Science.gov

Sample records for adenylation domain sequences

  1. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.

    PubMed

    Agüero-Chapin, Guillermin; Pérez-Machado, Gisselle; Sánchez-Rodríguez, Aminael; Santos, Miguel Machado; Antunes, Agostinho

    2016-01-01

    Identifying adenylation domains (A-domains) and their substrate specificity can aid the detection of nonribosomal peptide synthetases (NRPS) at genome/proteome level and allow inferring the structure of oligopeptides with relevant biological activities. However, that is challenging task due to the high sequence diversity of A-domains (~10-40 % of amino acid identity) and their selectivity for 50 different natural/unnatural amino acids. Altogether these characteristics make their detection and the prediction of their substrate specificity a real challenge when using traditional sequence alignment methods, e.g., BLAST searches. In this chapter we describe two workflows based on alignment-free methods intended for the identification and substrate specificity prediction of A-domains. To identify A-domains we introduce a graphical-numerical method, implemented in TI2BioP version 2.0 (topological indices to biopolymers), which in a first step uses protein four-color maps to represent A-domains. In a second step, simple topological indices (TIs), called spectral moments, are derived from the graphical representations of known A-domains (positive dataset) and of unrelated but well-characterized sequences (negative set). Spectral moments are then used as input predictors for statistical classification techniques to build alignment-free models. Finally, the resulting alignment-free models can be used to explore entire proteomes for unannotated A-domains. In addition, this graphical-numerical methodology works as a sequence-search method that can be ensemble with homology-based tools to deeply explore the A-domain signature and cope with the diversity of this class (Aguero-Chapin et al., PLoS One 8(7):e65926, 2013). The second workflow for the prediction of A-domain's substrate specificity is based on alignment-free models constructed by transductive support vector machines (TSVMs) that incorporate information of uncharacterized A-domains. The construction of the models was

  2. Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates.

    PubMed

    Uguru, Gabriel C; Milne, Claire; Borg, Matthew; Flett, Fiona; Smith, Colin P; Micklefield, Jason

    2004-04-28

    Site-directed mutagenesis of nonribosomal peptide synthetase (NRPS) adenylation (A) domains was investigated as a means to engineer new calcium-dependent antibiotics (CDA) in Streptomyces coelicolor. Single- and double-point mutants of the CDA NRPS module 7, A-domain were generated, which were predicted to alter the specificity of this domain from Asp to Asn. The double-point mutant produced a new peptide CDA2a-7N containing Asn at position 7 as expected. However, in both the single- and the double-point mutants, significant hydrolysis of the CDA-6mer intermediate was evident. One explanation for this is that the mutant module 7 A-domain activates Asn instead of Asp; however, the Asn-thioester intermediate is only weakly recognized by the upstream C-domain acceptor site (a), allowing a water molecule to intercept the hexapeptidyl intermediate in the donor site (d).

  3. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    PubMed Central

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143

  4. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    SciTech Connect

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  5. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus.

    PubMed

    Han, Seungil; Chang, Jeanne S; Griffor, Matt

    2009-11-01

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  6. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.

    PubMed

    Hara, Ryotaro; Suzuki, Ryohei; Kino, Kuniki

    2015-05-15

    We demonstrated the usefulness of a hydroxamate-based colorimetric assay for predicting amide bond formation (through an aminoacyl-AMP intermediate) by the adenylation domain of nonribosomal peptide synthetases. By using a typical adenylation domain of tyrocidine synthetase (involved in tyrocidine biosynthesis), we confirmed the correlation between the absorbance at 490 nm of the l-Trp-hydroxamate-Fe(3+) complex and the formation of l-Trp-l-Pro, where l-Pro was used instead of hydroxylamine. Furthermore, this assay was adapted to the adenylation domains of surfactin synthetase (involved in surfactin biosynthesis) and bacitracin synthetase (involved in bacitracin biosynthesis). Consequently, the formation of various aminoacyl l-Pro formations was observed.

  7. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.

    PubMed

    Zou, Yekui; Yin, Jun

    2008-10-15

    To engineer the substrate specificities of nonribosomal peptide synthetases (NRPS), we developed a method to display NRPS modules on M13 phages and select catalytically active adenylation (A) domains that would load azide functionalized substrate analogs to the neighboring peptidyl carrier protein (PCP) domains. Biotin conjugated difluorinated cyclooctyne was used for copper free cycloaddition with an azide substituted substrate attached to PCP. Biotin-labeled phages were selected by binding to streptavidin.

  8. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations.

    PubMed

    Schrank, Travis P; Wrabl, James O; Hilser, Vincent J

    2013-01-01

    Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because "entropy promoting" glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme-substrate complex, is likely required for a full and quantitative understanding of how enzymes work.

  9. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation.

    PubMed

    Wang, Meng; Zhao, Huimin

    2014-04-04

    The adenylation (A) domain acts as the first "gate-keeper" to ensure the activation and thioesterification of the correct monomer to nonribosomal peptide synthetases (NRPSs). Our understanding of the specificity-conferring code and our ability to engineer A domains are critical for increasing the chemical diversity of nonribosomal peptides (NRPs). We recently discovered a novel NRPS-like protein (ATEG_03630) that can activate 5-methyl orsellinic acid (5-MOA) and reduce it to 2,4-dihydroxy-5,6-dimethyl benzaldehyde. A NRPS-like protein is much smaller than multidomain NRPSs, but it still represents the thioesterification half-reaction, which is otherwise missed from a stand-alone A domain. Therefore, a NRPS-like protein may serve as a better model system for A domain engineering. Here, we characterize the substrate specificity of ATEG_03630 and conclude that the hydrogen-bond donor at the 4-position is crucial for substrate recognition. Next, we show that the substrate specificity of ATEG_03630 can be engineered toward our target substrate anthranilate via bioinformatics analysis and mutagenesis. The resultant mutant H358A increased its activity toward anthranilate by 10.9-fold, which led to a 26-fold improvement in specificity. Finally, we demonstrate one-pot chemoenzymatic synthesis of 4-hydroxybenzaldoxime from 4-hydroxybenzoic acid with high yield.

  10. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes.

    PubMed

    Bakal, Tomas; Goo, Kian-Sim; Najmanova, Lucie; Plhackova, Kamila; Kadlcik, Stanislav; Ulanova, Dana

    2015-11-01

    In the biosynthesis of diverse natural bioactive products the adenylation domains (ADs) of nonribosomal peptide synthetases select specific precursors from the cellular pool and activate them for further incorporation into the scaffold of the final compound. Therefore, the drug discovery programs employing PCR-based screening studies of microbial collections or metagenomic libraries often use AD-coding genes as markers of relevant biosynthetic gene clusters. However, due to significant sequence diversity of ADs, the conventional approach using only one primer pair in a single screening experiment could be insufficient for maximal coverage of AD abundance. In this study, the widely used primer pair A3F/A7R was compared with the newly designed aa194F/aa413R one by 454 pyrosequencing of two sets of actinomycete strains from highly dissimilar environments: subseafloor sediments and forest soil. Individually, none of the primer pairs was able to cover the overall diversity of ADs. However, due to slightly shifted specificity of the primer pairs, the total number and diversity of identified ADs were noticeably extended when both primer pairs were used in a single assay. Additionally, the efficiency of AD detection by different primer combinations was confirmed on the model of Salinispora tropica genomic DNA of known sequence.

  11. A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase

    DTIC Science & Technology

    2009-10-22

    2003) Designing repeat proteins: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol...A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase...changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin

  12. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.

    PubMed

    Jana, Biman; Adkar, Bharat V; Biswas, Rajib; Bagchi, Biman

    2011-01-21

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  13. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors.

    PubMed

    Srivastava, Sandeep Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-08-26

    DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.

  14. Catalytic roles of lysines (K9, K27, K31) in the N-terminal domain in human adenylate kinase by random site-directed mutagenesis.

    PubMed

    Ayabe, T; Park, S K; Takenaka, H; Sumida, M; Uesugi, S; Takenaka, O; Hamada, M

    1996-11-01

    To elucidate lysine residues in the N-terminal domain of human cytosolic adenylate kinase (hAK1, EC 2.7.4.3), random site-directed mutagenesis of K9, K27, and K31 residues was performed, and six mutants were analyzed by steady-state kinetics. K9 residue may play an important role in catalysis by interacting with AMP2-. K27 and K31 residues appear to play a functional role in catalysis by interacting with MgATP2-. In human AK, the epsilon-amino group in the side chain of these lysine residues would be essential for phosphoryl transfer between MgATP2- and AMP2- during transition state.

  15. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.

    PubMed

    Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-12-01

    There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes.

  16. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  17. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  18. Delineation of modular proteins: domain boundary prediction from sequence information.

    PubMed

    Kong, Lesheng; Ranganathan, Shoba

    2004-06-01

    The delineation of domain boundaries of a given sequence in the absence of known 3D structures or detectable sequence homology to known domains benefits many areas in protein science, such as protein engineering, protein 3D structure determination and protein structure prediction. With the exponential growth of newly determined sequences, our ability to predict domain boundaries rapidly and accurately from sequence information alone is both essential and critical from the viewpoint of gene function annotation. Anyone attempting to predict domain boundaries for a single protein sequence is invariably confronted with a plethora of databases that contain boundary information available from the internet and a variety of methods for domain boundary prediction. How are these derived and how well do they work? What definition of 'domain' do they use? We will first clarify the different definitions of protein domains, and then describe the available public databases with domain boundary information. Finally, we will review existing domain boundary prediction methods and discuss their strengths and weaknesses.

  19. Time domain DNP with the NOVEL sequence

    PubMed Central

    Can, T. V.; Walish, J. J.; Swager, T. M.; Griffin, R. G.

    2015-01-01

    We present results of a pulsed dynamic nuclear polarization (DNP) study at 0.35 T (9.7 GHz/14.7 MHz for electron/1H Larmor frequency) using a lab frame-rotating frame cross polarization experiment that employs electron spin locking fields that match the 1H nuclear Larmor frequency, the so called NOVEL (nuclear orientation via electron spin locking) condition. We apply the method to a series of DNP samples including a single crystal of diphenyl nitroxide (DPNO) doped benzophenone (BzP), 1,3-bisdiphenylene-2-phenylallyl (BDPA) doped polystyrene (PS), and sulfonated-BDPA (SA-BDPA) doped glycerol/water glassy matrices. The optimal Hartman-Hahn matching condition is achieved when the nutation frequency of the electron matches the Larmor frequency of the proton, ω1S = ω0I, together with possible higher order matching conditions at lower efficiencies. The magnetization transfer from electron to protons occurs on the time scale of ∼100 ns, consistent with the electron-proton couplings on the order of 1-10 MHz in these samples. In a fully protonated single crystal DPNO/BzP, at 270 K, we obtained a maximum signal enhancement of ε = 165 and the corresponding gain in sensitivity of εT1/TB1/2=230 due to the reduction in the buildup time under DNP. In a sample of partially deuterated PS doped with BDPA, we obtained an enhancement of 323 which is a factor of ∼3.2 higher compared to the protonated version of the same sample and accounts for 49% of the theoretical limit. For the SA-BDPA doped glycerol/water glassy matrix at 80 K, the sample condition used in most applications of DNP in nuclear magnetic resonance, we also observed a significant enhancement. Our findings demonstrate that pulsed DNP via the NOVEL sequence is highly efficient and can potentially surpass continuous wave DNP mechanisms such as the solid effect and cross effect which scale unfavorably with increasing magnetic field. Furthermore, pulsed DNP is also a promising avenue for DNP at high temperature

  20. Correlations in DNA sequences across the three domains of life

    NASA Astrophysics Data System (ADS)

    Guharay, Sabyasachi; Hunt, Brian R.; Yorke, James A.; White, Owen R.

    2000-11-01

    We report statistical studies of correlation properties of ∼7500 gene sequences, covering coding (exon) and non-coding (intron) sequences for DNA and primary amino acid sequences for proteins, across all three domains of life, namely Eukaryotes (cells with nuclei), Prokaryotes (bacteria) and Archaea (archaebacteria). Mutual information function, power spectrum and Hölder exponent analyses show exons with somewhat greater correlation content than the introns studied. These results are further confirmed with hypothesis testing. While ∼30% of the Eukaryote coding sequences show distinct correlations above noise threshold, this is true for only ∼10% of the Prokaryote and Archaea coding sequences. For protein sequences, we observe correlation lengths similar to that of “random” sequences.

  1. Image encryption using random sequence generated from generalized information domain

    NASA Astrophysics Data System (ADS)

    Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu

    2016-05-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation-diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.

  2. Strategies for the thermodynamic characterization of linked binding/local folding reactions within the native state application to the LID domain of adenylate kinase from Escherichia coli.

    PubMed

    Schrank, Travis P; Elam, W Austin; Li, Jing; Hilser, Vincent J

    2011-01-01

    Conformational fluctuations in proteins have emerged as an important aspect of biological function, having been linked to processes ranging from molecular recognition and catalysis to allostery and signal transduction. In spite of the realization of their importance, however, the connections between fluctuations and function have largely been empirical, even when they have been quantitative. Part of the problem in understanding the role of fluctuations in function is the fact that the mere existence of fluctuations complicates the interpretation of classic mutagenesis approaches. Namely, mutagenesis, which is typically targeted to an internal position (to elicit an effect), will change the fluctuations as well as the structure of the native state. Decoupling these effects is essential to an unambiguous understanding of the role of fluctuations in function. Here, we use a mutation strategy that targets surface-exposed sites in flexible parts of the molecule for mutation to glycine. Such mutations leave the ground-state structure unaffected. As a result, we can assess the nature of the fluctuations, develop a quantitative model relating fluctuations to function (in this case, molecular recognition), and unambiguously resolve the probabilities of the fluctuating states. We show that when this approach is applied to Escherichia coli adenylate kinase (AK), unique thermodynamic and structural insights are obtained, even when classic mutagenesis approaches targeted to the same region yield ambiguous results.

  3. Delineating relative homogeneous G+C domains in DNA sequences.

    PubMed

    Li, W

    2001-10-03

    The concept of homogeneity of G+C content is always relative and subjective. This point is emphasized and quantified in this paper using a simple example of one sequence segmented into two subsequences. Whether the sequence is homogeneous or not can be answered by whether the two-subsequence model describes the DNA sequence better than the one-sequence model. There are at least three equivalent ways of looking at the 1-to-2 segmentation: Jensen-Shannon divergence measure, log likelihood ratio test, and model selection using Bayesian information criterion. Once a criterion is chosen, a DNA sequence can be recursively segmented into multiple domains. We use one subjective criterion called segmentation strength based on the Bayesian information criterion. Whether or not a sequence is homogeneous and how many domains it has depend on this criterion. We compare six different genome sequences (yeast S. cerevisiae chromosome III and IV, bacterium M. pneumoniae, human major histocompatibility complex sequence, longest contigs in human chromosome 21 and 22) by recursive segmentations at different strength criteria. Results by recursive segmentation confirm that yeast chromosome IV is more homogeneous than yeast chromosome III, human chromosome 21 is more homogeneous than human chromosome 22, and bacterial genomes may not be homogeneous due to short segments with distinct base compositions. The recursive segmentation also provides a quantitative criterion for identifying isochores in human sequences. Some features of our recursive segmentation, such as the possibility of delineating domain borders accurately, are superior to those of the moving-window approach commonly used in such analyses.

  4. Visual Sequence Learning in Infancy: Domain-General and Domain-Specific Associations with Language.

    PubMed

    2012-05-01

    Research suggests that non-linguistic sequence learning abilities are an important contributor to language development (Conway, Bauernschmidt, Huang, & Pisoni, 2010). The current study investigated visual sequence learning as a possible predictor of vocabulary development in infants. Fifty-eight 8.5-month-old infants were presented with a three-location spatiotemporal sequence of multi-colored geometric shapes. Early language skills were assessed using the MacArthur-Bates CDI. Analyses of children's reaction times to the stimuli suggest that the extent to which infants demonstrated learning was significantly correlated with their vocabulary comprehension at the time of test and with their gestural comprehension abilities 5 months later. These findings suggest that visual sequence learning may have both domain-general and domain-specific associations with language learning.

  5. Coupled ATPase-adenylate kinase activity in ABC transporters

    PubMed Central

    Kaur, Hundeep; Lakatos-Karoly, Andrea; Vogel, Ramona; Nöll, Anne; Tampé, Robert; Glaubitz, Clemens

    2016-01-01

    ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters. PMID:28004795

  6. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  7. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families.

    PubMed Central

    Gilkes, N R; Henrissat, B; Kilburn, D G; Miller, R C; Warren, R A

    1991-01-01

    Several types of domain occur in beta-1, 4-glycanases. The best characterized of these are the catalytic domains and the cellulose-binding domains. The domains may be joined by linker sequences rich in proline or hydroxyamino acids or both. Some of the enzymes contain repeated sequences up to 150 amino acids in length. The enzymes can be grouped into families on the basis of sequence similarities between the catalytic domains. There are sequence similarities between the cellulose-binding domains, of which two types have been identified, and also between some domains of unknown function. The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences. PMID:1886523

  8. Vibrio vulnificus Biotype 3 Multifunctional Autoprocessing RTX Toxin Is an Adenylate Cyclase Toxin Essential for Virulence in Mice

    PubMed Central

    Ziolo, Kevin J.; Jeong, Hee-Gon; Kwak, Jayme S.; Yang, Shuangni; Lavker, Robert M.

    2014-01-01

    Vibrio vulnificus is an environmental organism that causes both food-borne and wound infections with high morbidity and mortality in humans. The annual incidence and global distribution of infections associated with this pathogen are increasing with climate change. In the late 1990s, an outbreak of tilapia-associated wound infections in Israel was linked to a previously unrecognized variant of V. vulnificus designated biotype 3. The sudden emergence and clonality of the outbreak suggest that this strain may be a true newly emergent pathogen with novel virulence properties compared to those of other V. vulnificus strains. In a subcutaneous infection model to mimic wound infection, the multifunctional autoprocessing RTX (MARTX) toxin of biotype 3 strains was shown to be an essential virulence factor contributing to highly inflammatory skin wounds with severe damage affecting every tissue layer. We conducted a sequencing-based analysis of the MARTX toxin and found that biotype 3 MARTX toxin has an effector domain structure distinct from that of either biotype 1 or biotype 2. Of the two new domains identified, a domain similar to Pseudomonas aeruginosa ExoY was shown to confer adenylate cyclase activity on the MARTX toxin. This is the first demonstration that the biotype 3 MARTX toxin is essential for virulence and that the ExoY-like MARTX effector domain is a catalytically active adenylate cyclase. PMID:24614656

  9. Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice.

    PubMed

    Ziolo, Kevin J; Jeong, Hee-Gon; Kwak, Jayme S; Yang, Shuangni; Lavker, Robert M; Satchell, Karla J F

    2014-05-01

    Vibrio vulnificus is an environmental organism that causes both food-borne and wound infections with high morbidity and mortality in humans. The annual incidence and global distribution of infections associated with this pathogen are increasing with climate change. In the late 1990s, an outbreak of tilapia-associated wound infections in Israel was linked to a previously unrecognized variant of V. vulnificus designated biotype 3. The sudden emergence and clonality of the outbreak suggest that this strain may be a true newly emergent pathogen with novel virulence properties compared to those of other V. vulnificus strains. In a subcutaneous infection model to mimic wound infection, the multifunctional autoprocessing RTX (MARTX) toxin of biotype 3 strains was shown to be an essential virulence factor contributing to highly inflammatory skin wounds with severe damage affecting every tissue layer. We conducted a sequencing-based analysis of the MARTX toxin and found that biotype 3 MARTX toxin has an effector domain structure distinct from that of either biotype 1 or biotype 2. Of the two new domains identified, a domain similar to Pseudomonas aeruginosa ExoY was shown to confer adenylate cyclase activity on the MARTX toxin. This is the first demonstration that the biotype 3 MARTX toxin is essential for virulence and that the ExoY-like MARTX effector domain is a catalytically active adenylate cyclase.

  10. Engineering adenylate cyclases regulated by near-infrared window light.

    PubMed

    Ryu, Min-Hyung; Kang, In-Hye; Nelson, Mathew D; Jensen, Tricia M; Lyuksyutova, Anna I; Siltberg-Liberles, Jessica; Raizen, David M; Gomelsky, Mark

    2014-07-15

    Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.

  11. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  12. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    SciTech Connect

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di; Trincao, J.; Pickering, I.J.; George, G.N.; Calvete, J.J.; Brondino, C.; Pereira, A.S.; Lampreia, J.; Tavares, P.; Moura, J.J.G.; Moura, I.

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  13. MSA-PAD: DNA multiple sequence alignment framework based on PFAM accessed domain information.

    PubMed

    Balech, Bachir; Vicario, Saverio; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-08-01

    Here we present the MSA-PAD application, a DNA multiple sequence alignment framework that uses PFAM protein domain information to align DNA sequences encoding either single or multiple protein domains. MSA-PAD has two alignment options: gene and genome mode.

  14. Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis.

    PubMed

    Lees, Jonathan G; Lee, David; Studer, Romain A; Dawson, Natalie L; Sillitoe, Ian; Das, Sayoni; Yeats, Corin; Dessailly, Benoit H; Rentzsch, Robert; Orengo, Christine A

    2014-01-01

    Gene3D (http://gene3d.biochem.ucl.ac.uk) is a database of protein domain structure annotations for protein sequences. Domains are predicted using a library of profile HMMs from 2738 CATH superfamilies. Gene3D assigns domain annotations to Ensembl and UniProt sequence sets including >6000 cellular genomes and >20 million unique protein sequences. This represents an increase of 45% in the number of protein sequences since our last publication. Thanks to improvements in the underlying data and pipeline, we see large increases in the domain coverage of sequences. We have expanded this coverage by integrating Pfam and SUPERFAMILY domain annotations, and we now resolve domain overlaps to provide highly comprehensive composite multi-domain architectures. To make these data more accessible for comparative genome analyses, we have developed novel search algorithms for searching genomes to identify related multi-domain architectures. In addition to providing domain family annotations, we have now developed a pipeline for 3D homology modelling of domains in Gene3D. This has been applied to the human genome and will be rolled out to other major organisms over the next year.

  15. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    SciTech Connect

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting in a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.

  16. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    DOE PAGES

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting inmore » a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.« less

  17. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation.

    PubMed Central

    Schmitt, E; Moulinier, L; Fujiwara, S; Imanaka, T; Thierry, J C; Moras, D

    1998-01-01

    The crystal structure of aspartyl-tRNA synthetase (AspRS) from Pyrococcus kodakaraensis was solved at 1.9 A resolution. The sequence and three-dimensional structure of the catalytic domain are highly homologous to those of eukaryotic AspRSs. In contrast, the N-terminal domain, whose function is to bind the tRNA anticodon, is more similar to that of eubacterial enzymes. Its structure explains the unique property of archaeal AspRSs of accommodating both tRNAAsp and tRNAAsn. Soaking the apo-enzyme crystals with ATP and aspartic acid both separately and together allows the adenylate formation to be followed. Due to the asymmetry of the dimeric enzyme in the crystalline state, different steps of the reaction could be visualized within the same crystal. Four different states of the aspartic acid activation reaction could thus be characterized, revealing the functional correlation of the observed conformational changes. The binding of the amino acid substrate induces movement of two invariant loops which secure the position of the peptidyl moiety for adenylate formation. An unambiguous spatial and functional assignment of three magnesium ion cofactors can be made. This study shows the important role of residues present in both archaeal and eukaryotic AspRSs, but absent from the eubacterial enzymes. PMID:9724658

  18. Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains.

    PubMed

    Lavoie, Hugo; Debeane, Francois; Trinh, Quoc-Dien; Turcotte, Jean-Francois; Corbeil-Girard, Louis-Philippe; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Rouleau, Guy A; Brais, Bernard

    2003-11-15

    Mutations causing expansions of polyalanine domains are responsible for nine hereditary diseases. Other GC-rich sequences coding for some polyalanine domains were found to be polymorphic in human. These observations prompted us to identify all sequences in the human genome coding for polyalanine stretches longer than four alanines and establish their degree of polymorphism. We identified 494 annotated human proteins containing 604 polyalanine domains. Thirty-two percent (31/98) of tested sequences coding for more than seven alanines were polymorphic. The length of the polyalanine-coding sequence and its GCG or GCC repeat content are the major predictors of polymorphism. GCG codons are over-represented in human polyalanine coding sequences. Our data suggest that GCG and GCC codons play a key role in polyalanine-coding sequence appearance and polymorphism. The grouping by shared function of polyalanine-containing proteins in Homo sapiens, Drosophila melanogaster and Caenorhabditis elegans shows that the majority are involved in transcriptional regulation. Phylogenetic analyses of HOX, GATA and EVX protein families demonstrate that polyalanine domains arose independently in different members of these families, suggesting that convergent molecular evolution may have played a role. Finally polyalanine domains in vertebrates are conserved between mammals and are rarer and shorter in Gallus gallus and Danio rerio. Together our results show that the polymorphic nature of sequences coding for polyalanine domains makes them prime candidates for mutations in hereditary diseases and suggests that they have appeared in many different protein families through convergent evolution.

  19. Certain topological properties and duals of the domain of a triangle matrix in a sequence space

    NASA Astrophysics Data System (ADS)

    Altay, Bilâl; Basar, Feyzi

    2007-12-01

    The matrix domain of the particular limitation methods Cesàro, Riesz, difference, summation and Euler were studied by several authors. In the present paper, certain topological properties and [beta]- and [gamma]-duals of the domain of a triangle matrix in a sequence space have been examined as an application of the characterization of the related matrix classes.

  20. Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie.

    PubMed

    Colombo, Sonia; Paiardi, Chiara; Pardons, Katrien; Winderickx, Joris; Martegani, Enzo

    2014-05-01

    Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.

  1. Regulation of brain adenylate cyclase by calmodulin

    SciTech Connect

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca{sup 2+}-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-({sup 125}I)-CaM-diazopyruvamide ({sup 125}I-CAM-DAP) behaved like native CaM with respect to Ca{sup 2+}-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca{sup 2+}-dependent stimulation of adenylate cyclase. {sup 125}I-CaM-DAP cross-linked to CaM-binding proteins in a Ca{sup 2+}-dependent, concentration-dependent, and CaM-specific manner. Photolysis of {sup 125}I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000.

  2. Calmodulin independence of human duodenal adenylate cyclase.

    PubMed Central

    Smith, J A; Griffin, M; Mireylees, S E; Long, R G

    1991-01-01

    The calmodulin and calcium dependence of human adenylate cyclase from the second part of the duodenum was assessed in washed particulate preparations of biopsy specimens by investigating (a) the concentration dependent effects of free [Ca2+] on enzyme activity, (b) the effects of exogenous calmodulin on enzyme activity in ethylene glycol bis (b-aminoethyl ether)N,N'-tetra-acetic acid (EGTA) washed particulate preparations, and (c) the effects of calmodulin antagonists on enzyme activity. Both basal (IC50 = 193.75 (57.5) nmol/l (mean (SEM)) and NaF stimulated (IC50 = 188.0 (44.0) nmol/l) adenylate cyclase activity was strongly inhibited by free [Ca2+] greater than 90 nmol/l. Free [Ca2+] less than 90 nmol/l had no effect on adenylate cyclase activity. NaF stimulated adenylate cyclase activity was inhibited by 50% at 2.5 mmol/l EGTA. This inhibition could not be reversed by free Ca2+. The addition of exogenous calmodulin to EGTA (5 mmol/l) washed particulate preparations failed to stimulate adenylate cyclase activity. Trifluoperazine and N-(8-aminohexyl)-5-IODO-1-naphthalene-sulphonamide (IODO 8) did not significantly inhibit basal and NaF stimulated adenylate cyclase activity when measured at concentrations of up to 100 mumol/l. These results suggest that human duodenal adenylate cyclase activity is calmodulin independent but is affected by changes in free [Ca2+]. PMID:1752461

  3. Visual Sequence Learning in Infancy: Domain-General and Domain-Specific Associations with Language

    ERIC Educational Resources Information Center

    Shafto, Carissa L.; Conway, Christopher M.; Field, Suzanne L.; Houston, Derek M.

    2012-01-01

    Research suggests that nonlinguistic sequence learning abilities are an important contributor to language development (Conway, Bauernschmidt, Huang, & Pisoni, 2010). The current study investigated visual sequence learning (VSL) as a possible predictor of vocabulary development in infants. Fifty-eight 8.5-month-old infants were presented with a…

  4. Determination and augmentation of RNA sequence specificity of the Nova K-homology domains.

    PubMed

    Musunuru, Kiran; Darnell, Robert B

    2004-01-01

    The Nova onconeural antigens are implicated in the pathogenesis of paraneoplastic opsoclonus-myoclonus-ataxia (POMA). The Nova antigens are neuron-specific RNA-binding proteins harboring three repeats of the K-homology (KH) motif; they have been implicated in the regulation of alternative splicing of a host of genes involved in inhibitory synaptic transmission. Although the third Nova KH domain (KH3) has been extensively characterized using biochemical and crystallographic techniques, the roles of the KH1 and KH2 domains remain unclear. Furthermore, the specificity determinants that distinguish the Nova KH domains from those of the closely related hnRNP E and hnRNP K proteins are undefined. We demonstrate through the use of RNA selection and biochemical analysis that the sequence specificity of the Nova KH1/2 domains is similar to that of Nova KH3. We also show that the mutagenesis of a Nova KH domain to render it similar to the KH domains of the heterogeneous nuclear ribonucleoprotein E (hnRNP E) and hnRNP K allow it to recognize longer RNA sequences. These data yield important insights into KH domain function and suggest a strategy by which to engineer KH domains with novel sequence preferences.

  5. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    SciTech Connect

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  6. Analysis of electron capture process in charge pumping sequence using time domain measurements

    SciTech Connect

    Hori, Masahiro Watanabe, Tokinobu; Ono, Yukinori; Tsuchiya, Toshiaki

    2014-12-29

    A method for analyzing the electron capture process in the charge pumping (CP) sequence is proposed and demonstrated. The method monitors the electron current in the CP sequence in time domain. This time-domain measurements enable us to directly access the process of the electron capture to the interface defects, which are obscured in the conventional CP method. Using the time-domain measurements, the rise time dependence of the capture process is systematically investigated. We formulate the capture process based on the rate equation and derive an analytic form of the current due to the electron capture to the defects. Based on the formula, the experimental data are analyzed and the capture cross section is obtained. In addition, the time-domain data unveil that the electron capture process completes before the electron channel opens, or below the threshold voltage in a low frequency range of the pulse.

