Science.gov

Sample records for adenylating enzyme mbta

  1. Adenylating Enzymes in Mycobacterium tuberculosis as Drug Targets

    PubMed Central

    Duckworth, Benjamin P.; Nelson, Kathryn M.; Aldrich, Courtney C.

    2013-01-01

    Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including high-throughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNA-synthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl-AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases. PMID:22283817

  2. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    PubMed Central

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  3. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    PubMed

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-07

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes.

  4. Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme.

    PubMed Central

    Rogel, A; Schultz, J E; Brownlie, R M; Coote, J G; Parton, R; Hanski, E

    1989-01-01

    Bordetella pertussis produces a calmodulin-sensitive adenylate cyclase (AC) which is an essential virulence factor in mammalian pertussis. Here we report the purification and characterization of the toxic form of the enzyme, which penetrates eukaryotic cells and generates high levels of intracellular cAMP. This form was purified from an extract of B.pertussis strain carrying a recombinant plasmid which over-produced both enzymatic and toxic activities of the enzyme. Western blot analysis of the extract using anti-B.pertussis AC antibodies detected only one protein of 200 kd. However, gel filtration of the extract resolved two peaks of enzymatic activity. The first peak of aggregated material contained greater than 70% of the total enzymatic activity, and the second peak contained the majority of the toxic activity. Purification of the enzyme from both peaks yielded proteins of 200 kd, with similar biochemical and immunological properties. Yet only the enzyme purified from the second peak could penetrate human lymphocyte and catalyse the formation of intracellular cAMP. B.pertussis AC gene expressed in Escherichia coli produced a calmodulin-dependent enzyme of 200 kd, which lacked lymphocyte penetration capacity. It is proposed that a post-translational modification that occurs in B.pertussis but not in E.coli confers upon the 200 kd protein of B.pertussis AC the toxic properties. Images PMID:2555185

  5. Colorimetric determination of pyrophosphate anion and its application to adenylation enzyme assay.

    PubMed

    Katano, Hajime; Watanabe, Hiro; Takakuwa, Masahiro; Maruyama, Chitose; Hamano, Yoshimitsu

    2013-01-01

    A colorimetric pyrophosphate assay based on the formation and reduction of the 18-molybdopyrophosphate ([(P2O7)Mo18O54](4-)) anion in an acetonitrile-water mixed solvent was modified and improved. The [(P2O7)Mo18O54](4-) anion is precipitated from the acetonitrile-water solution containing MoO4(2-) and HCl, and is re-dissolved in neat acetonitrile or propylene carbonate. This separation process decreases the interference by ATP, and prevents a yellow coloration of the reducing agent, ascorbic acid, due to excess Mo(VI) species. In the organic solvent, the [(P2O7)Mo18O54](4-) anion is reduced to a more intense blue molybdopyrophosphate species. The application of the colorimetry to the assay of adenylation enzymes is also described in this note.

  6. Metabolic compensation for profound erythrocyte adenylate kinase deficiency. A hereditary enzyme defect without hemolytic anemia.

    PubMed Central

    Beutler, E; Carson, D; Dannawi, H; Forman, L; Kuhl, W; West, C; Westwood, B

    1983-01-01

    A child with hemolytic anemia was found to have severe erythrocyte adenylate kinase (AK) deficiency, but an equally enzyme-deficient sibling had no evidence of hemolysis. No residual enzyme activity was found in erythrocytes by spectrophotometric methods that could easily have detected 0.1% of normal activity. However, concentrated hemolysates were shown to have the capacity to generate small amounts of ATP and AMP from ADP after prolonged incubation. Hemolysates could also catalyze the transfer of labeled gamma-phosphate from ATP to ADP. Intact erythrocytes were able to transfer phosphate from the gamma-position of ATP to the beta-position, albeit at a rate substantially slower than normal. They could also incorporate 14C-labeled adenine into ADP and ATP. Thus, a small amount of residual AK-like activity representing about 1/2,000 of the activity normally present could be documented in the deficient erythrocytes. The residual activity was not inhibited by N-ethylmaleimide, which completely abolishes the activity of the normal AK1 isozyme of erythrocytes. The minute amount of residual activity in erythrocytes could represent a small amount of the AK2 isozyme, which has not been thought to be present in erythrocytes, or the activity of erythrocyte guanylate kinase with AMP substituting as substrate for GMP. Peripheral blood leukocytes, cultured skin fibroblasts, and transformed lymphoblasts from the deficient subject manifested about 17, 24, and 74%, respectively, of the activity of the concurrent controls. This residual activity is consistent with the existence of genetically independent AK isozyme, AK2, which is known to exist in these tissues. The cause of hemolysis in the proband was not identified. Possibilities include an unrelated enzyme deficiency or other erythrocyte enzyme defect and intraction of another unidentified defect with AK deficiency. PMID:6308059

  7. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  8. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme.

    PubMed

    Masin, Jiri; Osicka, Radim; Bumba, Ladislav; Sebo, Peter

    2015-11-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) is a key virulence factor of the whooping cough agent Bordetella pertussis. CyaA targets myeloid phagocytes expressing the complement receptor 3 (CR3, known as αMβ2 integrin CD11b/CD18 or Mac-1) and translocates by a poorly understood mechanism directly across the cytoplasmic membrane into cell cytosol of phagocytes an adenylyl cyclase(AC) enzyme. This binds intracellular calmodulin and catalyzes unregulated conversion of cytosolic ATP into cAMP. Among other effects, this yields activation of the tyrosine phosphatase SHP-1, BimEL accumulation and phagocyte apoptosis induction. In parallel, CyaA acts as a cytolysin that forms cation-selective pores in target membranes. Direct penetration of CyaA into the cytosol of professional antigen-presenting cells allows the use of an enzymatically inactive CyaA toxoid as a tool for delivery of passenger antigens into the cytosolic pathway of processing and MHC class I-restricted presentation, which can be exploited for induction of antigen-specific CD8(+) cytotoxic T-lymphocyte immune responses.

  9. Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases.

    PubMed

    Howell, Stanley C; Inampudi, Krishna Kishore; Bean, Doyle P; Wilson, Corey J

    2014-02-04

    Careful balance between structural stability and flexibility is a hallmark of enzymatic function, and temperature can affect both properties. Canonical (fixed-backbone) enzyme design strategies currently do not consider the role of these properties. Herein, we describe the rational design of 100 temperature-adapted adenylate kinase enzymes using a multistate design strategy that incorporates the impact of conformational changes to backbone structure and stability, in addition to experimental analysis of thermostability and function. Comparison of the experimental temperature of maximum activity to the melting temperature across all 100 variants reveals a strong correlation between these two parameters. In turn, experimental stability data were used to produce accurate predictions of thermostability, providing the requisite complement for de novo temperature-adapted enzyme design. In principle, this level of design-based analysis can be applied to any protein, paving the way toward identifying and understanding the hallmarks of the thermodynamic and structural limits of function.

  10. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.

    PubMed

    Davis, Tony D; Mohandas, Poornima; Chiriac, Maria I; Bythrow, Glennon V; Quadri, Luis E N; Tan, Derek S

    2016-11-01

    Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets.

  11. Event detection and sub-state discovery from biomolecular simulations using higher-order statistics: application to enzyme adenylate kinase.

    PubMed

    Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S

    2012-11-01

    Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations.

  12. Structure of the D-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    SciTech Connect

    Bera, A.K.; Robinson, H.; Atanasova, V.; Gamage, S.; Parsons, J. F.

    2010-06-01

    The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound D-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  13. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  14. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    SciTech Connect

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-06-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  15. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development.

    PubMed

    Soid-Raggi, Gabriela; Sánchez, Olivia; Ramos-Balderas, Jose L; Aguirre, Jesús

    2016-01-01

    Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans.

  16. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development

    PubMed Central

    Soid-Raggi, Gabriela; Sánchez, Olivia; Ramos-Balderas, Jose L.; Aguirre, Jesús

    2016-01-01

    Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans. PMID:27047469

  17. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1985-08-13

    Proton NMR was used to study the interaction of beta,gamma-bidentate Cr3+ATP and MgATP with rabbit muscle adenylate kinase, which has 194 amino acids, and with a synthetic peptide consisting of residues 1-45 of the enzyme, which has previously been shown to bind MgepsilonATP [Hamada, M., Palmieri, R. H., Russell, G. A., & Kuby, S. A. (1979) Arch. Biochem. Biophys. 195, 155-177]. The peptide is globular and binds Cr3+ATP competitively with MgATP with a dissociation constant, KD(Cr3+ATP) = 35 microM, comparable to that of the complete enzyme [KI(Cr3+ATP) = 12 microM]. Time-dependent nuclear Overhauser effects (NOE's) were used to measure interproton distances on enzyme- and peptide-bound MgATP. The correlation time was measured directly for peptide-bound MgATP by studying the frequency dependence of the NOE's at 250 and 500 MHz. The H2' to H1' distance so obtained (3.07 A) was within the range established by X-ray and model-building studies of nucleotides (2.9 +/- 0.2 A). Interproton distances yielded conformations of enzyme- and peptide-bound MgATP with indistinguishable anti-glycosyl torsional angles (chi = 63 +/- 12 degrees) and 3'-endo/O1'-endo ribose puckers (sigma = 96 +/- 12 degrees). Enzyme- and peptide-bound MgATP molecules exhibited different C4'-C5' torsional angles (gamma) of 170 degrees and 50 degrees, respectively. Ten intermolecular NOE's from protons of the enzyme and four such NOE's from protons of the peptide to protons of bound MgATP were detected, which indicated proximity of the adenine ribose moiety to the same residues on both the enzyme and the peptide. Paramagnetic effects of beta,gamma-bidentate Cr3+ATP on the longitudinal relaxation rates of protons of the peptide provided a set of distances to the side chains of five residues, which allowed the location of the bound Cr3+ atom to be uniquely defined. Distances from enzyme-bound Cr3+ATP to the side chains of three residues of the protein agreed with those measured for the peptide. The mutual

  18. Calmodulin independence of human duodenal adenylate cyclase.

    PubMed Central

    Smith, J A; Griffin, M; Mireylees, S E; Long, R G

    1991-01-01

    The calmodulin and calcium dependence of human adenylate cyclase from the second part of the duodenum was assessed in washed particulate preparations of biopsy specimens by investigating (a) the concentration dependent effects of free [Ca2+] on enzyme activity, (b) the effects of exogenous calmodulin on enzyme activity in ethylene glycol bis (b-aminoethyl ether)N,N'-tetra-acetic acid (EGTA) washed particulate preparations, and (c) the effects of calmodulin antagonists on enzyme activity. Both basal (IC50 = 193.75 (57.5) nmol/l (mean (SEM)) and NaF stimulated (IC50 = 188.0 (44.0) nmol/l) adenylate cyclase activity was strongly inhibited by free [Ca2+] greater than 90 nmol/l. Free [Ca2+] less than 90 nmol/l had no effect on adenylate cyclase activity. NaF stimulated adenylate cyclase activity was inhibited by 50% at 2.5 mmol/l EGTA. This inhibition could not be reversed by free Ca2+. The addition of exogenous calmodulin to EGTA (5 mmol/l) washed particulate preparations failed to stimulate adenylate cyclase activity. Trifluoperazine and N-(8-aminohexyl)-5-IODO-1-naphthalene-sulphonamide (IODO 8) did not significantly inhibit basal and NaF stimulated adenylate cyclase activity when measured at concentrations of up to 100 mumol/l. These results suggest that human duodenal adenylate cyclase activity is calmodulin independent but is affected by changes in free [Ca2+]. PMID:1752461

  19. Realtime (31)P NMR Investigation on the Catalytic Behavior of the Enzyme Adenylate kinase in the Matrix of a Switchable Ionic Liquid.

    PubMed

    Rogne, Per; Sparrman, Tobias; Anugwom, Ikenna; Mikkola, Jyri-Pekka; Wolf-Watz, Magnus

    2015-11-01

    The integration of highly efficient enzymatic catalysis with the solvation properties of ionic liquids for an environmentally friendly and efficient use of raw materials such as wood requires fundamental knowledge about the influence of relevant ionic liquids on enzymes. Switchable ionic liquids (SIL) are promising candidates for implementation of enzymatic treatments of raw materials. One industrially interesting SIL is constituted by monoethanol amine (MEA) and 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) formed with sulfur dioxide (SO2) as the coupling media (DBU-SO2-MEASIL). It has the ability to solubilize the matrix of lignocellulosic biomass while leaving the cellulose backbone intact. Using a novel (31)P NMR-based real-time assay we show that this SIL is compatible with enzymatic catalysis because a model enzyme, adenylate kinase, retains its activity in up to at least 25 wt % of DBU-SO2-MEASIL. Thus this SIL appears suitable for, for example, enzymatic degradation of hemicellulose.

  20. Regulation of brain adenylate cyclase by calmodulin

    SciTech Connect

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca{sup 2+}-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-({sup 125}I)-CaM-diazopyruvamide ({sup 125}I-CAM-DAP) behaved like native CaM with respect to Ca{sup 2+}-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca{sup 2+}-dependent stimulation of adenylate cyclase. {sup 125}I-CaM-DAP cross-linked to CaM-binding proteins in a Ca{sup 2+}-dependent, concentration-dependent, and CaM-specific manner. Photolysis of {sup 125}I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000.

  1. Studies on the adenylate kinase isozymes from the serum and erythrocyte of normal and Duchenne dystrophic patients. Isolation, physicochemical properties, and several comparisons with the Duchenne dystrophic aberrant enzyme.

    PubMed

    Hamada, M; Sumida, M; Kurokawa, Y; Sunayashiki-Kusuzaki, K; Okuda, H; Watanabe, T; Kuby, S A

    1985-09-25

    Two species of adenylate kinase isozymes (ATP:AMP phosphotransferase, EC 2.7.4.3) from human Duchenne dystrophic serum were separated by Blue Sepharose CL-6B affinity column chromatography. One of these species was the "aberrant" adenylate kinase isozyme, found specifically in the Duchenne type of this disease (Hamada, M., Okuda, H., Oka, K., Watanabe, T., Ueda, K., Nojima, M., Kuby, S.A., Manship, M., Tyler, F., and Ziter, F. (1981) Biochim. Biophys. Acta 660, 227-237). The separated aberrant form possessed a molecular size of 98,000 (+/- 1,500), whereas the normal serum species of the enzyme was 87,000 (+/- 1,600) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by gel filtration, and by sedimentation equilibrium. The sedimentation coefficient of each species was found to be 5.8 S for the aberrant form and 5.6 S for the normal form, respectively. The subunit size (Mr = 24,700) of the aberrant enzyme in 8 M urea proved to be very similar to that of the normal human liver enzyme (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S.A. (1982) J. Biol. Chem. 257, 13120-13128), and the normal species subunit (Mr = 21,700) was found to be very similar to that of the normal human muscle enzyme (Kuby, S.A., Fleming, G., Frischat, A., Cress, M.C., and Hamada, M. (1983) J. Biol. Chem. 258, 1901-1907). Both species were tetrameric enzymes in the serum. The amino acid composition for the normal species was similar to that for the muscle-type enzyme, and that for the aberrant species was similar to the liver enzyme, but with some notable exceptions in both cases. Thus, the normal species had no tryptophan and two half-cystine residues/subunit; whereas, there was 1 tryptophan and 4 half-cystine residues/subunit of the aberrant molecule. The amino acid composition of both serum isozymes when compared to their respective muscle or liver-type enzyme differed mainly in the content of Glu, Asp, His, Leu, Ile, Gly. Kinetic properties of the two forms

  2. Identification of the Fluvirucin B2 (Sch 38518) Biosynthetic Gene Cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate Specificity of the β-Amino Acid Selective Adenylating Enzyme FlvN.

    PubMed

    Miyanaga, Akimasa; Hayakawa, Yuki; Numakura, Mario; Hashimoto, Junko; Teruya, Kuniko; Hirano, Takashi; Shin-Ya, Kazuo; Kudo, Fumitaka; Eguchi, Tadashi

    2016-05-01

    Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the β-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the β-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic β-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a β-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as β-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2.

  3. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  4. Antitumor/Antifungal Celecoxib Derivative AR-12 is a Non-Nucleoside Inhibitor of the ANL-Family Adenylating Enzyme Acetyl CoA Synthetase

    PubMed Central

    2016-01-01

    AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target. PMID:27088128

  5. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    PubMed

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  6. Glucose Inhibition of Adenylate Cyclase in Intact Cells of Escherichia coli B

    PubMed Central

    Peterkofsky, Alan; Gazdar, Celia

    1974-01-01

    Previous studies in E. coli B have demonstrated an inverse correlation between the presence of glucose in the medium and the accumulation of cyclic AMP in the medium. This observation could not be explained by the action of glucose as a repressor of adenylate cyclase (EC 4.6.1.1) synthesis, as a stabilizer of cyclic AMP phosphodiesterase (EC 3.1.4.17) activity, or as a direct inhibitor of adenylate cyclase activity in cell-free preparations. The recent development of an in vivo assay for adenylate cyclase has provided a basis for further exploring the inhibitory action of glucose in intact cells. With this assay it has been possible to show that, while glucose does not affect adenylate cyclase in vitro, it rapidly inhibits the enzyme activity in intact cells. Extensive metabolism of glucose is not required, since α-methylglucoside also inhibits adenylate cyclase in vivo. When cells are grown on glucose as carbon source, some sugars (mannose, glucosamine) substitute for glucose as adenylate cyclase inhibitors while others (e.g., fructose) do not. Dose-response studies indicate that low concentrations of glucose lead to essentially complete inhibition of adenylate cyclase activity while only moderately decreasing intracellular cyclic AMP concentrations. The evidence presented suggests that the decreased cellular cyclic AMP levels resulting from glucose addition can be accounted for by inhibition of adenylate cyclase without any significant effect on cyclic AMP phosphodiesterase or the transport of cyclic AMP from the cells to the medium. PMID:4366761

  7. Forskolin activation of serotonin-stimulated adenylate cyclase in the liver fluke Fasciola hepatica.

    PubMed

    McNall, S J; Mansour, T E

    1985-05-15

    Properties of forskolin activation of adenylate cyclase in the liver fluke Fasciola hepatica are described. Forskolin stimulated adenylate cyclase activity in cell-free fluke particles to levels more than 30-fold above the basal rate. This activation was not dependent on guanine nucleotides and, upon washing of the particles, was rapidly reversed. Forskolin potentiated the activation of adenylate cyclase by serotonin (5-HT) and lysergic acid diethylamide (LSD), resulting in both an increase in the maximal level of enzyme activity and a decrease in the apparent activation constant (KA). The 5-HT antagonist 2-bromo-LSD did not inhibit enzyme activation by forskolin. Furthermore, forskolin had no effect on specific [3H]LSD binding to fluke particles. Activation of adenylate cyclase by sodium fluoride or guanine nucleotides was modified in a complex manner by forskolin with both stimulatory and inhibitory effects present. The results suggest that forskolin does not interact directly with the 5-HT receptor coupled to adenylate cyclase. Instead, it appears that forskolin effects are, at least in part, due to its ability to alter the interaction between the regulatory and catalytic components of adenylate cyclase. Incubation of intact flukes with forskolin increased their cAMP levels 2- to 3-fold. The concentration dependence of this response was similar to that for forskolin activation of adenylate cyclase in fluke particles, with 300 microM forskolin giving the maximum response. Forskolin and other agents that increased fluke cAMP levels also stimulated fluke motility.

  8. Characterization of the purine-reactive site of the rat testis cytosolic adenylate cyclase.

    PubMed

    Onoda, J M; Braun, T; Wrenn, S M

    1987-06-15

    Naturally soluble rat germ cell adenylate cyclase was inhibited by adenosine and the adenosine analogs, 9-beta-D-arabinofuranosyl adenine (AFA) and 2',5'-dideoxyadenosine (DDA), all of which inhibited hormone-sensitive adenylate cyclases at the "P" site. The IC50 values for adenosine and DDA were approximately 0.1 and for AFA, 4.0 mM. The onset of adenosine inhibition was very rapid whether adenosine was added to the enzyme reactant mixture at time zero concomitantly with the addition of substrate or after the enzyme had been activated by the addition of substrate. The adenosine analogs, N6-methyladenosine (MeA) and N6-phenylisopropyl adenosine (PIA), which interact with plasma membrane receptors ("R" receptors) for hormone-sensitive adenylate cyclase, had little effect on the activity of the cytosolic adenylate cyclase. Additionally, aminophylline, which has been shown to competitively antagonize adenosine interactions with the plasma membrane "R" receptors but not "P" site interactions, had no effect upon substrate activation of the soluble enzyme and did not prevent adenosine from inhibiting the activity of the enzyme. These data provide evidence for an adenosine regulatory site on the cytosolic enzyme which resembles the "P" site described for membrane bound-adenylate cyclase.

  9. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary.

    PubMed Central

    Onali, P; Schwartz, J P; Costa, E

    1981-01-01

    The activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by vasoactive intestinal peptide (VIP) was used as a model to investigate the molecular mechanisms triggered by the occupancy of dopamine recognition sites in rat anterior pituitary. Dopamine failed to change the basal enzyme activity, but it inhibited the stimulation of adenylate cyclase elicited by VIP. Apomorphine, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, and 2-bromo-alpha-ergocryptine mimicked the effect of dopamine, whereas (-)-sulpiride and and classical neuroleptics antagonized it. Dopamine failed to modulate the activation of pituitary adenylate cyclase by prostaglandin E1, which does not increase prolactin secretion. From these results we infer that stimulation of D-2 (dopamine) receptors may affect pituitary secretion by inhibiting the activation of anterior pituitary adenylate cyclase by VIP or other secretagogues. PMID:6171819

  10. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  11. The energy landscape of adenylate kinase during catalysis

    PubMed Central

    Kerns, S. Jordan; Agafonov, Roman V.; Cho, Young-Jin; Pontiggia, Francesco; Otten, Renee; Pachov, Dimitar V.; Kutter, Steffen; Phung, Lien A.; Murphy, Padraig N.; Thai, Vu; Alber, Tom; Hagan, Michael F.; Kern, Dorothee

    2014-01-01

    Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, MD simulations, and crystallography of active complexes. We find that the Mg2+ cofactor activates two distinct molecular events, phosphoryl transfer (>105-fold) and lid-opening (103-fold). In contrast, mutation of an essential active-site arginine decelerates phosphoryl transfer 103-fold without substantially affecting lid-opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a pre-organized active site. PMID:25580578

  12. Engineering adenylate cyclases regulated by near-infrared window light.

    PubMed

    Ryu, Min-Hyung; Kang, In-Hye; Nelson, Mathew D; Jensen, Tricia M; Lyuksyutova, Anna I; Siltberg-Liberles, Jessica; Raizen, David M; Gomelsky, Mark

    2014-07-15

    Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.

  13. The invasive adenylate cyclase of Bordetella pertussis. Properties and penetration kinetics.

    PubMed Central

    Friedman, E; Farfel, Z; Hanski, E

    1987-01-01

    Bordetella pertussis, the causative organism of whooping cough, produces a calmodulin-sensitive adenylate cyclase. Confer & Eaton [(1982) Science 217, 948-950] have shown that an extract from B. pertussis increases intracellular cyclic AMP levels in neutrophils and suggested that this increase is caused by the bacterial adenylate cyclase which penetrates these cells. We demonstrate in the present study that adenylate cyclase activity in lysates from lymphocytes exposed to a partially purified preparation of the bacterial enzyme has properties completely different from those of the intrinsic membrane-bound enzyme. Adenylate cyclase activity in lysates from lymphocytes exposed to the invasive enzyme is insensitive to N-ethylmaleimide, readily inactivated by acetic anhydride and relatively stable to SDS. Similar properties are exhibited by the bacterial enzyme itself. By contrast, the intrinsic membrane-bound enzyme activated by forskolin and guanosine 5'-gamma-thiotriphosphate is sensitive to N-ethylmaleimide and SDS and relatively stable to acetic anhydride. This strongly supports the notion that B. pertussis adenylate cyclase penetrates cells. Using the partially purified preparation of the invasive enzyme, we have studied the kinetics of its penetration. The intracellular catalytic activity reaches a steady state within 20 min, irrespective of enzyme or cell concentration. Steady-state levels are maintained for at least 2 h provided that the invasive enzyme is present in the incubation medium. Upon its removal, a rapid decrease (t1/2 approximately equal to 15 min) in the intracellular cyclase level is observed. This decrease reflects intracellular inactivation of the bacterial enzyme and is not caused by the release of the enzyme to the cell medium. PMID:2886119

  14. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver

    SciTech Connect

    Katz, M.S.; Boland, S.R.; Schmidt, S.J.

    1985-06-01

    beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-(/sup 125/I)iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase.

  15. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    SciTech Connect

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. )

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  16. Microscopical localization on adenylate cyclase: a historical review of methodologies.

    PubMed

    Richards, P A; Richards, P D

    1998-03-15

    The histochemistry technique for localizing adenylate cyclase has been developed over the past two decades. Early efforts were directed at overcoming the criticism of the lead capture technique, the inhibition of the enzyme by fixation, and problems associated with the substrate. The introduction of alternative metal ions, strontium and cerium, offered solutions to the criticism of the lead capture technique. The inhibition of the enzyme by the various fixation methods used has been rarely overcome satisfactorily and the use of non-fixed material during incubation is one of the alternatives that has been suggested. The introduction of adenylate (beta-gamma-methylene) diphosphate as an alternative substrate offers a solution to the problems associated with commercially available adenylyl imidodiphosphate. Although no standard medium or method has been accepted by all researchers, the histochemical technique still has a place in the arsenal of the modern cell biologist. The technique localizes the active enzyme, as opposed to the protein, active and nonactive, by immunocytochemistry and the precursors of the protein by in situ hybridization methods.

  17. Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis.

    PubMed Central

    Glaser, P; Munier, H; Gilles, A M; Krin, E; Porumb, T; Bârzu, O; Sarfati, R; Pellecuer, C; Danchin, A

    1991-01-01

    Calmodulin-activated adenylate cyclase of Bordetella pertussis and Bacillus anthracis are two cognate bacterial toxins. Three short regions of 13-24 amino acid residues in these proteins exhibit between 66 and 80% identity. Site-directed mutagenesis of four residues in B. pertussis adenylate cyclase situated in the second (Asp188, Asp190) and third (His298, Glu301) segments of identity were accompanied by important decrease, or total loss, of enzyme activity. The calmodulin-binding properties of mutated proteins showed no important differences when compared to the wild-type enzyme. Apart from the loss of enzymatic activity, the most important change accompanying replacement of Asp188 by other amino acids was a dramatic decrease in binding of 3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, a fluorescent analogue of ATP. From these results we concluded that the two neighbouring aspartic acid residues in B. pertussis adenylate cyclase, conserved in many other ATP-utilizing enzymes, are essential for binding the Mg(2+)-nucleotide complex, and for subsequent catalysis. Replacement of His298 and Glu301 by other amino acid residues affected the nucleotide-binding properties of adenylate cyclase to a lesser degree suggesting that they might be important in the mechanism of enzyme activation by calmodulin, rather than being involved directly in catalysis. PMID:2050107

  18. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  19. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  20. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis

    PubMed Central

    Braga, Daniel; Hoffmeister, Dirk

    2016-01-01

    Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis. PMID:28144348

  1. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    SciTech Connect

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.; Guillon, G.; Homburger, V.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher mass (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.

  2. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  3. Presence of hormonally-sensitive adenylate cyclase receptors in capillary-enriched fractions from rat cerebral cortex.

    PubMed

    Baca, G M; Palmer, G C

    1978-01-01

    The 10 000 g particulate fraction from capillary-enriched fractions isolated from rat cerebral cortex was shown to possess an adenylate cyclase highly sensitive to activation by sodium fluoride, norepinephrine, epinephrine, isoproterenol and dopamine. To a lesser extent histamine and three dopamine agonists, namely M-7 (5,6-dihydroxy-2-dimethylamino tetralin), ET-495 (methane sulfonate of pyribedil), and S-584 (metabolite of pyribedil) stimulated the enzyme preparation. The action of norepinephrine was blocked by propanolol while phenotolamine and haloperidol were relatively ineffective except at highest concentrations. Phentolamine and propanolol at only highest concentrations (10(-4) M) antagonized the action of dopamine. Haloperidol was seen to be a potent inhibitor of either dopamine- or dopamine agonist-sensitive adenylate cyclase. No effects on the enzyme were observed with methoxamine, octopamine or serotonin. These preliminary data suggest the presence of a mixed population of receptors for adenylate cyclase in rat brain capillaries.

  4. WR-2721 inhibits parathyroid adenylate cyclase

    SciTech Connect

    Weaver, M.E.; Morrissey, J.; McConkey, C. Jr.; Goldfarb, S.; Slatopolsky, E.; Martin, K.J.

    1987-02-01

    WR-2721 (S-2-(3-aminopropylamino)ethylphosphorothioic acid) is a chemoprotective and radioprotective agent that has been shown to lower serum calcium in dogs and in humans. This is secondary both to impaired release of CaS from bone and diminished secretion of parathyroid hormone (PTH) from parathyroid glands. Because cAMP plays a role in the regulation of PTH secretion and WR-2721 has been shown to lower cAMP levels in radiated mouse spleen, the authors investigated the effects of WR-2721 on cAMP production in dispersed bovine parathyroid cells. Additional, they studied the adenylate cyclase in plasma membranes from normal bovine parathyroid glands after exposure to WR-2721. With parathyroid cells incubated at 0.5 mM CaS , addition of Wr-2721 in concentrations ranging from 0.02 to 2.0 mM resulted in a progressive decrease in intracellular cAMP measured by radioimmunoassay. In plasma membranes of bovine parathyroid cells a dose-dependent decrease in adenylate cyclase activity was noted. Inhibition of the cyclase was seen over a wide range of MgS concentrations. WR-2721 inhibited both basal and NaF, Gpp(NH)(, forskolin, and pertussin toxin-stimulated adenylate cyclase. These data suggest that WR-2721 inhibits the activity of parathyroid adenylate cyclase.

  5. Bordetella adenylate cyclase toxin: entry of bacterial adenylate cyclase into mammalian cells.

    PubMed

    Confer, D L; Slungaard, A S; Graf, E; Panter, S S; Eaton, J W

    1984-01-01

    We have identified an adenylate cyclase toxin in urea extracts and culture supernatant fluids of Bordetella pertussis (2). The ability of this toxin and the lack of a strong correlation between its activity and adenylate cyclase activity found in urea extracts suggest that it is an oligomer of readily dissociable subunits. The mechanism by which Bordetella adenylate cyclase toxin interacts with target cells is unknown, but polyvalent cations are necessary. Neutrophils exposed to the toxin acquire a 39,000 Mr protein that can also be photoaffinity labeled with 32P-ATP. We anticipate that this protein will prove to be a catalytic component of Bordetella adenylate cyclase toxin. Susceptible cells exposed to Bordetella adenylate cyclase toxin are functionally aberrant. In phagocytes, decreased bactericidal capacity may be important in the pathogenesis of human whooping cough and other Bordetella infections occurring in domestic animals. The effects of the toxin on neoplastic cells may offer new insights into the factors controlling their growth and differentiation. Bordetella adenylate cyclase toxin is a unique bacterial product. Further purification and characterization of this toxin will add to our understanding of cell-protein interactions and pathogen-host relationships.

  6. The investigation of the truncated mbtA gene within the mycobactin cluster of Mycobacterium avium subspecies paratuberculosis as a novel diagnostic marker for real-time PCR.

    PubMed

    de Kruijf, Marcel; Coffey, Aidan; O'Mahony, Jim

    2017-05-01

    The inability of Mycobacterium avium subspecies paratuberculosis (MAP) to produce endogenous mycobactin in-vitro is most likely due to the presence of a truncated mbtA gene within the mycobactin cluster of MAP. The main goal of this study was to investigate this unique mbtA truncation as a potential novel PCR diagnostic marker for MAP. Novel primers were designed that were located within the truncated region and the contiguous MAP2179 gene. Primers were evaluated against non-MAP isolates and no amplicons were generated. The detection limit of this mbtA-MAP2179 target was evaluated using a range of MAP DNA concentrations, MAP inoculated faecal material and 20 MAP isolates. The performance of mbtA-MAP2179 was compared to the established f57 target. The detection limits recorded for MAP K-10 DNA and from MAP K-10 inoculated faecal samples were 0.34pg and 10(4)CFU/g respectively for both f57 and mbtA-MAP2179. A detection limit of 10(3)CFU/g was recorded for both targets, but not achieved consistently. The detection limit of MAP from inoculated faecal material was successful at 10(3)CFU/g for mbtA-MAP2179 when FAM probe real-time PCR was used. A MAP cell concentration of 10(2)CFU/g was detected successfully, but again not consistently achieved. All 20 mycobacterial isolates were successfully identified as MAP by f57 and mbtA-MAP2179. Interestingly, the mbtA-MAP2179 real-time PCR assay resulted in the formation of a unique melting curve profile that contained two melting curve peaks rather than one single peak. This melting curve phenomenon was attributed towards the asymmetrical GC% distribution within the mbtA-MAP2179 amplicon. This study investigated the implementation of the mbtA-MAP2179 target as a novel diagnostic marker and the detection limits obtained with mbtA-MAP2179 were comparable to the established f57 target, making the mbtA-MAP2179 an adequate confirmatory target. Moreover, the mbtA-MAP2179 target could be implemented in multiplex real-time PCR assays and

  7. Effect of mitomycin C on the activation of adenylate cyclase in rat ascites hepatoma AH130 cells.

    PubMed

    Miyamoto, K; Matsunaga, T; Sanae, F; Koshiura, R

    1986-09-01

    Isoproterenol (IPN)-stimulated activity of adenylate cyclase was enhanced in a dose-dependent manner by exposure of AH130 cells to mitomycin C (MMC). The enhancement was also observed in prostaglandin E1-, guanine nucleotide analog-, NaF-, cholera toxin- and forskolin-stimulated activities of the enzyme but not in manganese-stimulated activity. In addition, even when the cells pretreated with islet-activating protein were exposed to MMC, IPN-stimulated activity of adenylate cyclase was enhanced. Anaerobic exposure of AH130 cells to MMC somewhat inhibited IPN-stimulated activity of adenylate cyclase in contrast with aerobic exposure. Exposure of cells to adriamycin also caused enhancement of IPN-stimulated activity of adenylate cyclase but exposure to nitrogen mustard inhibited the enzyme stimulation by IPN. The enhancing effect of MMC was lost by the combined treatment with alpha-tocopherol. From these results, it was shown that MMC modulated the activity of adenylate cyclase, probably through alterations in membrane structure.

  8. Topographic separation of adenylate cyclase and hormone receptors in the plasma membrane of toad erythrocyte ghosts

    PubMed Central

    Sahyoun, N.; Hollenberg, M. D.; Bennett, V.; Cuatrecasas, P.

    1977-01-01

    Brief sonication of whole erythrocyte plasma membranes (ghosts) from toads at 4° does not inactivate adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); EC 4.6.1.1] or destroy the receptor binding properties of hydroxybenzylpindolol or insulin. The hormonal (but not the fluoride-induced) stimulation of this enzyme is, however, lost. Fractionation of the small, resealed membrane fragments (vesicles) on discontinuous sucrose gradients results in the separation of vesicle populations differing grossly in size and protein composition. In addition, the distribution of the β-adrenergic receptor, an insulin binding site, and adenylate cyclase among these vesicles fractions differs. The pattern of distribution of these functional structures can be altered differentially by manipulations of the ghosts before sonication. For example, brief preincubation with isoproterenol leads to a change in the relative distribution of β-receptor (but not adenylate cyclase) among the various vesicle fractions; this effect is not obtained with β-receptor antagonists, which block the isoproterenol effect. Exposure of the ghosts to different temperatures, changes in the divalent cation composition of the medium, or the addition of ATP also leads to changes in the distribution of surface markers of the subsequently formed vesicles. The results indicate gross asymmetries in the distribution of protein components within the plane of the membrane and raise important questions regarding the manner whereby functionally related and coupled components, such as hormone receptors and adenylate cyclase, interact. Images PMID:197522

  9. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis

    PubMed Central

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  10. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  11. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  12. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  13. Adenylation-Dependent Conformation and Unfolding Pathways of the NAD+-Dependent DNA Ligase from the Thermophile Thermus scotoductus

    PubMed Central

    Georlette, Daphné; Blaise, Vinciane; Bouillenne, Fabrice; Damien, Benjamin; Thorbjarnardóttir, Sigridur H.; Depiereux, Eric; Gerday, Charles; Uversky, Vladimir N.; Feller, Georges

    2004-01-01

    In the last few years, an increased attention has been focused on NAD+-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD+-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD+-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced “open-closure” process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates. PMID:14747344

  14. Influence of volatile anesthetics on muscarinic receptor adenylate cyclase coupling in brain and heart

    SciTech Connect

    Anthony, B.L.

    1988-01-01

    In the present study, the influence of four volatile anesthetics (enflurane, isoflurane, diethyl ether, and chloroform) on (1) muscarinic receptor binding parameters and (2) muscarnic regulation of adenylate cyclase activity was examined using membranes isolated from rat brain and heart. Membranes were equilibrated with each of the four anesthetics for 30 minutes and then during the binding assay. The data obtained can be summarized as follows: (1) volatile anesthetics increased receptor affinity for a radiolabeled antagonists, ({sup 3}H)N-methylscopolamine (({sup 3}H)MS), by decreasing its rate of dissociation in brain stem, but not in cardiac, membranes, (2) volatile anesthetics decreased high affinity ({sup 3}H)Oxotremorine-M binding, (3) volatile anesthetics depressed or eliminated the guanine nucleotide sensitivity of agonist binding. The influence of volatile anesthetics on muscarinic regulation of adenylate cyclase enzyme activity was studied using {alpha}({sup 32}P)ATP as the substrate.

  15. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    PubMed

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  16. Antineoplastic effects of Bordetella pertussis adenylate cyclase.

    PubMed

    Slungaard, A; Confer, D L; Jacob, H S; Eaton, J W

    1983-01-01

    Urea extracts of B. pertussis, but not B. bronchiseptica, cause large and sustained intracellular cAMP elevation in several neoplastic cell lines. These cAMP elevations are associated with growth inhibition (HL-60, Friend erythroleukemia) and a phenotypic change/differentiation (HL-60, L1210). B. pertussis extract injections prolong survival of L1210 tumor-bearing mice. Pretreatment of L1210 cells with B. pertussis extract both delays mortality and induces growth of solid tumors instead of ascites in subsequently inoculated mice. We conclude that B. pertussis adenylate cyclase is capable of invading a variety of neoplastic cells to catalyze the intracellular formation of large amounts of cAMP. These cAMP elevations are durable and promote growth arrest, differentiation, or phenotypic alterations reflected in altered biologic behavior. B. pertussis adenylate cyclase should prove to be a useful tool for manipulating cAMP levels in neoplastic cells to elucidate the role of cAMP in malignant transformation.

  17. Adenylate Cyclase Activity Not Found in Soybean Hypocotyl and Onion Meristem 1

    PubMed Central

    Yunghans, Wayne N.; Morré, D. James

    1977-01-01

    Tissue, homogenates, and purified cell fractions prepared from hypocotyls of a dicot, soybean (Glycine max), and meristematic tissue of a monocot, onion (Allium cepa), were examined critically for evidence of adenylate cyclase activity. Three assay methods were used: chemical analysis, isotope dilution analysis, and enzyme cytochemistry. In both crude extracts or whole tissue, as well as purified membranes, with or without auxin, no adenylate cyclase was detected by any of the three methods. For plasma membranes, the specific activity was less than 1/40 or 1/25,000 that of rat liver plasma membranes, depending on the assay procedure, i.e. below the limits of detection. Using comparable methods, we could detect neither cyclic adenosine 3′:5′-monophosphate nor the phosphodiesterase responsible for its degradation in either purified membranes or homogenates. The results suggest that hormone responses in plants are not generally mediated by a mechanism involving the obligate production of cyclic adenosine 3′:5′-monophosphate by a plasma membrane associated adenylate cyclase. Images PMID:16660026

  18. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  19. Study into the kinetic properties and surface attachment of a thermostable adenylate kinase

    PubMed Central

    Hathaway, H.J.; Sutton, J.M.; Jenkins, A.T.A.

    2015-01-01

    A thermostable adenylate kinase (tAK) has been used as model protein contaminant on surfaces, so used because residual protein after high temperature wash steps can be detected at extremely low concentrations. This gives the potential for accurate, quantitative measurement of the effectiveness of different wash processes in removing protein contamination. Current methods utilise non-covalent (physisorbtion) of tAK to surfaces, but this can be relatively easily removed. In this study, the covalent binding of tAK to surfaces was studied to provide an alternative model for surface contamination. Kinetic analysis showed that the efficiency of the enzyme expressed as the catalytic rate over the Michaelis constant (kcat/KM) increased from 8.45±3.04 mM−1 s−1 in solution to 32.23±3.20 or 24.46±4.41 mM−1 s−1 when the enzyme was immobilised onto polypropylene or plasma activated polypropylene respectively. Maleic anhydride plasma activated polypropylene showed potential to provide a more robust challenge for washing processes as it retained significantly higher amounts of tAK enzyme than polypropylene in simple washing experiments. Inhibition of the coupled enzyme (luciferase/luciferin) system used for the detection of adenylate kinase activity, was observed for a secondary product of the reaction. This needs to be taken into consideration when using the assay to estimate cleaning efficacy. PMID:26339684

  20. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  1. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    SciTech Connect

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-09-20

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 ..mu..M isoproterenol and 50 ..mu..M GTP-..gamma..-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 ..mu..M GTP-..gamma..-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of ..beta..-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes.

  2. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  3. Use of adenylate kinase as a solubility tag for high level expression of T4 DNA ligase in Escherichia coli.

    PubMed

    Liu, Xinxin; Huang, Anliang; Luo, Dan; Liu, Haipeng; Han, Huzi; Xu, Yang; Liang, Peng

    2015-05-01

    The discovery of T4 DNA ligase in 1960s was pivotal in the spread of molecular biotechnology. The enzyme has become ubiquitous for recombinant DNA routinely practiced in biomedical research around the globe. Great efforts have been made to express and purify T4 DNA ligase to meet the world demand, yet over-expression of soluble T4 DNA ligase in E. coli has been difficult. Here we explore the use of adenylate kinase to enhance T4 DNA ligase expression and its downstream purification. E.coli adenylate kinase, which can be expressed in active form at high level, was fused to the N-terminus of T4 DNA ligase. The resulting His-tagged AK-T4 DNA ligase fusion protein was greatly over-expressed in E. coli, and readily purified to near homogeneity via two purification steps consisting of Blue Sepharose and Ni-NTA chromatography. The purified AK-T4 DNA ligase not only is fully active for DNA ligation, but also can use ADP in addition to ATP as energy source since adenylate kinase converts ADP to ATP and AMP. Thus adenylate kinase may be used as a solubility tag to facilitate recombinant protein expression as well as their downstream purification.

