a new adenovirus type.

  19. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Human Adenovirus Associated with Severe Respiratory Infection, Oregon, USA, 2013-2014.

    PubMed

    Scott, Magdalena Kendall; Chommanard, Christina; Lu, Xiaoyan; Appelgate, Dianna; Grenz, LaDonna; Schneider, Eileen; Gerber, Susan I; Erdman, Dean D; Thomas, Ann

    2016-06-01

    Several human adenoviruses (HAdVs) can cause respiratory infections, some severe. HAdV-B7, which can cause severe respiratory disease, has not been recently reported in the United States but is reemerging in Asia. During October 2013-July 2014, Oregon health authorities identified 198 persons with respiratory symptoms and an HAdV-positive respiratory tract specimen. Among 136 (69%) hospitalized persons, 31% were admitted to the intensive care unit and 18% required mechanical ventilation; 5 patients died. Molecular typing of 109 specimens showed that most (59%) were HAdV-B7, followed by HAdVs-C1, -C2, -C5 (26%); HAdVs-B3, -B21 (15%); and HAdV-E4 (1%). Molecular analysis of 7 HAdV-B7 isolates identified the virus as genome type d, a strain previously identified only among strains circulating in Asia. Patients with HAdV-B7 were significantly more likely than those without HAdV-B7 to be adults and to have longer hospital stays. HAdV-B7 might be reemerging in the United States, and clinicians should consider HAdV in persons with severe respiratory infection.

  1. Human adenovirus-36 antibody status is associated with obesity in children.

    PubMed

    Atkinson, Richard L; Lee, Insil; Shin, Hye-Jung; He, Jia

    2010-04-01

    Human adenovirus-36 (Ad-36) is thought to induce obesity by a direct effect of the viral E4orf1 gene on lipogenic enzymes in host adipocytes. Ad-36 prevalence is 30% in obese adults, but prevalence has not been reported in childhood obesity. To determine the prevalence of Ad-36 infection in obese Korean children (age 14.8 +/- 1.9; range 8.3-6.3 years); correlation of infection with BMI z-score and other obesity measures. Blood was drawn at the annual school physical exam or clinic visit; Ad-36 status was determined by serum neutralization assay; and routine serum chemistry values. A total of 30% of subjects were positive (N = 25) for Ad-36; 70% were negative (N = 59). Significantly higher BMI z-scores (1.92 vs. 1.65, p < 0.01) and waist circumferences (96.3 vs. 90.7 cm, p = 0.05) were found in infected versus uninfected children. Cardiovascular risk factors were not significantly different. Ad-36 infection is common in obese Korean children and correlates highly with obesity. Ad-36 may have played a role in the obesity and Type 2 diabetes epidemic in children.

  2. Dissociations within human hippocampal subregions during encoding and retrieval of spatial information.

    PubMed

    Suthana, Nanthia; Ekstrom, Arne; Moshirvaziri, Saba; Knowlton, Barbara; Bookheimer, Susan

    2011-07-01

    Although the hippocampus is critical for the formation and retrieval of spatial memories, it is unclear how subregions are differentially involved in these processes. Previous high-resolution functional magnetic resonance imaging (fMRI) studies have shown that CA2, CA3, and dentate gyrus (CA23DG) regions support the encoding of novel associations, whereas the subicular cortices support the retrieval of these learned associations. Whether these subregions are used in humans during encoding and retrieval of spatial information has yet to be explored. Using high-resolution fMRI (1.6 mm × 1.6-mm in-plane), we found that activity within the right CA23DG increased during encoding compared to retrieval. Conversely, right subicular activity increased during retrieval compared to encoding of spatial associations. These results are consistent with the previous studies illustrating dissociations within human hippocampal subregions and further suggest that these regions are similarly involved during the encoding and retrieval of spatial information. Copyright © 2010 Wiley-Liss, Inc.

  3. Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells

    PubMed Central

    Lam, Yun W.; Evans, Vanessa C.; Heesom, Kate J.; Lamond, Angus I.; Matthews, David A.

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. PMID:19812395

  4. Proteomics analysis of the nucleolus in adenovirus-infected cells.

    PubMed

    Lam, Yun W; Evans, Vanessa C; Heesom, Kate J; Lamond, Angus I; Matthews, David A

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined.

  5. Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen

    PubMed Central

    Steininger, Christoph; Widhopf, George F.; Ghia, Emanuela M.; Morello, Christopher S.; Vanura, Katrina; Sanders, Rebecca; Spector, Deborah; Guiney, Don; Jäger, Ulrich

    2012-01-01

    Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen. PMID:22234695

  6. Experimental study of Human Adenoviruses interactions with clays

    NASA Astrophysics Data System (ADS)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  7. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    PubMed

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  8. A novel adenovirus of Western lowland gorillas (Gorilla gorilla gorilla)

    PubMed Central

    2010-01-01

    Adenoviruses (AdV) broadly infect vertebrate hosts including a variety of primates. We identified a novel AdV in the feces of captive gorillas by isolation in cell culture, electron microscopy and PCR. From the supernatants of infected cultures we amplified DNA polymerase (DPOL), preterminal protein (pTP) and hexon gene sequences with generic pan primate AdV PCR assays. The sequences in-between were amplified by long-distance PCRs of 2 - 10 kb length, resulting in a final sequence of 15.6 kb. Phylogenetic analysis placed the novel gorilla AdV into a cluster of primate AdVs belonging to the species Human adenovirus B (HAdV-B). Depending on the analyzed gene, its position within the cluster was variable. To further elucidate its origin, feces samples of wild gorillas were analyzed. AdV hexon sequences were detected which are indicative for three distinct and novel gorilla HAdV-B viruses, among them a virus nearly identical to the novel AdV isolated from captive gorillas. This shows that the discovered virus is a member of a group of HAdV-B viruses that naturally infect gorillas. The mixed phylogenetic clusters of gorilla, chimpanzee, bonobo and human AdVs within the HAdV-B species indicate that host switches may have been a component of the evolution of human and non-human primate HAdV-B viruses. PMID:21054831

  9. A novel adenovirus of Western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Wevers, Diana; Leendertz, Fabian H; Scuda, Nelly; Boesch, Christophe; Robbins, Martha M; Head, Josephine; Ludwig, Carsten; Kühn, Joachim; Ehlers, Bernhard

    2010-11-05

    Adenoviruses (AdV) broadly infect vertebrate hosts including a variety of primates. We identified a novel AdV in the feces of captive gorillas by isolation in cell culture, electron microscopy and PCR. From the supernatants of infected cultures we amplified DNA polymerase (DPOL), preterminal protein (pTP) and hexon gene sequences with generic pan primate AdV PCR assays. The sequences in-between were amplified by long-distance PCRs of 2-10 kb length, resulting in a final sequence of 15.6 kb. Phylogenetic analysis placed the novel gorilla AdV into a cluster of primate AdVs belonging to the species Human adenovirus B (HAdV-B). Depending on the analyzed gene, its position within the cluster was variable. To further elucidate its origin, feces samples of wild gorillas were analyzed. AdV hexon sequences were detected which are indicative for three distinct and novel gorilla HAdV-B viruses, among them a virus nearly identical to the novel AdV isolated from captive gorillas. This shows that the discovered virus is a member of a group of HAdV-B viruses that naturally infect gorillas. The mixed phylogenetic clusters of gorilla, chimpanzee, bonobo and human AdVs within the HAdV-B species indicate that host switches may have been a component of the evolution of human and non-human primate HAdV-B viruses.

  10. Evaluation of methods using celite to concentrate norovirus, adenovirus and enterovirus from wastewater

    EPA Science Inventory

    Enteroviruses, noroviruses and adenoviruses are among the most common viruses infecting humans worldwide. These viruses are shed in the feces of infected individuals and can accumulate in wastewater. Therefore, wastewater is a source of a potentially diverse group of enteric viru...

  11. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6.

    PubMed Central

    Panning, B; Smiley, J R

    1993-01-01

    We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome. Images PMID:7684492

  12. Oncolytic Adenoviruses Targeted to Human Papilloma Virus-Positive Head and Neck Squamous Cell Carcinomas

    PubMed Central

    LaRocca, Christopher J.; Han, Joohee; Oliveira, Amanda R.; Davydova, Julia; Herzberg, Mark; Gopalakrishnan, Rajaram; Yamamoto, Masato

    2016-01-01

    Objectives In recent years, the incidence of Human Papilloma Virus (HPV)-positive head and neck squamous cell carcinomas (HNSCC) has markedly increased. Our aim was to design a novel therapeutic agent through the use of conditionally replicative adenoviruses (CRAds) that are targeted to the HPV E6 and E7 oncoproteins. Methods Each adenovirus included small deletion(s) in the E1a region of the genome (Δ24 or CB016) intended to allow for selective replication in HPV-positive cells. In vitro assays were performed to analyze the transduction efficiency of the vectors and the cell viability following viral infection. Then, the UPCI SCC 090 cell line (HPV-positive) was used to establish subcutaneous tumors in the flanks of nude mice. The tumors were then treated with either one dose of the virus or four doses (injected every fourth day). Results The transduction analysis with luciferase-expressing viruses demonstrated that the 5/3 fiber modification maximized virus infectivity. In vitro, both viruses (5/3Δ24 and 5/3CB016) demonstrated profound oncolytic effects. The 5/3CB016 virus was selective for only HPV-positive HNSCC cells, whereas the 5/3Δ24 virus killed HNSCC cells regardless of HPV status. In vivo, single injections of both viruses demonstrated anti-tumor effects until only 6–8 days following viral inoculation. However, after four viral injections, there was statistically significant reduction in tumor growth when compared to the control group (p<0.05). Conclusion CRAds targeted to HPV-positive HNSCCs demonstrated excellent in vitro and in vivo therapeutic effects, and they have the potential to be clinically translated as a novel treatment modality for this emerging disease. PMID:27086483

  13. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  14. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy.

    PubMed

    Doronin, K; Kuppuswamy, M; Toth, K; Tollefson, A E; Krajcsi, P; Krougliak, V; Wold, W S

    2001-04-01

    We have previously described two replication-competent adenovirus vectors, named KD1 and KD3, for potential use in cancer gene therapy. KD1 and KD3 have two small deletions in the E1A gene that restrict efficient replication of these vectors to human cancer cell lines. These vectors also have increased capacity to lyse cells and spread from cell to cell because they overexpress the adenovirus death protein, an adenovirus protein required for efficient cell lysis and release of adenovirus from the cell. We now describe a new vector, named KD1-SPB, which is the KD1 vector with the E4 promoter replaced by the promoter for surfactant protein B (SPB). SPB promoter activity is restricted in the adult to type II alveolar epithelial cells and bronchial epithelial cells. Because KD1-SPB has the E1A mutations, it should replicate within and destroy only alveolar and bronchial cancer cells. We show that KD1-SPB replicates, lyses cells, and spreads from cell to cell as well as does KD1 in H441 cells, a human cancer cell line where the SPB promoter is active. KD1-SPB replicates, lyses cells, and spreads only poorly in Hep3B liver cancer cells. Replication was determined by expression of the E4ORF3 protein, viral DNA accumulation, fiber synthesis, and virus yield. Cell lysis and vector spread were measured by lactate dehydrogenase release and a "vector spread" assay. In addition to Hep3B cells, KD1-SPB also did not express E4ORF3 in HT29.14S (colon), HeLa (cervix), KB (nasopharynx), or LNCaP (prostate) cancer cell lines, in which the SPB promoter is not expected to be active. Following injection into H441 or Hep3B tumors growing in nude mice, KD1-SPB caused a three- to fourfold suppression of growth of H441 tumors, similar to that seen with KD1. KD1-SPB had only a minimal effect on the growth of Hep3B tumors, whereas KD1 again caused a three- to fourfold suppression. These results establish that the adenovirus E4 promoter can be replaced by a tissue-specific promoter in a

  15. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  16. [Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells].

    PubMed

    Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong

    2008-10-01

    To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.

  17. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    PubMed

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. Adenovirus Type 5 Viral Particles Pseudotyped with Mutagenized Fiber Proteins Show Diminished Infectivity of Coxsackie B-Adenovirus Receptor-Bearing Cells

    PubMed Central

    Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.

    2001-01-01

    A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722

  19. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (Adenovirus Vaccine) in the context of the Department of Defense acquisition system.

    PubMed

    Hoke, Charles H; Snyder, Clifford E

    2013-03-15

    Respiratory pathogens cause morbidity and mortality in US military basic trainees. Following the influenza pandemic of 1918, and stimulated by WWII, the need to protect military personnel against epidemic respiratory disease was evident. Over several decades, the US military elucidated etiologies of acute respiratory diseases and invented and deployed vaccines to prevent disease caused by influenza, meningococcus, and adenoviruses. In 1994, the Adenovirus Vaccine manufacturer stopped its production. By 1999, supplies were exhausted and adenovirus-associated disease, especially serotype 4-associated febrile respiratory illness, returned to basic training installations. Advisory bodies persuaded Department of Defense leaders to initiate restoration of Adenovirus Vaccine. In 2011, after 10 years of effort by government and contractor personnel and at a cost of about $100 million, the Adenovirus Vaccine was restored to use at all military basic training installations. Disease and adenovirus serotype 4 isolation rates have fallen dramatically since vaccinations resumed in October 2011 and remain very low. Mindful of the adage that "The more successful a vaccine is, the more quickly the need for it will be forgotten.", sustainment of the supply of the Adenovirus Vaccine may be a challenge, and careful management will be required for such sustainment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  1. Human Adenovirus Associated with Severe Respiratory Infection, Oregon, USA, 2013–2014

    PubMed Central

    Chommanard, Christina; Lu, Xiaoyan; Appelgate, Dianna; Grenz, LaDonna; Schneider, Eileen; Gerber, Susan I.; Erdman, Dean D.; Thomas, Ann

    2016-01-01

    Several human adenoviruses (HAdVs) can cause respiratory infections, some severe. HAdV-B7, which can cause severe respiratory disease, has not been recently reported in the United States but is reemerging in Asia. During October 2013–July 2014, Oregon health authorities identified 198 persons with respiratory symptoms and an HAdV-positive respiratory tract specimen. Among 136 (69%) hospitalized persons, 31% were admitted to the intensive care unit and 18% required mechanical ventilation; 5 patients died. Molecular typing of 109 specimens showed that most (59%) were HAdV-B7, followed by HAdVs-C1, -C2, -C5 (26%); HAdVs-B3, -B21 (15%); and HAdV-E4 (1%). Molecular analysis of 7 HAdV-B7 isolates identified the virus as genome type d, a strain previously identified only among strains circulating in Asia. Patients with HAdV-B7 were significantly more likely than those without HAdV-B7 to be adults and to have longer hospital stays. HAdV-B7 might be reemerging in the United States, and clinicians should consider HAdV in persons with severe respiratory infection. PMID:27191834

  2. In Vivo Stable Transduction of Humanized Liver Tissue in Chimeric Mice via High-Capacity Adenovirus–Lentivirus Hybrid Vector

    PubMed Central

    Kataoka, Miho; Tateno, Chise; Yoshizato, Katsutoshi; Kawasaki, Yoshiko; Kimura, Takahiro; Faure-Kumar, Emmanuelle; Palmer, Donna J.; Ng, Philip; Okamura, Haruki; Kasahara, Noriyuki

    2010-01-01

    Abstract We developed hybrid vectors employing high-capacity adenovirus as a first-stage carrier encoding all the components required for in situ production of a second-stage lentivirus, thereby achieving stable transgene expression in secondary target cells. Such vectors have never previously been tested in normal tissues, because of the scarcity of suitable in vivo systems permissive for second-stage lentivirus assembly. Here we employed a novel murine model in which endogenous liver tissue is extensively reconstituted with engrafted human hepatocytes, and successfully achieved stable transduction by the second-stage lentivirus produced in situ from first-stage adenovirus. This represents the first demonstration of the functionality of adenoviral-lentiviral hybrid vectors in a normal parenchymal organ in vivo. PMID:19725756

  3. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A., E-mail: mab@mayo.ed

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereasmore » Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.« less

  4. Phylogenetic Analyses of Novel Squamate Adenovirus Sequences in Wild-Caught Anolis Lizards

    PubMed Central

    Ascher, Jill M.; Geneva, Anthony J.; Ng, Julienne; Wyatt, Jeffrey D.; Glor, Richard E.

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity. PMID:23593364

  5. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy.

    PubMed Central

    Mittereder, N; March, K L; Trapnell, B C

    1996-01-01

    Development of adenovirus vectors as potential therapeutic agents for multiple applications of in vivo human gene therapy has resulted in numerous preclinical and clinical studies. However, lack of standardization of the methods for quantifying the physical concentration and functionally active fraction of virions in these studies has often made comparison between various studies difficult or impossible. This study was therefore carried out to define the variables for quantification of the concentration of adenovirus vectors. The methods for evaluation of total virion concentration included electron microscopy and optical absorbance. The methods for evaluation of the concentration of functional virions included detection of gene transfer (transgene transfer and expression) and the plaque assay on 293 cells. Enumeration of total virion concentration by optical absorbance was found to be a precise procedure, but accuracy was dependent on physical disruption of the virion to eliminate artifacts from light scattering and also on a correct value for the extinction coefficient. Both biological assays for enumerating functional virions were highly dependent on the assay conditions and in particular the time of virion adsorption and adsorption volume. Under optimal conditions, the bioactivity of the vector, defined as the fraction of total virions which leads to detected target cell infection, was determined to be 0.10 in the plaque assay and 0.29 in the gene transfer assay. This difference is most likely due to the fact that detection by gene transfer requires only measurement of levels of transgene expression in the infected cell whereas plaque formation is dependent on a series of biological events of much greater complexity. These results show that the exact conditions for determination of infectious virion concentration and bioactivity of recombinant adenovirus vectors are critical and must be standardized for comparability. These observations may be very useful in

  6. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F

    1984-01-01

    We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529

  7. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  8. Pertussis-like syndrome associated with adenovirus presenting with hyperleukocytosis: Case report

    PubMed Central

    Sarbay, Hakan; Polat, Aziz; Mete, Emin; Balci, Yasemin Isik; Akin, Mehmet

    2016-01-01

    Adenovirus is an infectious viral agent that causes variety of clinical presentations such as respiratory disease, conjunctivitis, and gastroenteritis. Hepatitis, pancreatitis, myocarditis, encephalitis, and disseminated infection are primarily seen in immunocompromised patients. Rarely, adenovirus infection can present with pertussis-like syndrome. Described here is case of pertussis-like syndrome associated with adenovirus presenting with hyperleukocytosis. PMID:28058402

  9. Structure and Uncoating of Immature Adenovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Berna, A.J.; Mangel, W.; Marabini, R.

    2009-09-18

    Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particlesmore » as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.« less

  10. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    PubMed Central

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y.

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induced high titres of anti-chikungunya virus antibodies that neutralised both an old Asian isolate and a Réunion Island isolate from the recent epidemic. The vaccine also completely protected mice against viraemia and arthritic disease caused by both virus isolates. PMID:21320541

  11. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    USGS Publications Warehouse

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  12. Adenovirus-mediated E2-EPF UCP gene transfer prevents autoamputation in a mouse model of hindlimb ischemia.

    PubMed

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-04-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis.

  13. Transmission dynamics and prospective environmental sampling of adenovirus in a military recruit setting.

    PubMed

    Russell, Kevin L; Broderick, Michael P; Franklin, Suzanne E; Blyn, Lawrence B; Freed, Nikki E; Moradi, Emily; Ecker, David J; Kammerer, Peter E; Osuna, Miguel A; Kajon, Adriana E; Morn, Cassandra B; Ryan, Margaret A K

    2006-10-01

    High levels of morbidity caused by adenovirus among US military recruits have returned since the loss of adenovirus vaccines in 1999. The transmission dynamics of adenovirus have never been well understood, which complicates prevention efforts. Enrollment and end-of-study samples were obtained and active surveillance for febrile respiratory illnesses (FRIs) was performed for 341 recruits and support personnel. Environmental samples were collected simultaneously. Classic and advanced diagnostic techniques were used. Seventy-nine percent (213/271) of new recruits were seronegative for either adenovirus serotype 4 (Ad-4) or adenovirus serotype 7 (Ad-7). FRI caused by Ad-4 was observed in 25% (67/271) of enrolled recruits, with 100% of them occurring in individuals with enrollment titers <1 : 4. The percentage of recruits seropositive for Ad-4 increased from 34% at enrollment to 97% by the end of the study. Adenovirus was most commonly detected in the environment on pillows, lockers, and rifles. Potential sources of adenovirus transmission among US military recruits included the presence of adenovirus on surfaces in living quarters and extended pharyngeal viral shedding over the course of several days. The introduction of new recruits, who were still shedding adenovirus, into new training groups was documented. Serological screening could identify susceptible recruits for the optimal use of available vaccines. New high-throughput technologies show promise in providing valuable data for clinical and research applications.

  14. Occurrence of water-borne enteric viruses in two settlements based in Eastern Chad: analysis of hepatitis E virus, hepatitis A virus and human adenovirus in water sources.

    PubMed

    Guerrero-Latorre, Laura; Carratala, Anna; Rodriguez-Manzano, Jesus; Calgua, Byron; Hundesa, Ayalkibet; Girones, Rosina

    2011-09-01

    Hepatitis E virus (HEV) is a common cause of water-borne acute hepatitis in areas with poor sanitation. In 2004 an outbreak of HEV infection affected around 2,000 people in Eastern Chad (Dar Sila). This paper describes the decrease in the incidence of acute jaundice syndrome (AJS) from 2004 until 2009 when a mean incidence of 0.48 cases/1,000 people/year was recorded in the region. Outbreaks of AJS were identified in some of the camps in 2007 and 2008. Moreover, water samples from drinking water sources were screened for human adenoviruses considered as viral indicators and for hepatitis A virus and HEV. Screening of faecal samples from donkeys for HEV gave negative results. Some of the samples were also analysed for faecal coliforms showing values before disinfection treatment between 3 and >50 colony forming units per 100 mL. All water samples tested were negative for HEV and HAV; however, the presence of low levels of human adenoviruses in 4 out of 16 samples analysed indicates possible human faecal contamination of groundwater. Consequently, breakdowns in the treatment of drinking water and/or increased excretion of hepatitis viruses, which could be related to the arrival of a new population, could spread future outbreaks through drinking water.

  15. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less

  16. Pathobiologic Roles of Epstein–Barr Virus-Encoded MicroRNAs in Human Lymphomas

    PubMed Central

    Navari, Mohsen; Etebari, Maryam; Ibrahimi, Mostafa; Leoncini, Lorenzo

    2018-01-01

    Epstein–Barr virus (EBV) is a human γ-herpesvirus implicated in several human malignancies, including a wide range of lymphomas. Several molecules encoded by EBV in its latent state are believed to be related to EBV-induced lymphomagenesis, among which microRNAs—small RNAs with a posttranscriptional regulating role—are of great importance. The genome of EBV encodes 44 mature microRNAs belonging to two different classes, including BamHI-A rightward transcript (BART) and Bam HI fragment H rightward open reading frame 1 (BHRF1), with different expression levels in different EBV latency types. These microRNAs might contribute to the pathogenetic effects exerted by EBV through targeting self mRNAs and host mRNAs and interfering with several important cellular mechanisms such as immunosurveillance, cell proliferation, and apoptosis. In addition, EBV microRNAs can regulate the surrounding microenvironment of the infected cells through exosomal transportation. Moreover, these small molecules could be potentially used as molecular markers. In this review, we try to present an updated and extensive view of the role of EBV-encoded miRNAs in human lymphomas. PMID:29649101

  17. [Construction and expression of a recombinant adenovirus with LZP3].

    PubMed

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  18. Adenovirus infection and cytotoxicity of primary mantle cell lymphoma cells.

    PubMed

    Medina, Daniel J; Sheay, Wendy; Osman, Mona; Goodell, Lauri; Martin, John; Rabson, Arnold B; Strair, Roger K

    2005-11-01

    Mantle cell lymphoma (MCL) is a distinct form of non-Hodgkin's lymphoma (NHL) derived from CD5+ B cells. MCL cells overexpress cyclin D1 as a consequence of translocation of the gene into the immunoglobulin heavy-chain gene locus. MCL is an aggressive form of NHL with frequent relapses after standard-dose chemotherapy. In this context, a variety of novel therapies for patients with MCL have been investigated. In this study, we use an expanded panel of attenuated adenoviruses to study adenovirus-mediated cytotoxicity of MCL cells. Our results demonstrate: 1) adenovirus infection of MCL cells despite the absence of receptor/coreceptor molecules known to be important for adenovirus infection of other cells types; 2) cytotoxicity of MCL cells after infection with specific adenovirus mutants; 3) a high degree of cytotoxicity after infection of some patient samples with viruses lacking the E1B 19k "antiapoptotic" gene; and 4) cytotoxicity after infection with viruses containing mutations in E1A pRb or p300 binding. The extent of cytotoxicity with the panel of viruses demonstrated interpatient variability, but 100% cytotoxicity, as determined by molecular analysis, was detected in some samples. These studies provide the foundation for: 1) the development of adenoviruses as cytotoxic agents for MCL and 2) analyses of key regulatory pathways operative in MCL cells.