  7. Structural basis for the Smad5 MH1 domain to recognize different DNA sequences

    PubMed Central

    Chai, Nan; Li, Wan-Xin; Wang, Jue; Wang, Zhi-Xin; Yang, Shi-Ming; Wu, Jia-Wei

    2015-01-01

    Smad proteins are important intracellular mediators of TGF-β signalling, which transmit signals directly from cell surface receptors to the nucleus. The MH1 domain of Smad plays a key role in DNA recognition. Two types of DNA sequence were identified as Smad binding motifs: the Smad binding element (SBE) and the GC-rich sequence. Here we report the first crystal structure of the Smad5 MH1 domain in complex with the GC-rich sequence. Compared with the Smad5-MH1/SBE complex structure, the Smad5 MH1 domain contacts the GC-rich site with the same β-hairpin, but the detailed interaction modes are different. Conserved β-hairpin residues make base specific contacts with the minimal GC-rich site, 5′-GGC-3′. The assembly of Smad5-MH1 on the GC-rich DNA also results in distinct DNA conformational changes. Moreover, the crystal structure of Smad5-MH1 in complex with a composite DNA sequence demonstrates that the MH1 domain is targeted to each binding site (GC-rich or SBE) with modular binding modes, and the length of the DNA spacer affects the MH1 assembly. In conclusion, our work provides the structural basis for the recognition and binding specificity of the Smad MH1 domain with the DNA targets. PMID:26304548

  8. The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion.

    PubMed

    Taylor, G M; Sanders, D A

    1999-09-01

    The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.

  9. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  10. Activity of a Two-Domain Antifreeze Protein Is Not Dependent on Linker Sequence

    PubMed Central

    Holland, Nolan B.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Sönnichsen, Frank D.

    2007-01-01

    The reported NMR structure of RD3, a naturally occurring two-domain antifreeze protein, suggests that the two nearly identical domains are oriented to allow simultaneous binding of their active regions to the ice surface. It is implied that the nine residues linking the two domains play a role in this alignment, but this has not been established. We have designed and expressed a modified form of RD3 that replaces the nine-residue linker with a generic sequence of one serine and eight glycine residues to test the importance of the linker amino acid sequence. The modified linker is shown to have significantly different characteristics compared to the original linker. Heteronuclear nuclear Overhauser effect experiments show that the new linker residues have more mobility than the linker residues in the native protein. Further, NMR data show that the folding of the C-terminal domain is somewhat perturbed by the altered linker. Finally, distributions of residual dipolar couplings indicate that the two domains tumble and move independently of each other. Nevertheless, the thermal hysteresis activity of the modified protein is indistinguishable from that of native RD3, proving that increased activity of the two-domain antifreeze protein is not dependent on structure of the linker. PMID:17056724

  11. Determination of the sequence specificity of XIAP BIR domains by screening a combinatorial peptide library.

    PubMed

    Sweeney, Michael C; Wang, Xianxi; Park, Junguk; Liu, Yusen; Pei, Dehua

    2006-12-12

    Inhibitor of apoptosis (IAP) proteins regulate programmed cell death by inhibiting members of the caspase family of proteases. The X-chromosome-linked IAP (XIAP) contains three baculovirus IAP repeat (BIR) domains, which bind directly to the N-termini of target proteins including those of caspases-3, -7, and -9. In the present study, we defined the consensus sequences of the motifs that interact with the three BIR domains in an unbiased manner. A combinatorial peptide library containing four random residues at the N-terminus was constructed and screened using BIR domains as probes. We found that the BIR3 domain binds a highly specific motif containing an alanine or valine at the N-terminus (P1 position), an arginine or proline at the P3 position, and a hydrophobic residue (Phe, Ile, and Tyr) at the P4 position. The BIR2-binding motif is less stringent. Although it still requires an N-terminal alanine, it tolerates a wide variety of amino acids at P2-P4 positions. The BIR1 failed to bind to any peptides in the library. SPR analysis of individually synthesized peptides confirmed the library screening results. Database searches with the BIR2- and BIR3-binding consensus sequences revealed a large number of potential target proteins. The combinatorial library method should be readily applicable to other BIR domains or other types of protein modular domains.

  12. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  13. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  14. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  15. Mouse Cmu heavy chain immunoglobulin gene segment contains three intervening sequences separating domains.

    PubMed

    Calame, K; Rogers, J; Early, P; Davis, M; Livant, D; Wall, R; Hood, L

    1980-04-03

    The IgM molecule is composed of subunits made up of two light chain and two heavy chain (mu) polypeptides. The mu chain is encoded by several gene segments--variable (V), joining (J) and constant (Cmu). The Cmu gene segment is of particular interest for several reasons. First, the mu chain must exist in two very different environments--as an integral membrane protein in receptor IgM molecules (micrometer) and as soluble serum protein in IgM molecules into the blood (mus). Second, the Cmu region in mus is composed of four homology units or domains (Cmu1, Cmu2, Cmu3 and Cmu4) of approximately 110 amino acid residues plus a C-terminal tail of 19 residues. We asked two questions concerning the organisation of the Cmu gene segment. (1) Are the homology units separated by intervening DNA sequences as has been reported for alpha (ref. 5), gamma 1 (ref. 6) and gamma 2b (ref. 7) heavy chain genes? (2) Is the C-terminal tail separated from the Cmu4 domain by an intervening DNA sequence? If so, DNA rearrangements or RNA splicing could generate hydrophilic and hydrophobic C-terminal tails for the mus and micrometer polypeptides, respectively. We demonstrate here that intervening DNA sequences separate each of the four coding regions for Cmu domains, and that the coding regions for the Cmu4 domains and the C-terminal tail are directly contiguous.

  16. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains.

    PubMed

    Muyldermans, S; Atarhouch, T; Saldanha, J; Barbosa, J A; Hamers, R

    1994-09-01

    We cloned 17 different PCR fragments encoding VH genes of camel (Camelus dromedarius). These clones were derived from the camel heavy chain immunoglobulins lacking the light chain counterpart of normal immunoglobulins. Insight into the camel VH sequences and structure may help the development of single domain antibodies. The most remarkable difference in the camel VH, consistent with the absence of the VL interaction, is the substitution of the conserved Leu45 by an Arg or Cys. Another noteworthy substitution is the Leu11 to Ser. This amino acid normally interacts with the CH1 domain, a domain missing in the camel heavy chain immunoglobulins. The nature of these substitutions agrees with the increased solubility behavior of an isolated camel VH domain. The VH domains of the camels are also characterized by a long CDR3, possibly compensating for the absence of the VL contacts with the antigen. The CDR3 lacks the salt bridge between Arg94 and Asp101. However, the frequent occurrence of additional Cys residues in both the CDR1 and CDR3 might lead to the formation of a second internal disulfide bridge, thereby stabilizing the CDR structure as in the DAW antibody. Within CDRs of the camel VH domains we observe a broad size distribution and a different amino acid pattern compared with the mouse or human VH. Therefore the camel hypervariable regions might adopt structures which differ substantially from the known canonical structures, thereby increasing the repertoire of the camel antigen binding sites within a VH.

  17. Hydrophobic-cluster analysis of plant protein sequences. A domain homology between storage and lipid-transfer proteins.

    PubMed Central

    Henrissat, B; Popineau, Y; Kader, J C

    1988-01-01

    Hydrophobic-cluster analysis was used to characterize a conserved domain located near the C-terminal amino acid sequence of wheat (Triticum aestivum) storage proteins. This domain was transformed into a linear template for a global search for similarities in over 5200 protein sequences. In addition to proteins that had already been found to exhibit homology to wheat storage proteins, a previously unreported homology was found with non-specific lipid-transfer proteins from castor bean (Ricinus communis) and from spinach (Spinacia oleracea) leaf. Hydrophobic-cluster analysis of various members of the present protein group clearly shows a typical domain structure where (i) variable and conserved domains are located along the sequence at precise positions, (ii) the conserved domains probably reflect a common ancestor, and (iii) the unique properties of a given protein (chain cut into subunits, repetitive domains, trypsin-inhibitor active site) are associated with the variable domains. PMID:3214430

  18. WR-2721 inhibits parathyroid adenylate cyclase

    SciTech Connect

    Weaver, M.E.; Morrissey, J.; McConkey, C. Jr.; Goldfarb, S.; Slatopolsky, E.; Martin, K.J.

    1987-02-01

    WR-2721 (S-2-(3-aminopropylamino)ethylphosphorothioic acid) is a chemoprotective and radioprotective agent that has been shown to lower serum calcium in dogs and in humans. This is secondary both to impaired release of CaS from bone and diminished secretion of parathyroid hormone (PTH) from parathyroid glands. Because cAMP plays a role in the regulation of PTH secretion and WR-2721 has been shown to lower cAMP levels in radiated mouse spleen, the authors investigated the effects of WR-2721 on cAMP production in dispersed bovine parathyroid cells. Additional, they studied the adenylate cyclase in plasma membranes from normal bovine parathyroid glands after exposure to WR-2721. With parathyroid cells incubated at 0.5 mM CaS , addition of Wr-2721 in concentrations ranging from 0.02 to 2.0 mM resulted in a progressive decrease in intracellular cAMP measured by radioimmunoassay. In plasma membranes of bovine parathyroid cells a dose-dependent decrease in adenylate cyclase activity was noted. Inhibition of the cyclase was seen over a wide range of MgS concentrations. WR-2721 inhibited both basal and NaF, Gpp(NH)(, forskolin, and pertussin toxin-stimulated adenylate cyclase. These data suggest that WR-2721 inhibits the activity of parathyroid adenylate cyclase.

  19. Bordetella adenylate cyclase toxin: entry of bacterial adenylate cyclase into mammalian cells.

    PubMed

    Confer, D L; Slungaard, A S; Graf, E; Panter, S S; Eaton, J W

    1984-01-01

    We have identified an adenylate cyclase toxin in urea extracts and culture supernatant fluids of Bordetella pertussis (2). The ability of this toxin and the lack of a strong correlation between its activity and adenylate cyclase activity found in urea extracts suggest that it is an oligomer of readily dissociable subunits. The mechanism by which Bordetella adenylate cyclase toxin interacts with target cells is unknown, but polyvalent cations are necessary. Neutrophils exposed to the toxin acquire a 39,000 Mr protein that can also be photoaffinity labeled with 32P-ATP. We anticipate that this protein will prove to be a catalytic component of Bordetella adenylate cyclase toxin. Susceptible cells exposed to Bordetella adenylate cyclase toxin are functionally aberrant. In phagocytes, decreased bactericidal capacity may be important in the pathogenesis of human whooping cough and other Bordetella infections occurring in domestic animals. The effects of the toxin on neoplastic cells may offer new insights into the factors controlling their growth and differentiation. Bordetella adenylate cyclase toxin is a unique bacterial product. Further purification and characterization of this toxin will add to our understanding of cell-protein interactions and pathogen-host relationships.

  20. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis

    PubMed Central

    Braga, Daniel; Hoffmeister, Dirk

    2016-01-01

    Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis. PMID:28144348

  1. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    PubMed Central

    2012-01-01

    Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum) using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples. PMID:22995534

  2. Cloning and sequence analysis of human breast epithelial antigen BA46 reveals an RGD cell adhesion sequence presented on an epidermal growth factor-like domain.

    PubMed

    Couto, J R; Taylor, M R; Godwin, S G; Ceriani, R L; Peterson, J A

    1996-04-01

    The BA46 antigen of the human milk fat globule (HMFG) membrane is expressed in human breast carcinomas and has been used successfully as a target for experimental breast cancer radioimmunotherapy. To characterize this antigen further, we obtained the entire cDNA sequence and focused on its possible role in cell adhesion. The derived protein sequence of BA46 encodes a 387-residue precursor composed of a putative signal peptide, an amino-terminal epidermal growth factor (EGF)-like domain containing the cell adhesion tripeptide arginine-glycine-aspartic acid (RGD), and human factor V and factor VIII C1/C2-like domains. The EGF-like domain of BA46 is similar to the calcium-binding EGF-like domains of several coagulation factors, but the BA46 domain lacks a residue required for calcium binding and the coagulation factor domains do not include an RGD sequence. Assuming that all EGF-like domains fold into a similar structure, the RGD-containing sequence in BA46 is inserted between two antiparallel beta strands. This positioning suggests a novel function for the EGF-like domain as a scaffold for RGD presentation.

  3. The SBASE protein domain library, release 2.0: a collection of annotated protein sequence segments.

    PubMed Central

    Pongor, S; Skerl, V; Cserzö, M; Hátsági, Z; Simon, G; Bevilacqua, V

    1993-01-01

    SBASE 2.0 is the second release of SBASE, a collection of annotated protein domain sequences. SBASE entries represent various structural, functional, ligand-binding and topogenic segments of proteins [Pongor, S. et al. (1993) Prot. Eng., in press]. This release contains 34,518 entries provided with standardized names and it is cross-referenced to the major protein and nucleic acid databanks as well as to the PROSITE catalog of protein sequence patterns [Bairoch, A. (1992) Nucl. Acids Res., 20 suppl, 2013-2018]. SBASE can be used for establishing domain homologies using different database-search tools such as FASTA [Lipman and Pearson (1985) Science, 227, 1436-1441], FASTDB [Brutlag et al. (1990) Comp. Appl. Biosci., 6, 237-245] or BLAST3 [Altschul and Lipman (1990) Proc. Natl. Acad. Sci. USA, 87, 5509-5513] which is especially useful in the case of loosely defined domain types for which efficient consensus patterns can not be established. SBASE 2.0 and a set of search and retrieval tools are freely available on request to the authors or by anonymous 'ftp' file transfer from mean value of ftp.icgeb.trieste.it. PMID:8332532

  4. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    PubMed

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  5. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  6. Multicanonical Simulations of Five Tetrapeptide Sequences in the Central Domain of HMW Glutenin

    NASA Astrophysics Data System (ADS)

    Arkin, Handan; Yaşar, Fatih; Çelik, Tarik; Çelik, Süeda; Köksel, Hamit

    The application of the multicanonical simulation method to small proteins and peptides seems to be feasible and should be undertaken. In this work, the three-dimensional structures of five common tetrapeptide sequences (QPGQ, QSGQ, YPTS, SPQQ and QPGY, in one letter code) in the repetitive central domain of HMW glutenin subunits are investigated by using the multicanonical simulation procedure. Ramachandran plots were prepared and analyzed to predict the relative occurrence probabilities of β-turn and γ-turn structures and helical states. Structural predictions of the five tetrapeptide sequences indicated the presence of high level of β-turns and considerable level of γ-turns. It was also possible to distinguish different type of turns and their occurrence probabilities.

  7. The carbohydrate domain of calicheamicin gamma I1 determines its sequence specificity for DNA cleavage.

    PubMed Central

    Drak, J; Iwasawa, N; Danishefsky, S; Crothers, D M

    1991-01-01

    We have investigated the DNA cleaving properties of calicheamicinone, the synthetic core aglycone of calicheamicin gamma I1, a natural product with extremely potent antitumor activity. Our experiments have shown that the synthetic analog binds and cleaves DNA, albeit without any sequence selectivity and with less efficiency than the natural compound. We propose that a key element in the sequence recognition process is the thiobenzoate ring present in the natural compound. We have demonstrated by one-dimensional NMR that there is direct hydrogen abstraction from DNA by calicheamicinone, with enhanced binding affinity contributed by the carbohydrate domain. The reduced efficiency of hydrogen abstraction from DNA by bound calicheamicinone, compared with the natural compound, implicates the carbohydrate moiety in positioning the drug for hydrogen abstraction. Images PMID:1881884

  8. Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8.

    PubMed Central

    Kozmik, Z; Czerny, T; Busslinger, M

    1997-01-01

    Transcription factors of the Pax family bind to their target genes via the paired domain which is known to be composed of two subdomains each recognizing distinct half-sites in adjacent major grooves of the DNA helix. We now demonstrate that the mammalian Pax8 gene gives rise, by alternative mRNA splicing, to a protein isoform containing an extra serine residue in the recognition alpha-helix 3 of the paired domain. This Pax8(S) protein does not interact with bipartite paired domain-binding sites, indicating that inactivation of the N-terminal DNA-binding motif severely restricts the sequence specificity of the paired domain. However, the Pax8(S) protein binds in vitro and in vivo to the 5aCON sequence which was previously identified as a high-affinity binding site for the Pax6(5a) splice variant carrying a 14-amino-acid insertion in the paired domain. The 5aCON sequence is shown to consist of four interdigitated 5' half-sites of the bipartite consensus sequence and is thus bound by four Pax8(S) molecules via the intact C-terminal DNA-binding motif of the paired domain. Together these data suggest that inactivation of the N-terminal region of the paired domain by alternative splicing is used in vivo to selectively target Pax transcription factors to gene regulatory regions containing highly specialized 5aCON-like sequences. PMID:9362493

  9. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information

    PubMed Central

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids. PMID:27467780

  10. Mammalian aspartate transcarbamylase (ATCase): sequence of the ATCase domain and interdomain linker in the CAD multifunctional polypeptide and properties of the isolated domain.

    PubMed Central

    Simmer, J P; Kelly, R E; Scully, J L; Grayson, D R; Rinker, A G; Bergh, S T; Evans, D R

    1989-01-01

    Mammalian aspartate transcarbamylase (ATCase; carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) is part of a 240-kDa multifunctional polypeptide called CAD, which also has carbamoyl-phosphate synthetase and dihydroorotase activities. We have sequenced selected restriction fragments of a Syrian hamster CAD cDNA that are clearly homologous to three prokaryotic ATCases. These studies, combined with previous sequence data, showed that the ATCase domain of CAD is encoded by 924 base pairs and has a mass of 34,323 Da and a pI of 9.8. While the bacterial pyrimidine biosynthetic enzymes are separate proteins, in mammals the ATCase domain is fused to the carboxyl end of the CAD chimera via a 133-amino acid (14-kDa) linker with an unusual amino acid composition, a pI of 10.2, and pronounced hydrophilic character. The fully active domain isolated from proteolytic digests was characterized by partial amino acid sequencing and amino acid analysis. Trypsin cleavage produced the ATCase domain with a 20-residue amino-terminal extension. Hydrodynamic studies showed that the isolated domain is a 110-kDa trimer with a Stokes radius of 41 A. The mammalian ATCase domain and the prokaryotic enzymes have virtually identical active-site residues and are likely to have the same tertiary fold. Images PMID:2543974

  11. nti glucocorticoid receptor transcripts lack sequences encoding the amino-terminal transcriptional modulatory domain.

    PubMed Central

    Dieken, E S; Meese, E U; Miesfeld, R L

    1990-01-01

    Glucocorticoid induction of cell death (apoptosis) in mouse lymphoma S49 cells has long been studied as a molecular genetic model of steroid hormone action. To better understand the transcriptional control of glucocorticoid-induced S49 cell death, we isolated and characterized glucocorticoid receptor (GR) cDNA from two steroid-resistant nti S49 mutant cell lines (S49.55R and S49.143R) and the wild-type parental line (S49.A2). Our data reveal that nti GR transcripts encode intact steroid- and DNA-binding domains but lack 404 amino-terminal residues as a result of aberrant RNA splicing between exons 1 and 3. Results from transient cotransfection experiments into CV1 cells using nti receptor expression plasmids and a glucocorticoid-responsive reporter gene demonstrated that the truncated nti receptor exhibits a reduced transcriptional regulatory activity. Gene fusions containing portions of both the wild-type and the nti GR-coding sequences were constructed and used to functionally map the nti receptor mutation. We found that the loss of the modulatory domain alone is sufficient to cause the observed defect in nti transcriptional transactivation. These results support the proposal that glucocorticoid-induced S49 cell death requires GR sequences which have previously been shown to be required for transcriptional regulation, suggesting that steroid-regulated apoptosis is controlled at the level of gene expression. Images PMID:2388618

  12. Analysis of the herpes simplex virus type 1 OriS sequence: mapping of functional domains.

    PubMed Central

    Martin, D W; Deb, S P; Klauer, J S; Deb, S

    1991-01-01

    The herpes simplex virus type 1 (HSV-1) OriS region resides within a 90-bp sequence that contains two binding sites for the origin-binding protein (OBP), designated sites I and II. A third presumptive OBP-binding site (III) within OriS has strong sequence similarity to sites I and II, but no sequence-specific OBP binding has yet been demonstrated at this site. We have generated mutations in sites I, II, and III and determined their replication efficiencies in a transient in vivo assay in the presence of a helper virus. Mutations in any one of the sites reduced DNA replication significantly. To study the role of OriS sequence elements in site I and the presumptive site III in DNA replication, we have also generated a series of mutations that span from site I across the presumptive binding site III. These mutants were tested for their ability to replicate and for the ability to bind OBP by using gel shift analyses. The results indicate that mutations across site I drastically reduce DNA replication. Triple-base-pair substitution mutations that fall within the crucial OBP-binding domain, 5'-YGYTCGCACT-3' (where Y represents C or T), show a reduced level of OBP binding and DNA replication. Substitution mutations in site I that are outside this crucial binding sequence show a more detrimental effect on DNA replication than on OBP binding. This suggests that these sequences are required for initiation of DNA replication but are not critical for OBP binding. Mutations across the presumptive OBP-binding site III also resulted in a loss in efficiency of DNA replication. These mutations influenced OBP binding to OriS in gel shift assays, even though the mutated sequences are not contained within known OBP-binding sites. Replacement of the wild-type site III with a perfect OBP-binding site I results in a drastic reduction of DNA replication. Thus, our DNA replication assays and in vitro DNA-binding studies suggest that the binding of the origin sequence by OBP is not the only

  13. High-affinity VEGF antagonists by oligomerization of a minimal sequence VEGF-binding domain.

    PubMed

    Stefano, James E; Bird, Julie; Kyazike, Josephine; Cheng, Anthony Wai-Ming; Boudanova, Ekaterina; Dwyer, Markryan; Hou, Lihui; Qiu, Huawei; Matthews, Gloria; O'Callaghan, Michael; Pan, Clark Q

    2012-12-19

    Vascular endothelial growth factor (VEGF) neutralizing antagonists including antibodies or receptor extracellular domain Fc fusions have been applied clinically to control angiogenesis in cancer, wet age-related macular degeneration, and edema. We report here the generation of high-affinity VEGF-binding domains by chemical linkage of the second domain of the VEGF receptor Flt-1 (D2) in several configurations. Recombinant D2 was expressed with a 13 a.a. C-terminal tag, including a C-terminal cysteine to enable its dimerization by disulfide bond formation or by attachment to divalent PEGs and oligomerization by coupling to multivalent PEGs. Disulfide-linked dimers produced by Cu(2+) oxidation of the free-thiol form of the protein demonstrated picomolar affinity for VEGF in solution, comparable to that of a D2-Fc fusion (sFLT01) and ~50-fold higher than monomeric D2, suggesting the 26 a.a. tag length between the two D2 domains permits simultaneous interaction of both faces of the VEGF homodimer. Extending the separation between the D2 domains by short PEG spacers from 0.35 kD to 5 kD produced a modest ~2-fold increase in affinity over the disulfide, thus defining the optimal distance between the two D2 domains for maximum affinity. By surface plasmon resonance (SPR), a larger (~5-fold) increase in affinity was observed by conjugation of the D2 monomer to the termini of 4-arm PEG, and yielding a product with a larger hydrodynamic radius than sFLT01. The higher affinity displayed by these D2 PEG tetramers than either D2 dimer or sFLT01 was largely a consequence of a slower rate of dissociation, suggesting the simultaneous binding by these tetramers to neighboring surface-bound VEGF. Finally, disulfide-linked D2 dimers showed a greater resistance to autocatalytic fragmentation than sFLT01 under elevated temperature stress, indicating such minimum-sequence constructs may be better suited for sustained-release formulations. Therefore, these constructs represent novel Fc

  14. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.

    PubMed Central

    Arnez, J G; Harris, D C; Mitschler, A; Rees, B; Francklyn, C S; Moras, D

    1995-01-01

    The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules. Images PMID:7556055

  15. DNA methylation profiling of primary neuroblastoma tumors using methyl-CpG-binding domain sequencing

    PubMed Central

    Decock, Anneleen; Ongenaert, Maté; Van Criekinge, Wim; Speleman, Frank; Vandesompele, Jo

    2016-01-01

    Comprehensive genome-wide DNA methylation studies in neuroblastoma (NB), a childhood tumor that originates from precursor cells of the sympathetic nervous system, are scarce. Recently, we profiled the DNA methylome of 102 well-annotated primary NB tumors by methyl-CpG-binding domain (MBD) sequencing, in order to identify prognostic biomarker candidates. In this data descriptor, we give details on how this data set was generated and which bioinformatics analyses were applied during data processing. Through a series of technical validations, we illustrate that the data are of high quality and that the sequenced fragments represent methylated genomic regions. Furthermore, genes previously described to be methylated in NB are confirmed. As such, these MBD sequencing data are a valuable resource to further study the association of NB risk factors with the NB methylome, and offer the opportunity to integrate methylome data with other -omic data sets on the same tumor samples such as gene copy number and gene expression, also publically available. PMID:26836295

  16. DNA methylation profiling of primary neuroblastoma tumors using methyl-CpG-binding domain sequencing.

    PubMed

    Decock, Anneleen; Ongenaert, Maté; Van Criekinge, Wim; Speleman, Frank; Vandesompele, Jo

    2016-02-02

    Comprehensive genome-wide DNA methylation studies in neuroblastoma (NB), a childhood tumor that originates from precursor cells of the sympathetic nervous system, are scarce. Recently, we profiled the DNA methylome of 102 well-annotated primary NB tumors by methyl-CpG-binding domain (MBD) sequencing, in order to identify prognostic biomarker candidates. In this data descriptor, we give details on how this data set was generated and which bioinformatics analyses were applied during data processing. Through a series of technical validations, we illustrate that the data are of high quality and that the sequenced fragments represent methylated genomic regions. Furthermore, genes previously described to be methylated in NB are confirmed. As such, these MBD sequencing data are a valuable resource to further study the association of NB risk factors with the NB methylome, and offer the opportunity to integrate methylome data with other -omic data sets on the same tumor samples such as gene copy number and gene expression, also publically available.

  17. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins.

    PubMed Central

    Suzuki, N; Choe, H R; Nishida, Y; Yamawaki-Kataoka, Y; Ohnishi, S; Tamaoki, T; Kataoka, T

    1990-01-01

    A Saccharomyces cerevisiae gene encoding adenylate cyclase has been analyzed by deletion and insertion mutagenesis to localize regions required for activation by the Sa. cerevisiae RAS2 protein. The NH2-terminal 657 amino acids were found to be dispensable for the activation. However, almost all 2-amino acid insertions in the middle 600 residues comprising leucine-rich repeats and deletions in the COOH-terminal 66 residues completely abolished activation by the RAS2 protein, whereas insertion mutations in the other regions generally had no effect. Chimeric adenylate cyclases were constructed by swapping the upstream and downstream portions surrounding the catalytic domains between the Sa. cerevisiae and Schizosaccharomyces pombe adenylate cyclases and examined for activation by the RAS2 protein. We found that the fusion containing both the NH2-terminal 1600 residues and the COOH-terminal 66 residues of the Sa. cerevisiae cyclase rendered the catalytic domain of the Sc. pombe cyclase, which otherwise did not respond to RAS proteins, activatable by the RAS2 protein. Thus the leucine-rich repeats and the COOH terminus of the Sa. cerevisiae adenylate cyclase appear to be required for interaction with RAS proteins. Images PMID:2247439

  18. Terabit Nyquist PDM-32QAM signal transmission with training sequence based time domain channel estimation.

    PubMed

    Zhang, Fan; Wang, Dan; Ding, Rui; Chen, Zhangyuan

    2014-09-22

    We propose a time domain structure of channel estimation for coherent optical communication systems, which employs training sequence based equalizer and is transparent to arbitrary quadrature amplitude modulation (QAM) formats. Enabled with this methodology, 1.02 Tb/s polarization division multiplexed 32 QAM Nyquist pulse shaping signal with a net spectral efficiency of 7.46 b/s/Hz is transmitted over standard single-mode fiber link with Erbium-doped fiber amplifier only amplification. After 1190 km transmission, the average bit-error rate is lower than the 20% hard-decision forward error correction threshold of 1.5 × 10(-2). The transmission distance can be extended to 1428 km by employing intra-subchannel nonlinear compensation with the digital back-propagation method.

  19. Using a Solver Over the String Pattern Domain to Analyze Gene Promoter Sequences

    NASA Astrophysics Data System (ADS)

    Rigotti, Christophe; Mitašiūnaitė, Ieva; Besson, Jérémy; Meyniel, Laurène; Boulicaut, Jean-François; Gandrillon, Olivier

    This chapter illustrates how inductive querying techniques can be used to support knowledge discovery from genomic data. More precisely, it presents a data mining scenario to discover putative transcription factor binding sites in gene promoter sequences. We do not provide technical details about the used constraintbased data mining algorithms that have been previously described. Our contribution is to provide an abstract description of the scenario, its concrete instantiation and also a typical execution on real data. Our main extraction algorithm is a complete solver dedicated to the string pattern domain: it computes string patterns that satisfy a given conjunction of primitive constraints. We also discuss the processing steps necessary to turn it into a useful tool. In particular, we introduce a parameter tuning strategy, an appropriate measure to rank the patterns, and the post-processing approaches that can be and have been applied.

  20. Molecular cloning and sequencing of a cDNA encoding the thioesterase domain of the rat fatty acid synthetase.

    PubMed

    Naggert, J; Witkowski, A; Mikkelsen, J; Smith, S

    1988-01-25

    A cloned cDNA containing the entire coding sequence for the long-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase I) component as well as the 3'-noncoding region of the fatty acid synthetase has been isolated using an expression vector and domain-specific antibodies. The coding region was assigned to the thioesterase I domain by identification of sequences coding for characterized peptide fragments, amino-terminal analysis of the isolated thioesterase I domain and the presence of the serine esterase active-site sequence motif. The thioesterase I domain is 306 amino acids long with a calculated molecular mass of 33,476 daltons; its DNA is flanked at the 5'-end by a region coding for the acyl carrier protein domain and at the 3'-end by a 1,537-base pairs-long noncoding sequence with a poly(A) tail. The thioesterase I domain exhibits a low, albeit discernible, homology with the discrete medium-chain S-acyl fatty acid synthetase thioester hydrolases (thioesterase II) from rat mammary gland and duck uropygial gland, suggesting a distant but common evolutionary ancestry for these proteins.