  4. NMR studies of the AMP-binding site and mechanism of adenylate kinase.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y

  5. Iodide-induced inhibition of adenylate cyclase activity in horse and dog thyroid.

    PubMed

    Cochaux, P; Van Sande, J; Swillens, S; Dumont, J E

    1987-12-30

    The characteristics of the iodide-induced inhibition of cyclic AMP accumulation in dog thyroid slices have been previously described [Van Sande, J., Cochaux, P. and Dumont, J. E. (1985) Mol. Cell. Endocrinol. 40, 181-192]. In the present study we investigated the characteristics of the iodide-induced inhibition of adenylate cyclase activity in dog and horse thyroid. The inhibition of cyclic AMP accumulation by iodide in stimulated horse thyroid slices was similar to that observed in dog thyroid slices. The inhibition was observed in slices stimulated by thyroid-stimulating hormone, cholera toxin and forskolin. Increasing the concentration of the stimulators did not overcome the iodide-induced inhibition. Adenylate cyclase activity, assayed in crude homogenates or in plasma-membrane-containing particulates (100,000 x g pellets), was lower in homogenates or in particulates prepared from iodide-treated slices than from control slices. This inhibition was observed on the cyclase activity stimulated by forskolin, fluoride or guanosine 5'-[beta, gamma-imino]triphosphate, but also on the basal activity. It was relieved when the homogenate was prepared from slices incubated with iodide and methimazole. Similar results were obtained with dog thyroid. The inhibition persisted when the particulate fraction was washed three times during 1 h at 100,000 x g, in the presence of bovine serum albumin or increasing concentration of KCl. It was similar whatever the duration of the cyclase assay, in a large range of protein concentration. These results indicate that a stable modification of adenylate cyclase activity, closely related to the plasma membrane, was induced when slices were incubated with iodide. Iodide inhibition did not modify the affinity of adenylate cyclase for its substrate (MgATP), but induced a decrease of the maximal velocity of the enzyme. The percentage inhibition was slightly decreased when Mg2+ concentration increased, and markedly decreased when Mn2

  6. Identification of valine/leucine/isoleucine and threonine/alanine/glycine proton-spin systems of Escherichia coli adenylate kinase by selective deuteration and selective protonation.

    PubMed Central

    Bock-Möbius, I; Brune, M; Wittinghofer, A; Zimmermann, H; Leberman, R; Dauvergne, M T; Zimmermann, S; Brandmeier, B; Rösch, P

    1991-01-01

    Adenylate kinase from two types of Escherichia coli strains, a wild-type and a leucine-auxotrophic strain, was purified. On the one hand, growing the leucine-auxotrophic bacteria on a medium containing deuterated leucine yielded E. coli adenylate kinase with all leucine residues deuterated. On the other hand, by growing the wild-type bacteria on deuterated medium with phenylalanine, threonine and isoleucine present as protonated specimens, 80% randomly deuterated enzyme with protonated phenylalanine, threonine and isoleucine residues could be prepared. Use of these proteins enabled identification of the spin systems of these amino acid residues in the n.m.r. spectra of the protein. PMID:1991031

  7. Ultraviolet radiation augments epidermal beta-adrenergic adenylate cyclase response

    SciTech Connect

    Iizuka, H.; Kajita, S.; Ohkawara, A.

    1985-05-01

    Pig skin was irradiated in vivo with fluorescent sunlamp tubes (peak emission at 305 nm). A significant increase in epidermal beta-adrenergic adenylate cyclase response was observed as early as 12 h following 1-2 minimum erythema doses (MEDs) UVB exposure, which lasted at least 48 h. The augmentation of adenylate cyclase response was relatively specific to the beta-adrenergic system and there was no significant difference in either adenosine- or histamine-adenylate cyclase response of epidermis. The increased beta-adrenergic adenylate cyclase response was less marked at higher doses of UVB exposure (5 MEDs); in the latter condition, a significant reduction in adenosine- or histamine-adenylate cyclase response was observed. There was no significant difference in either low- or high-Km cyclic AMP phosphodiesterase activity between control and UVB-treated skin at 1-2 MEDs. These data indicate that the epidermal adenylate cyclase responses are affected in vivo by UVB irradiation, which might be a significant regulatory mechanism of epidermal cyclic AMP systems.

  8. Ethrel (Ethylene Releaser)-Induced Increases in the Adenylate Pool and Transtonoplast ΔpH within Hevea Latex Cells

    PubMed Central

    Amalou, Zakia; Bangratz, Jacques; Chrestin, Hervé

    1992-01-01

    The treatment of rubber tree (Hevea brasiliensis) bark with chloro-2-ethyl phosphonic acid (ethrel), an ethylene-releasing chemical, induced, after a lag period of 13 to 21 hours, a marked increase in the total adenine nucleotides (essentially ATP and ADP) of latex cells. This rise in the latex adenylate pool was concomitant with a marked decrease in the [ATP]/[ADP] ratio without significant changes in the adenylate energy charge. The apparent equilibrium constant for the adenylate kinase, which appeared to behave as a key enzyme in maintaining the adenylate energy charge in the latex, was considerably reduced, probably as a consequence of the alkalinization of the latex cytosol induced by the treatment with ethrel. To reduce the “sink effect” and activation of the metabolism induced in Hevea bark by regular tapping, the latex was collected by micropuncture (few drops) at increasing distance (5-50 centimeters) above and below an ethrel-treated area on the virgin bark of resting trees. The effect of ethrel was shown to spread progressively along the trunk. The increase in the adenylate pool (essentially ATP) was detectable as early as 24 hours after the bark treatment and was maximum after 6 or 8 days, 5 centimeters as well as 50 centimeters above and below the stimulated bark ring. The correlative vacuolar acidification and cytosolic alkalinization, i.e. the increase in the transtonoplast ΔpH, induced in the latex cells by ethrel were shown to be concomitant with the rise in ATP content of the latex. This suggests that the tonoplast H+-pumping ATPase, which catalyzes vacuolar acidification in the latex, is directly and essentially under the control of the availability of its substrate (i.e. ATP) in the latex. The results are discussed in relation to energy-dependent activation of metabolism, and increased rubber production, as induced by the stimulation of rubber trees with ethrel. PMID:16668787

  9. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances

    PubMed Central

    Howell, Stanley C.; Richards, David H.; Mitch, William A.; Wilson, Corey J.

    2016-01-01

    Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections, and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary-structure, protein hydrodynamics and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance. Namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites. PMID:26266833

  10. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    SciTech Connect

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of {sup 32}P-cAMP formed from {sup 32}P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G{sub s}-catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range.

  11. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances.

    PubMed

    Howell, Stanley C; Richards, David H; Mitch, William A; Wilson, Corey J

    2015-10-16

    Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study, we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary structure, protein hydrodynamics, and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance, namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites.

  12. Adenylation by testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, is essential for spermatogenesis

    PubMed Central

    KASHIWABARA, Shin-ichi; TSURUTA, Satsuki; OKADA, Keitaro; YAMAOKA, Yutaro; BABA, Tadashi

    2016-01-01

    The testis-specific cytoplasmic poly(A) polymerase PAPOLB/TPAP is essential for spermatogenesis. Although this enzyme is responsible for poly(A) tail extension of a subset of mRNAs in round spermatids, the stability and translational efficiency of these mRNAs are unaffected by the absence of PAPOLB. To clarify the functional importance of this enzyme’s adenylation activity, we produced PAPOLB-null mice expressing a polyadenylation-defective PAPOLB mutant (PAPOLBD114A), in which the catalytic Asp at residue 114 was mutated to Ala. Introducing PAPOLBD114A failed to rescue PAPOLB-null phenotypes, such as reduced expression of haploid-specific mRNAs, spermiogenesis arrest, and male infertility. These results suggest that PAPOLB regulates spermatogenesis through its adenylation activity. PMID:27647534

  13. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  14. Histamine-, norepinephrine-, and dopamine-sensitive central adenylate cyclases: effects of chlorpromazine derivatives and butaclamol.

    PubMed

    Palmer, G C; Wagner, H R; Palmer, S J; Manian, A A

    1978-06-01

    A series of recently available derivatives (quaternary and hydroxylated) of chlorpromazine (CPZ) and butaclamol were evaluated with respect to antagonism of norepinephrine- (NE) (rat cerebral cortex), dopamine- (DA) (rat striatum) and histamine- (H) sensitive (rabbit cerebral cortex) adenylate cyclases. With incubated tissue slices (rat and rabbit cortices) CPZ-CH3, 7-OH-CPZ-CH3, beta-OH-CPZ and butaclamol displayed a capacity to inhibit either NE- or H- induced accumulation of adenosine cyclic 3',5'-monophosphate (cAMP). With the broken cellular enzyme responsive to DA, rather potent inhibition of enzyme activity (IC50 less than 24 micron) occurred with butaclamol, beta-OH-CPZ, 7,8,beta-triOH-CPZ, 7,8-dioxo-beta-OH-CPZ and 3,7,8-triOH-CPZ. It is concluded that the metabolites of CPZ contribute to the central therapeutic and/or side effects of the parent compound.

  15. Coupled ATPase-adenylate kinase activity in ABC transporters

    PubMed Central

    Kaur, Hundeep; Lakatos-Karoly, Andrea; Vogel, Ramona; Nöll, Anne; Tampé, Robert; Glaubitz, Clemens

    2016-01-01

    ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters. PMID:28004795

  16. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

    PubMed Central

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  17. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.

    PubMed Central

    Arnez, J G; Harris, D C; Mitschler, A; Rees, B; Francklyn, C S; Moras, D

    1995-01-01

    The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules. Images PMID:7556055

  18. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG.

    PubMed

    Tan, Xiao-Feng; Dai, Ya-Nan; Zhou, Kang; Jiang, Yong-Liang; Ren, Yan-Min; Chen, Yuxing; Zhou, Cong-Zhao

    2015-04-01

    Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 Å resolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.

  19. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation.

    PubMed Central

    Schmitt, E; Moulinier, L; Fujiwara, S; Imanaka, T; Thierry, J C; Moras, D

    1998-01-01

    The crystal structure of aspartyl-tRNA synthetase (AspRS) from Pyrococcus kodakaraensis was solved at 1.9 A resolution. The sequence and three-dimensional structure of the catalytic domain are highly homologous to those of eukaryotic AspRSs. In contrast, the N-terminal domain, whose function is to bind the tRNA anticodon, is more similar to that of eubacterial enzymes. Its structure explains the unique property of archaeal AspRSs of accommodating both tRNAAsp and tRNAAsn. Soaking the apo-enzyme crystals with ATP and aspartic acid both separately and together allows the adenylate formation to be followed. Due to the asymmetry of the dimeric enzyme in the crystalline state, different steps of the reaction could be visualized within the same crystal. Four different states of the aspartic acid activation reaction could thus be characterized, revealing the functional correlation of the observed conformational changes. The binding of the amino acid substrate induces movement of two invariant loops which secure the position of the peptidyl moiety for adenylate formation. An unambiguous spatial and functional assignment of three magnesium ion cofactors can be made. This study shows the important role of residues present in both archaeal and eukaryotic AspRSs, but absent from the eubacterial enzymes. PMID:9724658

  20. Activation of fat cell adenylate cyclase by protein kinase C

    SciTech Connect

    Naghshineh, S.; Noguchi, M.; Huang, K.P.; Londos, C.

    1986-05-01

    Purified protein kinase C (C-kinase) from guinea pig pancreas and rat brain stimulated adenylate cyclase activity in purified rat adipocyte membranes. Cyclase stimulation occurred over 100 to 1000 mU/ml of C-kinase activity, required greater than 10 ..mu..M calcium, proceeded without a lag, was not readily reversible, and required no exogenous phospholipid. Moreover, C-kinase inhibitors, such as chlorpromazine and palmitoyl carnitine, inhibited selectively adenylate cyclase which was activated by C-kinase and calcium. Depending on assay conditions, 10 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) either enhanced or was required for kinase action on cyclase. Also, TPA plus calcium promoted the quantitative association of C-kinase with membranes. Adenylate cyclase activation by C-kinase was seen both in the presence and absence of exogenous GTP, indicating that the kinase effect does not result from an action on the GTP-binding, inhibitory regulatory component (N/sub i/) of the cyclase system. Moreover, the kinase effect was seen in the presence of non-phosphorylating ATP analogs, such as AppNHp and AppCH/sub 2/p, suggesting that the effects of C-kinase described herein may result from association with, rather than phosphorylation of, adenylate cyclase.

  1. Interaction of 7-bromoacetyl-7-desacetylforskolin with adenylate cyclase

    SciTech Connect

    Laurenza, A.; Morris, D.I.; Seamon, K.B.

    1986-05-01

    7-Bromoacetyl-7-desacetylforskolin (BrAcFk) and the 12-tritio derivative (/sup 3/H-BrAckFk) were synthesized as alkylating analogs of forskolin. BrAcFk stimulated adenylate cyclase in human platelet and bovine brain membranes with an EC50 of 50..mu..M and inhibited /sup 3/H-forskolin binding to these membranes with a K/sub i/ of 300 nM. /sup 3/H-forskolin binding was decreased in membranes pretreated for 20 min with 10 ..mu..M BrAcFk. The i,9-dideoxy derivative of BrAcFk did not activate adenylate cyclase or inhibit /sup 3/H-forskolin binding. Proteins labelled by BrAcFk in solubilized preparations from bovine brain and human platelets were identified by fluorography of SDS gels. The two predominant bands labelled in the low and high molecular weight regions had molecular weights of 50,000 and 135,000 daltons respectively. The 135,000 dalton band identified by fluorography coeluted with adenylate cyclase activity on a Dupont GF450 column and has a molecular weight identical to that of the catalytic subunit determined by silver staining of SDS gels. These results suggest that BrAcFk can react covalently with the catalytic subunit of adenylate cyclase.

  2. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin.

    PubMed Central

    Gueirard, P; Guiso, N

    1993-01-01

    Bordetella bronchiseptica is a pathogen of laboratory, domestic, and wild animals and sometimes of humans. In the present study some characteristics of the virulence of B. bronchiseptica isolates of different origin were studied. All isolates had similar phenotypes, similar bacteriological characters, and synthesized adenylate cyclase-hemolysin, filamentous hemagglutinin and pertactin but not pertussis toxin. These isolates, however, differed in their ability to express dermonecrotic toxin and to cause a lethal infection, but no correlation was found with the human or animal origin of the isolates. The fact that the most virulent isolate did not express dermonecrotic toxin suggests that this toxin does not play an important role in the virulence of the bacteria in the murine model. After infection with virulent B. bronchiseptica a very early synthesis and a persistence of anti-adenylate cyclase-hemolysin and anti-filamentous hemagglutinin antibodies were observed in the sera of infected mice, suggesting a persistence of the bacteria or of its antigens. B. bronchiseptica adenylate cyclase-hemolysin was purified and was shown to be a major protective antigen against B. bronchiseptica infection. Furthermore, we showed that its immunological and protective properties were different from that of B. pertussis adenylate cyclase-hemolysin, confirming that Bordetella species are immunologically different. Images PMID:8406794

  3. Irreversible stimulation of adenylate cyclase activity of fat cell membranes of phosphoramidate and phosphonate analogs of GTP.

    PubMed

    Cuatrecasas, P; Bennett, V; Jacobs, S

    1975-01-01

    The ability of 5'-guanylylimidodiphosphate (Gpp(NH)p) to stimulate irreversibly the adenylate cyclease activity of fat cell membranes has been studied by preincubating the membranes with this or related analogs followed by assaying after thoroughly washing the membranes. Activation can occur in a simple Tris-HCl buffer, in the absence of added divalent cations and in the presence of EDTA. Dithiothreitol enhances the apparent degree of activation, perhaps by stabilization. The importance of utilizing optimal conditions for stabilizing enzyme activity, and of measuring the simultaneous changes in the control enzyme, is illustrated. The organomercurial, p-aminophenylmercuric acetate, inhibits profoundly the activity of the native as well as the Gpp(NH)p-stimulated adenylate cyclase, but in both cases subsequent exposure to dithiothreitol restores fully the original enzyme activity. However, the mercurial-inactivated enzyme does not react with Gpp(NP)p, as evidenced by the subsequent restoration of only the control enzyme activity upon exposure to dithiothreitol. Thus, reaction with Gpp(NH)p requires intact sulfhydryl groups, but the activated state is not irreversibly destroyed by the inactivation caused by sulfhydryl blockade. GTP and, less effectively, GDP and ATP inhibit activation by Gpp(NH)p, but interpretations are complicated by the facts that this inhibition is overcome with time and that GTP and ATP can protect potently from spontaneous inactivation. These two nucleotides can be used in the Gpp(NH)p preincubation to stabilize the enzyme. The Gpp(NH)p-activated enzyme cannot be reversed spontaneously during prolonged incubation at 30 degrees C in the absence or presence of GTP, ATP, MgCl2, glycine, dithiothreitol, NaF or EDTA. The strong nucleophile, neutral hydroxylamine, decreases the Gpp(NH)p-activated enzyme activity and no subsequent activation is detected upon re-exposure to the nucleotide.

  4. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  5. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  6. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1975-01-01

    Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate to hydroxyl groups of homopolyribonucleotides is studied as a possible chemical model of biochemical aminoacylation of transfer RNA (tRNA). The effect of pH on imidazole-catalyzed transfer of phenylalanyl residues to poly(U) and poly(A) double helix strands, the number of peptide linkages and their lability to base and neutral hydroxylamine, and the nature of adenylate condensation products are investigated. The chemical model entertained exhibits a constraint by not acylating the hydroxyl groups of polyribonucleotides in a double helix. The constraint is consistent with selective biochemical aminoacylation at the tRNA terminus. Interest in imidazole as a model of histidine residue in protoenzymes participating in prebiotic aminoacyl transfer to polyribonucleotides, and in rendering the tRNA a more efficient adaptor, is indicated.

  7. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    SciTech Connect

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.

  8. [Adenylate cyclase. A possible factor in the pathogenicity of Yersinia pestis].

    PubMed

    Michankin, B N; Chevchenko, L A; Asseeva, L E

    1992-01-01

    Biological effect of homogenous preparation of Y. pestis adenylate cyclase on eucaryotic cells was studied. Adenylate cyclase, added (7.5 x 10(8) g/ml) to guinea pig macrophages lowers the level of chemiluminescence to 50-70%, has an appreciable cytotoxic effect on peritoneal macrophages and suppresses phosphorylation processes of leucocyte proteins from white mice. The experimental results obtained allow to suggest Y. pestis adenylate cyclase to be a pathogenic factor, contributing to the development of plague infection.

  9. Structure and function of adenylate kinase isozymes in normal humans and muscular dystrophy patients.

    PubMed

    Hamada, M; Takenaka, H; Fukumoto, K; Fukamachi, S; Yamaguchi, T; Sumida, M; Shiosaka, T; Kurokawa, Y; Okuda, H; Kuby, S A

    1987-01-01

    Two isozymes of adenylate kinase from human Duchenne muscular dystrophy serum, one of which was an aberrant form specific to DMD patients, were separated by Blue Sepharose CL-6B affinity chromatography. The separated aberrant form possessed a molecular weight of 98,000 +/- 1,500, whereas the normal serum isozyme had a weight of 87,000 +/- 1,600, as determined by SDS-polyacrylamide gel electrophoresis, gel filtration, and sedimentation equilibrium. The sedimentation coefficients were 5.8 S and 5.6 S for the aberrant form and the normal form, respectively. Both serum isozymes are tetramers. The subunit size of the aberrant isozyme (Mr = 24,700) was very similar to that of the normal human liver isozyme, and the subunit size of the normal isozyme (Mr = 21,700) was very similar to that of the normal human muscle enzyme. The amino acid composition of the normal serum isozyme was similar to that of the muscle-type enzyme, and that of the aberrant isozyme was similar to that of the liver enzyme, with some exceptions in both cases.

  10. Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    PubMed

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-11-15

    P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties.

  11. Minimum free energy path of ligand-induced transition in adenylate kinase.

    PubMed

    Matsunaga, Yasuhiro; Fujisaki, Hiroshi; Terada, Tohru; Furuta, Tadaomi; Moritsugu, Kei; Kidera, Akinori

    2012-01-01

    Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme.

  12. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  13. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    PubMed

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  14. Desensitization of adenylate cyclase in a human keratinocyte cell line by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    SciTech Connect

    Choi, E.J.; Young, M.J.; Toscano, D.L.; Greenlee, W.F.; Toscano, W.A. Jr.

    1987-05-01

    Regulation of adenylate cyclase in human keratinocyte cell line SCC 12 is altered after TCDD exposure. TCDD-treated cells show a 50% decrease in isoproterenol - stimulated adenylate cyclase activity. The reduced responsiveness of these cells to isoproterenol was concentration dependent on TCDD. The inactive TCDD analog, 2,7-dibenzo-p-dioxin did not affect isoproterenol activation. Altered hormone stimulation of adenylate cyclase can result from decreased receptor number or affinity, a defect in coupling of receptors via G/sub s/, or modification of the catalytic subunit. To distinguish between these possibilities, enzyme activity was assayed in the presence of different site-specific activators of this enzyme system. Cells exposed to TCDD for 24 hr showed a reduced response to the GTP analog, Gpp(NH)p. Forskolin stimulation was not affected by TCDD treatment. (/sup 125/I)-iodocyanopindolol (ICP) binding to ..beta..-adrenergic receptors was examined after TCDD treatment. The equilibrium dissociation constant (K/sub d/) for ICP was unaffected by TCDD treatment, whereas, the total number of specific ICP-binding sites was reduced from 1080 in control cells to 780 sites per cell in TCDD (10 nM) exposed cells.

  15. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  16. The invasive adenylate cyclase of Bordetella pertussis. Intracellular localization and kinetics of penetration into various cells.

    PubMed Central

    Farfel, Z; Friedman, E; Hanski, E

    1987-01-01

    The penetration of Bordetella pertussis adenylate cyclase into various mammalian cells exhibits similar kinetics; the accumulation of both intracellular cyclase activity and cyclic AMP is rapid, reaching constant levels after 15-60 min of incubation. The kinetics of enzyme penetration into turkey erythrocytes is different; cyclase activity and cyclic AMP accumulate linearly and do not reach constant levels even after 6 h of incubation. In the preceding paper [Friedman, Farfel & Hanski (1987) Biochem. J. 243, 145-151] we have suggested that the constant level of intracellular cyclase activity reflects a steady state formed by continuous penetration and intracellular inactivation of the enzyme. In contrast with other mammalian cells, no inactivation of cyclase is observed in turkey erythrocytes. These results further support the notion that there is continuous penetration and deactivation of the invasive enzyme in mammalian cells. A 5-6-fold increase in specific activity of the invasive cyclase is detected in a pellet fraction of human lymphocytes in which a similar increase in specific activity of the plasma-membrane marker 5'-nucleotidase is observed. A similar increase in the invasive-cyclase specific activity is detected in a membrane fraction of human erythrocytes. Cyclase activity in a membrane-enriched fraction of human lymphocytes reached a constant level after 20 min of cell exposure to the enzyme. Similar time courses were observed for accumulation of cyclase activity and cyclic AMP in whole lymphocytes [Friedman, Farfel & Hanski (1987) Biochem, J. 243, 145-151]. We suggest therefore that cyclic AMP generation by the invasive enzyme as well as the intracellular inactivation process occur while it is associated with a membrane fraction identical, or closely associated, with the plasma membrane. PMID:2886120

  17. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed

    Ugur, O; Onaran, H O

    1997-05-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  18. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides.

    PubMed

    Chu, Hsing-Mao; Ko, Tzu-Ping; Wang, Andrew H-J

    2010-03-01

    Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA-IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA-IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT-ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA-IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP approximately ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the beta and gamma-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA-IPT, HlAIPT has evolved with a different binding strategy for adenylate.

  19. Effects of Acetazolamide on the Unrinary Excretion of Cyclic AMP and on the Activity of Renal Adenyl Cyclase

    PubMed Central

    Rodriguez, Hector J.; Walls, John; Yates, Jesse; Klahr, Saulo

    1974-01-01

    Acetazolamide, an inhibitor of the enzyme carbonic anhydrase, increased the urinary excretion of cyclic AMP in normal and parathyroidectomized rats. The increase was greater in rats with intact parathyroid glands than in parathyroidectomized rats. This rise in the urinary excretion of cyclic AMP was not due to an increase in urine flow or a change in urine pH. Furosemide caused an increase in urine flow, but did not affect the excretion of cyclic AMP or phosphate. Alkalinization of the urine with bicarbonate did not increase the urinary excretion of phosphate or cyclic AMP. Acetazolamide increased the productionof cyclic AMP by rat renal cortical slices in vitro. This effect was dose-dependent. Acetazolamide also stimulated the activity of renal cortical adenyl cyclase in a dose-dependent manner but had no effect on the activity of cyclic nucleotide phosphodiesterase. The pattern of urinary excretion of cyclic AMP and phosphate after administration of acetazolamide was similar to that observed in rats given parathyroid hormone. It is suggested that acetazolamide stimulates the renal production of cyclic AMP by activating adenyl cyclase and that this may be the mechanism by which this inhibitor of carbonic anhydrase produces phosphaturia. PMID:4357608

  20. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.

    PubMed

    Makarchikov, Alexander F; Wins, Pierre; Janssen, Edwin; Wieringa, Bé; Grisar, Thierry; Bettendorff, Lucien

    2002-10-21

    Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues and it may act as a phosphate donor for the phosphorylation of proteins, suggesting a potential role in cell signaling. Two mechanisms have been proposed for the enzymatic synthesis of ThTP. A thiamine diphosphate (ThDP) kinase (ThDP+ATP if ThTP+ADP) has been purified from brewer's yeast and shown to exist in rat liver. However, other data suggest that, at least in skeletal muscle, adenylate kinase 1 (AK1) is responsible for ThTP synthesis. In this study, we show that AK1 knockout mice have normal ThTP levels in skeletal muscle, heart, brain, liver and kidney, demonstrating that AK1 is not responsible for ThTP synthesis in those tissues. We predict that the high ThTP content of particular tissues like the Electrophorus electricus electric organ, or pig and chicken skeletal muscle is more tightly correlated with high ThDP kinase activity or low soluble ThTPase activity than with non-stringent substrate specificity and high activity of adenylate kinase.

  1. Properties of the separated catalytic and regulatory units of brain adenylate cyclase.

    PubMed Central

    Strittmatter, S; Neer, E J

    1980-01-01

    Adenylate cyclase from bovine brain cortex was solubilized with 14 mM cholate and 1 M (NH4)2SO4. Gel filtration over a column of Sepharose 6B separated the catalytic unit (CU) from a factor (G/F) that confers responsiveness to 5'-guanylyl imidophosphate (p[NH]ppG) or fluoride. The separated CU, which elutes with a Kav, of 0.48 +/- 0.01 (n=5), is not responsive to p[NH]ppG or fluoride and is relatively inactive when Mg . ATP is the substrate but activated 8-15-fold by Mn2+. The separated G/F elutes with a Kav of 0.70 +/- 0.02 (n=4). It restores the responsiveness of the CU to p[NH]ppG and fluoride. Activation of the enzyme by p[NH]ppG before solubilization does not decrease the amount of G/F eluting with a Kav of 0.7. Therefore, the G/F is probably present in brain cortex in excess over the CU. p[NH]ppG stabilizes the G/F but not the CU against thermal inactivation, suggesting that it interacts with G/F and not with CU. Incubation of the G/F with p[NH]ppG before addition of CU markedly increases the rate of activation of the reconstituted enzyme by p[NH]ppG. We propose, therefore, that the rate-limiting step in adenylate cyclase activation is a process in G/F alone and not a slow conformational change in CU or a slow association of G/F with CU. Binding of p[NH]ppG to the isolated G/F appears to be readily reversible; the ability of fully activated G/F to stimulate CU can be blocked if GDP is added before CU. In contrast, after the CU has been activated by interaction with G/F, GDP cannot reverse the activation. This suggests that association with the CU increases the affinity of G/F for p[NH]ppG. PMID:6935648

  2. Adenyl cyclases and cAMP in plant signaling - past and present.

    PubMed

    Gehring, Chris

    2010-06-25

    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins.

  3. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    PubMed

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  4. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    PubMed Central

    Mehan, Sidharth; Parveen, Shaba; Kalra, Sanjeev

    2017-01-01

    Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity), resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  5. Conformational transitions of Adenylate Kinase: switching by cracking

    PubMed Central

    Whitford, Paul C.; Miyashita, Osamu; Levy, Yaakov; Onuchic, José N.

    2007-01-01

    Conformational heterogeneity in proteins is known to often be the key to their function. We present a coarse grained model to explore the interplay between protein structure, folding and function which is applicable to allosteric or non-allosteric proteins. We employ the model to study the detailed mechanism of the reversible conformational transition of Adenylate Kinase (AKE) between the open to the closed conformation, a reaction that is crucial to the protein’s catalytic function. We directly observe high strain energy which appears to be correlated with localized unfolding during the functional transition. This work also demonstrates that competing native interactions from the open and closed form can account for the large conformational transitions in AKE. We further characterize the conformational transitions with a new measure ΦFunc, and demonstrate that local unfolding may be due, in part, to competing intra-protein interactions. PMID:17217965

  6. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    SciTech Connect

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  7. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the ‘open’ state

    PubMed Central

    Buchko, Garry W.; Robinson, Howard; Abendroth, Jan; Staker, Bart L.; Myler, Peter J.

    2010-01-01

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drugs therapies against infectious bacterial agents. Here we report the 2.1 Å resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease meliodosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATPbd) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 Å. These two BpAdk conformations may represent ‘open’ Adk sub-states along the preferential pathway to the ‘closed’ substrate-bound state. PMID:20331978

  8. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    SciTech Connect

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  9. Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability.

    PubMed

    Davlieva, Milya; Shamoo, Yousif

    2010-02-01

    The structure of the trimeric adenylate kinase from the Archaebacteria Methanococcus mariplaludis (AK(MAR)) has been solved to 2.5-A resolution and the temperature dependent stability and kinetics of the enzyme measured. The K(M) and V(max) of AK(MAR) exhibit only modest temperature dependence from 30 degrees -60 degrees C. Although M. mariplaludis is a mesophile with a maximum growth temperature of 43 degrees C, AK(MAR) has a very broad functional range and stability (T(m) = 74.0 degrees C) that are more consistent with a thermophilic enzyme with high thermostability and exceptional activity over a wide range of temperatures, suggesting that this microbe may have only recently invaded a mesophilic niche and has yet to fully adapt. A comparison of the Local Structural Entropy (LSE) for AK(MAR) to the related adenylate kinases from the mesophile Methanococcus voltae and thermophile Methanococcus thermolithotrophicus show that changes in LSE are able to fully account for the intermediate stability of AK(MAR) and highlights a general mechanism for protein adaptation in this class of enzymes.

  10. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations.

    PubMed

    Schrank, Travis P; Wrabl, James O; Hilser, Vincent J

    2013-01-01

    Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because "entropy promoting" glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme-substrate complex, is likely required for a full and quantitative understanding of how enzymes work.

  11. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open ↔ Closed Transitions

    PubMed Central

    Beckstein, Oliver; Denning, Elizabeth J.; Perilla, Juan R.; Woolf, Thomas B.

    2009-01-01

    Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free energy calculations and our new dynamic importance sampling (DIMS) molecular dynamics (MD) method. DIMS is shown to sample biologically relevant conformations as verified by comparing an ensemble of hundreds of DIMS transitions to AdK crystal structure intermediates. The simulations reveal in atomic detail how hinge regions partially and intermittently unfold during the transition. Conserved salt bridges are seen to have important structural and dynamic roles; in particular four ionic bonds are identified that open in a sequential, zipper-like fashion and thus dominate the free energy landscape of the transition. Transitions between the closed and open conformations only have to overcome moderate free energy barriers. Unexpectedly, the closed and open state encompass broad free energy basins that contain conformations differing in domain hinge motions by up to 40°. The significance of these extended states is discussed in relation to recent experimental FRET measurements. Taken together, these results demonstrate how a small number of cooperative key interactions can shape the overall dynamics of an enzyme and suggest an “all-or-nothing” mechanism for the opening and closing of AdK. Our efficient DIMS-MD computer simulation approach can provide a detailed picture of a functionally important macromolecular transition and thus help to interpret and suggest experiments to probe the conformational landscape of dynamic proteins such as AdK. PMID:19751742

  12. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    SciTech Connect

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R. Scott

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  13. Characterization of the norepinephrine-activation of adenylate cyclase suggests a role in memory affirmation pathways. Overexposure to epinephrine inactivates adenylate cyclase, a causal pathway for stress-pathologies.

    PubMed

    Bennun, Alfred

    2010-05-01

    Incubation with noradrenaline (norepinephrine) of isolated membranes of rat's brain corpus striatum and cortex, showed that ionic-magnesium (Mg(2+)) is required for the neurotransmitter activatory response of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing) (EC 4.6.1.1)], AC. An Mg(2+)-dependent response to the activatory effects of adrenaline, and subsequent inhibition by calcium, suggest capability for a turnover, associated with cyclic changes in membrane potential and participation in a short-term memory pathway. In the cell, the neurotransmitter by activating AC generates intracellular cyclic AMP. Calcium entrance in the cell inhibits the enzyme. The increment of cyclic AMP activates kinase A and their protein phosphorylating activity, allowing a long-term memory pathway. Hence, consolidating neuronal circuits, related to emotional learning and memory affirmation. The activatory effect relates to an enzyme-noradrenaline complex which may participate in the physiology of the fight or flight response, by prolonged exposure. However, the persistence of an unstable enzyme complex turns the enzyme inactive. Effect concordant, with the observation that prolonged exposure to adrenaline, participates in the etiology of stress triggered pathologies. At the cell physiological level AC responsiveness to hormones could be modulated by the concentration of chelating metabolites. These ones produce the release of free ATP(4-), a negative modulator of AC and the Mg(2+) activated insulin receptor tyrosine kinase (IRTK), thus, allowing an integration of the hormonal response of both enzymes by ionic controls. This effect could supersede the metabolic feedback control by energy charge. Accordingly, maximum hormonal response of both enzymes, to high Mg(2+) and low free ATP(4-), allows a correlation with the known effects of low caloric intake increasing average life expectancy.

  14. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.

    1985-01-01

    The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.

  15. Hydrolytic properties of phenylalanyl- and N-acetylphenylalanyl adenylate anhydrides

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Senaratne, N.

    1984-01-01

    The hydrolysis of phenylalynyl- and N-acetylephenylalanyl adenylate anhydrides (AcPhe-AMP) is studied experimentally using a new spectrophotometric method. The hydrolysis process was analyzed at low concentrations (0.0001 M), constant temperature of 25 C, constant buffer concentration (0.05 M), and as a function of pH. It is found that while Phe-AMP is susceptible to attack by OH(-), AcPhe-AMP is susceptible to acid decomposition as well. At a pH of 4 to 8, Phe-AMP hydolyzes faster than AcPhe-AMP, but at pH less than four or greater than eight, the blocked form hydrolyzes faster. Both forms are attacked by H2O at the same rate. The rate laws for the various hydrolytic mechanisms and the activation energies for the hydrolyses at pH 7.1 are given in a table, and the possible relevance of the findings to the origin and evolution of the process of protein synthesis is discussed.

  16. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors.

    PubMed

    Srivastava, Sandeep Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-08-26

    DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.

  17. Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products?

    PubMed

    Beauvoit, B; Rigoulet, M

    2001-01-01

    Cytochrome c oxidase, which catalyzes an irreversible step of the respiratory chain, is one of the rate-controlling steps of oxidative phosphorylation on isolated mitochondria. The rate of electron transfer through the complex is primarily controlled by the associated thermodynamic forces, i.e., the span in redox potential between oxygen and cytochrome c and the protonmotive force. However, the electron flux also depends on the various kinetic effectors, including adenylic nucleotides. Although the number of binding sites for ATP and ADP on cytochrome oxidase is still a matter of debate, experiments performed on the solubilized and reconstituted enzyme provide strong functional evidence that the mammalian cytochrome c oxidase binds adenylic nucleotides on both sides of the inner membrane. These effects include modification in cytochrome c affinity, allosteric inhibition and changes in proton pumping efficiency. Immunological studies have pointed out the role of subunit IV and that of an ATP-binding protein, subunit VIa, in these kinetic regulations. In yeast, the role of the nuclear-encoded subunits in assembly and regulation of the cytochrome c oxidase has been further substantiated by using gene-disruption analysis. Using a subunit VIa-null mutant, the consequences of the ATP regulation on oxidative phosphorylation have been further investigated on isolated mitochondria. Taken together, the data demonstrate that there are multiple regulating sites for ATP on the yeast cytochrome oxidase with respect to the location (matrix versus cytosolic side), kinetic effect (activation versus inhibition) and consequence on the flow-force relationships. The question is therefore raised as to the physiological meaning of such feedback regulation of the respiratory chain by ATP in the control and regulation of cellular energy metabolism.

  18. Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie.

    PubMed

    Colombo, Sonia; Paiardi, Chiara; Pardons, Katrien; Winderickx, Joris; Martegani, Enzo

    2014-05-01

    Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.

  19. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium

    PubMed Central

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Takahashi, Tetsuo; Tame, Jeremy R. H.; Iseki, Mineo; Park, Sam-Yong

    2016-01-01

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  20. Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP Mechanistic Insights into a Minimalistic E1 Enzyme

    SciTech Connect

    Bacik, John-Paul; Walker, John R.; Ali, Mohsin; Schimmer, Aaron D.; Dhe-Paganon, Sirano

    2010-08-30

    E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys{sup 250}) is part of the adenylation domain in an {alpha}-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.

  1. Adenylate cyclase of human articular chondrocytes. Responsiveness to prostaglandins and other hormones.

    PubMed Central

    Houston, J P; McGuire, M K; Meats, J E; Ebsworth, N M; Russell, R G; Crawford, A; Mac Neil, S

    1982-01-01

    Adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] was shown to be present in cultured human articular chondrocytes. Optimal conditions of incubation time, protein and substrate concentrations and pH were determined in whole cell lysates. Maximal activity occurred at pH 8.5 with no decrease in activity up to pH 10.0. Adenylate cyclase activity of particulate membrane preparations was enhanced by the addition of crude cytosol preparations. The prostaglandins E1, E2, F1 alpha, F2 alpha, D2, B1, B2, A1 and A2, as well as adrenaline and isoprenaline, stimulated adenylate cyclase derived from either adult or foetal chondrocytes. No significant stimulation was observed in the presence of human calcitonin or glucagon. Bovine parathyroid hormone always significantly stimulated the adenylate cyclase derived from foetal chondrocytes, but not from adult chondrocytes. Preincubation of the chondrocytes in culture with indomethacin and with or without supernatant medium from cultured mononuclear cells increased the responsiveness of the adenylate cyclase to prostaglandin E1. PMID:7159397

  2. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network. PMID:19468337

  3. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  4. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  5. The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2+ supports an associative mechanism for phosphoryl transfer

    PubMed Central

    Bellinzoni, Marco; Haouz, Ahmed; Graña, Martin; Munier-Lehmann, Hélène; Shepard, William; Alzari, Pedro M.

    2006-01-01

    The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 Å resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the β-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer. PMID:16672241

  6. Synthesis of amino acyl adenylates using the tert-butoxycarbonyl protecting group

    NASA Technical Reports Server (NTRS)

    Armstrong, D. W.; Seguin, R.; Saburi, M.; Fendler, J. H.

    1979-01-01

    The synthesis of amino acyl adenylates using N-tert-butoxycarbonyl-protected amino acids is reported. Anhydrous solutions containing N-tert-butoxycarbonyl alanine, phenylalanine, and methionine were combined with the anhydrous mono (tri-n-octylammonium) salt of adenosine 5'-phosphate and the resultant amino acyl adenylates were characterized by means of elemental analysis, and infrared and proton NMR spectroscopy. Amino acyl adenylate yields of up to 60% were obtained with high purity at room temperatures. The reported synthesis is considered to represent a large improvement over previous methods due to the purity of the products, normal temperature requirements, and the stability of the starting compounds, which suggests its use in investigations of prebiotic oligo- and polypeptide synthesis.

  7. Distribution of adenylate cyclase and GTP-binding proteins in hepatic plasma membranes.

    PubMed

    Dixon, B S; Sutherland, E; Alexander, A; Nibel, D; Simon, F R

    1993-10-01

    Hepatic membrane subfractions prepared from control rats demonstrated forskolin (FSK)-stimulated adenylate cyclase activity in the basolateral (sinusoidal) but not apical (canalicular) plasma membrane. After bile duct ligation (BDL) for 12 or 24 h, there was an increase in FSK-stimulated adenylate cyclase activity in the apical membrane (54.2 +/- 3.9 pmol.mg-1 x min-1). The mechanism for this increase was explored further. ATP hydrolysis was found to be much higher in the apical than the basolateral membrane. Increasing the ATP levels in the assay enhanced apical membrane adenylate cyclase activity (10.5 +/- 0.2 pmol.mg-l.min-1); however, total adenosinetriphosphatase (ATPase) activity was not altered after BDL. Extraction of the apical membrane with bile acids or other detergents resulted in a two- to threefold increase in adenylate cyclase activity (30.6 +/- 3.6 pmol.mg-1 x min-1; detergent C12E8) This suggested that bile duct ligation was acting via the detergent-like action of bile acids to uncover latent adenylate cyclase activity on apical membranes. Further studies demonstrated that both BDL and detergent extraction also enhanced toxin-directed ADP-ribosylation of Gs alpha (cholera toxin) and Gi alpha (pertussis toxin) in the apical but not the basolateral membrane. After BDL, Gi alpha was found to be twofold greater in the apical membrane than the basolateral membrane. Immunoblotting using specific G protein antibodies further confirmed that apical membranes from control rats had a higher concentration of Gi1, 2 alpha and beta and slightly elevated levels of Gi3 alpha and Gs alpha compared with the basolateral membrane. The results demonstrate that adenylate cyclase and heterotrimeric GTP-binding proteins are present on the apical membrane, but measurement of their functional activity requires detergent permeabilization of apical membrane vesicles and is limited by the presence of high ATPase activity.

  8. Clay catalyzed polymerization of amino acid adenylates and its relationship to biochemical reactions

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The adsorption and polymerization of alanine adenylate on montmorillonite at pH 7 when either its interspacial faces or its edger are blocked by an excess of histidine or sodium hexametaphosphate was investigated. Results indicate that alanine adenylate can be adsorbed any place on the interspacial spaces of the clay; however, adsorption of its phosphate part, which is limited to the edges of the clay, is necessary for polymerization to occur. As a result, polymerization takes place only at sites on the interspacial faces bordering the edges.

  9. [The aspects of adenylate cyclase activity regulation in myocardium cell membranes during hypokinesia].

    PubMed

    Bulanova, K Ia; Komar, E S; Lobanok, L M

    1999-01-01

    Nonstimulated and isoproterenol, GTF, GITF, NaF stimulated activities of the adenylate cyclase in sarcolemma in white rats' myocardium was studied after two weeks of hypokinesia. As was established, in restrained animals the sensitivity of adenylate cyclase to the specified agents was increased and transition to the bimodal GTF regulation took place. It is hypothesised that involvement of membrane-bound Gi-proteins in the adrenergic effects on cardiomyocytes is one of mechanisms of the cardiotropic effects of restraint and heart distresses.

  10. The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, Mella; Eirich, Frederick R.

    1988-01-01

    The spontaneous polymerization of amino acid adenylates on Na-montmorillonite in dilute, neutral suspension, after polypeptides were adsorbed on the clay, is studied. It is found that the degrees of polymerization of the oligopeptides and polypeptides obtained is dependent on the amounts of polypeptides that were preadsorbed. It is concluded that a catalytic activity may derive from c-spacings that offer adsorption sites for the reagent amino acid adenylate within the peripheral recesses of irregularly stacked clay platelets by bringing the anhydride bonds and neutral amino groups into favorable reaction distances.