  19. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    PubMed

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  20. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells

    PubMed Central

    Eichholz, Karsten; Bru, Thierry; Tran, Thi Thu Phuong; Fernandes, Paulo; Mennechet, Franck J. D.; Manel, Nicolas; Alves, Paula; Perreau, Matthieu

    2016-01-01

    Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs. PMID:27636895

  1. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-12-29

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).

  2. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  3. Inhibition of adenovirus multiplication by short interfering RNAs directly or indirectly targeting the viral DNA replication machinery.

    PubMed

    Kneidinger, Doris; Ibrišimović, Mirza; Lion, Thomas; Klein, Reinhard

    2012-06-01

    Human adenoviruses are a common threat to immunocompromised patients, e.g., HIV-positive individuals or solid-organ and, in particular, allogeneic stem cell transplant recipients. Antiviral drugs have a limited effect on adenoviruses, and existing treatment modalities often fail to prevent fatal outcome. Silencing of viral genes by short interfering RNAs (siRNAs) holds a great promise in the treatment of viral infections. The aim of the present study was to identify adenoviral candidate targets for RNA interference-mediated inhibition of adenoviral replication. We investigated the impact of silencing of a set of early, middle, and late viral genes on the replication of adenovirus 5 in vitro. Adenovirus replication was inhibited by siRNAs directed against the adenoviral E1A, DNA polymerase, preterminal protein (pTP), IVa2, hexon, and protease genes. Silencing of early and middle genes was more effective in inhibiting adenovirus multiplication than was silencing of late genes. A siRNA directed against the viral DNA polymerase mRNA decreased viral genome copy numbers and infectious virus progeny by several orders of magnitude. Since silencing of any of the early genes directly or indirectly affected viral DNA synthesis, our data suggest that reducing viral genome copy numbers is a more promising strategy for the treatment of adenoviral infections than is reducing the numbers of proteins necessary for capsid generation. Thus, adenoviral DNA replication was identified as a key target for RNAi-mediated inhibition of adenovirus multiplication. In addition, the E1A transcripts emerged as a second important target, because its knockdown markedly improved the viability of cells at late stages of infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    PubMed

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  5. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  6. The Amphipathic Helix of Adenovirus Capsid Protein VI Contributes to Penton Release and Postentry Sorting

    PubMed Central

    Martinez, Ruben; Schellenberger, Pascale; Vasishtan, Daven; Aknin, Cindy; Austin, Sisley; Dacheux, Denis; Rayne, Fabienne; Siebert, Alistair; Ruzsics, Zsolt; Gruenewald, Kay

    2014-01-01

    ABSTRACT Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle. PMID:25473051

  7. USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses.

    PubMed

    Toth, Karoly; Spencer, Jacqueline F; Ying, Baoling; Tollefson, Ann E; Hartline, Caroll B; Richard, Eric T; Fan, Jiajun; Lyu, Jinglei; Kashemirov, Boris A; Harteg, Cheryl; Reyna, Dawn; Lipka, Elke; Prichard, Mark N; McKenna, Charles E; Wold, William S M

    2018-05-01

    Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Viruses and interstitial cystitis: adenovirus genomes cannot be demonstrated in urinary bladder biopsies.

    PubMed

    Hukkanen, V; Haarala, M; Nurmi, M; Klemi, P; Kiilholma, P

    1996-01-01

    Microbes may be involved in the pathogenesis of interstitial cystitis (IC). Adenoviruses and BK virus (BKV) can infect epithelial cells in urinary bladder and they are causative agents for hemorrhagic cystitis. We therefore studied the presence of adenovirus and BKV genomes in urinary bladder tissue specimens of patients with IC using polymerase chain reaction (PCR) and in situ hybridization (ISH). Controls were specimens from cases with transitional cell carcinoma of the bladder. Nucleic acids were extracted from paraffin sections of the bladder tissue for PCR. Primers detecting all adenovirus types were used. In situ hybridization was carried out for the paraffin sections using digoxigenin-labeled DNA probes for adenovirus and BKV. The adenovirus DNA PCR was able to detect one to two infected cells/specimen. All the seven IC cases studied and six controls were negative for adenovirus DNA by PCR and ISH. The ISH test for BKV genomes was also considered negative in IC cases and controls. The specimens which were negative in PCR tests yielded a signal with beta-globin primers, thus being amplifiable. We conclude that adenovirus and BKV do not play a major pathogenetic role in interstitial cystitis.

  9. A defective retroviral vector encoding human interferon-alpha2 can transduce human leukemic cell lines.

    PubMed

    Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C

    1998-01-01

    Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.

  10. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  11. A human virus improves diabetes

    USDA-ARS?s Scientific Manuscript database

    A single inoculation of mice with Ad36, a human adenovirus, lastingly improved high fat diet-induced-diabetes (DID), while Ad2, another human adenovirus did not. The study objective in these 2 studies was to determine if Ad36 could be used as a tool to reveal novel pathways for improving dysglycemia...

  12. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    PubMed Central

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  13. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    PubMed

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Trans activation of plasmid-borne promoters by adenovirus and several herpes group viruses.

    PubMed Central

    Everett, R D; Dunlop, M

    1984-01-01

    This paper describes experiments to test the ability of a number of viruses of the Herpes group, and also Adenovirus-2 and SV40, to activate transcription from the Herpes simplex virus-1 glycoprotein D and the rabbit beta-globin promoters. Plasmids containing these genes were transfected into HeLa cells which were then infected with various viruses. Transcriptional activation in trans of the plasmid-borne promoters was monitored by quantitative S1 nuclease analysis of total cytoplasmic RNA isolated after infection. The results showed that Herpes simplex viruses 1 and 2, Pseudorabies virus, Variella Zoster virus, Human Cytomegalovirus, Equine herpes virus-1 and Adenovirus-2 activate transcription from both promoters tested. In contrast, SV40 did not activate transcription in trans in this assay. The possible mechanisms of this activation are discussed. Images PMID:6089105

  15. Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction In Vitro in the Presence of Mouse Serum

    PubMed Central

    Lopez-Gordo, Estrella; Doszpoly, Andor; Duffy, Margaret R.; Coughlan, Lynda; Bradshaw, Angela C.; White, Katie M.; Denby, Laura; Nicklin, Stuart A.

    2017-01-01

    ABSTRACT Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2−/− and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5–FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2−/− or NSG serum. Rag 2−/− serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2−/− serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2−/− serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR

  16. Distribution and Molecular Characterization of Human Adenovirus and Epstein-Barr Virus Infections in Tonsillar Lymphocytes Isolated from Patients Diagnosed with Tonsillar Diseases.

    PubMed

    Assadian, Farzaneh; Sandström, Karl; Bondeson, Kåre; Laurell, Göran; Lidian, Adnan; Svensson, Catharina; Akusjärvi, Göran; Bergqvist, Anders; Punga, Tanel

    2016-01-01

    Surgically removed palatine tonsils provide a conveniently accessible source of T and B lymphocytes to study the interplay between foreign pathogens and the host immune system. In this study we have characterised the distribution of human adenovirus (HAdV), Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) in purified tonsillar T and B cell-enriched fractions isolated from three patient age groups diagnosed with tonsillar hypertrophy and chronic/recurrent tonsillitis. HAdV DNA was detected in 93 out of 111 patients (84%), while EBV DNA was detected in 58 patients (52%). The most abundant adenovirus type was HAdV-5 (68%). None of the patients were positive for HCMV. Furthermore, 43 patients (39%) showed a co-infection of HAdV and EBV. The majority of young patients diagnosed with tonsillar hypertrophy were positive for HAdV, whereas all adult patients diagnosed with chronic/recurrent tonsillitis were positive for either HAdV or EBV. Most of the tonsils from patients diagnosed with either tonsillar hypertrophy or chronic/recurrent tonsillitis showed a higher HAdV DNA copy number in T compared to B cell-enriched fraction. Interestingly, in the majority of the tonsils from patients with chronic/recurrent tonsillitis HAdV DNA was detected in T cells only, whereas hypertrophic tonsils demonstrated HAdV DNA in both T and B cell-enriched fractions. In contrast, the majority of EBV positive tonsils revealed a preference for EBV DNA accumulation in the B cell-enriched fraction compared to T cell fraction irrespective of the patients' age.

  17. EGASP: the human ENCODE Genome Annotation Assessment Project

    PubMed Central

    Guigó, Roderic; Flicek, Paul; Abril, Josep F; Reymond, Alexandre; Lagarde, Julien; Denoeud, France; Antonarakis, Stylianos; Ashburner, Michael; Bajic, Vladimir B; Birney, Ewan; Castelo, Robert; Eyras, Eduardo; Ucla, Catherine; Gingeras, Thomas R; Harrow, Jennifer; Hubbard, Tim; Lewis, Suzanna E; Reese, Martin G

    2006-01-01

    Background We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the current human genome annotations as represented in the ENCODE regions. For the computational prediction assessment, eighteen groups contributed gene predictions. We evaluated these submissions against each other based on a 'reference set' of annotations generated as part of the GENCODE project. These annotations were not available to the prediction groups prior to the submission deadline, so that their predictions were blind and an external advisory committee could perform a fair assessment. Results The best methods had at least one gene transcript correctly predicted for close to 70% of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs relying on mRNA and protein sequences were the most accurate in reproducing the manually curated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could be verified. Conclusion This is the first such experiment in human DNA, and we have followed the standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the results presented here contribute to the value of ongoing large-scale annotation projects and should guide further experimental methods when being scaled up to the entire human genome sequence. PMID:16925836

  18. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice.

    PubMed

    Zinn, Kurt R; Chaudhuri, Tandra R; Krasnykh, Victor N; Buchsbaum, Donald J; Belousova, Natalya; Grizzle, William E; Curiel, David T; Rogers, Buck E

    2002-05-01

    To compare two systems for assessing gene transfer to cancer cells and xenograft tumors with noninvasive gamma camera imaging. A replication-incompetent adenovirus encoding the human type 2 somatostatin receptor (hSSTr2) and the herpes simplex virus thymidine kinase (TK) enzyme (Ad-hSSTr2-TK) was constructed. A-427 human lung cancer cells were infected in vitro and mixed with uninfected cells at different ratios. A-427 tumors in nude mice (n = 23) were injected with 1 x 10(6) to 5 x 10(8) plaque-forming units (pfu) of Ad-hSSTr2-TK. The expressed hSSTr2 and TK proteins were imaged owing to internally bound, or trapped, technetium 99m ((99m)Tc)-labeled hSSTr2-binding peptide (P2045) and radioiodinated 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (FIAU), respectively. Iodine 125 ((125)I)-labeled FIAU was used in vitro and iodine 131 ((131)I)-labeled FIAU, in vivo. The (99m)Tc-labeled P2045 and (125)I- or (131)I-labeled FIAU were imaged simultaneously with different window settings with an Anger gamma camera. Treatment effects were tested with analysis of variance. Infected cells in culture trapped (125)I-labeled FIAU and (99m)Tc-labeled P2045; uptake correlated with the percentage of Ad-hSSTr2-TK-positive cells. For 100% of infected cells, 24% +/- 0.4 (mean +/- SD) of the added (99m)Tc-labeled P2045 was trapped, which is significantly lower (P <.05) than the 40% +/- 2 of (125)I-labeled FIAU that was trapped. For the highest Ad-hSSTr2-TK tumor dose (5 x 10(8) pfu), the uptake of (99m)Tc-labeled P2045 was 11.1% +/- 2.9 of injected dose per gram of tumor (thereafter, dose per gram), significantly higher (P <.05) than the uptake of (131)I-labeled FIAU at 1.6% +/- 0.4 dose per gram. (99m)Tc-labeled P2045 imaging consistently depicted hSSTr2 gene transfer in tumors at all adenovirus doses. Tumor uptake of (99m)Tc-labeled P2045 positively correlated with Ad-hSSTr2-TK dose; (131)I-labeled FIAU tumor uptake did not correlate with vector dose. The hSSTr2 and TK

  19. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.

    PubMed

    Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A

    2017-01-15

    Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent

  20. Adenovirus-mediated E2-EPF UCP Gene Transfer Prevents Autoamputation in a Mouse Model of Hindlimb Ischemia

    PubMed Central

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-01-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis. PMID:22294149

  1. Sequence typing of human adenoviruses isolated from Polish patients subjected to allogeneic hematopoietic stem cell transplantation - a single center experience.

    PubMed

    Przybylski, Maciej; Rynans, Sylwia; Waszczuk-Gajda, Anna; Bilinski, Jarosław; Basak, Grzegorz W; Jędrzejczak, Wiesław W; Wróblewska, Marta; Młynarczyk, Grażyna; Dzieciątkowski, Tomasz

    2018-03-28

    Human adenoviruses (HAdV) from species A, B and C are commonly recognized as pathogens causing severe morbidity and mortality in hematopoietic stem cell transplant (HSCT) recipients. The purpose of the present study was to determine HAdV types responsible for viremia in HSCT recipients at a large tertiary hospital in Poland. Analysis of partial nucleotide sequences of HAdV hexon gene was used to type 40 clinical isolates of HAdV obtained from 40 HSCT recipients. We identified six different HAdV serotypes belonging to species B, C and E. We demonstrated high variability in sequences of detected HAdV types, and patients infected with the same HAdV types were not hospitalized at the same time, which suggests the low possibility of cross-infection. In almost all patients, anti-HAdV antibodies in IgG class were detected, which indicates a history of HAdV infection in the past. Clinical symptoms accompanying HAdV viremia were in 89%, and in 61.5% of individuals, HAdV was a sole pathogen detected. There were no cases with high-level HAdV viremia and severe systemic or organ infections. Graft-versus-host disease (GvHD) was present in patients infected with species B and C, but grade II of GvHD was observed only in patients infected with HAdV-B. The predominance of HAdV-C and common presence of anti-HAdV antibodies in IgG class may strongly suggest that most infections in the present study were reactivations of HAdV persisting into the patient's mucosa-associated lymphoid tissues. Variability of HAdV sequences suggests that cross-infections between patients were very rare. GvHD: graft-versus-host disease; HAdV: human adenoviruses; HSCT: hematopoietic stem cell transplantation.

  2. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Co-expression of Erns and E2 genes of classical swine fever virus by replication-defective recombinant adenovirus completely protects pigs against virulent challenge with classical swine fever virus.

    PubMed

    Sun, Yongke; Yang, Yuai; Zheng, Huanli; Xi, Dongmei; Lin, Mingxing; Zhang, Xiaomin; Yang, Linfu; Yan, Yulin; Chu, Xiaohui; Bi, Baoliang

    2013-04-01

    The objective of this study was to construct a recombinant adenovirus for future CSFV vaccines used in the pig industry for the reduction of losses involved in CSF outbreaks. The Erns and E2 genes of classical swine fever virus (CSFV), which encode the two main protective glycoproteins from the "Shimen" strain of CSFV, were combined and inserted into the replication-defective human adenovirus type-5 and named the rAd-Erns-E2. Nine pigs were randomly assigned to three treatment groups (three pigs in each group) including the rAd-Erns-E2, hAd-CMV control and DMEM control. Intramuscular vaccination with 2×10(6) TCID(50) of the rAd-Erns-E2 was administered two times with an interval of 21 days. At 42 days post inoculation, pigs in all groups were challenged with a lethal dose of 1×10(3) TCID(50) CSFV "Shimen" strain. Observation of clinical signs was made and the existence of CSFV RNA was detected. Animals in the hAd-CMV and DMEM groups showed severe clinical CSF symptoms and were euthanized from 7 to 10 days after the challenge. However, no adverse clinical CSF signs were observed in vaccinated pigs after the administration of rAd-Erns-E2 and even after CSFV challenge. Neither CSFV RNA nor pathological changes were detected in the tissues of interest of the above vaccinated pigs. These results implied that the recombination adenovirus carrying the Erns-E2 genes could be used to prevent swine from classical swine fever. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Deep--deeper--deepest? Encoding strategies and the recognition of human faces.

    PubMed

    Sporer, S L

    1991-03-01

    Various encoding strategies that supposedly promote deeper processing of human faces (e.g., character judgments) have led to better recognition than more shallow processing tasks (judging the width of the nose). However, does deeper processing actually lead to an improvement in recognition, or, conversely, does shallow processing lead to a deterioration in performance when compared with naturally employed encoding strategies? Three experiments systematically compared a total of 8 different encoding strategies manipulating depth of processing, amount of elaboration, and self-generation of judgmental categories. All strategies that required a scanning of the whole face were basically equivalent but no better than natural strategy controls. The consistently worst groups were the ones that rated faces along preselected physical dimensions. This can be explained by subjects' lesser task involvement as revealed by manipulation checks.

  5. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety

    PubMed Central

    Kong, Yazhuo; Tracey, Irene

    2017-01-01

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  6. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    PubMed

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  7. Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model

    PubMed Central

    2018-01-01

    Abstract Human observers automatically extract temporal contingencies from the environment and predict the onset of future events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod). Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model approach can be utilized to track abstract time-resolved stimuli. PMID:29740594

  8. The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment

    PubMed Central

    Hashimoto, Yuuri; Tazawa, Hiroshi; Teraishi, Fuminori; Kojima, Toru; Watanabe, Yuichi; Uno, Futoshi; Yano, Shuya; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2012-01-01

    Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells. PMID:22720091

  9. The Human Membrane Cofactor CD46 Is a Receptor for Species B Adenovirus Serotype 3

    PubMed Central

    Sirena, Dominique; Lilienfeld, Benjamin; Eisenhut, Markus; Kälin, Stefan; Boucke, Karin; Beerli, Roger R.; Vogt, Lorenz; Ruedl, Christiane; Bachmann, Martin F.; Greber, Urs F.; Hemmi, Silvio

    2004-01-01

    Many human adenovirus (Ad) serotypes use the coxsackie B virus-Ad receptor (CAR). Recently, CD46 was suggested to be a receptor of species B Ad serotype 11 (Ad11), Ad14, Ad16, Ad21, Ad35, and Ad50. Using Sindbis virus-mediated cDNA library expression, we identify here the membrane cofactor protein CD46 as a surface receptor of species B Ad3. All four major CD46 transcripts and one minor CD46 transcript expressed in nucleated human cells were isolated. Rodent BHK cells stably expressing the BC1 form of CD46 bound radiolabeled Ad3 with a dissociation constant of 0.3 nM, identical to that of CD46-positive HeLa cells expressing twice as many Ad3 binding sites. Pull-down experiments with recombinant Ad3 fibers and a soluble form of the CD46 extracellular domain linked to the Fc portion of human immunoglobulin G (CD46ex-Fc) indicated direct interactions of the Ad3 fiber knob with CD46ex-Fc but not CARex-Fc (Fc-linked extracellular domain of CAR). Ad3 colocalized with cell surface CD46 in both rodent and human cells at the light and electron microscopy levels. Anti-CD46 antibodies and CD46ex-Fc inhibited Ad3 binding to CD46-expressing BHK cells more than 10-fold and to human cells 2-fold. In CD46-expressing BHK cells, wild-type Ad3 and a chimeric Ad consisting of the Ad5 capsid and the Ad3 fiber elicited dose-dependent cytopathic effects and transgene expression, albeit less efficiently than in human cells. Together, our results show that all of the major splice forms of CD46 are predominant and functional binding sites of Ad3 on CD46-expressing rodent and human cells but may not be the sole receptor of species B Ads on human cells. These results have implications for understanding viral pathogenesis and therapeutic gene delivery. PMID:15078926

  10. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3.

    PubMed

    Sirena, Dominique; Lilienfeld, Benjamin; Eisenhut, Markus; Kälin, Stefan; Boucke, Karin; Beerli, Roger R; Vogt, Lorenz; Ruedl, Christiane; Bachmann, Martin F; Greber, Urs F; Hemmi, Silvio

    2004-05-01

    Many human adenovirus (Ad) serotypes use the coxsackie B virus-Ad receptor (CAR). Recently, CD46 was suggested to be a receptor of species B Ad serotype 11 (Ad11), Ad14, Ad16, Ad21, Ad35, and Ad50. Using Sindbis virus-mediated cDNA library expression, we identify here the membrane cofactor protein CD46 as a surface receptor of species B Ad3. All four major CD46 transcripts and one minor CD46 transcript expressed in nucleated human cells were isolated. Rodent BHK cells stably expressing the BC1 form of CD46 bound radiolabeled Ad3 with a dissociation constant of 0.3 nM, identical to that of CD46-positive HeLa cells expressing twice as many Ad3 binding sites. Pull-down experiments with recombinant Ad3 fibers and a soluble form of the CD46 extracellular domain linked to the Fc portion of human immunoglobulin G (CD46ex-Fc) indicated direct interactions of the Ad3 fiber knob with CD46ex-Fc but not CARex-Fc (Fc-linked extracellular domain of CAR). Ad3 colocalized with cell surface CD46 in both rodent and human cells at the light and electron microscopy levels. Anti-CD46 antibodies and CD46ex-Fc inhibited Ad3 binding to CD46-expressing BHK cells more than 10-fold and to human cells 2-fold. In CD46-expressing BHK cells, wild-type Ad3 and a chimeric Ad consisting of the Ad5 capsid and the Ad3 fiber elicited dose-dependent cytopathic effects and transgene expression, albeit less efficiently than in human cells. Together, our results show that all of the major splice forms of CD46 are predominant and functional binding sites of Ad3 on CD46-expressing rodent and human cells but may not be the sole receptor of species B Ads on human cells. These results have implications for understanding viral pathogenesis and therapeutic gene delivery.

  11. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    PubMed

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to

  12. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration

    PubMed Central

    Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.

    2016-01-01

    ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery

  13. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  14. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus

    PubMed Central

    Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki

    2016-01-01

    Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)–expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus–adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell–specific microRNA, miR-142-3p, were incorporated into the 3′-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699

  15. Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans.

    PubMed

    Escera, Carles; Leung, Sumie; Grimm, Sabine

    2014-07-01

    Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding-rather than on refractoriness-occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory

  16. A cost effective real-time PCR for the detection of adenovirus from viral swabs

    PubMed Central

    2013-01-01

    Compared to traditional testing strategies, nucleic acid amplification tests such as real-time PCR offer many advantages for the detection of human adenoviruses. However, commercial assays are expensive and cost prohibitive for many clinical laboratories. To overcome fiscal challenges, a cost effective strategy was developed using a combination of homogenization and heat treatment with an “in-house” real-time PCR. In 196 swabs submitted for adenovirus detection, this crude extraction method showed performance characteristics equivalent to viral DNA obtained from a commercial nucleic acid extraction. In addition, the in-house real-time PCR outperformed traditional testing strategies using virus culture, with sensitivities of 100% and 69.2%, respectively. Overall, the combination of homogenization and heat treatment with a sensitive in-house real-time PCR provides accurate results at a cost comparable to viral culture. PMID:23758993

  17. Parametric fMRI analysis of visual encoding in the human medial temporal lobe.

    PubMed

    Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P

    1999-01-01

    A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.

  18. Single-cycle adenovirus vectors in the current vaccine landscape.

    PubMed

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  19. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    PubMed

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Evaluation of monoclonal antibodies that detect conserved proteins from Respiratory Syncytial Virus, Metapneumovirus and Adenovirus in human samples.

    PubMed

    González, Liliana A; Vázquez, Yaneisi; Mora, Jorge E; Palavecino, Christian E; Bertrand, Pablo; Ferrés, Marcela; Contreras, Ana M; Beckhaus, Andrea A; Riedel, Claudia A; Bueno, Susan M

    2018-04-01

    Human Respiratory Syncytial Virus (hRSV), human Metapneumovirus (hMPV) and Adenovirus (ADV), are three of the most prevalent viruses responsible for pneumonia and bronchiolitis in children and elderly worldwide, accounting for a high number of hospitalizations annually. Diagnosis of these viruses is required to take clinical actions that allow an appropriate patient management. Thereby, new strategies to design fast diagnostic methods are highly required. In the present work, six monoclonal antibodies (mAbs, two for each virus) specific for conserved proteins from hRSV, hMPV and ADV were generated and evaluated through different immunological techniques, based on detection of purified protein, viral particles and human samples. In vitro evaluation of these antibodies showed higher specificity and sensitivity than commercial antibodies tested in this study. These antibodies were used to design a sandwich ELISA tests that allowed the detection of hRSV, hMPV, and ADV in human nasopharyngeal swabs. We observed that hRSV and ADV were detected with sensitivity and specificity equivalent to a current Direct Fluorescence Assay (DFA) methodology. However, hMPV was detected with more sensitivity than DFA. Our data suggest that these new mAbs can efficiently identify infected samples and discriminate from patients infected with other respiratory pathogens. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response.