  1. Universal and domain-specific sequences in 23S–28S ribosomal RNA identified by computational phylogenetics

    PubMed Central

    Doris, Stephen M.; Smith, Deborah R.; Beamesderfer, Julia N.; Raphael, Benjamin J.; Nathanson, Judith A.; Gerbi, Susan A.

    2015-01-01

    Comparative analysis of ribosomal RNA (rRNA) sequences has elucidated phylogenetic relationships. However, this powerful approach has not been fully exploited to address ribosome function. Here we identify stretches of evolutionarily conserved sequences, which correspond with regions of high functional importance. For this, we developed a structurally aligned database, FLORA (full-length organismal rRNA alignment) to identify highly conserved nucleotide elements (CNEs) in 23S–28S rRNA from each phylogenetic domain (Eukarya, Bacteria, and Archaea). Universal CNEs (uCNEs) are conserved in sequence and structural position in all three domains. Those in regions known to be essential for translation validate our approach. Importantly, some uCNEs reside in areas of unknown function, thus identifying novel sequences of likely great importance. In contrast to uCNEs, domain-specific CNEs (dsCNEs) are conserved in just one phylogenetic domain. This is the first report of conserved sequence elements in rRNA that are domain-specific; they are largely a eukaryotic phenomenon. The locations of the eukaryotic dsCNEs within the structure of the ribosome suggest they may function in nascent polypeptide transit through the ribosome tunnel and in tRNA exit from the ribosome. Our findings provide insights and a resource for ribosome function studies. PMID:26283689

  2. Realizing a Rasch measurement through instructionally- sequenced domains of test items.

    NASA Astrophysics Data System (ADS)

    Schulz, E. Matthew

    2016-11-01

    This paper presents results from a project in which instructionally-sequenced domains were defined for purposes of constructing measures that that conform to an ideal in Guttman scaling and Rasch measurement. A fundamental idea in these measurement systems is that every person higher on the measurement scale can do everything that lower-level persons can do, plus at least one more thing. This idea has had limited application in educational measurement due to the stochastic nature of item response data and the sheer number of items needed to obtain reliable measures. However, it has been shown by Schulz, Lee, and Mullen [1] that this ideal can be can be realized at a higher level of abstraction - when items within a content strand are aggregated into a small number of domains that are ordered in instructional timing and difficulty. The present paper shows how this was done, and the results, in an achievement level setting project for the 2007 Grade 12 NAEP Economics Assessment.

  3. Eliciting Neutralizing Antibodies with gp120 Outer Domain Constructs Based on M-Group Consensus Sequence

    PubMed Central

    Qin, Yali; Banasik, Marisa; Kim, SoonJeung; Penn-Nicholson, Adam; Habte, Habtom H; Labranche, Celia; Montefiori, David C; Wang, Chong; Cho, Michael W

    2014-01-01

    One strategy being evaluated for HIV-1 vaccine development is focusing immune responses towards neutralizing epitopes on the gp120 outer domain (OD) by removing the immunodominant, but non-neutralizing, inner domain. Previous OD constructs have not elicited strong neutralizing antibodies (nAbs). We constructed two immunogens, a monomeric gp120-OD and a trimeric gp120-OD×3, based on an M group consensus sequence (MCON6). Their biochemical and immunological properties were compared with intact gp120. Results indicated better preservation of critical neutralizing epitopes on gp120-OD×3. In contrast to previous studies, our immunogens induced potent, cross-reactive nAbs in rabbits. Although nAbs primarily targeted Tier 1 viruses, they exhibited significant breadth. Epitope mapping analyses indicated that nAbs primarily targeted conserved V3 loop elements. Although the potency and breadth of nAbs were similar for all three immunogens, nAb induction kinetics indicated that gp120-OD×3 was superior to gp120-OD, suggesting that gp120-OD×3 is a promising prototype for further gp120 OD-based immunogen development. PMID:25046154

  4. Antineoplastic effects of Bordetella pertussis adenylate cyclase.

    PubMed

    Slungaard, A; Confer, D L; Jacob, H S; Eaton, J W

    1983-01-01

    Urea extracts of B. pertussis, but not B. bronchiseptica, cause large and sustained intracellular cAMP elevation in several neoplastic cell lines. These cAMP elevations are associated with growth inhibition (HL-60, Friend erythroleukemia) and a phenotypic change/differentiation (HL-60, L1210). B. pertussis extract injections prolong survival of L1210 tumor-bearing mice. Pretreatment of L1210 cells with B. pertussis extract both delays mortality and induces growth of solid tumors instead of ascites in subsequently inoculated mice. We conclude that B. pertussis adenylate cyclase is capable of invading a variety of neoplastic cells to catalyze the intracellular formation of large amounts of cAMP. These cAMP elevations are durable and promote growth arrest, differentiation, or phenotypic alterations reflected in altered biologic behavior. B. pertussis adenylate cyclase should prove to be a useful tool for manipulating cAMP levels in neoplastic cells to elucidate the role of cAMP in malignant transformation.

  5. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  6. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  7. Dissecting a bacterial collagen domain from Streptococcus pyogenes: sequence and length-dependent variations in triple helix stability and folding.

    PubMed

    Yu, Zhuoxin; Brodsky, Barbara; Inouye, Masayori

    2011-05-27

    To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (∼36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.

  8. Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma.

    PubMed

    Decock, Anneleen; Ongenaert, Maté; Cannoodt, Robrecht; Verniers, Kimberly; De Wilde, Bram; Laureys, Geneviève; Van Roy, Nadine; Berbegall, Ana P; Bienertova-Vasku, Julie; Bown, Nick; Clément, Nathalie; Combaret, Valérie; Haber, Michelle; Hoyoux, Claire; Murray, Jayne; Noguera, Rosa; Pierron, Gaelle; Schleiermacher, Gudrun; Schulte, Johannes H; Stallings, Ray L; Tweddle, Deborah A; De Preter, Katleen; Speleman, Frank; Vandesompele, Jo

    2016-01-12

    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature.

  9. Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    PubMed Central

    Decock, Anneleen; Ongenaert, Maté; Cannoodt, Robrecht; Verniers, Kimberly; De Wilde, Bram; Laureys, Geneviève; Van Roy, Nadine; Berbegall, Ana P.; Bienertova-Vasku, Julie; Bown, Nick; Clément, Nathalie; Combaret, Valérie; Haber, Michelle; Hoyoux, Claire; Murray, Jayne; Noguera, Rosa; Pierron, Gaelle; Schleiermacher, Gudrun; Schulte, Johannes H.; Stallings, Ray L.; Tweddle, Deborah A.; De Preter, Katleen; Speleman, Frank; Vandesompele, Jo

    2016-01-01

    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature. PMID:26646589

  10. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    SciTech Connect

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  11. Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase

    SciTech Connect

    Townley,R.; Shapiro, L.

    2007-01-01

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular adenosine triphosphate (ATP) and AMP levels. Here we report crystal structures at 2.6 and 2.9 Angstrom resolution for ATP- and AMP-bound forms of a core {alpha}{beta}{gamma} adenylate-binding domain from the fission yeast AMPK homologue. ATP and AMP bind competitively to a single site in the {gamma} subunit, with their respective phosphate groups positioned near function-impairing mutants. Surprisingly, ATP binds without counter ions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  12. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana.

    PubMed Central

    van Drunen, C M; Oosterling, R W; Keultjes, G M; Weisbeek, P J; van Driel, R; Smeekens, S C

    1997-01-01

    The Arabidopsis thaliana genome is currently being sequenced, eventually leading towards the unravelling of all potential genes. We wanted to gain more insight into the way this genome might be organized at the ultrastructural level. To this extent we identified matrix attachment regions demarking potential chromatin domains, in a 16 kb region around the plastocyanin gene. The region was cloned and sequenced revealing six genes in addition to the plastocyanin gene. Using an heterologous in vitro nuclear matrix binding assay, to search for evolutionary conserved matrix attachment regions (MARs), we identified three such MARs. These three MARs divide the region into two small chromatin domains of 5 kb, each containing two genes. Comparison of the sequence of the three MARs revealed a degenerated 21 bp sequence that is shared between these MARs and that is not found elsewhere in the region. A similar sequence element is also present in four other MARs of Arabidopsis.Therefore, this sequence may constitute a landmark for the position of MARs in the genome of this plant. In a genomic sequence database of Arabidopsis the 21 bp element is found approximately once every 10 kb. The compactness of the Arabidopsis genome could account for the high incidence of MARs and MRSs we observed. PMID:9380515

  13. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates

    PubMed Central

    Turner, Kendrick B.; Naciri, Jennifer; Liu, Jinny L.; Anderson, George P.; Goldman, Ellen R.; Zabetakis, Dan

    2016-01-01

    Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency. PMID:26895405

  14. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  15. Ultraviolet radiation augments epidermal beta-adrenergic adenylate cyclase response

    SciTech Connect

    Iizuka, H.; Kajita, S.; Ohkawara, A.

    1985-05-01

    Pig skin was irradiated in vivo with fluorescent sunlamp tubes (peak emission at 305 nm). A significant increase in epidermal beta-adrenergic adenylate cyclase response was observed as early as 12 h following 1-2 minimum erythema doses (MEDs) UVB exposure, which lasted at least 48 h. The augmentation of adenylate cyclase response was relatively specific to the beta-adrenergic system and there was no significant difference in either adenosine- or histamine-adenylate cyclase response of epidermis. The increased beta-adrenergic adenylate cyclase response was less marked at higher doses of UVB exposure (5 MEDs); in the latter condition, a significant reduction in adenosine- or histamine-adenylate cyclase response was observed. There was no significant difference in either low- or high-Km cyclic AMP phosphodiesterase activity between control and UVB-treated skin at 1-2 MEDs. These data indicate that the epidermal adenylate cyclase responses are affected in vivo by UVB irradiation, which might be a significant regulatory mechanism of epidermal cyclic AMP systems.

  16. More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology

    PubMed Central

    Wong, Wing-Cheong; Maurer-Stroh, Sebastian; Eisenhaber, Frank

    2010-01-01

    Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging

  17. Minimum free energy path of ligand-induced transition in adenylate kinase.

    PubMed

    Matsunaga, Yasuhiro; Fujisaki, Hiroshi; Terada, Tohru; Furuta, Tadaomi; Moritsugu, Kei; Kidera, Akinori

    2012-01-01

    Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme.

  18. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG.

    PubMed

    Tan, Xiao-Feng; Dai, Ya-Nan; Zhou, Kang; Jiang, Yong-Liang; Ren, Yan-Min; Chen, Yuxing; Zhou, Cong-Zhao

    2015-04-01

    Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 Å resolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.

  19. Comparative sequence analysis of domain I of Plasmodium falciparum apical membrane antigen 1 from Saudi Arabia and worldwide isolates.

    PubMed

    Al-Qahtani, Ahmed A; Abdel-Muhsin, Abdel-Muhsin A; Bin Dajem, Saad M; AlSheikh, Adel Ali H; Bohol, Marie Fe F; Al-Ahdal, Mohammed N; Putaporntip, Chaturong; Jongwutiwes, Somchai

    2016-04-01

    The apical membrane antigen 1 of Plasmodium falciparum (PfAMA1) plays a crucial role in erythrocyte invasion and is a target of protective antibodies. Although domain I of PfAMA1 has been considered a promising vaccine component, extensive sequence diversity in this domain could compromise an effective vaccine design. To explore the extent of sequence diversity in domain I of PfAMA1, P. falciparum-infected blood samples from Saudi Arabia collected between 2007 and 2009 were analyzed and compared with those from worldwide parasite populations. Forty-six haplotypes and a novel codon change (M190V) were found among Saudi Arabian isolates. The haplotype diversity (0.948±0.004) and nucleotide diversity (0.0191±0.0008) were comparable to those from African hyperendemic countries. Positive selection in domain I of PfAMA1 among Saudi Arabian parasite population was observed because nonsynonymous nucleotide substitutions per nonsynonymous site (dN) significantly exceeded synonymous nucleotide substitutions per synonymous site (dS) and Tajima's D and its related statistics significantly deviated from neutrality in the positive direction. Despite a relatively low prevalence of malaria in Saudi Arabia, a minimum of 17 recombination events occurred in domain I. Genetic differentiation was significant between P. falciparum in Saudi Arabia and parasites from other geographic origins. Several shared or closely related haplotypes were found among parasites from different geographic areas, suggesting that vaccine derived from multiple shared epitopes could be effective across endemic countries.

  20. Sequence and domain organization of scruin, an actin-cross-linking protein in the acrosomal process of Limulus sperm

    PubMed Central

    1995-01-01

    The acrosomal process of Limulus sperm is an 80-microns long finger of membrane supported by a crystalline bundle of actin filaments. The filaments in this bundle are crosslinked by a 102-kD protein, scruin present in a 1:1 molar ratio with actin. Recent image reconstruction of scruin decorated actin filaments at 13-A resolution shows that scruin is organized into two equally sized domains bound to separate actin subunits in the same filament. We have cloned and sequenced the gene for scruin from a Limulus testes cDNA library. The deduced amino acid sequence of scruin reflects the domain organization of scruin: it consists of a tandem pair of homologous domains joined by a linker region. The domain organization of scruin is confirmed by limited proteolysis of the purified acrosomal process. Three different proteases cleave the native protein in a 5-kD Protease-sensitive region in the middle of the molecule to generate an NH2-terminal 47-kD and a COOH-terminal 56-kD protease-resistant domains. Although the protein sequence of scruin has no homology to any known actin-binding protein, it has similarities to several proteins, including four open reading frames of unknown function in poxviruses, as well as kelch, a Drosophila protein localized to actin-rich ring canals. All proteins that show homologies to scruin are characterized by the presence of an approximately 50-amino acid residue motif that is repeated between two and seven times. Crystallographic studies reveal this motif represents a four beta-stranded fold that is characteristic of the "superbarrel" structural fold found in the sialidase family of proteins. These results suggest that the two domains of scruin seen in EM reconstructions are superbarrel folds, and they present the possibility that other members of this family may also bind actin. PMID:7822422

  1. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis.

    PubMed Central

    Gorbalenya, A E; Koonin, E V; Donchenko, A P; Blinov, V M

    1989-01-01

    Amino acid sequences of 2 giant non-structural polyproteins (F1 and F2) of infectious bronchitis virus (IBV), a member of Coronaviridae, were compared, by computer-assisted methods, to sequences of a number of other positive strand RNA viral and cellular proteins. By this approach, juxtaposed putative RNA-dependent RNA polymerase, nucleic acid binding ("finger"-like) and RNA helicase domains were identified in F2. Together, these domains might constitute the core of the protein complex involved in the primer-dependent transcription, replication and recombination of coronaviruses. In F1, two cysteine protease-like domains and a growth factor-like one were revealed. One of the putative proteases of IBV is similar to 3C proteases of picornaviruses and related enzymes of como- nepo- and potyviruses. Search of IBV F1 and F2 sequences for sites similar to those cleaved by the latter proteases and intercomparison of the surrounding sequence stretches revealed 13 dipeptides Q/S(G) which are probably cleaved by the coronavirus 3C-like protease. Based on these observations, a partial tentative scheme for the functional organization and expression strategy of the non-structural polyproteins of IBV was proposed. It implies that, despite the general similarity to other positive strand RNA viruses, and particularly to potyviruses, coronaviruses possess a number of unique structural and functional features. PMID:2526320

  2. Antagonist activities of mecamylamine and nicotine show reciprocal dependence on beta subunit sequence in the second transmembrane domain.

    PubMed

    Webster, J C; Francis, M M; Porter, J K; Robinson, G; Stokes, C; Horenstein, B; Papke, R L

    1999-07-01

    We show that a portion of the TM2 domain regulates the sensitivity of beta subunit-containing rat neuronal nicotinic AChR to the ganglionic blocker mecamylamine, such that the substitution of 4 amino acids of the muscle beta subunit sequence into the neuronal beta4 sequence decreases the potency of mecamylamine by a factor of 200 and eliminates any long-term effects of this drug on receptor function. The same exchange of sequence that decreases inhibition by mecamylamine produces a comparable potentiation of long-term inhibition by nicotine. Inhibition by mecamylamine is voltage-dependent, suggesting a direct interaction of mecamylamine with sequence elements within the membrane field. We have previously shown that sensitivity to TMP (tetramethylpiperidine) inhibitors is controlled by the same sequence elements that determine mecamylamine sensitivity. However, inhibition by bis-TMP compounds is independent of voltage. Our experiments did not show any influence of voltage on the inhibition of chimeric receptors by nicotine, suggesting that the inhibitory effects of nicotine are mediated by binding to a site outside the membrane's electric field. An analysis of point mutations indicates that the residues at the 6' position within the beta subunit TM2 domain may be important for determining the effects of both mecamylamine and nicotine in a reciprocal manner. Single mutations at the 10' position are not sufficient to produce effects, but 6' 10' double mutants show more effect than do the 6' single mutants.

  3. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.

    PubMed

    Davis, Tony D; Mohandas, Poornima; Chiriac, Maria I; Bythrow, Glennon V; Quadri, Luis E N; Tan, Derek S

    2016-11-01

    Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets.

  4. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models.

    PubMed

    Khayatt, Barzan I; Overmars, Lex; Siezen, Roland J; Francke, Christof

    2013-01-01

    There is a growing interest in the Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) of microbes, fungi and plants because they can produce bioactive peptides such as antibiotics. The ability to identify the substrate specificity of the enzyme's adenylation (A) and acyl-transferase (AT) domains is essential to rationally deduce or engineer new products. We here report on a Hidden Markov Model (HMM)-based ensemble method to predict the substrate specificity at high quality. We collected a new reference set of experimentally validated sequences. An initial classification based on alignment and Neighbor Joining was performed in line with most of the previously published prediction methods. We then created and tested single substrate specific HMMs and found that their use improved the correct identification significantly for A as well as for AT domains. A major advantage of the use of HMMs is that it abolishes the dependency on multiple sequence alignment and residue selection that is hampering the alignment-based clustering methods. Using our models we obtained a high prediction quality for the substrate specificity of the A domains similar to two recently published tools that make use of HMMs or Support Vector Machines (NRPSsp and NRPS predictor2, respectively). Moreover, replacement of the single substrate specific HMMs by ensembles of models caused a clear increase in prediction quality. We argue that the superiority of the ensemble over the single model is caused by the way substrate specificity evolves for the studied systems. It is likely that this also holds true for other protein domains. The ensemble predictor has been implemented in a simple web-based tool that is available at http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/.

  5. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  6. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    PubMed Central

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard

    2016-01-01

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopox-viruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. PMID:23816434

  7. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity.

    PubMed

    Ni, M; Dehesh, K; Tepperman, J M; Quail, P H

    1996-06-01

    GT-2 is a novel DNA binding protein that interacts with a triplet functionally defined, positively acting GT-box motifs (GT1-bx, GT2-bx, and GT3-bx) in the rice phytochrome A gene (PHYA) promoter. Data from a transient transfection assay used here show that recombinant GT-2 enhanced transcription from both homologous and heterologous GT-box-containing promoters, thereby indicating that this protein can function as a transcriptional activator in vivo. Previously, we have shown that GT-2 contains separate DNA binding determinants in its N- and C-terminal halves, with binding site preferences for the GT3-bx and GT2-bx promoter motifs, respectively. Here, we demonstrate that the minimal DNA binding domains reside within dual 90-amino acid polypeptide segments encompassing duplicated sequences, termed trihelix regions, in each half of the molecule, plus 15 additional immediately adjacent amino acids downstream. These minimal binding domains retained considerable target sequence selectivity for the different GT-box motifs, but this selectivity was enhanced by a separate polypeptide segment farther downstream on the C-terminal side of each trihelix region. Therefore, the data indicate that the twin DNA binding domains of GT-2 each consist of a general GT-box recognition core with intrinsic differential binding activity toward closely related target motifs and a modified sequence conferring higher resolution reciprocal selectivity between these motifs.

  8. Nuclear Magnetic Resonance Structure of a Novel Globular Domain in RBM10 Containing OCRE, the Octamer Repeat Sequence Motif.

    PubMed

    Martin, Bryan T; Serrano, Pedro; Geralt, Michael; Wüthrich, Kurt

    2016-01-05

    The OCtamer REpeat (OCRE) has been annotated as a 42-residue sequence motif with 12 tyrosine residues in the spliceosome trans-regulatory elements RBM5 and RBM10 (RBM [RNA-binding motif]), which are known to regulate alternative splicing of Fas and Bcl-x pre-mRNA transcripts. Nuclear magnetic resonance structure determination showed that the RBM10 OCRE sequence motif is part of a 55-residue globular domain containing 16 aromatic amino acids, which consists of an anti-parallel arrangement of six β strands, with the first five strands containing complete or incomplete Tyr triplets. This OCRE globular domain is a distinctive component of RBM10 and is more widely conserved in RBM10s across the animal kingdom than the ubiquitous RNA recognition components. It is also found in the functionally related RBM5. Thus, it appears that the three-dimensional structure of the globular OCRE domain, rather than the 42-residue OCRE sequence motif alone, confers specificity on RBM10 intermolecular interactions in the spliceosome.

  9. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain.

    PubMed

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.

  10. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.

    PubMed

    Lei, Weiwei; Zhang, Yong; Yu, Guoyu; Jiang, Ping; He, Yingying; Lee, Wenhui; Zhang, Yun

    2011-04-01

    The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs.

  11. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    SciTech Connect

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2016-09-05

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  12. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

    PubMed

    Miller, Bradley R; Drake, Eric J; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2016-10-21

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  13. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    PubMed

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-08

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.

  14. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with Alpha-Alpha Domain Architecture that Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence

    PubMed Central

    Harris, Golda G.; Lombardi, Patrick M.; Pemberton, Travis A.; Matsui, Tsutomu; Weiss, Thomas M.; Cole, Kathryn E.; Köksal, Mustafa; Murphy, Frank V.; Vedula, L. Sangeetha; Chou, Wayne K.W.; Cane, David E.; Christianson, David W.

    2015-01-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg2+ for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with 3 Mg2+ ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed based on ~36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  15. Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences.

    PubMed

    Dos Santos, Ália; Hadjivasiliou, Andreas; Ossa, Felipe; Lim, Novandy K; Turgut, Aylin; Taylor, Maureen E; Drickamer, Kurt

    2017-02-01

    Human dendritic cell-specific intercellular adhesion molecule-1 grabbing nonintegrin, DC-SIGN, and the sinusoidal endothelial cell receptor DC-SIGNR or L-SIGN, are closely related sugar-binding receptors. DC-SIGN acts both as a pathogen-binding endocytic receptor and as a cell adhesion molecule, while DC-SIGNR has only the pathogen-binding function. In addition to differences in the sugar-binding properties of the carbohydrate-recognition domains in the two receptors, there are sequence differences in the adjacent neck domains, which are coiled-coil tetramerization domains comprised largely of 23-amino acid repeat units. A series of model polypeptides consisting of uniform repeat units have been characterized by gel filtration, differential scanning calorimetry and circular dichroism. The results demonstrate that two features characterize repeat units which form more stable tetramers: a leucine reside in the first position of the heptad pattern of hydrophobic residues that pack on the inside of the coiled coil and an arginine residue on the surface of the coiled coil that forms a salt bridge with a glutamic acid residue in the same polypeptide chain. In DC-SIGNR from all primates, very stable repeat units predominate, so the carbohydrate-recognition domains must be held relatively closely together. In contrast, stable repeat units are found only near the membrane in DC-SIGN. The presence of residues that disrupt tetramer formation in repeat units near the carbohydrate-recognition domains of DC-SIGN would allow these domains to splay further apart. Thus, the neck domains of DC-SIGN and DC-SIGNR can contribute to the different functions of these receptors by presenting the sugar-binding sites in different contexts.

  16. Oligomerization domains in the glycan‐binding receptors DC‐SIGN and DC‐SIGNR: Sequence variation and stability differences

    PubMed Central

    dos Santos, Ália; Hadjivasiliou, Andreas; Ossa, Felipe; Lim, Novandy K.; Turgut, Aylin; Taylor, Maureen E.

    2016-01-01

    Abstract Human dendritic cell‐specific intercellular adhesion molecule‐1 grabbing nonintegrin, DC‐SIGN, and the sinusoidal endothelial cell receptor DC‐SIGNR or L‐SIGN, are closely related sugar‐binding receptors. DC‐SIGN acts both as a pathogen‐binding endocytic receptor and as a cell adhesion molecule, while DC‐SIGNR has only the pathogen‐binding function. In addition to differences in the sugar‐binding properties of the carbohydrate‐recognition domains in the two receptors, there are sequence differences in the adjacent neck domains, which are coiled‐coil tetramerization domains comprised largely of 23‐amino acid repeat units. A series of model polypeptides consisting of uniform repeat units have been characterized by gel filtration, differential scanning calorimetry and circular dichroism. The results demonstrate that two features characterize repeat units which form more stable tetramers: a leucine reside in the first position of the heptad pattern of hydrophobic residues that pack on the inside of the coiled coil and an arginine residue on the surface of the coiled coil that forms a salt bridge with a glutamic acid residue in the same polypeptide chain. In DC‐SIGNR from all primates, very stable repeat units predominate, so the carbohydrate‐recognition domains must be held relatively closely together. In contrast, stable repeat units are found only near the membrane in DC‐SIGN. The presence of residues that disrupt tetramer formation in repeat units near the carbohydrate‐recognition domains of DC‐SIGN would allow these domains to splay further apart. Thus, the neck domains of DC‐SIGN and DC‐SIGNR can contribute to the different functions of these receptors by presenting the sugar‐binding sites in different contexts. PMID:27859859

  17. Studying Students' Learning Processes Used during Physics Teaching Sequence about Gas with Networks of Ideas and Their Domain of Applicability

    NASA Astrophysics Data System (ADS)

    Givry, Damien; Tiberghien, Andree

    2012-01-01

    In literature, several processes have been suggested to describe conceptual changes being undertaken. However, a few parts of studies analyse in great detail which students' learning processes are involved in physics classes during teaching, and how they are used. Following a socio-constructivist approach using tools coming from discourse analysis, we suggest studying three processes of students' learning: (1) establishing links between ideas, (2) increasing the domain of applicability of ideas, or (3) decreasing the domain of applicability of ideas. Our database consists of video data and written worksheets of two students at the upper-secondary school level (Grade 10 [15-year-old students]) during a one-month teaching sequence about gas. Based on semiotic resources contained in oral and written language, we reconstruct in great detail all the ideas about gas expressed by both students during the entire teaching sequence. Our analysis deals with (1) how learning processes are identified based on the ideas expressed by students, and (2) how the three learning processes are used by the two students during teaching. Our results show that during the teaching sequence: (1) the emergence of the networks of three ideas is supported by networks of two ideas expressed previously by students; (2) both students express more networks of two ideas than networks of three ideas; (3) the process 'increasing the domain of applicability' of an idea or a network of ideas is very often involved; and (4) the process 'decreasing the domain of applicability' of an idea or network of ideas is rarely used by them.

  18. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    PubMed Central

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  19. Interactions between Encoding and Retrieval in the Domain of Sequence-Learning

    ERIC Educational Resources Information Center

    Perlman, Amotz; Tzelgov, Joseph

    2006-01-01

    In this article, the authors propose to characterize sequence learning in terms of automatic versus nonautomatic processing and to apply this contrast independently to knowledge acquisition and retrieval. In several experiments of sequence learning, automaticity of both the acquisition and retrieval of the acquired knowledge was independently…

  20. Sequence Tolerance of a Highly Stable Single Domain Antibody: Comparison of Computational and Experimental Profiles

    DTIC Science & Technology

    2016-09-09

    unusually high thermal stability is explored by a combined computational and experimental study. Starting with the crystallographic structure ...RosettaBackrub simulations were applied to model sequence- structure tolerance profiles and identify key substitution sites. Experimental site-directed...1]. From an experimental perspective, sequence- structure tolerance is typically probed by site-directed mutagenesis and the landscape is thermal

  1. Critical domains within the sequence of human organic anion transporting polypeptides.

    PubMed

    Hong, Mei

    2014-03-01

    Organic anion-transporting polypeptides (human OATPs; other species Oatps; gene family SLC21/SLCO) play important roles in drug absorption and distribution. In recent years, much information has been obtained on substrates that are transported by OATPs. Computer-based hydropathy analysis predicts that OATP family members share several structural features including twelve transmembrane domains (TMs), conserved cysteine residues at extracellular loop 5, glycosylation sites, PDZ binding domains as well as putative phosphorylation sites. Studies on transmembrane domains have identified several amino acids that are essential for substrate uptake; while mutation of the conserved cysteine residues and glycosylation sites resulted in mis-processing transporter proteins. The interaction with PDZ proteins and phosphorylation modification of OATPs, on the other hand, mainly regulate the trafficking of these transporters. Although progress has been made on revealing the critical domains of OATPs, information is still limited and more studies on these aspects are needed. A better understanding of the important structural domains of OATPs will shed light on future targeted drug design and a more in-depth analysis of inter-individual variability of drug disposition.

  2. Structural and biophysical analysis of sequence insertions in the Venezuelan Equine Encephalitis Virus macro domain.

    PubMed

    Guillén, Jaime; Lichière, Julie; Rabah, Nadia; Beitzel, Brett F; Canard, Bruno; Coutard, Bruno

    2015-04-02

    Random transposon insertions in viral genomes can be used to reveal genomic regions important for virus replication. We used these genomic data to evaluate at the protein level the effect of such insertions on the Venezuelan Equine Encephalitis Virus nsP3 macro domain. The structural analysis showed that transposon insertions occur mainly in loops connecting the secondary structure elements. Some of the insertions leading to a temperature sensitive viral phenotype (ts) are close to the cleavage site between nsP2 and nsP3 or the ADP-ribose binding site, two important functions of the macro domain. Using four mutants mimicking the transposon insertions, we confirmed that these insertions can affect the macro domain properties without disrupting the overall structure of the protein.

  3. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  4. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif.