  11. [Characteristics of interaction of adenylate cyclase modulators and phosphoinositide cell signaling systems with lipid langmuir monolayers].

    PubMed

    Liakhov, O M; Prokopenko, V V; Prokopenko, R A; Mohylevych, S Ie

    2006-01-01

    Interaction of two groups of bioregulators, which oppositely affect activity of adenylate cyclase and phosphoinositide cellular signaling systems, with the Langmuir monolayer films made of natural lecithin was studied. Most significant influence on the structural and energy characteristics of lipid monolayers was revealed for the group of bioregulators, which inhibit polyphosphoinositide signaling system or/and activate adenylate cyclase signaling system. It is shown, that using the cluster analysis the bioregulators can be divided into two groups according to general orientation of their action on the considered systems of transduction of a signal.

  12. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  13. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed Central

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-01-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme. Images PMID:2869483

  14. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model.

    PubMed

    Kim, H J; Nishikawa, S; Tokutomi, Y; Takenaka, H; Hamada, M; Kuby, S A; Uesugi, S

    1990-02-06

    Although X-ray crystallographic and NMR studies have been made on the adenylate kinases, the substrate-binding sites are not unequivocally established. In an attempt to shed light on the binding sites for MgATP2- and for AMP2- in human cytosolic adenylate kinase (EC 2.7.4.3, hAK1), we have investigated the enzymic effects of replacement of the arginine residues (R44, R132, R138, and R149), which had been assumed by Pai et al. [Pai, E. F., Sachsenheimer, W., Schirmer, R. H., & Schulz, G. E. (1977) J. Mol. Biol. 114, 37-45] to interact with the phosphoryl groups of AMP2- and MgATP2-. With use of the site-directed mutagenesis method, point mutations were made in the artificial gene for hAK1 [Kim, H. J., Nishikawa, S., Tanaka, T., Uesugi, S., Takenaka, H., Hamada, M., & Kuby, S. A. (1989) Protein Eng. 2, 379-386] to replace these arginine residues with alanyl residues and yield the mutants R44A hAK1, R132A hAK1, R138A hAK1, and R149A hAK1. The resulting large increases in the Km,app values for AMP2- of the mutant enzymes, the relatively small increases in the Km,app values for MgATP2-, and the fact that the R132A, R138A, and R149A mutant enzymes proved to be very poor catalysts are consistent with the idea that the assigned substrate binding sites of Pai et al. (1977) have been reversed and that their ATP-binding site may be assigned as the AMP site.

  15. Hyaluronic acid as capacitation inductor: metabolic changes and membrane-associated adenylate cyclase regulation.

    PubMed

    Fernández, S; Córdoba, M

    2014-12-01

    The aim of this research was to study the effect of hyaluronic acid on bovine cryopreserved spermatozoa compared with heparin as regards the variation of capacitation induction, cellular oxidative metabolism and intracellular signal induced by membrane-associated adenylate cyclase to propose hyaluronic acid as a capacitation inductor. Heparin or hyaluronic acid and lysophosphatidylcholine were used to induce sperm capacitation and acrosome reaction, respectively. 2',5'-dideoxyadenosine was used as a membrane-associated adenylate cyclase inhibitor. The highest percentages of capacitated spermatozoa and live spermatozoa with acrosome integrity were obtained by incubating sperm for 60 min using 1000 μg/ml hyaluronic acid. In these conditions, capacitation induced by hyaluronic acid was lower compared with heparin; nonetheless both glycosaminoglycans promote intracellular changes that allow true acrosome reaction in vitro induced by lysophosphatidylcholine in bovine spermatozoa. Oxygen consumption in heparin-capacitated spermatozoa was significantly higher than in hyaluronic acid-treated spermatozoa. With all treatments, mitochondrial coupling was observed when a specific uncoupler of the respiratory chain was added. The inhibition of membrane-associated adenylate cyclase significantly blocked capacitation induction produced by hyaluronic acid, maintaining a basal sperm oxygen uptake in contrast to heparin effect in which both sperm parameters were inhibited, suggesting that the membrane-associated adenylate cyclase activation is involved in the intracellular signal mechanisms induced by both capacitation inductors, but only regulates mitochondrial oxidative phosphorylation in heparin-capacitated spermatozoa.

  16. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  17. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  18. Comparative effect of methioninyl adenylate on the growth of Salmonella typhimurium and Pseudomonas aeruginosa.

    PubMed

    Enouf, J; Laurence, F; Farrugia, G; Blanchard, P; Robert-Gero, M

    1976-10-11

    The bacteriostatic effect of methioninyl adenylate(MAMP)--a specific inhibitor of the enzyme methionyl-tRNA synthetase--was investigated on Salmonella typhimurium and Pseudomonas aeruginosa. 0.1 mM of this molecule added to the culture, inhibits the growth of S. typhimurium. The inhibition is specifically reversible by 0.1 mM L-methionine. In the same conditions even 1-2 mM MAMP has a very slight effect on the growth rate of P. aeruginosa and only during the first two generations. The same observation was made with the two other members of the fluorescens group P.fluorescens and P.putida. The growth rate of P. testosteroni with 1 mM MAMP in the medium is similar to the growth rate of P. aeruginosa but the other member of the acidovorans group P. acidovorans is much more affected by the smae concentration of the inhibitor. --P. multivorans is inhibited by MAMP like P. acidovorans but with a somewhat higher yield at the end of the culture. --MAMP has no effect on P. alcaligenes. The possible reasons for the weak bacteriostatic effect of MAMP on P. aeruginosa were investigated. It was established that the inhibitor enters the cells and is not used as a carbon and energy source. The intracellular methionine concentration in S. typhimurium and in P. aeruginosa is about the same and does not increase when bacteria are cultivated with MAMP. The MTS of the two microorganisms is inhibited by MAMP in vitro to about the same extent. Furthermore the tRNAmet from P. aeruginosa are fully acylated after 3 to 4 generations with this compound. Nevertheless MAMP elicits higher MTS activity in P. aeruginosa and in P. acidovorans after 1 h of incubation. The most striking difference between S. typhimurium and P. aeruginosa is that the intra and extracellular level of 5'phosphodiesterase which degrades MAMP is 10-20 fold higher in the second than in the first species.

  19. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene renders Yersinia pestis avirulent.

    PubMed Central

    Munier-Lehmann, Hélène; Chenal-Francisque, Viviane; Ionescu, Mihaela; Chrisova, Petya; Foulon, Jeannine; Carniel, Elisabeth; Bârzu, Octavian

    2003-01-01

    Nucleoside monophosphate kinases (NMPKs) are essential catalysts for bacterial growth and multiplication. These enzymes display high primary sequence identities among members of the family Enterobacteriaceae. Yersinia pestis, the causative agent of plague, belongs to this family. However, it was previously shown that its thymidylate kinase (TMPKyp) exhibits biochemical properties significantly different from those of its Escherichia coli counterpart [Chenal-Francisque, Tourneux, Carniel, Christova, Li de la Sierra, Barzu and Gilles (1999) Eur. J. Biochem. 265, 112-119]. In this work, the adenylate kinase (AK) of Y. pestis (AKyp) was characterized. As with TMPKyp, AKyp displayed a lower thermodynamic stability than other studied AKs. Two mutations in AK (Ser129Phe and Pro87Ser), previously shown to induce a thermosensitive growth defect in E. coli, were introduced into AKyp. The recombinant variants had a lower stability than wild-type AKyp and a higher susceptibility to proteolytic digestion. When the Pro87Ser substitution was introduced into the chromosomal adk gene of Y. pestis, growth of the mutant strain was altered at the non-permissive temperature of 37 degree C. In virulence testings, less than 50 colony forming units (CFU) of wild-type Y. pestis killed 100% of the mice upon subcutaneous infection, whereas bacterial loads as high as 1.5 x 10(4) CFU of the adk mutant were unable to kill any animals. PMID:12879903

  20. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy.

    PubMed

    Hass, Mathias A S; Liu, Wei-Min; Agafonov, Roman V; Otten, Renee; Phung, Lien A; Schilder, Jesika T; Kern, Dorothee; Ubbink, Marcellus

    2015-02-01

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.

  1. Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition

    PubMed Central

    Ji, Eoon Hye; Cui, Li; Yuan, Xiaoqing; Cheng, Siliangyu; Messadi, Diana; Yan, Xinmin; Hu, Shen

    2017-01-01

    The purpose of this study was to use liquid chromatography-mass spectrometry (LC-MS) with XCMS for a quantitative metabolomic analysis of UM1 and UM2 oral cancer cells after knockdown of metabolic enzyme adenylate kinase 2 (AK2) or phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 cells were initially transfected with AK2 siRNA, PGK1 siRNA or scrambled control siRNA, and then analyzed with LC-MS for metabolic profiles. XCMS analysis of the untargeted metabolomics data revealed a total of 3200-4700 metabolite features from the transfected UM1 or UM2 cancer cells and 369-585 significantly changed metabolites due to AK2 or PGK1 suppression. In addition, cluster analysis showed that a common group of metabolites were altered by AK2 knockdown or by PGK1 knockdown between the UM1 and UM2 cells. However, the set of significantly changed metabolites due to AK2 knockdown was found to be distinct from those significantly changed by PGK1 knockdown. Our study has demonstrated that LC-MS with XCMS is an efficient tool for metabolomic analysis of oral cancer cells, and knockdown of different genes results in distinct changes in metabolic phenotypes in oral cancer cells. PMID:28243334

  2. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  3. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  4. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor.

    PubMed

    Sorrentino, Luca; Calogero, Alessandra Maria; Pandini, Vittorio; Vanoni, Maria Antonietta; Sevrioukova, Irina F; Aliverti, Alessandro

    2015-12-01

    Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.

  5. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    PubMed

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  6. Mechanism of MenE Inhibition by Acyl-Adenylate Analogues and Discovery of Novel Antibacterial Agents

    PubMed Central

    Sharma, Indrajeet; Lavaud, Lubens J.; Ngo, Stephen C.; Shek, Roger; Rajashankar, Kanagalaghatta R.; French, Jarrod B.; Tan, Derek S.; Tonge, Peter J.

    2015-01-01

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1) which has an IC50 value of ≤ 25 nM for the Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in S. aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ~1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure–activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto-acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively-charged keto-acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future. PMID:26394156

  7. Direct interaction between the catalytic subunit of the calmodulin-sensitive adenylate cyclase from bovine brain with /sup 125/I-labeled wheat germ agglutinin and /sup 125/I-labeled calmodulin

    SciTech Connect

    Minocherhomjee, A.M.; Selfe, S.; Flowers, N.J.; Storm, D.R.

    1987-07-14

    A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min/sup -1/ and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with /sup 125/I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca/sup 2 +/ concentration dependent. In addition, the catalytic subunit was shown to directly bind /sup 125/I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.

  8. Adenylate cyclase and the search for new compounds with the clinical profile of lithium.

    PubMed

    Belmaker, R H

    1984-01-01

    It is possible to evaluate the beta-adrenergic receptor-adenylate cyclase complex in the human periphery by measuring the plasma cyclic AMP rise after adrenergic agonists. A clinical trial of the beta 2 adrenergic agonist salbutamol in depression provided an opportunity to test whether adrenergic receptor subsensitivity does occur during clinical antidepressant treatment. After 1 and 3 weeks of oral salbutamol treatment, depression scores declined significantly in 11 depressed patients, while the plasma cyclic AMP response to i.v. salbutamol declined over 60%. The results support the concept that receptor sensitivity changes occur during human antidepressant therapy. Data are presented that Li, too, markedly reduces activity of beta-adrenergic adenylate cyclase in humans. The effect was evaluated by studying the effect of Li at therapeutic serum concentrations on the plasma cyclic AMP response to subcutaneous epinephrine. The Li effect is specific, since the plasma cyclic AMP response to glucagon is not inhibited. In rat cortical slices Li inhibition of noradrenaline-induced cyclic AMP accumulation is clearly demonstrable only at concentrations close to 2 mM Li. However, fresh human brain slices from edges of surgically-removed tumors show Li inhibition at 1 mM Li concentrations. These results imply that in brain as well as periphery, human noradrenergic adenylate cyclase is inhibited by therapeutic concentrations of Li. Demeclocyclin, a tetracycline-derived antibiotic, was found to inhibit noradrenaline-sensitive adenylate cyclase in rat cortical slices and to inhibit amphetamine-induced hyperactivity in rats in an open field. Clinical trials should search for new compounds with the clinical profile of Li.

  9. Stimulatory and inhibitory effects of forskolin on adenylate cyclase in rat normal hepatocytes and hepatoma cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Takagi, K; Satake, T; Hasegawa, T

    1989-02-01

    Forskolin synergistically potentiated adenosine 3',5'-cyclic monophosphate formation by prostaglandin E1 (PGE1) in rat normal hepatocytes freshly prepared by collagenase digestion and rat ascites hepatoma AH66 cells, but dose-dependently inhibited the accumulation by PGE1 in AH66F cells. Forskolin activated adenylate cyclase in a dose-dependent manner in homogenates of all cell lines. In normal hepatocytes and AH66 cells, simultaneous addition of forskolin and other adenylate cyclase activators [isoproterenol (IPN), PGE1, guanosine 5'-triphosphate sodium salt (GTP), 5'-guanylylimidodiphosphate sodium salt (Gpp (NH)p), NaF, cholera toxin, islet activating protein and MnCl2] gave greater than additive responses. On the other hand, in AH66F cells, the effect of forskolin on adenylate cyclase was hardly influenced by GTP, but forskolin diminished the activities induced by high concentrations of GTP to that by the diterpene alone. Forskolin also significantly inhibited the PGE1-stimulated and the guanine nucleotide binding regulatory protein-stimulated activities. Because AH66F cells were insensitive to IPN, the combination with forskolin and IPN gave similar activity to that obtained with the diterpene alone. The effect of forskolin on the activation by manganese ion was neither synergistic nor inhibitory but was additive in AH66F cells. These results suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide binding regulatory protein and the catalytic unit in normal hepatocytes and AH66 cells, but in AH66F cells forskolin interferes with the coupling of the two components of adenylate cyclase.

  10. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  11. Multiforms of mammalian adenylate kinase and its monoclonal antibody against AK1.

    PubMed

    Kurokawa, Y; Takenaka, H; Sumida, M; Oka, K; Hamada, M; Kuby, S A

    1990-01-01

    An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.

  12. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  13. Relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium

    SciTech Connect

    Ehlert, F.J.

    1985-11-01

    The muscarinic receptor-binding properties of a series of muscarinic drugs were compared with their effects on adenylate cyclase in membranes of the rabbit myocardium. When measured by competitive inhibition of (TH)-N-methylscopolamine binding, the competition curves of the various agonists were adequately described by the ternary complex model. This model assumes that the receptor can bind reversibly with a guanine nucleotide binding protein in the membrane and that the affinity of the agonist for the receptor-guanine nucleotide-binding protein complex is higher than that for the free receptor. A satisfactory fit of the ternary complex model to the data could only be achieved assuming that very little receptor is precoupled with the guanine nucleotide-binding protein in the absence of agonist. There was good agreement between the efficacy of each agonist as measured by inhibition of adenylate cyclase and the estimate of the positive cooperativity between the binding of the agonist receptor complex and the guanine nucleotide-binding protein. Guanosine 5'-triphosphate (0.1 mM) had no significant effect on the binding of (TH)N-methylscopolamine but caused an increase in the concentration of the various agonists required for half-maximal receptor occupancy. There was good correlation between efficacy as measured by inhibition of adenylate cyclase and the influence of guanosine 5'-triphosphate on binding properties.

  14. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover.

    PubMed Central

    Stein, R; Pinkas-Kramarski, R; Sokolovsky, M

    1988-01-01

    The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins. Images PMID:2846274

  15. Persistent stimulation of adenylate cyclase and urea transport by an AVP photolabel

    SciTech Connect

    Eggena, P.; Ma, C.L.; Fahrenholz, F.; Schwartz, I.L.

    1985-07-01

    The effects of a photoaffinity label for arginine vasopressin receptors, (Phe2, Phe(p-N3)3)AVP (N3-AVP), on urea permeability and adenylate cyclase activity have been investigated in the toad urinary bladder. This compound, when activated by ultraviolet light, induced a maximal and persistent increase in the urea permeability of the intact bladder and a persistent increase in the adenylate cyclase activity of toad bladder epithelial cell homogenates. Covalent attachment of the analogue to target tissue during photolysis was equivalent at 4 and 20 degrees C. Bladders exposed to N3-AVP in the presence of AVP during photolysis were substantially less permeable to urea than controls that had been exposed to N3-AVP alone. These findings constitute further evidence in support of the previous suggestion that N3-AVP binds covalently to AVP receptors and, in addition, demonstrates that N3-AVP evokes a persistent increase in adenylate cyclase activity which, in turn, triggers a persistent increase in bladder permeability to urea.

  16. Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform.

    PubMed

    Cámara, María de los Milagros; Bouvier, León A; Canepa, Gaspar E; Miranda, Mariana R; Pereira, Claudio A

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3' UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes.

  17. Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform

    PubMed Central

    Cámara, María de los Milagros; Bouvier, León A.; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes. PMID:23409202

  18. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    PubMed

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  19. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    PubMed

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  20. Enzyme assays.

    PubMed

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  1. Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagon-like peptide 1 secreting cells

    PubMed Central

    Friedlander, Ronn S; Moss, Catherine E; Mace, Jessica; Parker, Helen E; Tolhurst, Gwen; Habib, Abdella M; Wachten, Sebastian; Cooper, Dermot M; Gribble, Fiona M; Reimann, Frank

    2011-01-01

    BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine L-cells after food intake. Increasing GLP-1 signalling either through inhibition of the GLP-1 degrading enzyme dipeptidyl-peptidase IV or injection of GLP-1-mimetics has recently been successfully introduced for the treatment of type 2 diabetes. Boosting secretion from the L-cell has so far not been exploited, due to our incomplete understanding of L-cell physiology. Elevation of cyclic adenosine monophosphate (cAMP) has been shown to be a strong stimulus for GLP-1 secretion and here we investigate the activities of adenylate cyclase (AC) and phosphodiesterase (PDE) isozymes likely to shape cAMP responses in L-cells. EXPERIMENTAL APPROACH Expression of AC and PDE isoforms was quantified by RT-PCR. Single cell responses to stimulation or inhibition of AC and PDE isoforms were monitored with real-time cAMP probes. GLP-1 secretion was assessed by elisa. KEY RESULTS Quantitative PCR identified expression of protein kinase C- and Ca2+-activated ACs, corresponding with phorbolester and cytosolic Ca2+-stimulated cAMP elevation. Inhibition of PDE2, 3 and 4 were found to stimulate GLP-1 secretion from murine L-cells in primary culture. This corresponded with cAMP elevations monitored with a plasma membrane targeted cAMP probe. Inhibition of PDE3 but not PDE2 was further shown to prevent GLP-1 secretion in response to guanylin, a peptide secreted into the gut lumen, which had not previously been implicated in L-cell secretion. CONCLUSIONS AND IMPLICATIONS Our results reveal several mechanisms shaping cAMP responses in GLP-1 secreting cells, with some of the molecular components specifically expressed in L-cells when compared with their epithelial neighbours, thus opening new strategies for targeting these cells therapeutically. PMID:21054345

  2. Cellular levels of feedback regulator of adenylate cyclase and the effect of epinephrine and insulin.

    PubMed Central

    Ho, R j; Russell, T R; Asakawa, T; Sutherland, E W

    1975-01-01

    We have obtained direct evidence that shows the cellular formation and subsequent release of a potent inhibitor (feedback regulator) of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by adipocytes, upon stimulation with epinephrine. The appearance of such a feedback regulator in adipocytes preceded its release into the medium. During a 30 min incubation, intracellular regulator levels rose rapidly and reached 39-61 units/g of adipocyte at 10 min. Release of inhibitor into the medium increased slowly and was 11-16 units/g of adipocyte at 10 min. Upon continued incubation, the cells at 30 min contained 30-41 units/g of ingibitor, slightly less than the content at 30 min; meanwhile, the medium content rose more than 3-fold. The inhibitor from both locations appeared to have the same characteristics, judging from the purification procedures and the biological activities on hormone-stimulated adenylate cyclase. Adenylate cyclase was inhibited by the feedback regulator in vitro when either epinephrine, corticotropin (ACTH), or glucagon was used as activator. The site of action of this inhibitor is therefore most likely beyond the specific hormone receptors. A new in vitro action of insulin has been found. Insulin, 50-500 microunits/ml, inhibited the formation and release of this factor from isolated rat or hamster adipocytes by 29-81% after these cells were stimulated by hormones that raise intracellular adenosine 3':5'-cyclic monophosphate. This factor enhaced the effect of insulin in lowering the adenosine 3':5'-cyclic monophosphate levels in fresh rat adipocytes. A reduced formation of such a factor may modify the metabolic events in adipocytes, and some as yet unexplained effects of insulin could therefore be linked to the metabolic effects of this factor. PMID:174073

  3. On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    PubMed

    De la Fuente, Ildefonso M; Cortés, Jesús M; Valero, Edelmira; Desroches, Mathieu; Rodrigues, Serafim; Malaina, Iker; Martínez, Luis

    2014-01-01

    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for

  4. On the Dynamics of the Adenylate Energy System: Homeorhesis vs Homeostasis

    PubMed Central

    De la Fuente, Ildefonso M.; Cortés, Jesús M.; Valero, Edelmira; Desroches, Mathieu; Rodrigues, Serafim; Malaina, Iker; Martínez, Luis

    2014-01-01

    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for

  5. Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase

    SciTech Connect

    Townley,R.; Shapiro, L.

    2007-01-01

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular adenosine triphosphate (ATP) and AMP levels. Here we report crystal structures at 2.6 and 2.9 Angstrom resolution for ATP- and AMP-bound forms of a core {alpha}{beta}{gamma} adenylate-binding domain from the fission yeast AMPK homologue. ATP and AMP bind competitively to a single site in the {gamma} subunit, with their respective phosphate groups positioned near function-impairing mutants. Surprisingly, ATP binds without counter ions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  6. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.

    PubMed

    Hara, Ryotaro; Suzuki, Ryohei; Kino, Kuniki

    2015-05-15

    We demonstrated the usefulness of a hydroxamate-based colorimetric assay for predicting amide bond formation (through an aminoacyl-AMP intermediate) by the adenylation domain of nonribosomal peptide synthetases. By using a typical adenylation domain of tyrocidine synthetase (involved in tyrocidine biosynthesis), we confirmed the correlation between the absorbance at 490 nm of the l-Trp-hydroxamate-Fe(3+) complex and the formation of l-Trp-l-Pro, where l-Pro was used instead of hydroxylamine. Furthermore, this assay was adapted to the adenylation domains of surfactin synthetase (involved in surfactin biosynthesis) and bacitracin synthetase (involved in bacitracin biosynthesis). Consequently, the formation of various aminoacyl l-Pro formations was observed.

  7. Multiple effects of phorbol esters on hormone-sensitive adenylate cyclase activity in S49 lymphoma cells

    SciTech Connect

    Bell, J.D.; Brunton, L.L.

    1987-06-01

    In S49 lymphoma cells, 12-O-tetradecanoyl phorbol-13-acetate (TPA) enhances adenylate cyclase activity and doubles cAMP accumulation in response to ..beta..-adrenergic stimulation at 37/sup 0/C, putatively via the action of protein kinase C. at 27/sup 0/C, TPA has the opposite effect, inhibiting cAMP production in response to isoproterenol by approx. 25%. TPA also inhibits the response to prostaglandin E/sub 1/ (PGE/sub 1/), another stimulant of hormone-sensitive adenylate cyclase in these cells, by 30% at 37/sup 0/C and almost 50% at 27/sup 0/C. In contrast, TPA enhances responses to forskolin and cholera toxin at both 27 and 37/sup 0/C. In membranes from cells treated with TPA, PGE/sub 1/-stimulated adenylate cyclase activity is inhibited by 50%, whereas the catalytic activity stimulated by NaF or forskolin is enhanced. TPA reduces the potency of both PGE/sub 1/ and isoproterenol for cAMP generation by 50%. TPA causes a similar decrease in ..beta..-adrenergic agonist affinity with no reduction in the density of either antagonist of agonist binding sites in wild type cells and in cells lacking the ..cap alpha..-subunit of the stimulatory transducer protein (G/sub s/) (cyc/sup -/) or lacking functional receptor G/sub s/ coupling (UNC). Therefore, TPA has at least three functionally distinct effects on hormone-sensitive adenylate cyclase in S49 cells. The authors conclude that multiple and opposing effects of TPA on hormone-sensitive adenylate cyclase occur simultaneously within the same cell, affecting the responses to several agonists differently. In addition, the data offer a mechanism by which a cell can achieve heterogeneous efficacies to hormones that activate adenylate cyclase.

  8. Role of protein kinase C on the acute desensitization of renal cortical adenylate cyclase to parathyroid hormone.

    PubMed

    Bellorin-Font, E; López, C; Díaz, K; Pernalete, N; López, M; Starosta, R

    1995-01-01

    The mechanisms of adenylate cyclase desensitization to parathyroid hormone are still unclear. Current evidence suggest that the signal generated after PTH binding to receptors results in activation of adenylate cyclase and stimulation of phospholipase C with subsequent activation of protein kinase C. Recent studies have suggested a role of protein kinase C on the regulation of the PTH-dependent receptor-adenylate cyclase system in cultured cells. Therefore, the present studies were conducted to examine the role of protein kinase C on the desensitization of canine renal cortical adenylate cyclase after an acute exposure in vivo to PTH. A group of normal dogs were treated with a single intravenous injection of 1 microgram/k of syn bPTH (1-34) or Nle bPTH (3-34). Ten minutes later, animals were subjected to bilateral nephrectomy and the kidney cortex processed for preparations of basolateral membranes for determinations of adenylate cyclase activity, as well as membrane and cytosolic fractions for analysis of protein kinase C activity. Animals not treated with PTH were used as controls. PTH administration in vivo resulted in a 46.9 +/- 9.3% decrease in maximal adenylate cyclase activity in vitro in response to syn bPTH (1-34) (P < 0.001). Likewise, PTH binding as measured with 125I-Nle8,18,Tyr34-bPTH (1-34)NH2 showed a 40 +/- 3% decrease. This alterations were associated with a marked translocation of protein kinase C from the cytosol to the membrane. Thus, protein kinase C activity in membrane fractions increased from 160.6 +/- 44.8 pmol Pi/min in controls to 500.4 +/- 123 in PTH treated dogs (P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. New isozyme systems for maize (Zea mays L.): aconitate hydratase, adenylate kinase, NADH dehydrogenase, and shikimate dehydrogenase.

    PubMed

    Wendel, J F; Goodman, M M; Stuber, C W; Beckett, J B

    1988-06-01

    Electrophoretic variation and inheritance of four novel enzyme systems were studied in maize (Zea mays L.). A minimum of 10 genetic loci collectively encodes isozymes of aconitate hydratase (ACO; EC 4.2.1.3.), adenylate kinase (ADK; EC 2.7.4.3), NADH dehydrogenase (DIA; EC 1.6.99.-), and shikimate dehydrogenase (SAD; EC 1.1.1.25). At least four loci are responsible for the genetic control of ACO. Genetic data for two of the encoding loci, Aco1 and Aco4, demonstrated that at least two maize ACOs are active as monomers. Analysis of organellar preparations suggests that ACO1 and ACO4 are localized in the cytosolic and mitochondrial subcellular fractions, respectively. Maize ADK is encoded by a single nuclear locus, Adk1, governing monomeric enzymes that are located in the chloroplasts. Two cytosolic and two mitochondrial forms of DIA were electrophoretically resolved. Segregation analyses demonstrated that the two cytosolic isozymes are controlled by separate loci, Dia1 and Dia2, coding for products that are functional as monomers (DIA1) and dimers (DIA2). The major isozyme of SAD is apparently cytosolic, although an additional faintly staining plastid form may be present. Alleles at Sad1 are each associated with two bands that cosegregate in controlled crosses. Linkage analyses and crosses with B-A translocation stocks were effective in determining the map locations of six loci, including the previously described but unmapped locus Acp4. Several of these loci were localized to sparsely mapped regions of the genome. Dia2 and Acp4 were placed on the distal portion of the long arm of chromosome 1, 12.6 map units apart. Dia1 was localized to chromosome 2, 22.2 centimorgans (cM) from B1. Aco1 was mapped to chromosome 4, 6.2 cM from su1. Adk1 was placed on the poorly marked short arm of chromosome 6, 8.1 map units from rgd1. Less than 1% recombination was observed between Glu1 (on chromosome 10) and Sad1. In contrast to many other maize isozyme systems, there was little

  10. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  11. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field.

    PubMed

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  12. GSK3β Mediates Renal Response to Vasopressin by Modulating Adenylate Cyclase Activity

    PubMed Central

    Patel, Satish; Hao, ChuanMing; Woodgett, James; Harris, Raymond

    2010-01-01

    Glycogen synthase kinase 3β (GSK3β), a serine/threonine protein kinase, is a key target of drug discovery in several diseases, including diabetes and Alzheimer disease. Because lithium, a potent inhibitor of GSK3β, causes nephrogenic diabetes insipidus, GSK3β may play a crucial role in regulating water homeostasis. We developed renal collecting duct-specific GSK3β knockout mice to determine whether deletion of GSK3β affects arginine vasopressin-dependent renal water reabsorption. Although only mildly polyuric under normal conditions, knockout mice exhibited an impaired urinary concentrating ability in response to water deprivation or treatment with a vasopressin analogue. The knockout mice had reduced levels of mRNA, protein, and membrane localization of the vasopressin-responsive water channel aquaporin 2 compared with wild-type mice. The knockout mice also expressed lower levels of pS256-AQP2, a phosphorylated form crucial for membrane trafficking. Levels of cAMP, a major regulator of aquaporin 2 expression and trafficking, were also lower in the knockout mice. Both GSK3β gene deletion and pharmacologic inhibition of GSK3β reduced adenylate cyclase activity. In summary, GSK3β inactivation or deletion reduces aquaporin 2 expression by modulating adenylate cyclase activity and cAMP generation, thereby impairing responses to vasopressin in the renal collecting duct. PMID:20056751

  13. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

    NASA Astrophysics Data System (ADS)

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  14. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus

    PubMed Central

    Yang, Kunlong; Qin, Qiuping; Liu, Yinghang; Zhang, Limei; Liang, Linlin; Lan, Huahui; Chen, Chihao; You, Yunchao; Zhang, Feng; Wang, Shihua

    2016-01-01

    Aspergillus flavus is one of the most important opportunistic pathogens of crops and animals. The carcinogenic mycotoxin, aflatoxins produced by this pathogen cause a health problem to human and animals. Since cyclic AMP signaling controls a range of physiological processes, like fungal development and infection when responding to extracellular stimuli in fungal pathogens, in this study, we investigated the function of adenylate cyclase, a core component of cAMP signaling, in aflatoxins biosynthesis and virulence on plant seeds in A. flavus. A gene replacement strategy was used to generate the deletion mutant of acyA that encodes the adenylate cyclase. Severe defects in fungal growth, sporulation and sclerotia formation were observed in the acyA deletion mutant. The defect in radical growth could be partially rescued by exogenous cAMP analog. The acyA mutant was also significantly reduced in aflatoxins production and virulence. Similar to the former studies in other fungi, The acyA mutant showed enhancing tolerance to oxidative stress, but more sensitive to heat stress. Overall, the pleiotropic defects of the acyA deletion mutant indicates that the cAMP-PKA pathway is involved in fungal development, aflatoxins biosynthesis and plant seed invasion in A. flavus. PMID:28066725

  15. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    SciTech Connect

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  16. Adenylate cyclase toxin (ACT) from Bordetella hinzii: characterization and differences from ACT of Bordetella pertussis.

    PubMed

    Donato, Gina M; Hsia, Hung-Lun J; Green, Candace S; Hewlett, Erik L

    2005-11-01

    Bordetella hinzii is a commensal respiratory microorganism in poultry but is increasingly being recognized as an opportunistic pathogen in immunocompromised humans. Although associated with a variety of disease states, practically nothing is known about the mechanisms employed by this bacterium. In this study, we show by DNA sequencing and reverse transcription-PCR that both commensal and clinical strains of B. hinzii possess and transcriptionally express cyaA, the gene encoding adenylate cyclase toxin (ACT) in other pathogenic Bordetella species. By Western blotting, we also found that B. hinzii produces full-length ACT protein in quantities that are comparable to those made by B. pertussis. In contrast to B. pertussis ACT, however, ACT from B. hinzii is less extractable from whole bacteria, nonhemolytic, has a 50-fold reduction in adenylate cyclase activity, and is unable to elevate cyclic AMP levels in host macrophages (nontoxic). The decrease in enzymatic activity is attributable, at least in part, to a decreased binding affinity of B. hinzii ACT for calmodulin, the eukaryotic activator of B. pertussis ACT. In addition, we demonstrate that the lack of intoxication by B. hinzii ACT may be due to the absence of expression of cyaC, the gene encoding the accessory protein required for the acylation of B. pertussis ACT. These results demonstrate the expression of ACT by B. hinzii and represent the first characterization of a potential virulence factor of this organism.

  17. Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions.

    PubMed

    Balestri, Francesco; Giannecchini, Michela; Sgarrella, Francesco; Carta, Maria Caterina; Tozzi, Maria Grazia; Camici, Marcella

    2007-02-01

    The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.

  18. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    SciTech Connect

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin

  19. Increase in the amount of adenylate cyclase in rat gastrocnemius muscle after denervation

    SciTech Connect

    Hashimoto, K.; Watanabe, Y.; Uchida, S.; Yoshida, H.

    1989-01-01

    After section of the sciatic nerve, the basal adenylate cyclase (AC) activity in rat gastrocnemius muscle increased 6-7 times per membrane protein and about 2 times per whole muscle in the following 30 or 40 days. The AC activity in the muscle 30 days after denervation was increased about 4 times by folskolin. Calcitonin gene-related peptide (CGRP) also increased the adenylate cyclase activity in the denervated muscle. The binding of (/sup 3/H)-forskolin to cells isolated from gastrocnemius muscle was examined to determine the amount of AC molecules. Inhibition of (/sup 3/H)-forskolin binding by increasing amounts of unlabeled forskolin gave a sigmoid curve with a IC/sub 50/ value of 3/times/10/sup /minus/7/M. Results showed that the number of (/sup 3/H)-forskolin binding sites per cell was higher on the denervated side than on the control side, like the basal AC activity. The IC/sub 50/ values for inhibition by unlabeled forskolin of binding of (/sup 3/H)-forskolin were similar to muscles on the control and denervated sides. These results suggest that an increase in the AC activity induced by denervation was due to an increase in the numbers of AC molecules in the muscle.

  20. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus.

    PubMed

    Han, Seungil; Chang, Jeanne S; Griffor, Matt

    2009-11-01

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  1. High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved

    PubMed Central

    Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

    2012-01-01

    Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

  2. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins.

    PubMed Central

    Suzuki, N; Choe, H R; Nishida, Y; Yamawaki-Kataoka, Y; Ohnishi, S; Tamaoki, T; Kataoka, T

    1990-01-01

    A Saccharomyces cerevisiae gene encoding adenylate cyclase has been analyzed by deletion and insertion mutagenesis to localize regions required for activation by the Sa. cerevisiae RAS2 protein. The NH2-terminal 657 amino acids were found to be dispensable for the activation. However, almost all 2-amino acid insertions in the middle 600 residues comprising leucine-rich repeats and deletions in the COOH-terminal 66 residues completely abolished activation by the RAS2 protein, whereas insertion mutations in the other regions generally had no effect. Chimeric adenylate cyclases were constructed by swapping the upstream and downstream portions surrounding the catalytic domains between the Sa. cerevisiae and Schizosaccharomyces pombe adenylate cyclases and examined for activation by the RAS2 protein. We found that the fusion containing both the NH2-terminal 1600 residues and the COOH-terminal 66 residues of the Sa. cerevisiae cyclase rendered the catalytic domain of the Sc. pombe cyclase, which otherwise did not respond to RAS proteins, activatable by the RAS2 protein. Thus the leucine-rich repeats and the COOH terminus of the Sa. cerevisiae adenylate cyclase appear to be required for interaction with RAS proteins. Images PMID:2247439

  3. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin.

    PubMed Central

    Gordon, V M; Leppla, S H; Hewlett, E L

    1988-01-01

    Bordetella pertussis and Bacillus anthracis produce extracytoplasmic adenylate cyclase toxins (AC toxins) with shared features including activation by calmodulin and the ability to enter target cells and catalyze intracellular cyclic AMP (cAMP) production from host ATP. The two AC toxins were evaluated for sensitivities to a series of inhibitors of known uptake mechanisms. Cytochalasin D, an inhibitor of microfilament function, abrogated the cAMP response to B. anthracis AC toxin (93%) but not the cAMP response elicited by B. pertussis AC toxin. B. anthracis-mediated intoxication of CHO cells was completely inhibited by ammonium chloride (30 mM) and chloroquine (0.1 mM), whereas the cAMP accumulation produced by B. pertussis AC toxin remained unchanged. The block of target cell intoxication by cytochalasin D could be bypassed when cells were first treated with anthrax AC toxin and then exposed to an acidic medium. These data indicate that despite enzymatic similarities, these two AC toxins intoxicate target cells by different mechanisms, with anthrax AC toxin entering by means of receptor-mediated endocytosis into acidic compartments and B. pertussis AC toxin using a separate, and as yet undefined, mechanism. PMID:2895741

  4. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    PubMed Central

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  5. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  6. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    PubMed Central

    Kiss, Tibor; Jungling, Adel

    2017-01-01

    ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. PMID:28067625

  7. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models.

    PubMed

    Maasz, Gabor; Zrinyi, Zita; Reglodi, Dora; Petrovics, Dora; Rivnyak, Adam; Kiss, Tibor; Jungling, Adel; Tamas, Andrea; Pirger, Zsolt

    2017-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP.

  8. Marine enzymes.

    PubMed

    Debashish, Ghosh; Malay, Saha; Barindra, Sana; Joydeep, Mukherjee

    2005-01-01

    Marine enzyme biotechnology can offer novel biocatalysts with properties like high salt tolerance, hyperthermostability, barophilicity, cold adaptivity, and ease in large-scale cultivation. This review deals with the research and development work done on the occurrence, molecular biology, and bioprocessing of marine enzymes during the last decade. Exotic locations have been accessed for the search of novel enzymes. Scientists have isolated proteases and carbohydrases from deep sea hydrothermal vents. Cold active metabolic enzymes from psychrophilic marine microorganisms have received considerable research attention. Marine symbiont microorganisms growing in association with animals and plants were shown to produce enzymes of commercial interest. Microorganisms isolated from sediment and seawater have been the most widely studied, proteases, carbohydrases, and peroxidases being noteworthy. Enzymes from marine animals and plants were primarily studied for their metabolic roles, though proteases and peroxidases have found industrial applications. Novel techniques in molecular biology applied to assess the diversity of chitinases, nitrate, nitrite, ammonia-metabolizing, and pollutant-degrading enzymes are discussed. Genes encoding chitinases, proteases, and carbohydrases from microbial and animal sources have been cloned and characterized. Research on the bioprocessing of marine-derived enzymes, however, has been scanty, focusing mainly on the application of solid-state fermentation to the production of enzymes from microbial sources.

  9. Genetical control and linkage relationships of isozyme markers in sugar beet (B. vulgaris L.) : 1. Isocitrate dehydrogenase, adenylate kinase, phosphoglucomutase, glucose phosphate isomerase and cathodal peroxidase.

    PubMed

    Smed, E; Van Geyt, J P; Oleo, M

    1989-07-01

    Five isozyme systems were genetically investigated. The different separation techniques, the developmental expression and the use as marker system in sugar beet genetics and breeding is discussed. Isocitrate dehydrogenase was controlled by two genes. The gene products form inter- as well as intralocus dimers, even with the gene products of the Icd gene in B. procumbens and B. patellaris. Adenylate kinase was controlled by one gene. Three different allelic forms were detected, which were active as monomeric proteins. Glucose phosphate isomerase showed two zones of activity. One zone was polymorphic. Three allelic variants, active as dimers, were found. Phosphoglucomutase also showed two major zones of activity. One zone was polymorphic and coded for monomeric enzymes. Two allelic forms were found in the accessions studied. The cathodal peroxidase system was controlled by two independent genes, of which only one was polymorphic. The gene products are active as monomers. Linkage was found between red hypocotyl color (R) and Icd 2. Pgm 1, Gpi 2, Ak 1 and the Icd 2-R linkage group segregated independently.

  10. Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides.

    PubMed Central

    Siegel, L S; Hylemon, P B; Phibbs, P V

    1977-01-01

    A modified Gilman assay was used to determine the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) in rapidly filtered cells and in the culture filtrates of Pseudomonas aeruginosa, Escherichia coli K-12, and Bacteroides fragilis. In P. aeruginosa cultures, levels of cAMP in the filtrate increased with the culture absorbance (3.5 to 19.8 X 10(-9) M) but did not vary significantly with the carbon source used to support growth. Intracellular concentrations (0.8 to 3.2 X 10(-5) M) were substantially higher and did not vary appreciably during growth or with carbon source. Sodium cAMP (5 mM) failed to reverse the catabolite repression of inducible glucose-6-phosphate dehydrogenase (EC 1.1.1.49) synthesis caused by the addition of 10 mM succinate. Exogenous cAMP also had no discernible effect on the catabolite repression control of inducible mannitol dehydrogenase (EC 1.1.1.67). P. aeruginosa was found to contain both soluble cAMP phosphodiesterase (EC 3.1.4.17) and membrane-associated adenylate cyclase (EC 4.6.1.1) activity, and these were compared to the activities detected in crude extracts of E. coli. B. fragilis crude cell extracts contain neither of these enzyme activities, and little or no cAMP was detected in cells or culture filtrates of this anaerobic bacterium. PMID:187575

  11. Enzymes, Industrial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymes serve key roles in numerous biotechnology processes and products that are commonly encountered in the forms of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes can display regio- and stereo-specificity, p...

  12. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

    PubMed

    Howlett, A C

    1987-05-01

    delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.

  13. The influence of various cations on the catalytic properties of clays. [polymerization of alanine adenylate

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The polymerization of alanine adenylate in the presence of the sodium form of various clays was studied, and hectorite was found to cause more polymerization than nontronite and montmorillonite (in that order) although the differences were not great. The effect on polymerization of presaturating montmorillonite with different cations was determined. Hectorite, with increased basicity of the interspatial planes, allows polymerization of lysine, which montmorillonite does not. The general trend is that, for the same amino acid, higher degrees of polymerization are obtained when the cation in the octahedral lattice of the clay is divalent rather than trivalent. With the exchangeable cations the order is reversed, for a reason that is explained. The main role of clays in the polymerization mechanism of amino acids is concentration and neutralization of charges.

  14. Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates.