    PubMed

    Alvarez, E; Moga, E; Barquinero, J; Sierra, J; Briones, J

    2010-04-01

    Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40-CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-gamma, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.

  2. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    PubMed Central

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  3. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  4. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.

    PubMed

    Crosby, Catherine M; Nehete, Pramod; Sastry, K Jagannadha; Barry, Michael A

    2015-01-01

    Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not

  5. Molecular detection of two adenoviruses associated with disease in Australian lizards.

    PubMed

    Hyndman, T; Shilton, C M

    2011-06-01

    We give the first published description of the pathology and molecular findings associated with adenovirus infection in lizards in Australia. A central netted dragon (Ctenophorus nuchalis) exhibited severe necrotising hepatitis with abundant intranuclear inclusion bodies within hepatocytes and rarely within intestinal epithelial cells. Polymerase chain reaction (PCR) using pooled tissues yielded an amplicon that shared strong nucleotide identity with an agamid adenovirus (EU914203). PCR on the liver of a bearded dragon (Pogona minor minor) with illthrift, coccidiosis, nematodiasis and hepatic lipidosis yielded an amplicon with strong nucleotide identity to a helodermatid adenovirus (EU914207). © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  6. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines.

    PubMed

    See, Raymond H; Petric, Martin; Lawrence, David J; Mok, Catherine P Y; Rowe, Thomas; Zitzow, Lois A; Karunakaran, Karuna P; Voss, Thomas G; Brunham, Robert C; Gauldie, Jack; Finlay, B Brett; Roper, Rachel L

    2008-09-01

    Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

  7. Novel infectivity-enhanced oncolytic adenovirus with a capsid-incorporated dual-imaging moiety for monitoring virotherapy in ovarian cancer.

    PubMed

    Kimball, Kristopher J; Rivera, Angel A; Zinn, Kurt R; Icyuz, Mert; Saini, Vaibhav; Li, Jing; Zhu, Zeng B; Siegal, Gene P; Douglas, Joanne T; Curiel, David T; Alvarez, Ronald D; Borovjagin, Anton V

    2009-01-01

    We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for noninvasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk) and monomeric red fluorescent protein 1 (mRFP1) into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  8. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  9. Molecular Characterization of a Lizard Adenovirus Reveals the First Atadenovirus with Two Fiber Genes and the First Adenovirus with Either One Short or Three Long Fibers per Penton

    PubMed Central

    Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária

    2014-01-01

    ABSTRACT Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins—one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton

  10. The search for adenovirus 14 in children in Houston, Texas.

    PubMed

    Laham, Federico R; Jewell, Alan M; Schoonover, Shauna L; Demmler, Gail J; Piedra, Pedro A

    2008-07-01

    Adenovirus (Ad)14 has recently emerged in the United States causing outbreaks of severe respiratory disease. To determine if Ad14 circulated in Houston, Texas, during the same time as an outbreak in military recruits in nearby San Antonio, 215 pediatric adenovirus isolates were serotyped using microneutralization. None were Ad14; Ad1, Ad2, and Ad3 were the most common identified serotypes.

  11. Respiratory adenovirus-like infection in a rose-ringed parakeet (Psittacula krameri).

    PubMed

    Desmidt, M; Ducatelle, R; Uyttebroek, E; Charlier, G; Hoorens, J

    1991-01-01

    Intranuclear inclusions were observed under light microscopy in the bronchial epithelial cells of a recently purchased female rose-ringed parakeet that died of chlamydiosis. Transmission electron microscopy revealed the presence of numerous particles of adenovirus morphology. A latent adenovirus infection may have become more severe following chlamydiosis and the stress of handling.

  12. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods. © 2013 Elsevier B.V. All rights reserved.

  13. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5more » (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).« less

  14. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    PubMed Central

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  15. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Na; Fan, Jun Kai; Gu, Jin Fa

    2009-10-16

    Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lowermore » than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.« less

  16. Host cell reactivation of gamma-irradiated adenovirus 5 in human cell lines of varying radiosensitivity.

    PubMed Central

    Eady, J. J.; Peacock, J. H.; McMillan, T. J.

    1992-01-01

    DNA repair processes play an important role in the determination of radiation response in both normal and tumour cells. We have investigated one aspect of DNA repair in a number of human cell lines of varying radiosensitivity using the adenovirus 5 host cell reactivation assay (HCR). In this technique, gamma-irradiated virions are used to infect cells and the ability of the cellular repair systems to process this damage is assayed by a convenient immunoperoxidase method recognising viral structural antigen expression on the cell membrane 48 h after infection. Reduced HCR was exhibited by radioresistant HeLa cells and by a radiosensitive neuroblastoma cell line, HX142. In contrast, an ataxia telangiectasia cell line, AT5 BIVA, did not show reduced HCR. On the basis of these results we can make no general conclusions about the relevance of HCR to cellular radiosensitivity. We have extended these studies to determine whether our cell lines exhibited enhanced viral reactivation (ER) following a small priming dose of gamma-radiation given to the cells before viral infection. No evidence for this phenomenon was found either in normal or tumour cell lines. PMID:1637659

  17. Encoding model of temporal processing in human visual cortex.

    PubMed

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  18. Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013

    PubMed Central

    Lee, Sook-Young; Kim, Jeong-Hoon; Seo, Tae-Kun; No, Jin Sun; Kim, Hankyeom; Kim, Won-keun; Choi, Han-Gu; Kang, Sung-Ho; Song, Jin-Won

    2016-01-01

    Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adenoviruses were completed for two Chinstrap penguins (Pygoscelis antarctica) and two Gentoo penguins (Pygoscelis papua). The whole genome lengths and G+C content of penguin adenoviruses were found to be 24,630–24,662 bp and 35.5–35.6%, respectively. Notably, the presence of putative sialidase gene was not identified in penguin adenoviruses by Rapid Amplification of cDNA Ends (RACE-PCR) as well as consensus specific PCR. The penguin adenoviruses were demonstrated to be a new species within the genus Siadenovirus, with a distance of 29.9–39.3% (amino acid, 32.1–47.9%) in DNA polymerase gene, and showed the closest relationship with turkey adenovirus 3 (TAdV-3) in phylogenetic analysis. During the 2008–2013 study period, the penguin adenoviruses were annually detected in 22 of 78 penguins (28.2%), and the molecular epidemiological study of the penguin adenovirus indicates a predominant infection in Chinstrap penguin population (12/30, 40%). Interestingly, the genome of penguin adenovirus could be detected in several internal samples, except the lymph node and brain. In conclusion, an analysis of the entire adenoviral genomes from Antarctic penguins was conducted, and the penguin adenoviruses, containing unique genetic character, were identified as a new species within the genus Siadenovirus. Moreover, it was annually detected in Antarctic penguins, suggesting its circulation within the penguin population. PMID:27309961

  19. Applying Genomic and Bioinformatic Resources to Human Adenovirus Genomes for Use in Vaccine Development and for Applications in Vector Development for Gene Delivery

    PubMed Central

    Seto, Jason; Walsh, Michael P.; Mahadevan, Padmanabhan; Zhang, Qiwei; Seto, Donald

    2010-01-01

    Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented. PMID:21994597

  20. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  1. Serotype-Specific Neutralizing Antibody Epitopes of Human Adenovirus Type 3 (HAdV-3) and HAdV-7 Reside in Multiple Hexon Hypervariable Regions

    PubMed Central

    Qiu, Hongling; Li, Xiao; Tian, Xingui; Zhou, Zhichao; Xing, Ke; Li, Haitao; Tang, Ni; Liu, Wenkuan; Bai, Peisheng

    2012-01-01

    Human adenovirus types 3 and 7 (HAdV-3 and HAdV-7) occur epidemically and contribute greatly to respiratory diseases, but there is no currently available licensed recombinant HAdV-3/HAdV-7 bivalent vaccine. Identification of serotype-specific neutralizing antibody (NAb) epitopes for HAdV-3 and HAdV-7 will be beneficial for development of recombinant HAdV-3/HAdV-7 bivalent vaccines. In this study, four NAb epitopes within hexon hypervariable regions (HVRs) were predicted for HAdV-3 and HAdV-7, respectively, by using bioinformatics. Eight hexon chimeric adenovirus vectors with the alternation of only one predicted neutralizing epitope were constructed. Further in vitro and in vivo neutralization assays indicated that E2 (residing in HVR2) and E3 (residing in HVR5) are NAb epitopes for HAdV-7, and E3 plays a more important role in generating NAb responses. Cross-neutralization assays indicated that all four predicted epitopes, R1 to R4, are NAb epitopes for HAdV-3, and R1 (residing in HVR1) plays the most important role in generating NAb responses. Humoral immune responses elicited by the recombinant rAdH7R1 (containing the R1 epitope) were significantly and durably suppressed by HAdV-3-specific NAbs. Surprisingly, the rAdΔE3GFP-specific neutralizing epitope responses induced by rAdMHE3 (R3 replaced by E3) and rAdMHE4 (R4 replaced by E4) were weaker than those of rAdMHE1 (R1 replaced by E1) or rAdMHE2 (R2 relaced by E2) in vitro and in vivo. Furthermore, rAdMHE4 replicated more slowly in HEp-2 cells, and the final yield was about 10-fold lower than that of rAdΔE3GFP. The current findings contribute not only to the development of new adenovirus vaccine candidates, but also to the construction of new gene delivery vectors. PMID:22623776

  2. Generation of an Adenovirus-Parvovirus Chimera with Enhanced Oncolytic Potential

    PubMed Central

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K.; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M.; Rommelaere, Jean

    2012-01-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells. PMID:22787235

  3. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  4. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  5. Adenovirus infection in savanna chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania.

    PubMed

    Dadáková, Eva; Brožová, Kristýna; Piel, Alex K; Stewart, Fiona A; Modrý, David; Celer, Vladimír; Hrazdilová, Kristýna

    2018-01-01

    Adenoviruses are a widespread cause of diverse human infections with recently confirmed zoonotic roots in African great apes. We focused on savanna-dwelling chimpanzees in the Issa Valley (Tanzania), which differ from those from forested sites in many aspects of behavior and ecology. PCR targeting the DNA polymerase gene detected AdV in 36.7% (69/188) of fecal samples. We detected five groups of strains belonging to the species Human mastadenovirus E and two distinct groups within the species Human mastadenovirus C based on partial hexon sequence. All detected AdVs from the Issa Valley are related to those from nearby Mahale and Gombe National Parks, suggesting chimpanzee movements and pathogen transmission.

  6. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43.

    PubMed

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J; Gagea, Mihai; Fox, Patricia S; Bassett, Roland L; Ladbury, John E; Braun, Michael B; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-08-16

    Unique molecular properties of species D adenoviruses (Ads)-the most diverse yet underexplored group of Ads-have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies.

  7. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43

    PubMed Central

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J.; Gagea, Mihai; Fox, Patricia S.; Bassett, Roland L.; Ladbury, John E.; Braun, Michael B.; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-01-01

    Unique molecular properties of species D adenoviruses (Ads)—the most diverse yet underexplored group of Ads—have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies. PMID:27462785

  8. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  9. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  10. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  11. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  12. Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance.

    PubMed

    Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi

    2018-06-18

    Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.

  13. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure.

    PubMed

    Okegawa, T; Pong, R C; Li, Y; Bergelson, J M; Sagalowsky, A I; Hsieh, J T

    2001-09-01

    The coxsackie and adenovirus receptor (CAR) is identified as a high-affinity receptor for adenovirus type 5. We observed that invasive bladder cancer specimens had significantly reduced CAR mRNA levels compared with superficial bladder cancer specimens, which suggests that CAR may play a role in the progression of bladder cancer. Elevated CAR expression in the T24 cell line (CAR-negative cells) increased its sensitivity to adenovirus infection and significantly inhibited its in vitro growth, accompanied by p21 and hypophosphorylated retinoblastoma accumulation. Conversely, decreased CAR levels in both RT4 and 253J cell lines (CAR-positive cells) promoted their in vitro growth. To unveil the mechanism of action of CAR, we showed that the extracellular domain of CAR facilitated intercellular adhesion. Furthermore, interrupting intercellular adhesion of CAR by a specific antibody alleviates the growth-inhibitory effect of CAR. We also demonstrated that both the transmembrane and intracellular domains of CAR were critical for its growth-inhibitory activity. These data indicate that the cell-cell contact initiated by membrane-bound CAR can elicit a negative signal cascade to modulate cell cycle regulators inside the nucleus of bladder cancer cells. Therefore, the presence of CAR cannot only facilitate viral uptake of adenovirus but also inhibit cell growth. These results can be integrated to formulate a new strategy for bladder cancer therapy.

  14. Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.

    PubMed

    Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F

    2016-01-01

    Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late

  15. Novel adenoviruses detected in British mustelids, including a unique Aviadenovirus in the tissues of pine martens (Martes martes)

    PubMed Central

    Gregory, William F.; Turnbull, Dylan; Rocchi, Mara; Meredith, Anna L.; Philbey, Adrian W.; Sharp, Colin P.

    2017-01-01

    Several adenoviruses are known to cause severe disease in veterinary species. Recent evidence suggests that canine adenovirus type 1 (CAV-1) persists in the tissues of healthy red foxes (Vulpes vulpes), which may be a source of infection for susceptible species. It was hypothesized that mustelids native to the UK, including pine martens (Martes martes) and Eurasian otters (Lutra lutra), may also be persistently infected with adenoviruses. Based on high-throughput sequencing and additional Sanger sequencing, a novel Aviadenovirus, tentatively named marten adenovirus type 1 (MAdV-1), was detected in pine marten tissues. The detection of an Aviadenovirus in mammalian tissue has not been reported previously. Two mastadenoviruses, tentatively designated marten adenovirus type 2 (MAdV-2) and lutrine adenovirus type 1 (LAdV-1), were also detected in tissues of pine martens and Eurasian otters, respectively. Apparently healthy free-ranging animals may be infected with uncharacterized adenoviruses with possible implications for translocation of wildlife. PMID:28749327

  16. Structure, function and dynamics in adenovirus maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less

  17. Pupil size reflects successful encoding and recall of memory in humans.

    PubMed

    Kucewicz, Michal T; Dolezal, Jaromir; Kremen, Vaclav; Berry, Brent M; Miller, Laura R; Magee, Abigail L; Fabian, Vratislav; Worrell, Gregory A

    2018-03-21

    Pupil responses are known to indicate brain processes involved in perception, attention and decision-making. They can provide an accessible biomarker of human memory performance and cognitive states in general. Here we investigated changes in the pupil size during encoding and recall of word lists. Consistent patterns in the pupil response were found across and within distinct phases of the free recall task. The pupil was most constricted in the initial fixation phase and was gradually more dilated through the subsequent encoding, distractor and recall phases of the task, as the word items were maintained in memory. Within the final recall phase, retrieving memory for individual words was associated with pupil dilation in absence of visual stimulation. Words that were successfully recalled showed significant differences in pupil response during their encoding compared to those that were forgotten - the pupil was more constricted before and more dilated after the onset of word presentation. Our results suggest pupil size as a potential biomarker for probing and modulation of memory processing.

  18. The Role of Capsid Maturation on Adenovirus Priming for Sequential Uncoating*

    PubMed Central

    Pérez-Berná, Ana J.; Ortega-Esteban, Alvaro; Menéndez-Conejero, Rosa; Winkler, Dennis C.; Menéndez, Margarita; Steven, Alasdair C.; Flint, S. Jane; de Pablo, Pedro J.; San Martín, Carmen

    2012-01-01

    Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus. PMID:22791715

  19. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    PubMed Central

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  20. Cloning and sequence analysis of complementary DNA encoding an aberrantly rearranged human T-cell gamma chain.

    PubMed Central

    Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L

    1986-01-01

    Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221

  1. [Research advance on role of Coxsackie and adenovirus receptor (CAR) in tumor progression].

    PubMed

    Fan, Liang-Sheng; Chen, Gang; Ma, Ding

    2009-03-01

    Coxsackie and adenovirus receptor (CAR) is originally identified as the cellular receptor of 2-and 5-type adenoviruses. Many researches have suggested that CAR can affect the growth, adhesive ability and cytoskeleton of tumor cells, and has complicated functions in metastasis and invasion of tumors. Moreover, the expression of CAR has close relationship with tumor prognosis and cytoreduction mediated by adenoviruses. CAR has become a new hotspot in the research on mechanism of tumor progression and gene therapy. Our review focuses on the structure and function of CAR and its role in mediating occurrence and progression of tumor.

  2. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  3. Conditionally replicative adenovirus for gastrointestinal cancers.

    PubMed

    Yamamoto, Masato

    2004-08-01

    The clinical outcome of advanced gastrointestinal (GI) cancers (especially pancreatic and oesophageal cancers) is dismal, despite the advance of conventional therapeutic strategies. Cancer gene therapy is a category of new therapeutics, among which conditionally replicative adenovirus (CRAd) is one promising strategy to overcome existing obstacles of cancer gene therapy. Various CRAds have been developed for GI cancer treatment by taking advantage of the replication biology of adenovirus. Some CRAds have already been tested in clinical trials, but have fallen short of initial expectations. Concerns for clinical applicability include therapeutic potency, replication selectivity and interval end points in clinical trials. In addition, improvement of experimental animal models is needed for a deeper understanding of CRAd biology. Despite these obstacles, CRAds continue to be an exciting area of investigation with great potential for clinical utility. Further virological and oncological research will eventually lead to full realisation of the therapeutic potential of CRAds in the field of GI cancers.

  4. A neural circuit encoding sexual preference in humans

    PubMed Central

    Poeppl, Timm B.; Langguth, Berthold; Rupprecht, Rainer; Laird, Angela R; Eickhoff, Simon B.

    2016-01-01

    Sexual preference determines mate choice for reproduction and hence guarantees conservation of species in mammals. Despite this fundamental role in human behavior, current knowledge on its target-specific neurofunctional substrate is based on lesion studies and therefore limited. We used meta-analytic remodeling of neuroimaging data from 364 human subjects with diverse sexual interests during sexual stimulation to quantify neural regions associated with sexual preference manipulations. We found that sexual preference is encoded by four phylogenetically old, subcortical brain structures. More specifically, sexual preference is controlled by the anterior and preoptic area of the hypothalamus, the anterior and mediodorsal thalamus, the septal area, and the perirhinal parahippocampus including the dentate gyrus. In contrast, sexual non-preference is regulated by the substantia innominata. We anticipate the identification of a core neural circuit for sexual preferences to be a starting point for further sophisticated investigations into the neural principles of sexual behavior and particularly of its aberrations. PMID:27339689

  5. Optimization and evaluation of a method to detect adenoviruses in river water

    EPA Pesticide Factsheets

    This dataset includes the recoveries of spiked adenovirus through various stages of experimental optimization procedures. This dataset is associated with the following publication:McMinn , B., A. Korajkic, and A. Grimm. Optimization and evaluation of a method to detect adenoviruses in river water. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 231(1): 8-13, (2016).

  6. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    PubMed

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  7. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    PubMed Central

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707

  8. Comparison of different approaches to quantitative adenovirus detection in stool specimens of hematopoietic stem cell transplant recipients.

    PubMed

    Kosulin, K; Dworzak, S; Lawitschka, A; Matthes-Leodolter, S; Lion, T

    2016-12-01

    Adenoviruses almost invariably proliferate in the gastrointestinal tract prior to dissemination, and critical threshold concentrations in stool correlate with the risk of viremia. Monitoring of adenovirus loads in stool may therefore be important for timely initiation of treatment in order to prevent invasive infection. Comparison of a manual DNA extraction kit in combination with a validated in-house PCR assay with automated extraction on the NucliSENS-EasyMAG device coupled with the Adenovirus R-gene kit (bioMérieux) for quantitative adenovirus analysis in stool samples. Stool specimens spiked with adenovirus concentrations in a range from 10E2-10E11 copies/g and 32 adenovirus-positive clinical stool specimens from pediatric stem cell transplant recipients were tested along with appropriate negative controls. Quantitative analysis of viral load in adenovirus-positive stool specimens revealed a median difference of 0.5 logs (range 0.1-2.2) between the detection systems tested and a difference of 0.3 logs (range 0.0-1.7) when the comparison was restricted to the PCR assays only. Spiking experiments showed a detection limit of 10 2 -10 3 adenovirus copies/g stool revealing a somewhat higher sensitivity offered by the automated extraction. The dynamic range of accurate quantitative analysis by both systems investigated was between 10 3 and 10 8 virus copies/g. The differences in quantitative analysis of adenovirus copy numbers between the systems tested were primarily attributable to the DNA extraction method used, while the qPCR assays revealed a high level of concordance. Both systems showed adequate performance for detection and monitoring of adenoviral load in stool specimens. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation

    PubMed Central

    Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  10. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus.

    PubMed Central

    Kirshenbaum, L A; MacLellan, W R; Mazur, W; French, B A; Schneider, M D

    1993-01-01

    Molecular dissection of mechanisms that govern the differentiated cardiac phenotype has, for cogent technical reasons, largely been undertaken to date in neonatal ventricular myocytes. To circumvent expected limitations of other methods, the present study was initiated to determine whether replication-deficient adenovirus would enable efficient gene transfer to adult cardiac cells in culture. Adult rat ventricular myocytes were infected, 24 h after plating, with adenovirus type 5 containing a cytomegalovirus immediate-early promoter-driven lacZ reporter gene and were assayed for the presence of beta-galactosidase 48 h after infection. The frequency of lacZ+ rod-shaped myocytes was half-maximal at 4 x 10(5) plaque-forming units (PFU) and approached 90% at 1 x 10(8) PFU. Uninfected cells and cells infected with lacZ- virus remained colorless. Beta-galactosidase activity concurred with the proportion of lacZ+ cells and was contingent on the exogenous lacZ gene. At 10(8) PFU/dish, cell number, morphology, and viability each were comparable to uninfected cells. Thus, adult ventricular myocytes are amenable to efficient gene transfer with recombinant adenovirus. The relative uniformity for gene transfer by adenovirus should facilitate tests to determine the impact of putative regulators upon the endogenous genes and gene products of virally modified adult ventricular muscle cells. Images PMID:8326005

  11. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia.

    PubMed

    Crane, B; Luo, X; Demaster, A; Williams, K D; Kozink, D M; Zhang, P; Brown, T T; Pinto, C R; Oka, K; Sun, F; Jackson, M W; Chan, L; Koeberl, D D

    2012-04-01

    Glycogen storage disease type Ia (GSD-Ia) stems from glucose-6-phosphatase (G6Pase) deficiency and causes hypoglycemia, hepatomegaly, hypercholesterolemia and lactic acidemia. Three dogs with GSD-Ia were initially treated with a helper-dependent adenovirus encoding a human G6Pase transgene (HDAd-cG6Pase serotype 5) on postnatal day 3. Unlike untreated dogs with GSD-Ia, all three dogs initially maintained normal blood glucose levels. After 6-22 months, vector-treated dogs developed hypoglycemia, anorexia and lethargy, suggesting that the HDAd-cG6Pase serotype 5 vector had lost efficacy. Liver biopsies collected at this time revealed significantly elevated hepatic G6Pase activity and reduced glycogen content, when compared with affected dogs treated only by frequent feeding. Subsequently, the HDAd-cG6Pase serotype 2 vector was administered to two dogs, and hypoglycemia was reversed; however, renal dysfunction and recurrent hypoglycemia complicated their management. Administration of a serotype 2 HDAd vector prolonged survival in one GSD-Ia dog to 12 months of age and 36 months of age in the other, but the persistence of long-term complications limited HDAd vectors in the canine model for GSD-Ia.

  12. [Cloning and sequence analysis of 55 K protein of egg drop syndrome virus].

    PubMed

    Zhu, L; Jin, Q; Zeng, L

    1999-06-30

    For understanding the characteristics of genomic structure of egg drop syndrome virus(EDSV). Nucleic acid was extracted using routine method from weak virulent strain AA-2 of EDSV isolated from Chinese sick hens. Construction of the whole genomic library was by hydrolysis with Hind III, strand encoding 55 K gene locating in Hind III--A segment was sequenced and analyzed. The open reading frame has a length of 1,014 nt and codes a polypeptide of 337 amino acids with molecular weight of 38,200. Analysis of the amino acid sequence revealed a homology from 25.5%-32.4% to the 55 K protein of human adenovirus types 2, 12, 40, canine adenovirus and fowl adenoviruses of group 1, whereas to ovine adenovirus is 46.4%. The genomic structure of EDSV has some relationship with adenoviruses.