    PubMed

    Makkar, Pooja; Metpally, Raghu Prasad R; Sangadala, Sreedhara; Reddy, Boojala Vijay B

    2009-04-01

    The Smads are a group of related intracellular proteins critical for transmitting the signals to the nucleus from the transforming growth factor-beta (TGF-beta) superfamily of proteins at the cell surface. The prototypic members of the Smad family, Mad and Sma, were first described in Drosophila and Caenorhabditis elegans, respectively. Related proteins in Xenopus, Humans, Mice and Rats were subsequently identified, and are now known as Smads. Smad protein family members act downstream in the TGF-beta signaling pathway mediating various biological processes, including cell growth, differentiation, matrix production, apoptosis and development. Smads range from about 400-500 amino acids in length and are grouped into the receptor-regulated Smads (R-Smads), the common Smads (Co-Smads) and the inhibitory Smads (I-Smads). There are eight Smads in mammals, Smad1/5/8 (bone morphogenetic protein regulated) and Smad2/3 (TGF-beta/activin regulated) are termed R-Smads, Smad4 is denoted as Co-Smad and Smad6/7 are inhibitory Smads. A typical Smad consists of a conserved N-terminal Mad Homology 1 (MH1) domain and a C-terminal Mad Homology 2 (MH2) domain connected by a proline rich linker. The MH1 domain plays key role in DNA recognition and also facilitates the binding of Smad4 to the phosphorylated C-terminus of R-Smads to form activated complex. The MH2 domain exhibits transcriptional activation properties. In order to understand the structural basis of interaction of various Smads with their target proteins and the promoter DNA, we modeled MH1 domain of the remaining mammalian Smads based on known crystal structures of Smad3-MH1 domain bound to GTCT Smad box DNA sequence (1OZJ). We generated a B-DNA structure using average base-pair parameters of Twist, Tilt, Roll and base Slide angles. We then modeled interaction pose of the MH1 domain of Smad1/5/8 to their corresponding DNA sequence motif GCCG. These models provide the structural basis towards understanding functional

  5. A distributed coding approach for stereo sequences in the tree structured Haar transform domain

    NASA Astrophysics Data System (ADS)

    Cancellaro, M.; Carli, M.; Neri, A.

    2009-02-01

    In this contribution, a novel method for distributed video coding for stereo sequences is proposed. The system encodes independently the left and right frames of the stereoscopic sequence. The decoder exploits the side information to achieve the best reconstruction of the correlated video streams. In particular, a syndrome coder approach based on a lifted Tree Structured Haar wavelet scheme has been adopted. The experimental results show the effectiveness of the proposed scheme.

  6. Rapid and simple determination of T1 relaxation times in time-domain NMR by Continuous Wave Free Precession sequence

    NASA Astrophysics Data System (ADS)

    Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto

    2016-09-01

    Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.

  7. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field.

    PubMed

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  8. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

    NASA Astrophysics Data System (ADS)

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  9. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

    PubMed Central

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  10. Structure of the RNA 30-Phosphate Cyclase-Adenylate Intermediate Illuminates Nucleotide Specificity and Covalent Nucleotidyl Transfer

    SciTech Connect

    Tanaka, N.; Smith, P; Shuman, S

    2010-01-01

    RNA 3-phosphate cyclase (RtcA) synthesizes RNA 2,3 cyclic phosphate ends via three steps: reaction with ATP to form a covalent RtcA-AMP intermediate; transfer of adenylate to an RNA 3-phosphate to form RNA(3)pp(5)A; and attack of the vicinal O2 on the 3-phosphorus to form a 2,3 cyclic phosphate. Here we report the 1.7 {angstrom} crystal structure of the RtcA-AMP intermediate, which reveals the mechanism of nucleotidyl transfer. Adenylate is linked via a phosphoamide bond to the His309 N{var_epsilon} atom. A network of hydrogen bonds to the ribose O2 and O3 accounts for the stringent ribonucleotide preference. Adenine is sandwiched in a hydrophobic pocket between Tyr284 and Pro131 and the preference for adenine is enforced by Phe135, which packs against the purine C2 edge. Two sulfates bound near the adenylate plausibly mimic the 3-terminal and penultimate phosphates of RNA. The structure illuminates how the four {alpha}2/{beta}4 domains contribute to substrate binding and catalysis.

  11. Next generation sequencing in the clinical domain: clinical advantages, practical, and ethical challenges.

    PubMed

    Thompson, Rose; Drew, Cheney J G; Thomas, Rhys H

    2012-01-01

    There has been an academic "gold rush" with researchers mining the deep seams of whole-exome and whole-genome sequencing since 2008. Although undoubtedly a major advance initially for identifying new disease-associated genes for rare monogenetic disorders--more recently, common and complex conditions have been successfully studied using these techniques. With great power comes great responsibility, however, and we must not forget that next generation sequencing produces unique ethical conundrums and validation challenges. We review the progression of published papers using whole-exome sequencing from a clinical and technical viewpoint before then reflecting on the key arguments that need to be fully understood before these tools can become a routine part of clinical practice and we ask what may be the role for the biomedical scientists?

  12. Amino acid sequence around the active-site serine residue in the acyltransferase domain of goat mammary fatty acid synthetase.

    PubMed Central

    Mikkelsen, J; Højrup, P; Rasmussen, M M; Roepstorff, P; Knudsen, J

    1985-01-01

    Goat mammary fatty acid synthetase was labelled in the acyltransferase domain by formation of O-ester intermediates by incubation with [1-14C]acetyl-CoA and [2-14C]malonyl-CoA. Tryptic-digest and CNBr-cleavage peptides were isolated and purified by high-performance reverse-phase and ion-exchange liquid chromatography. The sequences of the malonyl- and acetyl-labelled peptides were shown to be identical. The results confirm the hypothesis that both acetyl and malonyl groups are transferred to the mammalian fatty acid synthetase complex by the same transferase. The sequence is compared with those of other fatty acid synthetase transferases. PMID:3922356

  13. Activation of fat cell adenylate cyclase by protein kinase C

    SciTech Connect

    Naghshineh, S.; Noguchi, M.; Huang, K.P.; Londos, C.

    1986-05-01

    Purified protein kinase C (C-kinase) from guinea pig pancreas and rat brain stimulated adenylate cyclase activity in purified rat adipocyte membranes. Cyclase stimulation occurred over 100 to 1000 mU/ml of C-kinase activity, required greater than 10 ..mu..M calcium, proceeded without a lag, was not readily reversible, and required no exogenous phospholipid. Moreover, C-kinase inhibitors, such as chlorpromazine and palmitoyl carnitine, inhibited selectively adenylate cyclase which was activated by C-kinase and calcium. Depending on assay conditions, 10 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) either enhanced or was required for kinase action on cyclase. Also, TPA plus calcium promoted the quantitative association of C-kinase with membranes. Adenylate cyclase activation by C-kinase was seen both in the presence and absence of exogenous GTP, indicating that the kinase effect does not result from an action on the GTP-binding, inhibitory regulatory component (N/sub i/) of the cyclase system. Moreover, the kinase effect was seen in the presence of non-phosphorylating ATP analogs, such as AppNHp and AppCH/sub 2/p, suggesting that the effects of C-kinase described herein may result from association with, rather than phosphorylation of, adenylate cyclase.

  14. Interaction of 7-bromoacetyl-7-desacetylforskolin with adenylate cyclase

    SciTech Connect

    Laurenza, A.; Morris, D.I.; Seamon, K.B.

    1986-05-01

    7-Bromoacetyl-7-desacetylforskolin (BrAcFk) and the 12-tritio derivative (/sup 3/H-BrAckFk) were synthesized as alkylating analogs of forskolin. BrAcFk stimulated adenylate cyclase in human platelet and bovine brain membranes with an EC50 of 50..mu..M and inhibited /sup 3/H-forskolin binding to these membranes with a K/sub i/ of 300 nM. /sup 3/H-forskolin binding was decreased in membranes pretreated for 20 min with 10 ..mu..M BrAcFk. The i,9-dideoxy derivative of BrAcFk did not activate adenylate cyclase or inhibit /sup 3/H-forskolin binding. Proteins labelled by BrAcFk in solubilized preparations from bovine brain and human platelets were identified by fluorography of SDS gels. The two predominant bands labelled in the low and high molecular weight regions had molecular weights of 50,000 and 135,000 daltons respectively. The 135,000 dalton band identified by fluorography coeluted with adenylate cyclase activity on a Dupont GF450 column and has a molecular weight identical to that of the catalytic subunit determined by silver staining of SDS gels. These results suggest that BrAcFk can react covalently with the catalytic subunit of adenylate cyclase.

  15. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin.

    PubMed Central

    Gueirard, P; Guiso, N

    1993-01-01

    Bordetella bronchiseptica is a pathogen of laboratory, domestic, and wild animals and sometimes of humans. In the present study some characteristics of the virulence of B. bronchiseptica isolates of different origin were studied. All isolates had similar phenotypes, similar bacteriological characters, and synthesized adenylate cyclase-hemolysin, filamentous hemagglutinin and pertactin but not pertussis toxin. These isolates, however, differed in their ability to express dermonecrotic toxin and to cause a lethal infection, but no correlation was found with the human or animal origin of the isolates. The fact that the most virulent isolate did not express dermonecrotic toxin suggests that this toxin does not play an important role in the virulence of the bacteria in the murine model. After infection with virulent B. bronchiseptica a very early synthesis and a persistence of anti-adenylate cyclase-hemolysin and anti-filamentous hemagglutinin antibodies were observed in the sera of infected mice, suggesting a persistence of the bacteria or of its antigens. B. bronchiseptica adenylate cyclase-hemolysin was purified and was shown to be a major protective antigen against B. bronchiseptica infection. Furthermore, we showed that its immunological and protective properties were different from that of B. pertussis adenylate cyclase-hemolysin, confirming that Bordetella species are immunologically different. Images PMID:8406794

  16. Adenylating Enzymes in Mycobacterium tuberculosis as Drug Targets

    PubMed Central

    Duckworth, Benjamin P.; Nelson, Kathryn M.; Aldrich, Courtney C.

    2013-01-01

    Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including high-throughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNA-synthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl-AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases. PMID:22283817

  17. Adenylate cyclase toxin (ACT) from Bordetella hinzii: characterization and differences from ACT of Bordetella pertussis.

    PubMed

    Donato, Gina M; Hsia, Hung-Lun J; Green, Candace S; Hewlett, Erik L

    2005-11-01

    Bordetella hinzii is a commensal respiratory microorganism in poultry but is increasingly being recognized as an opportunistic pathogen in immunocompromised humans. Although associated with a variety of disease states, practically nothing is known about the mechanisms employed by this bacterium. In this study, we show by DNA sequencing and reverse transcription-PCR that both commensal and clinical strains of B. hinzii possess and transcriptionally express cyaA, the gene encoding adenylate cyclase toxin (ACT) in other pathogenic Bordetella species. By Western blotting, we also found that B. hinzii produces full-length ACT protein in quantities that are comparable to those made by B. pertussis. In contrast to B. pertussis ACT, however, ACT from B. hinzii is less extractable from whole bacteria, nonhemolytic, has a 50-fold reduction in adenylate cyclase activity, and is unable to elevate cyclic AMP levels in host macrophages (nontoxic). The decrease in enzymatic activity is attributable, at least in part, to a decreased binding affinity of B. hinzii ACT for calmodulin, the eukaryotic activator of B. pertussis ACT. In addition, we demonstrate that the lack of intoxication by B. hinzii ACT may be due to the absence of expression of cyaC, the gene encoding the accessory protein required for the acylation of B. pertussis ACT. These results demonstrate the expression of ACT by B. hinzii and represent the first characterization of a potential virulence factor of this organism.

  18. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    PubMed Central

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic boundaries. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness. PMID:27703668

  19. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  20. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    PubMed

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level.

  1. Domain of the composition of some triangles in the space of p-summable sequences

    NASA Astrophysics Data System (ADS)

    Başar, Feyzi

    2014-08-01

    Let 1 ≤ p < ∞. In the present paper, we introduce the space ˜ℓp of Euler-Cesáro p-summable difference sequences. Furthermore, we give an inclusion relation concerning the space ˜ℓp and compute the alpha-, beta- and gamma-duals of the space ˜ℓp and construct its basis. We characterize the classes (˜ℓp: ℓ∞), (˜ℓp: c) and (˜ℓp: c0) of infinite matrices, and give the characterization of some other classes of matrix transformations from the space ˜ℓp to the Euler, Riesz, difference, etc., sequence spaces, by means of a basic lemma.

  2. Satellite DNA sequences flank amplified DHFR domains in marker chromosomes of mouse fibrosarcoma cells.

    PubMed

    Riva, P; Orlando, S; Labella, T; Larizza, L

    1994-01-01

    This study centers on marker chromosomes carrying expanded chromosomal regions which were observed in two independent derivatives of the AA12 murine fibrosarcoma line, the 10(-3) M MTX-res H2 and the 5 x 10(-7) M MTX-res E. Previous characterization of the marker chromosomes of MTX-res variants showed their common derivation from a marker chromosome (m) of the parental line, endowed with two interstitial C-bands. Cytogenetic evidence pointed to one C-band of m as the site involved in the chromosomal rearrangements leading to the HSR/ASR chromosomes. ISH of a 3H-labeled satellite DNA probe allowed satellite sequences flanking the HSR/ASR in the marker chromosomes, where the C-band was no longer visible, to be detected. FISH experiments using biotinylated DHFR and satellite DNA probes showed that the respective target sequences are contiguous in new marker chromosomes. They also allowed inter- and intrachromosomal rearrangements to be seen at DHFR amplicons and satellite sequences. Double-color FISH using digoxygenated satellite DNA and biotinylated pDHFR7 showed that in a marker chromosome from the H2 cell line the two target sequences are not only adjacent, but closer than 3 Mb, as indicated by overlapping of the different fluorescence signals given by the two probes. Another marker chromosome in the E variant was shown to display a mixed ladder structure consisting of a head-to-head tandem of irregularly-sized satellite DNA blocks, with two symmetrical interspersed DHFR clusters.

  3. Domain General Sequence Operations Contribute to Pre-SMA Involvement in Visuo-spatial Processing.

    PubMed

    Leek, E Charles; Yuen, Kenneth S L; Johnston, Stephen J

    2016-01-01

    This study used 3T MRI to elucidate the functional role of supplementary motor area (SMA) in relation to visuo-spatial processing. A localizer task contrasting sequential number subtraction and repetitive button pressing was used to functionally delineate non-motor sequence processing in pre-SMA, and activity in SMA-proper associated with motor sequencing. Patterns of BOLD responses in these regions were then contrasted to those from two tasks of visuo-spatial processing. In one task participants performed Mental Rotation (MR) in which recognition memory judgments were made to previously memorized 2D novel patterns across image-plane rotations. The other task involved abstract grid navigation (GN) in which observers computed a series of imagined location shifts in response to directional (arrow) cues around a mental grid. The results showed overlapping activation in pre-SMA for sequential subtraction and both visuo-spatial tasks. These results suggest that visuo-spatial processing is supported by non-motor sequence operations that involve pre-SMA. More broadly, these data further highlight the functional heterogeneity of pre-SMA, and show that its role extends to processes beyond the planning and online control of movement.

  4. Analysis of Ori-S sequence of HSV-1: identification of one functional DNA binding domain.

    PubMed Central

    Deb, S; Deb, S P

    1989-01-01

    Using gel retardation assays, we have detected an Ori-S binding activity in the nuclear extract of HSV-1 infected Vero cells. The sequence-specific DNA binding activity seems to be identical to that described by Elias et al. (Proc. Natl. Acad. Sci. USA 83: 6322-6326, 1986). This activity fails to retard a mutant origin DNA that has a 5 bp deletion in the reported protein binding site along with an A to T substitution at a position 16 base-pairs away from the site. This mutant also failed to replicate in a transient replication assay, thus correlating binding of the factor on the origin to replication efficiency. Using crude nuclear extracts as the source of the factor and with the help of footprint and gel retardation analyses, we confirmed that protection is only observed on the preferred site of binding on and near the left arm of the Ori-S palindrome. In order to analyze the sequence specificity of the binding we have generated a set of binding site mutants. Competition experiments with these mutant origins indicate that the sequence 5'-TTCGCACTT-3' is crucial for binding. Images PMID:2541411

  5. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo

    PubMed Central

    Langlois, Christine R.; Serio, Tricia R.

    2016-01-01

    Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. PMID:27814358

  6. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  7. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  8. The energy landscape of adenylate kinase during catalysis

    PubMed Central

    Kerns, S. Jordan; Agafonov, Roman V.; Cho, Young-Jin; Pontiggia, Francesco; Otten, Renee; Pachov, Dimitar V.; Kutter, Steffen; Phung, Lien A.; Murphy, Padraig N.; Thai, Vu; Alber, Tom; Hagan, Michael F.; Kern, Dorothee

    2014-01-01

    Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, MD simulations, and crystallography of active complexes. We find that the Mg2+ cofactor activates two distinct molecular events, phosphoryl transfer (>105-fold) and lid-opening (103-fold). In contrast, mutation of an essential active-site arginine decelerates phosphoryl transfer 103-fold without substantially affecting lid-opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a pre-organized active site. PMID:25580578

  9. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1975-01-01

    Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate to hydroxyl groups of homopolyribonucleotides is studied as a possible chemical model of biochemical aminoacylation of transfer RNA (tRNA). The effect of pH on imidazole-catalyzed transfer of phenylalanyl residues to poly(U) and poly(A) double helix strands, the number of peptide linkages and their lability to base and neutral hydroxylamine, and the nature of adenylate condensation products are investigated. The chemical model entertained exhibits a constraint by not acylating the hydroxyl groups of polyribonucleotides in a double helix. The constraint is consistent with selective biochemical aminoacylation at the tRNA terminus. Interest in imidazole as a model of histidine residue in protoenzymes participating in prebiotic aminoacyl transfer to polyribonucleotides, and in rendering the tRNA a more efficient adaptor, is indicated.

  10. Domain of the composition of some triangles in the space of p-summable sequences for 0 < p ≤ 1

    NASA Astrophysics Data System (ADS)

    Başar, Feyzi

    2016-08-01

    Let 0

    domain of the triangle B ˜ which is the composition of E1, C1 and Δ of the Euler, Cesàro means of order one and the backward difference matrix. Furthermore, we give an inclusion relation concerning the space ℓ˜ p and compute the alpha-, beta- and gamma-duals of the space ℓ˜ p and construct its basis. We characterize the classes (ℓ˜ p:ℓ∞ ), (ℓ˜ p:c ) and (ℓ˜ p:c0 ) of infinite matrices, and give the characterization of some other classes of matrix transformations from the space ℓ˜ p to the Euler, Riesz, difference, etc., sequence spaces, by means of a basic lemma.

  11. Sequence analysis of the non-recurring C-terminal domains shows that insect lipoprotein receptors constitute a distinct group of LDL receptor family members.

    PubMed

    Rodenburg, Kees W; Smolenaars, Marcel M W; Van Hoof, Dennis; Van der Horst, Dick J

    2006-04-01

    Lipoprotein-mediated delivery of lipids in mammals involves endocytic receptors of the low density lipoprotein (LDL) receptor (LDLR) family. In contrast, in insects, the lipoprotein, lipophorin (Lp), functions as a reusable lipid shuttle in lipid delivery, and these animals, therefore, were not supposed to use endocytic receptors. However, recent data indicate additional endocytic uptake of Lp, mediated by a Lp receptor (LpR) of the LDLR family. The two N-terminal domains of LDLR family members are involved in ligand binding and dissociation, respectively, and are composed of a mosaic of multiple repeats. The three C-terminal domains, viz., the optional O-linked glycosylation domain, the transmembrane domain, and the intracellular domain, are of a non-repetitive sequence. The present classification of newly discovered LDLR family members, including the LpRs, bears no relevance to physiological function. Therefore, as a novel approach, the C-terminal domains of LDLR family members across the entire animal kingdom were used to perform a sequence comparison analysis in combination with a phylogenetic tree analysis. The LpRs appeared to segregate into a specific group distinct from the groups encompassing the other family members, and each of the three C-terminal domains of the insect receptors is composed of unique set of sequence motifs. Based on conservation of sequence motifs and organization of these motifs in the domains, LpR resembles most the groups of the LDLRs, very low density lipoprotein (VLDL) receptors, and vitellogenin receptors. However, in sequence aspects in which LpR deviates from these three receptor groups, it most notably resembles LDLR-related protein-2, or megalin. These features might explain the functional differences disclosed between insect and mammalian lipoprotein receptors.

  12. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    SciTech Connect

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. )

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  13. Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein?

    PubMed Central

    Gil-Moreno, Selene; Jiménez-Martí, Elena; Palacios, Òscar; Zerbe, Oliver; Dallinger, Reinhard; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion. PMID:26703589

  14. A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter

    PubMed Central

    Rickhag, Mattias; Hansen, Freja Herborg; Sørensen, Gunnar; Strandfelt, Kristine Nørgaard; Andresen, Bjørn; Gotfryd, Kamil; Madsen, Kenneth L.; Vestergaard-Klewe, Ib; Ammendrup-Johnsen, Ina; Eriksen, Jacob; Füchtbauer, Ernst-Martin; Gomeza, Jesus; Woldbye, David P.D.; Wörtwein, Gitta; Gether, Ulrik

    2013-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dramatic loss of DAT expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from DAT-AAA mice, we find markedly reduced DAT surface levels and evidence for enhanced constitutive internalization. In DAT-AAA neurons, but not in wild type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ domain interactions are critical for synaptic distribution of DAT in vivo and thereby for proper maintenance of dopamine homeostasis. PMID:23481388

  15. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  16. Can template-based protein models guide the design of sequence fitness for enhanced thermal stability of single domain antibodies?

    PubMed

    Olson, Mark A; Zabetakis, Dan; Legler, Patricia M; Turner, Kendrick B; Anderson, George P; Goldman, Ellen R

    2015-10-01

    We investigate the practical use of comparative (template-based) protein models in replica-exchange simulations of single-domain antibody (sdAb) chains to evaluate if the models can correctly predict in rank order the thermal susceptibility to unfold relative to experimental melting temperatures. The baseline model system is the recently determined crystallographic structure of a llama sdAb (denoted as A3), which exhibits an unusually high thermal stability. An evaluation of the simulation results for the A3 comparative model and crystal structure shows that, despite the overall low Cα root-mean-square deviation between the two structures, the model contains misfolded regions that yields a thermal profile of unraveling at a lower temperature. Yet comparison of the simulations of four different comparative models for sdAb A3, C8, A3C8 and E9, where A3C8 is a design of swapping the sequence of the complementarity determining regions of C8 onto the A3 framework, discriminated among the sequences to detect the highest and lowest experimental melting transition temperatures. Further structural analysis of A3 for selected alanine substitutions by a combined computational and experimental study found unexpectedly that the comparative model performed admirably in recognizing substitution 'hot spots' when using a support-vector machine algorithm.

  17. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  18. [Adenylate cyclase. A possible factor in the pathogenicity of Yersinia pestis].

    PubMed

    Michankin, B N; Chevchenko, L A; Asseeva, L E

    1992-01-01

    Biological effect of homogenous preparation of Y. pestis adenylate cyclase on eucaryotic cells was studied. Adenylate cyclase, added (7.5 x 10(8) g/ml) to guinea pig macrophages lowers the level of chemiluminescence to 50-70%, has an appreciable cytotoxic effect on peritoneal macrophages and suppresses phosphorylation processes of leucocyte proteins from white mice. The experimental results obtained allow to suggest Y. pestis adenylate cyclase to be a pathogenic factor, contributing to the development of plague infection.

  19. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  20. Some geometric properties of the domain of the double band matrix defined by Fibonacci numbers in the sequence space ℓ(p)

    NASA Astrophysics Data System (ADS)

    Uçar, Esmehan; Başar, Feyzi

    2014-08-01

    Quite recently, the sequence space ℓ(F, p) of non-absolute type has been introduced and studied which is the domain of the double band matrix F = (fnk) defined by the sequence (fn) of Fibonacci numbers in the sequence space ℓ(p) by Çapan and Başsar [1], where ℓ(p) denotes the space of all sequences x = (xk) such that Σk|xk|pk<∞ and was defined by Maddox [2]. The main purpose of this paper is to investigate the geometric properties of the space ℓ(F, p), like rotundity, Kadec-Klee property.

  1. Genome and metagenome sequencing: Using the human methyl-binding domain to partition genomic DNA derived from plant tissues1

    PubMed Central

    Yigit, Erbay; Hernandez, David I.; Trujillo, Joshua T.; Dimalanta, Eileen; Bailey, C. Donovan

    2014-01-01

    • Premise of the study: Variation in the distribution of methylated CpG (methyl-CpG) in genomic DNA (gDNA) across the tree of life is biologically interesting and useful in genomic studies. We illustrate the use of human methyl-CpG-binding domain (MBD2) to fractionate angiosperm DNA into eukaryotic nuclear (methyl-CpG-rich) vs. organellar and prokaryotic (methyl-CpG-poor) elements for genomic and metagenomic sequencing projects. • Methods: MBD2 has been used to enrich prokaryotic DNA in animal systems. Using gDNA from five model angiosperm species, we apply a similar approach to identify whether MBD2 can fractionate plant gDNA into methyl-CpG-depleted vs. enriched methyl-CpG elements. For each sample, three gDNA libraries were sequenced: (1) untreated gDNA, (2) a methyl-CpG-depleted fraction, and (3) a methyl-CpG-enriched fraction. • Results: Relative to untreated gDNA, the methyl-depleted libraries showed a 3.2–11.2-fold and 3.4–11.3-fold increase in chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA), respectively. Methyl-enriched fractions showed a 1.8–31.3-fold and 1.3–29.0-fold decrease in cpDNA and mtDNA, respectively. • Discussion: The application of MBD2 enabled fractionation of plant gDNA. The effectiveness was particularly striking for monocot gDNA (Poaceae). When sufficiently effective on a sample, this approach can increase the cost efficiency of sequencing plant genomes as well as prokaryotes living in or on plant tissues. PMID:25383266

  2. Novel insights into the interaction of UBA5 with UFM1 via a UFM1-interacting sequence.

    PubMed

    Padala, Prasanth; Oweis, Walaa; Mashahreh, Bayan; Soudah, Nadine; Cohen-Kfir, Einav; Todd, Emily A; Berndsen, Christopher E; Wiener, Reuven

    2017-03-30

    The modification of proteins by ubiquitin-fold modifier 1 (UFM1) is implicated in many human diseases. Prior to conjugation, UFM1 undergoes activation by its cognate activating enzyme, UBA5. UBA5 is a non-canonical E1 activating enzyme that possesses an adenylation domain but lacks a distinct cysteine domain. Binding of UBA5 to UFM1 is mediated via an amino acid sequence, known as the UFM1-interacting sequence (UIS), located outside the adenylation domain that is required for UFM1 activation. However, the precise boundaries of the UIS are yet not clear and are still under debate. Here we revisit the interaction of UFM1 with UBA5 by determining the crystal structure of UFM1 fused to 13 amino acids of human UBA5. Using binding and activity assays, we found that His 336 of UBA5, previously not reported to be part of the UIS, occupies a negatively charged pocket on UFM1's surface. This His is involved in UFM1 binding and if mutated perturbs activation of UFM1. Surprisingly, we also found that the interaction between two UFM1 molecules mimics how the UIS binds UFM1. Specifically, UFM1 His 70 resembles UBA5 His336 and enters a negatively charged pocked on the other UFM1 molecule. Our results refine our understanding of UFM1-UBA5 binding.

  3. Sequence of a cDNA clone encoding the polysialic acid-rich and cytoplasmic domains of the neural cell adhesion molecule N-CAM.

    PubMed Central

    Hemperly, J J; Murray, B A; Edelman, G M; Cunningham, B A

    1986-01-01

    Purified fractions of the neural cell-adhesion molecule N-CAM from embryonic chicken brain contain two similar polypeptides (Mr, 160,000 and 130,000), each containing an amino-terminal external binding region, a carbohydrate-rich central region, and a carboxyl-terminal region that is associated with the cell. Previous studies indicate that the two polypeptides arise by alternative splicing of mRNAs transcribed from a single gene. We report here the 3556-nucleotide sequence of a cDNA clone (pEC208) that encodes 964 amino acids from the carbohydrate and cell-associated domains of the larger N-CAM polypeptide followed by 664 nucleotides of 3' untranslated sequence. The predicted protein sequence contains attachment sites for polysialic acid-containing oligosaccharides, four tandem homologous regions of polypeptide resembling those seen in the immunoglobulin superfamily, and a single hydrophobic sequence that appears to be the membrane-spanning segment. The cytoplasmic domain carboxyl terminal to this segment includes a block of approximately equal to 250 amino acids present in the larger but not in the smaller N-CAM polypeptide. We designate these the ld (large domain) polypeptide and the sd (small domain) polypeptide. The intracellular domains of the ld and sd polypeptides are likely to be critical for cell-surface modulation of N-CAM by interacting in a differential fashion with other intrinsic proteins or with the cytoskeleton. PMID:3458261

  4. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    PubMed

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  5. Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3' end.

    PubMed Central

    Bujarski, J J; Ahlquist, P; Hall, T C; Dreher, T W; Kaesberg, P

    1986-01-01

    The genome of brome mosaic virus (BMV) is comprised of three (+) strand RNAs, each containing a similar, highly structured, 200 base long sequence at its 3' end. A 134 base subset of this sequence contains signals directing interaction of the viral RNA with BMV RNA replicase, ATP,CTP:tRNA nucleotidyl transferase and aminoacyl tRNA synthetase. A series of mutants containing deletions within this region, previously constructed and tested in vitro for the effect on replication and aminoacylation activities, has now been assayed in vitro for adenylation function and in vivo for ability to replicate in isolated protoplasts and whole plants. These tests indicate that features of viral RNA recognized by BMV replicase overlap those directing adenylation, but are distinct from those directing aminoacylation. Consequently, the lethality of a deletion preferentially inhibiting aminoacylation suggests that this function may have an essential role contributing to viral replication in vivo. An RNA3 mutant bearing a 20-base deletion yielding normal levels of aminoacylation and enhanced levels of replicase template activity and adenylation in vitro was able to replicate in protoplasts and plants; however, its accumulation in protoplasts was reduced relative to wild-type. This suggests that additional functions affecting the replication and accumulation of viral RNA reside in the conserved 3' sequence. Images Fig. 2. Fig. 3. Fig. 4. PMID:3758026

  6. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex.