    PubMed

    Uguru, Gabriel C; Milne, Claire; Borg, Matthew; Flett, Fiona; Smith, Colin P; Micklefield, Jason

    2004-04-28

    Site-directed mutagenesis of nonribosomal peptide synthetase (NRPS) adenylation (A) domains was investigated as a means to engineer new calcium-dependent antibiotics (CDA) in Streptomyces coelicolor. Single- and double-point mutants of the CDA NRPS module 7, A-domain were generated, which were predicted to alter the specificity of this domain from Asp to Asn. The double-point mutant produced a new peptide CDA2a-7N containing Asn at position 7 as expected. However, in both the single- and the double-point mutants, significant hydrolysis of the CDA-6mer intermediate was evident. One explanation for this is that the mutant module 7 A-domain activates Asn instead of Asp; however, the Asn-thioester intermediate is only weakly recognized by the upstream C-domain acceptor site (a), allowing a water molecule to intercept the hexapeptidyl intermediate in the donor site (d).

  15. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    PubMed Central

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143

  16. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    PubMed

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  17. New crystal structures of adenylate kinase from Streptococcus pneumoniae D39 in two conformations.

    PubMed

    Thach, Trung Thanh; Lee, Sangho

    2014-11-01

    Adenylate kinases (AdKs; EC 2.7.3.4) play a critical role in intercellular homeostasis by the interconversion of ATP and AMP to two ADP molecules. Crystal structures of adenylate kinase from Streptococcus pneumoniae D39 (SpAdK) have recently been determined using ligand-free and inhibitor-bound crystals belonging to space groups P21 and P1, respectively. Here, new crystal structures of SpAdK in ligand-free and inhibitor-bound states determined at 1.96 and 1.65 Å resolution, respectively, are reported. The new ligand-free crystal belonged to space group C2, with unit-cell parameters a=73.5, b=54.3, c=62.7 Å, β=118.8°. The new ligand-free structure revealed an open conformation that differed from the previously determined conformation, with an r.m.s.d on Cα atoms of 1.4 Å. The new crystal of the complex with the two-substrate-mimicking inhibitor P1,P5-bis(adenosine-5'-)pentaphosphate (Ap5A) belonged to space group P1, with unit-cell parameters a=53.9, b=62.3, c=63.0 Å, α=101.9, β=112.6, γ=89.9°. Despite belonging to the same space group as the previously reported crystal, the new Ap5A-bound crystal contains four molecules in the asymmetric unit, compared with two in the previous crystal, and shows slightly different lattice contacts. These results demonstrate that SpAdK can crystallize promiscuously in different forms and that the open structure is flexible in conformation.

  18. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    SciTech Connect

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-03-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of (/sup 125/)Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10/sup -5/ M) suggesting predominate beta/sub 2/-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-/sub 2/-type BAR coupled to adenylate cyclase in rat brown fat.

  19. Tachyphylaxis to PACAP-27 after inhibition of NO synthesis: a loss of adenylate cyclase activation

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The vasodilator effects of pituitary adenylate cyclase activating polypeptide (PACAP-27) are subject to tachyphylaxis in rats treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). This study examined whether this tachyphylaxis is due to the loss of vasodilator potency of cAMP generated by activation of the G(s) protein-coupled PACAP receptors. Five successive treatments with PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats that were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME (50 micromol/kg iv)-treated rats produced vasodilator responses of similar magnitude to those in saline-treated rats, whereas four subsequent injections produced progressively and markedly smaller responses. The hemodynamic effects of the membrane-permeable cAMP analog 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP; 5-15 micromol/kg iv) were similar in L-NAME-treated rats and in L-NAME-treated rats that had received the five injections of PACAP-27. In addition, five injections of 8-CPT-cAMP (10 micromol/kg iv) produced pronounced vasodilator responses in saline- and L-NAME-treated rats that were not subject to the development of tachyphylaxis. These results suggest that a loss of biological potency of cAMP is not responsible for tachyphylaxis to PACAP-27 in L-NAME-treated rats. This tachyphylaxis may be due to the inability of the G(s) protein-coupled PACAP receptor to activate adenylate cyclase.

  20. Thermostable adenylate kinase technology: a new process indicator and its use as a validation tool for the reprocessing of surgical instruments.

    PubMed

    Hesp, J R; Poolman, T M; Budge, C; Batten, L; Alexander, F; McLuckie, G; O'Brien, S; Wells, P; Raven, N D H; Sutton, J M

    2010-02-01

    Adenylate kinase (tAK), a thermostable enzyme, was assessed as a possible means of providing a quantitative measure of cleaning efficacy suitable for validating the performance of an automated washer disinfector (AWD) during routine use. Two indicator formulations were developed using either a commercially available washer disinfector soil or a protein-based soil. Each indicator consisted of 100 microg (in test soil) of tAK dried on to a steel or plastic surface. These indicators were placed in each basket of a washer disinfector and processed alongside soiled surgical instruments during a standard day's operation. After processing, remaining tAK activity was detected using a rapid enzyme assay (2 min detection time) in a handheld hygiene monitor. The amount of tAK remaining on each indictor after a full AWD cycle was found to range from 0.1 to 0.4 ng, which represented a mean log(10) removal of 5.8+/-0.3. There was no statistical difference in the residual tAK activity between individual runs or the position of the indicator in the machine. The tAK indicator was also used to analyse the protein removal within each component of the wash cycle. These results demonstrated that all phases of the wash process contributed to the removal of the protein load, with the main wash alone being responsible for 3.6-4.0 log(10) reductions in protein activity. We propose that a quantitative cleaning index using such rapid readout indicator devices would provide a valuable addition to the methodologies for validating cleaning processes.

  1. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    PubMed Central

    2012-01-01

    Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum) using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples. PMID:22995534

  2. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.

    PubMed

    Zou, Yekui; Yin, Jun

    2008-10-15

    To engineer the substrate specificities of nonribosomal peptide synthetases (NRPS), we developed a method to display NRPS modules on M13 phages and select catalytically active adenylation (A) domains that would load azide functionalized substrate analogs to the neighboring peptidyl carrier protein (PCP) domains. Biotin conjugated difluorinated cyclooctyne was used for copper free cycloaddition with an azide substituted substrate attached to PCP. Biotin-labeled phages were selected by binding to streptavidin.

  3. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    SciTech Connect

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  4. Structure of the RNA 30-Phosphate Cyclase-Adenylate Intermediate Illuminates Nucleotide Specificity and Covalent Nucleotidyl Transfer

    SciTech Connect

    Tanaka, N.; Smith, P; Shuman, S

    2010-01-01

    RNA 3-phosphate cyclase (RtcA) synthesizes RNA 2,3 cyclic phosphate ends via three steps: reaction with ATP to form a covalent RtcA-AMP intermediate; transfer of adenylate to an RNA 3-phosphate to form RNA(3)pp(5)A; and attack of the vicinal O2 on the 3-phosphorus to form a 2,3 cyclic phosphate. Here we report the 1.7 {angstrom} crystal structure of the RtcA-AMP intermediate, which reveals the mechanism of nucleotidyl transfer. Adenylate is linked via a phosphoamide bond to the His309 N{var_epsilon} atom. A network of hydrogen bonds to the ribose O2 and O3 accounts for the stringent ribonucleotide preference. Adenine is sandwiched in a hydrophobic pocket between Tyr284 and Pro131 and the preference for adenine is enforced by Phe135, which packs against the purine C2 edge. Two sulfates bound near the adenylate plausibly mimic the 3-terminal and penultimate phosphates of RNA. The structure illuminates how the four {alpha}2/{beta}4 domains contribute to substrate binding and catalysis.

  5. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  6. Adenylate pool and energy charge in human lymphocytes and granulocytes irradiated at 632 nm (HeNe laser)

    NASA Astrophysics Data System (ADS)

    Bolognani, Lorenzo; Venturelli, T.; Volpi, N.; Zirilli, O.

    1995-05-01

    Aim of this report was to investigate the adenylate pool and the energy charge in human white blood cells exposed to increasing time (15, 30 and 60 min) of HeNe laser treatment. EDTA treated human blood diluted 1:1 with 0.88% KCl was added (1:5) with NaCl-dextran solution to allow sedimentation of red blood cells. 6 ml of the white cells floating in the supernatant were layered on 3 ml of Lymphoprep in plastic tubes and each tube was centrifuged (from 50 to 5000 X g for 5 min). Granulocytes were concentrated in the lower phase, whilst lymphocytes were in the intermediated phase. After further purification cytological homogeneity was tested by a cell counter. Granulocytes and lymphocytes were irradiated at +22°C with HeNe (Space, Valfivre equipment). On these population ATP was tested by luminometric procedure, the adenylate pool was separated by HPLC (Jasco) on neutralyzed perchloric extracts. ATP concentration increased in lymphocytes (+63.9%, p < 0.01) and in granulocytes (+25.0%, p < 0.05) after 60 min irradiation. The adenylate pool (tested by HPLC) does not change significatively in lymphocytes or granulocytes after 30 min irradiation, whilst in 60 min irradiated lymphocytes and granulocytes a significative increment was observed in nucleotide concentration. No changes were observed in energy charge according to Atkinson.

  7. Development of a novel photoreactive calmodulin derivative: Cross-linking of purified adenylate cyclase from bovine brain

    SciTech Connect

    Harrison, J.K.; Lawton, R.G.; Gnegy, M.E. )

    1989-07-11

    A novel photoreactive calmodulin (CaM) derivative was developed and used to label the purified CaM-sensitive adenylate cyclase from bovine cortex. {sup 125}I-CaM was conjugated with the heterobifunctional cross-linking agent p-nitrophenyl 3-diazopyruvate (DAPpNP). Spectral data indicated that diazopyruvoyl (DAP) groups were incorporated into the CaM molecule. Iodo-CaM-DAPs behaved like native CaM with respect to (1) Ca{sup 2+}-dependent enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and (2) Ca{sup 2+}-dependent stimulation of adenylate cyclase activity. {sup 125}I-CaM-DAP photochemically cross-linked to CaM-binding proteins in a manner that was both Ca{sup 2+} dependent and CaM specific. Photolysis of forskolin-agarose-purified adenylate cyclase from bovine cortex with {sup 125}I-CaM-DAP produced a single cross-linked product which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent molecular weight of approximately 140,000.

  8. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.

  9. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.

    PubMed Central

    Berthet-Colominas, C; Seignovert, L; Härtlein, M; Grotli, M; Cusack, S; Leberman, R

    1998-01-01

    The crystal structure of Thermus thermophilus asparaginyl-tRNA synthetase has been solved by multiple isomorphous replacement and refined at 2.6 A resolution. This is the last of the three class IIb aminoacyl-tRNA synthetase structures to be determined. As expected from primary sequence comparisons, there are remarkable similarities between the tertiary structures of asparaginyl-tRNA synthetase and aspartyl-tRNA synthetase, and most of the active site residues are identical except for three key differences. The structure at 2.65 A of asparaginyl-tRNA synthetase complexed with a non-hydrolysable analogue of asparaginyl-adenylate permits a detailed explanation of how these three differences allow each enzyme to discriminate between their respective and very similar amino acid substrates, asparagine and aspartic acid. In addition, a structure of the complex of asparaginyl-tRNA synthetase with ATP shows exactly the same configuration of three divalent cations as previously observed in the seryl-tRNA synthetase-ATP complex, showing that this a general feature of class II synthetases. The structural similarity of asparaginyl- and aspartyl-tRNA synthetases as well as that of both enzymes to the ammonia-dependent asparagine synthetase suggests that these three enzymes have evolved relatively recently from a common ancestor. PMID:9582288

  10. Food Enzymes

    ERIC Educational Resources Information Center

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  11. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  12. Variation in adenylate energy charge and phosphoadenylate pool size in estuarine organisms after an oil spill

    SciTech Connect

    Shafer, T.H.; Hackney, C.T.

    1987-05-01

    Adenylate energy charge (AEC) is the proportion of the total phosphoadenylate pool charged with high-energy bonds. AEC values vary between zero and one by definition. Since AEC can be measured in any organism, decreases might be a universal measure of sublethal environmental stress. In some organisms which maintain high AEC while withstanding natural or anthropogenic stress, the absolute concentration of ATP and the total phosphoadenylate pool (TPP) decrease proportionally. However, in certain organisms the TPP shows dramatic natural fluctuations unrelated to pollution or stress. On 28 June 1983, a tanker spilled approximately 42,000 gallons of number6 diesel oil in the Cape Fear River, North Carolina, USA. Oil covered the tidal marshes on the east side of the river and provided an opportunity to determine if either the AEC or TPP in a variety of organisms would respond to this stress. Five test species were examined as long as one year after the spill. AEC and TPP values of the organisms were compared between contaminated and uncontaminated sites at all seasons. This is the first investigation to monitor AEC in a number of taxonomically distinct estuarine species during an extended period after an oil spill.

  13. [Structure, localization and physiologic role of pituitary adenylate cyclase activating polypeptide (PACAP)].

    PubMed

    Vincze, E; Köves, K

    2001-03-11

    PACAP was isolated on the basis of its ability to stimulate adenylate cyclase in primary anterior pituitary cell culture from ovine hypothalami by Miyata et al. in 1989. This peptide is structurally related to the secretin family and shows a 67% sequence homology with vasoactive intestinal polypeptide (VIP). The amino acid sequence of PACAP has been highly preserved during the evolution that may be connected with its important physiological role. Similar to other "brain-gut peptides" PACAP is localized not only in the central but in the peripheral nervous system and in non-neural tissues as well. In addition to its hypophysiotropic effects in the hypothalamo-hypophysial system PACAP exerts its effects on water-salt balance, cardiovascular functions, gastrointestinal motility and secretion and also on the regulation of reproductive functions. PACAP has a role in certain neuro-immuno-endocrine processes, in the differentiation of the nervous system, and it has neuroprotective effects in the case of ischaemia and various toxic agents. Locally PACAP takes its effects as an auto- and paracrine hormone, a neurotransmitter or a neuromodulator in different organs. Besides VIP, PACAP plays an important role in the function of the photo-neuro-endocrine system.

  14. Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development

    PubMed Central

    Antal, Maria Cristina; Bénardais, Karelle; Samama, Brigitte; Auger, Cyril; Schini-Kerth, Valérie; Ghandour, Said; Boehm, Nelly

    2017-01-01

    Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors. PMID:28122017

  15. Kinetics of inhibition of firefly luciferase by oxyluciferin and dehydroluciferyl-adenylate.

    PubMed

    Ribeiro, César; Esteves da Silva, Joaquim C G

    2008-09-01

    The inhibition mechanisms of the firefly luciferase (Luc) by the two major products of the reactions catalysed by Luc, oxyluciferin and dehydroluciferyl-adenylate (L-AMP), were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 microM oxyluciferin; 0.0025 to 1.25 microM L-AMP) has been measured in 50 mM Hepes buffer (pH=7.5), 10 nM Luc, 250 microM ATP and D-Luciferin (from 3.75 up to 120 microM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that oxyluciferin is a competitive inhibitor of luciferase (Ki=0.50+/-0.03 microM) while L-AMP act as a tight-binding competitive inhibitor (Ki=3.8+/-0.7 nM). The Km values obtained both for oxyluciferin and L-AMP were 14.7+/-0.7 and 14.9+/-0.2 microM, respectively. L-AMP is a stronger inhibitor of Luc than oxyluciferin and the major responsible for the characteristic flash profile of in vitro Luc bioluminescence.

  16. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    PubMed

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  17. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    PubMed

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma.

  18. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    PubMed

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  19. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    SciTech Connect

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.

  20. The energy profiles of atomic conformational transition intermediates of adenylate kinase.

    PubMed

    Feng, Yaping; Yang, Lei; Kloczkowski, Andrzej; Jernigan, Robert L

    2009-11-15

    The elastic network interpolation (ENI) (Kim et al., Biophys J 2002;83:1620-1630) is a computationally efficient and physically realistic method to generate conformational transition intermediates between two forms of a given protein. However it can be asked whether these calculated conformations provide good representatives for these intermediates. In this study, we use ENI to generate conformational transition intermediates between the open form and the closed form of adenylate kinase (AK). Based on C(alpha)-only intermediates, we construct atomic intermediates by grafting all the atoms of known AK structures onto the C(alpha) atoms and then perform CHARMM energy minimization to remove steric conflicts and optimize these intermediate structures. We compare the energy profiles for all intermediates from both the CHARMM force-field and from knowledge-based energy functions. We find that the CHARMM energies can successfully capture the two energy minima representing the open AK and closed AK forms, while the energies computed from the knowledge-based energy functions can detect the local energy minimum representing the closed AK form and show some general features of the transition pathway with a somewhat similar energy profile as the CHARMM energies. The combinatorial extension structural alignment (Shindyalov et al., 1998;11:739-747) and the k-means clustering algorithm are then used to show that known PDB structures closely resemble computed intermediates along the transition pathway.

  1. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Rouatbi, Sonia; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Vaudry, David; Wurtz, Olivier; Tebourbi, Olfa

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  2. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  3. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.

    PubMed

    Yan, H G; Tsai, M D

    1991-06-04

    Earlier magnetic resonance studies suggested no direct interaction between Mg2+ ions and adenylate kinase (AK) in the AK.MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg2+ ion in the muscle AK.MgATP complex [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. On the other hand, in the 2.6-A crystal structure of the yeast AK.MgAP5A [P1,P5-bis(5'-adenosyl)pentaphosphate] complex, the Mg2+ ion is in proximity to aspartate 93 [Egner, U., Tomasselli, A.G., & Schulz, G.E. (1987) J. Mol. Biol. 195, 649-658]. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in Km, and a 650-fold decrease in kcat. Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK.MgAP5A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. The next question is how. Since proton NMR results indicated that binding of Mg2+ to the AK.AP5A complex induces some changes in the proton NMR signals of WT but not those of D93A, the functional role of Asp-93 should be in binding to Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    PubMed

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC.

  5. Structural characterization by nuclear magnetic resonance spectroscopy of a genetically engineered high-affinity calmodulin-binding peptide derived from Bordetella pertussis adenylate cyclase.

    PubMed

    Munier, H; Bouhss, A; Gilles, A M; Palibroda, N; Bârzu, O; Mispelter, J; Craescu, C T

    1995-07-10

    This paper reports the solution conformation of a peptide (P196-267) derived from the calmodulin-binding domain of Bordetella pertussis adenylate cyclase. P196-267 corresponding to the protein fragment situated between amino acid residues 196-267 was overproduced by a recombinant Escherichia coli strain. Its affinity for calmodulin is only one order of magnitude lower (Kd = 2.4 nM) than that of the whole bacterial enzyme (Kd = 0.2 nM). The proton resonances of the NMR spectra of P196-267 were assigned using homonuclear two-dimensional techniques (double-quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser enhancement spectroscopy) and a standard assignment procedure. Analysis of the nuclear Overhauser effect connectivities and the secondary shift distribution of C alpha protons along the sequence allowed us to identify the elements of regular secondary structure. The peptide is flexible in solution, being in equilibrium between random coil and helical structures. Two segments of 11 amino acids (situated between V215 and A225) and 15 amino acids (situated between L233 and A247) populate in a significant proportion the helix conformational state. The two helices can be considerably stabilized in a mixed solvent, trifluoroethanol/water (30/70), suggesting that the corresponding fragment in the intact protein assumes a similar secondary conformation. No elements of tertiary structure organization were detected by the present experiments. The conformational properties of the isolated calmodulin target fragment are discussed in relation with the available NMR and X-ray data on various peptides complexed to calmodulin.

  6. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models.

    PubMed

    Khayatt, Barzan I; Overmars, Lex; Siezen, Roland J; Francke, Christof

    2013-01-01

    There is a growing interest in the Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) of microbes, fungi and plants because they can produce bioactive peptides such as antibiotics. The ability to identify the substrate specificity of the enzyme's adenylation (A) and acyl-transferase (AT) domains is essential to rationally deduce or engineer new products. We here report on a Hidden Markov Model (HMM)-based ensemble method to predict the substrate specificity at high quality. We collected a new reference set of experimentally validated sequences. An initial classification based on alignment and Neighbor Joining was performed in line with most of the previously published prediction methods. We then created and tested single substrate specific HMMs and found that their use improved the correct identification significantly for A as well as for AT domains. A major advantage of the use of HMMs is that it abolishes the dependency on multiple sequence alignment and residue selection that is hampering the alignment-based clustering methods. Using our models we obtained a high prediction quality for the substrate specificity of the A domains similar to two recently published tools that make use of HMMs or Support Vector Machines (NRPSsp and NRPS predictor2, respectively). Moreover, replacement of the single substrate specific HMMs by ensembles of models caused a clear increase in prediction quality. We argue that the superiority of the ensemble over the single model is caused by the way substrate specificity evolves for the studied systems. It is likely that this also holds true for other protein domains. The ensemble predictor has been implemented in a simple web-based tool that is available at http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/.

  7. Chronic ghrelin treatment reduced photophobia and anxiety-like behaviors in nitroglycerin- induced migraine: role of pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Farajdokht, Fereshteh; Babri, Shirin; Karimi, Pouran; Alipour, Mohammad Reza; Bughchechi, Ramin; Mohaddes, Gisou

    2017-03-01

    Chronic migraine is a debilitating disorder that has a significant impact on patients and society. Nearly all migraineurs frequently reported light sensitivity during a headache attack. Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in the activation of trigeminal system and migraine pain. To identify the effect of chronic ghrelin treatment on endogenous PACAP and associated symptoms of migraine, an experimental chronic migraine model was induced by intermittent intraperitoneal (i.p) injection of nitroglycerin (NTG). Photophobia and anxiety-like behaviors were determined in the modified elevated plus maze on days 2, 4, 6, 8, and 10 and in the light/dark box on days 3, 5, 7, 9, and 11. Blood levels of PACAP and cortisol were assessed by enzyme-linked immunosorbent (ELISA) kits. Chronic injection of NTG evoked photophobia and anxiety-like behaviors and treatment with ghrelin (150 μg/kg) for 11 days effectively attenuated photophobia and anxiety-like behaviors in the both paradigms. We further found that NTG increased the blood levels of PACAP and cortisol, which was significantly reduced by ghrelin treatment. Additionally, staining with Hematoxylin and Eosin (H&E) revealed that ghrelin reduced NTG-induced increase in the number of satellite glial cells in the trigeminal ganglion. Furthermore, for the first time we showed that repeated administrations of NTG increased white blood cell (WBC) counts and mean platelet volume (MPV), and decreased platelet counts. These results indicated that ghrelin decreased migraine associated symptoms possibly through attenuating endogenous PACAP and cortisol levels. Therefore, ghrelin may hold therapeutic potentialities in managing the chronic migraine.

  8. D-1 dopaminergic and beta-adrenergic stimulation of adenylate cyclase in a clone derived from the human astrocytoma cell line G-CCM.

    PubMed

    Balmforth, A J; Ball, S G; Freshney, R I; Graham, D I; McNamee, H B; Vaughan, P F

    1986-09-01

    Clones have been isolated from the human astrocytoma cell line G-CCM. Homogenates of clone D384 contain an adenylate cyclase that is stimulated by 3,4-dihydroxyphenylethylamine (dopamine), noradrenaline, and isoprenaline with Ka apparent values of 4, 56, and 2.7 microM, respectively. The Ka apparent value for dopamine was increased by the D-1 antagonist cis-flupenthixol, 25 and 100 nM, to 23 and 190 microM, respectively, but was unaffected by propranolol (1 microM). Noradrenaline stimulation of adenylate cyclase was only partially inhibited by either propranolol (10 microM) or cis-flupenthixol (1 microM). Propranolol (10 microM), but not cis-flupenthixol (1 microM), prevented stimulation by isoprenaline. The stimulation of adenylate cyclase by dopamine and noradrenaline remained unchanged in the presence of phentolamine (1 microM) and sulpiride (1 microM). These results suggest that clone D384 contains both D-1 dopaminergic and beta-adrenergic receptors coupled to adenylate cyclase. Dopamine stimulates D384 adenylate cyclase through D-1 receptors, isoprenaline via beta-receptors, and noradrenaline through both receptors.

  9. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D/sub 2/ receptor

    SciTech Connect

    Borgundvaag, B.; George, S.R.

    1985-07-29

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of (/sup 3/H)-ATP to (/sup 3/H)-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC/sub 50/ values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC/sub 50/ values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D/sub 2/ dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table.

  10. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.

    PubMed

    Agüero-Chapin, Guillermin; Pérez-Machado, Gisselle; Sánchez-Rodríguez, Aminael; Santos, Miguel Machado; Antunes, Agostinho

    2016-01-01

    Identifying adenylation domains (A-domains) and their substrate specificity can aid the detection of nonribosomal peptide synthetases (NRPS) at genome/proteome level and allow inferring the structure of oligopeptides with relevant biological activities. However, that is challenging task due to the high sequence diversity of A-domains (~10-40 % of amino acid identity) and their selectivity for 50 different natural/unnatural amino acids. Altogether these characteristics make their detection and the prediction of their substrate specificity a real challenge when using traditional sequence alignment methods, e.g., BLAST searches. In this chapter we describe two workflows based on alignment-free methods intended for the identification and substrate specificity prediction of A-domains. To identify A-domains we introduce a graphical-numerical method, implemented in TI2BioP version 2.0 (topological indices to biopolymers), which in a first step uses protein four-color maps to represent A-domains. In a second step, simple topological indices (TIs), called spectral moments, are derived from the graphical representations of known A-domains (positive dataset) and of unrelated but well-characterized sequences (negative set). Spectral moments are then used as input predictors for statistical classification techniques to build alignment-free models. Finally, the resulting alignment-free models can be used to explore entire proteomes for unannotated A-domains. In addition, this graphical-numerical methodology works as a sequence-search method that can be ensemble with homology-based tools to deeply explore the A-domain signature and cope with the diversity of this class (Aguero-Chapin et al., PLoS One 8(7):e65926, 2013). The second workflow for the prediction of A-domain's substrate specificity is based on alignment-free models constructed by transductive support vector machines (TSVMs) that incorporate information of uncharacterized A-domains. The construction of the models was

  11. Pituitary Adenylate Cyclase-Activating Polypeptide Ameliorates Experimental Acute Ileitis and Extra-Intestinal Sequelae

    PubMed Central

    Schulze, Silvia; Fischer, André; Grundmann, Ursula; Alutis, Marie; Kühl, Anja A.; Tamas, Andrea; Toth, Gabor; Dunay, Miklos P.; Göbel, Ulf B.; Reglodi, Dora; Bereswill, Stefan

    2014-01-01

    Background The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Methodology/Principal Findings Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Conclusion/Significance Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases. PMID:25238233

  12. Modulation of a pre-existing conformational equilibrium tunes adenylate kinase activity.

    PubMed

    Ådén, Jörgen; Verma, Abhinav; Schug, Alexander; Wolf-Watz, Magnus

    2012-10-10

    Structural plasticity is often required for distinct microscopic steps during enzymatic reaction cycles. Adenylate kinase from Escherichia coli (AK(eco)) populates two major conformations in solution; the open (inactive) and closed (active) state, and the overall turnover rate is inversely proportional to the lifetime of the active conformation. Therefore, structural plasticity is intimately coupled to enzymatic turnover in AK(eco). Here, we probe the open to closed conformational equilibrium in the absence of bound substrate with NMR spectroscopy and molecular dynamics simulations. The conformational equilibrium in absence of substrate and, in turn, the turnover number can be modulated with mutational- and osmolyte-driven perturbations. Removal of one hydrogen bond between the ATP and AMP binding subdomains results in a population shift toward the open conformation and a resulting increase of k(cat). Addition of the osmolyte TMAO to AK(eco) results in population shift toward the closed conformation and a significant reduction of k(cat). The Michaelis constants (K(M)) scale with the change in k(cat), which follows from the influence of the population of the closed conformation for substrate binding affinity. Hence, k(cat) and K(M) are mutually dependent, and in the case of AK(eco), any perturbation that modulates k(cat) is mirrored with a proportional response in K(M). Thus, our results demonstrate that the equilibrium constant of a pre-existing conformational equilibrium directly affects enzymatic catalysis. From an evolutionary perspective, our findings suggest that, for AK(eco), there exists ample flexibility to obtain a specificity constant (k(cat)/K(M)) that commensurate with the exerted cellular selective pressure.

  13. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis.

    PubMed

    Hamelink, Carol; Tjurmina, Olga; Damadzic, Ruslan; Young, W Scott; Weihe, Eberhard; Lee, Hyeon-Woo; Eiden, Lee E

    2002-01-08

    The adrenal gland is important for homeostatic responses to metabolic stress: hypoglycemia stimulates the splanchnic nerve, epinephrine is released from adrenomedullary chromaffin cells, and compensatory glucogenesis ensues. Acetylcholine is the primary neurotransmitter mediating catecholamine secretion from the adrenal medulla. Accumulating evidence suggests that a secretin-related neuropeptide also may function as a transmitter at the adrenomedullary synapse. Costaining with highly specific antibodies against the secretin-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) and the vesicular acetylcholine transporter (VAChT) revealed that PACAP is found in nerve terminals at all mouse adrenomedullary cholinergic synapses. Mice with a targeted deletion of the PACAP gene had otherwise normal cholinergic innervation and morphology of the adrenal medulla, normal adrenal catecholamine and blood glucose levels, and an intact initial catecholamine secretory response to insulin-induced hypoglycemia. However, insulin-induced hypoglycemia was more profound and longer-lasting in PACAP knock-outs, and was associated with a dose-related lethality absent in wild-type mice. Failure of PACAP-deficient mice to adequately counterregulate plasma glucose levels could be accounted for by impaired long-term secretion of epinephrine, secondary to a lack of induction of tyrosine hydroxylase, normally occurring after insulin hypoglycemia in wild-type mice, and a consequent depletion of adrenomedullary epinephrine stores. Thus, PACAP is needed to couple epinephrine biosynthesis to secretion during metabolic stress. PACAP appears to function as an "emergency response" cotransmitter in the sympathoadrenal axis, where the primary secretory response is controlled by a classical neurotransmitter but sustained under paraphysiological conditions by a neuropeptide.

  14. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer

    PubMed Central

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Devoisselle, Jean-Marie; Ladant, Daniel; Chopineau, Joel

    2013-01-01

    Numerous bacterial toxins can cross biological membranes to reach the cytosol of mammalian cells, where they exert their cytotoxic effects. Our model toxin, the adenylate cyclase (CyaA) from Bordetella pertussis, is able to invade eukaryotic cells by translocating its catalytic domain directly across the plasma membrane of target cells. To characterize its original translocation process, we designed an in vitro assay based on a biomimetic membrane model in which a tethered lipid bilayer (tBLM) is assembled on an amine-gold surface derivatized with calmodulin (CaM). The assembled bilayer forms a continuous and protein-impermeable boundary completely separating the underlying calmodulin (trans side) from the medium above (cis side). The binding of CyaA to the tBLM is monitored by surface plasmon resonance (SPR) spectroscopy. CyaA binding to the immobilized CaM, revealed by enzymatic activity, serves as a highly sensitive reporter of toxin translocation across the bilayer. Translocation of the CyaA catalytic domain was found to be strictly dependent on the presence of calcium and also on the application of a negative potential, as shown earlier in eukaryotic cells. Thus, CyaA is able to deliver its catalytic domain across a biological membrane without the need for any eukaryotic components besides CaM. This suggests that the calcium-dependent CyaA translocation may be driven in part by the electrical field across the membrane. This study’s in vitro demonstration of toxin translocation across a tBLM provides an opportunity to explore the molecular mechanisms of protein translocation across biological membranes in precisely defined experimental conditions. PMID:24297899

  15. Biochemical mechanisms of myocardial adenylate cyclase subsensitivity to isoproterenol in cardiac hypertrophy of spontaneously hypertensive rats

    SciTech Connect

    Cheon, J.W.

    1986-01-01

    The responsiveness of the myocardial adenylate cyclase (AC) system in generating cAMP was studied using isoproterenol (a beta-adrenergic receptor agonist), cholera toxin (a guanosinetriphosphatase inhibitor) and forskolin (a catalytic unit activator) in isolated myocytes of age-matched, 14-17 weeks old Wistar Kyoto normotensive rates (WKYs) and spontaneously hypertensive rats (SHRs). We found a reduction in isoproterenol-stimulated cAMP formation in myocytes of SHRs compared with WKYs. This reduction was not due to changes in isoproterenol-receptor interactions. Scatchard plot analysis of (/sup 3/H)CGP 12177 binding to beta-adrenergic receptors in isolated myocytes of WKYs and SHRs revealed to significant differences in the maximum number of binding sites or dissociation constant. There were no significant differences in Ki and IC/sub 50/ calculated from the competitive displacement of (/sup 3/H)CGP 12177 binding by (-) isoproterenol, suggesting no change in the affinity of the beta-adrenergic receptors for isoproterenol. We found no significant differences in forskolin-stimulated cAMP formation between the two groups. This suggest that the reduction in isoproterenol-stimulated cAMP formation observed in myocytes of SHRs is not due to changes in the ability of catalytic unit to convert ATP to cAMP. Interestingly, cholera toxin-stimulated cAMP formation was increased in myocytes of SHRs. One possible explanation for these observations may be increased guanosinetriphosphatase (GTPase) activation by isoproterenol in myocytes of SHRs. The activation of GTPase by isoproterenol in myocytes of SHRs. The activation of GTPase by isoproterenol was measured as the release of Pi from (..gamma..-/sup 32/P)GTP. There was an increase in isoproterenol-stimulated GTPase activity in myocytes of SHRs compared with WKYs.

  16. Homologous desensitization of adenylate cyclase: the role of. beta. -adrenergic receptor phosphorylation and dephosphorylation

    SciTech Connect

    Sibley, D.R.; Strasser, R.H.; Daniel, K.; Lefkowitz, R.J.

    1986-03-05

    The authors utilized the frog erythrocyte (FE) as a ..beta..-adreneric receptor (..beta..AR) model system in which to study homologous desensitization. Preincubation with isoproterenol (ISO) leads to a 50% decline in ISO-stimulated adenylate cyclase (AC) activity without significant changes in basal, PGE/sub 1/-, NaF-, GppNHp-, forskolin-, or MnCl/sub 2/-stimulated AC activities. ISO treatment also induces the sequestration of ..beta..AR from the cell surface as evidenced by a 35% decline in (/sup 3/H)CGP-12177 binding sites on the surface of intact FE. Treatment of intact FE with ISO also promotes ..beta..AR phosphorylation to 2 mol PO/sub 4//mol of ..beta..AR. At 25/sup 0/C, the time courses of ISO-induced AC desensitization, ..beta..AR sequestration and ..beta..AR phosphorylation are identical occurring without a lag and exhibiting a t 1/2 of 30 min and a maximal response at 2.5 hrs. The sequestered ..beta..AR can be partially recovered upon cell lysis in a light membrane fraction (LMF), separable from the plasma membranes using sucrose gradients or differential centrifugation. ..beta..AR phosphorylation is reversed in the sequestered LMF exhibiting a PO/sub 4//..beta..AR stoichiometry of 0.7 mol/mol - similar to that observed under basal conditions. These data suggest that phosphorylation of ..beta..AR in the plasma membrane promotes their translocation away from the cell surface into a sequestered membrane domain where the phosphorylation is reversed, thus, enabling the return of ..beta..AR back to the cell surface and recoupling with AC.

  17. Rapid kinetics of 2-adrenergic agonist binding and inhibition of adenylate cyclase

    SciTech Connect

    Thomsen, W.; Neubig, R.R.

    1987-05-01

    Activation of 2-adrenergic receptors in human platelets results in inhibition of adenylate cyclase (AC). To elucidate the relation between agonist binding and response, the authors have used a novel rapid-mix quench method to compare the kinetics of binding and response. At functionally effective concentrations, the time course of binding of the full 2-agonist, (TH)UK14,304 (UK), to purified platelet membranes was faster than could be measured manually. Using the rapid-mix quench method, agonist binding was quantitated for times for 0.3 to 60 seconds. UK binding exhibited biexponential kinetics. The rate constant of the fast binding component increases linearly with agonist concentration from 1 to 100 nM with a second order rate constant and 7 x 10WM s (at 25C). The slow rate constant was nearly independent of agonist concentration. The half times of the fast and slow components of binding for 100 nM UK are 1.5 seconds and approximately 2 minutes respectively. The rate and magnitude of the fast binding was unaffected by 10 M GTP whereas the magnitude of the slow phase was markedly reduced. Inhibition of forskolin stimulated AC by 100 M epinephrine occurs with a lag of 5-10 seconds in the presence of 10 M GTP. At lower GTP concentrations, this lag is prolonged. The observation that the fast component of agonist binding precedes inhibition even at agonist concentrations 20-fold lower than the EC40 for responses indicates that the rate limiting step in inhibition of AC is distal to the binding of agonist.

  18. Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo.

    PubMed

    Seeliger, Stephan; Buddenkotte, Jörg; Schmidt-Choudhury, Anjona; Rosignoli, Carine; Shpacovitch, Victoria; von Arnim, Ulrike; Metze, Dieter; Rukwied, Roman; Schmelz, Martin; Paus, Ralf; Voegel, Johannes J; Schmidt, Wolfgang E; Steinhoff, Martin

    2010-11-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is an important neuropeptide and immunomodulator in various tissues. Although this peptide and its receptors (ie, VPAC1R, VPAC2R, and PAC1R) are expressed in human skin, their biological roles are unknown. Therefore, we tested whether PACAP regulates vascular responses in human skin in vivo. When injected intravenously, PACAP induced a significant, concentration-dependent vascular response (ie, flush, erythema, edema) and mediated a significant and concentration-dependent increase in intrarectal body temperature that peaked at 2.7°C. Topical application of PACAP induced marked concentration-dependent edema. Immunohistochemistry revealed a close association of PACAP-immunoreactive nerve fibers with mast cells and dermal blood vessels. VPAC1R was expressed by dermal endothelial cells, CD4+ and CD8+ T cells, mast cells, and keratinocytes, whereas VPAC2R was expressed only in keratinocytes. VPAC1R protein and mRNA were also detected in human dermal microvascular endothelial cells. The PACAP-induced change in cAMP production in these cells demonstrated VPAC1R to be functional. PACAP treatment of organ-cultured human skin strongly increased the number of CD31+ vessel cross-sections. Taken together, these results suggest that PACAP directly induces vascular responses that may be associated with neurogenic inflammation, indicating for the first time that PACAP may be a crucial vascular regulator in human skin in vivo. Antagonists to PACAP function may be beneficial for the treatment of inflammatory skin diseases with a neurogenic component.

  19. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    PubMed Central

    Hurley, Matthew M.; Maunze, Brian; Block, Megan E.; Frenkel, Mogen M.; Reilly, Michael J.; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A.; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  20. Neurally released pituitary adenylate cyclase-activating polypeptide enhances guinea pig intrinsic cardiac neurone excitability.

    PubMed

    Tompkins, John D; Ardell, Jeffrey L; Hoover, Donald B; Parsons, Rodney L

    2007-07-01

    Intracellular recordings were made in vitro from guinea-pig cardiac ganglia to determine whether endogenous neuropeptides such as pituitary adenylate cyclase-activating polypeptide (PACAP) or substance P released during tetanic neural stimulation modulate cardiac neurone excitability and/or contribute to slow excitatory postsynaptic potentials (sEPSPs). When nicotinic and muscarinic receptors were blocked by hexamethonium and atropine, 20 Hz stimulation for 10 s initiated a sEPSP in all innervated neurones. In 40% of the cells, excitability was enhanced after termination of the sEPSP. This suggested that non-cholinergic receptor-mediated mechanisms contributed to the sEPSP and modulated neuronal excitability. Exogenous PACAP and substance P initiated a slow depolarization in the neurones whereas neuronal excitability was only increased by PACAP. When ganglia were treated with the PAC1 antagonist PACAP6-38 (500 nM), the sEPSP evoked by 20 Hz stimulation was reduced by approximately 50% and an enhanced excitability occurred in only 10% of the cells. These observations suggested that PACAP released from preganglionic nerve terminals during tetanic stimulation enhanced neuronal excitability and evoked sEPSPs. After addition of 1 nM PACAP to the bath, 7 of 9 neurones exhibited a tonic firing pattern whereas in untreated preparations, the neurons had a phasic firing pattern. PACAP6-38 (500 nM) diminished the increase in excitability caused by 1 nM PACAP so that only 4 of 13 neurones exhibited a tonic firing pattern and the other 9 cells retained a phasic firing pattern. These findings indicate that PACAP can be released by tetanic neural stimulation in vitro and increase the excitability of intrinsic cardiac neurones. We hypothesize that in vivo PACAP released during preganglionic firing may modulate neurotransmission within the intrinsic cardiac ganglia.

  1. Pituitary Adenylate Cyclase-Activating Polypeptide induces a depressive-like phenotype in rats

    PubMed Central

    Seiglie, Mariel P.; Smith, Karen L.; Blasio, Angelo; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Major Depressive Disorder (MDD) is a chronic, life-threatening psychiatric condition characterized by depressed mood, psychomotor alterations, and a markedly diminished interest or pleasure in most activities, known as anhedonia. Available pharmacotherapies have limited success and the need for new strategies is clear. Recent studies attribute a major role to the pituitary adenylate cyclase-activating polypeptide (PACAP) system in mediating the response to stress. PACAP knockout mice display profound alterations in depressive-like behaviors and genetic association studies have demonstrated that genetic variants of the PACAP gene are associated with MDD. However, the effects of PACAP on depressive-like behaviors in rodents have not yet been systematically examined. The present study investigated the effects of central administration of PACAP in rats on depressive-like behaviors, using well-established animal models that represent some of the endophenotypes of depression. We used intracranial self-stimulation (ICSS) to assess the brain reward function, saccharin preference test to assess anhedonia, social interaction to assess social withdrawal, and forced swim test (FST) to assess behavioral despair. PACAP raised the current threshold for ICSS, elevation blocked by the PACAP antagonist PACAP(6-38). PACAP reduced the preference for a sweet saccharin solution, and reduced the time the rats spent interacting with a novel animal. Interestingly, PACAP administration did not affect immobility in the FST. Our results demonstrate a role for the central PACAP/PAC1R system in the regulation of depressive-like behaviors, and suggest that hyperactivity of the PACAP/PAC1R system may contribute to the pathophysiology of depression, particularly the associated anhedonic symptomatology and social dysfunction. PMID:26264905

  2. Hemodynamic actions of systemically injected pituitary adenylate cyclase activating polypeptide-27 in the rat

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aims of this study were (1) to characterize the hemodynamic mechanisms underlying the hypotensive effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP-27 0.1-2.0 nmol/kg, i.v.) in pentobarbital-anesthetized rats, and (2) to determine the roles of the autonomic nervous system, adrenal catecholamines and endothelium-derived nitric oxide (NO) in the expression of PACAP-27-mediated effects on hemodynamic function. PACAP-27 produced dose-dependent decreases in mean arterial blood pressure and hindquarter and mesenteric vascular resistances in saline-treated rats. PACAP-27 also produced pronounced falls in mean arterial blood pressure in rats treated with the ganglion blocker, chlorisondamine (5 mg/kg, i.v.). The hypotensive and vasodilator actions of PACAP-27 were not attenuated by the beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.), or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME 50 micromol/kg, i.v.). PACAP-27 produced dose-dependent increases in heart rate whereas the hypotensive response produced by the nitrovasodilator, sodium nitroprusside (10 microg/kg, i.v.), was associated with a minimal tachycardia. The PACAP-27-induced tachycardia was unaffected by chlorisondamine, but was virtually abolished by propranolol. These results suggest that the vasodilator effects of PACAP-27 are due to actions in the microcirculation rather than to the release of adrenal catecholamines and that this vasodilation may not involve the release of endothelium-derived NO. These results also suggest that PACAP-27 produces tachycardia by directly releasing norepinephrine from cardiac sympathetic nerve terminals rather than by direct or baroreceptor reflex-mediated increases in sympathetic nerve activity.