  13. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media

    PubMed Central

    Murrah, Kyle A.; Turner, Roberta L.; Pang, Bing; Perez, Antonia C.; Reimche, Jennifer L.; King, Lauren B.; Wren, John; Gandhi, Uma; Swords, W. Edward; Ornelles, David A.

    2015-01-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  14. Effect of Relaxin Expressing Adenovirus on Scar Remodeling: A Preliminary Study

    PubMed Central

    Jung, Bok Ki; Lee, Won Jai; Kang, Eunhye; Ahn, Hyo Min; Kim, Yong Oock; Rah, Dong Kyun; Yun, Chae-Ok

    2017-01-01

    Background Relaxin is a transforming growth factor β1 antagonist. To determine the effects of relaxin on scar reduction, we investigated the scar remodeling process by injecting relaxin-expressing adenoviruses using a pig scar model. Methods Scars with full thickness were generated on the backs of Yorkshire pigs. Scars were divided into two groups (relaxin [RLX] and Control). Adenoviruses were injected into the RLX (expressing relaxin) and Control (not expressing relaxin) groups. Changes in the surface areas, color index and pliability of scars were compared. Results Fifty days after treatment, the surface areas of scars decreased, the color of scars was normalized, and the pliability of scars increased in RLX group. Conclusion Relaxin-expressing adenoviruses improved the surface area, color, and pliability of scars. The mechanism of therapeutic effects on scar formation should be further investigated. PMID:28913296

  15. Adenovirus disease in six small bowel, kidney and heart transplant recipients; pathology and clinical outcome.

    PubMed

    Mehta, Vikas; Chou, Pauline C; Picken, Maria M

    2015-11-01

    Adenoviruses are emerging as important viral pathogens in hematopoietic stem cell and solid organ transplant recipients, impacting morbidity, graft survival, and even mortality. The risk seems to be highest in allogeneic hematopoietic stem cell transplant recipients as well as heart, lung, and small bowel transplant recipients. Most of the adenovirus diseases develop in the first 6 months after transplantation, particularly in pediatric patients. Among abdominal organ recipients, small bowel grafts are most frequently affected, presumably due to the presence of a virus reservoir in the mucosa-associated lymphoid tissue. Management of these infections may be difficult and includes the reduction of immunosuppression, whenever possible, combined with antiviral therapy, if necessary. Therefore, an awareness of the pathology associated with such infections is important in order to allow early detection and specific treatment. We reviewed six transplant recipients (small bowel, kidney, and heart) with adenovirus graft involvement from two institutions. We sought to compare the diagnostic morphology and the clinical and laboratory findings. The histopathologic features of an adenovirus infection of the renal graft and one native kidney in a heart transplant recipient included a vaguely granulomatous mixed inflammatory infiltrate associated with rare cells showing a cytopathic effect (smudgy nuclei). A lymphocytic infiltrate, simulating T cell rejection, with admixture of eosinophils was also seen. In the small bowel grafts, there was a focal mixed inflammatory infiltrate with associated necrosis in addition to cytopathic effects. In the heart, allograft adenovirus infection was silent with no evidence of inflammatory changes. Immunohistochemical stain for adenovirus was positive in all grafts and in one native kidney. All patients were subsequently cleared of adenovirus infection, as evidenced by follow-up biopsies, with no loss of the grafts. Adenovirus infection can

  16. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    PubMed

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  17. An adenovirus associated with intestinal impaction and mortality of male eiders (Somateria mollissima) in the Baltic Sea

    USGS Publications Warehouse

    Hollmén, Tuula E.; Franson, J. Christian; Kilpi, Mikael; Docherty, Douglas E.; Myllys, V.

    2003-01-01

    We examined 10 common eider (Somateria mollissima) males found dead in 1998 during a die-off in the northern Baltic Sea off the southwestern coast of Finland. We diagnosed impaction of the posterior small intestine with mucosal necrosis as the cause of death in all 10 and isolated adenoviruses from cloacal samples of six birds. The adenovirus isolates were not neutralized by reference antisera to group I, II, or III avian adenoviruses. Cloacal swabs from 22 apparently healthy eider females nesting at the mortality area were negative for viruses. An adenovirus isolated from one of the eiders caused clinical signs of illness and gastrointestinal pathology in experimentally infected mallard (Anas platyrhynchos) ducklings. These findings suggest that the adenovirus contributed to the mortality of common eider males in the Finnish archipelago.

  18. Plasmonic Encoding

    DTIC Science & Technology

    2014-10-06

    The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of thiolated small...counterfeiting purposes. The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of...environments ( like the surface of human hair). 2. Nanoflares In 2007, we first introduced the concept of nanoflares. Nanoflares are a new class of

  19. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population.

    PubMed

    Ma, Ying-Yu; Wang, Xiao-Jun; Han, Yong; Li, Gang; Wang, Hui-Ju; Wang, Shi-Bing; Chen, Xiao-Yi; Liu, Fan-Long; He, Xiang-Lei; Tong, Xiang-Min; Mou, Xiao-Zhou

    2016-09-01

    The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment.

  20. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice.

    PubMed

    Liu, Shan; Jackson, Andrew; Beloor, Jagadish; Kumar, Priti; Sutton, Richard E

    2015-09-01

    Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4(+) T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans.

  1. [ENCODE apophenia or a panglossian analysis of the human genome].

    PubMed

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world. © 2015 médecine/sciences – Inserm.

  2. Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus

    PubMed Central

    Unzu, Carmen; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo

    2014-01-01

    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors. PMID:24465560

  3. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    PubMed

    Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.

  4. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata

    PubMed Central

    Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240

  5. Perfluorochemical (PFC) liquid enhances recombinant adenovirus vector-mediated viral interleukin-10 (AdvIL-10) expression in rodent lung.

    PubMed

    Li, John T; Bonneau, Laura A; Zimmerman, Jerry J; Weiss, Daniel J

    2007-05-01

    Adenovirus and cationic liposome mediated transfer of Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, has been shown to decrease pro-inflammatory cytokine levels and overall lung inflammation in models of lung transplantation and injury. Limitations to current approaches of IL-10 gene therapy include poor vector delivery methods and pro-inflammatory properties of human IL-10 under certain conditions. We hypothesize that using perfluorochemical (PFC) liquid to deliver the highly homologous viral IL-10 (vIL-10), which is predominantly anti-inflammatory with minimal pro-inflammatory activities, can potentially be a more effective strategy to combat inflammatory lung diseases. In this study, we compare the use of PFC liquid versus aerosolized method to deliver adenovirus encoding the vIL-10 gene (AdvIL-10) in C57Bl6 mice. Detectable vIL-10 levels were measured from bronchoalveolar lavage fluid and lung homogenates at one, four, ten and thirty days after AdvIL-10. Furthermore, we determined if use of PFC liquid could allow for the use of a lower dose of AdvIL-10 by comparing the levels of detectable vIL-10 at different doses of AdvIL-10 delivered +/- PFC liquid. Results showed that PFC liquid enhanced detectable vIL-10 by up to ten fold and that PFC liquid allowed the use of ten-fold less vector. PFC liquid increased detectable vIL-10 in lung homogenates at all time points; however, the increase in detectable vIL-10 in BAL fluid peaked at four days and was no longer evident by thirty days after intratracheal instillation. In summary, this is the first report utilizing PFC liquid to enhance the delivery of a potentially therapeutic molecule, vIL-10. We believe this strategy can be used to perform future studies on the use of the predominantly anti-inflammatory vIL-10 to treat inflammatory lung diseases.

  6. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.

    PubMed

    Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M

    1999-09-01

    Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint

  7. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  8. Adenovirus and mycoplasma infection in an ornate box turtle (Terrapene ornata ornata) in Hungary.

    PubMed

    Farkas, Szilvia L; Gál, János

    2009-07-02

    A female, adult ornate box turtle (Terrapene ornata ornata) with fatty liver was submitted for virologic examination in Hungary. Signs of an adenovirus infection including degeneration of the liver cells, enlarged nuclei and intranuclear inclusion bodies were detected by light microscopic examination. The presence of an adenovirus was later confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Phylogenetic analyses revealed that this novel chelonian adenovirus was distinct from previously described reptilian adenoviruses, not belonging to any of the recognized genera of the family Adenoviridae. As a part of the routine diagnostic procedure for chelonians the detection of herpes-, rana- and iridoviruses together with Mycoplasma spp. was attempted. Amplicons were generated by a general mycoplasma polymerase chain reaction (PCR) targeting the 16S/23S ribosomal RNA (rRNA) intergenic spacer region, as well as, a specific Mycoplasma agassizii PCR targeting the 16S rRNA gene. Based on the analyses of partial sequences of the 16S rRNA gene, the Mycoplasma sp. of the ornate box turtle seemed to be identical with the recently described eastern box turtle (Terrapene carolina carolina) Mycoplasma sp. This is the first report of a novel chelonian adenovirus and a mycoplasma infection in an ornate box turtle (T. ornata ornata) in Europe.

  9. Real-Time PCR with an Internal Control for Detection of All Known Human Adenovirus Serotypes▿

    PubMed Central

    Damen, Marjolein; Minnaar, René; Glasius, Patricia; van der Ham, Alwin; Koen, Gerrit; Wertheim, Pauline; Beld, Marcel

    2008-01-01

    The “gold standard” for the diagnosis of adenovirus (AV) infection is virus culture, which is rather time-consuming. Especially for immunocompromised patients, in whom severe infections with AV have been described, rapid diagnosis is important. Therefore, an internally controlled AV real-time PCR assay detecting all known human AV serotypes was developed. Primers were chosen from the hexon region, which is the most conserved region, and in order to cover all known serotypes, degenerate primers were used. The internal control (IC) DNA contained the same primer binding sites as the AV DNA control but had a shuffled probe region compared to the conserved 24-nucleotide consensus AV hexon probe region (the target). The IC DNA was added to the clinical sample in order to monitor extraction and PCR efficiency. The sensitivity and the linearity of the AV PCR were determined. For testing the specificity of this PCR assay for human AVs, a selection of 51 AV prototype strains and 66 patient samples positive for other DNA viruses were tested. Moreover, a comparison of the AV PCR method described herein with culture and antigen (Ag) detection was performed with a selection of 151 clinical samples. All 51 AV serotypes were detected in the selection of AV prototype strains. Concordant results from culture or Ag detection and PCR were found for 139 (92.1%) of 151 samples. In 12 cases (7.9%), PCR was positive while the culture was negative. In conclusion, a sensitive, internally controlled nonnested AV real-time PCR assay which is able to detect all known AV serotypes with higher sensitivity than a culture or Ag detection method was developed. PMID:18923006

  10. Sp100 isoform-specific regulation of human adenovirus 5 gene expression.

    PubMed

    Berscheminski, Julia; Wimmer, Peter; Brun, Juliane; Ip, Wing Hang; Groitl, Peter; Horlacher, Tim; Jaffray, Ellis; Hay, Ron T; Dobner, Thomas; Schreiner, Sabrina

    2014-06-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than

  11. Prospects for Oral Replicating Adenovirus-Vectored Vaccines

    PubMed Central

    Deal, Cailin; Pekosz, Andrew; Ketner, Gary

    2013-01-01

    Orally delivered replicating adenovirus (Ad) vaccines have been used for decades to prevent adenovirus serotype 4 and 7 respiratory illness in military recruits, demonstrating exemplary safety and high efficacy. That experience suggests that oral administration of live recombinant Ads (rAds) holds promise for immunization against other infectious diseases, including those that have been refractory to traditional vaccination methods. Live rAds can express intact antigens from free-standing transgenes during replication in infected cells. Alternatively, antigenic epitopes can be displayed on the rAd capsid itself, allowing presentation of the epitope to the immune system both prior to and during replication of the virus. Such capsid-display rAds offer a novel vaccine approach that could be used either independently of or in combination with transgene expression strategies to provide a new tool in the search for protection from infectious disease. PMID:23707160

  12. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine

    USDA-ARS?s Scientific Manuscript database

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) sero-type O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa empty capsids. Swine inoculated with Ad5-O1Man developed an FMDV-specific neutralizing antibody response as compared to animals inoculated wi...

  13. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas.

    PubMed

    Calin, George A; Liu, Chang-gong; Ferracin, Manuela; Hyslop, Terry; Spizzo, Riccardo; Sevignani, Cinzia; Fabbri, Muller; Cimmino, Amelia; Lee, Eun Joo; Wojcik, Sylwia E; Shimizu, Masayoshi; Tili, Esmerina; Rossi, Simona; Taccioli, Cristian; Pichiorri, Flavia; Liu, Xiuping; Zupo, Simona; Herlea, Vlad; Gramantieri, Laura; Lanza, Giovanni; Alder, Hansjuerg; Rassenti, Laura; Volinia, Stefano; Schmittgen, Thomas D; Kipps, Thomas J; Negrini, Massimo; Croce, Carlo M

    2007-09-01

    Noncoding RNA (ncRNA) transcripts are thought to be involved in human tumorigenesis. We report that a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Genome-wide profiling revealed that UCRs have distinct signatures in human leukemias and carcinomas. UCRs are frequently located at fragile sites and genomic regions involved in cancers. We identified certain UCRs whose expression may be regulated by microRNAs abnormally expressed in human chronic lymphocytic leukemia, and we proved that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. Our findings argue that ncRNAs and interaction between noncoding genes are involved in tumorigenesis to a greater extent than previously thought.

  14. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    PubMed

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  15. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells.

    PubMed

    Prill, Jan-Michael; Espenlaub, Sigrid; Samen, Ulrike; Engler, Tatjana; Schmidt, Erika; Vetrini, Francesco; Rosewell, Amanda; Grove, Nathan; Palmer, Donna; Ng, Philip; Kochanek, Stefan; Kreppel, Florian

    2011-01-01

    In vivo gene transfer with adenovirus vectors would significantly benefit from a tight control of the adenovirus-inherent liver tropism. For efficient hepatocyte transduction, adenovirus vectors need to evade from Kupffer cell scavenging while delivery to peripheral tissues or tumors could be improved if both scavenging by Kupffer cells and uptake by hepatocytes were blocked. Here, we provide evidence that a single point mutation in the hexon capsomere designed to enable defined chemical capsid modifications may permit both detargeting from and targeting to hepatocytes with evasion from Kupffer cell scavenging. Vector particles modified with small polyethylene glycol (PEG) moieties specifically on hexon exhibited decreased transduction of hepatocytes by shielding from blood coagulation factor binding. Vector particles modified with transferrin or, surprisingly, 5,000 Da PEG or dextran increased hepatocyte transduction up to 18-fold independent of the presence of Kupffer cells. We further show that our strategy can be used to target high-capacity adenovirus vectors to hepatocytes emphasizing the potential for therapeutic liver-directed gene transfer. Our approach may lead to a detailed understanding of the interactions between adenovirus vectors and Kupffer cells, one of the most important barriers for adenovirus-mediated gene delivery.

  16. Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus.

    PubMed

    Doronin, Konstantin; Toth, Karoly; Kuppuswamy, Mohan; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M

    2003-01-20

    Adenoviruses replicate in the nucleus and induce lytic cell death. We have shown previously that efficient cell lysis and release of adenovirus from infected cells requires an 11.6-kDa protein named Adenovirus Death Protein (ADP). The adp gene is located in the early E3 transcription unit, but the gene is expressed primarily at very late stages of infection. The putative function of ADP was discerned previously from the use of virus mutants that lack functional ADP. Here we describe two adenovirus mutants, named VRX-006 and VRX-007, that overexpress ADP. VRX-006 lacks all other genes in the E3 region, and VRX-007 lacks all other E3 genes except 12.5K. VRX-006 and VRX-007 display the phenotype predicted by the proposed function for ADP: they produce early cytopathic effect, early cell lysis, large plaques, and increased cell-to-cell spread. They grow as well in cultured cells as does adenovirus type 5. These results are consistent with the conclusion that ADP functions in adenovirus infections to promote virus release from cells at the culmination of infection.

  17. Detection of human adenovirus, rotavirus and enterovirus in water samples collected on dairy farms from Tenente Portela, Northwest of Rio Grande do Sul, Brazil

    PubMed Central

    Spilki, Fernando Rosado; da Luz, Roger Bordin; Fabres, Rafael Bandeira; Soliman, Mayra Cristina; Kluge, Mariana; Fleck, Juliane Deise; Rodrigues, Manoela Tressoldi; Comerlato, Juliana; Cenci, Alexander; Cerva, Cristine; Dasso, Maurício Gautério; Roehe, Paulo Michel

    2013-01-01

    Viral gastroenteritis and other waterborne diseases are a major concern for health in Brazil. A number of studies were conducted about the presence of viruses on water samples from Brazilian areas. However, the knowledge about the occurrence of viral contamination of drinking water sources in rural settings of the country is insufficient. On the present work, 15 samples from 5 dairy farms located at the municipality of Tenente Portela were collected and analysed for the presence of human adenoviruses (HAdV), as well as human enteroviruses (EV) and rotaviruses (RV). HAdV was present on 66.66% of the water samples, and have been found in all samples from artesian wells and springs, which are used as sources of drinking water for the individuals inhabiting those farms. EV and RV found only in one sample each. The detection rates of HAdV on the water from these dairy farms are alarming and point towards a situation of elevated environmental contamination by fecal microorganisms of human origin and poor basic sanitation conditions. PMID:24516464

  18. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  19. Prolonged peritoneal gene expression using a helper-dependent adenovirus.

    PubMed

    Liu, Limin; Shi, Chang-Xin; Ghayur, Ayesha; Zhang, Claire; Su, Je Yen; Hoff, Catherine M; Margetts, Peter J

    2009-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis. The causes of EPS are not well defined and are likely multifactorial. A suitable animal model would facilitate research into the pathophysiology and treatment of EPS. We developed a helper-dependent adenovirus that expresses both green fluorescent protein (GFP) and active transforming growth factor-beta (TGF-beta1; HDAdTGF-beta1). Mice were administered HDAdTGF-beta1 via intraperitoneal injection and the response was compared with mice administered either first-generation adenovirus expressing TGF-beta1 (AdTGF-beta1) or control adenovirus (AdGFP). HDAdTGF-beta1-treated mice continued to express the GFP reporter transgene to day 74, the end of the observation period. Transgene expression lasted less than 28 days in the animals treated with first-generation adenoviruses. Animals treated with first-generation AdTGF-beta1 demonstrated submesothelial thickening and angiogenesis at day 7, with almost complete resolution by day 28. The HDAdTGF-beta1-treated mice demonstrated progressive peritoneal fibrosis with adhesion formation and encapsulation of bowels. Weight gain was significantly reduced in animals treated with HDAdTGF-beta1 compared to both the control-treated animals and the AdTGF-beta1-treated animals. Inflammation was not a major component of the fibroproliferative response. Peritoneal administration of a first-generation AdTGF-beta1 leads to transient gene expression, resulting in a resolving fibrotic response and histology similar to that seen in simple peritoneal sclerosis. Prolonged TGF-beta1 expression induced by the helper-dependent HDAdTGF-beta1 led to changes in peritoneal morphology resembling EPS. This suggests that TGF-beta1 may be a contributing factor in both simple peritoneal sclerosis and EPS. This model will be useful for elucidation of the mechanism of EPS and evaluation of potential treatment.

  20. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    PubMed

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(P<0.05). Similar findings were also observed in interferon-α/β-receptor-deficient A129 mice. In both these immunocompromised animal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  1. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  2. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  3. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  4. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  5. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.

    PubMed

    Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon

    2008-02-01

    This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.

  6. Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer.

    PubMed

    Wang, Zhao-Xia; Bian, Hai-Bo; Yang, Jing-Song; De, Wei; Ji, Xiao-Hui

    2009-08-01

    Colorectal cancer is a most frequent type of gastrointestinal tract cancers. The prognosis of patients with colorectal cancer remains poor despite intensive interventions. Tumor specific promoter-directed gene therapy and adenoviral technology can be promising strategies for such advanced disease. This study was conducted to explore the possible therapeutic approach of Cox-2 promoter-directed suicide gene therapy with herpes simplex virus thymidine kinase (HSV-tk) in combination with adenoviral technology for advanced colorectal cancer. Firstly, the activity of Cox-2 promoter was assessed by dual luciferase and enhanced green fluorescent protein reporter gene assays in colorectal cancer cell lines and normal human intestinal epithelial cell line. Then, the expression of coxsackievirus and adenovirus receptor (CAR) was detected in colorectal cancer cell lines. The Cox-2 promoter-directed HSV-tk/ganciclovir (GCV) system mediated by adenovirus (Ad-Cp-TK) was developed (Ad-CMVp-TK, Ad-null and no Ad as controls). In vitro cytoxicity, colony formation and apoptosis assays were performed using Ad-Cp-TK. An animal study was carried out in which BALB/C nude mice bearing tumors were treated with Ad-Cp-TK and GCV treatments. Results showed that Cox-2 promoter possessed high transcriptional activity in a tumor-specific manner. All colorectal cancer cells were detected CAR-positive. In vitro cytotoxic and colony formation assays showed that colorectal cancer cells infected with Ad-Cp-TK became more sensitive to GCV but the sensitivity of normal cells infected with Ad-Cp-TK to GCV were not altered. Moreover, the Ad-Cp-TK system combined with GCV treatment could significantly induce apoptosis of colorectal cancer cells but not normal intestinal epithelial cells. Furthermore, this system also significantly inhibited the growth of subcutaneous tumors and prolonged survival of mice. Thus, adenovirus primary receptor was positive in colorectal cancer cells and adenovirus

  7. Thin-section computed tomography findings in 104 immunocompetent patients with adenovirus pneumonia.

    PubMed

    Park, Chan Kue; Kwon, Hoon; Park, Ji Young

    2017-08-01

    Background To date, there has been no computed tomography (CT) evaluation of adenovirus pneumonia in a large number of immunocompetent patients. Purpose To describe the thin-section CT findings of immunocompetent patients with adenovirus pneumonia. Material and Methods We prospectively enrolled 104 patients with adenovirus pneumonia from a military hospital. CT scans of each patient were retrospectively and independently assessed by two radiologists for the presence of abnormalities, laterality and zonal predominance of the parenchymal abnormalities, and dominant imaging patterns and their anatomic distributions. Results CT findings included consolidation (n = 92), ground-glass opacity (GGO; n = 82), septal thickening (n = 34), nodules (n = 46), bronchial wall thickening (n = 32), pleural effusion (n = 16), and lymphadenopathy (n = 3). Eighty-four patients (81%) exhibited unilateral parenchymal abnormalities and 57 (57%) exhibited lower lung zone abnormalities. The most frequently dominant CT pattern was consolidation with surrounding GGO (n = 50), with subpleural (70%) and peribronchovascular (94%) distributions. Consolidation-the second-most common pattern (n = 33)-also exhibited subpleural (79%) and peribronchovascular (97%) distributions. The dominant nodule pattern (n = 14) exhibited mixed (64%) and peribronchovascular (100%) distributions. A dominant GGO pattern was only observed in four patients; none had central distribution. Conclusion Although the manifestations of adenovirus pneumonia on CT are varied, we found the most frequent pattern was consolidation with or without surrounding GGO, with subpleural and peribronchovascular distributions. Parenchymal abnormalities were predominantly unilateral and located in the lower lung zone. If dominant consolidation findings are present in immunocompetent patients during the early stages, adenovirus pneumonia should be considered.

  8. Mechanistic Aspects of Adenovirus Serotype 2 Inactivation with Free Chlorine ▿ †

    PubMed Central

    Page, Martin A.; Shisler, Joanna L.; Mariñas, Benito J.