    PubMed

    Uhart, Marina; Sirand-Pugnet, Pascal; Labarère, Jacques

    2007-04-01

    Mitochondrial small subunit (mtSSU) rDNA variable (V1, V2, V4, V6, V8 and V9) domain sequences and rRNA secondary structures evidenced eight molecular groups within 32 strains of the Agrocybe aegerita multispecies complex from different continents. mtSSU-rRNA secondary structure evolution occurred mainly by insertion/deletion of sequences from 8 to 57nt long. Preferential insertion/deletion sites correlated with loops of the mtSSU-rRNA secondary structures, and suggested that these events occurred in regions without interactions in the ribosomal-protein assembly. Indels modified the stem length (V1 and V4 domains) or the size and loop number (V6 and V9 domains). Three indels inserted in the V1 and V4 domains had 76.5% to 94.7% identity with short sequences of the mitochondrial cytochrome c oxidase gene; this fact and the presence of inverted repeated motifs within indel sequences suggested a mechanism of evolution based on insertion/deletion of sequences from another region of the mitochondrial genome. Phylogenetic relationships inferred using both ribosomal DNA sequences and rRNA secondary structures were congruent and evidenced three clades within the A. aegerita complex: European, Argentinean, and a more distant Asian-American clade including A. aegerita and A. chaxingu strains. These results suggested that numerous genetic exchanges occurred between Asian-American strains after isolation of the European clade. V4-V6-V9 concatenated sequences of European and Argentinean clades had 86.1% identity, similar to the value calculated between two Agrocybe closely related species, suggesting that these clades could represent different species. A cleaved amplified polymorphic sequence test for rapid characterization of strains was developed.

  7. Russell body inducing threshold depends on the variable domain sequences of individual human IgG clones and the cellular protein homeostasis.

    PubMed

    Stoops, Janelle; Byrd, Samantha; Hasegawa, Haruki

    2012-10-01

    Russell bodies are intracellular aggregates of immunoglobulins. Although the mechanism of Russell body biogenesis has been extensively studied by using truncated mutant heavy chains, the importance of the variable domain sequences in this process and in immunoglobulin biosynthesis remains largely unknown. Using a panel of structurally and functionally normal human immunoglobulin Gs, we show that individual immunoglobulin G clones possess distinctive Russell body inducing propensities that can surface differently under normal and abnormal cellular conditions. Russell body inducing predisposition unique to each immunoglobulin G clone was corroborated by the intrinsic physicochemical properties encoded in the heavy chain variable domain/light chain variable domain sequence combinations that define each immunoglobulin G clone. While the sequence based intrinsic factors predispose certain immunoglobulin G clones to be more prone to induce Russell bodies, extrinsic factors such as stressful cell culture conditions also play roles in unmasking Russell body propensity from immunoglobulin G clones that are normally refractory to developing Russell bodies. By taking advantage of heterologous expression systems, we dissected the roles of individual subunit chains in Russell body formation and examined the effect of non-cognate subunit chain pair co-expression on Russell body forming propensity. The results suggest that the properties embedded in the variable domain of individual light chain clones and their compatibility with the partnering heavy chain variable domain sequences underscore the efficiency of immunoglobulin G biosynthesis, the threshold for Russell body induction, and the level of immunoglobulin G secretion. We propose that an interplay between the unique properties encoded in variable domain sequences and the state of protein homeostasis determines whether an immunoglobulin G expressing cell will develop the Russell body phenotype in a dynamic cellular setting.

  8. The long zinc finger domain of PRDM9 forms a highly stable and long-lived complex with its DNA recognition sequence.

    PubMed

    Striedner, Yasmin; Schwarz, Theresa; Welte, Thomas; Futschik, Andreas; Rant, Ulrich; Tiemann-Boege, Irene

    2017-02-02

    PR domain containing protein 9 (PRDM9) is a meiosis-specific, multi-domain protein that regulates the location of recombination hotspots by targeting its DNA recognition sequence for double-strand breaks (DSBs). PRDM9 specifically recognizes DNA via its tandem array of zinc fingers (ZnFs), epigenetically marks the local chromatin by its histone methyltransferase activity, and is an important tether that brings the DNA into contact with the recombination initiation machinery. A strong correlation between PRDM9-ZnF variants and specific DNA motifs at recombination hotspots has been reported; however, the binding specificity and kinetics of the ZnF domain are still obscure. Using two in vitro methods, gel mobility shift assays and switchSENSE, a quantitative biophysical approach that measures binding rates in real time, we determined that the PRDM9-ZnF domain forms a highly stable and long-lived complex with its recognition sequence, with a dissociation halftime of many hours. The ZnF domain exhibits an equilibrium dissociation constant (K D) in the nanomolar (nM) range, with polymorphisms in the recognition sequence directly affecting the binding affinity. We also determined that alternative sequences (15-16 nucleotides in length) can be specifically bound by different subsets of the ZnF domain, explaining the binding plasticity of PRDM9 for different sequences. Finally, longer binding targets are preferred than predicted from the numbers of ZnFs contacting the DNA. Functionally, a long-lived complex translates into an enzymatically active PRDM9 at specific DNA-binding sites throughout meiotic prophase I that might be relevant in stabilizing the components of the recombination machinery to a specific DNA target until DSBs are initiated by Spo11.

  9. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    PubMed

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  10. Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains

    PubMed Central

    Slawson, Elizabeth E; Shaffer, Christopher D; Malone, Colin D; Leung, Wilson; Kellmann, Elmer; Shevchek, Rachel B; Craig, Carolyn A; Bloom, Seth M; Bogenpohl, James; Dee, James; Morimoto, Emiko TA; Myoung, Jenny; Nett, Andrew S; Ozsolak, Fatih; Tittiger, Mindy E; Zeug, Andrea; Pardue, Mary-Lou; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah CR

    2006-01-01

    Background Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago. Results Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %). Conclusion Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging. PMID:16507169

  11. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium

    PubMed Central

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Takahashi, Tetsuo; Tame, Jeremy R. H.; Iseki, Mineo; Park, Sam-Yong

    2016-01-01

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  12. Sequences that direct subcellular traffic of the Drosophila methoprene-tolerant protein (MET) are located predominantly in the PAS domains.

    PubMed

    Greb-Markiewicz, Beata; Orłowski, Marek; Dobrucki, Jerzy; Ożyhar, Andrzej

    2011-10-15

    Methoprene-tolerant protein (MET) is a key mediator of antimetamorphic signaling in insects. MET belongs to the family of bHLH-PAS transcription factors which regulate gene expression and determine essential physiological and developmental processes. The ability of many bHLH-PAS proteins to carry out their functions is related to the patterns of intracellular trafficking, which are determined by specific sequences and indicate that a nuclear localization signal (NLS) or a nuclear export signal (NES) is present and active. Therefore, the identification of NLS and NES signals is fundamental in order to understand the intracellular signaling role of MET. Nevertheless, data on the intracellular trafficking of MET are inconsistent, and until now there hasn't been any data on potential NLS and NES sequences. To analyze the trafficking of MET we designed a number of expression vectors encoding full-length MET, as well as various derivatives, that were fused to yellow fluorescent protein (YFP). Confocal microscopy analysis of the subcellular distribution of YFP-MET indicated that while this protein was localized mainly in the nucleus, it was also observed in the cytoplasm. This suggested the presence of both an NLS and NES in MET. Our work has shown that each of the two PAS domains of MET (PAS-A and PAS-B, respectively) contain one NLS and one NES sequence. Additional NES activity was present in the C-terminal fragment. The NLS activity located in PAS-B was dependent on the presence of juvenile hormone (JH), the potential ligand for MET. In contrast to this, JH didn't seem to be required for the NLS in PAS-A to be active. However, on the basis of current knowledge about the function of PAS-A in other bHLH-PAS proteins, we suggest there might be other proteins that control the activity of the NLS and possibly the NES located in the PAS-A of MET. Thus, the intracellular trafficking of MET seems to be regulated by a rather complicated network of different factors.

  13. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis.

    PubMed

    Thakur, Jitendra Kumar; Agarwal, Pinky; Parida, Swarup; Bajaj, Deepak; Pasrija, Richa

    2013-08-01

    The KIX domain, which mediates protein-protein interactions, was first discovered as a motif in the large multidomain transcriptional activator histone acetyltransferase p300/CBP. Later, the domain was also found in Mediator subunit MED15, where it interacts with many transcription factors. In both proteins, the KIX domain is a target of activation domains of diverse transcription activators. It was found to be an essential component of several specific gene-activation pathways in fungi and metazoans. Not much is known about KIX domain proteins in plants. This study aims to characterize all the KIX domain proteins encoded by the genomes of Arabidopsis and rice. All identified KIX domain proteins are presented, together with their chromosomal locations, phylogenetic analysis, expression and SNP analyses. KIX domains were found not only in p300/CBP- and MED15-like plant proteins, but also in F-box proteins in rice and DNA helicase in Arabidopsis, suggesting roles of KIX domains in ubiquitin-mediated proteasomal degradation and genome stability. Expression analysis revealed overlapping expression of OsKIX_3, OsKIX_5 and OsKIX_7 in different stages of rice seeds development. Moreover, an association analysis of 136 in silico mined SNP loci in 23 different rice genotypes with grain-length information identified three non-synonymous SNP loci in these three rice genes showing strong association with long- and short-grain differentiation. Interestingly, these SNPs were located within KIX domain encoding sequences. Overall, this study lays a foundation for functional analysis of KIX domain proteins in plants.

  14. Glucose Inhibition of Adenylate Cyclase in Intact Cells of Escherichia coli B

    PubMed Central

    Peterkofsky, Alan; Gazdar, Celia

    1974-01-01

    Previous studies in E. coli B have demonstrated an inverse correlation between the presence of glucose in the medium and the accumulation of cyclic AMP in the medium. This observation could not be explained by the action of glucose as a repressor of adenylate cyclase (EC 4.6.1.1) synthesis, as a stabilizer of cyclic AMP phosphodiesterase (EC 3.1.4.17) activity, or as a direct inhibitor of adenylate cyclase activity in cell-free preparations. The recent development of an in vivo assay for adenylate cyclase has provided a basis for further exploring the inhibitory action of glucose in intact cells. With this assay it has been possible to show that, while glucose does not affect adenylate cyclase in vitro, it rapidly inhibits the enzyme activity in intact cells. Extensive metabolism of glucose is not required, since α-methylglucoside also inhibits adenylate cyclase in vivo. When cells are grown on glucose as carbon source, some sugars (mannose, glucosamine) substitute for glucose as adenylate cyclase inhibitors while others (e.g., fructose) do not. Dose-response studies indicate that low concentrations of glucose lead to essentially complete inhibition of adenylate cyclase activity while only moderately decreasing intracellular cyclic AMP concentrations. The evidence presented suggests that the decreased cellular cyclic AMP levels resulting from glucose addition can be accounted for by inhibition of adenylate cyclase without any significant effect on cyclic AMP phosphodiesterase or the transport of cyclic AMP from the cells to the medium. PMID:4366761

  15. Electrophoretic characterization of species of fibronectin bearing sequences from the N-terminal heparin-binding domain in synovial fluid samples from patients with osteoarthritis and rheumatoid arthritis

    PubMed Central

    Peters, John H; Carsons, Steven; Yoshida, Mika; Ko, Fred; McDougall, Skye; Loredo, Grace A; Hahn, Theodore J

    2003-01-01

    Fragments of fibronectin (FN) corresponding to the N-terminal heparin-binding domain have been observed to promote catabolic chondrocytic gene expression and chondrolysis. We therefore characterized FN species that include sequences from this domain in samples of arthritic synovial fluid using one-and two-dimensional (1D and 2D) Western blot analysis. We detected similar assortments of species, ranging from ~47 to greater than 200 kDa, in samples obtained from patients with osteoarthritis (n = 9) versus rheumatoid arthritis (n = 10). One of the predominant forms, with an apparent molecular weight of ~170 kDa, typically resolved in 2D electrophoresis into a cluster of subspecies. These exhibited reduced binding to gelatin in comparison with a more prevalent species of ~200+ kDa and were also recognized by a monoclonal antibody to the central cell-binding domain (CBD). When considered together with our previous analyses of synovial fluid FN species containing the alternatively spliced EIIIA segment, these observations indicate that the ~170-kDa species includes sequences from four FN domains that have previously, in isolation, been observed to promote catabolic responses by chondrocytes in vitro: the N-terminal heparin-binding domain, the gelatin-binding domain, the central CBD, and the EIIIA segment. The ~170-kDa N-terminal species of FN may therefore be both a participant in joint destructive processes and a biomarker with which to gauge activity of the arthritic process. PMID:14680507

  16. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    SciTech Connect

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L.

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  17. Microscopical localization on adenylate cyclase: a historical review of methodologies.

    PubMed

    Richards, P A; Richards, P D

    1998-03-15

    The histochemistry technique for localizing adenylate cyclase has been developed over the past two decades. Early efforts were directed at overcoming the criticism of the lead capture technique, the inhibition of the enzyme by fixation, and problems associated with the substrate. The introduction of alternative metal ions, strontium and cerium, offered solutions to the criticism of the lead capture technique. The inhibition of the enzyme by the various fixation methods used has been rarely overcome satisfactorily and the use of non-fixed material during incubation is one of the alternatives that has been suggested. The introduction of adenylate (beta-gamma-methylene) diphosphate as an alternative substrate offers a solution to the problems associated with commercially available adenylyl imidodiphosphate. Although no standard medium or method has been accepted by all researchers, the histochemical technique still has a place in the arsenal of the modern cell biologist. The technique localizes the active enzyme, as opposed to the protein, active and nonactive, by immunocytochemistry and the precursors of the protein by in situ hybridization methods.

  18. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.

    PubMed

    Makarchikov, Alexander F; Wins, Pierre; Janssen, Edwin; Wieringa, Bé; Grisar, Thierry; Bettendorff, Lucien

    2002-10-21

    Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues and it may act as a phosphate donor for the phosphorylation of proteins, suggesting a potential role in cell signaling. Two mechanisms have been proposed for the enzymatic synthesis of ThTP. A thiamine diphosphate (ThDP) kinase (ThDP+ATP if ThTP+ADP) has been purified from brewer's yeast and shown to exist in rat liver. However, other data suggest that, at least in skeletal muscle, adenylate kinase 1 (AK1) is responsible for ThTP synthesis. In this study, we show that AK1 knockout mice have normal ThTP levels in skeletal muscle, heart, brain, liver and kidney, demonstrating that AK1 is not responsible for ThTP synthesis in those tissues. We predict that the high ThTP content of particular tissues like the Electrophorus electricus electric organ, or pig and chicken skeletal muscle is more tightly correlated with high ThDP kinase activity or low soluble ThTPase activity than with non-stringent substrate specificity and high activity of adenylate kinase.

  19. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  20. A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity.

    PubMed

    Zhang, Xiao-Ping; Janke, Ryan; Kingsley, James; Luo, Jerry; Fasching, Clare; Ehmsen, Kirk T; Heyer, Wolf-Dietrich

    2013-01-01

    Rad54 is a dsDNA-dependent ATPase that translocates on duplex DNA. Its ATPase function is essential for homologous recombination, a pathway critical for meiotic chromosome segregation, repair of complex DNA damage, and recovery of stalled or broken replication forks. In recombination, Rad54 cooperates with Rad51 protein and is required to dissociate Rad51 from heteroduplex DNA to allow access by DNA polymerases for recombination-associated DNA synthesis. Sequence analysis revealed that Rad54 contains a perfect match to the consensus PIP box sequence, a widely spread PCNA interaction motif. Indeed, Rad54 interacts directly with PCNA, but this interaction is not mediated by the Rad54 PIP box-like sequence. This sequence is located as an extension of motif III of the Rad54 motor domain and is essential for full Rad54 ATPase activity. Mutations in this motif render Rad54 non-functional in vivo and severely compromise its activities in vitro. Further analysis demonstrated that such mutations affect dsDNA binding, consistent with the location of this sequence motif on the surface of the cleft formed by two RecA-like domains, which likely forms the dsDNA binding site of Rad54. Our study identified a novel sequence motif critical for Rad54 function and showed that even perfect matches to the PIP box consensus may not necessarily identify PCNA interaction sites.

  1. Positive and negative control sequences within the distal domain of the adenovirus IVa2 promoter overlap with the major late promoter.

    PubMed Central

    Natarajan, V; Madden, M J; Salzman, N P

    1985-01-01

    The RNA initiation sites of the adenovirus IVa2 and major late promoters (MLP) are separated by 210 base pairs and transcribed from opposite DNA strands. We had previously shown that they contained overlapping promoter sequences (V. Natarajan, M. J. Madden, and N. P. Salzman, Proc. Natl. Acad. Sci. U.S.A. 81:6290-6294, 1984). The transcription efficiencies of these two promoters were studied in vitro with templates of covalently closed circular DNAs that contained various deletion and point mutants. The distal control region of the IVa2 promoter that is located at nucleotide position (np) -152 to -242 from the RNA initiation site consists of at least two domains. The first distal domain, present between np -152 and -179, is necessary for efficient transcription of the IVa2 promoter, and it overlaps with sequences that have been shown to be necessary for efficient transcription of MLP. This region may serve as the entry site for the transcription machinery. The second distal domain consists of sequences present between np -211 and -242. These sequences are contained at the 5' end in the MLP transcript, and they inhibit transcription from the IVa2 promoter. However, these sequences are not necessary for transcription of the MLP with a covalently closed template but are needed for transcription with a linear template. The TATA box that is located at np -180 to -186 between these two domains has a critical role for efficient transcription of the MLP. A point mutation that reduces transcription from MLP by more than 80% stimulates transcription from IVa2 promoter by 10-fold. This finding is consistent with the proposal that MLP and IVa2 promoters share an entry site for transcription machinery and compete for its use. Images PMID:4009788

  2. Model peptide studies of sequence regions in the elastomeric biomineralization protein, Lustrin A. I. The C-domain consensus-PG-, -NVNCT-motif.

    PubMed

    Zhang, Bo; Wustman, Brandon A; Morse, Daniel; Evans, John Spencer

    2002-05-01

    The lustrin superfamily represents a unique group of biomineralization proteins localized between layered aragonite mineral plates (i.e., nacre layer) in mollusk shell. Recent atomic force microscopy (AFM) pulling studies have demonstrated that the lustrin-containing organic nacre layer in the abalone, Haliotis rufescens, exhibits a typical sawtooth force-extension curve with hysteretic recovery. This force extension behavior is reminiscent of reversible unfolding and refolding in elastomeric proteins such as titin and tenascin. Since secondary structure plays an important role in force-induced protein unfolding and refolding, the question is, What secondary structure(s) exist within the major domains of Lustrin A? Using a model peptide (FPGKNVNCTSGE) representing the 12-residue consensus sequence found near the N-termini of the first eight cysteine-rich domains (C-domains) within the Lustrin A protein, we employed CD, NMR spectroscopy, and simulated annealing/minimization to determine the secondary structure preferences for this sequence. At pH 7.4, we find that the 12-mer sequence adopts a loop conformation, consisting of a "bend" or "turn" involving residues G3-K4 and N7-C8-T9, with extended conformations arising at F1-G3; K4-V6; T9-S10-G11 in the sequence. Minor pH-dependent conformational effects were noted for this peptide; however, there is no evidence for a salt-bridge interaction between the K4 and E12 side chains. The presence of a loop conformation within the highly conserved -PG-, -NVNCT- sequence of C1-C8 domains may have important structural and mechanistic implications for the Lustrin A protein with regard to elastic behavior.

  3. [Structure, localization and physiologic role of pituitary adenylate cyclase activating polypeptide (PACAP)].

    PubMed

    Vincze, E; Köves, K

    2001-03-11

    PACAP was isolated on the basis of its ability to stimulate adenylate cyclase in primary anterior pituitary cell culture from ovine hypothalami by Miyata et al. in 1989. This peptide is structurally related to the secretin family and shows a 67% sequence homology with vasoactive intestinal polypeptide (VIP). The amino acid sequence of PACAP has been highly preserved during the evolution that may be connected with its important physiological role. Similar to other "brain-gut peptides" PACAP is localized not only in the central but in the peripheral nervous system and in non-neural tissues as well. In addition to its hypophysiotropic effects in the hypothalamo-hypophysial system PACAP exerts its effects on water-salt balance, cardiovascular functions, gastrointestinal motility and secretion and also on the regulation of reproductive functions. PACAP has a role in certain neuro-immuno-endocrine processes, in the differentiation of the nervous system, and it has neuroprotective effects in the case of ischaemia and various toxic agents. Locally PACAP takes its effects as an auto- and paracrine hormone, a neurotransmitter or a neuromodulator in different organs. Besides VIP, PACAP plays an important role in the function of the photo-neuro-endocrine system.

  4. Forskolin activation of serotonin-stimulated adenylate cyclase in the liver fluke Fasciola hepatica.

    PubMed

    McNall, S J; Mansour, T E

    1985-05-15

    Properties of forskolin activation of adenylate cyclase in the liver fluke Fasciola hepatica are described. Forskolin stimulated adenylate cyclase activity in cell-free fluke particles to levels more than 30-fold above the basal rate. This activation was not dependent on guanine nucleotides and, upon washing of the particles, was rapidly reversed. Forskolin potentiated the activation of adenylate cyclase by serotonin (5-HT) and lysergic acid diethylamide (LSD), resulting in both an increase in the maximal level of enzyme activity and a decrease in the apparent activation constant (KA). The 5-HT antagonist 2-bromo-LSD did not inhibit enzyme activation by forskolin. Furthermore, forskolin had no effect on specific [3H]LSD binding to fluke particles. Activation of adenylate cyclase by sodium fluoride or guanine nucleotides was modified in a complex manner by forskolin with both stimulatory and inhibitory effects present. The results suggest that forskolin does not interact directly with the 5-HT receptor coupled to adenylate cyclase. Instead, it appears that forskolin effects are, at least in part, due to its ability to alter the interaction between the regulatory and catalytic components of adenylate cyclase. Incubation of intact flukes with forskolin increased their cAMP levels 2- to 3-fold. The concentration dependence of this response was similar to that for forskolin activation of adenylate cyclase in fluke particles, with 300 microM forskolin giving the maximum response. Forskolin and other agents that increased fluke cAMP levels also stimulated fluke motility.

  5. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast.

    PubMed

    Gieselmann, R; Mann, K

    1992-02-24

    A new 56 kDa actin-binding protein (ASP-56) was isolated from pig platelet lysate. In falling ball viscosimetry it caused a reduction in viscosity that could be attributed to a decrease in the concentration of polymeric actin. Fluorescence measurements with NBD-labelled actin showed reduction of polymeric actin, too. These results could be explained by sequestering of actin in a non-polymerizable 1:1 ASP-56/actin complex. Sequencing of about 20 tryptic peptides of ASP-56 and comparison with known sequences revealed about 60% homology to the adenylate cyclase-associated protein (CAP) from yeast.

  6. Limited proteolysis and sequence analysis of the 2-oxo acid dehydrogenase complexes from Escherichia coli. Cleavage sites and domains in the dihydrolipoamide acyltransferase components.

    PubMed Central

    Packman, L C; Perham, R N

    1987-01-01

    The structures of the dihydrolipoamide acyltransferase (E2) components of the 2-oxo acid dehydrogenase complexes from Escherichia coli were investigated by limited proteolysis. Trypsin and Staphylococcus aureus V8 proteinase were used to excise the three lipoyl domains from the E2p component of the pyruvate dehydrogenase complex and the single lipoyl domain from the E2o component of the 2-oxoglutarate dehydrogenase complex. The principal sites of action of these enzymes on each E2 chain were determined by sequence analysis of the isolated lipoyl fragments and of the truncated E2p and E2o chains. Each of the numerous cleavage sites (12 in E2p, six in E2o) fell within similar segments of the E2 chains, namely stretches of polypeptide rich in alanine, proline and/or charged amino acids. These regions are clearly accessible to proteinases of Mr 24,000-28,000 and, on the basis of n.m.r. spectroscopy, some of them have previously been implicated in facilitating domain movements by virtue of their conformational flexibility. The limited proteolysis data suggest that E2p and E2o possess closer architectural similarities than would be predicted from inspection of their amino acid sequences. As a result of this work, an error was detected in the sequence of E2o inferred from the previously published sequence of the encoding gene, sucB. The relevant peptides from E2o were purified and sequenced by direct means; an amended sequence is presented. Images Fig. 1. Fig. 2. PMID:3297046

  7. Structural characterization by nuclear magnetic resonance spectroscopy of a genetically engineered high-affinity calmodulin-binding peptide derived from Bordetella pertussis adenylate cyclase.

    PubMed

    Munier, H; Bouhss, A; Gilles, A M; Palibroda, N; Bârzu, O; Mispelter, J; Craescu, C T

    1995-07-10

    This paper reports the solution conformation of a peptide (P196-267) derived from the calmodulin-binding domain of Bordetella pertussis adenylate cyclase. P196-267 corresponding to the protein fragment situated between amino acid residues 196-267 was overproduced by a recombinant Escherichia coli strain. Its affinity for calmodulin is only one order of magnitude lower (Kd = 2.4 nM) than that of the whole bacterial enzyme (Kd = 0.2 nM). The proton resonances of the NMR spectra of P196-267 were assigned using homonuclear two-dimensional techniques (double-quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser enhancement spectroscopy) and a standard assignment procedure. Analysis of the nuclear Overhauser effect connectivities and the secondary shift distribution of C alpha protons along the sequence allowed us to identify the elements of regular secondary structure. The peptide is flexible in solution, being in equilibrium between random coil and helical structures. Two segments of 11 amino acids (situated between V215 and A225) and 15 amino acids (situated between L233 and A247) populate in a significant proportion the helix conformational state. The two helices can be considerably stabilized in a mixed solvent, trifluoroethanol/water (30/70), suggesting that the corresponding fragment in the intact protein assumes a similar secondary conformation. No elements of tertiary structure organization were detected by the present experiments. The conformational properties of the isolated calmodulin target fragment are discussed in relation with the available NMR and X-ray data on various peptides complexed to calmodulin.

  8. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    PubMed

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  9. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Charania, M A; Brockman, K L; Zhang, Y; Banerjee, A; Pinchuk, G E; Fredrickson, J K; Beliaev, A S; Saffarini, D A

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  10. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  11. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  12. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer

    PubMed Central

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Devoisselle, Jean-Marie; Ladant, Daniel; Chopineau, Joel

    2013-01-01

    Numerous bacterial toxins can cross biological membranes to reach the cytosol of mammalian cells, where they exert their cytotoxic effects. Our model toxin, the adenylate cyclase (CyaA) from Bordetella pertussis, is able to invade eukaryotic cells by translocating its catalytic domain directly across the plasma membrane of target cells. To characterize its original translocation process, we designed an in vitro assay based on a biomimetic membrane model in which a tethered lipid bilayer (tBLM) is assembled on an amine-gold surface derivatized with calmodulin (CaM). The assembled bilayer forms a continuous and protein-impermeable boundary completely separating the underlying calmodulin (trans side) from the medium above (cis side). The binding of CyaA to the tBLM is monitored by surface plasmon resonance (SPR) spectroscopy. CyaA binding to the immobilized CaM, revealed by enzymatic activity, serves as a highly sensitive reporter of toxin translocation across the bilayer. Translocation of the CyaA catalytic domain was found to be strictly dependent on the presence of calcium and also on the application of a negative potential, as shown earlier in eukaryotic cells. Thus, CyaA is able to deliver its catalytic domain across a biological membrane without the need for any eukaryotic components besides CaM. This suggests that the calcium-dependent CyaA translocation may be driven in part by the electrical field across the membrane. This study’s in vitro demonstration of toxin translocation across a tBLM provides an opportunity to explore the molecular mechanisms of protein translocation across biological membranes in precisely defined experimental conditions. PMID:24297899

  13. Conformational transitions of Adenylate Kinase: switching by cracking

    PubMed Central

    Whitford, Paul C.; Miyashita, Osamu; Levy, Yaakov; Onuchic, José N.

    2007-01-01

    Conformational heterogeneity in proteins is known to often be the key to their function. We present a coarse grained model to explore the interplay between protein structure, folding and function which is applicable to allosteric or non-allosteric proteins. We employ the model to study the detailed mechanism of the reversible conformational transition of Adenylate Kinase (AKE) between the open to the closed conformation, a reaction that is crucial to the protein’s catalytic function. We directly observe high strain energy which appears to be correlated with localized unfolding during the functional transition. This work also demonstrates that competing native interactions from the open and closed form can account for the large conformational transitions in AKE. We further characterize the conformational transitions with a new measure ΦFunc, and demonstrate that local unfolding may be due, in part, to competing intra-protein interactions. PMID:17217965

  14. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    SciTech Connect

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  15. Sequence-Based Appraisal of the Genes Encoding Neck and Carbohydrate Recognition Domain of Conglutinin in Blackbuck (Antilope cervicapra) and Goat (Capra hircus)

    PubMed Central

    Barik, Sasmita; Sidappa, Chandra Mohan; Saini, Mohini; Doreswamy, Ramesh; Das, Asit; Sharma, Anil K.; Gupta, Praveen K.

    2014-01-01

    Conglutinin, a collagenous C-type lectin, acts as soluble pattern recognition receptor (PRR) in recognition of pathogens. In the present study, genes encoding neck and carbohydrate recognition domain (NCRD) of conglutinin in goat and blackbuck were amplified, cloned, and sequenced. The obtained 488 bp ORFs encoding NCRD were submitted to NCBI with accession numbers KC505182 and KC505183. Both nucleotide and predicted amino acid sequences were analysed with sequences of other ruminants retrieved from NCBI GenBank using DNAstar and Megalign5.2 software. Sequence analysis revealed maximum similarity of blackbuck sequence with wild ruminants like nilgai and buffalo, whereas goat sequence displayed maximum similarity with sheep sequence at both nucleotide and amino acid level. Phylogenetic analysis further indicated clear divergence of wild ruminants from the domestic ruminants in separate clusters. The predicted secondary structures of NCRD protein in goat and blackbuck using SWISSMODEL ProtParam online software were found to possess 6 beta-sheets and 3 alpha-helices which are identical to the result obtained in case of sheep, cattle, buffalo, and nilgai. However, quaternary structure in goat, sheep, and cattle was found to differ from that of buffalo, nilgai, and blackbuck, suggesting a probable variation in the efficiency of antimicrobial activity among wild and domestic ruminants. PMID:25028649

  16. The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains.

    PubMed

    Hayajneh, W A; Colberg-Poley, A M; Skaletskaya, A; Bartle, L M; Lesperance, M M; Contopoulos-Ioannidis, D G; Kedersha, N L; Goldmacher, V S

    2001-01-05

    The human cytomegalovirus UL37 exon 1 gene encodes the immediate early protein pUL37x1 that has antiapoptotic and regulatory activities. Deletion mutagenesis analysis of the open reading frame of UL37x1 identified two domains that are necessary and sufficient for its antiapoptotic activity. These domains are confined within the segments between amino acids 5 to 34, and 118 to 147, respectively. The first domain provides the targeting of the protein to mitochondria. Direct PCR sequencing of UL37 exon 1 amplified from 26 primary strains of human cytomegalovirus demonstrated that the promoter, polyadenylation signal, and the two segments of pUL37x1 required for its antiapoptotic function were invariant in all sequenced strains and identical to those in AD169 pUL37x1. In total, UL37 exon 1 varies between 0.0 and 1.6% at the nucleotide level from strain AD169. Only 11 amino acids were found to vary in one or more viral strains, and these variations occurred only in the domains of pUL37x1 dispensable for its antiapoptotic function. We infer from this remarkable conservation of pUL37x1 in primary strains that this protein and, probably, its antiapoptotic function are required for productive replication of human cytomegalovirus in humans.