  3. Adenylate cyclase A acting on PKA mediates induction of stalk formation by cyclic diguanylate at the Dictyostelium organizer

    PubMed Central

    Chen, Zhi-Hui; Singh, Reema; Cole, Christian; Lawal, Hajara Mohammed; Schilde, Christina; Febrer, Melanie; Barton, Geoffrey J.; Schaap, Pauline

    2017-01-01

    Coordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation. Here we used transcriptional profiling of dgca− structures to identify target genes for c-di-GMP, and used these genes to investigate the c-di-GMP signal transduction pathway. We found that knockdown of cAMP-dependent protein kinase (PKA) activity in prestalk cells reduced stalk gene induction by c-di-GMP, whereas PKA activation bypassed the c-di-GMP requirement for stalk gene expression. c-di-GMP caused a persistent increase in cAMP, which still occurred in mutants lacking the adenylate cyclases ACG or ACR, or the cAMP phosphodiesterase RegA. However, both inhibition of adenylate cyclase A (ACA) with SQ22536 and incubation of a temperature-sensitive ACA mutant at the restrictive temperature prevented c-di-GMP–induced cAMP synthesis as well as c-di-GMP–induced stalk gene transcription. ACA produces the cAMP pulses that coordinate Dictyostelium morphogenetic cell movement and is highly expressed at the organizing tip. The stalk-less dgca− mutant regained its stalk by expression of a light-activated adenylate cyclase from the ACA promoter and exposure to light, indicating that cAMP is also the intermediate for c-di-GMP in vivo. Our data show that the more widely expressed DgcA activates tip-expressed ACA, which then acts on PKA to induce stalk genes. These results explain why stalk formation in Dictyostelia always initiates at the site of the morphogenetic organizer. PMID:28057864

  4. Effects of UVB irradiation on epidermal adenylate cyclase responses in vitro: its relation to sunburn cell formation.

    PubMed

    Iizuka, H; Ishida-Yamamoto, A; Kajita, S; Tsutsui, M; Ohkuma, N

    1988-01-01

    UVB irradiation augmented the beta-adrenergic adenylate cyclase response of pig skin epidermis in vitro. The effect was observed 2-4 h following the irradiation and lasted at least for 48 h. There was no significant difference in cyclic AMP phosphodiesterase activity between control and UVB-irradiated epidermis at lower irradiation dose (150 mJ/cm2), which is the dose of the most marked beta-adrenergic augmentation effect. The augmentation effect was specific to the beta-adrenergic system; adenosine and histamine adenylate cyclase responses were unchanged or decreased depending on the irradiation dose. Histologically, marked sunburn-cell formation was observed following the UVB irradiation. It has been suggested that oxygen intermediates generated by ultraviolet radiation participate in sunburn-cell formation. The addition of superoxide dismutase (SOD) in the incubation medium significantly inhibited sunburn-cell formation. On the other hand, the beta-adrenergic augmentation effect was not affected by the addition of SOD. Other scavengers of oxygen intermediates (catalase, catalase + SOD, xanthine, or mannitol) did not inhibit the UVB-induced beta-adrenergic augmentation effect. Further, superoxide-anion generating systems (hypoxanthine-xanthine oxidase system and acetaldehyde-xanthine oxidase system) revealed no stimulatory effect on the beta-adrenergic response of epidermis. These results indicate that (a) the UVB-induced beta-adrenergic augmentation effect is inherent to skin and does not depend on systemic factors such as inflammatory infiltrates following UVB irradiation; (b) in contrast to sunburn-cell formation, induction of the beta-adrenergic adenylate cyclase response is not directly associated with oxygen intermediates generated by UVB irradiation.

  5. Acyclic phosphonate nucleotides and human adenylate kinases: impact of a borano group on alpha-P position.

    PubMed

    Topalis, D; Alvarez, K; Barral, K; Munier-Lehmann, H; Schneider, B; Véron, M; Guerreiro, C; Mulard, L; El-Amri, C; Canard, B; Deville-Bonne, D

    2008-04-01

    Adenylate kinases are involved in the activation of antiviral drugs such as the acyclic phosphonates analogs PMEA and (R)PMPA. We examine the in vitro phosphorylation of PMEA and PMPA bearing a borano- or a H- group on the phosphorus atom. The alpha-borano or alpha-H on PMEA and PMPA were detrimental to the activity of recombinant human AMP kinases 1 and 2. Docking PMEA to the active site of AMP kinase 1 indicated that the borano group may prevent two conserved critical Arg interactions with the alpha-phosphate, resulting in substrate bad positioning.

  6. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    SciTech Connect

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L.

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  7. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  8. Part II: Biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients.

    PubMed

    Guo, Song; Vollesen, Anne Luise Haulund; Hansen, Young Bae Lee; Frandsen, Erik; Andersen, Malene Rohr; Amin, Faisal Mohammad; Fahrenkrug, Jan; Olesen, Jes; Ashina, Messoud

    2017-02-01

    Background Intravenous infusion of pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine attacks in 65-70% of migraine without aura (MO) patients. We investigated whether PACAP38 infusion causes changes in the endogenous production of PACAP38, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), tumour necrosis factor alpha (TNFα), S100 calcium binding protein B (S100B), neuron-specific enolase and pituitary hormones in migraine patients. Methods We allocated 32 previously genotyped MO patients to receive intravenous infusion PACAP38 (10 pmol/kg/minute) for 20 minutes and recorded migraine-like attacks. Sixteen of the patients were carriers of the risk allele rs2274316 ( MEF2D), which confers increased risk of MO and may regulate PACAP38 expression, and 16 were non-carriers. We collected blood samples at baseline and 20, 30, 40, 60 and 90 minutes after the start of the infusion. A control group of six healthy volunteers received intravenous saline. Results PACAP38 infusion caused significant changes in plasma concentrations of VIP ( p = 0.026), prolactin ( p = 0.011), S100B ( p < 0.001) and thyroid-stimulating hormone (TSH; p = 0.015), but not CGRP ( p = 0.642) and TNFα ( p = 0.535). We found no difference in measured biochemical variables after PACAP38 infusion in patients who later developed migraine-like attacks compared to those who did not ( p > 0.05). There was no difference in the changes of biochemical variables between patients with and without the MEF2D-associated gene variant ( p > 0.05). Conclusion PACAP38 infusion elevated the plasma levels of VIP, prolactin, S100B and TSH, but not CGRP and TNFα. Development of delayed migraine-like attacks or the presence of the MEF2D gene variant was not associated with pre-ictal changes in plasma levels of neuropeptides, TNFα and pituitary hormones.

  9. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    SciTech Connect

    El-Refai, M.; Chan, T.

    1986-05-01

    Adrenalectomy caused a large increase in the number of ..beta..-adrenergic binding sites on liver plasma membranes as measured by /sup 125/I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for /sup 3/H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in ..beta..-adrenergic mediated action was much less than what may be expected as a result of the increase in the ..beta..-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 ..mu..M) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory ..cap alpha../sub 2/-adrenergic receptors in adrenalectomy is responsible for the muted ..beta..-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 ..mu..M), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The ..cap alpha..-adrenergic antagonists had no significant effect on the ..beta..-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the ..beta..-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of ..cap alpha..-adrenergic receptors.

  10. Vibrio vulnificus Biotype 3 Multifunctional Autoprocessing RTX Toxin Is an Adenylate Cyclase Toxin Essential for Virulence in Mice

    PubMed Central

    Ziolo, Kevin J.; Jeong, Hee-Gon; Kwak, Jayme S.; Yang, Shuangni; Lavker, Robert M.

    2014-01-01

    Vibrio vulnificus is an environmental organism that causes both food-borne and wound infections with high morbidity and mortality in humans. The annual incidence and global distribution of infections associated with this pathogen are increasing with climate change. In the late 1990s, an outbreak of tilapia-associated wound infections in Israel was linked to a previously unrecognized variant of V. vulnificus designated biotype 3. The sudden emergence and clonality of the outbreak suggest that this strain may be a true newly emergent pathogen with novel virulence properties compared to those of other V. vulnificus strains. In a subcutaneous infection model to mimic wound infection, the multifunctional autoprocessing RTX (MARTX) toxin of biotype 3 strains was shown to be an essential virulence factor contributing to highly inflammatory skin wounds with severe damage affecting every tissue layer. We conducted a sequencing-based analysis of the MARTX toxin and found that biotype 3 MARTX toxin has an effector domain structure distinct from that of either biotype 1 or biotype 2. Of the two new domains identified, a domain similar to Pseudomonas aeruginosa ExoY was shown to confer adenylate cyclase activity on the MARTX toxin. This is the first demonstration that the biotype 3 MARTX toxin is essential for virulence and that the ExoY-like MARTX effector domain is a catalytically active adenylate cyclase. PMID:24614656

  11. Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice.

    PubMed

    Ziolo, Kevin J; Jeong, Hee-Gon; Kwak, Jayme S; Yang, Shuangni; Lavker, Robert M; Satchell, Karla J F

    2014-05-01

    Vibrio vulnificus is an environmental organism that causes both food-borne and wound infections with high morbidity and mortality in humans. The annual incidence and global distribution of infections associated with this pathogen are increasing with climate change. In the late 1990s, an outbreak of tilapia-associated wound infections in Israel was linked to a previously unrecognized variant of V. vulnificus designated biotype 3. The sudden emergence and clonality of the outbreak suggest that this strain may be a true newly emergent pathogen with novel virulence properties compared to those of other V. vulnificus strains. In a subcutaneous infection model to mimic wound infection, the multifunctional autoprocessing RTX (MARTX) toxin of biotype 3 strains was shown to be an essential virulence factor contributing to highly inflammatory skin wounds with severe damage affecting every tissue layer. We conducted a sequencing-based analysis of the MARTX toxin and found that biotype 3 MARTX toxin has an effector domain structure distinct from that of either biotype 1 or biotype 2. Of the two new domains identified, a domain similar to Pseudomonas aeruginosa ExoY was shown to confer adenylate cyclase activity on the MARTX toxin. This is the first demonstration that the biotype 3 MARTX toxin is essential for virulence and that the ExoY-like MARTX effector domain is a catalytically active adenylate cyclase.

  12. Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

    PubMed

    Schatz, A R; Kessler, F K; Kaminski, N E

    1992-01-01

    The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated. These studies were prompted by the recent identification and cloning of a G-protein coupled cannabinoid receptor localized in certain regions of the brain and the potential for a common mechanism between cannabinoid-mediated CNS effects and immunosuppression. Temporal addition studies were initially performed to identify the period of time when spleen cells in culture were most susceptible to the inhibitory effects of delta 9-THC, as measured by the day 5 IgM antibody forming cell response. delta 9-THC was only inhibitory when added to spleen cell cultures during the first 2 hr following antigen sensitization. In light of this time course, adenylate cyclase activity was measured in spleen cells incubated in the presence of 22 microM delta 9-THC for 5 min and subsequently stimulated with forskolin. delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP after a 5 or 15 min stimulation with forskolin, respectively. These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.

  13. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase

    PubMed Central

    An, Sungwon; Irwin, Robert P.; Allen, Charles N.; Tsai, Connie

    2011-01-01

    Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in the synchronization to environmental light cycles. It is not known, however, if or how VIP entrains circadian gene expression or behavior. Here, we tested candidate signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous antagonism of adenylate cyclase and phospholipase C activities was required to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment entrained PER2 rhythms to a predicted phase angle within several days, depending on the concentration of VIP and the interval between VIP applications. We conclude that VIP entrains circadian timing among SCN neurons through rapid and parallel changes in adenylate cyclase and phospholipase C activities. PMID:21389307

  14. Evidence for a presynaptic adenylate cyclase system facilitating (TH)norepinephrine release from rat brain neocortex slices and synaptosomes

    SciTech Connect

    Schoffelmeer, A.N.; Hogenboom, F.; Mulder, A.H.

    1985-10-01

    The effects of drugs known to enhance intracellular cyclic AMP levels on depolarization-induced (TH)norepinephrine release from superfused rat neocortical slices and synaptosomes were investigated. The adenylate cyclase activator forskolin, the membrane-permeating cyclic AMP analogues 8-bromo-cyclic AMP and dibutyryl cyclic AMP, as well as the phosphodiesterase inhibitors isobutylmethylxanthine and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone (ZK 62771) enhanced the electrically evoked release of (TH)norepinephrine from superfused rat brain neocortex slices. 8-Bromo-cyclic GMP was without effect on the electrically evoked release. When (TH)norepinephrine release was enhanced by prolonging the electrical pulse duration from 2 msec to 10 msec, the relative inhibitory effect of the CaS channel blocker CdS and the relative facilitatory effect of the K+ channel blocker 4-aminopyridine remained unaffected. In striking contrast, the relative facilitatory effects of forskolin and 8-bromo-cyclic AMP were strongly reduced, whereas the effect of ZK 62771 was almost doubled. When veratrine-induced release of (TH)norepinephrine from cortex synaptosomes was examined, the facilitatory effects of forskolin, 8-bromo-cyclic AMP, and ZK 62771 were even more pronounced than in brain slices. The data strongly support the hypothesis that a presynaptic adenylate cyclase system plays a facilitatory role in the stimulus-secretion coupling process in central noradrenergic nerve terminals.

  15. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Charania, M A; Brockman, K L; Zhang, Y; Banerjee, A; Pinchuk, G E; Fredrickson, J K; Beliaev, A S; Saffarini, D A

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  16. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  17. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  18. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum.

    PubMed

    Dong, Z J; Guo, X; Chen, L J; Han, Y F; Jin, G Z

    1997-01-01

    (-)-Stepholidine (SPD) is an antagonist of normosensitive dopamine (DA) receptors, but it exhibits D1 agonistic action on rotational behaviour in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNC). In the present study, agonistic and antagonistic effects of SPD on the DA receptor-mediated synaptosomal adenylate cyclase (AC) activity in rat striatum were investigated. After blockade of D2 receptors, SPD augmented AC activity dose-dependently. The EC50 value was 41.1 +/- 8.6 micromol/L. At the concentration of 10 micromol/L, SPD increased cAMP formation from a basal level (50.8 +/- 10.3 pmol/mg protein/min) to 133.7 +/- 31.8 pmol/mg protein/min. The SPD-induced stimulation of AC activity was almost completely reversed by 10 micromol/L Sch23390. These results indicate that SPD possesses an agonistic action on the D1 receptor. Forskolin-stimulated adenylate cyclase (FSAC) activity was used as a model to elucidate the effect of SPD on D2 receptors. The results indicate that DA inhibited FSAC activity dose-dependently, while SPD partially restored FSAC activity. Taken together, these results support the conclusion that SPD has dual actions on DA receptors that mediate AC activity, i.e., an agonistic action on D1 receptors and an antagonistic action on D2 receptors.

  19. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

    PubMed Central

    Kovermann, Michael; Ådén, Jörgen; Grundström, Christin; Elisabeth Sauer-Eriksson, A.; Sauer, Uwe H.; Wolf-Watz, Magnus

    2015-01-01

    An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or ‘invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power—a key aspect in rational design of enzymes catalysing novel reactions. PMID:26138143

  20. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme.

    PubMed Central

    McGrath, J P; Jentsch, S; Varshavsky, A

    1991-01-01

    All known functions of ubiquitin are mediated through its covalent attachment to other proteins. The post-translational formation of ubiquitin--protein conjugates is preceded by an ATP-requiring step in which the carboxyl terminus of ubiquitin is adenylated and subsequently joined, through a thiolester bond, to a cysteine residue in the ubiquitin-activating enzyme, also known as E1. We report the isolation and functional analysis of the gene (UBA1) for the ubiquitin-activating enzyme of the yeast Saccharomyces cerevisiae. UBA1 encodes a 114 kd protein whose amino acid sequence contains motifs characteristic of nucleotide-binding sites. Expression of catalytically active UBA1 protein in E. coli, which lacks the ubiquitin system, confirmed that the yeast UBA1 gene encodes a ubiquitin-activating enzyme. Deletion of the UBA1 gene is lethal, demonstrating that the formation of ubiquitin--protein conjugates is essential for cell viability. Images PMID:1989885

  1. Laboratory Evaluation of Adenylate Energy Charge as a Test for Stress in Mytilus edulis and Nephtys incisa Treated with Dredged Material.

    DTIC Science & Technology

    1985-02-01

    concentrations of three adenine nucleotides, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP), which are...that all trace metals but iron were eliminated and the concentration of the vitamins thiamin and B12 were doubled. Adenylate Extraction 13. The adductor

  2. AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study.

    PubMed

    Doliba, Nicolai M; Babsky, Andriy M; Doliba, Nataliya M; Wehrli, Suzanne L; Osbakken, Mary D

    2015-03-01

    Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and

  3. Adenylate cyclase, cyclic AMP and extracellular-signal-regulated kinase-2 in airway smooth muscle: modulation by protein kinase C and growth serum.

    PubMed Central

    Moughal, N; Stevens, P A; Kong, D; Pyne, S; Pyne, N J

    1995-01-01

    Bradykinin and phorbol 12-myristate 13-acetate stimulate adenylate cyclase activity in serum-depleted cultured airway smooth muscle via a protein kinase C (PKC)-dependent pathway. The probable target is the type II adenylate cyclase, which can integrate coincident signals from both PKC and Gs. Therefore, activation of Gs (by cholera-toxin pre-treatment) amplified the bradykinin-stimulated cyclic AMP signal and concurrently attenuated the partial activation of extracellular-signal-regulated kinase-2 (ERK-2) by bradykinin. We have previously demonstrated that, in order to induce full activation of ERK-2 with bradykinin, it is necessary to obliterate PKC-stimulated cyclic AMP formation. We concluded that the cyclic AMP signal limits the magnitude of ERK-2 activation [Pyne, Moughal, Stevens, Tolan and Pyne (1994) Biochem. J. 304, 611-616]. The present study indicates that the bradykinin-stimulated ERK-2 pathway is entirely cyclic AMP-sensitive, and suggests that coincident signal detection by adenylate cyclase may be an important physiological route for the modulation of early mitogenic signalling. Furthermore, the direct inhibition of adenylate cyclase activity enables bradykinin to induce DNA synthesis, indicating that the PKC-dependent activation of adenylate cyclase limits entry of cells into the cell cycle. These studies suggest that the mitogenicity of an agonist may be governed, in part, by its ability to stimulate an inhibitory cyclic AMP signal pathway in the cell. The activation of adenylate cyclase by PKC appears to be downstream of phospholipase D. However, in cells that were maintained in growth serum (i.e. were not growth-arrested), bradykinin was unable to elicit a PKC-stimulated cyclic AMP response. The lesion in the signal-response coupling was not at the level of either the receptor or phospholipase D, which remain functionally operative and suggests modification occurs at either PKC or adenylate cyclase itself. These studies are discussed with

  4. Freeze-thaw effects on metabolic enzymes in wood frog organs.

    PubMed

    Cowan, K J; Storey, K B

    2001-08-01

    To determine whether episodes of natural freezing and thawing altered the metabolic makeup of wood frog (Rana sylvatica) organs, the maximal activities of 28 enzymes of intermediary metabolism were assessed in six organs (brain, heart, kidney, liver, skeletal muscle, gut) of control (5 degrees C acclimated), frozen (24 h at -3 degrees C), and thawed (24 h back at 5 degrees C) frogs. The enzymes assessed represented pathways including glycolysis, gluconeo-genesis, amino acid metabolism, fatty acid metabolism, the TCA cycle, and adenylate metabolism. Organ-specific responses seen included (a) the number of enzymes affected by freeze-thaw (1 in gut ranging to 17 in heart), (b) the magnitude and direction of response (most often enzyme activities decreased during freezing and rebounded with thawing but, liver showed freeze-specific increases in several enzymes), and (c) the response to freezing versus thawing (enzyme activities in gut and kidney changed during freezing, whereas most enzymes in skeletal muscle responded to thawing). Overall, the data show that freeze-thaw implements selected changes to the maximal activities of various enzymes of intermediary metabolism and that these may aid organ-specific responses that alter fuel use during freeze-thaw, support cryoprotectant metabolism, and aid organ endurance of freeze-induced ischemia.

  5. Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells.

    PubMed

    Yu, Xia-Fei; Ni, Qi-Chao; Chen, Jin-Peng; Xu, Jun-Fei; Jiang, Ying; Yang, Shu-Yun; Ma, Jing; Gu, Xiao-Ling; Wang, Hua; Wang, Ying-Ying

    2014-04-01

    Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer. We verified its roles in breast cancer specimens and cell lines. In our results, 71 of 100 specimens of breast cancer showed high levels of CAP1 by immunohistochemistry. Associated with statistical analysis, we saw that CAP1 was related to the grade of breast cancer. In MDA-MB-231, the expression of CAP1 was the highest and by knocking down the expression of CAP1 in MDA-MB-231, its ability for proliferating and migrating apparently decreased and induced changes in morphology, which were related to the arrangement of F-actin. Therefore, CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.

  6. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies

    PubMed Central

    May, Victor

    2014-01-01

    The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress- and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis (BNST) in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala (CeA) may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with post-traumatic stress disorder (PTSD) in humans. PMID:25636177

  7. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    SciTech Connect

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitory hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.

  8. Detection of somatic coliphages through a bioluminescence assay measuring phage mediated release of adenylate kinase and adenosine 5'-triphosphate.

    PubMed

    Guzmán Luna, Carolina; Costán-Longares, Ana; Lucena, Francisco; Jofre, Joan

    2009-10-01

    The feasibility of detecting somatic coliphages by phage infection of Escherichia coli WG5 and measurement of phage propagation by the lysis mediated release of the bacterial host adenylate kinase (AK) and adenosine 5'-triphosphate (ATP) detected by a bioluminescent signal was evaluated. After 2h of incubation, all cultures infected with reference bacteriophage phiX174 showed a significant increase in the bioluminescent signal, even with number of phages as low as less of 10 plaque forming units (PFU). Naturally occurring somatic coliphages ensured a significant bioluminescent signal after 3h of infection when >10 PFU were inoculated. These results indicate that an easy and reliable method to detect low numbers of coliphages in less than 3h is feasible.

  9. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    PubMed Central

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  10. Elevated Liver Enzymes

    MedlinePlus

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  11. Fundamentals of enzyme kinetics.

    PubMed

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.

  12. Studies on responsiveness of hepatoma cells to catecholamines. III. Difference between the receptor-adenylate cyclase regulating systems in AH130 cells and cultured normal rat liver cells.

    PubMed

    Sanae, F; Matsunaga, T; Miyamoto, K; Koshiura, R

    1986-10-01

    The responsiveness to three beta-adrenergic agonists, isoproterenol (IPN), epinephrine (Epi) and norepinephrine (NE) in AH13O cells was examined compared with that in normal rat liver cells which were cultured for 24 hr after collagenase digestion. As regards to the activation of adenylate cyclase in the cell homogenates, the relative affinity of the three agonists was in order of IPN greater than NE greater than Epi in AH130 cells and IPN greater than Epi greater than NE in cultured normal liver cells. While the efficacies of the three agonists were similar in cultured liver cells, those of NE and Epi were markedly lower than that of IPN in AH13O cells and were increased to the similar level of IPN by pretreatment with phentolamine, but not with prazosin. Clonidine inhibited the activation of adenylate cyclase by IPN in AH13O cells. When cells were preincubated with islet-activating protein (IAP), the activity of adenylate cyclase in the presence or absence of agonist in both cell lines increased. In IAP-treated AH13O cells, the efficacies of NE and Epi became close to that of IPN. Adenylate cyclase in IAP-treated AH13O cells was activated by GTP in a dose-dependent manner, but that in IAP-treated cultured liver cells was not. In the presence of IPN, biphasic (activatory and inhibitory) effects of GTP on the cyclase were observed, and the inhibitory phase was eliminated by the IAP-treatment in both cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase

    DTIC Science & Technology

    2009-10-22

    2003) Designing repeat proteins: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol...A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase...changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin

  14. Human 5-HT7 receptor-induced inactivation of forskolin-stimulated adenylate cyclase by risperidone, 9-OH-risperidone and other "inactivating antagonists".

    PubMed

    Toohey, Nicole; Klein, Michael T; Knight, Jessica; Smith, Carol; Teitler, Milt

    2009-09-01

    We have previously reported on the unusual human 5-hydroxytryptamine(7) (h5-HT(7)) receptor-inactivating properties of risperidone, 9-OH-risperidone, bromocriptine, methiothepin, metergoline, and lisuride. Inactivation was defined as the inability of 10 microM 5-HT to stimulate cAMP accumulation after brief exposure and thorough removal of the drugs from HEK293 cells expressing h5-HT(7) receptors. Herein we report that brief exposure of the h5-HT(7) receptor-expressing cells to inactivating drugs, followed by removal of the drugs, results in potent and efficacious irreversible inhibition of forskolin-stimulated adenylate cyclase activity. Pretreatment, followed by removal of the inactivating drugs inhibited 10 microM forskolin-stimulated adenylate cyclase activity with potencies similar to the drugs' affinities for the h5-HT(7) receptor. The actions of the inactivating drugs were pertussis toxin-insensitive, indicating the lack of G(i) in their mechanism(s) of action. Methiothepin and bromocriptine maximally inhibited 10 microM forskolin-stimulated adenylate cyclase, whereas the other drugs produced partial inhibition, indicating the drugs are inducing slightly different inactive conformations of the h5-HT(7) receptor. Maximal effects of these inactivating drugs occurred within 15 to 30 min of exposure of the cells to the drugs. A G(s)-mediated inhibition of forskolin-stimulated activity has never been reported. The inactivating antagonists seem to induce a stable conformation of the h5-HT(7) receptor, which induces an altered state of G(s), which, in turn, inhibits forskolin-mediated stimulation of adenylate cyclase. These and previous observations indicate that the inactivating antagonists represent a unique class of drugs and may reveal GPCR regulatory mechanisms previously unknown. These drugs may produce innovative approaches to the development of therapeutic drugs.

  15. Corticotropin-releasing factor binding to peripheral tissue and activation of the adenylate cyclase-adenosine 3',5'-monophosphate system

    SciTech Connect

    Dave, J.R.; Eiden, L.E.; Eskay, R.L.

    1985-06-01

    Specific binding sites for rat corticotropin-releasing factor (rCRF) are present in rat adrenal medulla, ventral prostate, spleen, liver, kidney, and testis and bovine chromaffin cells in culture. Maximal binding of (/sup 125/I)rCRF occurred within 25 min at 4 C and was saturable. Scatchard analysis of rCRF binding to rat adrenal membranes and bovine chromaffin cells revealed the existence of two classes of binding sites. One class had a relatively higher apparent affinity and lower number of binding sites, whereas the other class had a relatively lower affinity and higher number of binding sites. CRF induced a dose-related increase in rat adrenal membrane adenylate cyclase activity and cAMP levels in bovine chromaffin cells. Nanomolar concentrations of rCRF maximally stimulated adenylate cyclase activity in rat adrenal membranes and maximally increased cAMP levels in bovine chromaffin cells to 86% and 130% above control values, respectively. The demonstration of specific CRF-binding sites in a variety of peripheral tissues and the finding that activation of specific CRF-binding sites in adrenal tissue stimulates the adenylate cyclase-cAMP system suggest that CRF may have an important regulatory role in various peripheral tissues.

  16. Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine.

    PubMed

    Yoneyama, Masahiko; Sugiyama, Atsushi; Satoh, Yoshioki; Takahara, Akira; Nakamura, Yuji; Hashimoto, Keitaro

    2002-12-01

    Colforsin daropate is a recently developed water-soluble derivative of forskolin that directly stimulates adenylate cyclase, unlike the catecholamines. The chronotropic, inotropic and coronary vasodilator actions of colforsin daropate were compared with those of isoproterenol, dopamine and dobutamine, using canine isolated, blood-perfused heart preparations. The stimulating effect of each drug on adenylate cyclase activity was also assessed. Colforsin daropate, as well as each of the catecholamines, exerted positive chronotropic, inotropic and coronary vasodilator actions. The order of selectivity for the cardiovascular variables of colforsin daropate was coronary vasodilation > positive inotropy > positive chronotropy; whereas that of isoproterenol, dopamine and dobutamine was positive inotropy > coronary vasodilation > positive chronotropy. Thus, a marked characteristic of colforsin daropate is its potent coronary vasodilator action. On the other hand, each drug significantly increased the adenylate cyclase activity in a dose-related manner: colforsin daropate > isoproterenol > dopamine = dobutamine. These results suggest that colforsin daropate may be preferable in the treatment of severe heart failure where the coronary blood flow is reduced and beta-adrenoceptor-dependent signal transduction pathway is down-regulated.

  17. Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3' end.

    PubMed Central

    Bujarski, J J; Ahlquist, P; Hall, T C; Dreher, T W; Kaesberg, P

    1986-01-01

    The genome of brome mosaic virus (BMV) is comprised of three (+) strand RNAs, each containing a similar, highly structured, 200 base long sequence at its 3' end. A 134 base subset of this sequence contains signals directing interaction of the viral RNA with BMV RNA replicase, ATP,CTP:tRNA nucleotidyl transferase and aminoacyl tRNA synthetase. A series of mutants containing deletions within this region, previously constructed and tested in vitro for the effect on replication and aminoacylation activities, has now been assayed in vitro for adenylation function and in vivo for ability to replicate in isolated protoplasts and whole plants. These tests indicate that features of viral RNA recognized by BMV replicase overlap those directing adenylation, but are distinct from those directing aminoacylation. Consequently, the lethality of a deletion preferentially inhibiting aminoacylation suggests that this function may have an essential role contributing to viral replication in vivo. An RNA3 mutant bearing a 20-base deletion yielding normal levels of aminoacylation and enhanced levels of replicase template activity and adenylation in vitro was able to replicate in protoplasts and plants; however, its accumulation in protoplasts was reduced relative to wild-type. This suggests that additional functions affecting the replication and accumulation of viral RNA reside in the conserved 3' sequence. Images Fig. 2. Fig. 3. Fig. 4. PMID:3758026

  18. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    SciTech Connect

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di; Trincao, J.; Pickering, I.J.; George, G.N.; Calvete, J.J.; Brondino, C.; Pereira, A.S.; Lampreia, J.; Tavares, P.; Moura, J.J.G.; Moura, I.

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  19. Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics

    SciTech Connect

    Hanson, Jeffrey A.; Dunderstadt, Karl; Watkins, Lucas P.; Bhattacharyya, Sucharita; Brokaw, Jason B.; Chu, Jhih-wei; Yang, Haw

    2007-11-13

    Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme’s lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK’s domain movements on its catalytic time scale. To quantitatively measure the enzyme’s entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly, the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme’s conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme’s rate-limiting step.

  20. Insolubilization process increases enzyme stability

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Lyn, J.

    1971-01-01

    Enzymes complexed with polymeric matrices contain properties suggesting application to enzyme-controlled reactions. Stability of insolubilized enzyme derivatives is markedly greater than that of soluble enzymes and physical form of insolubilized enzymes is useful in column and batch processes.

  1. Studies of the cAMP mediated aggregation in Dictyostelium discoideum: receptor mediated activation of the adenylate cyclase

    SciTech Connect

    Theibert, W.E.A.B.

    1985-01-01

    Dictyostelium discoideum, a eukaryotic amoeba of the cellular slime mold family, provides an interesting paradigm in developmental biology. During development, hundreds of thousands of cells aggregate to form a multicellular aggregate. Aggregation is mediated by chemotaxis and chemical signaling. Waves of adenosine 3'-5' cyclic monophosphate (cAMP) propagate through the monolayer and provide transient gradients for chemotaxis. The author has used a reversible inhibitor of the cAMP signaling response to demonstrate that adaptation to cAMP is independent of the activation of the adenylate cyclase and therefore is not caused by the rise in intracellular cAMP. Next, it is shown that adenosine inhibits the cAMP signaling response. Inhibition is rapid, reversible, and depends on the cAMP stimulus concentration. Then the specificity of the cAMP receptors which mediates signaling is determined and compared with the receptors which mediate chemotaxis, the cGMP response, and cAMP binding antagonism. The cAMP surface receptor has been identified by photoaffinity labeling intact cells with (/sup 32/P)-8-N/sub 3/-cAMP using an ammonium sulfate binding stabilization technique. The photoactivated ligand specifically labels a polypeptide, localized to the membrane fraction, which migrates as a closely spaced doublet on SDS Page.

  2. Defective dopamine-1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat.

    PubMed Central

    Kinoshita, S; Sidhu, A; Felder, R A

    1989-01-01

    The natriuretic effect of DA-1 agonists is less in the spontaneously hypertensive rat (SHR) than its normotensive control, the Wistar-Kyoto rat (WKY). To determine a mechanism of the decreased effect of DA-1 agonists on sodium transport, DA-1 receptors in renal proximal convoluted tubule (PCT) were studied by radioligand binding and by adenylate cyclase (AC) determinations. Specific binding of 125I-SCH 23982 (defined by 10 microM SCH 23390, a DA-1 antagonist) was concentration dependent, saturable, and stereoselective. The dissociation constant, maximum receptor density, and DA-1 antagonist inhibition constant were similar in SHR and WKY. The apparent molecular weight of the DA-1 receptor determined by the photoaffinity D1 probe 125I-MAB was also similar in WKY and SHR. However, DA-1 agonists competed more effectively for specific 125I-SCH 23982 binding sites in WKY than in SHR. Basal as well as forskolin, parathyroid hormone, GTP and Gpp(NH)p-stimulated-AC activities were similar. In contrast DA-1 agonists (fenoldopam, SKF 38393, SND 911C12) stimulated AC activity to a lesser extent in SHR. GTP and Gpp(NH)p enhanced the ability of DA-1 agonists to stimulate AC activity in WKY but not in SHR. These data suggest a defect in the DA-1 receptor-second messenger coupling mechanism in the PCT of the SHR. Images PMID:2574187

  3. Purification and primary structure of pituitary adenylate cyclase activating polypeptide (PACAP) from the brain of an elasmobranch, stingray, Dasyatis akajei.

    PubMed

    Matsuda, K; Yoshida, T; Nagano, Y; Kashimoto, K; Yatohgo, T; Shimomura, H; Shioda, S; Arimura, A; Uchiyama, M

    1998-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) was isolated from ovine hypothalami and found to exist as two amidated forms with 38 (PACAP 38) and 27 (PACAP 27) residues. The amino acid sequences of PACAPs isolated from the vertebrates, such as a bird, a frog and teleost fish, appear to be well conserved. In the present study, we attempted to isolate PACAP from the brain of an elasmobranch fish, Dasyatis akajei (stingray), which belongs to the Chondrichthyes (cartilaginous fish), by extraction of the acetone-dried powder with acetic acid, followed by successive high-performance liquid chromatography (HPLC) on a gel-filtration, a cation-exchange and two reverse-phase columns. Purification was monitored by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and Western blotting analysis using an anti-PACAP 27 serum. The PACAP thus obtained consisted of 44 residues. The amino acid sequence of the comparable portion of its N-terminal 38 residues showed 92%, 89%, 89%, and 82% identity with those of mammalian, chicken, frog and teleost PACAPs with 38 residues, respectively. The extra six C-terminal residues of the stingray resembled those of tetrapod and teleost PACAP precursors which were deduced from the respective cDNAs. These results indicate that PACAP, which has an amino acid sequence showing high similarity with those of tetrapod and teleost PACAPs, is present in the elasmobranch brain.

  4. Stress-related disorders, pituitary adenylate cyclase—activating peptide (PACAP)ergic system, and sex differences

    PubMed Central

    Ramikie, Teniel S.; Ressler, Kerry J.

    2016-01-01

    Trauma-related disorders, such as posttraumatic stress disorder (PTSD) are remarkably common and debilitating, and are often characterized by dysregulated threat responses. Across numerous epidemiological studies, females have been found to have an approximately twofold increased risk for PTSD and other stress-related disorders. Understanding the biological mechanisms of this differential risk is of critical importance. Recent data suggest that the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway is a critical regulator of the stress response across species. Moreover, increasing evidence suggests that this pathway is regulated by both stress and estrogen modulation and may provide an important window into understanding mechanisms of sex differences in the stress response. We have recently shown that PACAP and its receptor (PAC1R) are critical mediators of abnormal processes after psychological trauma. Notably, in heavily traumatized human subjects, there appears to be a robust sex-specific association of PACAP blood levels and PAC1R gene variants with fear physiology, PTSD diagnosis, and symptoms, specifically in females. The sex-specific association occurs within a single-nucleotide polymorphism (rs2267735) that resides in a putative estrogen response element involved in PAC1R gene regulation. Complementing these human data, the PAC1R messenger RNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1R pathway are regulated by estrogen and are involved in abnormal fear responses underlying PTSD. PMID:28179812

  5. Role of pituitary adenylate cyclase-activating polypeptide in modulating hypothalamus-pituitary neuroendocrine functions in mouse cell models.

    PubMed

    Kanasaki, H; Oride, A; Kyo, S

    2015-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cyclic adenosine monophosphate production in pituitary cells. PACAP and its receptor are expressed not only in the central nervous system, but also in peripheral organs, and function to stimulate pituitary hormone synthesis and secretion as both a hypothalamic-pituitary-releasing factor and an autocrine-paracrine factor within the pituitary. PACAP stimulates the expression of the gonadotrophin α, luteinising hormone (LH) β and follicle-stimulating hormone (FSH) β subunits, as well as the gonadotrophin-releasing hormone (GnRH) receptor and its own PACAP type I receptor (PAC1R) in gonadotrophin-secreting pituitary cells. In turn, GnRH, which is known to be a crucial component of gonadotrophin secretion, stimulates the expression of PACAP and PAC1R in gonadotrophs. In addition, PAC1R and PACAP modulate the functions of GnRH-producing neurones in the hypothalamus. This review summarises the current understanding of the possible roles of PACAP and PAC1R in modulating hypothalamus and pituitary neuroendocrine cells in the mouse models.

  6. From endoplasmic reticulum to mitochondria: absence of the Arabidopsis ATP antiporter endoplasmic Reticulum Adenylate Transporter1 perturbs photorespiration.

    PubMed

    Hoffmann, Christiane; Plocharski, Bartolome; Haferkamp, Ilka; Leroch, Michaela; Ewald, Ralph; Bauwe, Hermann; Riemer, Jan; Herrmann, Johannes M; Neuhaus, H Ekkehard

    2013-07-01

    The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO(2) concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.

  7. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation.

    PubMed

    Wang, Meng; Zhao, Huimin

    2014-04-04

    The adenylation (A) domain acts as the first "gate-keeper" to ensure the activation and thioesterification of the correct monomer to nonribosomal peptide synthetases (NRPSs). Our understanding of the specificity-conferring code and our ability to engineer A domains are critical for increasing the chemical diversity of nonribosomal peptides (NRPs). We recently discovered a novel NRPS-like protein (ATEG_03630) that can activate 5-methyl orsellinic acid (5-MOA) and reduce it to 2,4-dihydroxy-5,6-dimethyl benzaldehyde. A NRPS-like protein is much smaller than multidomain NRPSs, but it still represents the thioesterification half-reaction, which is otherwise missed from a stand-alone A domain. Therefore, a NRPS-like protein may serve as a better model system for A domain engineering. Here, we characterize the substrate specificity of ATEG_03630 and conclude that the hydrogen-bond donor at the 4-position is crucial for substrate recognition. Next, we show that the substrate specificity of ATEG_03630 can be engineered toward our target substrate anthranilate via bioinformatics analysis and mutagenesis. The resultant mutant H358A increased its activity toward anthranilate by 10.9-fold, which led to a 26-fold improvement in specificity. Finally, we demonstrate one-pot chemoenzymatic synthesis of 4-hydroxybenzaldoxime from 4-hydroxybenzoic acid with high yield.

  8. Rapid, semi-automated, and inexpensive radioimmunoassay of cAMP: application in GPCR-mediated adenylate cyclase assays.

    PubMed

    Brown, Justin T; Kant, Andrew; Mailman, Richard B

    2009-03-15

    Cyclic AMP (cAMP) is an important signal transduction second messenger that is commonly used as a functional mirror on the actions of G protein-coupled receptors that can activate or inhibit adenylate cyclases. A radioimmunoassay for cAMP with femtomole sensitivity was first reported by Steiner more than 30 years ago, and there have been several subsequent modifications that have improved this assay in various ways. Here we describe additional improvement to existing methods that markedly improve speed and reduce cost without sacrificing sensitivity, and is also adaptable to analysis of cGMP. The primary antibody is coupled directly to magnetic beads that are then separated from unbound marker using filtration on microplates. This eliminates the need for a secondary antibody, and markedly increases throughput. In addition, we report a simple, reproducible, and inexpensive method to make the radiomarker used for this assay. Although still requiring the use of radioactivity, the resulting method retains a high degree of accuracy and precision, and is suitable for low-cost high throughput screening. Use of aspects of this method can also improve throughput in other radioimmunoassays.

  9. High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells.

    PubMed

    Bao, Zhen; Qiu, Xiaojun; Wang, Donglin; Ban, Na; Fan, Shaochen; Chen, Wenjuan; Sun, Jie; Xing, Weikang; Wang, Yunfeng; Cui, Gang

    2016-04-01

    Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.

  10. Brittle-1, an Adenylate Translocator, Facilitates Transfer of Extraplastidial Synthesized ADP-Glucose into Amyloplasts of Maize Endosperms1

    PubMed Central

    Shannon, Jack C.; Pien, Fang-Mei; Cao, Heping; Liu, Kang-Chien

    1998-01-01

    Amyloplasts of starchy tissues such as those of maize (Zea mays L.) function in the synthesis and accumulation of starch during kernel development. ADP-glucose pyrophosphorylase (AGPase) is known to be located in chloroplasts, and for many years it was generally accepted that AGPase was also localized in amyloplasts of starchy tissues. Recent aqueous fractionation of young maize endosperm led to the conclusion that 95% of the cellular AGPase was extraplastidial, but immunolocalization studies at the electron- and light-microscopic levels supported the conclusion that maize endosperm AGPase was localized in the amyloplasts. We report the results of two nonaqueous procedures that provide evidence that in maize endosperms in the linear phase of starch accumulation, 90% or more of the cellular AGPase is extraplastidial. We also provide evidence that the brittle-1 protein (BT1), an adenylate translocator with a KTGGL motif common to the ADP-glucose-binding site of starch synthases and bacterial glycogen synthases, functions in the transfer of ADP-glucose into the amyloplast stroma. The importance of the BT1 translocator in starch accumulation in maize endosperms is demonstrated by the severely reduced starch content in bt1 mutant kernels. PMID:9701580

  11. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    PubMed

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  12. Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis.

    PubMed

    Tian, Chang Fu; Garnerone, Anne-Marie; Mathieu-Demazière, Céline; Masson-Boivin, Catherine; Batut, Jacques

    2012-04-24

    Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.