    2010-01-01

    Free chlorine is an effective disinfectant for controlling adenoviruses in drinking water, but little is known about the underlying inactivation mechanisms. The objective of this study was to elucidate the molecular components of adenovirus type 2 (Ad2) targeted by free chlorine during the inactivation process. The effects of free chlorine treatment on several Ad2 molecular components and associated life cycle events were compared to its effect on the ability of adenovirus to complete its life cycle, i.e., viability. Free chlorine treatment of Ad2 virions did not impair their ability to interact with monoclonal antibodies specific for hexon and fiber proteins of the Ad2 capsid, as measured by enzyme-linked immunosorbent assays, nor did it impair their interaction with recombinant, purified Coxsackie-adenovirus receptor (CAR) proteins in vitro. Free chlorine-treated Ad2 virions also retained their ability to bind to CAR receptors on A549 cell monolayers, despite being unable to form plaques, suggesting that free chlorine inactivates Ad2 by inhibiting a postbinding event of the Ad2 life cycle. DNA isolated from Ad2 virions that had been inactivated by free chlorine was able to be amplified by PCR, indicating that genome damage was not the cause of inactivation. However, inactivated Ad2 virions were unable to express E1A viral proteins during infection of A549 host cells, as measured by using immunoblotting. Collectively, these results indicate that free chlorine inactivates adenovirus by damaging proteins that govern life cycle processes occurring after host cell attachment, such as endocytosis, endosomal lysis, or nuclear delivery. PMID:20305026

  9. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    PubMed

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Protection of Nonhuman Primates Against Two Species of Ebola Virus Infection With a Single Complex Adenovirus Vector

    DTIC Science & Technology

    2010-04-01

    glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus -based vector (CAdVax). We evaluated our vaccine ...recombinant complex adenovirus vaccine (CAdVax) system, which provides multivalent protection of NHPs against multiple species of filoviruses (33). The...CAdVax vaccine platform is based on a complex, replication-defective adenovirus 5 (Ad5) vector (28–30, 37, 38) that allows for the incorporation of

  11. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se; Chen, Maoshan; Lind, Sara Bergström

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phasemore » and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.« less

  12. Encoding of human action in Broca's area.

    PubMed

    Fazio, Patrik; Cantagallo, Anna; Craighero, Laila; D'Ausilio, Alessandro; Roy, Alice C; Pozzo, Thierry; Calzolari, Ferdinando; Granieri, Enrico; Fadiga, Luciano

    2009-07-01

    Broca's area has been considered, for over a century, as the brain centre responsible for speech production. Modern neuroimaging and neuropsychological evidence have suggested a wider functional role is played by this area. In addition to the evidence that it is involved in syntactical analysis, mathematical calculation and music processing, it has recently been shown that Broca's area may play some role in language comprehension and, more generally, in understanding actions of other individuals. As shown by functional magnetic resonance imaging, Broca's area is one of the cortical areas activated by hand/mouth action observation and it has been proposed that it may form a crucial node of a human mirror-neuron system. If, on the one hand, neuroimaging studies use a correlational approach which cannot offer a final proof for such claims, available neuropsychological data fail to offer a conclusive demonstration for two main reasons: (i) they use tasks taxing both language and action systems; and (ii) they rarely consider the possibility that Broca's aphasics may also be affected by some form of apraxia. We administered a novel action comprehension test--with almost no linguistic requirements--on selected frontal aphasic patients lacking apraxic symptoms. Patients, as well as matched controls, were shown short movies of human actions or of physical events. Their task consisted of ordering, in a temporal sequence, four pictures taken from each movie and randomly presented on the computer screen. Patient's performance showed a specific dissociation in their ability to re-order pictures of human actions (impaired) with respect to physical events (spared). Our study provides a demonstration that frontal aphasics, not affected by apraxia, are specifically impaired in their capability to correctly encode observed human actions.

  13. Serological and Molecular Biological Studies of Parvovirus B19, Coxsackie B Viruses, and Adenoviruses as Potential Cardiotropic Viruses in Bulgaria.

    PubMed

    Ivanova, Stefka Kr; Angelova, Svetla G; Stoyanova, Asya P; Georgieva, Irina L; Nikolaeva-Glomb, Lubomira K; Mihneva, Zafira G; Korsun, Neli St

    2016-12-01

    Inflammatory diseases of the heart (myocarditis, pericarditis) are commonly caused by viruses. Among the human cardiotropic viruses, parvovirus B19, Coxsackie B viruses, and adenoviruses play a leading role. The aim of the present study was to determine the presumptive causative role of parvovirus B19, Coxsackie B viruses, and adenoviruses in the development of myocarditis, pericarditis and dilated cardiomyopathy by demonstrating the presence of specific antiviral antibodies or viral DNA in patients' serum samples. We tested serum samples collected between 2010 and 2014 from 235 patients with myocarditis (n=108), pericarditis (n=79), myopericarditis (n=19), dilated cardiomyopathy (n=7), and fever of unknown origin accompanied by cardiac complaints (n=22). The mean age of patients with the standard deviation was 33 ± 18 years. Serological and molecular methods (ELISA for specific IgM/IgG antibodies to parvovirus B19 and IgM antibodies to Coxsackie B viruses and adenoviruses, and PCR for detection of parvovirus B19 in serum samples, respectively) were used in the study. Of all tested 235 serum samples, in 60 (25.5%) positive results for at least one of the three tested viruses were detected. Forty out of these 235 serum samples (17%) were Coxsackie B virus IgM positive. They were found in 17% (18/108) of the patients with myocarditis, in 15% (12/79) of those with pericarditis, in 16% (3/19) of those with myopericarditis and in 32% (7/22) in those with fever of unknown origin. The 63 Coxsackie B virus IgM negative patient's serum samples were tested by ELISA for presence of adenovirus IgM antibodies. Such were found in 4 patients with pericarditis and in 2 patients with fever of unknown origin. Every IgM negative sample (n=189) for Coxsackie B and adenovirus was further tested by ELISA for parvovirus B19 IgM/IgG antibodies. B19-IgM antibodies were detected in 14 patients (7.4%). The percentages for B19-IgM antibodies was 8% (7/90), 5% (3/63) and 31% (4/13) in the

  14. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands.

    PubMed

    O'Connell, B C; Xu, T; Walsh, T J; Sein, T; Mastrangeli, A; Crystal, R G; Oppenheim, F G; Baum, B J

    1996-12-01

    Mucosal candidiasis, the most common opportunistic fungal infection in human immunodeficiency virus (HIV)-infected patients, is an early sign of clinically overt acquired immunodeficiency syndrome (AIDS) and an important cause of morbidity, particularly in HIV-infected children. The appearance of azole-resistant strains of Candida albicans had made clinical management of candidiasis increasingly difficult. We propose a novel approach to the management of candidal infections that involves the use of naturally occurring antifungal proteins, such as the histatins. Histatins are a family of small proteins that are secreted in human saliva. We have constructed recombinant adenovirus vectors that contain the histatin 3 cDNA. These vectors are capable of directing the expression of histatin 3 in the saliva of rats at up to 1,045 micrograms/ml, well above the levels found in normal human saliva. The adenovirus-directed histatin demonstrated a 90% candidacidal effect in the timed-kill assay against both fluconazole-susceptible and fluconazole-resistant strains of C. albicans and inhibited germination by 45% in the same strains. These studies suggest that a gene transfer approach to overexpress naturally occurring antifungal proteins may be useful in the management of mucosal candidiasis.

  15. Genomic and bioinformatics analyses of HAdV-4vac and HAdV-7vac, two human adenovirus (HAdV) strains that constituted original prophylaxis against HAdV-related acute respiratory disease, a reemerging epidemic disease.

    PubMed

    Purkayastha, Anjan; Su, Jing; McGraw, John; Ditty, Susan E; Hadfield, Ted L; Seto, Jason; Russell, Kevin L; Tibbetts, Clark; Seto, Donald

    2005-07-01

    Vaccine strains of human adenovirus serotypes 4 and 7 (HAdV-4vac and HAdV-7vac) have been used successfully to prevent adenovirus-related acute respiratory disease outbreaks. The genomes of these two vaccine strains have been sequenced, annotated, and compared with their prototype equivalents with the goals of understanding their genomes for molecular diagnostics applications, vaccine redevelopment, and HAdV pathoepidemiology. These reference genomes are archived in GenBank as HAdV-4vac (35,994 bp; AY594254) and HAdV-7vac (35,240 bp; AY594256). Bioinformatics and comparative whole-genome analyses with their recently reported and archived prototype genomes reveal six mismatches and four insertions-deletions (indels) between the HAdV-4 prototype and vaccine strains, in contrast to the 611 mismatches and 130 indels between the HAdV-7 prototype and vaccine strains. Annotation reveals that the HAdV-4vac and HAdV-7vac genomes contain 51 and 50 coding units, respectively. Neither vaccine strain appears to be attenuated for virulence based on bioinformatics analyses. There is evidence of genome recombination, as the inverted terminal repeat of HAdV-4vac is initially identical to that of species C whereas the prototype is identical to species B1. These vaccine reference sequences yield unique genome signatures for molecular diagnostics. As a molecular forensics application, these references identify the circulating and problematic 1950s era field strains as the original HAdV-4 prototype and the Greider prototype, from which the vaccines are derived. Thus, they are useful for genomic comparisons to current epidemic and reemerging field strains, as well as leading to an understanding of pathoepidemiology among the human adenoviruses.

  16. Genomic and Bioinformatics Analyses of HAdV-4vac and HAdV-7vac, Two Human Adenovirus (HAdV) Strains That Constituted Original Prophylaxis against HAdV-Related Acute Respiratory Disease, a Reemerging Epidemic Disease

    PubMed Central

    Purkayastha, Anjan; Su, Jing; McGraw, John; Ditty, Susan E.; Hadfield, Ted L.; Seto, Jason; Russell, Kevin L.; Tibbetts, Clark; Seto, Donald

    2005-01-01

    Vaccine strains of human adenovirus serotypes 4 and 7 (HAdV-4vac and HAdV-7vac) have been used successfully to prevent adenovirus-related acute respiratory disease outbreaks. The genomes of these two vaccine strains have been sequenced, annotated, and compared with their prototype equivalents with the goals of understanding their genomes for molecular diagnostics applications, vaccine redevelopment, and HAdV pathoepidemiology. These reference genomes are archived in GenBank as HAdV-4vac (35,994 bp; AY594254) and HAdV-7vac (35,240 bp; AY594256). Bioinformatics and comparative whole-genome analyses with their recently reported and archived prototype genomes reveal six mismatches and four insertions-deletions (indels) between the HAdV-4 prototype and vaccine strains, in contrast to the 611 mismatches and 130 indels between the HAdV-7 prototype and vaccine strains. Annotation reveals that the HAdV-4vac and HAdV-7vac genomes contain 51 and 50 coding units, respectively. Neither vaccine strain appears to be attenuated for virulence based on bioinformatics analyses. There is evidence of genome recombination, as the inverted terminal repeat of HAdV-4vac is initially identical to that of species C whereas the prototype is identical to species B1. These vaccine reference sequences yield unique genome signatures for molecular diagnostics. As a molecular forensics application, these references identify the circulating and problematic 1950s era field strains as the original HAdV-4 prototype and the Greider prototype, from which the vaccines are derived. Thus, they are useful for genomic comparisons to current epidemic and reemerging field strains, as well as leading to an understanding of pathoepidemiology among the human adenoviruses. PMID:16000418

  17. Selective eradication of cancer cells by delivery of adenovirus-based toxins

    PubMed Central

    Shapira, Shiran; Shapira, Assaf; Kazanov, Diana; Hevroni, Gil; Kraus, Sarah; Arber, Nadir

    2017-01-01

    Background and objective KRAS mutation is an early event in colorectal cancer carcinogenesis. We previously reported that a recombinant adenovirus, carrying a pro-apoptotic gene (PUMA) under the regulation of Ets/AP1 (RAS-responsive elements) suppressed the growth of cancer cells harboring hyperactive KRAS. We propose to exploit the hyperactive RAS pathway, rather than to inhibit it as was previously tried and failed repeatedly. We aim to improve efficacy by substituting PUMA with a more potent toxin, the bacterial MazF-MazE toxin-antitoxin system, under a very tight regulation. Results A massive cell death, in a dose-dependent manner, reaching 73% at MOI 10 was seen in KRAS cells as compared to 22% in WT cells. Increase expression of MazE (the anti-toxin) protected normal cells from any possible internal or external leakage of the system and confirmed the selectivity, specificity and safety of the targeting system. Considerable tumor shrinkage (61%) was demonstrated in vivo following MazEF-encoding adenovirus treatment without any side effects. Design Efficient vectors for cancer-directed gene delivery were constructed; “pAdEasy-Py4-SV40mP-mCherry-MazF”“pAdEasy-Py4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP“,“pAdEasy-ΔPy4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP “and “pAdEasy-mCherry”. Virus particles were produced and their potency was tested. Cell death was measured qualitatively by using the fluorescent microscopy and colony formation assay, and was quantified by MTT. FACS analysis using annexin V and RedDot2 dyes was performed for measuring apoptotic and dead cells, respectively. In vivo tumor formation was measured in a xenograft model. Conclusions A proof of concept for a novel cancer safe and effective gene therapy exploiting an aberrant hyperactive pathway is achievable. PMID:28445136

  18. Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Miwa, Shinji; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Urata, Yasuo; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model. PMID:27689331

  19. Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further evidence of a reptilian origin for the atadenoviruses.

    PubMed

    Wellehan, James F X; Johnson, April J; Harrach, Balázs; Benkö, Mária; Pessier, Allan P; Johnson, Calvin M; Garner, Michael M; Childress, April; Jacobson, Elliott R

    2004-12-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phylogenetic analysis indicated that these viruses belong to the genus Atadenovirus, supporting the reptilian origin of atadenoviruses. This PCR method may be useful for obtaining templates for initial sequencing of novel adenoviruses.

  20. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    USDA-ARS?s Scientific Manuscript database

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  1. Adenovirus 36 and Obesity: An Overview.

    PubMed

    Ponterio, Eleonora; Gnessi, Lucio

    2015-07-08

    There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36). Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv) mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed.

  2. Adenovirus 36 and Obesity: An Overview

    PubMed Central

    Ponterio, Eleonora; Gnessi, Lucio

    2015-01-01

    There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36). Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv) mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed. PMID:26184280

  3. Evaluation of recombinant adenovirus vaccines based on glycoprotein D and truncated UL25 against herpes simplex virus type 2 in mice.

    PubMed

    Liu, Wei; Zhou, Yan; Wang, Ziyan; Zhang, Zeqiang; Wang, Qizhi; Su, Weiheng; Chen, Yan; Zhang, Yan; Gao, Feng; Jiang, Chunlai; Kong, Wei

    2017-05-01

    The high prevalence of herpes simplex virus 2 (HSV-2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T-cell responses to control viral infection and transmission. We designed rAd-gD2, rAd-gD2ΔUL25, and rAd-ΔUL25 to investigate whether recombinant replication-defective adenoviruses vaccine could induce specific T-cell responses and protect mice against intravaginal HSV-2 challenge compared with FI-HSV-2. In the present study, recombinant adenovirus-based HSV-2 showed higher reductions in mortality and stronger antigen-specific T-cell responses compared with FI-HSV-2 and the severity of genital lesions in mice immunized with rAd-gD2ΔUL25 was significantly decreased by eliciting IFN-γ-secreting T-cell responses compared with rAd-gD2 and rAd-ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV-2 infection following intravaginal challenge in mice. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  4. The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway

    PubMed Central

    Mui, Melissa Z.; Zhou, Yiwang; Blanchette, Paola; Chughtai, Naila; Knight, Jennifer F.; Gruosso, Tina; Papadakis, Andreas I.; Huang, Sidong; Park, Morag; Gingras, Anne-Claude

    2015-01-01

    ABSTRACT When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2AB55 phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2AB55 subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2AB55 and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been

  5. [The potential contribution of adenovirus 36 to the development of obesity].

    PubMed

    Villavicencio, Francisca; Valladares, Macarena

    2017-08-01

    The evidence of the last 20 years shows a link between viral infections and obesity in animals and humans. There are five adenovirus which have been associated with development of obesity in animals. SMAM-1 virus was the first studied in humans associated with obesity. There is compelling evidence that Ad-36 virus could contribute to the development of obesity in humans and it is related with body mass index (BMI). This manuscript reviews the association between Ad-36 and the other four virus infections with obesity. An electronic search of articles in the databases PubMed and Scielo, with use of key words: obesity, infection, adipose tissue, Ad-36, 3T3-L1 was performed. The search was restricted "human" and "animals". The importance of the relationship between virus infections and obesity has increased over the past two decades. Ad-36 shows more compelling evidence in humans. There are reports involving this virus in the enhancement of adipogenesis, adipocyte differentiation, a lower secretion of leptin and an increased insulin sensitivity. Future work should focus in larger cohort studies to confirm this association, which explains the global obesity epidemic from a new perspective.

  6. Prevalence, quantification and typing of adenoviruses detected in river and treated drinking water in South Africa.

    PubMed

    van Heerden, J; Ehlers, M M; Heim, A; Grabow, W O K

    2005-01-01

    Human adenoviruses (HAds), of which there are 51 serotypes, are associated with gastrointestinal, respiratory, urinary tract and eye infections. The importance of water in the transmission of HAds and the potential health risks constituted by HAds in these environments are widely recognized. Adenoviruses have not previously been quantified in river and treated drinking water samples. In this study, HAds in river water and treated drinking water sources in South Africa were detected, quantified and typed. Adenoviruses were recovered from the water samples using a glass wool adsorption-elution method followed by polyethylene glycol/NaCl precipitation for secondary concentration. The sensitivity and specificity of two nested PCR methods were compared for detection of HAds in the water samples. Over a 1-year period (June 2002 to July 2003), HAds were detected in 5.32% (10/188) of the treated drinking water and 22.22% (10/45) of river water samples using the conventional nested PCR method. The HAds detected in the water samples were quantified using a real-time PCR method. The original treated drinking water and river water samples had an estimate of less than one copy per litre of HAd DNA present. The hexon-PCR products used for typing HAds were directly sequenced or cloned into plasmids before sequencing. In treated drinking water samples, species D HAds predominated. In addition, adenovirus serotypes 2, 40 and 41 were each detected in three different treated drinking water samples. Most (70%) of the HAds detected in river water samples analysed were enteric HAds (serotypes 40 and 41). One HAd serotype 2 and two species D HAds were detected in the river water. Adenoviruses detected in river and treated drinking water samples were successfully quantified and typed. The detection of HAds in drinking water supplies treated and disinfected by internationally recommended methods, and which conform to quality limits for indicator bacteria, warrants an investigation of the

  7. Detection and Analysis of Six Lizard Adenoviruses by Consensus Primer PCR Provides Further Evidence of a Reptilian Origin for the Atadenoviruses

    PubMed Central

    Wellehan, James F. X.; Johnson, April J.; Harrach, Balázs; Benkö, Mária; Pessier, Allan P.; Johnson, Calvin M.; Garner, Michael M.; Childress, April; Jacobson, Elliott R.

    2004-01-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phylogenetic analysis indicated that these viruses belong to the genus Atadenovirus, supporting the reptilian origin of atadenoviruses. This PCR method may be useful for obtaining templates for initial sequencing of novel adenoviruses. PMID:15542689

  8. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation

    PubMed Central

    Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.

    2017-01-01

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  9. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation.

    PubMed

    Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J

    2017-02-28

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  10. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress

    PubMed Central

    Ritchey, Maureen; McCullough, Andrew M.; Ranganath, Charan; Yonelinas, Andrew P.

    2016-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding “tags” for determining the impact of consolidation manipulations on memory. Here, we used fMRI in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. PMID:27774683

  11. Encoder: A Connectionist Model of How Learning to Visually Encode Fixated Text Images Improves Reading Fluency

    ERIC Educational Resources Information Center

    Martin, Gale L.

    2004-01-01

    This article proposes that visual encoding learning improves reading fluency by widening the span over which letters are recognized from a fixated text image so that fewer fixations are needed to cover a text line. Encoder is a connectionist model that learns to convert images like the fixated text images human readers encode into the…

  12. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  13. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays.

    PubMed

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S

    2013-02-19

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

  14. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  15. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-05

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.

  16. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  17. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    PubMed Central

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  18. Adenovirus Type 7 Pneumonia in Children Who Died from Measles-Associated Pneumonia, Hanoi, Vietnam, 2014.

    PubMed

    Hai, Le Thanh; Thach, Hoang Ngoc; Tuan, Ta Anh; Nam, Dao Huu; Dien, Tran Minh; Sato, Yuko; Kumasaka, Toshio; Suzuki, Tadaki; Hanaoka, Nozomu; Fujimoto, Tsuguto; Katano, Harutaka; Hasegawa, Hideki; Kawachi, Shoji; Nakajima, Noriko

    2016-04-01

    During a 2014 measles outbreak in Vietnam, postmortem pathologic examination of hospitalized children who died showed that adenovirus type 7 pneumonia was a contributory cause of death in children with measles-associated immune suppression. Adenovirus type 7 pneumonia should be recognized as a major cause of secondary infection after measles.

  19. The dynamics of coiled bodies in the nucleus of adenovirus-infected cells.

    PubMed Central

    Rebelo, L; Almeida, F; Ramos, C; Bohmann, K; Lamond, A I; Carmo-Fonseca, M

    1996-01-01

    The coiled body is a specific intranuclear structure of unknown function that is enriched in splicing small nuclear ribonucleoproteins (snRNPs). Because adenoviruses make use of the host cell-splicing machinery and subvert the normal subnuclear organization, we initially decided to investigate the effect of adenovirus infection on the coiled body. The results indicate that adenovirus infection induces the disassembly of coiled bodies and that this effect is probably secondary to the block of host protein synthesis induced by the virus. Furthermore, coiled bodies are shown to be very labile structures, with a half-life of approximately 2 h after treatment of HeLa cells with protein synthesis inhibitors. After blocking of protein synthesis, p80 coilin was detected in numerous microfoci that do not concentrate snRNP. These structures may represent precursor forms of the coiled body, which goes through a rapid cycle of assembly/disassembly in the nucleus and requires ongoing protein synthesis to reassemble. Images PMID:8862526

  20. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less

  1. Structures of the Oligosaccharides of the Glycoprotein Coded by Early Region E3 of Adenovirus 2

    PubMed Central

    Kornfeld, Rosalind; Wold, William S. M.

    1981-01-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein. Images PMID:7321093

  2. Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2.

    PubMed

    Kornfeld, R; Wold, W S

    1981-11-01

    Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-(3)H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-beta-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man(9)GlcNAc and Man(8)GlcNAc and small amounts of Man(7)GlcNAc and Man(6)GlcNAc. The pulse-chase sample had predominantly Man(8)GlcNAc and much less Man(9)GlcNAc, indicating that processing of the Man(9)GlcNAc to Man(8)GlcNAc had occurred during the chase period. Thus, Man(8)GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with alpha-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man(9)GlcNAc were identical to those of the lipid-linked Glc(3)Man(9)GlcNAc(2) donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell

  3. Evolution and Cryo-electron Microscopy Capsid Structure of a North American Bat Adenovirus and Its Relationship to Other Mastadenoviruses.

    PubMed

    Hackenbrack, Nicole; Rogers, Matthew B; Ashley, Robert E; Keel, M Kevin; Kubiski, Steven V; Bryan, John A; Ghedin, Elodie; Holmes, Edward C; Hafenstein, Susan L; Allison, Andrew B

    2017-01-15

    Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV. Although many adenoviruses are host specific and likely codiverged with their hosts over millions of years, other adenoviruses appear to have emerged through successful cross-species transmission events on more recent time scales. The wide geographic distribution and genetic diversity of adenoviruses in bats and their close phylogenetic relationship to Canine mastadenovirus A (CAdV A) has raised important questions about how CAdV A, and possibly other mammalian adenoviruses, may have emerged

  4. Molecular typing and epidemiology profiles of human adenovirus infection among paediatric patients with severe acute respiratory infection in China.

    PubMed

    Li, Yamin; Zhou, Weimin; Zhao, Yanjie; Wang, Yanqun; Xie, Zhengde; Lou, Yongliang; Tan, Wenjie

    2015-01-01

    Human adenoviruses (HAdVs) have been recognised as pathogens that cause a broad spectrum of diseases. The studies on HAdV infection among children with severe acute respiratory infection (SARI) are limited. To investigate the prevalence, epidemiology, and genotype of HAdV among children with SARI in China. Nasopharyngeal aspirates (NPAs) or induced sputum (IS) was collected from hospitalised children with SARIs in Beijing (representing Northern China; n = 259) and Zhejiang Province (representing Eastern China; n = 293) from 2007 to 2010. The prevalence of HAdV was screened by polymerase chain reaction (PCR), followed by sequence typing of PCR fragments that targeted the second half of the hexon gene. In addition, co-infection with other human respiratory viruses, related epidemiological profiles and clinical presentations were investigated. In total, 76 (13.8%) of 552 SARI patients were positive for HAdV, and the infection rates of HAdV in Northern and Eastern China were 20.1% (n = 52) and 8.2% (n = 24), respectively. HAdV co-infection with other respiratory viruses was frequent (infection rates: Northern China, 90.4%; Eastern China, 70.8%). The peak seasons for HAdV-B infection was winter and spring. Additionally, members of multiple species (Human mastadenovirus B, C, D and E) were circulating among paediatric patients with SARI, of which HAdV-B (34/52; 65.4%) and HAdV-C (20/24, 83.3%) were the most predominant in Northern and Eastern China, respectively. These findings provide a benchmark for future epidemiology and prevention strategies for HAdV.