  17. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features

    PubMed Central

    Gandhimathi, Arumugam; Ghosh, Pritha; Hariharaputran, Sridhar; Mathew, Oommen K.; Sowdhamini, R.

    2016-01-01

    Structure-based sequence alignment is an essential step in assessing and analysing the relationship of distantly related proteins. PASS2 is a database that records such alignments for protein domain superfamilies and has been constantly updated periodically. This update of the PASS2 version, named as PASS2.5, directly corresponds to the SCOPe 2.04 release. All SCOPe structural domains that share less than 40% sequence identity, as defined by the ASTRAL compendium of protein structures, are included. The current version includes 1977 superfamilies and has been assembled utilizing the structure-based sequence alignment protocol. Such an alignment is obtained initially through MATT, followed by a refinement through the COMPARER program. The JOY program has been used for structural annotations of such alignments. In this update, we have automated the protocol and focused on inclusion of new features such as mapping of GO terms, absolutely conserved residues among the domains in a superfamily and inclusion of PDBs, that are absent in SCOPe 2.04, using the HMM profiles from the alignments of the superfamily members and are provided as a separate list. We have also implemented a more user-friendly manner of data presentation and options for downloading more features. PASS2.5 version is available at http://caps.ncbs.res.in/pass2/. PMID:26553811

  18. Adenyl cyclases and cAMP in plant signaling - past and present.

    PubMed

    Gehring, Chris

    2010-06-25

    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins.

  19. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain.

    PubMed Central

    Morimoto, K; Karita, S; Kimura, T; Sakka, K; Ohmiya, K

    1997-01-01

    The Clostridium paraputrificum chiB gene, encoding chitinase B (ChiB), consists of an open reading frame of 2,493 nucleotides and encodes 831 amino acids with a deduced molecular weight of 90,020. The deduced ChiB is a modular enzyme composed of a family 18 catalytic domain responsible for chitinase activity, two reiterated domains of unknown function, and a chitin-binding domain (CBD). The reiterated domains are similar to the repeating units of cadherin proteins but not to fibronectin type III domains, and therefore they are referred to as cadherin-like domains. ChiB was purified from the periplasm fraction of Escherichia coli harboring the chiB gene. The molecular weight of the purified ChiB (87,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, was in good agreement with the value (86,578) calculated from the deduced amino acid sequence excluding the signal peptide. ChiB was active toward chitin from crab shells, colloidal chitin, glycol chitin, and 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)2]. The pH and temperature optima of the enzyme were 6.0 and 45 degrees C, respectively. The Km and Vmax values for 4-MU-(GlcNAc)2 were estimated to be 6.3 microM and 46 micromol/min/mg, respectively. SDS-PAGE, zymogram, and Western blot analyses using antiserum raised against purified ChiB suggested that ChiB was one of the major chitinase species in the culture supernatant of C. paraputrificum. Deletion analysis showed clearly that the CBD of ChiB plays an important role in hydrolysis of native chitin but not processed chitin such as colloidal chitin. PMID:9393694

  20. Strategies for Development of Functionally Equivalent Promoters with Minimum Sequence Homology for Transgene Expression in Plants: cis-Elements in a Novel DNA Context versus Domain Swapping1

    PubMed Central

    Bhullar, Simran; Chakravarthy, Suma; Advani, Sonia; Datta, Sudipta; Pental, Deepak; Burma, Pradeep Kumar

    2003-01-01

    The cauliflower mosaic virus 35S (35S) promoter has been extensively used for the constitutive expression of transgenes in dicotyledonous plants. The repetitive use of the same promoter is known to induce transgene inactivation due to promoter homology. As a way to circumvent this problem, we tested two different strategies for the development of synthetic promoters that are functionally equivalent but have a minimum sequence homology. Such promoters can be generated by (a) introducing known cis-elements in a novel or synthetic stretch of DNA or (b) “domain swapping,” wherein domains of one promoter can be replaced with functionally equivalent domains from other heterologous promoters. We evaluated the two strategies for promoter modifications using domain A (consisting of minimal promoter and subdomain A1) of the 35S promoter as a model. A set of modified 35S promoters were developed whose strength was compared with the 35S promoter per se using β-glucuronidase as the reporter gene. Analysis of the expression of the reporter gene in transient assay system showed that domain swapping led to a significant fall in promoter activity. In contrast, promoters developed by placing cis-elements in a novel DNA context showed levels of expression comparable with that of the 35S. Two promoter constructs Mod2A1T and Mod3A1T were then designed by placing the core sequences of minimal promoter and subdomain A1 in divergent DNA sequences. Transgenics developed in tobacco (Nicotiana tabacum) with the two constructs and with 35S as control were used to assess the promoter activity in different tissues of primary transformants. Mod2A1T and Mod3A1T were found to be active in all of the tissues tested, at levels comparable with that of 35S. Further, the expression of the Mod2A1T promoter in the seedlings of the T1 generation was also similar to that of the 35S promoter. The present strategy opens up the possibility of creating a set of synthetic promoters with minimum sequence

  1. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary.

    PubMed Central

    Onali, P; Schwartz, J P; Costa, E

    1981-01-01

    The activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by vasoactive intestinal peptide (VIP) was used as a model to investigate the molecular mechanisms triggered by the occupancy of dopamine recognition sites in rat anterior pituitary. Dopamine failed to change the basal enzyme activity, but it inhibited the stimulation of adenylate cyclase elicited by VIP. Apomorphine, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, and 2-bromo-alpha-ergocryptine mimicked the effect of dopamine, whereas (-)-sulpiride and and classical neuroleptics antagonized it. Dopamine failed to modulate the activation of pituitary adenylate cyclase by prostaglandin E1, which does not increase prolactin secretion. From these results we infer that stimulation of D-2 (dopamine) receptors may affect pituitary secretion by inhibiting the activation of anterior pituitary adenylate cyclase by VIP or other secretagogues. PMID:6171819

  2. Identification of a Novel Sequence Motif Recognized by the Ankyrin Repeat Domain of zDHHC17/13 S-Acyltransferases*

    PubMed Central

    Lemonidis, Kimon; Sanchez-Perez, Maria C.; Chamberlain, Luke H.

    2015-01-01

    S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7–24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington's disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs. PMID:26198635

  3. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  4. Three-level prediction of protein function by combining profile-sequence search, profile-profile search, and domain co-occurrence networks.

    PubMed

    Wang, Zheng; Cao, Renzhi; Cheng, Jianlin

    2013-01-01

    Predicting protein function from sequence is useful for biochemical experiment design, mutagenesis analysis, protein engineering, protein design, biological pathway analysis, drug design, disease diagnosis, and genome annotation as a vast number of protein sequences with unknown function are routinely being generated by DNA, RNA and protein sequencing in the genomic era. However, despite significant progresses in the last several years, the accuracy of protein function prediction still needs to be improved in order to be used effectively in practice, particularly when little or no homology exists between a target protein and proteins with annotated function. Here, we developed a method that integrated profile-sequence alignment, profile-profile alignment, and Domain Co-Occurrence Networks (DCN) to predict protein function at different levels of complexity, ranging from obvious homology, to remote homology, to no homology. We tested the method blindingly in the 2011 Critical Assessment of Function Annotation (CAFA). Our experiments demonstrated that our three-level prediction method effectively increased the recall of function prediction while maintaining a reasonable precision. Particularly, our method can predict function terms defined by the Gene Ontology more accurately than three standard baseline methods in most situations, handle multi-domain proteins naturally, and make ab initio function prediction when no homology exists. These results show that our approach can combine complementary strengths of most widely used BLAST-based function prediction methods, rarely used in function prediction but more sensitive profile-profile comparison-based homology detection methods, and non-homology-based domain co-occurrence networks, to effectively extend the power of function prediction from high homology, to low homology, to no homology (ab initio cases).

  5. Three-Level Prediction of Protein Function by Combining Profile-Sequence Search, Profile-Profile Search, and Domain Co-Occurrence Networks

    PubMed Central

    2013-01-01

    Predicting protein function from sequence is useful for biochemical experiment design, mutagenesis analysis, protein engineering, protein design, biological pathway analysis, drug design, disease diagnosis, and genome annotation as a vast number of protein sequences with unknown function are routinely being generated by DNA, RNA and protein sequencing in the genomic era. However, despite significant progresses in the last several years, the accuracy of protein function prediction still needs to be improved in order to be used effectively in practice, particularly when little or no homology exists between a target protein and proteins with annotated function. Here, we developed a method that integrated profile-sequence alignment, profile-profile alignment, and Domain Co-Occurrence Networks (DCN) to predict protein function at different levels of complexity, ranging from obvious homology, to remote homology, to no homology. We tested the method blindingly in the 2011 Critical Assessment of Function Annotation (CAFA). Our experiments demonstrated that our three-level prediction method effectively increased the recall of function prediction while maintaining a reasonable precision. Particularly, our method can predict function terms defined by the Gene Ontology more accurately than three standard baseline methods in most situations, handle multi-domain proteins naturally, and make ab initio function prediction when no homology exists. These results show that our approach can combine complementary strengths of most widely used BLAST-based function prediction methods, rarely used in function prediction but more sensitive profile-profile comparison-based homology detection methods, and non-homology-based domain co-occurrence networks, to effectively extend the power of function prediction from high homology, to low homology, to no homology (ab initio cases). PMID:23514381

  6. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver

    SciTech Connect

    Katz, M.S.; Boland, S.R.; Schmidt, S.J.

    1985-06-01

    beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-(/sup 125/I)iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase.

  7. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    SciTech Connect

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R. Scott

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  8. Domain II hairpin structure in ITS1 sequences as an aid in differentiating recently evolved animal and plant pathogenic fungi.

    PubMed

    Bridge, P D; Schlitt, T; Cannon, P F; Buddie, A G; Baker, M; Borman, A M

    2008-07-01

    The hypothesis that ITS structural features can be used to define fungal groups, where sequence analysis is unsatisfactory, was examined in plant and animal pathogenic fungi. Structural models of ITS1 regions were predicted for presumed closely related species in Colletotrichum and Trichophyton anamorphs of Arthroderma species. Structural alignment of models and comparison with ITS sequence analysis identified a variable region in a conserved hairpin formed from a common inverted repeat. Thirteen different hairpin structure models were obtained for Colletotrichum species and five different models were obtained for Trichophyton species. The different structure types could be matched to individual species and species complexes as defined by ITS sequence analysis.

  9. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains

    PubMed Central

    Nelson, William; Luo, Meizhong; Ma, Jianxin; Estep, Matt; Estill, James; He, Ruifeng; Talag, Jayson; Sisneros, Nicholas; Kudrna, David; Kim, HyeRan; Ammiraju, Jetty SS; Collura, Kristi; Bharti, Arvind K; Messing, Joachim; Wing, Rod A; SanMiguel, Phillip; Bennetzen, Jeffrey L; Soderlund, Carol

    2008-01-01

    Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR) and methylation spanning linker libraries (MSLL). These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig), while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%). These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of epigenetic boundaries are barely

  10. Complete amino acid sequence of BSP-A3 from bovine seminal plasma. Homology to PDC-109 and to the collagen-binding domain of fibronectin.

    PubMed Central

    Seidah, N G; Manjunath, P; Rochemont, J; Sairam, M R; Chrétien, M

    1987-01-01

    Bovine seminal plasma was shown to contain three similar proteins, called BSP-A1, BSP-A2 and BSP-A3. Both BSP-A1 and BSP-A2 were shown to be molecular variants of a recently characterized peptide called PDC-109. They seem to differ only in their degree of glycosylation and otherwise seem to possess an identical amino acid composition. The work in the present paper deals with the complete characterization of the third member of this series, namely BSP-A3. The complete amino acid sequence revealed that it is composed of 115 amino acids and predicts a Mr of 13,403. An analysis of the primary structure of BSP-A3 revealed a high degree of internal homology, with two homologous domains composed of 39 (residues 28-66) and 43 (residues 73-115) amino acids. An exhaustive computer-bank search for the similarity of this sequence to any known protein, or segment thereof, revealed two significant homologies. The first is between PDC-109 and BSP-A3, which is so high that we can confidently predict that both proteins evolved from a single ancestral gene. The collagen-binding domain of bovine fibronectin (type II sequence) was also found to be highly homologous to both BSP-A3 and PDC-109. PMID:3606570

  11. A boundary of long-range G+C% mosaic domains in the human MHC locus: Pseudoautosomal boundary-like sequence exists near the boundary

    SciTech Connect

    Fukagawa, Tatsuo; Sugaya, Kimihiko; Matsumoto, Ken-ichi

    1995-01-01

    The human genome is composed of long-range G+C% (GC%) mosaic structures related to chromosome bands. We found the human MHC locus to be an example of megabase-level GC% mosaic structures and predicted a possible boundary of the megabase-level domains within an undercharacterized 450-kb region harboring the junction of MHC classes II and III. Chromosome walking of the 450-kb region and base-compositional analysis precisely located the boundary of the mosaic domains, disclosing a sharp GC% transition. Near the transition point there was a 20-kb dense Alu cluster, a 30-kb dense LINE-1 cluster, and a sequence highly homologous with the pseudoautosomal boundary of the short arms of human sex chromosomes (PAB1X and PAB1Y); PAB1X and PAB1Y are the interface between sex-specific and pseudoautosomal regions. Many PAB1XY-like sequences (PABLs) were detected by hybridization against genomic DNA, and the new sequences defined the complete form of PABLs to be about 650 nt. 49 refs., 5 figs., 2 tabs.

  12. A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking.

    PubMed

    McHugh, Emma; Batinovic, Steven; Hanssen, Eric; McMillan, Paul J; Kenny, Shannon; Griffin, Michael D W; Crawford, Simon; Trenholme, Katharine R; Gardiner, Donald L; Dixon, Matthew W A; Tilley, Leann

    2015-12-01

    The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.

  13. p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families.

    PubMed

    Garcia-Ranea, J A; Mirey, Gladys; Camonis, Jacques; Valencia, Alfonso

    2002-10-09

    We identified families of proteins characterized by the presence of a domain similar to human p23 protein, which include proteins such as Sgt1, involved in the yeast kinetochore assembly; melusin, involved in specific interactions with the cytoplasmic integrin beta1 domain; Rar1, related to pathogenic resistance in plants, and to development in animals; B5+B5R flavo-hemo cytochrome NAD(P)H oxidoreductase type B in humans and mice; and NudC, involved in nucleus migration during mitosis. We also found that p23 and the HSP20/alpha-crystallin family of heat shock proteins, which share the same three-dimensional folding, show a pattern of conserved residues that points to a common origin in the evolution of both protein domains. The p23 and HSP20/alpha-crystallin phylogenetic relationship and their similar role in chaperone activity suggest a common function, probably involving protein-protein interaction, for those proteins containing p23-like domains.

  14. SPECIFIC PROTEIN DOMAINS MEDIATE COOPERATIVE ASSEMBLY OF HuR OLIGOMERS ON AU-RICH mRNA-DESTABILIZING SEQUENCES*

    PubMed Central

    Fialcowitz-White, Elizabeth J.; Brewer, Brandy Y.; Ballin, Jeff D.; Willis, Chris D.; Toth, Eric A.; Wilson, Gerald M.

    2007-01-01

    The RNA-binding factor HuR is a ubiquitously expressed member of the Hu protein family that binds and stabilizes mRNAs containing AU-rich elements (AREs). Hu proteins share a common domain organization of two tandemly arrayed RNA Recognition Motifs (RRMs) near the N-terminus followed by a basic hinge domain and a third RRM near the C-terminus. In this study we have engineered recombinant wild type and mutant HuR proteins lacking affinity tags to characterize their ARE-binding properties. Using combinations of electrophoretic mobility shift and fluorescence anisotropy-based binding assays, we show that HuR can bind ARE substrates as small as 13 nucleotides with low nanomolar affinity, but forms cooperative, oligomeric protein complexes on ARE substrates of at least 18 nucleotides in length. Analyses of deletion mutant proteins indicate that RRM3 does not contribute to high affinity recognition of ARE substrates, but is required for cooperative assembly of HuR oligomers on RNA. Finally, the hinge domain between RRMs 2 and 3 contributes significant binding energy to HuR:ARE complex formation in an ARE length-dependent manner. The hinge does not enhance RNA-binding activity by increased ion pair formation despite extensive positive charge within this region, nor does it thermodynamically stabilize protein folding. Together, these studies define distinct roles for the HuR hinge and RRM3 domains in formation of cooperative HuR:ARE complexes in solution. PMID:17517897

  15. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain.

    PubMed

    Heering, Jan; Jonker, Hendrik R A; Löhr, Frank; Schwalbe, Harald; Dötsch, Volker

    2016-02-01

    Most members of the p53 family of transcription factors form tetramers. Responsible for determining the oligomeric state is a short oligomerization domain consisting of one β-strand and one α-helix. With the exception of human p53 all other family members investigated so far contain a second α-helix as part of their tetramerization domain. Here we have used nuclear magnetic resonance spectroscopy to characterize the oligomerization domains of the two p53-like proteins from the tunicate Ciona intestinalis, representing the closest living relative of vertebrates. Structure determination reveals for one of the two proteins a new type of packing of this second α-helix on the core domain that was not predicted based on the sequence, while the other protein does not form a second helix despite the presence of crucial residues that are conserved in all other family members that form a second helix. By mutational analysis, we identify a proline as well as large hydrophobic residues in the hinge region between both helices as the crucial determinant for the formation of a second helix.

  16. Characterization of mitochondrial ribosomal RNA genes in gadiformes: sequence variations, secondary structural features, and phylogenetic implications.

    PubMed

    Bakke, Ingrid; Johansen, Steinar

    2002-10-01

    Secondary structure features of mitochondrial ribosomal RNAs (mt-rRNAs) of bony fishes were investigated by a DNA sequence alignment approach. The small subunit (SSU) and large subunit (LSU) mt-rRNA genes were found to contain several additional variable regions compared to their mammalian counterparts. Fish mt-LSU rRNA genes were found to be longer than the mammalians due to increased length of some of the variable regions. The 5' and 3' ends of Atlantic cod mt-rRNAs were precisely mapped. The 3' ends of mt-SSU rRNAs were found to be homogenous and mono-adenylated, whereas that of the mt-LSU rRNAs were heterogenous and oligo-adenylated. The 5' ends of mt-SSU rRNAs appeared to be heterogenous, corresponding to the presumed first and second positions of the gene. Sequences of the central domain and the D-domain of the mt-SSU and mt-LSU rRNA genes, respectively, were determined and characterized for 11 gadiform species (representing the families Gadidae, Lotidae, Ranicipitidae, Merlucciidae, Phycidae, and Macrouridae) and one Lophiidae species. Detailed secondary structure models of the RNA regions are presented for the Atlantic cod (Gadus morhua) and Roundnose grenadier (Coryphaeonides rupestris). Saturation plots revealed that DNA nucleotide positions corresponding to unpaired RNA regions become saturated with transitions at sequence divergence levels about 0.15. Phylogenetic analyses revealed some aspects of gadiform relationships. Gadidae was identified as the most derived of the gadiform families. Lotidae was found to be the family closest related to Gadidae, and Ranicipitidae was also recognized as a derived gadiform taxon.

  17. Sequence Analysis of LRPPRC and Its SEC1 Domain Interaction Partners Suggests Roles in Cytoskeletal Organization, Vesicular Trafficking, Nucleocytosolic Shuttling and Chromosome Activity

    PubMed Central

    Liu, Leyuan; McKeehan, Wallace L.

    2011-01-01

    LRPPRC (originally called LRP130) is an intracellular 130-kDa leucine-rich protein that co-purifies with the FGF receptor from liver cell extracts and has been detected in diverse multi-protein complexes from the cell membrane, cytoskeleton and nucleus. Here we report results of a sequence homology analysis of LRPPRC and its SEC1 domain interactive partners. Twenty-three copies of tandem repeats that are similar to PPR, TPR and HEAT repeats characterize the LRPPRC sequence. The N-terminus exhibits multiple copies of leucine-rich nuclear transport signals followed by ENTH, DUF28 and SEC1 homology domains. We used the SEC1 domain to trap interactive partners expressed from a human liver cDNA library. Interactive C19ORF5 (XP_038600) exhibited a strong homology to microtubule-associated proteins (MAP) and a potential arginine-rich mRNA binding motif. UXT (XP_033860) exhibited α-helical properties homologous to the actin-associated spectrin repeat and L/I heptad repeats in mobile transcription factors. C6ORF34 (XP_004305) was homologous to the non-DNA binding C-terminus of the E. coli Rob transcription factor. CECR2 (AAK15343) exhibited a transcription factor AT-hook motif next to two bromodomains and a homology to guanylate-binding protein 1. Taken together these features suggest a regulatory role of LRPPRC and its SEC1 domain-interactive partners in integration of cytoskeletal networks with vesicular trafficking, nucleocytosolic shuttling, chromosome remodeling and transcription. PMID:11827465

  18. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis

    PubMed Central

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  19. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.

    1985-01-01

    The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.

  20. Hydrolytic properties of phenylalanyl- and N-acetylphenylalanyl adenylate anhydrides

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Senaratne, N.

    1984-01-01

    The hydrolysis of phenylalynyl- and N-acetylephenylalanyl adenylate anhydrides (AcPhe-AMP) is studied experimentally using a new spectrophotometric method. The hydrolysis process was analyzed at low concentrations (0.0001 M), constant temperature of 25 C, constant buffer concentration (0.05 M), and as a function of pH. It is found that while Phe-AMP is susceptible to attack by OH(-), AcPhe-AMP is susceptible to acid decomposition as well. At a pH of 4 to 8, Phe-AMP hydolyzes faster than AcPhe-AMP, but at pH less than four or greater than eight, the blocked form hydrolyzes faster. Both forms are attacked by H2O at the same rate. The rate laws for the various hydrolytic mechanisms and the activation energies for the hydrolyses at pH 7.1 are given in a table, and the possible relevance of the findings to the origin and evolution of the process of protein synthesis is discussed.

  1. Sequence-conserved and antibody-accessible sites in the V1V2 domain of HIV-1 gp120 envelope protein.

    PubMed

    Shmelkov, Evgeny; Grigoryan, Arsen; Krachmarov, Chavdar; Abagyan, Ruben; Cardozo, Timothy

    2014-09-01

    The immune-correlates analysis of the RV144 trial suggested that epitopes targeted by protective antibodies (Abs) reside in the V1V2 domain of gp120. We mapped V1V2 positional sequence variation onto the conserved V1V2 structural fold and showed that while most of the solvent-accessible V1V2 amino acids vary between strains, there are two accessible molecular surface regions that are conserved and also naturally antigenic. These sites may contain epitopes targeted by broadly cross-reactive anti-V1V2 antibodies.

  2. Computer analysis of antigenic domains and RGD-like sequences (RGWG) in the E glycoprotein of flaviviruses: an approach to vaccine development.

    PubMed

    Becker, Y

    1990-09-01

    Antigenic domains and RGD-like sequences in the E glycoprotein of the flaviviruses Japanese encephalitis virus, yellow fever virus, West Nile virus, dengue type 4 virus, and tick-borne encephalitis virus were analyzed by computer programs that provide information on the physical properties of the polypeptides. The use of computer programs for the development of vaccines based on the synthesis of antigenic peptides is discussed. Synthetic viral peptides are proposed to be used for topical application so as to interfere with the virus-cell interaction. Viral peptides with antigenic epitopes to protect against dengue virus infection without enhancing pathogenesis may also be developed on the basis of the computer analysis.

  3. Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit.

    PubMed

    Bigler, D; Takahashi, Y; Chen, M S; Almeida, E A; Osbourne, L; White, J M

    2000-04-21

    Little is yet known about the biological and biochemical properties of the disintegrin-like domains of ADAM (a disintegrin and metalloprotease) proteins. Mouse ADAM 2 (mADAM 2; fertilin beta) is a sperm surface protein involved in murine fertilization. We produced recombinant proteins containing the disintegrin-like domain of mADAM 2 in both insect cells and in bacteria. The protein produced in insect cells (baculo D+C) contained a signal sequence followed by the disintegrin-like and cysteine-rich domains; it was purified from the medium of recombinant baculovirus-infected cells. A bacterial construct containing the disintegrin-like domain was produced in Escherichia coli as a glutathione S-transferase chimera. Baculo D+C, as well as the D domain of the bacterial construct (released with thrombin), bound to the microvillar surface of murine eggs. Using concentrations in the range of 1 to 5 microM, both recombinant proteins strongly inhibited sperm-egg binding and fusion; the baculovirus-produced protein exhibited a somewhat greater extent of inhibition (approximately 75 versus approximately 55% maximal inhibition). Substitution of alanine for each of the five charged residues within the disintegrin loop of mADAM 2 revealed a critical importance for the aspartic acid at position nine. Binding of both recombinant proteins to the egg was inhibited by the function blocking anti-alpha(6) monoclonal antibody, GoH3, but not by a nonfunction-blocking anti-alpha(6) monoclonal antibody. Binding was also inhibited by a peptide analogue of, and with an antibody against, the disintegrin loop of mADAM 2.

  4. Can identification of a fourth domain of life be made from sequence data alone, and could it be done on Mars?

    PubMed

    Poole, Anthony M; Willerslev, Eske

    2007-10-01

    A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.

  5. Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism.

    PubMed

    Branchini, Bruce R; Rosenberg, Justin C; Fontaine, Danielle M; Southworth, Tara L; Behney, Curran E; Uzasci, Lerna

    2011-07-27

    According to the domain alternation mechanism and crystal structure evidence, the acyl-CoA synthetases, one of three subgroups of a superfamily of adenylating enzymes, catalyze adenylate- and thioester-forming half-reactions in two different conformations. The enzymes accomplish this by presenting two active sites through an ~140° rotation of the C-domain. The second half-reaction catalyzed by another subgroup, the beetle luciferases, is a mechanistically dissimilar oxidative process that produces bioluminescence. We have demonstrated that a firefly luciferase variant containing cysteine residues at positions 108 and 447 can be intramolecularly cross-linked by 1,2-bis(maleimido)ethane, trapping the enzyme in a C-domain-rotated conformation previously undocumented in the available luciferase crystal structures. The cross-linked luciferase cannot adenylate luciferin but is nearly fully capable of bioluminescence with synthetic luciferyl adenylate because it retains the ability to carry out the oxidative half-reaction. The cross-linked luciferase is apparently trapped in a conformation similar to those adopted by acyl-CoA synthetases as they convert acyl adenylates into the corresponding CoA thioesters.

  6. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence

    SciTech Connect

    Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; Blagden, Sarah P.; Bousquet-Antonelli, Cecile; Deragon, Jean -Marc; Berman, Andrea J.

    2015-07-22

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.

  7. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence

    DOE PAGES

    Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...

    2015-07-22

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less

  8. Limited HLA sequence variation outside of antigen recognition domain exons of 360 10 of 10 matched unrelated hematopoietic stem cell transplant donor-recipient pairs.

    PubMed

    Hou, L; Vierra-Green, C; Lazaro, A; Brady, C; Haagenson, M; Spellman, S; Hurley, C K

    2017-01-01

    Traditional DNA-based typing focuses primarily on interrogating the exons of human leukocyte antigen (HLA) genes that form the antigen recognition domain (ARD). The relevance of mismatching donor and recipient for HLA variation outside the ARD on hematopoietic stem cell transplantation (HSCT) outcomes is unknown. This study was designed to evaluate the frequency of variation outside the ARD in 10 of 10 (HLA-A, -B, -C, -DRB1, -DQB1) matched unrelated donor transplant pairs (n = 360). Next-generation DNA sequencing was used to characterize both HLA exons and introns for HLA-A, -B, -C alleles; exons 2, 3 and the intervening intron for HLA-DRB1 and exons only for HLA-DQA1 and -DQB1. Over 97% of alleles at each locus were matched for their nucleotide sequence outside of the ARD exons. Of the 4320 allele comparisons overall, only 17 allele pairs were mismatched for non-ARD exons, 41 for noncoding regions and 9 for ARD exons. The observed variation between donor and recipient usually involved a single nucleotide difference (88% of mismatches); 88% of the non-ARD exon variants impacted the amino acid sequence. The impact of amino acid sequence variation caused by substitutions in exons outside ARD regions in D-R pairs will be difficult to assess in HSCT outcome studies because these mismatches do not occur very frequently.

  9. The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner

    PubMed Central

    Marc, Daniel; Barbachou, Sosthène; Soubieux, Denis

    2013-01-01

    Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5′ terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1’s stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5′-GUAAC / 3′-CUUAG double-stranded motif, which closely resembles the canonical 5′-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1’s RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar KD values) that leads to oligomerization of the RBD on its RNA ligands. PMID:23093596

  10. Nuclear hormone receptors involved in neoplasia: erb A exhibits a novel DNA sequence specificity determined by amino acids outside of the zinc-finger domain.