  13. Secretion of adenylate kinase 1 is required for extracellular ATP synthesis in C2C12 myotubes

    PubMed Central

    Choo, Hyo-Jung; Kim, Bong-Woo; Kwon, Oh-Bong; Lee, Chang Seok; Choi, Jong-Soon

    2008-01-01

    Extracellular ATP (exATP) has been known to be a critical ligand regulating skeletal muscle differentiation and contractibility. ExATP synthesis was greatly increased with the high level of adenylate kinase 1 (AK1) and ATP synthase β during C2C12 myogenesis. The exATP synthesis was abolished by the knock-down of AK1 but not by that of ATP synthase β in C2C12 myotubes, suggesting that AK1 is required for exATP synthesis in myotubes. However, membrane-bound AK1β was not involved in exATP synthesis because its expression level was decreased during myogenesis in spite of its localization in the lipid rafts that contain various kinds of receptors and mediate cell signal transduction, cell migration, and differentiation. Interestingly, cytoplasmic AK1 was secreted from C2C12 myotubes but not from C2C12 myoblasts. Taken together all these data, we can conclude that AK1 secretion is required for the exATP generation in myotubes. PMID:18446060

  14. Stress-related disorders, pituitary adenylate cyclase-activating peptide (PACAP)ergic system, and sex differences.

    PubMed

    Ramikie, Teniel S; Ressler, Kerry J

    2016-12-01

    Trauma-related disorders, such as posttraumatic stress disorder (PTSD) are remarkably common and debilitating, and are often characterized by dysregulated threat responses. Across numerous epidemiological studies, females have been found to have an approximately twofold increased risk for PTSD and other stress-related disorders. Understanding the biological mechanisms of this differential risk is of critical importance. Recent data suggest that the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway is a critical regulator of the stress response across species. Moreover, increasing evidence suggests that this pathway is regulated by both stress and estrogen modulation and may provide an important window into understanding mechanisms of sex differences in the stress response. We have recently shown that PACAP and its receptor (PAC1R) are critical mediators of abnormal processes after psychological trauma. Notably, in heavily traumatized human subjects, there appears to be a robust sex-specific association of PACAP blood levels and PAC1R gene variants with fear physiology, PTSD diagnosis, and symptoms, specifically in females. The sex-specific association occurs within a single-nucleotide polymorphism (rs2267735) that resides in a putative estrogen response element involved in PAC1R gene regulation. Complementing these human data, the PAC1R messenger RNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1R pathway are regulated by estrogen and are involved in abnormal fear responses underlying PTSD.

  15. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    SciTech Connect

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  16. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria.

  17. Role of Bordetella pertussis RseA in the cell envelope stress response and adenylate cyclase toxin release

    PubMed Central

    Hanawa, Tomoko; Yonezawa, Hideo; Kawakami, Hayato; Kamiya, Shigeru; Armstrong, Sandra K.

    2013-01-01

    Bordetella pertussis is the bacterial agent of the human disease, whooping cough. In many bacteria, the extracellular function sigma factor σE is central to the response to envelope stress, and its activity is negatively controlled by the RseA anti-sigma factor. In this study, the role of RseA in B. pertussis envelope stress responses was investigated. Compared with the wild-type strain, an rseA mutant showed elevated resistance to envelope stress and enhanced growth at 25°C. rpoH and other predicted σE target genes demonstrated increased transcription in the rseA mutant compared with the wild type parent. Transcription of those genes was also increased in wild type B. pertussis and Escherichia coli under envelope stress, whereas no stress-induced increase in transcription was observed in the rseA mutant. rseA inactivation was also associated with altered levels of certain proteins in culture supernatant fluids, which showed increased adenylate cyclase toxin (CyaA) levels. The increased CyaA in the mutant was correlated with an apparent increased stability of the extracellular toxin and increased production of CyaA-containing outer membrane vesicles. Consistent with this, compared with the wild type strain, rseA mutant cells produced increased numbers of large surface-associated vesicles. PMID:23821542

  18. Oxidative Stress Tolerance, Adenylate Cyclase, and Autophagy Are Key Players in the Chronological Life Span of Saccharomyces cerevisiae during Winemaking

    PubMed Central

    Orozco, Helena; Matallana, Emilia

    2012-01-01

    Most grape juice fermentation takes place when yeast cells are in a nondividing state called the stationary phase. Under such circumstances, we aimed to identify the genetic determinants controlling longevity, known as the chronological life span. We identified commercial strains with both short (EC1118) and long (CSM) life spans in laboratory growth medium and compared them under diverse conditions. Strain CSM shows better tolerance to stresses, including oxidative stress, in the stationary phase. This is reflected during winemaking, when this strain has an increased maximum life span. Compared to EC1118, CSM overexpresses a mitochondrial rhodanese gene-like gene, RDL2, whose deletion leads to increased reactive oxygen species production at the end of fermentation and a correlative loss of viability at this point. EC1118 shows faster growth and higher expression of glycolytic genes, and this is related to greater PKA activity due to the upregulation of the adenylate cyclase gene. This phenotype has been linked to the presence of a δ element in its promoter, whose removal increases the life span. Finally, EC1118 exhibits a higher level of protein degradation by autophagy, which might help achieve fast growth at the expense of cellular structures and may be relevant for long-term survival under winemaking conditions. PMID:22327582

  19. Content of N-6 methyl adenylic acid in heterogeneous nuclear and messenger RNA of HeLa cells.

    PubMed Central

    Lavi, U; Fernandez-Muñoz, R; Darnell, J E

    1977-01-01

    With the aid of a suitable thin layer chromatographic procedure, the N-6 methyl adenylic acid (m6A), content of a variety of 32P labeled RNA species from HeLa cells has been measured. Poly(A)-containing (poly(A)+) cytoplasmic RNA has on the average one m6Ap per 800 to 900 nucleotides. This value is independent of the length of the molecules. The proportion of m6Ap in poly(A)+ cytoplasmic RNA does not change between 4 and 18 hours of labeling with 32P, suggesting that the majority of the messenger RNA molecules may have a similar level of internal methylation regardless of their half-life. The non-polyadenylated, non-ribosomal cytoplasmic RNA fraction sedimenting from 10S TO 28S is less methylated with approximately one m6A per 2,700 nucleotides. Heterogeneous nuclear RNA molecules (DMSO treated) which sediment from 28S to 45S have approximately one m6Ap per 3,000 nucleotides. The hnRNA molecules sedimenting from 10S to 28S have one m6Ap per 1,800 nucleotides. Poly(A)+ nuclear RNA is enriched in m6A, containing 1 residue of m6A per 700 to 800 nucleotides, a value close to that obtained for the polyadenylated cytoplasmic RNA. Images PMID:866178

  20. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.

    PubMed

    Vianna, Cristina R; Ferreira, Mariana C; Silva, Carol L C; Tanghe, An; Neves, Maria J; Thevelein, Johan M; Rosa, Carlos A; Van Dijck, Patrick

    2010-01-01

    Fermentation-induced loss of stress resistance in yeast is an important phenotype from an industrial point of view. It hampers optimal use of frozen dough applications as well as high gravity brewing fermentations because these applications require stress-tolerant yeast strains during active fermentation. Different mutants (e.g. fil1, an adenylate cyclase mutant CYR1(lys1682)) that are affected in this loss of stress resistance have been isolated, but so far the identification of the target genes important for the increased tolerance has failed. Previously we have shown that neither trehalose nor Hsp104 nor STRE-controlled genes are involved in the higher stress tolerance of the fil1 mutant. The contribution of other putative downstream factors of the PKA pathway was investigated and here we show that the small heat-shock protein Hsp26 is required for the high heat stress tolerance of the fil1 mutant, both in stationary phase cells as well as during active fermentation.

  1. The relationship between the occupation of the D-1 dopamine receptor by [3H]piflutixol and the activity of dopamine-sensitive adenylate cyclase in rat striatal membranes.

    PubMed

    Fleminger, S

    1991-07-05

    The relationship between occupation of the D-1 dopamine receptor by [3H]piflutixol and inhibition of dopamine-sensitive adenylate cyclase has been studied. Experiments were performed in parallel; after the initial incubation to enable binding of [3H]piflutixol, half the tubes were assayed for [3H]piflutixol binding and the other half assayed for adenylate cyclase activity. The assay conditions for the two halves of the experiments were identical. (+/-)Sulpiride (3 x 10(-5)M) was present in all tubes to mask drug binding to the D-2 receptor. The inhibition of dopamine- (10(-3) and 10(-5)M) sensitive adenylate cyclase with increasing concentrations of [3H]piflutixol in the incubation mixture was compared to the saturation of specific [3H]piflutixol binding with those same concentrations of [3H]piflutixol. There was a linear relationship between receptor occupation by [3H]piflutixol and inhibition of dopamine sensitive adenylate cyclase. In a second experiment dopamine was present during the initial incubation with [3H]piflutixol. This resulted in a displacement of specific [3H]piflutixol binding and, as a consequence, a reduction of [3H]piflutixol's inhibition of dopamine-sensitive adenylate cyclase. In the absence of GTP in the initial incubation dopamine produced a greater reduction of [3H]piflutixol's inhibition of dopamine adenylate cyclase than displacement of specific [3H]piflutixol binding. In the presence of GTP in the initial incubation both displacement curves were shifted to the right, i.e. dopamine was less potent. However, under these conditions dopamine produced less inhibition of [3H]piflutixol's inhibition of dopamine adenylate cyclase than displacement of specific [3H]piflutixol binding. These results are interpreted as resulting from changes in D-1high and D-1low ratios as a result of incubation in the presence or absence of GTP.

  2. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors

    PubMed Central

    Petrelli, Riccardo; De la Mora-Rey, Teresa; Tiwari, Divya; Liu, Feng; Dawadi, Surrendra; Nandakumar, Madhumitha; Rhee, Kyu Y.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2015-01-01

    Mycobacterium tuberculosis (Mtb) responsible for both latent and symptomatic tuberculosis (TB) remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with KD's below 2 nM. Additionally, we obtained high-resolution co-crystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhanced accumulation of a C-2′-α analog over the corresponding C-2′-β analog, consistent with their differential whole-cell activity. PMID:26299766

  3. Developments in Enzyme Technology.

    ERIC Educational Resources Information Center

    Chaplin, M. F.

    1984-01-01

    Enzyme technology has a well-established industrial base, with applications that have survived competition. The most prominent applications of enzymes in biotechnology are examined with an explanation of some theoretical background. Topics include extending an enzyme's useful life, partition and diffusion, industrial uses, and therapeutic uses.…

  4. Studies on adenosine triphosphate transphosphorylases. XVIII. Synthesis and preparation of peptides and peptide fragments of rabbit muscle ATP-AMP transphosphorylase (adenylate kinase) and their nucleotide-binding properties.

    PubMed

    Kuby, S A; Hamada, M; Johnson, M S; Russell, G A; Manship, M; Palmieri, R H; Fleming, G; Bredt, D S; Mildvan, A S

    1989-08-01

    Two peptide fragments, derived from the head and tail of rabbit muscle myokinase, were found to possess remarkable and specific ligand-binding properties (Hamada et al., 1979). By initiating systematic syntheses and measurements of equilibrium substrate-binding properties of these two sets of peptides, or portions thereof, which encompass the binding sites for (a) the magnesium complexes of the nucleotide substrates (MgATP2- and MgADP-) and (b) the uncomplexed nucleotide substrates (ADP3- and AMP2-) of rabbit muscle myokinase, some of the requirements for binding of the substrates to ATP-AMP transphosphorylase are being deduced and chemically outlined. One requirement for tight nucleotide binding appears to be a minimum peptide length of 15-25 residues. In addition, Lys-172 and/or Lys-194 may be involved in the binding of epsilon AMP. The syntheses are described as a set of peptides corresponding to residues 31-45, 20-45, 5-45, and 1-45, and a set of peptides corresponding to residues 178-192, 178-194, and 172-194 of rabbit muscle adenylate kinase. The ligand-binding properties of the first set of synthetic peptides to the fluorescent ligands: epsilon MgATP/epsilon ATP and epsilon MgADP/epsilon ADP are quantitatively presented in terms of their intrinsic dissociation constants (K'd) and values of N (maximal number of moles bound per mole of peptide); and compared with the peptide fragment MT-I (1-44) obtained from rabbit muscle myokinase (Kuby et al., 1984) and with the native enzyme (Hamada et al., 1979). In addition, the values of N and K'd are given for the second set of synthetic peptides to the fluorescent ligands epsilon AMP and epsilon ADP as well as for the peptide fragments MT-XII(172-194) and CB-VI(126-194) (Kuby et al., 1984) and, in turn, compared with the native enzyme. A few miscellaneous dissociation constants which had been derived kinetically are also given for comparison (e.g., the Ki for epsilon AMP and the value of KMg epsilon ATP obtained for

  5. The average enzyme principle

    PubMed Central

    Reznik, Ed; Chaudhary, Osman; Segrè, Daniel

    2013-01-01

    The Michaelis-Menten equation for an irreversible enzymatic reaction depends linearly on the enzyme concentration. Even if the enzyme concentration changes in time, this linearity implies that the amount of substrate depleted during a given time interval depends only on the average enzyme concentration. Here, we use a time re-scaling approach to generalize this result to a broad category of multi-reaction systems, whose constituent enzymes have the same dependence on time, e.g. they belong to the same regulon. This “average enzyme principle” provides a natural methodology for jointly studying metabolism and its regulation. PMID:23892076

  6. Profiling the orphan enzymes.

    PubMed

    Sorokina, Maria; Stam, Mark; Médigue, Claudine; Lespinet, Olivier; Vallenet, David

    2014-06-06

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes". The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to "local orphan enzymes" that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities.

  7. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells.

    PubMed

    Kasica, Natalia; Podlasz, Piotr; Sundvik, Maria; Tamas, Andrea; Reglodi, Dora; Kaleczyc, Jerzy

    2016-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide, with known antiapoptotic functions. Our previous in vitro study has demonstrated the ameliorative role of PACAP-38 in chicken hair cells under oxidative stress conditions, but its effects on living hair cells is now yet known. Therefore, the aim of the present study was to investigate in vivo the protective role of PACAP-38 in hair cells found in zebrafish (Danio rerio) sense organs-neuromasts. To induce oxidative stress the 5-day postfertilization (dpf) zebrafish larvae were exposed to 1.5 mM H2O2 for 15 min or 1 h. This resulted in an increase in caspase-3 and p-38 MAPK level in the hair cells as well as in an impairment of the larvae basic behavior. To investigate the ameliorative role of PACAP-38, the larvae were incubated with a mixture of 1.5 mM H2O2 and 100 nM PACAP-38 following 1 h preincubation with 100 nM PACAP-38 only. PACAP-38 abilities to prevent hair cells from apoptosis were investigated. Whole-mount immunohistochemistry and confocal microscopy analyses revealed that PACAP-38 treatment decreased the cleaved caspase-3 level in the hair cells, but had no influence on p-38 MAPK. The analyses of basic locomotor activity supported the protective role of PACAP-38 by demonstrating the improvement of the fish behavior after PACAP-38 treatment. In summary, our in vivo findings demonstrate that PACAP-38 protects zebrafish hair cells from oxidative stress by attenuating oxidative stress-induced apoptosis.

  8. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target

    PubMed Central

    Juhász, Tamás; Matta, Csaba; Katona, Éva; Somogyi, Csilla; Takács, Roland; Gergely, Pál; Csernoch, László; Panyi, Gyorgy; Tóth, Gábor; Reglődi, Dóra; Tamás, Andrea; Zákány, Róza

    2014-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration

  9. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    PubMed Central

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Lederer, Carsten W.; Leonidas, Demetres D.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2013-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg2+ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg2+ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  10. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts.

    PubMed

    Guimarães, Pedro M R; Londesborough, John

    2008-01-01

    Intracellular and extracellular ATP, ADP and AMP (i.e. 5'-AMP) were measured during fermentations of high- (15 degrees P) and very high-gravity (VHG, 25 degrees P) worts by two lager yeasts. Little extracellular ATP and ADP but substantial amounts of extracellular AMP were found. Extracellular AMP increased during fermentation and reached higher values (3 microM) in 25 degrees P than 15 degrees P worts (1 microM). More AMP (13 microM at 25 degrees P) was released during fermentation with industrially cropped yeast than with the same strain grown in the laboratory. ATP was the dominant intracellular adenine nucleotide and the adenylate energy charge (EC = ([ATP] + 0.5*[ADP])/([ATP] + [ADP] + [AMP])) remained high (>0.8) until residual sugar concentrations were low and specific rates of ethanol production were < 5% of the maximum values in early fermentation. The high ethanol concentrations (>85 g/l) reached in VHG fermentations did not decrease the EC below values that permit synthesis of new proteins. The results suggest that, during wort fermentations, the ethanol tolerance of brewer's strains is high so long as fermentation continues. Under these conditions, maintenance of the EC seems to depend upon active transport of alpha-glucosides, which in turn depends upon maintenance of the EC. Therefore, the collapse of the EC and cell viability when residual alpha-glucoside concentrations no longer support adequate rates of fermentation can be very abrupt. This emphasizes the importance of early cropping of yeast for recycling.

  11. Presence of pituitary adenylate cyclase-activating polypeptide (PACAP) in the plasma and milk of ruminant animals.

    PubMed

    Czegledi, Levente; Tamas, Andrea; Borzsei, Rita; Bagoly, Terez; Kiss, Peter; Horvath, Gabriella; Brubel, Reka; Nemeth, Jozsef; Szalontai, Balint; Szabadfi, Krisztina; Javor, Andras; Reglodi, Dora; Helyes, Zsuzsanna

    2011-05-15

    Milk contains a variety of proteins and peptides that possess biological activity. Growth factors, such as growth hormone, insulin-like, epidermal and nerve growth factors are important milk components which may regulate growth and differentiation in various neonatal tissues and also those of the mammary gland itself. We have recently shown that pituitary adenylate cyclase-activating polypeptide (PACAP), an important neuropeptide with neurotrophic actions, is present in the human milk in much higher concentration than in the plasma of lactating women. Investigation of growth factors in the milk of domestic animals is of utmost importance for their nutritional values and agricultural significance. Therefore, the aim of the present study was to determine the presence and concentration of PACAP in the plasma and milk of three ruminant animal species. Furthermore, the presence of PACAP and its specific PAC1 receptor were investigated in the mammary glands. Radioimmunoassay measurements revealed that PACAP was present in the plasma and the milk of the sheep, goat and the cow in a similar concentration to that measured previously in humans. PACAP38-like immunoreactivity (PACAP38-LI) was 5-20-fold higher in the milk than in the plasma samples of the respective animals, a similar serum/milk ratio was found in all the three species. The levels did not show significant changes within the examined 3-month-period of lactation after delivery. Similar PACAP38-LI was measured in the homogenates of the sheep mammary gland samples taken 7 and 30 days after delivery. PAC1 receptor expression was detected in these udder biopsies by fluorescent immunohistochemistry suggesting that this peptide might have an effect on the mammary glands themselves. These data show that PACAP is present in the milk of various ruminant domestic animal species at high concentrations, the physiological implications of which awaits further investigation.

  12. Stability, structural and functional properties of a monomeric, calcium–loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis

    PubMed Central

    Cannella, Sara E.; Ntsogo Enguéné, Véronique Yvette; Davi, Marilyne; Malosse, Christian; Sotomayor Pérez, Ana Cristina; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Ladant, Daniel; Chenal, Alexandre

    2017-01-01

    Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins. PMID:28186111

  13. Enhancement of adenylate cyclase activity by phorbol ester: effects on the inhibitory pathway in S49 lymphoma cells

    SciTech Connect

    Bell, J.D.; Brunton, L.L.

    1986-05-01

    12-0-tetradecanoylphorbol-13-acetate (TPA) enhances the apparent V/sub max/ of adenylate cyclase (AC) in S49 lymphoma cells. This effect does not result from an increased rate of activation of the catalytic subunit by the stimulatory GTP binding transducer protein (G/sub s/). In wild type (WT) membranes this enhancement seems to involve a GTP binding protein since TPA enhances forskolin-stimulated AC activity by 30% in the presence of GTP (10 ..mu..M) or Gpp(NH)p (1 ..mu..M) but not in the absence of guanine nucleotide. The authors obtain comparable results in the cyc- variant that lacks the GTP binding subunit of G/sub s/ responsible for stimulating AC, suggesting the importance of a different GTP binding protein. Blockade of the activity of the inhibitory GTP binding protein (G/sub i/) by high concentrations of Mg/sup + +/ (approx.100 mM) or Mn/sup + +/ (approx.1 mM) abolishes the effect of TPA to enhance AC activity in WT membranes. The time course of Gpp(NH)p-mediated inhibition of AC reveals a characteristic lag prior to steady state, indicative of the rate of G/sub i/ activation; TPA increases this lag 3-4 fold. The authors conclude that reduction in the rate of activation of G/sub i/ by guanine nucleotide is one mechanism by which phorbol esters enhance guanine nucleotide-dependent activity of AC, hypothetically via the phosphorylation of G/sub i/ by protein kinase C.

  14. Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling.

    PubMed

    Falluel-Morel, Anthony; Vaudry, David; Aubert, Nicolas; Galas, Ludovic; Benard, Magalie; Basille, Magali; Fontaine, Marc; Fournier, Alain; Vaudry, Hubert; Gonzalez, Bruno J

    2005-02-15

    During neuronal migration, cells that do not reach their normal destination or fail to establish proper connections are eliminated through an apoptotic process. Recent studies have shown that the proinflammatory cytokine tumor necrosis factor alpha (and its second messengers ceramides) and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) play a pivotal role in the histogenesis of the cerebellar cortex. However, the effects of ceramides and PACAP on migration of cerebellar granule cells have never been investigated. Time-lapse videomicroscopy recording showed that C2-ceramide, a cell-permeable ceramide analog, and PACAP induced opposite effects on cell motility and neurite outgrowth. C2-ceramide markedly stimulated cell movements during the first hours of treatment and inhibited neuritogenesis, whereas PACAP reduced cell migration and promoted neurite outgrowth. These actions of C2-ceramide on cell motility and neurite outgrowth were accompanied by a disorganization of the actin filament network, depolarization of tubulin, and alteration of the microtubule-associated protein Tau. In contrast, PACAP strengthened the polarization of actin at the emergence cone, increased Tau phosphorylation, and abolished C2-ceramide-evoked alterations of the cytoskeletal architecture. The caspase-inhibitor Z-VAD-FMK, like PACAP, suppressed the "dance of the death" provoked by C2-ceramide. Finally, Z-VAD-FMK and the PP2A inhibitor okadaic acid both prevented the impairment of Tau phosphorylation induced by C2-ceramide. Taken together, these data indicate that the reverse actions of C2-ceramide and PACAP on cerebellar granule cell motility and neurite outgrowth are attributable to their opposite effects on actin distribution, tubulin polymerization, and Tau phosphorylation.

  15. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  16. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    PubMed

    James, Margaret O

    2014-01-01

    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  17. [Radiation disorder of enzyme synthesis in the perinatal period of ontogeny].

    PubMed

    Slozhenikina, L V; Fialkovskaia, L A; Mikhaĭlets, L P; Ushakova, T E; Kuzin, A M

    1983-01-01

    A change of enzymatic differentiation in the rat liver during the perinatal developmental period after gamma-irradiation on the 7-9th and 19th days of embryogenesis in doses 0.5, 2 and 6 Gr has been shown on the example of glucose-6-phosphatase (G-6-P-ase) and tyrosine aminotransferase (TAT). The protein-synthesizing machinery was not damaged at these doses. The radiation inhibition of G-6-P-ase synthesis was relieved by the injection of thyroxine. A dependence was shown between the radiation increase of TAT activity and changes in cAMP system (increase of cAMP level, decrease of phosphodiesterase activity, intensification of response of adenylate cyclase complex to biogenic amines). A suggestion is put forward that the radiation damage of the enzymes under study is mediated by a change in the number of hormonal inductors.

  18. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  19. Evolutionary dynamics of enzymes.

    PubMed

    Demetrius, L

    1995-08-01

    This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute

  20. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  1. Catalyzed enzyme electrodes

    DOEpatents

    Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon

    1993-01-01

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  2. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  3. Rational enzyme redesign

    SciTech Connect

    Ornstein, R.L.

    1994-05-01

    Protein engineering is first a means of elucidating structure-function relations in an enzyme, and second, a means of changing a protein to make it serve a different, but generally related, purpose. In principle, one may change the functional characteristics of an enzyme by altering its substrate specificity, kinetics, optimum range of activity, and chemical mechanism. Obviously one cannot make all possible combinations of amino acid changes for even the smallest enzyme, so the essential question is which changes to make. The intent of rational protein/enzyme redesign is to alter a protein/enzyme in a timely and premeditated fashion. This article provides an outline of the process of rational enzyme redesign.

  4. Enzymes for improved biomass conversion

    SciTech Connect

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  5. Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G-protein coupled mechanism.

    PubMed

    Kaminski, N E; Koh, W S; Yang, K H; Lee, M; Kessler, F K

    1994-11-16

    Cannabinoid compounds, including the major psychoactive component of marihuana, delta 9-tetrahydrocannabinol (delta 9-THC), have been widely established as being inhibitory on a broad array of humoral and cell-mediated immune responses. The presence of cannabinoid receptors has been identified recently on mouse spleen cells, which possess structural and functional characteristics similar to those of the G-protein coupled cannabinoid receptor originally identified in rat brain. These findings, together with those demonstrating that delta 9-THC inhibits adenylate cyclase in splenocytes, strongly suggest that certain aspects of immune inhibition by cannabinoids may be mediated through a cannabinoid receptor-associated mechanism. The objective of the present studies was to determine whether inhibition of adenylate cyclase is relevant to mouse spleen cell immune function and, if so, whether this inhibition is mediated through a Gi-protein coupled mechanism as previously described in neuronal tissue. Spleen cell activation by the phorbol ester phorbol-12-myristate-13-acetate (PMA), plus the calcium ionophore ionomycin, produced a rapid but transient increase in cytosolic cAMP, which was inhibited completely by immunosuppressive concentrations of delta 9-THC (22 microM) and the synthetic bicyclic cannabinoid CP-55940 (5.2 microM), which produced no effect on cell viability. Inhibition by cannabinoids of lymphocyte proliferative responses to PMA plus ionomycin and sheep erythrocyte (sRBC) IgM antibody-forming cell (AFC) response, was abrogated completely by low concentrations of dibutyryl-cAMP (10-100 microM). Inhibition of the sRBC AFC response by both delta 9-THC (22 microM) and CP-55940 (5.2 microM) was also abrogated by preincubation of splenocytes for 24 hr with pertussis toxin (0.1-100 ng/mL). Pertussis toxin pretreatment of spleen cells was also found to directly abrogate cannabinoid inhibition of adenylate cyclase, as measured by forskolin-stimulated accumulation

  6. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast.

    PubMed

    Gieselmann, R; Mann, K

    1992-02-24

    A new 56 kDa actin-binding protein (ASP-56) was isolated from pig platelet lysate. In falling ball viscosimetry it caused a reduction in viscosity that could be attributed to a decrease in the concentration of polymeric actin. Fluorescence measurements with NBD-labelled actin showed reduction of polymeric actin, too. These results could be explained by sequestering of actin in a non-polymerizable 1:1 ASP-56/actin complex. Sequencing of about 20 tryptic peptides of ASP-56 and comparison with known sequences revealed about 60% homology to the adenylate cyclase-associated protein (CAP) from yeast.

  7. Enzymes on material surfaces.

    PubMed

    Talbert, Joey N; Goddard, Julie M

    2012-05-01

    Enzyme interactions with material surfaces are of interest for industrial food and pharmaceutical transformations, biosensors, artificial cells, cell free reactions, drug and nutrition delivery technologies, and imaging. When in contact with a material surface, an enzyme may lose or appear to lose activity due to the nature of the enzyme, the nature of the material, and/or the nature of the interface between the enzyme, material, and substrate environment. The purpose of this review is to survey recent advances that have been made towards the preservation, optimization, and enhancement of enzyme activity on material surfaces within the context of well-known concepts that describe the loss of activity after immobilization. This review breaks down the immobilized enzyme system to look at the individual components of the system-namely the enzyme, the material, and the interface. For each piece, possible causes for the loss of enzyme activity are described as well as strategies that have been applied to limit the affect. At the conclusion we identify areas of future research needed to overcome limitations in the current state-of-the art for immobilized enzyme systems.

  8. Food and feed enzymes.

    PubMed

    Fraatz, Marco Alexander; Rühl, Martin; Zorn, Holger

    2014-01-01

    Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

  9. Industrial Enzymes and Biocatalysis

    NASA Astrophysics Data System (ADS)

    McAuliffe, Joseph C.; Aehle, Wolfgang; Whited, Gregory M.; Ward, Donald E.

    All life processes are the result of enzyme activity. In fact, life itself, whether plant or animal, involves a complex network of enzymatic reactions. An enzyme is a protein that is synthesized in a living cell. It catalyzes a thermodynamically possible reaction so that the rate of the reaction is compatible with the numerous biochemical processes essential for the growth and maintenance of a cell. The synthesis of an enzyme thus is under tight metabolic regulations and controls that can be genetically or environmentally manipulated sometimes to cause the overproduction of an enzyme by the cell. An enzyme, like chemical catalysts, in no way modifies the equilibrium constant or the free energy change of a reaction.

  10. Role for the beta-adrenoceptor-coupled adenylate cyclase in the ontogenetic subsensitivity to isoproterenol in the embryonic chick ventricle

    SciTech Connect

    Smith, C.J.

    1985-01-01

    Isoproterenol (ISO) increases contractility and cyclic AMP content in ventricles of embryonic and hatched chicks. A transient decrease in beta-agonist sensitivity for both effects is seen in 18 day embryos (10E). Beta-adrenoceptor-coupled adenylate cylase (AC) and receptor binding were characterized in 14,000xg particulates and purified membranes from the ventricles of 10-11E, 17-19E and week-old chicks (5-6H). In crude particulates, the K/sub act/ for ISO (+100 ..mu..M Gpp(NH)p)-stimulated AC is greatest in the 17-19E. Maximal (ISO + Gpp(NH)p)-AC of the 11E is two-fold greater and NaF-AC is 30% greater than those of the 17-19E and 5-6 H. All age groups have comparable catalytic AC. All age groups have comparable K/sub d/'s for /sup 3/H-dihydroalprenolol (5-11 nM), while the 18E has 40% fewer receptors than the 11E and 5-6H. In particulates or membranes, K/sub act/ values for Gpp(NH)p, NaF, MnCl> and forskolin are unchanged with age. In membranes, K/sub act/ values for ISO plus guanine nucleotide (G) and maximal (ISO + G)-AC are similar in all ages. The net effect of ISO ((ISO + G) minus G) is least while that of G (G minus basal) is greatest in the 18E. Whereas /sup 32/P-labeling of a 42 kd protein by cholera toxin is lowest (25% decrease) in particulates of the 18E, labeling of a 39-41 kd doublet by pertussis toxin decreases continuously (by 50%) with age. All age groups have comparable K/sub d/'s (10-13 pM) for (/sup 125/I)-cyanopindolol (CYP). These data indicate that a transient decrease in receptor number and receptor-N/sub s/ (guanine nucleotide-sensitive) coupling in the 18E contribute to the subsensitivity to beta-agonist.

  11. Reduced early and late phase insulin response to glucose in isolated spiny mouse (Acomys cahirinus) islets: a defective link between glycolysis and adenylate cyclase.

    PubMed

    Nesher, R; Abramovitch, E; Cerasi, E

    1989-09-01

    The spiny mouse (Acomys cahirinus) exhibits low insulin responsiveness to glucose with a nearly absent early phase release. The alternative fuel-secretagogue glyceraldehyde (10 mmol/l) produced a maximal early insulin response in rat islets but failed to affect early response in Acomys; however, it potentiated the late insulin response in both species alike. Glucagon (1.5 mumol/l) potentiated the early insulin response to intermediate (8.3 mmol/l) glucose in rat and Acomys islets by two- and four-fold, respectively. Glucose doubled cyclic AMP levels in rat islets but no significant response was noted in Acomys islets. Isobutylmethylxanthine (0.1 mmol/l) and forskolin (25 mumol/l) caused a significant rise in islet cyclic AMP levels in both types of islets; however, neither agent restored the glucose stimulation of cyclic AMP in spiny mouse islets. Forskolin and isobutylmethylxanthine potentiated early and late phase insulin release in both species; however, neither augmented the early response in the Acomys to the degree observed in rat islets. Thus: (1) A deficient link exists in Acomys between glycolysis and subsequent signals. (2) These islets contain a glucose-insensitive adenylate cyclase. (3) The early insulin response may be potentiated by direct activation of adenylate cyclase. (4) The glucose effects on early and late phase insulin release are probably mediated by distinct pathways. (5) In the spiny mouse the signals mediating the early response are deranged to a greater extent than those activating the late phase insulin release.

  12. Effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP) and vasoactive intestinal polypeptide (VIP) on chloride in HT29 cells studied by X-ray microanalysis.

    PubMed

    Zhang, W; Roomans, G M

    1999-01-01

    The colon cancer cell line HT29 is a useful model to study intestinal chloride secretion. These cells have both cAMP-activated and calcium-activated chloride channels. Changes in elemental content of the cells after stimulation with agonists were determined by X-ray microanalysis in the scanning or scanning transmission electron microscope. Exposure of HT29 cells to pituitary adenylate cyclase activating polypeptide-27 (PACAP) caused a transient decrease in the cellular Cl and K concentrations, indicating (net) efflux of chloride. The effect of PACAP is inhibited by somatostatin, which is known to inhibit cAMP-activated as well as calcium-activated chloride secretion and by U-73122, an inhibitor of phospholipase C. Alloxan, an inhibitor of adenylate cyclase, did not significantly affect the PACAP-induced loss of chloride. The calcium-chelating agent EGTA inhibited the PACAP-induced loss of chloride, indicating the need for extracellular calcium ions. Also vasointestinal polypeptide (VIP) caused a decrease of the cellular chloride concentration in HT29 cells. VIP-induced loss of chloride could be inhibited by pre-treating the cells with somatostatin or UK14,304, an alpha-2 adrenergic agonist that has been shown previously to inhibit purinergically activated chloride efflux. Our results indicate that there is cross-talk between the cAMP- and the calcium-activated pathways for chloride secretion in HT29 cells.

  13. Inhibition of adenylate cyclase attenuates muscarinic Ca²(+) signaling by a PKA-independent mechanism in rat carotid body Type I cells.

    PubMed

    Thompson, Carrie M; Wyatt, Christopher N

    2011-01-31

    Carotid body (CB) Type I cells respond to hypoxia by releasing excitatory and inhibitory neurotransmitters. This mechanism leads to increased firing of the carotid sinus nerve (CSN) which alters breathing to maintain blood gases within the physiological range. Acetylcholine targets both muscarinic and nicotinic receptors in the rat CB, acting postsynaptically on CSN and presynaptically on Type I cells. Muscarinic Ca²(+) signaling is inhibited by the activation of G(i)-coupled receptors including histamine H3 receptors. Here inhibition of adenylate cyclase with SQ22536 mimicked H3 receptor activation. Using Ca²(+) imaging techniques it was observed that inhibition of muscarinic Ca²(+) signaling was independent of protein kinase A (PKA) as PKA inhibitors H89 and KT5720 were without effect on the muscarinic Ca²(+) response. By contrast the Epac (exchange protein activated by cAMP) inhibitor brefeldin A inhibited muscarinic Ca²(+) signaling whereas the Epac activator 8-pCPT-2'-O-Me-cAMP-AM potentiated Ca²(+) signaling. Thus in Type I cells inhibition of adenylate cyclase inhibited muscarinic Ca²(+) signaling via a PKA-independent pathway that may rely upon modulation of Epac.

  14. [The effect of hypoxia on the urokinase and adenylate cyclase systems in the culture of endothelial cells of the human umbilical vein].

    PubMed

    Kapustin, A N; Tishchenko, E P; Torosian, N A; Panina, O B; Tsokolaeva, Z I; Ratner, E I; Savel'eva, G M; Parfenova, E V

    2005-06-01

    Hypoxia induces angiogenesis in ischemized tissues by means of pro-angiogenic factor expression. The key role in the growth processes and blood vessel functioning belongs to the matrix metalloproteinases, plasminogen, and its activator systems. Effect of hypoxia on expression of the urokinase activating agent plasminogen and its receptor in endothelium was studied in human umbilical vein endothelial cell model. Incubation of the endothelial cells under the conditions of hypoxia proved to reduce both urokinase formation in these cells and its secreting into the culture medium. The hypoxia-induced reduction of urokinase contents was accompanied by enhancement of expression of the urokinase receptor. The hypoxia also entailed reduction of the adenylate cyclase activity and cAMP contents in the endothelial cells. The data obtained suggest that reduction of the adenylate cyclase activity and cAMP contents under the conditions of hypoxia provide basis for suppression of the urokinase expression by the endothelial cells and, consequently, inhibition of blood vessel formation in the ischemized tissue.

  15. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    SciTech Connect

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. )

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  16. Identification of a prostacyclin receptor coupled to the adenylate cyclase system via a stimulatory GTP-binding protein in mouse mastocytoma P-815 cells

    SciTech Connect

    Hashimoto, H.; Negishi, M.; Ichikawa, A. )

    1990-11-01

    A stable analogue of prostacyclin, iloprost, specifically bound to 30,000 x g pellet (the membrane fraction) prepared from mouse mastocytoma P-815 cells. The binding was dependent on time, temperature and pH, and absolutely required a divalent cation. The equilibrium dissociation constant and the maximal concentration of the binding site as determined by Scatchard plot analysis were 10.4 nM and 1.12 pmol/mg of protein, respectively. The Hill coefficient was 1.0, indicating a single entity of binding site and no cooperativity. The binding site was highly specific for iloprost among PGs tested (iloprost much greater than PGE1 greater than carbacyclin greater than PGE2). In contrast, the membrane fraction had the binding site specific for PGE2 and PGE1, which was distinct from the prostacyclin receptor. The dissociation of bound (3H)iloprost from the membrane fraction was specifically enhanced by guanine nucleotides. Furthermore, iloprost dose-dependently enhanced the activity of adenylate cyclase in a GTP-dependent manner. These results indicate that a specific prostacyclin receptor is coupled to the adenylate cyclase system via a stimulatory GTP-binding protein in mastocytoma cells.

  17. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis.

    PubMed

    Česnek, Michal; Jansa, Petr; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Brust, Tarsis F; Pávek, Petr; Trejtnar, František; Watts, Val J; Janeba, Zlatko

    2015-08-01

    Novel small-molecule agents to treat Bordetella pertussis infections are highly desirable, as pertussis (whooping cough) remains a serious health threat worldwide. In this study, a series of 2-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, adefovir), in their isopropyl ester bis(L-phenylalanine) prodrug form, were designed and synthesized as potent inhibitors of adenylate cyclase toxin (ACT) isolated from B. pertussis. The series consists of PMEA analogues bearing either a linear or branched aliphatic chain or a heteroatom at the C2 position of the purine moiety. Compounds with a small C2 substituent showed high potency against ACT without cytotoxic effects as well as good selectivity over human adenylate cyclase isoforms AC1, AC2, and AC5. The most potent ACT inhibitor was found to be the bisamidate prodrug of the 2-fluoro PMEA derivative (IC50 =0.145 μM). Although the bisamidate prodrugs reported herein exhibit overall lower activity than the bis(pivaloyloxymethyl) prodrug (adefovir dipivoxil), their toxicity and plasma stability profiles are superior. Furthermore, the bisamidate prodrug was shown to be more stable in plasma than in macrophage homogenate, indicating that the free phosphonate can be effectively distributed to target tissues, such as the lungs. Thus, ACT inhibitors based on acyclic nucleoside phosphonates may represent a new strategy to treat whooping cough.

  18. Properties of rat erythrocyte membrane cytoskeletal structures produced by digitonin extraction: digitonin-insoluble beta-adrenergic receptor, adenylate cyclase, and cholera toxin substrate.

    PubMed

    LeVine, H; Sahyoun, N E; Cuatrecasas, P

    1982-01-01

    Rat erythrocyte plasma membranes have been extracted exhaustively with digitonin at low temperature, and the residual, detergent-extracted membrane cytoskeletal material is compared to that prepared with Triton X-100 with respect to protein, glycoprotein, phospholipid, and cholesterol content. Digitonin, a weaker detergent than Triton X-100, solubilizes only 26% of the phospholipids and none of the cholesterol. SDS-polyacrylamide gel electrophoresis reveals that differences between the proteins extracted by the two detergents are primarily quantitative. In terms of functional preservation, digitonin retains in the cytoskeleton 28% of the beta-adrenergic receptor binding activity (with the balance accounted for in the supernatant), greater than 90% of the adenylate cyclase and greater than 90% of the 45,000 mol wt polypeptide cholera toxin substrate. The cytoskeletal-associated beat-adrenergic receptor retains binding properties for antagonist and agonist which are identical to those of the native membrane receptor. The digitonin-extracted cytoskeleton containing the beta-adrenergic receptor may provide a useful vehicle for the reconstitution of a hormone-sensitive adenylate cyclase.

  19. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    SciTech Connect

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  20. Chemotactic separation of enzymes.

    PubMed

    Dey, Krishna Kanti; Das, Sambeeta; Poyton, Matthew F; Sengupta, Samudra; Butler, Peter J; Cremer, Paul S; Sen, Ayusman

    2014-12-23

    We demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate. The steady-state concentration profiles of the enzymes were obtained at specific positions within the outlets of the microchannel using fluorescence microscopy. In the presence of a substrate concentration gradient, active enzyme molecules migrated preferentially toward the substrate channel. The excess migration of the active enzyme molecules was quantified in terms of an enrichment coefficient. Experiments were carried out with different pairs of enzymes. Coupling the physics of laminar flow of liquid and molecular diffusion, multiphysics simulations were carried out to estimate the extent of the chemotactic separation. Our results show that, with appropriate microfluidic arrangement, molecular chemotaxis leads to spontaneous separation of active enzyme molecules from their inactive counterparts of similar charge and size.

  1. Enzyme molecules as nanomotors.

    PubMed

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman

    2013-01-30

    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  2. Commercial production of microbial enzymes

    SciTech Connect

    Munro, I.G.

    1985-01-01

    The advantages and uses of industrially produced microbial enzymes are described. The processes involved in the production of these enzymes, cultivation techniques, enzyme extraction, enzyme purification and immobilization are outlined. Both the history of enzyme technology and its future development are discussed.

  3. RNA as an Enzyme.

    ERIC Educational Resources Information Center

    Cech, Thomas R.

    1986-01-01

    Reviews current findings that explain RNA's function as an enzyme in addition to being an informational molecule. Highlights recent research efforts and notes changes in the information base on RNA activity. Includes models and diagrams of RNA activity. (ML)

  4. Indicators: Sediment Enzymes

    EPA Pesticide Factsheets

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  5. Overproduction of ligninolytic enzymes

    SciTech Connect

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  6. Identification of 5 prime -adenylylimidodiphosphate-hydrolyzing enzyme activity in rabbit taste bud cells using X-ray microanalysis

    SciTech Connect

    Asanuma, N. )

    1990-01-01

    X-ray microanalysis has been used to characterize the enzyme activity hydrolyzing the ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP) in taste bud cells. Rabbit foliate papillae fixed with paraformaldehyde and glutaraldehyde were incubated cytochemically with AMP-PNP as the substrate and lead ion as capture agent. The reaction product which appeared on the microvilli of taste bud cells was examined using an energy dispersive X-ray microanalyzer connected to an analytical electron microscope. The X-ray spectrum thus obtained was compared with that obtained from the product obtained from the demonstration of ATPase activity. Comparison of the phosphorus/lead ratios in the two products showed that twice as much phosphorus was released from an AMP-PNP molecule by the activity in question compared with that released from an ATP molecule by ATPase activity. This indicates that the enzyme hydrolyzes AMP-PNP into AMP and imidodiphosphate and that the enzyme is adenylate cyclase or ATP pyrophosphohydrolase, which possesses a similar hydrolytic property, but not ATPase or alkaline phosphatase, which hydrolyzes AMP-PNP into ADP-NH2 and orthophosphate. This paper provides an example of the use of X-ray microanalysis as a tool for enzyme distinction. The method is applicable to a variety of enzymes and tissues.