  5. Frequent Detection of Human Adenovirus from the Lower Gastrointestinal Tract in Men Who Have Sex with Men

    PubMed Central

    Curlin, Marcel E.; Huang, Meei-Li; Lu, Xiaoyan; Celum, Connie L.; Sanchez, Jorge; Selke, Stacy; Baeten, Jared M.; Zuckerman, Richard A.; Erdman, Dean D.; Corey, Lawrence

    2010-01-01

    Background The association between baseline seropositivity to human adenovirus (HAdV) type 5 and increased HIV acquisition in the Step HIV Vaccine Study has raised questions concerning frequency of acquired and/or persistent Adenovirus infections among adults at high risk of HIV-1 infection. Methodology To evaluate the frequency and pattern of HAdV shedding from the lower GI tract, we retrospectively tested rectal swabs for HAdVs in a cohort of 20 HSV-2 positive HIV-positive Peruvian men who have sex with men (MSM) undergoing rectal swabbing three times/week for 18 consecutive weeks, in a prospective study of HSV-2 suppression in HIV infection. Viral DNA was extracted and amplified using a sensitive multiplex PCR assay that detects all currently recognized HAdV types. Molecular typing of viruses was performed on selected samples by hexon gene sequencing. Baseline neutralizing antibody titers to HAdVs −5, −26, −35 and −48 were also assessed. Principal Findings 15/20 individuals had HAdV detected during follow up. The median frequency of HAdV detection was 30% of samples (range 2.0% to 64.7%). HAdV shedding typically occurred on consecutive days in clustered episodes lasting a median of 4 days (range 1 to 9 days) separated by periods without shedding, suggesting frequent new infections or reactivation of latent infections over time. 8 of the 15 shedders had more than one type detected in follow-up. 20 HAdV types from species B, C, and D were identified, including HAdV-5, −26 and −48, HAdV types under development as potential vaccine candidates. 14/20 subjects were seropositive for HAdV-5; 15/20 for HAdV-26; 3/20 for HAdV-35; and 2/20 for HAdV-48. HAdV shedding did not correlate with CD4 count, plasma HIV-1 viral load, or titers to HAdV-5 or HAdV-35. The sole individual with HAdV-5 shedding was HAdV-5 seropositive. Conclusions HAdV shedding was highly prevalent and diverse, including types presently under consideration as HIV vaccine vectors. Subclinical

  6. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles.

    PubMed

    Wang, Jishi; Ma, Dan; Li, Yan; Yang, Yuan; Hu, Xiaoyan; Zhang, Wei; Fang, Qin

    2014-03-01

    The aim of this study was to explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs) as intermediate carriers on targeting of P450 gene recombinant adenovirus to malignant melanoma in vitro and in vivo. BMSCs were transduced with pAd5-CMV-CYP2E1 recombinant adenovirus. BMSC migration was detected by Transwell plates in vitro and by superparamagnetic iron oxide particles in vivo. Growth-inhibitory effect and apoptosis were determined by MTT and immunity fluorescence staining. Anticancer effects were examined by a human melanoma nude mouse model in vivo. BMSCs moved toward A375 cells in Transwell plates. Numerous superparamagnetic MSCs labeled with iron oxide were identified in the peripheral areas of the tumor, but were detected in primary organs by Prussian blue staining. BMSC-CYP2E1 cells mediated a bystander killing effect on CYP2E1-negative A375 cells during coculture (IC50 values for A375 cells cocultured with BMSC-EGFP and BMSC-CYP2E1 were 4.08 and 2.68 mmol/l, respectively). Intravenously injecting CYP2E1 recombinant adenovirus-loaded BMSCs in mice with established human melanoma managed to target the tumor site, and BMSCs with forced expression of CYP2E1 inhibited the growth of malignant cells in vivo by activating 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. BMSCs may serve as a platform of P450 gene-directed enzyme prodrug therapy for the delivery of chemotherapeutic prodrugs to tumors.

  7. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

  8. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting

    PubMed Central

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J. Michael; Kanerva, Anna; Hemminki, Akseli

    2016-01-01

    ABSTRACT Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8+ T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  9. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo.

    PubMed Central

    Kass-Eisler, A; Falck-Pedersen, E; Alvira, M; Rivera, J; Buttrick, P M; Wittenberg, B A; Cipriani, L; Leinwand, L A

    1993-01-01

    To optimize the use of modified adenoviruses as vectors for gene delivery to the myocardium, we have characterized infection of cultured fetal and adult rat cardiac myocytes in vitro and of adult cardiac myocytes in vivo by using a replication-defective adenovirus carrying the chloramphenicol acetyltransferase (CAT) reporter gene driven by the cytomegalovirus promoter (AdCMVCATgD). In vitro, virtually all fetal or adult cardiocytes express the CAT gene when infected with 1 plaque-forming unit of virus per cell. CAT enzymatic activity can be detected in these cells as early as 4 hr after infection, reaching near-maximal levels at 48 hr. In fetal cells, CAT expression was maintained without a loss in activity for at least 1 week. Using in vitro studies as a guide, we introduced the AdCMVCATgD virus directly into adult rat myocardium and compared the expression results obtained from virus injection with those obtained by direct injection of pAdCMVCATgD plasmid DNA. The amount of CAT activity resulting from adenovirus infection of the myocardium was orders of magnitude higher than that seen from DNA injection and was proportional to the amount of input virus. Immunostaining for CAT protein in cardiac tissue sections following adenovirus injection demonstrated large numbers of positive cells, reaching nearly 100% of the myocytes in many regions of the heart. Expression of genes introduced by adenovirus peaked at 5 days but was still detectable 55 days following infection. Adenoviruses are therefore a very useful tool for high-efficiency gene transfer into the cardiovascular system. Images Fig. 1 Fig. 5 PMID:8265580

  10. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  11. Developing Novel Oncolytic Adenoviruses through Bioselection

    PubMed Central

    Yan, Wen; Kitzes, Galila; Dormishian, Farid; Hawkins, Lynda; Sampson-Johannes, Adam; Watanabe, Josh; Holt, Jenny; Lee, Vivian; Dubensky, Thomas; Fattaey, Ali; Hermiston, Terry; Balmain, Allan; Shen, Yuqiao

    2003-01-01

    Mutants of human adenovirus 5 (Ad5) with enhanced oncolytic activity were isolated by using a procedure termed bioselection. Two mutants, ONYX-201 and ONYX-203, were plaque purified from a pool of randomly mutagenized Ad5 that was repeatedly passaged in the human colorectal cancer cell line HT29, and they were subsequently characterized. ONYX-201 and ONYX-203 replicated more rapidly in HT29 cells than wild-type Ad5, and they lysed HT29 cells up to 1,000-fold more efficiently. The difference was most profound when cells were infected at a relatively low multiplicity of infection, presumably due to the compounding effects of multiple rounds of infection. This enhanced cytolytic activity was observed not only in HT29 cells but also in many other human cancer cell lines tested. In contrast, the cytotoxicity of the bioselected mutants in a number of normal primary human cells was similar to that of wild-type Ad5, thus enhancing the therapeutic index (cytotoxicity in tumor cells versus that in normal cells) of these oncolytic agents. Both ONYX-201 and -203 contain seven single-base-pair mutations when compared with Ad5, four of which were common between ONYX-201 and -203. The mutation at nucleotide 8350, shared by both mutant viruses, was shown to be essential for the observed phenotypes. This mutation was mapped to the i-leader region of the major late transcription unit, resulting in the truncation of 21 amino acids from the C terminus of the i-leader protein. This work demonstrates that bioselection is a powerful tool for developing novel tumor-selective oncolytic viruses. Other potential applications of this technology are discussed. PMID:12552003

  12. Disrupted adenovirus-based vaccines against small addictive molecules circumvent anti-adenovirus immunity.

    PubMed

    De, Bishnu P; Pagovich, Odelya E; Hicks, Martin J; Rosenberg, Jonathan B; Moreno, Amira Y; Janda, Kim D; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2013-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1(-)E3(-) Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines.

  13. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    PubMed Central

    De, Bishnu P.; Pagovich, Odelya E.; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F.; Worgall, Stefan; Kaminsky, Stephen M.; Sondhi, Dolan

    2013-01-01

    Abstract Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines. PMID:23140508

  14. Corrective GUSB transfer to the canine mucopolysaccharidosis VII cornea using a helper-dependent canine adenovirus vector

    PubMed Central

    Serratrice, Nicolas; Cubizolle, Aurelie; Ibanes, Sandy; Mestre-Francés, Nadine; Bayo-Puxan, Neus; Creyssels, Sophie; Gennetier, Aurelie; Bernex, Florence; Verdier, Jean-Michel; Haskins, Mark E.; Couderc, Guilhem; Malecaze, Francois; Kalatzis, Vasiliki; Kremer, Eric J.

    2015-01-01

    Corneal transparency is maintained, in part, by specialized fibroblasts called keratocytes, which reside in the fibrous lamellae of the stroma. Corneal clouding, a condition that impairs visual acuity, is associated with numerous diseases, including mucopolysaccharidosis (MPS) type VII. MPS VII is due to deficiency in β-glucuronidase (β-glu) enzymatic activity, which leads to accumulation of glycosaminoglycans (GAGs), and secondary accumulation of gangliosides. Here, we tested the efficacy of canine adenovirus type 2 (CAV-2) vectors to transduce keratocyte in vivo in mice and nonhuman primates, and ex vivo in dog and human corneal explants. Following efficacy studies, we asked if we could treat corneal clouding by the injection a helper-dependent (HD) CAV-2 vector (HD-RIGIE) harboring the human cDNA coding for β-glu (GUSB) in the canine MPS VII cornea. β-Glu activity, GAG content, and lysosome morphology and physiopathology were analyzed. We found that HD-RIGIE injections efficiently transduced coxsackievirus adenovirus receptor-expressing keratocytes in the four species and, compared to mock-injected controls, improved the pathology in the canine MPS VII cornea. The key criterion to corrective therapy was the steady controlled release of β-glu and its diffusion throughout the collagen-dense stroma. These data support the continued evaluation of HD CAV-2 vectors to treat diseases affecting corneal keratocytes. PMID:24607662

  15. Adenovirus-mediated in utero gene transfer in mice and guinea pigs: tissue distribution of recombinant adenovirus determined by quantitative TaqMan-polymerase chain reaction assay.

    PubMed

    Senoo, M; Matsubara, Y; Fujii, K; Nagasaki, Y; Hiratsuka, M; Kure, S; Uehara, S; Okamura, K; Yajima, A; Narisawa, K

    2000-04-01

    Fetal somatic cell gene therapy could become an attractive solution for some congenital genetic diseases or the disorders which manifest themselves during the fetal period. We performed adenovirus-mediated gene transfer to mice and guinea pig fetuses in utero and evaluated the efficiency of gene transfer by histochemical analysis and a quantitative TaqMan-polymerase chain reaction (TaqMan-PCR) assay. We first injected a replication-deficient recombinant adenovirus containing the Escherichia coli LacZ gene driven by a CAG promoter (AxCALacZ) into pregnant mice through the amniotic space, placenta, or intraperitoneal space of the fetus. Histochemical analysis showed limited transgene expression in fetal tissues. We then administered AxCALacZ to guinea pig fetuses in the late stage of pregnancy through the umbilical vein. The highest beta-galactosidase expression was observed in liver followed by moderate expression in heart, spleen, and adrenal gland. The transgene expression was also present in kidney, intestine, and placenta to a lesser degree. No positively stained cells were observed in lung, muscle, or pancreas except in the vascular endothelium of these organs. Quantitative measurement of recombinant adenoviral DNA by the TaqMan-PCR assay showed that the vast majority of the injected viruses was present in liver. The current study indicated that adenovirus-mediated gene transfer into guinea pig fetus through the umbilical vein is feasible and results in efficient transgene expression in fetal tissues. The experimental procedures using pregnant guinea pigs might serve as a good experimental model for in utero gene transfer. Since our TaqMan-PCR assay detects the LacZ gene, one of the most widely used reporter genes, it may be generally applicable to adenovirus quantification in various gene transfer experiments.

  16. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  17. Epidemic Keratoconjunctivitis Due to the Novel Hexon-Chimeric-Intermediate 22,37/H8 Human Adenovirus

    PubMed Central

    Aoki, Koki; Ishiko, Hiroaki; Konno, Tsunetada; Shimada, Yasushi; Hayashi, Akio; Kaneko, Hisatoshi; Ohguchi, Takeshi; Tagawa, Yoshitsugu; Ohno, Shigeaki; Yamazaki, Shudo

    2008-01-01

    In a 2-month period in 2003, we encountered an outbreak of epidemic keratoconjunctivitis (EKC) in Japan. We detected 67 human adenoviruses (HAdVs) by PCR from eye swabs of patients with EKC at five eye clinics in different parts of Japan. Forty-one of the 67 HAdV DNAs from the swabs were identified as HAdV-37 by phylogenetic analysis using a partial hexon gene sequence. When the restriction patterns of these viral genomes were compared with that of the HAdV-37 prototype strain, one isolate showed a never-before-seen restriction pattern. Within 1 year, we encountered three more EKC cases caused by a genetically identical virus: two nosocomial infections at two different university hospitals and a sporadic infection at an eye clinic. We determined the nucleotide sequences of the full-length hexon and fiber genes of these isolates and compared them to those of the 51 prototype strains. Surprisingly, the sequence of the hexon (ɛ determinant) loop-1 and -2 regions showed the highest nucleotide identity with HAdV-22, a rare EKC isolate. However, the nucleotide sequence of the fiber gene was identical to that of the HAdV-8 prototype strain. 22 We propose that this virus is a new hexon-chimeric intermediate HAdV-22,37/H8, and may be an etiological agent of EKC. PMID:18701656

  18. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus

    PubMed Central

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066

  19. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.

  20. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  1. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911

  2. Cloning and characterization of the human 5,10-methenyltetrahydrofolate synthetase-encoding cDNA.

    PubMed

    Dayan, A; Bertrand, R; Beauchemin, M; Chahla, D; Mamo, A; Filion, M; Skup, D; Massie, B; Jolivet, J

    1995-11-20

    Methenyltetrahydrofolate synthetase (MTHFS) catalyses the obligatory initial metabolic step in the intracellular conversion of 5-formyltetrahydrofolate to other reduced folates. We have isolated and sequenced a human MTHFS cDNA which is 872-bp long and codes for a 203-amino-acid protein of 23,229 Da. Escherichia coli BL21(DE3), transfected with pET11c plasmids containing an open reading frame encoding MTHFS, showed a 100-fold increase in MTHFS activity in bacterial extracts after IPTG induction. Northern blot studies of human tissues determined that the MTHFS mRNA was expressed preferentially in the liver and Southern blot analysis of human genomic DNA suggested the presence of a single-copy gene.

  3. Molecular Typing of Clinical Adenovirus Specimens by an Algorithm which Permits Detection of Adenovirus Coinfections and Intermediate Adenovirus Strains

    PubMed Central

    McCarthy, Troy; Lebeck, Mark G.; Capuano, Ana W.; Schnurr, David P.; Gray, Gregory C.

    2009-01-01

    Background Epidemiological data suggest that clinical outcomes of human adenovirus (HAdV) infection may be influenced by virus serotype, coinfection with multiple strains, or infection with novel intermediate strains. In this report, we propose a clinical algorithm for detecting HAdV coinfection and intermediate strains. Study Design We PCR amplified and sequenced subregions of the hexon and fiber genes of 342 HAdV positive clinical specimens obtained from 14 surveillance laboratories. Sequences were then compared with those from 52 HAdV prototypic strains. HAdV positive specimens that showed nucleotide sequence identity with a corresponding prototype strain were designated as being of that strain. When hexon and fiber gene sequences disagreed, or sequence identity was low, the specimens were further characterized by viral culture, plaque purification, repeat PCR with sequencing, and genome restriction enzyme digest analysis. Results Of the 342 HAdV-positive clinical specimens, 328 (95.9%) were single HAdV strain infections, 12 (3.5%) were coinfections, and 2 (0.6%) had intermediate strains. Coinfected specimens and intermediate HAdV strains considered together were more likely to be associated with severe illness compared to other HAdv-positive specimens (OR=3.8; 95% CI = 1.2–11.9). Conclusions The majority of severe cases of HAdV illness cases occurred among immunocompromised patients. The analytic algorithm we describe here can be used to screen clinical specimens for evidence of HAdV coinfection and novel intermediate HAdV strains. This algorithm may be especially useful in investigating HAdV outbreaks and clusters of unusually severe HAdV disease. PMID:19577957

  4. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the

  5. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  6. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    PubMed

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  7. Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells

    PubMed Central

    Storm, Rickard J.; Persson, B. David; Skalman, Lars Nygård; Frängsmyr, Lars; Lindström, Mona; Rankin, Greg; Lundmark, Richard; Domellöf, Fatima Pedrosa

    2016-01-01

    ABSTRACT Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVβ3, αVβ5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVβ5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, β1, and β4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, β3, or β5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVβ1 and α3β1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and β1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs. IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVβ5 in order to enter nonocular human cells. In this study, we found that αVβ5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin

  8. Biodistribution and Safety Assessment of Bladder Cancer Specific Recombinant Oncolytic Adenovirus in Subcutaneous Xenografts Tumor Model in Nude Mice

    PubMed Central

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-01-01

    Background The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Materials and Method Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific Uroplakin II (UP II) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. Results General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5×108 pfu or higher dose (5×109 pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5×109 pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Conclusions Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5×107 pfu and 5×108 pfu intratumorally injection in mice, without any discernable effects on general health

  9. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice.

    PubMed

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-04-01

    The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific UroplakinII(UPII) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5x10(8) pfu or higher dose (5x10(9) pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5x10(9) pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5x10(7) pfu and 5x10(8) pfu intratumorally injection in mice, without any discernable effects on general health and behavior.

  10. Ebola virus vaccine: benefit and risks of adenovirus-based vectors.

    PubMed

    Mennechet, Franck J D; Tran, Thi Thu Phuong; Eichholz, Karsten; van de Perre, Philippe; Kremer, Eric J

    2015-01-01

    In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.

  11. Increasing the Efficacy of Oncolytic Adenovirus Vectors

    PubMed Central

    Toth, Karoly; Wold, William S. M.

    2010-01-01

    Oncolytic adenovirus (Ad) vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review. PMID:21994711

  12. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  13. Effects of Δ9-tetrahydrocannabinol administration on human encoding and recall memory function: a pharmacological FMRI study.

    PubMed

    Bossong, Matthijs G; Jager, Gerry; van Hell, Hendrika H; Zuurman, Lineke; Jansma, J Martijn; Mehta, Mitul A; van Gerven, Joop M A; Kahn, René S; Ramsey, Nick F

    2012-03-01

    Deficits in memory function are an incapacitating aspect of various psychiatric and neurological disorders. Animal studies have recently provided strong evidence for involvement of the endocannabinoid (eCB) system in memory function. Neuropsychological studies in humans have shown less convincing evidence but suggest that administration of cannabinoid substances affects encoding rather than recall of information. In this study, we examined the effects of perturbation of the eCB system on memory function during both encoding and recall. We performed a pharmacological MRI study with a placebo-controlled, crossover design, investigating the effects of Δ9-tetrahydrocannabinol (THC) inhalation on associative memory-related brain function in 13 healthy volunteers. Performance and brain activation during associative memory were assessed using a pictorial memory task, consisting of separate encoding and recall conditions. Administration of THC caused reductions in activity during encoding in the right insula, the right inferior frontal gyrus, and the left middle occipital gyrus and a network-wide increase in activity during recall, which was most prominent in bilateral cuneus and precuneus. THC administration did not affect task performance, but while during placebo recall activity significantly explained variance in performance, this effect disappeared after THC. These findings suggest eCB involvement in encoding of pictorial information. Increased precuneus activity could reflect impaired recall function, but the absence of THC effects on task performance suggests a compensatory mechanism. These results further emphasize the eCB system as a potential novel target for treatment of memory disorders and a promising target for development of new therapies to reduce memory deficits in humans.

  14. Molecular Epidemiology of Emerging Adenovirus 14 Associated Respiratory Disease in the United States

    DTIC Science & Technology

    2010-01-01

    nucleotides and 99.6% amino acids), including pos- session of a single 3-nucleotide GTG insertion corresponding to amino acid 148 (Ser) that was present in all...trainees: the Adenovirus Surveillance Program, 1966–1971. Am J Epidemiol 1973; 97:187–98. 4. Gray GC, Goswami PR, Malasig MD, et al. Adult adenovirus...facility and tertiary-care hospital. Clin Infect Dis 2001; 32:694–700. 43. Gray GC, McCarthy T, Lebeck MG, et al. Genotype prevalence and risk factors

  15. Identification of Novel Inverted Terminal Repeat (ITR) Deletions of Human Adenovirus (AD) From Infected Host: Virulent Ads Containing Mixed Populations of Genomic Sequences

    DTIC Science & Technology

    2006-11-01

    terminal repetition of adenvirus type 4 DNA. Gene 18:329-334. 20. Van der Veen , J., and J. H. Dijkman . 1962. Association of type 21 adenovirus with acute respiratory illness in military recruits. Am J Hyg 76:149-159.

  16. Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.

    PubMed

    Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang

    2008-05-01

    Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.

  17. ZEB1 limits adenoviral infectability by transcriptionally repressing the Coxsackie virus and Adenovirus Receptor

    PubMed Central

    2011-01-01

    Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9):2088-95) and TGF-β (Cancer Res. 2006 Feb 1;66(3):1648-57) signaling negatively regulate coxsackie virus and adenovirus receptor (CAR) cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT), a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic) and MDA-MB-231 (breast) human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET) characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s) that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal CAR promoter is

  18. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.

    PubMed Central

    Yang, Y; Nunes, F A; Berencsi, K; Furth, E E; Gönczöl, E; Wilson, J M

    1994-01-01

    An important limitation that has emerged in the use of adenoviruses for gene therapy has been loss of recombinant gene expression that occurs concurrent with the development of pathology in the organ expressing the transgene. We have used liver-directed approaches to gene therapy in mice to study mechanisms that underlie the problems with transient expression and pathology that have characterized in vivo applications of first-generation recombinant adenoviruses (i.e., those deleted of E1a and E1b). Our data are consistent with the following hypothesis. Cells harboring the recombinant viral genome express the transgene as desired; however, low-level expression of viral genes also occurs. A virus-specific cellular immune response is stimulated that leads to destruction of the genetically modified hepatocytes, massive hepatitis, and repopulation of the liver with nontransgene-containing hepatocytes. These findings suggest approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes. Images PMID:8183921

  19. [The mechanism of inhibition effect of adenovirus-mediated ING4 on human lung adenocarcinoma xenografts in nude mice].

    PubMed

    Huang, Jinhong; Yang, Jicheng; Ling, Chunhua; Zhao, Daguo; Xie, Yufeng; You, Zhenhua

    2014-02-01

    The inhibitor of growth 4 (ING4) is an important tumor suppressive gene.It has been proven that ING4 could inhibite the proliferation of many tumors. e aim of this study is to investigate the inhibitory effect and anti-cancer mechanism of adenovirus-mediated ING4 gene on SPC-A1 human lung adenocarcinoma in nude mice. A human lung adenocarcinoma xenograft model was established with SPC-A1 cells in nude mice. A total of 15 tumor-bearing nude mice were randomly divided into three groups, namely, PBS, Ad-GFP, and Ad-ING4. e mice in the three groups were intratumorally injected every other day. Their tumor volumes were continually recorded. The treatment tumors were then removed from the mice and weighed. Tumor inhibition rates were calculated. Cell apoptosis was examined by TUNEL method. Caspase-3, COX-2, Fas, and FasL expressions were investigated by immunohistochemistry SP assay. Both tumor weight and volume in the Ad-ING4 group were significantly decreased. The tumor inhibition rate of the mice in the Ad-ING4 group (33.17% ± 5.24%) was statistically different from that of the mice in the Ad-GFP group (1.31% ± 0.31%; P<0.05). The apoptotic index of the mice in the Ad-ING4 group (69.23% ± 6.53%) was also significantly different from those in PBS (17.04% ± 1.10%) and Ad-GFP groups (18.81% ± 1.93%; P<0.05). Based on immunohistochemistry SP assay, the results showed that Ad-ING4 may not only upregulate the expressions of caspase-3, Fas, and FasL but also downregulate the expression of COX-2. ING4 gene elicited a remarkable growth inhibitory e-ect on human lung adenocarcinoma xenografts in nude mice. e mechanism is possibly related to an increase in tumor cell apoptosis.