    PubMed Central

    Chen, H; Smit-McBride, Z; Lewis, S; Sharif, M; Privalsky, M L

    1993-01-01

    The erb A oncogene is a dominant negative allele of a thyroid hormone receptor gene and acts in the cancer cell by encoding a transcriptional repressor. We demonstrate here that the DNA sequence recognition properties of the oncogenic form of the erb A protein are significantly altered from those of the normal thyroid hormone receptors and more closely resemble those of the retinoic acid receptors; this alteration appears to play an important role in defining the targets of erb A action in neoplasia. Unexpectedly, the novel DNA recognition properties of erb A are encoded by an N-terminal region not previously implicated as playing this function in current models of receptor-DNA interaction. Two N-terminal erb A amino acids in particular, histidine 12 and cysteine 32, contribute to this phenomenon, acting in conjunction with amino acids in the zinc finger domain. The effects of the N-terminal domain can be observed at the level of both DNA binding and transcriptional modulation. Our results indicate that unanticipated determinants within the nuclear hormone receptors participate in DNA sequence recognition and may contribute to the differential target gene specificity displayed by different receptor forms. Images PMID:8096060

  11. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open ↔ Closed Transitions

    PubMed Central

    Beckstein, Oliver; Denning, Elizabeth J.; Perilla, Juan R.; Woolf, Thomas B.

    2009-01-01

    Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free energy calculations and our new dynamic importance sampling (DIMS) molecular dynamics (MD) method. DIMS is shown to sample biologically relevant conformations as verified by comparing an ensemble of hundreds of DIMS transitions to AdK crystal structure intermediates. The simulations reveal in atomic detail how hinge regions partially and intermittently unfold during the transition. Conserved salt bridges are seen to have important structural and dynamic roles; in particular four ionic bonds are identified that open in a sequential, zipper-like fashion and thus dominate the free energy landscape of the transition. Transitions between the closed and open conformations only have to overcome moderate free energy barriers. Unexpectedly, the closed and open state encompass broad free energy basins that contain conformations differing in domain hinge motions by up to 40°. The significance of these extended states is discussed in relation to recent experimental FRET measurements. Taken together, these results demonstrate how a small number of cooperative key interactions can shape the overall dynamics of an enzyme and suggest an “all-or-nothing” mechanism for the opening and closing of AdK. Our efficient DIMS-MD computer simulation approach can provide a detailed picture of a functionally important macromolecular transition and thus help to interpret and suggest experiments to probe the conformational landscape of dynamic proteins such as AdK. PMID:19751742

  12. Homologous desensitization of adenylate cyclase: the role of. beta. -adrenergic receptor phosphorylation and dephosphorylation

    SciTech Connect

    Sibley, D.R.; Strasser, R.H.; Daniel, K.; Lefkowitz, R.J.

    1986-03-05

    The authors utilized the frog erythrocyte (FE) as a ..beta..-adreneric receptor (..beta..AR) model system in which to study homologous desensitization. Preincubation with isoproterenol (ISO) leads to a 50% decline in ISO-stimulated adenylate cyclase (AC) activity without significant changes in basal, PGE/sub 1/-, NaF-, GppNHp-, forskolin-, or MnCl/sub 2/-stimulated AC activities. ISO treatment also induces the sequestration of ..beta..AR from the cell surface as evidenced by a 35% decline in (/sup 3/H)CGP-12177 binding sites on the surface of intact FE. Treatment of intact FE with ISO also promotes ..beta..AR phosphorylation to 2 mol PO/sub 4//mol of ..beta..AR. At 25/sup 0/C, the time courses of ISO-induced AC desensitization, ..beta..AR sequestration and ..beta..AR phosphorylation are identical occurring without a lag and exhibiting a t 1/2 of 30 min and a maximal response at 2.5 hrs. The sequestered ..beta..AR can be partially recovered upon cell lysis in a light membrane fraction (LMF), separable from the plasma membranes using sucrose gradients or differential centrifugation. ..beta..AR phosphorylation is reversed in the sequestered LMF exhibiting a PO/sub 4//..beta..AR stoichiometry of 0.7 mol/mol - similar to that observed under basal conditions. These data suggest that phosphorylation of ..beta..AR in the plasma membrane promotes their translocation away from the cell surface into a sequestered membrane domain where the phosphorylation is reversed, thus, enabling the return of ..beta..AR back to the cell surface and recoupling with AC.

  13. Characterization of the purine-reactive site of the rat testis cytosolic adenylate cyclase.

    PubMed

    Onoda, J M; Braun, T; Wrenn, S M

    1987-06-15

    Naturally soluble rat germ cell adenylate cyclase was inhibited by adenosine and the adenosine analogs, 9-beta-D-arabinofuranosyl adenine (AFA) and 2',5'-dideoxyadenosine (DDA), all of which inhibited hormone-sensitive adenylate cyclases at the "P" site. The IC50 values for adenosine and DDA were approximately 0.1 and for AFA, 4.0 mM. The onset of adenosine inhibition was very rapid whether adenosine was added to the enzyme reactant mixture at time zero concomitantly with the addition of substrate or after the enzyme had been activated by the addition of substrate. The adenosine analogs, N6-methyladenosine (MeA) and N6-phenylisopropyl adenosine (PIA), which interact with plasma membrane receptors ("R" receptors) for hormone-sensitive adenylate cyclase, had little effect on the activity of the cytosolic adenylate cyclase. Additionally, aminophylline, which has been shown to competitively antagonize adenosine interactions with the plasma membrane "R" receptors but not "P" site interactions, had no effect upon substrate activation of the soluble enzyme and did not prevent adenosine from inhibiting the activity of the enzyme. These data provide evidence for an adenosine regulatory site on the cytosolic enzyme which resembles the "P" site described for membrane bound-adenylate cyclase.

  14. Adenylate cyclase of human articular chondrocytes. Responsiveness to prostaglandins and other hormones.

    PubMed Central

    Houston, J P; McGuire, M K; Meats, J E; Ebsworth, N M; Russell, R G; Crawford, A; Mac Neil, S

    1982-01-01

    Adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] was shown to be present in cultured human articular chondrocytes. Optimal conditions of incubation time, protein and substrate concentrations and pH were determined in whole cell lysates. Maximal activity occurred at pH 8.5 with no decrease in activity up to pH 10.0. Adenylate cyclase activity of particulate membrane preparations was enhanced by the addition of crude cytosol preparations. The prostaglandins E1, E2, F1 alpha, F2 alpha, D2, B1, B2, A1 and A2, as well as adrenaline and isoprenaline, stimulated adenylate cyclase derived from either adult or foetal chondrocytes. No significant stimulation was observed in the presence of human calcitonin or glucagon. Bovine parathyroid hormone always significantly stimulated the adenylate cyclase derived from foetal chondrocytes, but not from adult chondrocytes. Preincubation of the chondrocytes in culture with indomethacin and with or without supernatant medium from cultured mononuclear cells increased the responsiveness of the adenylate cyclase to prostaglandin E1. PMID:7159397

  15. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network. PMID:19468337

  16. Direct Binding of the PDZ Domain of Dishevelled to a Conserved Internal Sequence in the C-Terminal Region of Frizzled

    PubMed Central

    Wong, Hing-C.; Bourdelas, Audrey; Krauss, Anke; Lee, Ho-Jin; Shao, Youming; Wu, Dianqing; Mlodzik, Marek; Shi, De-Li; Zheng, Jie

    2015-01-01

    Summary The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl. PMID:14636582

  17. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled.

    PubMed

    Wong, Hing-C; Bourdelas, Audrey; Krauss, Anke; Lee, Ho-Jin; Shao, Youming; Wu, Dianqing; Mlodzik, Marek; Shi, De-Li; Zheng, Jie

    2003-11-01

    The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl.

  18. Replication in the amplified dihydrofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element.

    PubMed

    Anachkova, B; Hamlin, J L

    1989-02-01

    To study initiation of DNA replication in mammalian chromosomes, we have established a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400) that contains approximately 1,000 copies of the early replicating dihydrofolate reductase (DHFR) domain. We have previously shown that DNA replication in the prevalent 243-kilobase (kb) amplicon type in this cell line initiates somewhere within a 28-kb region located downstream from the DHFR gene. In an attempt to localize the origin of replication with more precision, we blocked the progress of replication forks emanating from origins at the beginning of the S phase by the introduction of trioxsalen cross-links at 1- to 5-kb intervals in the parental double-stranded DNA. The small DNA fragments synthesized under these conditions (which should be centered around replication origins) were then used as hybridization probes on digests of cosmids and plasmids from the DHFR domain. These studies suggested that in cells synchronized by this regimen, DNA replication initiates at two separate sites within the previously defined 28-kb replication initiation locus, in general agreement with results described in the accompanying paper (T.-H. Leu and J. L. Hamlin, Mol. Cell. Biol. 9:523-531, 1989). One of these sites contains a repeated DNA sequence element that is found at or near many other initiation sites in the genome, since it was also highly enriched in the early replicating DNA isolated from cross-linked CHO cells that contain only two copies of the DHFR domain.

  19. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence

    PubMed Central

    Heintz, Udo; Schlichting, Ilme

    2016-01-01

    The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics. DOI: http://dx.doi.org/10.7554/eLife.11860.001 PMID:26754770

  20. Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function.

    PubMed

    Bishop, Özlem Tastan; Edkins, Adrienne Lesley; Blatch, Gregory Lloyd

    2014-09-01

    Molecular chaperones and their associated co-chaperones play an important role in preserving and regulating the active conformational state of cellular proteins. The chaperone complement of the Indonesian Coelacanth, Latimeria menadoensis, was elucidated using transcriptomic sequences. Heat shock protein 90 (Hsp90) and heat shock protein 40 (Hsp40) chaperones, and associated co-chaperones were focused on, and homologous human sequences were used to search the sequence databases. Coelacanth homologs of the cytosolic, mitochondrial and endoplasmic reticulum (ER) homologs of human Hsp90 were identified, as well as all of the major co-chaperones of the cytosolic isoform. Most of the human Hsp40s were found to have coelacanth homologs, and the data suggested that all of the chaperone machinery for protein folding at the ribosome, protein translocation to cellular compartments such as the ER and protein degradation were conserved. Some interesting similarities and differences were identified when interrogating human, mouse, and zebrafish homologs. For example, DnaJB13 is predicted to be a non-functional Hsp40 in humans, mouse, and zebrafish due to a corrupted histidine-proline-aspartic acid (HPD) motif, while the coelacanth homolog has an intact HPD. These and other comparisons enabled important functional and evolutionary questions to be posed for future experimental studies.

  1. Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum.

    PubMed

    Gao, Pei-Ji; Chen, Guan-Jun; Wang, Tian-Hong; Zhang, Ying-Shu; Liu, Jie

    2001-01-01

    The cooperation between cellobiohydrolase (CBHI) and endoglucanase (EG) is necessary for biodegradation of native cellulose, but its mechanism is still poorly understood. The present paper report at the first time that an isolated component, the cellulose binding domain with its linker sequence of cellobiohydrolase I from Penicillium janthinellum (CBD(CBHI)), plays an important role in the synergism between CBHI and EGI during cellulose biodegradation. A recombinantplasmid (pUC18C), containing the gene fragment encoding CBD(CBHI) from P.janthinellum was derived from pUC18-181. In pUC 18C, the catalytic domain region of cbhI gene was deleted by in vitro DNA manipulations and then E.coli JM 109 was transformed for the production of LacZ-CBD fusion protein. The active LacZ-CBD fusion protein was digested by papain and then purified by re-exclusion chromatography. The purified peptide sequence of CBD(CBHI) had the ability of binding crystalline cellulose. The detailed morphological and structural changes of cotton fibers after binding CBD(CBHI) were investigated by using scanning electron microscopy, calorimetric activity and X-ray diffraction. The results demonstrated that the CBD(CBHI) not only has a high binding capacity to cellulose, but also causes non-hydrolytic disruption of crystalline cellulose, which leads to the release of short fibers. IR spectroscopy and X-ray diffraction show that destabilization is caused by the non-hydrolytic disruption of cellulose and the disruption of hydrogen bonds in crystalline cellulose. The efficiency of crystalline cellulose degradation was enhanced by synergistic action of CBD(CBHI) with EGI. These results suggest that the cellulose-binding domain with its linker plays an important role in crystalline cellulose degradation.

  2. The Streptomyces coelicolor lipoate-protein ligase is a circularly permuted version of the Escherichia coli enzyme composed of discrete interacting domains.

    PubMed

    Cao, Xinyun; Cronan, John E

    2015-03-13

    Lipoate-protein ligases are used to scavenge lipoic acid from the environment and attach the coenzyme to its cognate proteins, which are generally the E2 components of the 2-oxoacid dehydrogenases. The enzymes use ATP to activate lipoate to its adenylate, lipoyl-AMP, which remains tightly bound in the active site. This mixed anhydride is attacked by the ϵ-amino group of a specific lysine present on a highly conserved acceptor protein domain, resulting in the amide-linked coenzyme. The Streptomyces coelicolor genome encodes only a single putative lipoate ligase. However, this protein had only low sequence identity (<25%) to the lipoate ligases of demonstrated activity and appears to be a circularly permuted version of the known lipoate ligase proteins in that the canonical C-terminal domain seems to have been transposed to the N terminus. We tested the activity of this protein both by in vivo complementation of an Escherichia coli ligase-deficient strain and by in vitro assays. Moreover, when the domains were rearranged into a protein that mimicked the arrangement found in the canonical lipoate ligases, the enzyme retained complementation activity. Finally, when the two domains were separated into two proteins, both domain-containing proteins were required for complementation and catalysis of the overall ligase reaction in vitro. However, only the large domain-containing protein was required for transfer of lipoate from the lipoyl-AMP intermediate to the acceptor proteins, whereas both domain-containing proteins were required to form lipoyl-AMP.

  3. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  4. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  5. Synthesis of amino acyl adenylates using the tert-butoxycarbonyl protecting group

    NASA Technical Reports Server (NTRS)

    Armstrong, D. W.; Seguin, R.; Saburi, M.; Fendler, J. H.

    1979-01-01

    The synthesis of amino acyl adenylates using N-tert-butoxycarbonyl-protected amino acids is reported. Anhydrous solutions containing N-tert-butoxycarbonyl alanine, phenylalanine, and methionine were combined with the anhydrous mono (tri-n-octylammonium) salt of adenosine 5'-phosphate and the resultant amino acyl adenylates were characterized by means of elemental analysis, and infrared and proton NMR spectroscopy. Amino acyl adenylate yields of up to 60% were obtained with high purity at room temperatures. The reported synthesis is considered to represent a large improvement over previous methods due to the purity of the products, normal temperature requirements, and the stability of the starting compounds, which suggests its use in investigations of prebiotic oligo- and polypeptide synthesis.

  6. Sequence Discrimination by DNA-binding Domain of ETS Family Transcription Factor PU.1 Is Linked to Specific Hydration of Protein-DNA Interface*

    PubMed Central

    Poon, Gregory M. K.

    2012-01-01

    PU.1 is an essential transcription factor in normal hematopoietic lineage development. It recognizes a large number of promoter sites differing only in bases flanking a core consensus of 5′-GGAA-3′. DNA binding is mediated by its ETS domain, whose sequence selectivity directly corresponds to the transactivational activity and frequency of binding sites for full-length PU.1 in vivo. To better understand the basis of sequence discrimination, we characterized its binding properties to a high affinity and low affinity site. Despite sharing a homologous structural framework as confirmed by DNase I and hydroxyl radical footprinting, the two complexes exhibit striking heterogeneity in terms of hydration properties. High affinity binding is destabilized by osmotic stress, whereas low affinity binding is insensitive. Dimethyl sulfate footprinting showed that the major groove at the core consensus is protected in the high affinity complex but accessible in the low affinity one. Finally, destabilization of low affinity binding by salt is in quantitative agreement with the number of phosphate contacts but is substantially attenuated in high affinity binding. These observations support a mechanism of sequence discrimination wherein specifically bound water molecules couple flanking backbone contacts with base-specific interactions in a sequestered cavity at the core consensus. The implications of this model with respect to other ETS paralogs are discussed. PMID:22474303

  7. Molecular cloning of the goose ACSL3 and ACSL5 coding domain sequences and their expression characteristics during goose fatty liver development.

    PubMed

    He, H; Liu, H H; Wang, J W; Lv, J; Li, L; Pan, Z X

    2014-01-01

    It has been demonstrated that ACSL3 and ACSL5 play important roles in fat metabolism. To investigate the primary functions of ACSL3 and ACSL5 and to evaluate their expression levels during goose fatty liver development, we cloned the ACSL3 and ACSL5 coding domain sequences (CDSs) of geese using RT-PCR and analyzed their expression characteristics under different conditions using qRT-PCR. The results showed that the goose ACSL3 (JX511975) and ACSL5 (JX511976) sequences have high similarities with the chicken sequences both at the nucleotide and amino acid levels. Both ACSL3 and ACSL5 have high expression levels in goose liver. The expression levels of ACSL3 and ACSL5 in goose liver and hepatocytes can be changed by overfeeding geese and by treatment with unsaturated fatty acids, respectively. Together, these results indicate that ACSL3 and ACSL5 play important roles during fatty liver development. The different expression characteristics of goose ACSL3 and ACSL5 suggest that these two genes may be responsible for specific functions.

  8. A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex and kappa immunoglobulin genes.

    PubMed Central

    Baldwin, A S; LeClair, K P; Singh, H; Sharp, P A

    1990-01-01

    A cDNA from a B-cell library was previously isolated that encodes a sequence-specific DNA-binding protein with affinities for related sites in a class I major histocompatibility complex (MHC) and kappa immunoglobulin gene enhancers. We report here approximately 6.5 kilobases of sequence of the MBP-1 (MHC enhancer binding protein 1) cDNA. MBP-1 protein has a molecular weight predicted to be greater than 200,000. A DNA-binding domain with high affinity for the MHC enhancer sequence TGGGGATTCCCCA was localized to an 118-amino-acid protein fragment containing two zinc fingers of the class Cys2-X12-His2. Analysis of expression of MBP-1 mRNA revealed relatively high expression in HeLa cells and in a human retinal cell line, with lower levels in Jurkat T cells and in two B-cell lines. Interestingly, expression of MBP-1 mRNA was inducible by mitogen and phorbol ester treatment of Jurkat T cells and by serum treatment of confluent serum-deprived human fibroblasts. Images PMID:2108316

  9. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life.

    PubMed

    Elbourne, Liam D H; Tetu, Sasha G; Hassan, Karl A; Paulsen, Ian T

    2017-01-04

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements.

  10. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life

    PubMed Central

    Elbourne, Liam D. H.; Tetu, Sasha G.; Hassan, Karl A.; Paulsen, Ian T.

    2017-01-01

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements. PMID:27899676

  11. Distribution of adenylate cyclase and GTP-binding proteins in hepatic plasma membranes.

    PubMed

    Dixon, B S; Sutherland, E; Alexander, A; Nibel, D; Simon, F R

    1993-10-01

    Hepatic membrane subfractions prepared from control rats demonstrated forskolin (FSK)-stimulated adenylate cyclase activity in the basolateral (sinusoidal) but not apical (canalicular) plasma membrane. After bile duct ligation (BDL) for 12 or 24 h, there was an increase in FSK-stimulated adenylate cyclase activity in the apical membrane (54.2 +/- 3.9 pmol.mg-1 x min-1). The mechanism for this increase was explored further. ATP hydrolysis was found to be much higher in the apical than the basolateral membrane. Increasing the ATP levels in the assay enhanced apical membrane adenylate cyclase activity (10.5 +/- 0.2 pmol.mg-l.min-1); however, total adenosinetriphosphatase (ATPase) activity was not altered after BDL. Extraction of the apical membrane with bile acids or other detergents resulted in a two- to threefold increase in adenylate cyclase activity (30.6 +/- 3.6 pmol.mg-1 x min-1; detergent C12E8) This suggested that bile duct ligation was acting via the detergent-like action of bile acids to uncover latent adenylate cyclase activity on apical membranes. Further studies demonstrated that both BDL and detergent extraction also enhanced toxin-directed ADP-ribosylation of Gs alpha (cholera toxin) and Gi alpha (pertussis toxin) in the apical but not the basolateral membrane. After BDL, Gi alpha was found to be twofold greater in the apical membrane than the basolateral membrane. Immunoblotting using specific G protein antibodies further confirmed that apical membranes from control rats had a higher concentration of Gi1, 2 alpha and beta and slightly elevated levels of Gi3 alpha and Gs alpha compared with the basolateral membrane. The results demonstrate that adenylate cyclase and heterotrimeric GTP-binding proteins are present on the apical membrane, but measurement of their functional activity requires detergent permeabilization of apical membrane vesicles and is limited by the presence of high ATPase activity.

  12. Purification and primary structure of pituitary adenylate cyclase activating polypeptide (PACAP) from the brain of an elasmobranch, stingray, Dasyatis akajei.

    PubMed

    Matsuda, K; Yoshida, T; Nagano, Y; Kashimoto, K; Yatohgo, T; Shimomura, H; Shioda, S; Arimura, A; Uchiyama, M

    1998-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) was isolated from ovine hypothalami and found to exist as two amidated forms with 38 (PACAP 38) and 27 (PACAP 27) residues. The amino acid sequences of PACAPs isolated from the vertebrates, such as a bird, a frog and teleost fish, appear to be well conserved. In the present study, we attempted to isolate PACAP from the brain of an elasmobranch fish, Dasyatis akajei (stingray), which belongs to the Chondrichthyes (cartilaginous fish), by extraction of the acetone-dried powder with acetic acid, followed by successive high-performance liquid chromatography (HPLC) on a gel-filtration, a cation-exchange and two reverse-phase columns. Purification was monitored by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and Western blotting analysis using an anti-PACAP 27 serum. The PACAP thus obtained consisted of 44 residues. The amino acid sequence of the comparable portion of its N-terminal 38 residues showed 92%, 89%, 89%, and 82% identity with those of mammalian, chicken, frog and teleost PACAPs with 38 residues, respectively. The extra six C-terminal residues of the stingray resembled those of tetrapod and teleost PACAP precursors which were deduced from the respective cDNAs. These results indicate that PACAP, which has an amino acid sequence showing high similarity with those of tetrapod and teleost PACAPs, is present in the elasmobranch brain.

  13. Clay catalyzed polymerization of amino acid adenylates and its relationship to biochemical reactions

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The adsorption and polymerization of alanine adenylate on montmorillonite at pH 7 when either its interspacial faces or its edger are blocked by an excess of histidine or sodium hexametaphosphate was investigated. Results indicate that alanine adenylate can be adsorbed any place on the interspacial spaces of the clay; however, adsorption of its phosphate part, which is limited to the edges of the clay, is necessary for polymerization to occur. As a result, polymerization takes place only at sites on the interspacial faces bordering the edges.

  14. [The aspects of adenylate cyclase activity regulation in myocardium cell membranes during hypokinesia].

    PubMed

    Bulanova, K Ia; Komar, E S; Lobanok, L M

    1999-01-01

    Nonstimulated and isoproterenol, GTF, GITF, NaF stimulated activities of the adenylate cyclase in sarcolemma in white rats' myocardium was studied after two weeks of hypokinesia. As was established, in restrained animals the sensitivity of adenylate cyclase to the specified agents was increased and transition to the bimodal GTF regulation took place. It is hypothesised that involvement of membrane-bound Gi-proteins in the adrenergic effects on cardiomyocytes is one of mechanisms of the cardiotropic effects of restraint and heart distresses.

  15. The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, Mella; Eirich, Frederick R.

    1988-01-01

    The spontaneous polymerization of amino acid adenylates on Na-montmorillonite in dilute, neutral suspension, after polypeptides were adsorbed on the clay, is studied. It is found that the degrees of polymerization of the oligopeptides and polypeptides obtained is dependent on the amounts of polypeptides that were preadsorbed. It is concluded that a catalytic activity may derive from c-spacings that offer adsorption sites for the reagent amino acid adenylate within the peripheral recesses of irregularly stacked clay platelets by bringing the anhydride bonds and neutral amino groups into favorable reaction distances.

  16. [Characteristics of interaction of adenylate cyclase modulators and phosphoinositide cell signaling systems with lipid langmuir monolayers].

    PubMed

    Liakhov, O M; Prokopenko, V V; Prokopenko, R A; Mohylevych, S Ie

    2006-01-01

    Interaction of two groups of bioregulators, which oppositely affect activity of adenylate cyclase and phosphoinositide cellular signaling systems, with the Langmuir monolayer films made of natural lecithin was studied. Most significant influence on the structural and energy characteristics of lipid monolayers was revealed for the group of bioregulators, which inhibit polyphosphoinositide signaling system or/and activate adenylate cyclase signaling system. It is shown, that using the cluster analysis the bioregulators can be divided into two groups according to general orientation of their action on the considered systems of transduction of a signal.

  17. Use of sequence analysis of the P2 domain for characterization of norovirus strains causing a large multistate outbreak of norovirus gastroenteritis in Germany 2012.

    PubMed

    Höhne, Marina; Niendorf, Sandra; Mas Marques, Andreas; Bock, C-Thomas

    2015-10-01

    Human norovirus is the main cause of non-bacterial gastroenteritis worldwide. It is transmitted from person to person, by fecally contaminated food or water or through virus containing aerosols originating during vomiting of infected persons. In September and October 2012, the largest foodborne norovirus outbreak in Germany so far spread over 5 Federal States (Berlin, Brandenburg, Saxony, Saxony-Anhalt, and Thuringia) affecting nearly 11,000 people mainly in schools and child care facilities. Epidemiological and trace-back investigations supported the assumption that a batch of frozen strawberries imported from China was the likely source of the outbreak. Sequence analysis of the capsid region encoding the P2 domain was used successfully for identification of transmission routes and epidemiologic relationship but was hampered by a lack of universal primers for all known genotypes so far. In the present study, a molecular approach was designed to track outbreak-related samples from the affected states of the large foodborne outbreak in Germany. Therefore, sequence analysis within the highly variable P2 domain of the capsid gene using newly developed universal P2 primers for genogroup I and genogroup II strains in combination with sequencing of the polymerase gene (region A) and the orf1/orf2 junction (region c) was used. The sequence analysis of 138 norovirus positive stool samples suspected to be outbreak-related revealed a considerable genomic diversity. At least 3 strains of genogroup I (I.3, I.4, and I.9) and 5 strains of genogroup II (II.6, II.7, II. 8, and recombinants II.P7_II.6, and II.P16_II.13) as well as 19 samples containing mixtures of these strains were detected. Six samples were considered as not linked to the outbreak. The most prevalent genotype was GI.4 (48/132; 36%). Genotype I.9 and the recombinant strain II.P16_II.13 were detected for the first time in Germany. Notably, the genotype II.P16_II.13 could also be determined in one of the samples of

  18. The glaucoma-associated olfactomedin domain of myocilin forms polymorphic fibrils that are constrained by partial unfolding and peptide sequence

    PubMed Central

    Hill, Shannon E.; Donegan, Rebecca K.; Lieberman, Raquel L.

    2014-01-01

    The glaucoma-associated olfactomedin domain of myocilin (myoc-OLF) is a recent addition to the growing list of disease-associated amyloidogenic proteins. Inherited, diseasecausing myocilin variants aggregate intracellularly instead of being secreted to the trabecular meshwork (TM), which is a scenario toxic to TM cells and leads to early onset of ocular hypertension, the major risk factor for glaucoma. Here we systematically structurally and biophysically dissected myoc-OLF to better understand its amyloidogenesis. Under mildly destabilizing conditions, wild-type myoc-OLF adopts non-native structures that readily fibrillize when incubated at a temperature just below the transition for tertiary unfolding. With buffers at physiological pH, two main end-point fibril morphologies are observed: (a) straight fibrils common to many amyloids and (b) unique micron-length, ~300 nm or larger diameter species that lasso oligomers, which also exhibit classical spectroscopic amyloid signatures. Three disease-causing variants investigated herein exhibit non-native tertiary structures under physiological conditions, leading to accelerated growth rates and a variety of fibril morphologies. In particular, the well-documented D380A variant, which lacks calcium, forms large circular fibrils. Two amyloid forming peptide stretches have been identified, one for each of the main fibril morphologies observed. Our study places myoc-OLF within the larger landscape of the amylome and provides insight into the diversity of myoc-OLF aggregation that plays a role in glaucoma pathogenesis. PMID:24333014

  19. Features of Two New Proteins with OmpA-Like Domains Identified in the Genome Sequences of Leptospira interrogans

    PubMed Central

    Teixeira, Aline F.; de Morais, Zenaide M.; Kirchgatter, Karin; Romero, Eliete C.; Vasconcellos, Silvio A.; Nascimento, Ana Lucia T. O.

    2015-01-01

    Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis. PMID:25849456

  20. Comparative Analysis of Genome and Epigenome in Closely Related Medaka Species Identifies Conserved Sequence Preferences for DNA Hypomethylated Domains.

    PubMed

    Uno, Ayako; Nakamura, Ryohei; Tsukahara, Tatsuya; Qu, Wei; Sugano, Sumio; Suzuki, Yutaka; Morishita, Shinichi; Takeda, Hiroyuki

    2016-08-01

    The genomes of vertebrates are globally methylated, but a small portion of genomic regions are known to be hypomethylated. Although hypomethylated domains (HMDs) have been implicated in transcriptional regulation in various ways, how a HMD is determined in a particular genomic region remains elusive. To search for DNA motifs essential for the formation of HMDs, we performed the genome-wide comparative analysis of genome and DNA methylation patterns of the two medaka inbred lines, Hd-rRII1 and HNI-II, which are derived from northern and southern subpopulations of Japan and exhibit high levels of genetic variations (SNP, ∼ 3%). We successfully mapped > 70% of HMDs in both genomes and found that the majority of those mapped HMDs are conserved between the two lines (common HMDs). Unexpectedly, the average genetic variations are similar in the common HMD and other genome regions. However, we identified short well-conserved motifs that are specifically enriched in HMDs, suggesting that they may play roles in the establishment of HMDs in the medaka genome.

  1. Stability, structural and functional properties of a monomeric, calcium–loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis

    PubMed Central

    Cannella, Sara E.; Ntsogo Enguéné, Véronique Yvette; Davi, Marilyne; Malosse, Christian; Sotomayor Pérez, Ana Cristina; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Ladant, Daniel; Chenal, Alexandre

    2017-01-01

    Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins. PMID:28186111

  2. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A.

    PubMed

    Castro, Anna; Vigneron, Suzanne; Bernis, Cyril; Labbé, Jean-Claude; Prigent, Claude; Lorca, Thierry

    2002-12-01

    We have demonstrated previously that Xenopus Aurora-A is degraded at late mitosis by the APC/Fizzy-Related in a D-Box-dependent manner. Here we demonstrate that, although Aurora-B possesses the same D-Box as Aurora-A, Aurora-B is not degraded by this ubiquitin ligase. We have constructed a chimera Aurora-A/B with the N-terminus of Aurora-A and the C-terminus of Aurora-B and we have examined its degradation by APC/Fizzy-Related. We demonstrate that the N-terminus of Aurora-A confers degradation capacity on the C-terminus of Aurora-B and that this feature is blocked by mutation of the conserved D-Box sequence. We characterize the minimal degradation signal at the N-terminus of Aurora-A and demonstrate that its deletion blocks the degradation of this protein by APC/Fizzy-Related. Thus, we conclude that two different degradation signals are required for proteolysis of Aurora-A. The first one, which we designated D-Box-activating domain, within the N-terminal domain of Aurora-A confers the functionality to the second, a silent D-Box, present within the C-terminus of the kinase.