  7. Guanine nucleotide binding regulatory proteins and adenylate cyclase in livers of streptozotocin- and BB/Wor-diabetic rats. Immunodetection of Gs and Gi with antisera prepared against synthetic peptides.

    PubMed Central

    Lynch, C J; Blackmore, P F; Johnson, E H; Wange, R L; Krone, P K; Exton, J H

    1989-01-01

    Adenylate cyclase in liver plasma membranes from streptozotocin-diabetic (STZ) or BB/Wor spontaneously diabetic rats showed increased responsiveness to GTP, glucagon, fluoroaluminate, and cholera toxin. Basal or forskolin-stimulated activity was unchanged in STZ rats, but increased in BB/Wor rats. No change in the alpha-subunit of Gi (alpha i) was observed in STZ or BB/Wor rats using pertussis toxin-stimulated [32P]ADP-ribosylation. Immunodetection using antibodies against the COOH-terminal decapeptides of alpha T and alpha i-3 showed no change in alpha i in STZ rats and a slight decrease in BB/Wor rats. Angiotensin II inhibition of hepatic adenylate cyclase was not altered in either diabetic rat. In both models of diabetes, Gs alpha-subunits were increased as measured by cholera toxin-stimulated [32P]-ADP-ribosylation of 43-47.5-kD peptides, reconstitution with membranes from S49 cyc- cells or immunoreactivity using antibodies against the COOH-terminal decapeptide of alpha s. These data indicate that STZ-diabetes increases hepatic Gs but does not change Gi or adenylate cyclase catalytic activity. In contrast, BB/Wor rats show increased hepatic Gs and adenylate cyclase. These changes could explain the increase in hepatic cAMP and related dysfunctions observed in diabetes. Images PMID:2498395

  8. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.

    PubMed

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-12-02

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme.

  9. 77 FR 13971 - Regulated Navigation Area; MBTA Saugus River Railroad Drawbridge Rehabilitation Project, Saugus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... 617-223-4000, email Mark.E.Cutter@uscg.mil or Lieutenant Junior Grade Isaac Slavitt, Coast Guard First..., in the aggregate, or by the private sector of $100,000,000 (adjusted for inflation) or more in...

  10. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    SciTech Connect

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).

  11. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP-receptor type 1 expression in rat and human placenta.

    PubMed

    Scaldaferri, M L; Modesti, A; Palumbo, C; Ulisse, S; Fabbri, A; Piccione, E; Frajese, G; Moretti, C

    2000-03-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP), the new hypophysiotropic factor member of the vasoactive intestinal peptide (VIP)/secretin/glucagon/GHRH family of neuropeptides, exerts its biological action by interacting with both PACAP-selective type I receptors (PAC1) and type II receptors (VPAC1), which bind both PACAP and VIP. The placenta is a site of production of hypophysiotropic factors that participate in the control of local hormone production, as well as the respective hypothalamic-pituitary neurohormones. In the present study, we show the expression of PACAP gene and irPACAP distribution within rat and human placental tissues, by means of RT-PCR and immunohystochemical experiments. In both rat and human placenta, we evaluated the expression of PAC1 gene by Northern hybridization analysis performed with a 32P-labeled 706 nt complementary DNA probe, derived from the full-length coding region of the rPAC1 complementary DNA. The results of these experiments demonstrate the presence, in both human and rat placenta, of a 7.5-kb transcript similar in size to those detected in the ovary, brain, and hypothalamus. Alternative splicing of two exons occurs in human and rat PAC1 gene generating splice variants with variable tissue-specific expression. To ascertain which of the splice variants were expressed in placental tissue we performed RT-nested PCR using primers flanking the insertion sequence termed hip/hop cassette in rat or SV1/SV2 box in human gene. Electrophoretic analysis of the PCR products showed a different pattern of expression of messenger RNA splicing variants in human and rat placenta. In particular, the rat placenta expresses the short PAC1 receptor (PAC1short), the rPAC1-hip or hop (which are indistinguishable with the primers used), and the rPAC1-hip-hop, whereas the human placenta expresses only the PAC1SV1 (or SV2) variant, structurally homologous to the rat PAC1 hip (or hop). Sequence analysis of the human PCR-amplified PAC1

  12. Lignin-degrading enzymes.

    PubMed

    Pollegioni, Loredano; Tonin, Fabio; Rosini, Elena

    2015-04-01

    A main goal of green biotechnology is to reduce our dependence on fossil reserves and to increase the use of renewable materials. For this, lignocellulose, which is composed of cellulose, hemicellulose and lignin, represents the most promising feedstock. The latter is a complex aromatic heteropolymer formed by radical polymerization of guaiacyl, syringyl, and p-hydroxyphenyl units linked by β-aryl ether linkages, biphenyl bonds and heterocyclic linkages. Accordingly, lignin appears to be a potentially valuable renewable aromatic chemical, thus representing a main pillar in future biorefinery. The resistance of lignin to breakdown is the main bottleneck in this process, although a variety of white-rot fungi, as well as bacteria, have been reported to degrade lignin by employing different enzymes and catabolic pathways. Here, recent investigations have expanded the range of natural biocatalysts involved in lignin degradation/modification and significant progress related to enzyme engineering and recombinant expression has been made. The present review is focused primarily on recent trends in ligninolytic green biotechnology to suggest the potential (industrial) application of ligninolytic enzymes. Future perspectives could include synergy between natural enzymes from different sources (as well as those obtained by protein engineering) and other pretreatment methods that may be required for optimal results in enzyme-based, environmentally friendly, technologies.

  13. Aminoglycoside Modifying Enzymes

    PubMed Central

    Ramirez, Maria S.; Tolmasky, Marcelo E.

    2010-01-01

    Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different −OH or −NH2 groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltranferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes. PMID:20833577

  14. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  15. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  16. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  17. Catalytic roles of lysines (K9, K27, K31) in the N-terminal domain in human adenylate kinase by random site-directed mutagenesis.

    PubMed

    Ayabe, T; Park, S K; Takenaka, H; Sumida, M; Uesugi, S; Takenaka, O; Hamada, M

    1996-11-01

    To elucidate lysine residues in the N-terminal domain of human cytosolic adenylate kinase (hAK1, EC 2.7.4.3), random site-directed mutagenesis of K9, K27, and K31 residues was performed, and six mutants were analyzed by steady-state kinetics. K9 residue may play an important role in catalysis by interacting with AMP2-. K27 and K31 residues appear to play a functional role in catalysis by interacting with MgATP2-. In human AK, the epsilon-amino group in the side chain of these lysine residues would be essential for phosphoryl transfer between MgATP2- and AMP2- during transition state.

  18. Large-scale motions in the adenylate kinase solution ensemble: Coarse-grained simulations and comparison with solution X-ray scattering

    NASA Astrophysics Data System (ADS)

    Daily, Michael D.; Makowski, Lee; Phillips, George N.; Cui, Qiang

    2012-03-01

    While coarse-grained (CG) simulations provide an efficient approach to identify small- and large-scale motions important to protein conformational transitions, coupling with appropriate experimental validation is essential. Here, by comparing small-angle X-ray scattering (SAXS) predictions from CG simulation ensembles of adenylate kinase (AK) with a range of energetic parameters, we demonstrate that AK is flexible in solution in the absence of ligand and that a small population of the closed form exists without ligand. In addition, by analyzing variation of scattering patterns within CG simulation ensembles, we reveal that rigid-body motion of the LID domain corresponds to a dominant scattering feature. Thus, we have developed a novel approach for three-dimensional structural interpretation of SAXS data. Finally, we demonstrate that the agreement between predicted and experimental SAXS can be improved by increasing the simulation temperature or by computationally mutating selected residues to glycine, both of which perturb LID rigid-body flexibility.

  19. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Stierl, M.; Hegemann, P.; Kateriya, S.

    2012-01-01

    The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  20. CAP1, an Adenylate Cyclase-Associated Protein Gene, Regulates Bud-Hypha Transitions, Filamentous Growth, and Cyclic AMP Levels and Is Required for Virulence of Candida albicans

    PubMed Central

    Bahn, Yong-Sun; Sundstrom, Paula

    2001-01-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis. PMID:11325951

  1. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.

    PubMed

    Bahn, Y S; Sundstrom, P

    2001-05-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.

  2. Entropy and Enzyme Catalysis.

    PubMed

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  3. Evolution of enzyme superfamilies.

    PubMed

    Glasner, Margaret E; Gerlt, John A; Babbitt, Patricia C

    2006-10-01

    Enzyme evolution is often constrained by aspects of catalysis. Sets of homologous proteins that catalyze different overall reactions but share an aspect of catalysis, such as a common partial reaction, are called mechanistically diverse superfamilies. The common mechanistic steps and structural characteristics of several of these superfamilies, including the enolase, Nudix, amidohydrolase, and haloacid dehalogenase superfamilies have been characterized. In addition, studies of mechanistically diverse superfamilies are helping to elucidate mechanisms of functional diversification, such as catalytic promiscuity. Understanding how enzyme superfamilies evolve is vital for accurate genome annotation, predicting protein functions, and protein engineering.

  4. [Micro fabricated enzyme battery].

    PubMed

    Sasaki, S; Karube, I

    1996-10-01

    Although various work has been done in the field of implantable micro actuators such as artificial organs and micro surgery robots, a suitable electric power supply for these is yet to be developed. For this purpose a micro fabricated enzyme fuel cell was developed which uses glucose contained in the human body as a fuel. In order to obtain enough voltage each cell was formed as part of a serial array on a silicon wafer. Glucose solution enters the cells by a capillary effect. In this article fuel cells already developed using biocatalysts are described, and the future possibility of a micro fabricated enzyme battery is discussed.

  5. Quorum quenching enzymes.

    PubMed

    Fetzner, Susanne

    2015-05-10

    Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies.

  6. Photoperiodism and Enzyme Activity

    PubMed Central

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  7. Amperometric Enzyme Electrodes

    DTIC Science & Technology

    1989-12-01

    form of carbon (glascy carbon, graphite, reticulated vitreous carbon, carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...interference from spurious electroactive species in blood, t proprietary multilayer membranie that includes a cellulose acetate memirane and a Nucleopore

  8. Synthetic Helizyme Enzymes

    DTIC Science & Technology

    1989-08-18

    Enzymes START DATE: 1 August 1986; END DATE: 31 July 1989 RESEARCH OBSCTE: The goal of this project as to design, synthesize and test totally new...the peptide from the resin by HF. Coupling reactions were monitored at nearly all steps using qualitative and quantitative ninhydrin reactions

  9. Toying with Enzyme Catalysis.

    ERIC Educational Resources Information Center

    Richards, Debbie

    1998-01-01

    Describes a set of manipulatives that are used to establish a secure understanding of the concepts related to the environmental factors that affect the activities of enzymes. Includes a description of the model components and procedures for construction of the model. (DDR)

  10. Computational enzyme design

    NASA Astrophysics Data System (ADS)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  11. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  12. The Enzyme Function Initiative†

    PubMed Central

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  13. Monitoring enzyme kinetic behavior of enzyme-quantum dot bioconjugates

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Walper, Scott A.; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2014-05-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) hold tremendous promise for in vivo biosensing, cellular imaging, theranostics, and smart molecular sensing probes due to their small size and favorable photonic properties such as resistance to photobleaching, size-tunable PL, and large effective Stokes shifts. Herein, we demonstrate how QD-based bioconjugates can be used to enhance enzyme kinetics. Enzyme-substrate kinetics are analyzed for solutions containing both alkaline phosphatase enzymes and QDs with enzyme-to- QD molar ratios of 2, 12, and 24 as well as for a solution containing the same concentration of enzymes but without QDs. The enzyme kinetic paramters Vmax, KM, and Kcat/KM are extracted from the enzyme progress curves via the Lineweaver-Burk plot. Results demonstrate an approximate increase in enzyme efficiency of 5 - 8% for enzymes immobilized on the QD versus free in solution without QD immobilization.

  14. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness.

    PubMed

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S

    2015-08-18

    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  15. Halophilic adaptation of enzymes.

    PubMed

    Madern, D; Ebel, C; Zaccai, G

    2000-04-01

    It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent-protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly.

  16. Enzyme catalysis "reilluminated".

    PubMed

    Gärtner, Wolfgang

    2009-01-01

    In a new light: The NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR; see structure, green Pchlide, yellow NADPH) is a good model to investigate catalytical processes in enzymes, as its light activation allows an immediate start of the catalyzed reaction. By irradiation with weak, short laser pulses it is possible to detect conformation changes during the reaction and thus to uncover the elementary steps of the catalytic process.

  17. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.

  18. Micellar Polymer Encapsulation of Enzymes.

    PubMed

    Besic, Sabina; Minteer, Shelley D

    2017-01-01

    Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as

  19. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  20. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  1. Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Serra, Juan L.; And Others

    1986-01-01

    Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)

  2. Field Verification Program (Aquatic Disposal). A Field and Laboratory Study Using Adenylate Energy Charge as an Indicator of Stress in Mytilus edulis and Nephtys incisa Treated with Dredged Material.

    DTIC Science & Technology

    1988-06-01

    Peter F. Rogerson Gerald Hoffman, Mary Johnson Environmental Research Laboratory ’. "-US Environmental Protection Aaency S--Narragansett. Rhode Island...Zaroogian, Gerald E; Rogerson, Peter F.; Hoffman, Gerald; Johnson, Mary : Johns. D. Michael: Nelson. Williams G. 1 3a TYPE OF REPORT 13b TIME COVERED 14 DATE...adenylate energy charge measurements was provided by Ms. Mary Johnson, ERLN. Diving support for the field portion of the study was provided by Messrs

  3. Treating Wastewater With Immobilized Enzymes

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  4. The Catalytic Function of Enzymes.

    ERIC Educational Resources Information Center

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  5. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  6. Bacteriolytic Enzymes from Streptomycetes

    PubMed Central

    Welsch, Maurice

    1962-01-01

    A study of the bacteriolytic properties of streptomycetes has progressively uncovered the production by these microorganisms of a large number of different enzymes acting upon various bacterial constituents, especially on some of them located in the cell wall. Although the mechanism of the bacteriolysis is far from being completely elucidated at present, it can, however, be stated that, in two instances at least, it can be regarded as an osmotic explosion following upon the destruction of the structure responsible for the rigidity of the cell wall. PMID:14006056

  7. Kinetic Measurements for Enzyme Immobilization.

    PubMed

    Cooney, Michael J

    2017-01-01

    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of this enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten were advancing their work by studying the kinetics of an enzyme saccharase which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis and ever since the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, and selectivity towards nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adapted to the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V max, K M) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  8. Kinetic measurements for enzyme immobilization.

    PubMed

    Cooney, Michael J

    2011-01-01

    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of the enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten had advanced this work by studying the kinetics of the enzyme saccharase, which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis, and ever since, the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, selectivity toward nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adopted for the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V(max), K(M)) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review, enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  9. Enzymes, embryos, and ancestors.

    PubMed

    Gerhart, John

    2010-01-01

    In the 1950s, cellular regulatory mechanisms were newly recognized; with Arthur Pardee I investigated the initial enzyme of pyrimidine biosynthesis, which he discovered is controlled by feedback inhibition. The protein proved unusual in having separate but interacting sites for substrates and regulators. Howard Schachman and I dissociated the protein into different subunits, one binding regulators and one substrates. The enzyme became an early prime example of allostery. In developmental biology I studied the egg of the frog, Xenopus laevis, characterizing early processes of axis formation. My excellent students and I described cortical rotation, a 30° movement of the egg's cortex over tracks of parallel microtubules anchored to the underlying cytoplasmic core, and we perturbed it to alter Spemann's organizer and effect spectacular phenotypes. The entire sequence of events has been elucidated by others at the molecular level, making Xenopus a prime example of vertebrate axis formation. Marc Kirschner, Christopher Lowe, and I then compared hemichordate (half-chordate) and chordate early development. Despite anatomical-physiological differences, these groups share numerous steps of axis formation, ones that were probably already in use in their pre-Cambrian ancestor. I've thoroughly enjoyed exploring these areas during a 50-year period of great advances in biological sciences by the worldwide research community.

  10. Industrial use of immobilized enzymes.

    PubMed

    DiCosimo, Robert; McAuliffe, Joseph; Poulose, Ayrookaran J; Bohlmann, Gregory

    2013-08-07

    Although many methods for enzyme immobilization have been described in patents and publications, relatively few processes employing immobilized enzymes have been successfully commercialized. The cost of most industrial enzymes is often only a minor component in overall process economics, and in these instances, the additional costs associated with enzyme immobilization are often not justified. More commonly the benefit realized from enzyme immobilization relates to the process advantages that an immobilized catalyst offers, for example, enabling continuous production, improved stability and the absence of the biocatalyst in the product stream. The development and attributes of several established and emerging industrial applications for immobilized enzymes, including high-fructose corn syrup production, pectin hydrolysis, debittering of fruit juices, interesterification of food fats and oils, biodiesel production, and carbon dioxide capture are reviewed herein, highlighting factors that define the advantages of enzyme immobilization.

  11. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-07-29

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  12. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  13. ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3' RACE applications.

    PubMed

    Jänicke, Amrei; Vancuylenberg, John; Boag, Peter R; Traven, Ana; Beilharz, Traude H

    2012-06-01

    The addition of a poly(A)-tail to the 3' termini of RNA molecules influences stability, nuclear export, and efficiency of translation. In the cytoplasm, dynamic changes in the length of the poly(A)-tail have long been recognized as reflective of the switch between translational silence and activation. Thus, measurement of the poly(A)-tail associated with any given mRNA at steady-state can serve as a surrogate readout of its translation-state. Here, we describe a simple new method to 3'-tag adenylated RNA in total RNA samples using the intrinsic property of Escherichia coli DNA polymerase I to extend an RNA primer using a DNA template. This tag can serve as an anchor for cDNA synthesis and subsequent gene-specific PCR to assess poly(A)-tail length. We call this method extension Poly(A) Test (ePAT). The ePAT approach is as efficient as traditional Ligation-Mediated Poly(A) Test (LM-PAT) assays, avoids problems of internal priming associated with oligo-dT-based methods, and allows for the accurate analysis of both the poly(A)-tail length and alternate 3' UTR usage in 3' RACE applications.

  14. Molecular cloning and mRNA distribution of pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide in the lungfish.

    PubMed

    Lee, L T O; Tam, J K V; Chan, D W; Chow, B K C

    2009-04-01

    In this article, we report the isolation of a full-length cDNA clone encoding pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) from lungfish Protopterus dolloi. When comparing the deduced amino acid sequences, the lungfish PACAP was found to be highly conserved with other vertebrates; however, the PRP shares only lower levels of sequence identity with known PRP sequences. Consistently in phylogenetic analysis, the lungfish PRP, similar to sturgeon PRP, fails to cluster with other PRPs. In addition to the full-length clone, another cDNA encoding a short precursor that lacks the first 32 amino acids of the PRP was also isolated. Interestingly, similar isoforms were also identified in several nonmammalian vertebrates, and it was suggested that exon skipping of PRP/PACAP transcripts was a mechanism that regulated the expression ratio of PACAP to PRP in nonmammalian vertebrates. By real-time PCR, both long and short PRP/PACAP transcripts were found almost exclusively in the brain, and the short isoform is the more abundant transcript (3.7 times more), indicating that PACAP is the major product produced in lungfish brain. The expression patterns of lungfish and previously studied frog PRP/PACAP suggest that the PRP/PACAP gene in the tetrapod lineage may first express in the central nervous system; in the process of evolution, the functions of these peptides diversified and were later found in other tissues.

  15. Transcription initiation in vivo without classical transactivators: DNA kinks flanking the core promoter of the housekeeping yeast adenylate kinase gene, AKY2, position nucleosomes and constitutively activate transcription.

    PubMed

    Angermayr, Michaela; Oechsner, Ulrich; Gregor, Kerstin; Schroth, Gary P; Bandlow, Wolfhard

    2002-10-01

    The housekeeping gene of the major adenylate kinase in Saccharomyces cerevisiae (AKY2, ADK1) is constitutively transcribed at a moderate level. The promoter has been dissected in order to define elements that effect constitutive transcription. Initiation of mRNA synthesis at the AKY2 promoter is shown to be mediated by a non-canonic core promoter, (TA)(6). Nucleotide sequences 5' of this element only marginally affect transcription suggesting that promoter activation can dispense with transactivators and essentially involves basal transcription. We show that the core promoter of AKY2 is constitutively kept free of nucleosomes. Analyses of permutated AKY2 promoter DNA revealed the presence of bent DNA. DNA structure analysis by computer and by mutation identified two kinks flanking an interstitial stretch of 65 bp of moderately bent core promoter DNA. Kinked DNA is likely incompatible with packaging into nucleosomes and responsible for positioning nucleosomes at the flanks allowing unimpeded access of the basal transcription machinery to the core promoter. The data show that in yeast, constitutive gene expression can dispense with classical transcriptional activator proteins, if two prerequisites are met: (i) the core promoter is kept free of nucleosomes; this can be due to structural properties of the DNA as an alternative to chromatin remodeling factors; and (ii) the core promoter is pre-bent to allow a high rate of basal transcription initiation.

  16. In vivo control of gluconeogenesis in wild-type Neurospora crassa and in the adenylate cyclase-deficient cr-1 (crisp) mutant.

    PubMed Central

    Neves, M J; Terenzi, H F

    1989-01-01

    The rate of cycloheximide-resistant incorporation of carbon from [14C]alanine and [14C]acetate into polysaccharidic material was used to study gluconeogenic activity in wild-type Neurospora crassa and in the adenylate cyclase-deficient cr-1 (crisp-1) mutant. The wild-type efficiently utilized alanine and acetate as gluconeogenic substrates, whereas the mutant used acetate efficiently but was unable to use alanine. Cycloheximide-resistant 14C-incorporating activity was sensitive to carbon catabolite effects (repression and inactivation) in the two strains, which suggested that cyclic AMP metabolism was not involved in these regulatory responses. In the wild type, gluconeogenesis was induced by incubation of the cells in the absence of a carbon source. In contrast, cr-1 required supplementation with acetate. This finding suggested that induction of gluconeogenesis in N. crassa could be mediated by metabolites formed in carbon-starved cells. The cr-1 mutant seemed to be deficient in this process and to depend on an exogenous effector to induce gluconeogenesis. Incubation of cr-1 with cyclic AMP partially overcame the acetate requirement for induction of gluconeogenesis. PMID:2522093

  17. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes.

    PubMed

    Bakal, Tomas; Goo, Kian-Sim; Najmanova, Lucie; Plhackova, Kamila; Kadlcik, Stanislav; Ulanova, Dana

    2015-11-01

    In the biosynthesis of diverse natural bioactive products the adenylation domains (ADs) of nonribosomal peptide synthetases select specific precursors from the cellular pool and activate them for further incorporation into the scaffold of the final compound. Therefore, the drug discovery programs employing PCR-based screening studies of microbial collections or metagenomic libraries often use AD-coding genes as markers of relevant biosynthetic gene clusters. However, due to significant sequence diversity of ADs, the conventional approach using only one primer pair in a single screening experiment could be insufficient for maximal coverage of AD abundance. In this study, the widely used primer pair A3F/A7R was compared with the newly designed aa194F/aa413R one by 454 pyrosequencing of two sets of actinomycete strains from highly dissimilar environments: subseafloor sediments and forest soil. Individually, none of the primer pairs was able to cover the overall diversity of ADs. However, due to slightly shifted specificity of the primer pairs, the total number and diversity of identified ADs were noticeably extended when both primer pairs were used in a single assay. Additionally, the efficiency of AD detection by different primer combinations was confirmed on the model of Salinispora tropica genomic DNA of known sequence.

  18. The vasorelaxant effect of pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in isolated rat basilar arteries is partially mediated by activation of nitrergic neurons.

    PubMed

    Seebeck, Jörg; Löwe, Marcus; Kruse, Marie Luise; Schmidt, Wolfgang E; Mehdorn, H Maximilian; Ziegler, Albrecht; Hempelmann, Ralf G

    2002-07-15

    The structurally related neuropeptides pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are recognised by two G protein-coupled receptors, termed VPAC(1)-R and VPAC(2)-R, with equal affinity. PACAP and VIP have previously been shown to relax cerebral arteries in an endothelium-independent manner. The aim of the present study was to test if intramural neurons are involved in the mediation of PACAP/VIP-induced vasodilatory responses. Therefore, the vascular tone of isolated rat basilar arteries was measured by means of a myograph. The vasorelaxing effect of PACAP was assessed in arteries precontracted by serotonin in the absence or presence of different test compounds known to selectively inhibit certain signaling proteins. The vasorelaxant effect of PACAP could be significantly reduced by the inhibitor of neuronal N-type calcium channels omega-conotoxin GVIA (omega-CgTx), as well as by 3-bromo-7-nitroindazole (3Br-7-Ni), an inhibitor of the neuronal nitric oxide-synthase (nNOS). The localization of N-type calcium channels and VPAC-Rs within the rat basilar artery was investigated by confocal laser scanning microscopy using omega-CgTx- and VIP-analogs labelled with fluorescent dyes. These findings suggest that activation of intramural neurons may represent an important effector mechanism for mediation of the vasorelaxant PACAP-response.

  19. Studies on responsiveness of hepatoma cells to catecholamines. VI. Characteristics of adrenoceptors and adenylate cyclase response in rat ascites hepatoma cells and human hepatoma cells.

    PubMed

    Sanae, F; Kohei, K; Nomura, M; Miyamoto, K

    1992-06-01

    Alpha 1, alpha 2- and beta-Adrenoceptor densities and catecholamine responsiveness in established hepatoma cells, rat ascites hepatoma AH13, AH66, AH66F, AH109A, AH130 and AH7974 cells and human hepatocellular carcinoma HLF and HepG2 cells, were compared with those in normal rat hepatocytes and Chang liver cells. Alpha 1-Adrenoceptor densities measured by [3H]prazosin bindings were not detected in all hepatoma cell lines. Alpha 2-Adrenoceptor densities measured by [3H]clonidine bindings were also barely detected in hepatoma cell lines except for AH130 cells and HepG2 cells. Regarding beta-adrenoceptor, AH109A, AH130 and AH7974 cells had much more [125I]iodocyanopindolol binding sites than normal rat hepatocytes, although we could not detect the binding in HepG2 cells. Adenylate cyclase of normal rat hepatocyte and Chang liver cells were stimulated by beta 2-adrenergic agonist salbutamol, while the cyclase in hepatoma cells had no beta 2-adrenergic response but a beta 1-type response. These findings indicate that the characteristics of adrenergic response in hepatoma cell lines is very different from that in normal hepatocytes, suggesting a participation in the hepatocarcinogenesis and/or the autonomous proliferation of hepatoma cells.

  20. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.

    PubMed

    Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-12-01

    There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes.

  1. ePAT: A simple method to tag adenylated RNA to measure poly(A)-tail length and other 3′ RACE applications

    PubMed Central

    Jänicke, Amrei; Vancuylenberg, John; Boag, Peter R.; Traven, Ana; Beilharz, Traude H.

    2012-01-01

    The addition of a poly(A)-tail to the 3′ termini of RNA molecules influences stability, nuclear export, and efficiency of translation. In the cytoplasm, dynamic changes in the length of the poly(A)-tail have long been recognized as reflective of the switch between translational silence and activation. Thus, measurement of the poly(A)-tail associated with any given mRNA at steady-state can serve as a surrogate readout of its translation-state. Here, we describe a simple new method to 3′-tag adenylated RNA in total RNA samples using the intrinsic property of Escherichia coli DNA polymerase I to extend an RNA primer using a DNA template. This tag can serve as an anchor for cDNA synthesis and subsequent gene-specific PCR to assess poly(A)-tail length. We call this method extension Poly(A) Test (ePAT). The ePAT approach is as efficient as traditional Ligation-Mediated Poly(A) Test (LM-PAT) assays, avoids problems of internal priming associated with oligo-dT-based methods, and allows for the accurate analysis of both the poly(A)-tail length and alternate 3′ UTR usage in 3′ RACE applications. PMID:22543866

  2. On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.

    2004-08-01

    The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.

  3. Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels.

    PubMed

    Koide, Masayo; Syed, Arsalan U; Braas, Karen M; May, Victor; Wellman, George C

    2014-11-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.

  4. Pituitary Adenylate Cyclase-Activating Polypeptide Regulates Brain-Derived Neurotrophic Factor Exon IV Expression through the VPAC1 Receptor in the Amphibian Melanotrope Cell

    PubMed Central

    Kidane, Adhanet H.; Roubos, Eric W.; Jenks, Bruce G.

    2008-01-01

    In mammals, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors PAC1-R, VPAC1-R, and VPAC2-R play a role in various physiological processes, including proopiomelanocortin (POMC) and brain-derived neurotrophic factor (BDNF) gene expression. We have previously found that PACAP stimulates POMC gene expression, POMC biosynthesis, and α-MSH secretion in the melanotrope cell of the amphibian Xenopus laevis. This cell hormonally controls the process of skin color adaptation to background illumination. Here, we have tested the hypothesis that PACAP is involved in the regulation of Xenopus melanotrope cell activity during background adaptation and that part of this regulation is through the control of the expression of autocrine acting BDNF. Using quantitative RT-PCR, we have identified the Xenopus PACAP receptor, VPAC1-R, and show that this receptor in the melanotrope cell is under strong control of the background light condition, whereas expression of PAC1-R was absent from these cells. Moreover, we reveal by quantitative immunocytochemistry that the neural pituitary lobe of white-background adapted frogs possesses a much higher PACAP content than the neural lobe of black-background adapted frogs, providing evidence that PACAP produced in the hypothalamic magnocellular nucleus plays an important role in regulating the activity of Xenopus melanotrope cells during background adaptation. Finally, an in vitro study demonstrates that PACAP stimulates the expression of BDNF transcript IV. PMID:18450956

  5. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    SciTech Connect

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  6. Atomoxetine reverses locomotor hyperactivity, impaired novel object recognition, and prepulse inhibition impairment in mice lacking pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Shibasaki, Y; Hayata-Takano, A; Hazama, K; Nakazawa, T; Shintani, N; Kasai, A; Nagayasu, K; Hashimoto, R; Tanida, M; Katayama, T; Matsuzaki, S; Yamada, K; Taniike, M; Onaka, Y; Ago, Y; Waschek, J A; Köves, K; Reglődi, D; Tamas, A; Matsuda, T; Baba, A; Hashimoto, H

    2015-06-25

    Attention-deficit/hyperactivity disorder (ADHD) is a complex neurobehavioral disorder that is characterized by attention difficulties, impulsivity, and hyperactivity. A non-stimulant drug, atomoxetine (ATX), which is a selective noradrenaline reuptake inhibitor, is widely used for ADHD because it exhibits fewer adverse effects compared to conventional psychostimulants. However, little is known about the therapeutic mechanisms of ATX. ATX treatment significantly alleviated hyperactivity of pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP(-/-)) mice with C57BL/6J and 129S6/SvEvTac hybrid background. ATX also improved impaired novel object recognition memory and prepulse inhibition in PACAP(-/-) mice with CD1 background. The ATX-induced increases in extracellular noradrenaline and dopamine levels were significantly higher in the prefrontal cortex of PACAP(-/-) mice compared to wild-type mice with C57BL/6J and 129S6/SvEvTac hybrid background. These results suggest that ATX treatment-induced increases in central monoamine metabolism may be involved in the rescue of ADHD-related abnormalities in PACAP(-/-) mice. Our current study suggests that PACAP(-/-) mice are an ideal rodent model with predictive validity for the study of ADHD etiology and drug development. Additionally, the potential effects of differences in genetic background of PACAP(-/-) mice on behaviors are discussed.

  7. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.

    PubMed

    Jana, Biman; Adkar, Bharat V; Biswas, Rajib; Bagchi, Biman

    2011-01-21

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  8. Strategies for the thermodynamic characterization of linked binding/local folding reactions within the native state application to the LID domain of adenylate kinase from Escherichia coli.

    PubMed

    Schrank, Travis P; Elam, W Austin; Li, Jing; Hilser, Vincent J

    2011-01-01

    Conformational fluctuations in proteins have emerged as an important aspect of biological function, having been linked to processes ranging from molecular recognition and catalysis to allostery and signal transduction. In spite of the realization of their importance, however, the connections between fluctuations and function have largely been empirical, even when they have been quantitative. Part of the problem in understanding the role of fluctuations in function is the fact that the mere existence of fluctuations complicates the interpretation of classic mutagenesis approaches. Namely, mutagenesis, which is typically targeted to an internal position (to elicit an effect), will change the fluctuations as well as the structure of the native state. Decoupling these effects is essential to an unambiguous understanding of the role of fluctuations in function. Here, we use a mutation strategy that targets surface-exposed sites in flexible parts of the molecule for mutation to glycine. Such mutations leave the ground-state structure unaffected. As a result, we can assess the nature of the fluctuations, develop a quantitative model relating fluctuations to function (in this case, molecular recognition), and unambiguously resolve the probabilities of the fluctuating states. We show that when this approach is applied to Escherichia coli adenylate kinase (AK), unique thermodynamic and structural insights are obtained, even when classic mutagenesis approaches targeted to the same region yield ambiguous results.

  9. Cooperation and Competition between Adenylate Kinase, Nucleoside Diphosphokinase, Electron Transport, and ATP Synthase in Plant Mitochondria Studied by 31P-Nuclear Magnetic Resonance.

    PubMed Central

    Roberts, JKM.; Aubert, S.; Gout, E.; Bligny, R.; Douce, R.

    1997-01-01

    Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport. PMID:12223600

  10. Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor.

    PubMed

    Zink, Mathias; Otto, Christiane; Zörner, Björn; Zacher, Christiane; Schütz, Günther; Henn, Fritz A; Gass, Peter

    2004-04-22

    In vitro pituitary adenylate cyclase activating polypeptide (PACAP) induces the expression of brain-derived neurotrophic factor (BDNF) via its specific receptor PAC1. Since BDNF has been implicated in learning paradigms and mice lacking functional PAC1 have deficits in hippocampus-dependent associative learning, we investigated whether PAC1 mutants show alterations in hippocampal expression of BDNF and its receptor TrkB. Semi-quantitative in situ-hybridization using exon-specific BDNF-probes revealed significantly reduced expression of the exon-III and exon-V-specific transcripts within the hippocampal CA3 region in PAC1-deficient mice. A similar trend was observed for the exon-I-specific transcript. The expression of the exon-III-specific transcript was also reduced within the dentate gyrus, while Trk B-expression did not differ between genotypes. Our data demonstrate that even in vivo PAC1-mediated signaling seems to play a pivotal role for the transcriptional regulation of BDNF.

  11. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Lamine-Ajili, Asma; Fahmy, Ahmed M; Létourneau, Myriam; Chatenet, David; Labonté, Patrick; Vaudry, David; Fournier, Alain

    2016-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties.

  12. Effect of structural analogs of butaclamol (a new antipsychotic drug) on striatal homovanillic acid and adenyl cyclase of olfactory tubercle in rats.

    PubMed

    Pugsley, T A; Merker, J; Lippman, W

    1976-08-01

    The 3-isopropyl (I), 3-cyclohexyl (II) and 3-phenyl (III) analogs of the new antipsychotic drug butaclamol, which contains a 3-tertiary butyl group, and their respective (+)-enantiomers, but not (-)-enantiomers, caused a dose related elevation of rat striatal homovanillic acid concentration, indicative of an increased dopamine (DA) turnover; droperidol also exhibited this activity. The order of activity of the (+)-enantiomers was (butaclamol) approximately II greater than I greater than III. A decrease in striatal DA was observed with (+)-I and (+)-III at the highest dose used, but not at one-half the dose. Each analog antagonized the DA-induced increase in adenyl cyclase (EC 4.6.1.1) activity of olfactory tubercle homogenates, the order of activity of the racemates (except for II) AND (+)-ENANTIOMERS BEING (BUTACLAMOL) APPROXIMATELY I greater than III greater than II. The (+)-enantiomers of butaclamol and analogs were two to four times more potent than their respective racemates, with (+)-butaclamol and (+)-I displaying activity generally equivalent to fluphenazine. The respective (-)-enantiomers were ineffective indicating a stereochemical specificity for DA-receptor blockade. Such analogs presented should be of value in elucidating dopaminergic mechansims.

  13. Evolution of Enzyme Kinetic Mechanisms.

    PubMed

    Ulusu, Nuriye Nuray

    2015-06-01

    This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure-function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi-bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate's properties, and their kinetic mechanisms have evolved in response to substrate variability.

  14. Enzyme molecules in solitary confinement.

    PubMed

    Liebherr, Raphaela B; Gorris, Hans H

    2014-09-12

    Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  15. Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli.

    PubMed

    Donovan, Grant T; Norton, J Paul; Bower, Jean M; Mulvey, Matthew A

    2013-01-01

    In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H(2)O(2)) and acid stress. In the mutant strains, H(2)O(2) resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract.

  16. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  17. Phage lytic enzymes: a history.

    PubMed

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  18. Enzyme therapeutics for systemic detoxification.

    PubMed

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  19. Digestive Enzyme Replacement Therapy: Pancreatic Enzymes and Lactase.

    PubMed

    Felicilda-Reynaldo, Rhea Faye D; Kenneally, Maria

    2016-01-01

    Maldigestion occurs when digestive enzymes are lacking to help break complex food components into absorbable nutrients within the gastrointestinal tract. Education is needed to help patients manage the intricacies of digestive enzyme replacement therapies and ensure their effectiveness in reducing symptoms of maldigestion.

  20. Substrate-Assisted Inhibition of Ubiquitin-like Protein-Activating Enzymes: The NEDD8 E1 Inhibitor MLN4924 Forms a NEDD8-AMP Mimetic In Situ

    SciTech Connect

    Brownell, James E.; Sintchak, Michael D.; Gavin, James M.; Liao, Hua; Bruzzese, Frank J.; Bump, Nancy J.; Soucy, Teresa A.; Milhollen, Michael A.; Yang, Xiaofeng; Burkhardt, Anne L.; Ma, Jingya; Loke, Huay-Keng; Lingaraj, Trupti; Wu, Dongyun; Hamman, Kristin B.; Spelman, James J.; Cullis, Courtney A.; Langston, Steven P.; Vyskocil, Stepan; Sells, Todd B.; Mallender, William D.; Visiers, Irache; Li, Ping; Claiborne, Christopher F.; Rolfe, Mark; Bolen, Joseph B.; Dick, Lawrence R.

    2010-11-15

    The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.

  1. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ.

    PubMed

    Brownell, James E; Sintchak, Michael D; Gavin, James M; Liao, Hua; Bruzzese, Frank J; Bump, Nancy J; Soucy, Teresa A; Milhollen, Michael A; Yang, Xiaofeng; Burkhardt, Anne L; Ma, Jingya; Loke, Huay-Keng; Lingaraj, Trupti; Wu, Dongyun; Hamman, Kristin B; Spelman, James J; Cullis, Courtney A; Langston, Steven P; Vyskocil, Stepan; Sells, Todd B; Mallender, William D; Visiers, Irache; Li, Ping; Claiborne, Christopher F; Rolfe, Mark; Bolen, Joseph B; Dick, Lawrence R

    2010-01-15

    The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.

  2. [The rise of enzyme engineering in China].

    PubMed

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  3. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    PubMed

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward.

  4. Pituitary Adenylate Cyclase Activating Polypeptide, A Potential Therapeutic Agent for Diabetic Retinopathy in Rats: Focus on the Vertical Information Processing Pathway.

    PubMed

    Szabadfi, K; Reglodi, D; Szabo, A; Szalontai, B; Valasek, A; Setalo, Gy; Kiss, P; Tamas, A; Wilhelm, M; Gabriel, R

    2016-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects in different neuronal injuries, such as retinal degenerations. Diabetic retinopathy (DR), the most common complication of diabetes, affects the microvasculature and neuronal architecture of the retina. We have proven earlier that PACAP is also protective in a rat model of DR. In this study, streptozotocin-induced DR was treated with intravitreal PACAP administration in order to further analyze the synaptic structure and proteins of PACAP-treated diabetic retinas, primarily in the vertical information processing pathway. Streptozotocin-treated Wistar rats received intravitreal PACAP injection three times into the right eye 2 weeks after the induction of diabetes. Morphological and molecular biological (qRT-PCR; Western blot) methods were used to analyze retinal synapses (ribbons, conventional) and related structures. Electron microscopic analysis revealed that retinal pigment epithelium, the ribbon synapses and other synaptic profiles suffered alterations in diabetes. However, in PACAP-treated diabetic retinas more bipolar ribbon synapses were found intact in the inner plexiform layer than in DR animals. The ribbon synapse was marked with C-terminal binding protein 2/Bassoon and formed horseshoe-shape ribbons, which were more retained in PACAP-treated diabetic retinas than in DR rats. These results are supported by molecular biological data. The selective degeneration of related structures such as bipolar and ganglion cells could be ameliorated by PACAP treatment. In summary, intravitreal administration of PACAP may have therapeutic potential in streptozotocin-induced DR through maintaining synapse integrity in the vertical pathway.

  5. Part I: Pituitary adenylate cyclase-activating polypeptide-38 induced migraine-like attacks in patients with and without familial aggregation of migraine.

    PubMed

    Guo, Song; Vollesen, Anne Luise Haulund; Hansen, Rikke Dyhr; Esserlind, Ann-Louise; Amin, Faisal Mohammed; Christensen, Anne Francke; Olesen, Jes; Ashina, Messoud

    2017-02-01

    Background Intravenous infusion of adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine-like attacks in 65-70% of migraine sufferers. Whether aggregation of migraine in first-degree relatives contributes to this discrepancy in PACAP38-induced response is unknown. We hypothesized that genetic enrichment plays a role in triggering of migraine and that migraine without aura patients with a high family load ( ≥ 2 first-degree relatives with migraine) would report more migraine-like attacks after intravenous infusion of human PACAP38. Methods In this study, we allocated 32 previously genotyped migraine without aura patients to receive intravenous infusion of 10 pmol/kg/min PACAP38 and recorded migraine-like attacks including headache characteristics and associated symptoms. Information of familial aggregation was obtained by telephone interview of first-degree relatives using a validated semi-structured questionnaire. Results PACAP38 infusion induced a migraine-like attack in 75% (nine out of 12) of patients with high family load compared to 70% (14 out of 20) with low family load ( P = 0.761). In an explorative investigation, we found that the migraine response after PACAP38 was not associated with the risk allele of rs2274316 ( MEF2D), which confers increased risk of migraine without aura and may regulate PACAP38 expression. Conclusion Migraine response to PACAP38 infusion in migraine without aura patients is not associated with high family load or the risk allele of rs2274316 ( MEF2D).