  20. Adenoviruses as a model in the study of the effect of space flight factors

    NASA Astrophysics Data System (ADS)

    Nosach, L. M.; Povnitsa, O. Yu.; Zhovnovata, V. L.

    Simulated microgravity conditions, independently of multiplicity of infection, does not influence the reproduction of adenoviruses in cells which were clinorotated for 48 hours after adsorption of virus. The incubation of infected cells before clinorotation under static conditions at a temperature of 4 °C for three days (the conditions for keeping cells before the flight) does not change the number of infected cells relatively to control, but some changes of cell morphology are revealed, namely round off and aggregation of cells. The adenoviruses which were exposed in the medium keep infectivity under the conditions of clinorotation at 4 and 20-22 °C over prolonged periods (90 and 60 days, respectively). A model is elaborated for investigation of the influence of space flight factors on the interaction of the adenovirus and Epstein-Barr virus genomes at combined infection of limphoblastoid cells.

  1. Mechanisms of Human Adenovirus Inactivation by Sunlight and UVC Light as Examined by Quantitative PCR and Quantitative Proteomics

    PubMed Central

    Bosshard, Franziska; Armand, Florence; Hamelin, Romain

    2013-01-01

    Human adenoviruses (HAdV) are important pathogens in both industrialized and developing nations. HAdV has been shown to be relatively resistant to monochromatic UVC light. Polychromatic UVC light, in contrast, is a more effective means of disinfection, presumably due to the involvement of viral proteins in the inactivation mechanism. Solar disinfection of HAdV, finally, is only poorly understood. In this paper, the kinetics and mechanism of HAdV inactivation by UVC light and direct and indirect solar disinfection are elucidated. PCR and mass spectrometry were employed to quantify the extent of genome and protein degradation and to localize the affected regions in the HAdV proteins. For this purpose, we used for the first time an approach involving stable isotope labeling by amino acids in cell culture (SILAC) of a human virus. Inactivation by UVC light and the full sunlight spectrum were found to efficiently inactivate HAdV, whereas UVA-visible light only caused inactivation in the presence of external sensitizers (indirect solar disinfection). Genome damage was significant for UVC but was less important for solar disinfection. In contrast, indirect solar disinfection exhibited extensive protein degradation. In particular, the fiber protein and the amino acids responsible for host binding within the fiber protein were shown to degrade. In addition, the central domain of the penton protein was damaged, which may inhibit interactions with the fiber protein and lead to a disruption of the initial stages of infection. Damage to the hexon protein, however, appeared to affect only regions not directly involved in the infectious cycle. PMID:23241978

  2. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine

    PubMed Central

    Cromeans, Theresa L.; Metcalfe, Maureen G.; Humphrey, Charles D.; Hill, Vincent R.

    2016-01-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  3. Adenovirus 36, Adiposity, and Bone Strength in Late-Adolescent Females

    PubMed Central

    Laing, Emma M; Tripp, Ralph A; Pollock, Norman K; Baile, Clifton A; Della-Fera, Mary Anne; Rayalam, Srujana; Tompkins, Stephen M; Keys, Deborah A; Lewis, Richard D

    2017-01-01

    Adenovirus 36 (Ad36) is the only adenovirus to date that has been linked with obesity in humans. Our previous studies in late-adolescent females suggest that excess weight in the form of fat mass is associated with lower cortical bone strength. The purpose of this study was to assess the relationship between Ad36-specific antibodies, adiposity, and bone strength in our sample of late-adolescent females. A cross-sectional study of 115 females aged 18 to 19 years was performed. Participants were classified according to adiposity by dual-energy X-ray absorptiometry (body fat percentage as normal-fat [<32% body fat; n=93] or high-fat [≥ 32% body fat; n=22]), and according to the presence of Ad36-specific neutralizing antibodies. Peripheral quantitative computed tomography measured bone parameters at the 4% (trabecular bone) and 20% (cortical bone) site, and muscle cross-sectional area (MCSA) at the 66% site, from the distal metaphyses of the radius and the tibia. Bone strength was determined from volumetric bone mineral density and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength–strain index (SSI; cortical site). After adjustment for MCSA and limb length, radial SSI was lower in Ad36+ versus Ad36− subjects from the high-fat group (p<0.03), but not the normal-fat group. No significant differences were observed between groups in tibial SSI or BSI. These data support an association of adiposity and cortical bone strength at the radius with the presence of neutralizing antibodies to Ad36 in late-adolescent females. PMID:23296755

  4. Association of Fecal Indicator Bacteria with Human Viruses and Microbial Source Tracking Markers at Coastal Beaches Impacted by Nonpoint Source Pollution

    PubMed Central

    McQuaig, Shannon; Griffith, John

    2012-01-01

    Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided. PMID:22773625

  5. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    PubMed

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  6. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  7. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  8. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  9. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts.

    PubMed

    Huang, Jing Li; LaRocca, Christopher J; Yamamoto, Masato

    2016-09-19

    Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  10. Characterization of a New Species of Adenovirus in Falcons

    PubMed Central

    Schrenzel, Mark; Oaks, J. Lindsay; Rotstein, Dave; Maalouf, Gabriel; Snook, Eric; Sandfort, Cal; Rideout, Bruce

    2005-01-01

    In 1996, a disease outbreak occurred at a captive breeding facility in Idaho, causing anorexia, dehydration, and diarrhea or sudden death in 72 of 110 Northern aplomado falcons (Falco femoralis septentrionalis) from 9 to 35 days of age and in 6 of 102 peregrine falcons (Falco peregrinus) from 14 to 25 days of age. Sixty-two Northern aplomado and six peregrine falcons died. Epidemiologic analyses indicated a point source epizootic, horizontal transmission, and increased relative risk associated with cross-species brooding of eggs. Primary lesions in affected birds were inclusion body hepatitis, splenomegaly, and enteritis. The etiology in all mortalities was determined by molecular analyses to be a new species of adenovirus distantly related to the group I avian viruses, serotypes 1 and 4, Aviadenovirus. In situ hybridization and PCR demonstrated that the virus was epitheliotropic and lymphotropic and that infection was systemic in the majority of animals. Adeno-associated virus was also detected by PCR in most affected falcons, but no other infectious agents or predisposing factors were found in any birds. Subsequent to the 1996 epizootic, a similar disease caused by the same adenovirus was found over a 5-year period in orange-breasted falcons (Falco deiroleucus), teita falcons (Falco fasciinucha), a merlin (Falco columbarius), a Vanuatu peregrine falcon (Falco peregrinus nesiotes), and gyrfalcon × peregrine falcon hybrids (Falco rusticolus/peregrinus) that died in Wyoming, Oklahoma, Minnesota, and California. These findings indicate that this newly recognized adenovirus is widespread in western and midwestern North America and can be a primary pathogen in different falcon species. PMID:16000466

  11. Adenovirus-vectored Ebola vaccines.

    PubMed

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  12. Novelty modulates human striatal activation and prefrontal-striatal effective connectivity during working memory encoding.

    PubMed

    Geiger, Lena S; Moessnang, Carolin; Schäfer, Axel; Zang, Zhenxiang; Zangl, Maria; Cao, Hengyi; van Raalten, Tamar R; Meyer-Lindenberg, Andreas; Tost, Heike

    2018-05-11

    The functional role of the basal ganglia (BG) in the gating of suitable motor responses to the cortex is well established. Growing evidence supports an analogous role of the BG during working memory encoding, a task phase in which the "input-gating" of relevant materials (or filtering of irrelevant information) is an important mechanism supporting cognitive capacity and the updating of working memory buffers. One important aspect of stimulus relevance is the novelty of working memory items, a quality that is understudied with respect to its effects on corticostriatal function and connectivity. To this end, we used functional magnetic resonance imaging (fMRI) in 74 healthy volunteers performing an established Sternberg working memory task with different task phases (encoding vs. retrieval) and degrees of stimulus familiarity (novel vs. previously trained). Activation analyses demonstrated a highly significant engagement of the anterior striatum, in particular during the encoding of novel working memory items. Dynamic causal modeling (DCM) of corticostriatal circuit connectivity identified a selective positive modulatory influence of novelty encoding on the connection from the dorsolateral prefrontal cortex (DLPFC) to the anterior striatum. These data extend prior research by further underscoring the relevance of the BG for human cognitive function and provide a mechanistic account of the DLPFC as a plausible top-down regulatory element of striatal function that may facilitate the "input-gating" of novel working memory materials.

  13. Molecular Identification and Epidemiological Features of Human Adenoviruses Associated with Acute Respiratory Infections in Hospitalized Children in Southern China, 2012-2013.

    PubMed

    Chen, Yi; Liu, Fanghua; Wang, Changbing; Zhao, Mingqi; Deng, Li; Zhong, Jiayu; Zhang, Yingying; Ye, Jun; Jing, Shuping; Cheng, Zetao; Guan, Yongxin; Ma, Yi; Sun, Yuanyuan; Zhu, Bing; Zhang, Qiwei

    2016-01-01

    Acute respiratory infections (ARI) are the major worldwide health problem associated with high morbidity and mortality rates. Human adenovirus (HAdV) is one of the most common pathogens associated with viral ARI, and thus calls for specific diagnosis and better understanding of the epidemiology and clinical characteristics. Total 4,130 children with ARI requiring hospitalization from 2012 to 2013 were retrospectively studied. Throat swab specimens were collected from each patient. Fluorescence Quantitative PCR was performed to detect adenovirus as well as other common ARI-related pathogens. The seven HAdV hypervariable regions (HVRs) of the hexon gene from fifty-seven HAdVs-positive samples collected in the seasonal peaks were sequenced. Phylogenetic analysis of HVRs was also conducted to confirm the molecular types and genetic variation. In addition, epidemiological features and co-infection with other human respiratory pathogens were investigated and analyzed. Of 4,130 hospitalized pediatric patients tested, the positive rates of respiratory syncytial virus (RSV), Mycoplasma pneumoniae (MP), and HAdV were 13.7%, 13.2%, and 12.0%, respectively. The HAdV positive patients accounted for 7.9%, 17.2%, 17.5% and 10.7% in age groups <1, 1-3, 3-6 and 6-14 years, respectively. Eighty-four HAdV positive children were co-infected with other respiratory pathogens (84/495, 17.0%). The most common co-infection pathogens with HAdV were MP (57.1%) and Human Bocavirus (HBoV) (16.7%). The majority of HAdV infected patients were totally recovered (96.9%, 480/495); However, four (0.8%) patients, who were previously healthy and at the age of 2 years or younger died of pneumonia. Seasonal peaks of HAdV infection occurred in the summer season of 2012 and 2013; the predominant HAdV type was HAdV-3 (70%), followed by HAdV-7 (28%). These epidemiological features were different from those in Northern China. The HAdV-55 was identified and reported for the first time in Guangzhou

  14. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  15. Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates.

    PubMed

    Blanchette, Paola; Wimmer, Peter; Dallaire, Frédéric; Cheng, Chi Ying; Branton, Philip E

    2013-05-01

    Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.

  16. Human Adenovirus Core Protein V Is Targeted by the Host SUMOylation Machinery To Limit Essential Viral Functions.

    PubMed

    Freudenberger, Nora; Meyer, Tina; Groitl, Peter; Dobner, Thomas; Schreiner, Sabrina

    2018-02-15

    Human adenoviruses (HAdV) are nonenveloped viruses containing a linear, double-stranded DNA genome surrounded by an icosahedral capsid. To allow proper viral replication, the genome is imported through the nuclear pore complex associated with viral core proteins. Until now, the role of these incoming virion proteins during the early phase of infection was poorly understood. The core protein V is speculated to bridge the core and the surrounding capsid. It binds the genome in a sequence-independent manner and localizes in the nucleus of infected cells, accumulating at nucleoli. Here, we show that protein V contains conserved SUMO conjugation motifs (SCMs). Mutation of these consensus motifs resulted in reduced SUMOylation of the protein; thus, protein V represents a novel target of the host SUMOylation machinery. To understand the role of protein V SUMO posttranslational modification during productive HAdV infection, we generated a replication-competent HAdV with SCM mutations within the protein V coding sequence. Phenotypic analyses revealed that these SCM mutations are beneficial for adenoviral replication. Blocking protein V SUMOylation at specific sites shifts the onset of viral DNA replication to earlier time points during infection and promotes viral gene expression. Simultaneously, the altered kinetics within the viral life cycle are accompanied by more efficient proteasomal degradation of host determinants and increased virus progeny production than that observed during wild-type infection. Taken together, our studies show that protein V SUMOylation reduces virus growth; hence, protein V SUMOylation represents an important novel aspect of the host antiviral strategy to limit virus replication and thereby points to potential intervention strategies. IMPORTANCE Many decades of research have revealed that HAdV structural proteins promote viral entry and mainly physical stability of the viral genome in the capsid. Our work over the last years showed that this

  17. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models

    PubMed Central

    Zheng, Fei-qun; Xu, Yin; Yang, Ren-jie; Wu, Bin; Tan, Xiao-hua; Qin, Yi-de; Zhang, Qun-wei

    2009-01-01

    Aim: Oncolytic adenovirus, also called conditionally replicating adenovirus (CRAD), can selectively propagate in tumor cells and cause cell lysis. The released viral progeny can infect neighboring cancer cells, initiating a cascade that can lead to the ultimate destruction of the tumor. Suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) offers a potential treatment strategy for cancer and is undergoing preclinical trials for a variety of tumors. We hypothesized that HSV-TK gene therapy combined with oncolytic adenoviral therapy would have an enhanced effect compared with the individual effects of the therapies and is a potential novel therapeutic strategy to treat liver cancer. Methods: To address our hypothesis, a novel CRAD was created, which consisted of a telomerase-dependent oncolytic adenovirus engineered to express E1A and HSV-TK genes (Ad-ETK). The combined effect of Ad-ETK and GCV was assessed both in vitro and in vivo in nude mice bearing HepG2 cell-derived tumors. Expression of the therapeutic genes by the transduced tumor cells was analyzed by RT-PCR and Western blotting. Results: We confirmed that Ad-ETK had antitumorigenic effects on human hepatocellular carcinoma (HCC) both in vitro and in vivo, and the TK/GCV system enhanced oncolytic adenoviral therapy. We confirmed that both E1A and HSV-TK genes were expressed in vivo. Conclusion: The Ad-ETK construct should provide a relatively safe and selective approach to killing cancer cells and should be investigated as an adjuvant therapy for hepatocellular carcinoma. PMID:19363518

  18. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.

    PubMed

    King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S

    2018-05-01

    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.

  19. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    PubMed Central

    King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.

    2018-01-01

    ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008

  20. The neural encoding of guesses in the human brain.

    PubMed

    Bode, Stefan; Bogler, Carsten; Soon, Chun Siong; Haynes, John-Dylan

    2012-01-16

    Human perception depends heavily on the quality of sensory information. When objects are hard to see we often believe ourselves to be purely guessing. Here we investigated whether such guesses use brain networks involved in perceptual decision making or independent networks. We used a combination of fMRI and pattern classification to test how visibility affects the signals, which determine choices. We found that decisions regarding clearly visible objects are predicted by signals in sensory brain regions, whereas different regions in parietal cortex became predictive when subjects were shown invisible objects and believed themselves to be purely guessing. This parietal network was highly overlapping with regions, which have previously been shown to encode free decisions. Thus, the brain might use a dedicated network for determining choices when insufficient sensory information is available. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.

    PubMed

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.

  2. A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition.

    PubMed

    Bagheri, Neda; Shiina, Marisa; Lauffenburger, Douglas A; Korn, W Michael

    2011-02-01

    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced

  3. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy.

    PubMed

    Chen, Jianhua; Gao, Pei; Yuan, Sujing; Li, Rongxin; Ni, Aimin; Chu, Liang; Ding, Li; Sun, Ying; Liu, Xin-Yuan; Duan, Yourong

    2016-12-27

    Oncolytic adenovirus (Onco Ad ) is a promising therapeutic agent for treating cancer. However, the therapeutic potential of Onco Ad is hindered by hepatic sequestration and the host immune response in vivo. Here, we constructed a PEG/Lipids/calcium phosphate (CaP)-Onco Ad (PLC-Onco Ad ) delivery system for ZD55-IL-24, an oncolytic adenovirus that carries the IL-24 gene. The negatively charged PLC-ZD55-IL-24 were disperse and resisted serum-induced aggregation. Compared to naked ZD55-IL-24, the systemic administration of PLC-ZD55-IL-24 in BALB/c mice resulted in reduced liver sequestration and systemic toxicity and evaded the innate immune response. In addition, masking the surface of Onco Ad protected it from neutralization by pre-existing neutralizing antibody. PLC-Onco Ad achieved efficient targeted delivery in Huh-7-bearing nude mice, and intravenous administration of a high dose of PLC-ZD55-IL-24 increased therapeutic efficacy without inducing toxicity. The developed PLC-Onco Ad delivery system represents a promising improvement for oncolytic adenovirus-based cancer gene therapy in vivo.

  4. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi

    2005-06-17

    Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-formingmore » units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10{sup 10} pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5.« less

  5. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo.

    PubMed

    Chen, Weizao; Liu, Mingqiu; Jiao, Ye; Yan, Weiyao; Wei, Xuefeng; Chen, Jiulian; Fei, Liang; Liu, Yang; Zuo, Xiaoping; Yang, Fugui; Lu, Yonggan; Zheng, Zhaoxin

    2006-04-01

    Foot-and-mouth disease virus (FMDV) infection is responsible for the heavy economic losses in stockbreeding each year. Because of the limited effectiveness of existing vaccines and antiviral drugs, the development of new strategies is needed. RNA interference (RNAi) is an effective means of suppressing virus replication in vitro. Here we demonstrate that treatment with recombinant, replication-defective human adenovirus type 5 (Ad5) expressing short-hairpin RNAs (shRNAs) directed against either structural protein 1D (Ad5-NT21) or polymerase 3D (Ad5-POL) of FMDV totally protects swine IBRS-2 cells from homologous FMDV infection, whereas only Ad5-POL inhibits heterologous FMDV replication. Moreover, delivery of these shRNAs significantly reduces the susceptibility of guinea pigs and swine to FMDV infection. Three of five guinea pigs inoculated with 10(6) PFU of Ad5-POL and challenged 24 h later with 50 50% infectious doses (ID50) of homologous virus were protected from the major clinical manifestation of disease: the appearance of vesicles on the feet. Two of three swine inoculated with an Ad5-NT21-Ad5-POL mixture containing 2 x 10(9) PFU each and challenged 24 h later with 100 ID50 of homologous virus were protected from the major clinical disease, but treatment with a higher dose of adenovirus mixture cannot promote protection of animals. The inhibition was rapid and specific because treatment with a control adenovirus construct (Ad5-LacZ) expressing Escherichia coli galactosidase-specific shRNA showed no marked antiviral activity. Our data highlight the in vivo potential of RNAi technology in the case of FMD.

  6. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses

    PubMed Central

    Watanabe, Keisuke; Luo, Yanping; Da, Tong; Scholler, John; Keith, Brian; Young, Regina M.; Sorsa, Suvi; Siurala, Mikko; Havunen, Riikka; Tähtinen, Siri; Hemminki, Akseli

    2018-01-01

    Pancreatic ductal adenocarcinoma (PDA) is characterized by its highly immunosuppressive tumor microenvironment (TME) that limits T cell infiltration and induces T cell hypofunction. Mesothelin-redirected chimeric antigen receptor T cell (meso-CAR T cell) therapy has shown some efficacy in clinical trials but antitumor efficacy remains modest. We hypothesized that combined meso-CAR T cells with an oncolytic adenovirus expressing TNF-α and IL-2 (Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2) would improve efficacy. OAd-TNFa-IL2 enhanced the antitumor efficacy of meso-CAR T cells in human-PDA-xenograft immunodeficient mice and efficacy was associated with robustly increased tumor-infiltrating lymphocytes (TILs), enhanced and prolonged T cell function. Mice treated with parental OAd combined with meso-CAR T developed tumor metastasis to the lungs even if primary tumors were controlled. However, no mice treated with combined OAd-TNFa-IL2 and meso-CAR T died of tumor metastasis. We also evaluated this approach in a syngeneic mouse tumor model by combining adenovirus expressing murine TNF-α and IL-2 (Ad-mTNFa-mIL2) and mouse CAR T cells. This approach induced significant tumor regression in mice engrafted with highly aggressive and immunosuppressive PDA tumors. Ad-mTNFa-mIL2 increased both CAR T cell and host T cell infiltration to the tumor and altered host tumor immune status with M1 polarization of macrophages and increased dendritic cell maturation. These findings indicate that combining cytokine-armed oncolytic adenovirus to enhance the efficacy of CAR T cell therapy is a promising approach to overcome the immunosuppressive TME for the treatment of PDA. PMID:29618658

  7. Adenovirus Vector Pseudotyping in Fiber-Expressing Cell Lines: Improved Transduction of Epstein-Barr Virus-Transformed B Cells

    PubMed Central

    Von Seggern, Dan J.; Huang, Shuang; Fleck, Shonna Kaye; Stevenson, Susan C.; Nemerow, Glen R.

    2000-01-01

    While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.βgal.ΔF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.βgal.ΔF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types. PMID:10590124

  8. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  9. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  10. Lytic and transforming functions of individual products of the adenovirus E1A gene.

    PubMed Central

    Moran, E; Grodzicker, T; Roberts, R J; Mathews, M B; Zerler, B

    1986-01-01

    To distinguish the individual roles of the 13S, 12S, and 9S adenovirus E1A gene products, we isolated the corresponding cDNA clones and recombined them into both plasmids and viruses. Only the expected E1A mRNA products were made from the corresponding 12S and 13S viruses. The 9S mRNA was detected when the 9S virus was coinfected with the 13S virus but not when either virus was infected alone. The 13S virus formed plaques equally well in 293 cells, HeLa cells, and A549 cells, a human lung oat cell carcinoma line. Plaque titers of the 12S virus were much reduced in HeLa and A549 cells compared with 293 cells, although the 12S virus is multiplicity-dependent leaky in both HeLa and A549 cells. A549 cells were significantly more permissive than HeLa cells for growth of the 12S virus. In A549 cells even at low multiplicities of infection the final yield of 12S virus eventually approached the maximum yield from 293 cells. Expression from the adenovirus early region 2 and early region 3 promoters in HeLa cells was activated in the presence of a 13S cDNA E1A region but not in the presence of a 12S E1A cDNA region. Although defective for lytic growth in HeLa cells, the 12S virus immortalized BRK cells at very high efficiency, whereas infection of these cells with 13S virus, as with wild-type E1A virus, resulted mainly in cell death. The 13S product does have an immortalization function, however, revealed in the absence of adenovirus lytic functions when a plasmid containing the E1A 13S cDNA region was transfected into BRK cells. The 9S virus failed to immortalize infected BRK cells or to interfere with focus formation when coinfected with the 12S virus. Images PMID:2936898

  11. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    PubMed

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  12. The ENCODE project: implications for psychiatric genetics.

    PubMed

    Kavanagh, D H; Dwyer, S; O'Donovan, M C; Owen, M J

    2013-05-01

    The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that 80.4% of the human genome displays some functionality. These data have important implications for interpreting results from large-scale genetics studies. We reviewed some of the key findings from the ENCODE publications and discuss how they can influence or inform further investigations into the genetic factors contributing to neuropsychiatric disorders.

  13. Phylogenomic characterization of California sea lion adenovirus-1.

    PubMed

    Cortés-Hinojosa, Galaxia; Gulland, Frances M D; Goldstein, Tracey; Venn-Watson, Stephanie; Rivera, Rebecca; Waltzek, Thomas B; Salemi, Marco; Wellehan, James F X

    2015-04-01

    Significant adenoviral diversity has been found in humans, but in domestic and wild animals the number of identified viruses is lower. Here we present the complete genome of a recently discovered mastadenovirus, California sea lion adenovirus 1 (CSLAdV-1) isolated from California sea lions (Zalophus californianus), an important pathogen associated with hepatitis in pinnipeds. The genome of this virus has the typical mastadenoviral structure with some notable differences at the carboxy-terminal end, including a dUTPase that does not cluster with other mastadenoviral dUTPases, and a fiber that shows similarity to a trans-sialidase of Trypanosoma cruzi and choline-binding protein A (CbpA) of Streptococcus pneumoniae. The GC content is low (36%), and phylogenetic analyses placed the virus near the root of the clade infecting laurasiatherian hosts in the genus Mastadenovirus. These findings support the hypothesis that CSLAdV-1 in California sea lions represents a host jump from an unknown mammalian host in which it is endemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Establishment and validation of new complementing cells for production of E1-deleted adenovirus vectors in serum-free suspension culture.

    PubMed

    Gilbert, Rénald; Guilbault, Claire; Gagnon, David; Bernier, Alice; Bourget, Lucie; Elahi, Seyyed Mehdy; Kamen, Amine; Massie, Bernard

    2014-11-01

    E1-deleted adenovirus vectors (AdV) are important gene transfer vehicles for gene therapy and vaccination. Amplification of AdV must take place in cells that express the adenovirus E1A and E1B genes. Sequence homology between AdV and the E1 genes integrated within the complementing cells should be minimal to reduce the odds of generating replication-competent adenovirus (RCA). The present study describes the establishment of AdV complementing cells constructed by stable transfection of the minimal E1A and E1B genes into human lung carcinoma (A549). Because some transgene products can be cytotoxic, the cells were engineered to stably express the repressor of the cumate-switch (CymR) to silence transgene transcription during vector growth. For regulatory compliance and to facilitate the scale-up, the resulting complementing cells (SF-BMAdR) were adapted to serum-free suspension culture. The best clone of SF-BMAdR produced AdV carrying an innocuous transgene to the same level as 293 cells, but titers were better for AdV carrying transgene for a cytotoxic product. Elevated titers were maintained for at least two months in suspension culture in the absence of selective agent and the cells did not produce RCA. Because of their advantageous properties, SF-BMAdR cells should become an important tool for developing large-scale production processes of AdV for research and clinical applications. Copyright © 2014. Published by Elsevier B.V.

  15. Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ.

    PubMed

    Forsgren, Margareta; Attersand, Anneli; Lake, Staffan; Grünler, Jacob; Swiezewska, Ewa; Dallner, Gustav; Climent, Isabel

    2004-09-01

    The COQ2 gene in Saccharomyces cerevisiae encodes a Coq2 (p-hydroxybenzoate:polyprenyl transferase), which is required in the biosynthetic pathway of CoQ (ubiquinone). This enzyme catalyses the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group. We have isolated cDNA which we believe encodes the human homologue of COQ2 from a human muscle and liver cDNA library. The clone contained an open reading frame of length 1263 bp, which encodes a polypeptide that has sequence homology with the Coq2 homologues in yeast, bacteria and mammals. The human COQ2 gene, when expressed in yeast Coq2 null mutant cells, rescued the growth of this yeast strain in the absence of a non-fermentable carbon source and restored CoQ biosynthesis. However, the rate of CoQ biosynthesis in the rescued cells was lower when compared with that in cells rescued with the yeast COQ2 gene. CoQ formed when cells were incubated with labelled decaprenyl pyrophosphate and nonaprenyl pyrophosphate, showing that the human enzyme is active and that it participates in the biosynthesis of CoQ.

  16. Tumor Necrosis Factor α‐Gene Therapy for an Established Murine Melanoma Using RGB (Arg‐Gly‐Asp) Fiber‐mutant Adenovirus Vectors

    PubMed Central

    Okada, Yuka; Nakagawa, Shinsaku; Mizuguchi, Hiroyuki; Takahashi, Koichi; Mizuno, Nobuyasu; Fujita, Takuya; Yamamoto, Akira; Hayakawa, Takao; Mayumi, Tadanori

    2002-01-01

    Although adenovirus vectors (Ad) provide high‐level transduction efficacy to many cell types, extremely high doses of Ad are required for sufficient gene transduction into several tumors, including melanoma. Here, we demonstrated that the expression of coxsackie‐adenovirus receptor, a primitive Ad‐receptor, was very low in murine and human melanoma cells. We also found that fiber‐mutant Ad containing the Arg‐Gly‐Asp (RGD) sequence in the fiber knob remarkably augmented gene transduction efficacy in melanoma cells by targeting αv‐integrins. In addition, intratumoral injection of RGD fiber‐mutant Ad containing the tumor necrosis factor α gene (AdRGD‐TNFα) revealed dramatic anti‐tumor efficacy through hemolytic necrosis in an established murine B16 BL6 melanoma model. Ad‐RGD‐TNFα required one‐tenth the dosage of Ad‐TNFα to induce an equal therapeutic effect. These results suggest that αv‐integrin‐targeted Ad will be a very powerful tool for the advancement of melanoma gene therapy. PMID:11985794

  17. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine.

    PubMed

    Kahler, Amy M; Cromeans, Theresa L; Metcalfe, Maureen G; Humphrey, Charles D; Hill, Vincent R

    2016-06-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water.

  18. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    PubMed

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  19. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    USDA-ARS?s Scientific Manuscript database

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  20. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans

    PubMed Central

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W. Pieter; Kessels, Roy P. C.; Daselaar, Sander M.

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories. PMID:28424596

  1. Seroprevalence of neutralizing antibodies against adenovirus type 14 and 55 in healthy adults in Southern China

    PubMed Central

    Zheng, Xuehua; Rong, Xia; Feng, Ying; Sun, Xikui; Li, Liang; Wang, Qian; Wang, Min; Liu, Wenkuan; Li, Chufang; Yang, Yiyu; Zhou, Rong; Lu, Jiahai; Feng, Liqiang; Chen, Ling

    2017-01-01

    Re-emerging human adenovirus types 14 (Ad14) and 55 (Ad55) have caused severe respiratory diseases and even deaths during recent outbreaks. However, the seroprevalence of neutralizing antibodies (nAbs) in healthy adults, which may reflect previous circulation and help to predict potential outbreaks, remains unclear. In this study, we established micro-neutralizing (MN) assays on the basis of recombinant Ad14 and Ad55 reporter viruses, and we investigated serum nAbs in healthy blood donors from Southern China. We found that the overall seropositive rates were 24.8% and 22.4% for Ad14 and Ad55 nAbs, respectively. The seropositive rates were low in individuals younger than 20, and they gradually increased with age. Ad55-seropositive individuals tended to have high nAb titers (>1000), while low (72–200) and moderate (201–1000) nAb levels were frequently observed in Ad14-seropositive ones. Surprisingly, the seropositive rates and nAb levels were associated with the blood type but not the gender of the blood donors, with type AB individuals displaying higher seropositive rates and nAb levels. Interestingly, a significant positive correlation was observed between Ad14 and Ad55 seroprevalence, and higher titers of nAbs were detected in double-positive individuals compared to single-positive ones. These results clarified the human humoral immune responses against Ad14 and Ad55 and revealed a low level of herd immunity in some subpopulations, which emphasized the importance of monitoring these two highly virulent adenoviruses and reinforced the development of prophylactic vaccines. PMID:28588291

  2. The Serological and Virological Investigation of Canine Adenovirus Infection on the Dogs

    PubMed Central

    Bulut, Oya; Yapici, Orhan; Avci, Oguzhan; Simsek, Atilla; Atli, Kamil; Dik, Irmak; Yavru, Sibel; Hasircioglu, Sibel; Kale, Mehmet; Mamak, Nuri

    2013-01-01

    Two types of Canine Adenovirus (CAVs), Canine Adenovirus type 1 (CAV-1), the virus which causes infectious canine hepatitis, and Canine Adenovirus type 2 (CAV-2), which causes canine infectious laryngotracheitis, have been found in dogs. In this study, blood samples taken from 111 dogs, which were admitted to the Internal Medicine Clinic of Selcuk University, Faculty of Veterinary Medicine, with clinical symptoms. Seventy-seven dogs were sampled from Isparta and Burdur dog shelters by random sampling, regardless of the clinical findings. Dogs showed a systemic disease, characterized by fever, diarrhea, vomiting, oculonasal discharge, conjunctivitis, severe moist cough, signs of pulmonary disease and dehydration. Two dogs had corneal opacity and photophobia. In serological studies, 188 serum samples were investigated on the presence of CAV antibodies by ELISA. Total 103 (103/188–54.7%) blood samples were detected to be positive for CAV antibodies by ELISA. However, 85 (85/188–45.2%) blood samples were negative. Blood leukocyte samples from dogs were processed and inoculated onto confluent monolayers of MDCK cells using standard virological techniques. After third passage, cells were examined by direct immunoflourescence test for virus isolation. But positive result was not detected. In conclusion, this study clearly demonstrates the high prevalence of CAV infection in dogs. PMID:24223508

  3. Identification of a novel aviadenovirus, designated pigeon adenovirus 2 in domestic pigeons (Columba livia).

    PubMed

    Teske, L; Rubbenstroth, D; Meixner, M; Liere, K; Bartels, H; Rautenschlein, S

    2017-01-02

    The young pigeon disease syndrome (YPDS) affects mainly young pigeons of less than one year of age and leads to crop stasis, vomitus, diarrhea, anorexia and occasionally death. This disease is internationally a major health problem because of its seasonal appearance during competitions such as homing pigeon races or exhibitions of ornamental birds. While the etiology of YPDS is still unclear, adenoviruses are frequently discussed as potential causative agents. Electron microscopy of feces from a YPDS outbreak revealed massive shedding of adenovirus-like particles. Whole genome sequencing of this sample identified a novel adenovirus tentatively named pigeon adenovirus 2 (PiAdV-2). Phylogenetic and comparative genome analysis suggest PiAdV-2 to belong to a new species within the genus Aviadenovirus, for which we propose the name Pigeon aviadenovirus B. The PiAdV-2 genome shares 54.9% nucleotide sequence identity with pigeon adenovirus 1 (PiAdV-1). In a screening of further YPDS-affected flocks two variants of PiAdV-2 (variant A and B) were detected which shared 97.6% nucleotide identity of partial polymerase sequences, but only 79.7% nucleotide identity of partial hexon sequences. The distribution of both PiAdV-2 variants was further investigated in fecal samples collected between 2008 and 2015 from healthy or YPDS-affected racing pigeons of different lofts. Independent of their health status, approximately 20% of young and 13% of adult pigeon flocks harbored PiAdV-2 variants. Birds were free of PiAdV-1 or other aviadenoviruses as determined by PCRs targeting the aviadenovirus polymerase or the PiAdV-1 fiber gene, respectively. In conclusion, there is no indication of a correlation between YPDS outbreaks and the presence of PiAdV-2 or other aviadenoviruses, arguing against an causative role in this disease complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    PubMed Central

    2011-01-01

    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome. PMID:21526222

  5. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    PubMed

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Evaluation of positively charged alumina nanofibre cartridge filters for the primary concentration of noroviruses, adenoviruses and male-specific coliphages from seawater.

    PubMed

    Gibbons, C D; Rodríguez, R A; Tallon, L; Sobsey, M D

    2010-08-01

    To evaluate the electropositive, alumina nanofibre (NanoCeram) cartridge filter as a primary concentration method for recovering adenovirus, norovirus and male-specific coliphages from natural seawater. Viruses were concentrated from 40 l of natural seawater using a NanoCeram cartridge filter and eluted from the filter either by soaking the filter in eluent or by recirculating the eluent continuously through the filter using a peristaltic pump. The elution solution consisted of 3% beef extract and 0.1 mol l(-1) of glycine. The method using a peristaltic pump was more effective in removing the viruses from the filter. High recoveries of norovirus and male-specific coliphages (>96%) but not adenovirus (<3%) were observed from seawater. High adsorption to the filter was observed for adenovirus and male-specific coliphages (>98%). The adsorption and recovery of adenovirus and male-specific coliphages were also determined for fresh finished water and source water. The NanoCeram cartridge filter was an effective primary concentration method for the concentration of norovirus and male-specific coliphages from natural seawater, but not for adenovirus, in spite of the high adsorption of adenovirus to the filter. This study demonstrates that NanoCeram cartridge filter is an effective primary method for concentrating noroviruses and male-specific coliphages from seawater, thereby simplifying collection and processing of water samples for virus recovery.

  7. Anti-Cocaine Vaccine Based on Coupling a Cocaine Analog to a Disrupted Adenovirus

    PubMed Central

    Koob, George; Hicks, Martin J.; Wee, Sunmee; Rosenberg, Jonathan B.; De, Bishnu P.; Kaminksy, Stephen M.; Moreno, Amira; Janda, Kim D.; Crystal, Ronald G.

    2012-01-01

    The challenge in developing an anti-cocaine vaccine is that cocaine is a small molecule, invisible to the immune system. Leveraging the knowledge that adenovirus (Ad) capsid proteins are highly immunogenic in humans, we hypothesized that linking a cocaine hapten to Ad capsid proteins would elicit high-affinity, high-titer antibodies against cocaine, sufficient to sequester systemically administered cocaine and prevent access to the brain, thus suppressing cocaine-induced behaviors. Based on these concepts, we developed dAd5GNE, a disrupted E1−E3− serotype 5 Ad with GNE, a stable cocaine analog, covalently linked to the Ad capsid proteins. In pre-clinical studies, dAd5GNE evoked persistent, high titer, high affinity IgG anti-cocaine antibodies, and was highly effective in blocking cocaine-induced hyperactivity and cocaine self-administration behavior in rats. Future studies will be designed to expand the efficacy studies, carry out relevant toxicology studies, and test dAd5GNE in human cocaine addicts. PMID:22229312

  8. Biodistribution Analysis of Oncolytic Adenoviruses in Patient Autopsy Samples Reveals Vascular Transduction of Noninjected Tumors and Tissues.

    PubMed

    Koski, Anniina; Bramante, Simona; Kipar, Anja; Oksanen, Minna; Juhila, Juuso; Vassilev, Lotta; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli

    2015-10-01

    In clinical trials with oncolytic adenoviruses, there has been no mortality associated with treatment vectors. Likewise, in the Advanced Therapy Access Program (ATAP), where 290 patients were treated with 10 different viruses, no vector-related mortality was observed. However, as the patient population who received adenovirus treatments in ATAP represented heavily pretreated patients, often with very advanced disease, some patients died relatively soon after receiving their virus treatment mandating autopsy to investigate cause of death. Eleven such autopsies were performed and confirmed disease progression as the cause of death in each case. The regulatory requirement for investigating the safety of advanced therapy medical products presented a unique opportunity to study tissue samples collected as a routine part of the autopsies. Oncolytic adenoviral DNA was recovered in a wide range of tissues, including injected and noninjected tumors and various normal tissues, demonstrating the ability of the vector to disseminate through the vascular route. Furthermore, we recovered and cultured viable virus from samples of noninjected brain metastases of an intravenously treated patient, confirming that oncolytic adenovirus can reach tumors through the intravascular route. Data presented here give mechanistic insight into mode of action and biodistribution of oncolytic adenoviruses in cancer patients.

  9. Unconscious relational encoding depends on hippocampus

    PubMed Central

    Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens

    2014-01-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998

  10. Anti-tumor function of double-promoter regulated adenovirus carrying SEA gene, in the treatment of bladder cancer.

    PubMed

    Hu, Jianpeng; Xuan, Xujun; Han, Conghui; Hao, Lin; Zhang, Peiying; Chen, Meng; He, Houguang; Fan, Tao; Dong, Binzheng

    2012-03-01

    To construct an adenovirus carrying SEA gene and regulated by telomerase reverse transcriptase (hTERT) and hypoxia-inducible factor (HIF) promoters and investigate its anti-tumor function in vitro, as well as its role in lymphocyte production. hTERT and HIF genes were cloned into adenovirus E1A and E1B shuttle plasmids. The control vector for SEA gene expression is under the regulation of CMV and SV40 promoters. Double regulation was obtained through homologous recombination. The positive clones of replicable adenovirus H2-SEA-Ad were selected by plaque assay. The adenovirus was purified, titrated, and DNA was verified by PCR. The obtained virus was used to infect EJ bladder tumor cells and the SEA Mrna, and protein expression was measured by RT-PCR, western blot, and immunofluorescence microscopy, respectively. Co-culture of lymphocytes and tumor cells was observed dynamically under microscope. The construction of shuttle plasmid p315-CSS-SEA was confirmed by PCR and DNA sequencing. Insertion of superantigen SEA gene in adenovirus (H2-SEA-Ad.SEA) was obtained by homologous recombination. In lymphocytes and tumor cell co-culture, the number of viable tumor cells in test groups was significantly lower than that in control group after 12, 24, and 48 h of treatment. Production of interleukin-2, interleukin-4, and tumor necrosis factor were higher in test groups than in control group. Expression of SEA gene in bladder tumor cells by adenoviral vector caused reduced tumor cell proliferation, as well as stimulation of inflammatory cytokine productions in co-cultures with lymphocytes.

  11. The 5'-end heterogeneity of adenovirus virus-associated RNAI contributes to the asymmetric guide strand incorporation into the RNA-induced silencing complex.

    PubMed

    Xu, Ning; Gkountela, Sofia; Saeed, Khalid; Akusjärvi, Göran

    2009-11-01

    Human Adenovirus type 5 encodes two short RNA polymerase III transcripts, the virus-associated (VA) RNAI and VA RNAII, which can adopt stable hairpin structures that resemble micro-RNA precursors. The terminal stems of the VA RNAs are processed into small RNAs (mivaRNAs) that are incorporated into RISC. It has been reported that VA RNAI has two transcription initiation sites, which produce two VA RNAI species; a major species, VA RNAI(G), which accounts for 75% of the VA RNAI pool, and a minor species, VA RNAI(A), which initiates transcription three nucleotides upstream compared to VA RNAI(G). We show that this 5'-heterogeneity results in a dramatic difference in RISC assembly. Thus, both VA RNAI(G) and VA RNAI(A) are processed by Dicer at the same position in the terminal stem generating the same 3'-strand mivaRNA. This mivaRNA is incorporated into RISC with 200-fold higher efficiency compared to the 5'-strand of mivaRNAI. Of the small number of 5'-strands used in RISC assembly only VA RNAI(A) generated active RISC complexes. We also show that the 3'-strand of mivaRNAI, although being the preferred substrate for RISC assembly, generates unstable RISC complexes with a low in vitro cleavage activity, only around 2% compared to RISC assembled on the VA RNAI(A) 5'-strand.

  12. Systemic adenovirus infection in Bearded Dragons (Pogona vitticeps): histological, ultrastructural and molecular findings.

    PubMed

    Moormann, S; Seehusen, F; Reckling, D; Kilwinski, J; Puff, C; Elhensheri, M; Wohlsein, P; Peters, M

    2009-07-01

    Three Inland Bearded Dragons (Pogona vitticeps) from two breeding groups were humanely destroyed following a period of anorexia. Two of the animals were 8-months old and related and one animal was approximately 2-weeks old. Necropsy examination revealed poor bodily condition but no other gross abnormalities. Microscopically there was non-suppurative hepatitis and interstitial nephritis. Multiple large, amphophilic, intranuclear inclusion bodies were present within hepatocytes and epithelial cells of the bile ducts, renal tubules, small and large intestinal mucosa, pancreatic acini and oral mucous membranes. Transmission electron microscopy (TEM) demonstrated that the inclusions comprised viral particles with morphology consistent with an adenovirus. A fragment of the adenoviral polymerase gene was amplified, sequenced and compared with other reptilian adenoviral sequences.

  13. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination.

    PubMed

    de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M

    2009-10-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.

  14. Perforin and Gamma Interferon Expression Are Required for CD4+ and CD8+ T-Cell-Dependent Protective Immunity against a Human Parasite, Trypanosoma cruzi, Elicited by Heterologous Plasmid DNA Prime-Recombinant Adenovirus 5 Boost Vaccination▿

    PubMed Central

    de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.

    2009-01-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871

  15. Hexon and fiber of adenovirus type 14 and 55 are major targets of neutralizing antibody but only fiber-specific antibody contributes to cross-neutralizing activity.

    PubMed

    Feng, Ying; Sun, Xikui; Ye, Xianmiao; Feng, Yupeng; Wang, Jinlin; Zheng, Xuehua; Liu, Xinglong; Yi, Changhua; Hao, Mingli; Wang, Qian; Li, Feng; Xu, Wei; Li, Liang; Li, Chufang; Zhou, Rong; Chen, Ling; Feng, Liqiang

    2018-05-01

    Re-emerging human adenoviruses type 14 (HAdV14) and 55 (HAdV55) represent two highly virulent adenoviruses. The neutralizing antibody (nAb) responses elicited by infection or immunization remain largely unknown. Herein, we generated hexon-chimeric HAdV14 viruses harboring each single or entire hexon hyper-variable-regions (HVR) from HAdV55, and determined the neutralizing epitopes of human and mouse nAbs. In human sera, hexon-targeting nAbs are type-specific and mainly recognize HVR2, 5, and 7. Fiber-targeting nAbs are only detectable in sera cross-neutralizing HAdV14 and HAdV55 and contribute substantially to cross-neutralization. Penton-binding antibodies, however, show no significant neutralizing activities. In mice immunized with HAdV14 or HAdV55, a single immunization mainly elicited hexon-specific nAbs, which recognized HAdV14 HVR1, 2, and 7 and HAdV55 HVR1 and 2, respectively. After a booster immunization, cross-neutralizing fiber-specific nAbs became detectable. These results indicated that hexon elicits type-specific nAbs whereas fiber induces cross-neutralizing nAbs to HAdV14 and HAdV55, which are of significance in vaccine development. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. First isolation of a new type of human adenovirus (genotype 79), species Human mastadenovirus B (B2) from sewage water in Japan.

    PubMed

    Yoshitomi, Hideaki; Sera, Nobuyuki; Gonzalez, Gabriel; Hanaoka, Nozomu; Fujimoto, Tsuguto

    2017-07-01

    Human mastadenoviruses (HAdVs) are highly infectious viral pathogens that survive for prolonged periods in environmental waters. We monitored the presence of HAdVs in sewage waters between April 2014 and March 2015. A total of 27 adenoviral strains were detected in 75% (18/24 in occasion-base) of 24 wastewater collected samples. We identified the types of the strains as HAdV-C2 (n = 5), HAdV-A31 (5), HAdV-C1 (4), HAdV-B3 (4), HAdV-C5 (4), HAdV-B11 (2), P11H34F11 (2), and HAdV-D56 (1). The complete genome sequence of one P11H34F11 (strain T150125) was determined by next-generation sequencing and compared to other genome sequences of HAdV-B strains. The comparisons revealed evidence of a recombination event with breaking point in the hexon encoding region, which evidenced high similarity to HAdV-B34, while half of the rest of the genome showed similarity to HAdV-B11, including regions encoding fiber and E3 region proteins. The penton base encoding region seemed to be a recombinant product of HAdV-B14, -34; however, it was evidenced to be divergent to both as a novel type despite showing low bootstrap to support a new clade. We propose T150125 (P11H34F11) is a strain of a novel genotype, HAdV-79. These results support the usefulness of environmental surveillance approaches to monitor circulating HAdVs including novel types. © 2016 Wiley Periodicals, Inc.

  17. Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.

    PubMed

    Roper, D Keith; Nakra, Shamit

    2006-01-01

    Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).

  18. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    PubMed Central

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  19. The habenula encodes negative motivational value associated with primary punishment in humans.

    PubMed

    Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P

    2014-08-12

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.

  20. Structural analysis of viral replicative intermediates isolated from adenovirus type 2-infected HeLa cell nuclei.

    PubMed Central

    Kedinger, C; Brison, O; Perrin, F; Wilhelm, J

    1978-01-01

    Deoxyribonucleoprotein complexes released 17 h postinfection from adenovirus type 1 (Ad2)-infected HeLa cell nuclei were shown by electron microscopy to contain filaments much thicker (about 200 A [20 nm]) than double-stranded DNA (about 20 A [2 nm]). The complexes were partially purified through a linear sucrose gradient, concentrated, and further purified in a metrizamide gradient. The major protein present in the complexes was identified as the 72,000-dalton (72K), adenovirus-coded single-stranded DNA-binding protein (72K DBP). Three types of complexes have been visualized by electron microscopy. Some linear complexes were uniformly thick, and their length corresponded roughly to that of the adenovirus genome. Other linear genome-length complexes appeared to consist of a thick filament connected to a thinner filament with the diameter of double-stranded DNA. Forked complexes consisting of one thick filament connected to a genome-length, thinner double-stranded DNA filament were also visualized. Both thick and thin filaments were sensitive to DNase and not to RNase, but only the thick filaments were digested by the single-strand-specific Neurospora crassa nuclease, indicating that they correspond to a complex of 72K DBP and Ad2 single-stranded DNA. Experiments with anti-72K DBP immunoglobulins indicated that these nucleoprotein complexes, containing the 72K DBP, correspond to replicative intermediates. Both strands of the Ad2 genome were found associated to the 72K DBP. Altogether, our results establish the in vivo association of the 72K DBP with adenovirus single-stranded DNA, as previously suggested from in vitro studies, and support a strand displacement mechanism for Ad2 DNA replication, in which both strands can be displaced. In addition, our results indicate that, late in infection, histones are not bound to adenovirus DNA in the form of a nucleosomal chromatine-like structure. Images PMID:207893