  6. Characteristics of muscarinic receptors that selectively couple to inhibition of adenylate cyclase or stimulation of phospholipase C on NG108-15 and 1321N1 cells

    SciTech Connect

    Liang, M.

    1988-01-01

    The purpose of this dissertation was to establish whether different muscarinic receptor proteins selectively couple to different second messenger response system. Although both second messenger response systems are fully functional in both cell lines, activation of muscarinic cholinergic receptors only results in inhibition of adenylate cyclase in NG108-15 neuroblastoma {times} glioma cells and stimulation of phosphoinositide hydrolysis in 1321N1 human astrocytoma cells. Muscarinic receptors on both cell types were covalently labeled with ({sup 3}H)Propylbenzilylcholine mustard (({sup 3}H)PBCM) and the mobilities of the ({sup 3}H)PBCM-labelled species of both cells were compared by SDS-PAGE. 1321N1 and NG108-15 cells each primarily expressed a single ({sup 3}H)PBCM-labelled species with an apparent size of approximately 92,000 and 66,000 Da, respectively. ({sup 3}H)PBCM labelling was completely inhibited by 1 {mu}M atropine or by down-regulation of muscarinic receptors by an overnight incubation with carbachol. The apparent size of the ({sup 3}H)PBCM-labelled species of both cell lines was not altered by treatment with a series of protease inhibitors or by treatment with dithiothreitol and iodoacetamide. Another approach for determining differences in the muscarinic receptors of 2 cells lines was to study agonist-induced alteration of muscarinic receptor number. Exposure of both cell types to agonists resulted in rapid loss of muscarinic receptors from cell surface without change of total cellular muscarinic receptors followed by subsequently loss of receptors from cells. Muscarinic receptors on both cell lines were regulated by agonist with similar properties.

  7. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    PubMed

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.

  8. Pharmacological, molecular and functional characterization of vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide receptors in the rat pineal gland.

    PubMed

    Simonneaux, V; Kienlen-Campard, P; Loeffler, J P; Basille, M; Gonzalez, B J; Vaudry, H; Robberecht, P; Pévet, P

    1998-08-01

    Melatonin secretion from the mammalian pineal gland is strongly stimulated by noradrenaline and also by vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Three types of receptors for VIP and PACAP have been characterized so far: VIP1/PACAP receptors and VIP2/PACAP receptors, which possess similar high affinities for VIP and PACAP, and PACAP1 receptors which exhibit a 100-1000-fold higher affinity for PACAP. The aim of the present study was to characterize the receptor subtype(s) mediating the stimulatory effects of VIP and PACAP on melatonin synthesis in the rat pineal gland. Autoradiographic studies showed that PACAP and VIP were equally potent in displacing binding of radioiodinated PACAP27 from pineal sections. Amplification of pineal complementary DNAs by polymerase chain reaction using specific primers for the different receptor subtypes revealed that all three receptor messenger RNAs are expressed and that VIP1/PACAP receptor messenger RNA was predominant over VIP2/PACAP receptor messenger RNA. In vitro, VIP and PACAP stimulated melatonin synthesis with similar high potency and the effect of the two peptides were not additive. The selective VIP1/PACAP receptor agonists [R16]chicken secretin (1-25) and [K15, R16, L27]VIP(1-7)/growth hormone releasing factor(8-27) were significantly more potent than the selective VIP2/PACAP receptor agonist RO 25-1553 in stimulating melatonin secretion. The stimulatory effects of VIP and PACAP were similarly inhibited by the VIP1/PACAP antagonist [acetyl-His1, D-Phe2, K15, R16, L27]VIP(3-7)/growth hormone releasing factor(8-27). These data strongly suggest that VIP and PACAP exert a stimulatory effect on melatonin synthesis mainly through activation of a pineal VIP1/PACAP receptor subtype.

  9. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway.

    PubMed

    Portugal, Leivi; Muñóz-Garay, Carlos; Martínez de Castro, Diana L; Soberón, Mario; Bravo, Alejandra

    2017-01-01

    Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K(+) ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K(+) ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.

  10. Pituitary Adenylate Cyclase-Activating Polypeptide Induces the Voltage-Independent Activation of Inward Membrane Currents and Elevation of Intracellular Calcium in HIT-T15 Insulinoma Cells*

    PubMed Central

    LEECH, COLIN A.; HOLZ, GEORGE G.; HABENER, JOEL F.

    2010-01-01

    The secretion of insulin by pancreatic β-cells is controlled by synergistic interactions of glucose and hormones of the glucagon-related peptide family, of which pituitary adenylate cyclase-activating polypeptide (PACAP) is a member. Here we show by simultaneous recording of intracellular calcium ion ([Ca2+]i) and membrane potential that both PACAP-27 and PACAP-38 depolarize HIT-T15 cells and raise [Ca2+]i. PACAP stimulation can result in membrane depolarization by two distinct mechanisms: 1) PACAP reduces the membrane conductance and increases membrane excitability; and 2) PACAP activates a pronounced inward current that is predominantly a Na+ current, blockable by La3+, and which exhibits a reversal potential of about −28 mV. Activation of this current does not require membrane depolarization, because the response is observed when cells are held under voltage clamp at −70 mV. This current may result from the cAMP-dependent activation of nonspecific cation channels because the current is also observed in response to forskolin or membrane-permeant analogs of cAMP. We also suggest that PACAP raises [Ca2+]i and stimulates insulin secretion by three distinct mechanisms: 1) depolarization activates Ca2+ influx through L-type voltage-dependent calcium channels, 2) mobilization of intracellular Ca2+ stores, and 3) entry of Ca2+ via voltage-independent Ca2+ channels. These effects of PACAP may play an important role in a neuro-entero-endocrine loop regulating insulin secretion from pancreatic β-cells during the transition period from fasting to feeding. PMID:7895663

  11. Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice

    PubMed Central

    Yokai, Masafumi; Miyata, Atsuro

    2016-01-01

    Background Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP–PACAP receptors signaling system in the modulation of spinal nociceptive transmission. We have previously reported that a single intrathecal injection of PACAP or a PACAP specific (PAC1) receptor selective agonist, maxadilan, in mice induced dose-dependent aversive behaviors, which lasted more than 30 min, and suggested that the maintenance of the nociceptive behaviors was associated with the spinal astrocytic activation. Results We found that a single intrathecal administration of PACAP or maxadilan also produced long-lasting hind paw mechanical allodynia, which persisted at least 84 days without affecting thermal nociceptive threshold. In contrast, intrathecal application of vasoactive intestinal polypeptide did not change mechanical threshold, and substance P, calcitonin gene-related peptide, or N-methyl-D-aspartate induced only transient mechanical allodynia, which disappeared within 21 days. Western blot and immunohistochemical analyses with an astrocytic marker, glial fibrillary acidic protein, revealed that the spinal PAC1 receptor stimulation caused sustained astrocytic activation, which also lasted more than 84 days. Intrathecal co-administration of L-α-aminoadipate, an astroglial toxin, with PACAP or maxadilan almost completely prevented the induction of the mechanical allodynia. Furthermore, intrathecal treatment of L-α-aminoadipate at 84 days after the PAC1 stimulation transiently reversed the mechanical allodynia accompanied by the reduction of glial fibrillary acidic protein expression level. Conclusion Our data suggest that spinal astrocytic activation triggered by the PAC1 receptor stimulation contributes to both induction and maintenance of the long-term mechanical allodynia. PMID:27175011

  12. Ventilatory and cardiovascular actions of centrally and peripherally administered trout pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in the unanaesthetized trout.

    PubMed

    Le Mével, J-C; Lancien, F; Mimassi, N; Conlon, J M

    2009-12-01

    In mammals, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are involved in cardiovascular and respiratory regulation. Several studies have demonstrated the presence of PACAP, VIP and their receptors in various tissues of teleost fish, including the brain, but little is known about their respiratory and cardiovascular effects. The present study was undertaken to compare the central and peripheral actions of graded doses (25-100 pmol) of trout PACAP and trout VIP on ventilatory and cardiovascular variables in the unanaesthetized rainbow trout. Compared with vehicle, only intracerebroventricular injection of PACAP significantly (P<0.05) elevated the ventilation frequency and the ventilation amplitude, but both peptides significantly increased the total ventilation (total ventilation). However, the maximum hyperventilatory effect of PACAP was approximately 2.5-fold higher than the effect of VIP at the 100 pmol dose (PACAP, (total ventilation)=+5407+/-921 arbitrary units, a.u.; VIP, (total ventilation)=+2056+/-874 a.u.; means +/- s.e.m.). When injected centrally, only PACAP produced a significant increase in mean dorsal aortic blood pressure (P(DA)) (100 pmol: +21%) but neither peptide affected heart rate (f(H)). Intra-arterial injections of either PACAP or VIP were without effect on the ventilatory variables. PACAP was without significant action on P(DA) and f(H) while VIP significantly elevated P(DA) (100 pmol: +36%) without changing f(H). In conclusion, the selective central hyperventilatory actions of exogenously administered trout PACAP, and to a lesser extent VIP, suggest that the endogenous peptides may be implicated in important neuroregulatory functions related to the central control of ventilation in trout.

  13. Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain

    PubMed Central

    Missig, Galen A.; Roman, Carolyn W.; Vizzard, Margaret A.; Braas, Karen M.; May, Victor

    2015-01-01

    The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders. PMID:24998751

  14. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  15. [Differentially expressed genes identified in the main olfactory epithelium of mice with deficiency of adenylate cyclase 3 by using suppression subtractive hybridization approach].

    PubMed

    Zhenlong, Cao; Jiangye, Hao; Yanfen, Zhou; Zhe, Zhang; Zhihua, Ni; Yuanxiang, Hu; Weili, Liu; Yongchao, Li; Daniel, R Storm; Runlin, Z Ma; Zhenshan, Wang

    2014-06-01

    Adenylate cyclase 3 (AC3) is one of the major players in the olfactory signaling within the main olfactory epithelium (MOE) of mice. However, we are not ascertained whether deficiency of AC3 will lead to the differential expression of related genes in the MOE. Forward and reverse subtractive libraries were constructed by suppression subtractive hybridization (SSH) approach, with MOEs from AC3(-/-) and AC3(+/+) mice. These two libraries were primarily screened by Dot blot, differential expressed clones were sequenced and analyzed by bioinformatics, and differential expressed genes were verified by qRT-PCR. A total of 386 differentially expressed clones were picked out after Dot blot. The DNA sequences of 80 clones randomly selected were determined, and 62 clones were identified by blasting in GenBank. We found that 24 up-regulated clones were corresponded to genes of kcnk3, mapk7, megf11, and 38 down-regulated clones were corresponded to tmem88b, c-mip, skp1a, mlycd, etc. Their functions were annotated with Gene Ontology (GO) and found to be mainly focused on molecular binding, cell cycle, processes of biology and cells. Five genes (kcnk3, c-mip, mlycd, tmem88b and trappc5) were verified by qRT-PCR with individuals of AC3(+/+) and AC3(-/-) mice. The data indicate that kcnk3 gene is up-regulated significantly, increasing 1.27 folds compared to control mice, whereas c-mip, mlycd, tmem88b and trappc5 are down-regulated significantly, decreasing 20%, 7%, 32% and 29% compared to the AC3(+/+)mice. The functions of these genes are closely related with K(+) channels, cell differentiation, metabolism of fats, membrane transportation, and so on. It is tempting to speculate that these genes might work together with AC3 to orchestrate the olfactory transduction signaling in the MOE.

  16. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis.

    PubMed

    Pirger, Zsolt; Laszlo, Zita; Hiripi, Laszlo; Hernadi, Laszlo; Toth, Gabor; Lubics, Andrea; Reglodi, Dora; Kemenes, Gyorgy; Mark, Laszlo

    2010-11-01

    PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.

  17. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats.

    PubMed

    Ramli, Nur Siti Khadijah; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-15

    Secretions of chloride (Cl(-))- and bicarbonate (HCO3(-))-rich fluid by the seminal vesicles could involve cystic fibrosis transmembrane regulator (CFTR), which activity can be stimulated by cAMP generated from the reaction involving adenylate cyclase (AC). In this study, we investigated levels of CFTR, AC, and cAMP in the seminal vesicles under testosterone influence. Orchidectomized adult male rats received 7-day treatment with 125 or 250 μg/kg/day of testosterone with or without flutamide or finasteride. At the end of the treatment, animals were sacrificed and seminal vesicles were harvested for analyses of CFTR and AC protein expression level by Western blotting. Distribution of CFTR and AC in seminal vesicles was observed by immunohistochemistry. Levels of cAMP and dihydrotestosterone in seminal vesicle homogenates were measured by ELISA. Cystic fibrosis transmembrane regulator, AC, and cAMP levels increased with increasing doses of testosterone (P < 0.05 compared to nontreated orchidectomized rats). Cystic fibrosis transmembrane regulator and AC were expressed at the apical membrane of the epithelium lining the seminal vesicle lumen with higher expression levels observed in testosterone-treated rats than in non-treated orchidectomized rats (P < 0.05). The inhibitory effects of flutamide or finasteride on these parameters were greater in 250 μg/kg/day testosterone-treated rats than their effects in 125 μg/kg/day testosterone-treated rats. Higher dihydrotestosterone levels were observed in seminal vesicle homogenates after treatment with 250 μg/kg/day than with 125 μg/kg/day of testosterone (P < 0.05). Increased levels of CFTR, AC, and cAMP in seminal vesicles might contribute toward an increase in Cl(-) and HCO3(-) concentrations in the seminal fluid as reported under testosterone influence.

  18. Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats

    PubMed Central

    Meloni, Edward G.; Venkataraman, Archana; Donahue, Rachel J.; Carlezon, William A.

    2015-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in stress regulation and learning and memory. PACAP has neuromodulatory actions on brain structures within the limbic system that could contribute to its acute and persistent effects in animal models of stress and anxiety-like behavior. Here, male Sprague-Dawley rats were implanted with intracerebroventricular (ICV) cannula for infusion of PACAP-38 (0.5, 1, or 1.5 ug) or vehicle followed 30 min later by fear conditioning. Freezing was measured early (1, 4, and 7days) or following a delay (7, 10, and 13 days)after conditioning. PACAP (1.5 μg) produced a bi-phasic response in freezing behavior across test days: relative to controls, PACAP-treated rats showed a reduction in freezing when tested 1 or 7 Days after fear conditioning that evolved into a significant elevation in freezing by the third test session in the early, but not delayed, group. Corticosterone (CORT) levels were significantly elevated in PACAP-treated rats following fear conditioning, but not at the time of testing (Day 1). Brain c-Fos expression revealed PACAP-dependent alterations within, as well as outside of, areas typically implicated in fear conditioning. Our findings raise the possibility that PACAP disrupts fear memory consolidation by altering synaptic plasticity within neurocircuits normally responsible for encoding fear-related cues, producing a type of dissociation or peritraumatic amnesia often seen in people early after exposure to a traumatic event. However, fear memories are retained such that repeated testing and memory reactivation (e.g. re-experiencing) causes the freezing response to emerge and persist at elevated levels. PACAP systems may represent an axis on which stress and exposure to trauma converge to promote maladaptive behavioral responses characteristic of psychiatric illnesses such as post-traumatic stress disorder (PTSD). PMID:26590791

  19. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways.

    PubMed

    Taylor, Ruth D T; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.

  20. Making the Rate: Enzyme Dynamics

    ERIC Educational Resources Information Center

    Ragsdale, Frances R.

    2004-01-01

    An enzyme exercise to address the problem of students inability to visualize chemical reaction at the molecular level is described. This exercise is designed as a dry lab exercise but can be modified into a classroom activity then can be augmented by a wet lab procedure, thereby providing students with a practical exposure to enzyme function.

  1. Highly active engineered-enzyme oriented monolayers: formation, characterization and sensing applications

    PubMed Central

    2011-01-01

    Background The interest in introducing ecologically-clean, and efficient enzymes into modern industry has been growing steadily. However, difficulties associated with controlling their orientation, and maintaining their selectivity and reactivity is still a significant obstacle. We have developed precise immobilization of biomolecules, while retaining their native functionality, and report a new, fast, easy, and reliable procedure of protein immobilization, with the use of Adenylate kinase as a model system. Methods Self-assembled monolayers of hexane-1,6-dithiol were formed on gold surfaces. The monolayers were characterized by contact-angle measurements, Elman-reagent reaction, QCM, and XPS. A specifically designed, mutated Adenylate kinase, where cysteine was inserted at the 75 residue, and the cysteine at residue 77 was replaced by serine, was used for attachment to the SAM surface via spontaneously formed disulfide (S-S) bonds. QCM, and XPS were used for characterization of the immobilized protein layer. Curve fitting in XPS measurements used a Gaussian-Lorentzian function. Results and Discussion Water contact angle (65-70°), as well as all characterization techniques used, confirmed the formation of self-assembled monolayer with surface SH groups. X-ray photoelectron spectroscopy showed clearly the two types of sulfur atom, one attached to the gold (triolate) and the other (SH/S-S) at the ω-position for the hexane-1,6-dithiol SAMs. The formation of a protein monolayer was confirmed using XPS, and QCM, where the QCM-determined amount of protein on the surface was in agreement with a model that considered the surface area of a single protein molecule. Enzymatic activity tests of the immobilized protein confirmed that there is no change in enzymatic functionality, and reveal activity ~100 times that expected for the same amount of protein in solution. Conclusions To the best of our knowledge, immobilization of a protein by the method presented here, with the

  2. Moonlighting enzymes in parasitic protozoa.

    PubMed

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L

    2010-08-01

    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  3. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  4. Enzyme-carrying electrospun nanofibers.

    PubMed

    Jia, Hongfei

    2011-01-01

    Compared to other nanomaterials as supports for enzyme immobilization, nanofibers provide a promising configuration in balancing the key factors governing the catalytic performance of the immobilized enzymes including surface area-to-volume ratio, mass transfer resistance, effective loading, and the easiness to recycle. Synthetic and natural polymers can be fabricated into nanofibers via a physical process called electrospinning. The process requires only simple apparatus to operate, yet has proved to be very flexible in the selection of feedstock materials and also effective to control and manipulate the properties of the resulting nanofibers such as size and surface morphology, which are typically important parameters for enzyme immobilization supports. This chapter describes a protocol for the preparation of nanofibrous enzyme, involving the synthesis and end-group functionalization of polystyrene, production of electrospun nanofibers, and surface immobilization of enzyme via covalent attachment.

  5. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  6. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  7. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity.

    PubMed

    Kranzusch, Philip J; Lee, Amy Si-Ying; Berger, James M; Doudna, Jennifer A

    2013-05-30

    Innate immune recognition of foreign nucleic acids induces protective interferon responses. Detection of cytosolic DNA triggers downstream immune signaling through activation of cyclic GMP-AMP synthase (cGAS). We report here the crystal structure of human cGAS, revealing an unanticipated zinc-ribbon DNA-binding domain appended to a core enzymatic nucleotidyltransferase scaffold. The catalytic core of cGAS is structurally homologous to the RNA-sensing enzyme, 2'-5' oligo-adenylate synthase (OAS), and divergent C-terminal domains account for specific ligand-activation requirements of each enzyme. We show that the cGAS zinc ribbon is essential for STING-dependent induction of the interferon response and that conserved amino acids displayed within the intervening loops are required for efficient cytosolic DNA recognition. These results demonstrate that cGAS and OAS define a family of innate immunity sensors and that structural divergence from a core nucleotidyltransferase enables second-messenger responses to distinct foreign nucleic acids.

  8. Early peptidic enzymes

    NASA Astrophysics Data System (ADS)

    Brack, André; Barbier, Bernard

    Oligopeptides supposed to be essential to primitive living cells could not be obtained by a prebiotic organic chemistry working mainly at random. Selection pathways were required. Experimental evidence is given for selective condensation of amino-acids in water as well as for selective resistance to degradation. Polycationic polypeptides containing lysyl (or arginyl) and hydrophobic residues strongly accelerate the hydrolysis of oligoribonucleotides. A ionic complex is first formed and the polypeptides are particularly active when they adopt a stable conformation, β-sheet or α-helix, in the complex. Well-defined short peptides were synthesized in order to determine the critical chain-length required for chemical activity. In a contemporary cell, proteins represent about 40 % of the dry weight. They fulfil a structural role and they are particularly helpful as chemical catalysts (enzymes). They can be represented as long chains made of twenty different building blocks, the amino-acids NH2-CHR-COOH, which differ by the side-chain R. Proteins are remarkable in the sense that they use amino-acids having only one carbon atom between the -NH2 and -COOH functions. The central carbon atom has always the same spatial asymmetry (chirality) and always bears a hydrogen atom. When the side-chain R is a hydrocarbon, it is branched. When R contains a chemical function, the side functions do not participate to the peptide bond construction. The protein chain results from the condensation of amino-acids, i.e. water molecules are removed between molecules in a medium which is mainly aqueous (the cell contains 75 % of water). The protein chains adopt rigid asymmetric conformations (α-helices, β-sheet structures) which are essential for the protein functions. Proteins, even the smallest ones, are too sophisticated entities to be considered as the products of an organic chemistry working at random, without any chemical selection. The chemist has therefore to understand, with simple

  9. Selective neutrality and enzyme kinetics.

    PubMed

    Demetrius, L

    1997-10-01

    This article appeals to a recent theory of enzyme evolution to show that the properties, neutral or adaptive, which characterize the observed allelic variation in natural populations can be inferred from the functional parameters, substrate specificity, and reaction rate. This study delineates the following relations between activity variables, and the forces--adaptive or neutral--determining allelic variation: (1) Enzymes with broad substrate specificity: The observed polymorphism is adaptive; mutations in this class of enzymes can result in increased fitness of the organism and hence be relevant for positive selection. (2) Enzymes with absolute substrate specificity and diffusion-controlled rates: Observed allelic variation will be absolutely neutral; mutations in this class of enzymes will be either deleterious or have no effect on fitness. (3) Enzymes with absolute or group specificity and nondiffusion-controlled rates: Observed variation will be partially neutral; mutants which are selectively neutral may become advantageous under an appropriate environmental condition or different genetic background. We illustrate each of the relations between kinetic properties and evolutionary states with examples drawn from enzymes whose evolutionary dynamics have been intensively studied.

  10. Asymptotic Expansion in Enzyme Reactions with High Enzyme Concentrations

    NASA Astrophysics Data System (ADS)

    Bersani, Alberto Maria; Dell'Acqua, Guido

    2010-09-01

    In this paper we find a new asymptotic expansion valid in enzymatic reactions where the total amount of enzyme exceeds greatly the total amount of substrate. In such case it is well known that the Michelis-Menten approximation is no longer valid; therefore our asymptotic expansion is a new tool to approximate in a closed form the concentrations of the reactants in presence of an enzyme excess.

  11. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  12. Enzyme catalysis on solid surfaces.

    PubMed

    Laurent, Nicolas; Haddoub, Rose; Flitsch, Sabine L

    2008-06-01

    Enzyme-catalysed reactions in which substrates are bound (immobilised) to solid surfaces are becoming increasingly important in biotechnology. There is a general drive for miniaturisation and automation in chemistry and biology, and immobilisation of the reaction intermediates and substrates, for example on microarrays or nanoparticles, helps to address technical challenges in this area. In bionanotechnology, enzyme catalysis can provide highly selective and biocompatible tools for the modification of surfaces on the nano-scale. Here, we review the range of enzyme-catalysed reactions that have been successfully performed on the solid phase and discuss their application in biotechnology.

  13. Characterization of the lys2 gene of Acremonium chrysogenum encoding a functional alpha-aminoadipate activating and reducing enzyme.

    PubMed

    Hijarrubia, M J; Aparicio, J F; Casqueiro, J; Martín, J F

    2001-02-01

    A 5.2-kb NotI DNA fragment isolated from a genomic library of Acremonium chrysogenum by hybridization with a probe internal to the Penicillium chrysogenum lys2 gene, was able to complement an alpha-aminoadipate reductase-deficient mutant of P. chrysogenum (lysine auxotroph L-G-). Enzyme assays showed that the alpha-aminoadipate reductase activity was restored in all the transformants tested. The lys2-encoded enzyme catalyzed both the activation and reduction of alpha-aminoadipic acid to its semialdehyde, as shown by reaction of the product with p-dimethylaminobenzaldehyde. The reaction required NADPH, and was not observed in the presence of NADH. Sequence analysis revealed that the gene encodes a protein with relatively high similarity to members of the superfamily of acyladenylate-forming enzymes. The Lys2 protein contained all nine motifs that are conserved in the adenylating domain of this enzyme family, a peptidyl carrier domain, and a reduction domain. In addition, a new NADP-binding motif located at the N-terminus of the reduction domain that may form a Rossmann-like betaalphabeta-fold has been identified and found to be shared by all known Lys2 proteins. The lys2 gene was mapped to chromosome I (2.2 Mb, the smallest chromosome) of A. chrysogenum C10 (the chromosome that contains the "late" cephalosporin cluster) and is transcribed as a monocistronic 4.5-kb mRNA although at relatively low levels compared with the beta-actin gene.

  14. Molybdenum enzymes in higher organisms

    PubMed Central

    Hille, Russ; Nishino, Takeshi; Bittner, Florian

    2010-01-01

    Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein. PMID:21516203

  15. The origins of enzyme kinetics.

    PubMed

    Cornish-Bowden, Athel

    2013-09-02

    The equation commonly called the Michaelis-Menten equation is sometimes attributed to other authors. However, although Victor Henri had derived the equation from the correct mechanism, and Adrian Brown before him had proposed the idea of enzyme saturation, it was Leonor Michaelis and Maud Menten who showed that this mechanism could also be deduced on the basis of an experimental approach that paid proper attention to pH and spontaneous changes in the product after formation in the enzyme-catalysed reaction. By using initial rates of reaction they avoided the complications due to substrate depletion, product accumulation and progressive inactivation of the enzyme that had made attempts to analyse complete time courses very difficult. Their methodology has remained the standard approach to steady-state enzyme kinetics ever since.

  16. Engineering the ligninolytic enzyme consortium.

    PubMed

    Alcalde, Miguel

    2015-03-01

    The ligninolytic enzyme consortium is one of the most-efficient oxidative systems found in nature, playing a pivotal role during wood decay and coal formation. Typically formed by high redox-potential oxidoreductases, this array of enzymes can be used within the emerging lignocellulose biorefineries in processes that range from the production of bioenergy to that of biomaterials. To ensure that these versatile enzymes meet industry standards and needs, they have been subjected to directed evolution and hybrid approaches that surpass the limits imposed by nature. This Opinion article analyzes recent achievements in this field, including the incipient groundbreaking research into the evolution of resurrected enzymes, and the engineering of ligninolytic secretomes to create consolidated bioprocessing microbes with synthetic biology applications.

  17. Enzyme immobilisation in permselective microcapsules.

    PubMed

    Pachariyanon, Pavadee; Barth, Ekkehard; Agar, David W

    2011-01-01

    The objective of this investigation was to study the permselective behaviour of calcium alginate membranes, including the modifying effects of silica additives, which were subsequently used as microcapsule shells. Diffusion experiments and HPLC were carried out to ascertain the size-exclusion property of the membranes for a mixed molecular-weight dextran solution. Hollow microcapsules containing the enzyme dextranase were prepared using double concentric nozzles and the encapsulation performance was evaluated based on an analysis of the enzyme reactivity and stability. To improve mass transport within the microcapsules, magnetic nanoparticles were introduced into the liquid core and agitated using an alternating external magnetic field. The modified membranes exhibited better size-exclusion behaviour than the unmodified membranes. The magnetic nanoparticles slightly improved mass transport inside the microcapsule. The encapsulated enzyme yielded nearly 80% of the free enzyme activity and retained about 80% of the initial catalytic activity even after being used for eight reaction cycles.

  18. Enzymes: principles and biotechnological applications.

    PubMed

    Robinson, Peter K

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed.

  19. Enzymes: principles and biotechnological applications

    PubMed Central

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  20. Immobilized Enzymes for Automated Analyses.

    DTIC Science & Technology

    1979-12-01

    by others. Reaction velocity was found to increase with temperature at a rate of about 5%/’C. Three distinct types of immobilization processes were...trifunctional silane ........... 10 2 Linearity of protein assay ............................. 14 3 Reaction rate for native and oxygenated enzyme solu...in a clinical chemistry analyzer enables catalysis of the analyzer reactions with retention of active enzyme by the system for subsequent reuse. When a

  1. Increased sensitivity in the interaction of the dopaminergic/adenosinergic system at the level of the adenylate cyclase activity in the striatum of the "weaver" mouse.

    PubMed

    K, Botsakis; V, Tondikidou; N, Panagopoulos; M, Margariti; N, Matsokis; F, Angelatou

    2016-10-01

    The specific antagonistic interaction between dopamine D1 and adenosine A1 receptors (D1/A1), as well as between dopamine D2 and adenosine A2a receptors (D2/A2a) exist not only at the receptor/receptor level, but also at the level of the secondary messengers. In this study, we examined the possible changes in these interactions at the level of cAMP formation in membrane preparation from "weaver" mouse striatum (a genetic model of Parkinson disease), by using specific agonists of these receptors. We also examined in the striatum of the "weaver" mouse the interaction between D1 and D2 dopamine receptors. Our results showed that in the striatum of "weaver" mice: a) the cAMP synthesis induced by D1 receptor activation (SKF 38393), was significantly reduced compared to control mice, while A1 receptor activation (L-PIA) leaded to a more intense inhibition of the D1-induced cAMP-formation compared to the controls, b) the cAMP synthesis which was induced by A2a receptor activation (CGS 21680), was significantly increased compared to the control mice. The specific D2 receptor agonist Quinpirole, added in low concentrations, caused a significant reduction of the A2a-induced cAMP formation, which was not observed in the control mouse. Furthermore, the D1 receptor induced cAMP synthesis was significantly higher in control compared to "weaver" striatum, which was more efficiently downregulated by D2 receptor agonist Quinpirole. These results suggest that the sensitivity to D1 and A2a receptor agonists is altered and that the interaction between D1/A1 and D2/A2a receptors is enhanced in the striatum of the "weaver" mutation, while an uncoupling between D1 and D2 receptors was observed. Since the adenylate cyclase basal activity did not differ between "weaver" and control striatum, the above-mentioned changes seem to be due to alterations in the function of the adenosine/dopamine receptors and their coupling to the G-proteins.

  2. Multiple nickel-sensitive targets elicit cardiac arrhythmia in isolated mouse hearts after pituitary adenylate cyclase-activating polypeptide-mediated chronotropy.

    PubMed

    Tevoufouet, Etienne E; Nembo, Erastus N; Distler, Fabian; Neumaier, Felix; Hescheler, Jürgen; Nguemo, Filomain; Schneider, Toni

    2017-03-01

    The pituitary adenylate cyclase-activating polypeptide (PACAP)-27 modulates various biological processes, from the cellular level to function specification. However, the cardiac actions of this neuropeptide are still under intense studies. Using control (+|+) and mice lacking (-|-) either R-type (Cav2.3) or T-type (Cav3.2) Ca(2+) channels, we investigated the effects of PACAP-27 on cardiac activity of spontaneously beating isolated perfused hearts. Superfusion of PACAP-27 (20nM) caused a significant increase of baseline heart frequency in Cav2.3(+|+) (156.9±10.8 to 239.4±23.4 bpm; p<0.01) and Cav2.3(-|-) (190.3±26.4 to 270.5±25.8 bpm; p<0.05) hearts. For Cav3.2, the heart rate was significantly increased in Cav3.2(-|-) (133.1±8.5 bpm to 204.6±27.9 bpm; p<0.05) compared to Cav3.2(+|+) hearts (185.7±11.2 bpm to 209.3±22.7 bpm). While the P wave duration and QTc interval were significantly increased in Cav2.3(+|+) and Cav2.3(-|-) hearts following PACAP-27 superfusion, there was no effect in Cav3.2(+|+) and Cav3.2(-|-) hearts. The positive chronotropic effects observed in the four study groups, as well as the effect on P wave duration and QTc interval were abolished in the presence of Ni(2+) (50μM) and PACAP-27 (20nM) in hearts from Cav2.3(+|+) and Cav2.3(-|-) mice. In addition to suppressing PACAP's response, Ni(2+) also induced conduction disturbances in investigated hearts. In conclusion, the most Ni(2+)-sensitive Ca(2+) channels (R- and T-type) may modulate the PACAP signaling cascade during cardiac excitation in isolated mouse hearts, albeit to a lesser extent than other Ni(2+)-sensitive targets.

  3. Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway.

    PubMed

    Berríos-Cárcamo, Pablo; Quintanilla, María E; Herrera-Marschitz, Mario; Vasiliou, Vasilis; Zapata-Torres, Gerald; Rivera-Meza, Mario

    2016-01-01

    Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the μ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the μ-opioid receptor, a molecular docking study was performed using the crystal structure of the μ-opioid receptor. Results: This study shows that SAL activates the μ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10(-5) M. The agonist action of SAL was fully blocked by the μ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10(-4) M and 9 × 10(-6) M respectively. It was found that the action of racemic SAL on the μ-opioid receptor did not promote the recruitment of β-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the μ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the μ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the μ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol.

  4. In vivo and in vitro models of demyelinating disease: activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes.

    PubMed Central

    Beushausen, S; Narindrasorasak, S; Sanwal, B D; Dales, S

    1987-01-01

    The specificity of JHM virus (JHMV) tropism for rat oligodendrocytes, as one of the primary host cells in the central nervous system, is maintained after explanation (S. Beushausen and S. Dales, Virology 141:89-101, 1985). The temporal correlation between onset of resistance to JHMV infection in vivo, completion of myelination, and maturation of the central nervous system can be simulated in vitro by inducers of oligodendrocyte differentiation (Beushausen and Dales, Virology, 1985). Stimulation of differentiation through the elevation of intracellular cyclic AMP (cAMP) levels suggests a possible connection between activation of the adenylate cyclase system and coronavirus expression. Chromatographic analysis of cAMP-dependent protein kinase activity in cytosol extracts prepared from astrocytes or oligodendrocytes revealed that both glial cell types were deficient in protein kinase I, indicating that expression of coronavirus in differentiated cells was not contingent upon the presence of protein kinase I. However, treatment with N6,2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (dbcAMP) resulted in a severalfold enhancement of the free regulatory subunit (RI) in oligodendrocytes but not in astrocytes. The RII subunit in both neural cell types was relatively unaffected. Rapid increase in RI due to dbcAMP treatment was correlated with inhibition of JHMV expression. Other differentiation inducers, including 8-Br cAMP and forskolin which, by contrast, caused a decrease in detectable RI, also blocked JHMV expression. This apparent anomaly can be attributed to an increased turnover of RI due to destabilization of the molecule which occurs upon site-specific binding of the cyclic nucleotides. On the basis of these observations, we conclude that the state of oligodendrocyte differentiation manifested with the modulation of RI regulates JHMV expression. The differentiation process did not affect either virus adsorption or sequestration but appeared to inhibit the

  5. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    PubMed

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling.

  6. Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway

    PubMed Central

    Berríos-Cárcamo, Pablo; Quintanilla, María E.; Herrera-Marschitz, Mario; Vasiliou, Vasilis; Zapata-Torres, Gerald; Rivera-Meza, Mario

    2017-01-01

    Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the μ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the μ-opioid receptor, a molecular docking study was performed using the crystal structure of the μ-opioid receptor. Results: This study shows that SAL activates the μ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10−5 M. The agonist action of SAL was fully blocked by the μ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10−4 M and 9 × 10−6 M respectively. It was found that the action of racemic SAL on the μ-opioid receptor did not promote the recruitment of β-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the μ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the μ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the μ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol. PMID:28167903

  7. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    PubMed Central

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  8. Preparation of enzyme calibration materials.

    PubMed

    Férard, G; Lessinger, J M

    1998-12-01

    Standardisation in clinical enzymology needs not only reference methods but also reference materials. While single-enzyme reference enzymes have been developed, a multienzyme certified reference material (MECRM) available in high amount remains to be produced. To transfer trueness from the value of the reference system to patients' results, validated enzyme calibrators (EC) are also needed. Both the MECRM and the ECs must exhibit the same catalytic properties as the corresponding enzymes in human plasma. Moreover, commutability of these materials with patients' samples must be experimentally tested for one or a set of methods defined by an analytical specificity equal to that of the reference method. Various experimental studies have shown that the commutability of an enzyme material depends on the source of enzyme and its purification process, the matrix (including cofactors, effectors, additives, stabilisers... ) and the mode of processing of the final material. To promote intermethod calibration in clinical enzymology, a collaborative programme between the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) and IFCC corporate members is in progress for the development of a MECRM containing amylase, ALT, AST, ALP, CK, GGT, LDH, and lipase and exhibiting a wide and defined commutability.

  9. Effects of training and methandrostenolone (an anabolic steroid) on energy metabolism in the guinea pig: changes in enzyme activities in gastrocnemius muscle and myocardium.

    PubMed

    Feraudi, M; Weicker, H

    1985-01-01

    Modifications of enzyme activities (creatine kinase and its B subunit; adenylate kinase; hexokinase; phosphofructokinase; lactate dehydrogenase; malate dehydrogenase, isocitrate dehydrogenase; citrate synthase; acetylcarnitine transferase; beta-hydroxyacetyl-CoA dehydrogenase; cytochrome c oxidase) in gastrocnemius muscle and myocardium were reported after two forms of training with or without administration of anabolic steroid. Endurance training was on a horizontal motor-driven treadmill, 2 km X hr-1, 5 days a week for 0.5 hr per day for 5 weeks. In the case of power endurance training there was a slope of 45 degrees. Enzyme activities in controls and treated guinea pigs, as well as treatment-induced enzyme activity changes are time dependent. Some of these activities correlate linearly with one another; such correlations characterize the effect of adaptation. Endurance training and power endurance training in this study induce similar modifications and seem to differ essentially in the daily work load. The anabolic steroid methandrostenolone (dianabol) induces modifications which training does not bring about but which training at least partially eliminates.

  10. Engineering Cellulase Enzymes for Bioenergy

    NASA Astrophysics Data System (ADS)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  11. Imaging enzymes at work: metabolic mapping by enzyme histochemistry.

    PubMed

    Van Noorden, Cornelis J F

    2010-06-01

    For the understanding of functions of proteins in biological and pathological processes, reporter molecules such as fluorescent proteins have become indispensable tools for visualizing the location of these proteins in intact animals, tissues, and cells. For enzymes, imaging their activity also provides information on their function or functions, which does not necessarily correlate with their location. Metabolic mapping enables imaging of activity of enzymes. The enzyme under study forms a reaction product that is fluorescent or colored by conversion of either a fluorogenic or chromogenic substrate or a fluorescent substrate with different spectral characteristics. Most chromogenic staining methods were developed in the latter half of the twentieth century but still find new applications in modern cell biology and pathology. Fluorescence methods have rapidly evolved during the last decade. This review critically evaluates the methods that are available at present for metabolic mapping in living animals, unfixed cryostat sections of tissues, and living cells, and refers to protocols of the methods of choice.

  12. [Preface for special issue on enzyme engineering].

    PubMed

    Jin, Cheng

    2009-12-01

    Enzyme engineering is a combined technology of enzymology and engineering, which is becoming one of the major fields of modem biotechnology. In recent years, China has made some advances in enzyme engineering research. To promote enzyme engineering research in China, invited reviews and selected research articles were published in this special issue of "Enzyme Engineering". The reviews and research articles focus on the fields of enzymatic conversion, therapeutic enzymes, enzymes as additives to animal feedstuff, enzymes for degradation of organic pollutes, and enzymes for biofuel and biorefinery.

  13. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    PubMed

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  14. Final Environmental Assessment for Rapid Attack Identification, Detection, and Reporting System - Block 10

    DTIC Science & Technology

    2007-05-03

    Status Known to Occur1 Brown Pelican Pelecanus occidentalis MBTA SSC X Snowy egret Egretta thula MBTA SSC X Little blue heron Egretta caerulea MBTA...SSC X Tricolored heron Egretta tricolor MBTA SSC X Reddish egret Egretta rufescens MBTA SSC X White ibis Eudocimus albus MBTA SSC X Burrowing owl

  15. Evolutionary Aspects of Enzyme Dynamics*

    PubMed Central

    Klinman, Judith P.; Kohen, Amnon

    2014-01-01

    The role of evolutionary pressure on the chemical step catalyzed by enzymes is somewhat enigmatic, in part because chemistry is not rate-limiting for many optimized systems. Herein, we present studies that examine various aspects of the evolutionary relationship between protein dynamics and the chemical step in two paradigmatic enzyme families, dihydrofolate reductases and alcohol dehydrogenases. Molecular details of both convergent and divergent evolution are beginning to emerge. The findings suggest that protein dynamics across an entire enzyme can play a role in adaptation to differing physiological conditions. The growing tool kit of kinetics, kinetic isotope effects, molecular biology, biophysics, and bioinformatics provides means to link evolutionary changes in structure-dynamics function to the vibrational and conformational states of each protein. PMID:25210031

  16. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  17. Supramolecular catalysis beyond enzyme mimics.

    PubMed

    Meeuwissen, Jurjen; Reek, Joost N H

    2010-08-01

    Supramolecular catalysis - the assembly of catalyst species by harnessing multiple weak intramolecular interactions - has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst-substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.

  18. Micromotors Powered by Enzyme Catalysis.

    PubMed

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-09

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.

  19. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes.

    PubMed

    Hiratsuka, T

    1983-02-15

    The synthesis of fluorescent derivatives of nucleosides and nucleotides, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding their 3'-O-anthraniloyl derivatives, is here described. The N-methylanthraniloyl derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330-350 nm these derivatives exhibited maximum fluorescence emission at 430-445 nm in aqueous solution with quantum yields of 0.12-0.24. Their fluorescence was sensitive to the polarity of the solvent; in N,N-dimethylformamide the quantum yields were 0.83-0.93. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield in water. All anthraniloyl derivatives, as well as the N-methylanthraniloyl ones, had virtually identical fluorescent properties, regardless of their base structures. The ATP derivatives showed considerable substrate activity as a replacement of ATP with adenylate kinase, guanylate kinase, glutamine synthetase, myosin ATPase and sodium-potassium transport ATPase. The ADP derivatives were good substrates for creatine kinase and glutamine synthetase (gamma-glutamyl transfer activity). The GMP and adenosine derivatives were substrates for guanylate kinase and adenosine deaminase, respectively. All derivatives had only slightly altered Km values for these enzymes. While more fluorescent in water, the N-methylanthraniloyl derivatives were found to show relatively low substrate activities against some of these enzymes. The results indicate that these ribose-modified nucleosides and nucleotides can be versatile fluorescent substrate analogs for various enzymes.

  20. Immunomodulatory Effects of Chitotriosidase Enzyme

    PubMed Central

    Elmonem, Mohamed A.; van den Heuvel, Lambertus P.; Levtchenko, Elena N.

    2016-01-01

    Chitotriosidase enzyme (EC: 3.2.1.14) is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value. PMID:26881065

  1. 33 CFR 165.T01-0048 - Regulated Navigation Area; MBTA Saugus River Railroad Drawbridge rehabilitation project, Saugus...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that the contractor is notified in order to remove potential hazards or obstructions. (6) All other... Mariners, Local Notice to Mariners, and Marine Safety Information Bulletins. Such notification will...