  3. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A

    PubMed Central

    Castro, Anna; Vigneron, Suzanne; Bernis, Cyril; Labbé, Jean-Claude; Prigent, Claude; Lorca, Thierry

    2002-01-01

    We have demonstrated previously that Xenopus Aurora-A is degraded at late mitosis by the APC/Fizzy-Related in a D-Box-dependent manner. Here we demonstrate that, although Aurora-B possesses the same D-Box as Aurora-A, Aurora-B is not degraded by this ubiquitin ligase. We have constructed a chimera Aurora-A/B with the N-terminus of Aurora-A and the C-terminus of Aurora-B and we have examined its degradation by APC/Fizzy-Related. We demonstrate that the N-terminus of Aurora-A confers degradation capacity on the C-terminus of Aurora-B and that this feature is blocked by mutation of the conserved D-Box sequence. We characterize the minimal degradation signal at the N-terminus of Aurora-A and demonstrate that its deletion blocks the degradation of this protein by APC/Fizzy-Related. Thus, we conclude that two different degradation signals are required for proteolysis of Aurora-A. The first one, which we designated D-Box-activating domain, within the N-terminal domain of Aurora-A confers the functionality to the second, a silent D-Box, present within the C-terminus of the kinase. PMID:12446569

  4. Site-Selective Monitoring of the Interaction of the SRA Domain of UHRF1 with Target DNA Sequences Labeled with 2-Aminopurine.

    PubMed

    Greiner, Vanille J; Kovalenko, Lesia; Humbert, Nicolas; Richert, Ludovic; Birck, Catherine; Ruff, Marc; Zaporozhets, Olga A; Dhe-Paganon, Sirano; Bronner, Christian; Mély, Yves

    2015-10-06

    UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility. Moreover, significant restriction of the local motion of residues flanking the methylcytosine in the HM duplex suggested that these residues are more rigidly bound to SRA, in line with a slightly higher affinity of the HM duplex as compared to that of the NM or BM duplex. Our results are consistent with a "reader" role, in which the SRA domain scans DNA sequences for hemimethylated CpG sites without perturbation of the structure of contacted nucleotides.

  5. A/T Run Geometry of B-form DNA Is Independent of Bound Methyl-CpG Binding Domain, Cytosine Methylation and Flanking Sequence

    PubMed Central

    Chia, Jyh Yea; Tan, Wen Siang; Ng, Chyan Leong; Hu, Nien-Jen; Foo, Hooi Ling; Ho, Kok Lian

    2016-01-01

    DNA methylation in a CpG context can be recognised by methyl-CpG binding protein 2 (MeCP2) via its methyl-CpG binding domain (MBD). An A/T run next to a methyl-CpG maximises the binding of MeCP2 to the methylated DNA. The A/T run characteristics are reported here with an X-ray structure of MBD A140V in complex with methylated DNA. The A/T run geometry was found to be strongly stabilised by a string of conserved water molecules regardless of its flanking nucleotide sequences, DNA methylation and bound MBD. New water molecules were found to stabilise the Rett syndrome-related E137, whose carboxylate group is salt bridged to R133. A structural comparison showed no difference between the wild type and MBD A140V. However, differential scanning calorimetry showed that the melting temperature of A140V constructs in complex with methylated DNA was reduced by ~7 °C, although circular dichroism showed no changes in the secondary structure content for A140V. A band shift analysis demonstrated that the larger fragment of MeCP2 (A140V) containing the transcriptional repression domain (TRD) destabilises the DNA binding. These results suggest that the solution structure of MBD A140V may differ from the wild-type MBD although no changes in the biochemical properties of X-ray A140V were observed. PMID:27502833

  6. Structure of the D-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    SciTech Connect

    Bera, A.K.; Robinson, H.; Atanasova, V.; Gamage, S.; Parsons, J. F.

    2010-06-01

    The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound D-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  7. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    SciTech Connect

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  8. Sequences in Glycoprotein gp41, the CD4 Binding Site, and the V2 Domain Regulate Sensitivity and Resistance of HIV-1 to Broadly Neutralizing Antibodies

    PubMed Central

    O'Rourke, Sara M.; Schweighardt, Becky; Phung, Pham; Mesa, Kathryn A.; Vollrath, Aaron L.; Tatsuno, Gwen P.; To, Briana; Sinangil, Faruk; Limoli, Kay; Wrin, Terri

    2012-01-01

    The swarm of quasispecies that evolves in each HIV-1-infected individual represents a source of closely related Env protein variants that can be used to explore various aspects of HIV-1 biology. In this study, we made use of these variants to identify mutations that confer sensitivity and resistance to the broadly neutralizing antibodies found in the sera of selected HIV-1-infected individuals. For these studies, libraries of Env proteins were cloned from infected subjects and screened for infectivity and neutralization sensitivity. The nucleotide sequences of the Env proteins were then compared for pairs of neutralization-sensitive and -resistant viruses. In vitro mutagenesis was used to identify the specific amino acids responsible for the neutralization phenotype. All of the mutations altering neutralization sensitivity/resistance appeared to induce conformational changes that simultaneously enhanced the exposure of two or more epitopes located in different regions of gp160. These mutations appeared to occur at unique positions required to maintain the quaternary structure of the gp160 trimer, as well as conformational masking of epitopes targeted by neutralizing antibodies. Our results show that sequences in gp41, the CD4 binding site, and the V2 domain all have the ability to act as global regulators of neutralization sensitivity. Our results also suggest that neutralization assays designed to support the development of vaccines and therapeutics targeting the HIV-1 Env protein should consider virus variation within individuals as well as virus variation between individuals. PMID:22933284

  9. Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes

    PubMed Central

    Lawrie, Charles M.; Sulistijo, Endah S.; MacKenzie, Kevin R.

    2009-01-01

    We determined the sequence dependence of human BNIP3 transmembrane domain dimerization using the biological assay TOXCAT. Mutants in which intermonomer hydrogen bonds between Ser 172 and His 173 are abolished show moderate interaction, indicating that side chain hydrogen bonds contribute to dimer stability but are not essential to dimerization. Mutants in which a GxxxG motif composed of Gly 180 and Gly 184 has been abolished show little or no interaction, demonstrating the critical nature of the GxxxG motif to BNIP3 dimerization. These findings show that side chain hydrogen bonds can enhance the intrinsic dimerization of a GxxxG motif and that sequence context can control how hydrogen bonds influence helix-helix interactions in membranes. The dimer interface mapped by TOXCAT mutagenesis agrees closely with the interfaces observed in the NMR structure and inferred from mutational analysis of dimerization on SDS-PAGE, showing that the native dimer structure is retained in detergents. We show that TOXCAT and SDS-PAGE give complementary and consistent information about BNIP3 TMD dimerization: TOXCAT is insensitive to mutations that have modest effects on self-association in detergents but readily discriminates among mutations that completely disrupt detergent-resistant dimerization. The close agreement between conclusions reached from TOXCAT and SDS-PAGE data for BNIP3 suggests that accurate estimates of the relative effects of mutations on native state protein-protein interactions can be obtained even when the detergent environment is strongly disruptive. PMID:20026130

  10. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    PubMed Central

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  11. Hyaluronic acid as capacitation inductor: metabolic changes and membrane-associated adenylate cyclase regulation.

    PubMed

    Fernández, S; Córdoba, M

    2014-12-01

    The aim of this research was to study the effect of hyaluronic acid on bovine cryopreserved spermatozoa compared with heparin as regards the variation of capacitation induction, cellular oxidative metabolism and intracellular signal induced by membrane-associated adenylate cyclase to propose hyaluronic acid as a capacitation inductor. Heparin or hyaluronic acid and lysophosphatidylcholine were used to induce sperm capacitation and acrosome reaction, respectively. 2',5'-dideoxyadenosine was used as a membrane-associated adenylate cyclase inhibitor. The highest percentages of capacitated spermatozoa and live spermatozoa with acrosome integrity were obtained by incubating sperm for 60 min using 1000 μg/ml hyaluronic acid. In these conditions, capacitation induced by hyaluronic acid was lower compared with heparin; nonetheless both glycosaminoglycans promote intracellular changes that allow true acrosome reaction in vitro induced by lysophosphatidylcholine in bovine spermatozoa. Oxygen consumption in heparin-capacitated spermatozoa was significantly higher than in hyaluronic acid-treated spermatozoa. With all treatments, mitochondrial coupling was observed when a specific uncoupler of the respiratory chain was added. The inhibition of membrane-associated adenylate cyclase significantly blocked capacitation induction produced by hyaluronic acid, maintaining a basal sperm oxygen uptake in contrast to heparin effect in which both sperm parameters were inhibited, suggesting that the membrane-associated adenylate cyclase activation is involved in the intracellular signal mechanisms induced by both capacitation inductors, but only regulates mitochondrial oxidative phosphorylation in heparin-capacitated spermatozoa.

  12. Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis.

    PubMed Central

    Glaser, P; Munier, H; Gilles, A M; Krin, E; Porumb, T; Bârzu, O; Sarfati, R; Pellecuer, C; Danchin, A

    1991-01-01

    Calmodulin-activated adenylate cyclase of Bordetella pertussis and Bacillus anthracis are two cognate bacterial toxins. Three short regions of 13-24 amino acid residues in these proteins exhibit between 66 and 80% identity. Site-directed mutagenesis of four residues in B. pertussis adenylate cyclase situated in the second (Asp188, Asp190) and third (His298, Glu301) segments of identity were accompanied by important decrease, or total loss, of enzyme activity. The calmodulin-binding properties of mutated proteins showed no important differences when compared to the wild-type enzyme. Apart from the loss of enzymatic activity, the most important change accompanying replacement of Asp188 by other amino acids was a dramatic decrease in binding of 3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, a fluorescent analogue of ATP. From these results we concluded that the two neighbouring aspartic acid residues in B. pertussis adenylate cyclase, conserved in many other ATP-utilizing enzymes, are essential for binding the Mg(2+)-nucleotide complex, and for subsequent catalysis. Replacement of His298 and Glu301 by other amino acid residues affected the nucleotide-binding properties of adenylate cyclase to a lesser degree suggesting that they might be important in the mechanism of enzyme activation by calmodulin, rather than being involved directly in catalysis. PMID:2050107

  13. Topographic separation of adenylate cyclase and hormone receptors in the plasma membrane of toad erythrocyte ghosts

    PubMed Central

    Sahyoun, N.; Hollenberg, M. D.; Bennett, V.; Cuatrecasas, P.

    1977-01-01

    Brief sonication of whole erythrocyte plasma membranes (ghosts) from toads at 4° does not inactivate adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); EC 4.6.1.1] or destroy the receptor binding properties of hydroxybenzylpindolol or insulin. The hormonal (but not the fluoride-induced) stimulation of this enzyme is, however, lost. Fractionation of the small, resealed membrane fragments (vesicles) on discontinuous sucrose gradients results in the separation of vesicle populations differing grossly in size and protein composition. In addition, the distribution of the β-adrenergic receptor, an insulin binding site, and adenylate cyclase among these vesicles fractions differs. The pattern of distribution of these functional structures can be altered differentially by manipulations of the ghosts before sonication. For example, brief preincubation with isoproterenol leads to a change in the relative distribution of β-receptor (but not adenylate cyclase) among the various vesicle fractions; this effect is not obtained with β-receptor antagonists, which block the isoproterenol effect. Exposure of the ghosts to different temperatures, changes in the divalent cation composition of the medium, or the addition of ATP also leads to changes in the distribution of surface markers of the subsequently formed vesicles. The results indicate gross asymmetries in the distribution of protein components within the plane of the membrane and raise important questions regarding the manner whereby functionally related and coupled components, such as hormone receptors and adenylate cyclase, interact. Images PMID:197522

  14. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  15. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development.

    PubMed

    Soid-Raggi, Gabriela; Sánchez, Olivia; Ramos-Balderas, Jose L; Aguirre, Jesús

    2016-01-01

    Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans.

  16. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development

    PubMed Central

    Soid-Raggi, Gabriela; Sánchez, Olivia; Ramos-Balderas, Jose L.; Aguirre, Jesús

    2016-01-01

    Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans. PMID:27047469

  17. Animal Protection and Structural Studies of a Consensus Sequence Vaccine Targeting the Receptor Binding Domain of the Type IV Pilus of Pseudomonas aeruginosa

    SciTech Connect

    Kao, Daniel J.; Churchill, Mair E.A.; Irvin, Randall T.; Hodges, Robert S.

    2008-09-23

    One of the main obstacles in the development of a vaccine against Pseudomonas aeruginosa is the requirement that it is protective against a wide range of virulent strains. We have developed a synthetic-peptide consensus-sequence vaccine (Cs1) that targets the host receptor-binding domain (RBD) of the type IV pilus of P. aeruginosa. Here, we show that this vaccine provides increased protection against challenge by the four piliated strains that we have examined (PAK, PAO, KB7 and P1) in the A.BY/SnJ mouse model of acute P. aeruginosa infection. To further characterize the consensus sequence, we engineered Cs1 into the PAK monomeric pilin protein and determined the crystal structure of the chimeric Cs1 pilin to 1.35 {angstrom} resolution. The substitutions (T130K and E135P) used to create Cs1 do not disrupt the conserved backbone conformation of the pilin RBD. In fact, based on the Cs1 pilin structure, we hypothesize that the E135P substitution bolsters the conserved backbone conformation and may partially explain the immunological activity of Cs1. Structural analysis of Cs1, PAK and K122-4 pilins reveal substitutions of non-conserved residues in the RBD are compensated for by complementary changes in the rest of the pilin monomer. Thus, the interactions between the RBD and the rest of the pilin can either be mediated by polar interactions of a hydrogen bond network in some strains or by hydrophobic interactions in others. Both configurations maintain a conserved backbone conformation of the RBD. Thus, the backbone conformation is critical in our consensus-sequence vaccine design and that cross-reactivity of the antibody response may be modulated by the composition of exposed side-chains on the surface of the RBD. This structure will guide our future vaccine design by focusing our investigation on the four variable residue positions that are exposed on the RBD surface.

  18. A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location

    PubMed Central

    2010-01-01

    Background The Sp-family of transcription factors are evolutionarily conserved zinc finger proteins present in many animal species. The orthology of the Sp genes in different animals is unclear and their evolutionary history is therefore controversially discussed. This is especially the case for the Sp gene buttonhead (btd) which plays a key role in head development in Drosophila melanogaster, and has been proposed to have originated by a recent gene duplication. The purpose of the presented study was to trace orthologs of btd in other insects and reconstruct the evolutionary history of the Sp genes within the metazoa. Results We isolated Sp genes from representatives of a holometabolous insect (Tribolium castaneum), a hemimetabolous insect (Oncopeltus fasciatus), primitively wingless hexapods (Folsomia candida and Thermobia domestica), and an amphipod crustacean (Parhyale hawaienis). We supplemented this data set with data from fully sequenced animal genomes. We performed phylogenetic sequence analysis with the result that all Sp factors fall into three monophyletic clades. These clades are also supported by protein domain structure, gene expression, and chromosomal location. We show that clear orthologs of the D. melanogaster btd gene are present even in the basal insects, and that the Sp5-related genes in the genome sequence of several deuterostomes and the basal metazoans Trichoplax adhaerens and Nematostella vectensis are also orthologs of btd. Conclusions All available data provide strong evidence for an ancestral cluster of three Sp-family genes as well as synteny of this Sp cluster and the Hox cluster. The ancestral Sp gene cluster already contained a Sp5/btd ortholog, which strongly suggests that btd is not the result of a recent gene duplication, but directly traces back to an ancestral gene already present in the metazoan ancestor. PMID:20353601

  19. Sequence Analysis of Scaffolding Protein CipC and ORFXp, a New Cohesin-Containing Protein in Clostridium cellulolyticum: Comparison of Various Cohesin Domains and Subcellular Localization of ORFXp

    PubMed Central

    Pagès, Sandrine; Bélaïch, Anne; Fierobe, Henri-Pierre; Tardif, Chantal; Gaudin, Christian; Bélaïch, Jean-Pierre

    1999-01-01

    The gene encoding the scaffolding protein of the cellulosome from Clostridium cellulolyticum, whose partial sequence was published earlier (S. Pagès, A. Bélaïch, C. Tardif, C. Reverbel-Leroy, C. Gaudin, and J.-P. Bélaïch, J. Bacteriol. 178:2279–2286, 1996; C. Reverbel-Leroy, A. Bélaïch, A. Bernadac, C. Gaudin, J. P. Bélaïch, and C. Tardif, Microbiology 142:1013–1023, 1996), was completely sequenced. The corresponding protein, CipC, is composed of a cellulose binding domain at the N terminus followed by one hydrophilic domain (HD1), seven highly homologous cohesin domains (cohesin domains 1 to 7), a second hydrophilic domain, and a final cohesin domain (cohesin domain 8) which is only 57 to 60% identical to the seven other cohesin domains. In addition, a second gene located 8.89 kb downstream of cipC was found to encode a three-domain protein, called ORFXp, which includes a cohesin domain. By using antiserum raised against the latter, it was observed that ORFXp is associated with the membrane of C. cellulolyticum and is not detected in the cellulosome fraction. Western blot and BIAcore experiments indicate that cohesin domains 1 and 8 from CipC recognize the same dockerins and have similar affinity for CelA (Ka = 4.8 × 109 M−1) whereas the cohesin from ORFXp, although it is also able to bind all cellulosome components containing a dockerin, has a 19-fold lower Ka for CelA (2.6 × 108 M−1). Taken together, these data suggest that ORFXp may play a role in cellulosome assembly. PMID:10074072

  20. The invasive adenylate cyclase of Bordetella pertussis. Properties and penetration kinetics.

    PubMed Central

    Friedman, E; Farfel, Z; Hanski, E

    1987-01-01

    Bordetella pertussis, the causative organism of whooping cough, produces a calmodulin-sensitive adenylate cyclase. Confer & Eaton [(1982) Science 217, 948-950] have shown that an extract from B. pertussis increases intracellular cyclic AMP levels in neutrophils and suggested that this increase is caused by the bacterial adenylate cyclase which penetrates these cells. We demonstrate in the present study that adenylate cyclase activity in lysates from lymphocytes exposed to a partially purified preparation of the bacterial enzyme has properties completely different from those of the intrinsic membrane-bound enzyme. Adenylate cyclase activity in lysates from lymphocytes exposed to the invasive enzyme is insensitive to N-ethylmaleimide, readily inactivated by acetic anhydride and relatively stable to SDS. Similar properties are exhibited by the bacterial enzyme itself. By contrast, the intrinsic membrane-bound enzyme activated by forskolin and guanosine 5'-gamma-thiotriphosphate is sensitive to N-ethylmaleimide and SDS and relatively stable to acetic anhydride. This strongly supports the notion that B. pertussis adenylate cyclase penetrates cells. Using the partially purified preparation of the invasive enzyme, we have studied the kinetics of its penetration. The intracellular catalytic activity reaches a steady state within 20 min, irrespective of enzyme or cell concentration. Steady-state levels are maintained for at least 2 h provided that the invasive enzyme is present in the incubation medium. Upon its removal, a rapid decrease (t1/2 approximately equal to 15 min) in the intracellular cyclase level is observed. This decrease reflects intracellular inactivation of the bacterial enzyme and is not caused by the release of the enzyme to the cell medium. PMID:2886119

  1. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  2. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  3. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed Central

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-01-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme. Images PMID:2869483

  4. Sequence-Based Analysis of Secondary-Metabolite Biosynthesis in Marine Actinobacteria ▿ ‡

    PubMed Central

    Gontang, Erin A.; Gaudêncio, Susana P.; Fenical, William; Jensen, Paul R.

    2010-01-01

    A diverse collection of 60 marine-sediment-derived Actinobacteria representing 52 operational taxonomic units was screened by PCR for genes associated with secondary-metabolite biosynthesis. Three primer sets were employed to specifically target adenylation domains associated with nonribosomal peptide synthetases (NRPSs) and ketosynthase (KS) domains associated with type I modular, iterative, hybrid, and enediyne polyketide synthases (PKSs). In total, two-thirds of the strains yielded a sequence-verified PCR product for at least one of these biosynthetic types. Genes associated with enediyne biosynthesis were detected in only two genera, while 88% of the ketosynthase sequences shared greatest homology with modular PKSs. Positive strains included representatives of families not traditionally associated with secondary-metabolite production, including the Corynebacteriaceae, Gordoniaceae, Intrasporangiaceae, and Micrococcaceae. In four of five cases where phylogenetic analyses of KS sequences revealed close evolutionary relationships to genes associated with experimentally characterized biosynthetic pathways, secondary-metabolite production was accurately predicted. Sequence clustering patterns were used to provide an estimate of PKS pathway diversity and to assess the biosynthetic richness of individual strains. The detection of highly similar KS sequences in distantly related strains provided evidence of horizontal gene transfer, while control experiments designed to amplify KS sequences from Salinispora arenicola strain CNS-205, for which a genome sequence is available, led to the detection of 70% of the targeted PKS pathways. The results provide a bioinformatic assessment of secondary-metabolite biosynthetic potential that can be applied in the absence of fully assembled pathways or genome sequences. The rapid identification of strains that possess the greatest potential to produce new secondary metabolites along with those that produce known compounds can be used

  5. Sequence-specific sup 1 H NMR assignments, secondary structure, and location of the calcium binding site in the first epidermal growth factor like domain of blood coagulation factor IX

    SciTech Connect

    Huang, L.H.; Cheng, H.; Sweeney, W.V. ); Pardi, A. ); Tam, J.P. )

    1991-07-30

    Factor IX is a blood clotting protein that contains three regions, including a {gamma}-carboxyglutamic acid (Gla) domain, two tandemly connected epidermal growth factor like (EGF-like) domains, and a serine protease region. The protein exhibits a high-affinity calcium binding site in the first EGF0like domain, in addition to calcium binding in the Gla domain. The first EGF-like domain, factor IX (45-87), has been synthesized. Sequence-specific resonance assignment of the peptide has been made by using 2D NMR techniques, and its secondary structure has been determined. The protein is found to have two antiparallel {beta}-sheets, and preliminary distance geometry calculations indicate that the protein has two domains, separated by Trp{sup 28}, with the overall structure being similar to that of EGF. An NMR investigation of the calcium-bound first EGF-like domain indicates the presence and location of a calcium binding site involving residues on both strands of one of the {beta}-sheets as well as the N-terminal region of the peptide. These results suggest that calcium binding in the first EGF-like domain could induce long-range (possibly interdomain) conformational changes in factor IX, rather than causing structural alterations in the EGF-like domain itself.

  6. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    SciTech Connect

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  7. A putative carbohydrate-binding domain of the lactose-binding Cytisus sessilifolius anti-H(O) lectin has a similar amino acid sequence to that of the L-fucose-binding Ulex europaeus anti-H(O) lectin.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1995-04-01

    The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).

  8. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    SciTech Connect

    Myre, Michael A.; O'Day, Danton H. . E-mail: doday@utm.utoronto.ca

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ({sup 171}EDVSRFIKGKLLQKQQKIYKDLERF{sup 195}) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues {sup 48}KKSYQDPEIIAHSRPRK{sup 64} that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to {sup 48}EF{sup 49} abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the {sup 48}EF{sup 49} construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.

  9. The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2+ supports an associative mechanism for phosphoryl transfer

    PubMed Central

    Bellinzoni, Marco; Haouz, Ahmed; Graña, Martin; Munier-Lehmann, Hélène; Shepard, William; Alzari, Pedro M.

    2006-01-01

    The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 Å resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the β-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer. PMID:16672241

  10. Large-scale motions in the adenylate kinase solution ensemble: Coarse-grained simulations and comparison with solution X-ray scattering

    NASA Astrophysics Data System (ADS)

    Daily, Michael D.; Makowski, Lee; Phillips, George N.; Cui, Qiang

    2012-03-01

    While coarse-grained (CG) simulations provide an efficient approach to identify small- and large-scale motions important to protein conformational transitions, coupling with appropriate experimental validation is essential. Here, by comparing small-angle X-ray scattering (SAXS) predictions from CG simulation ensembles of adenylate kinase (AK) with a range of energetic parameters, we demonstrate that AK is flexible in solution in the absence of ligand and that a small population of the closed form exists without ligand. In addition, by analyzing variation of scattering patterns within CG simulation ensembles, we reveal that rigid-body motion of the LID domain corresponds to a dominant scattering feature. Thus, we have developed a novel approach for three-dimensional structural interpretation of SAXS data. Finally, we demonstrate that the agreement between predicted and experimental SAXS can be improved by increasing the simulation temperature or by computationally mutating selected residues to glycine, both of which perturb LID rigid-body flexibility.

  11. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Stierl, M.; Hegemann, P.; Kateriya, S.

    2012-01-01

    The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  12. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor.

    PubMed

    Sorrentino, Luca; Calogero, Alessandra Maria; Pandini, Vittorio; Vanoni, Maria Antonietta; Sevrioukova, Irina F; Aliverti, Alessandro

    2015-12-01

    Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.

  13. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes.

    PubMed Central

    Hermiston, T W; Tripp, R A; Sparer, T; Gooding, L R; Wold, W S

    1993-01-01

    Adenovirus E3-gp19K is a transmembrane glycoprotein, localized in the endoplasmic reticulum (ER), which forms a complex with major histocompatibility complex (MHC) class I antigens and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes (CTL). The ER lumenal domain of gp19K, residues 1 to 107, is known to be sufficient for binding to class I antigens; the transmembrane and cytoplasmic ER retention domains are located at residues ca. 108 to 127 and 128 to 142, respectively. To identify more precisely which gp19K regions are involved in binding to class I antigens, we constructed 13 in-frame virus deletion mutants (4 to 12 amino acids deleted) in the ER lumenal domain of gp19K, and we analyzed the ability of the mutant proteins to form a complex with class I antigens, retain them in the ER, and prevent cytolysis by adenovirus-specific CTL. All mutant proteins except one (residues 102 to 107 deleted) were defective for these properties, indicating that the ability of gp19K to bind to class I antigens is highly sensitive to mutation. All mutant proteins were stable and were retained in the ER. Sequence comparisons among adenovirus serotypes reveal that the ER lumenal domain of gp19K consists of a variable region (residues 1 to 76) and a conserved region (residues 77 to 98). We show, using the mutant proteins, that the gp19K-specific monoclonal antibody Tw1.3 recognizes a noncontiguous epitope in the variable region and that disruption of the variable region by deletion destroys the epitope. The monoclonal antibody and class I antigen binding results, together with the serotype sequence comparisons, are consistent with the idea that the ER lumenal domain of gp19K has three subdomains that we have termed the ER lumenal variable domain (residues 1 to ca. 77 to 83), the ER lumenal conserved domain (residues ca. 84 to 98), and the ER lumenal spacer domain (residues 99 to 107). We suggest that the ER lumenal variable domain of gp19K has a specific

  14. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains

    PubMed Central

    Lewis, Tony E.; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L.; Buchan, Daniel W.A.; Chothia, Cyrus; Cuff, Alison; Dana, Jose M.; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T.; Kelley, Lawrence A.; Kleywegt, Gerard J.; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G.; Ochoa-Montaño, Bernardo; Rackham, Owen J. L.; Smith, James; Sternberg, Michael J. E.; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence–structure–function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker’s yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs). PMID:23203986

  15. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    PubMed Central

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  16. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    PubMed

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-07

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes.

  17. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene renders Yersinia pestis avirulent.

    PubMed Central

    Munier-Lehmann, Hélène; Chenal-Francisque, Viviane; Ionescu, Mihaela; Chrisova, Petya; Foulon, Jeannine; Carniel, Elisabeth; Bârzu, Octavian

    2003-01-01

    Nucleoside monophosphate kinases (NMPKs) are essential catalysts for bacterial growth and multiplication. These enzymes display high primary sequence identities among members of the family Enterobacteriaceae. Yersinia pestis, the causative agent of plague, belongs to this family. However, it was previously shown that its thymidylate kinase (TMPKyp) exhibits biochemical properties significantly different from those of its Escherichia coli counterpart [Chenal-Francisque, Tourneux, Carniel, Christova, Li de la Sierra, Barzu and Gilles (1999) Eur. J. Biochem. 265, 112-119]. In this work, the adenylate kinase (AK) of Y. pestis (AKyp) was characterized. As with TMPKyp, AKyp displayed a lower thermodynamic stability than other studied AKs. Two mutations in AK (Ser129Phe and Pro87Ser), previously shown to induce a thermosensitive growth defect in E. coli, were introduced into AKyp. The recombinant variants had a lower stability than wild-type AKyp and a higher susceptibility to proteolytic digestion. When the Pro87Ser substitution was introduced into the chromosomal adk gene of Y. pestis, growth of the mutant strain was altered at the non-permissive temperature of 37 degree C. In virulence testings, less than 50 colony forming units (CFU) of wild-type Y. pestis killed 100% of the mice upon subcutaneous infection, whereas bacterial loads as high as 1.5 x 10(4) CFU of the adk mutant were unable to kill any animals. PMID:12879903

  18. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria.

  19. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation.

    PubMed

    Munde, Manoj; Poon, Gregory M K; Wilson, W David

    2013-05-27

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤10(5)M(-)(1)s(-)(1)), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>10(7)M(-)(1)s(-)(1)). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes.

  20. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  1. Influence of volatile anesthetics on muscarinic receptor adenylate cyclase coupling in brain and heart

    SciTech Connect

    Anthony, B.L.

    1988-01-01

    In the present study, the influence of four volatile anesthetics (enflurane, isoflurane, diethyl ether, and chloroform) on (1) muscarinic receptor binding parameters and (2) muscarnic regulation of adenylate cyclase activity was examined using membranes isolated from rat brain and heart. Membranes were equilibrated with each of the four anesthetics for 30 minutes and then during the binding assay. The data obtained can be summarized as follows: (1) volatile anesthetics increased receptor affinity for a radiolabeled antagonists, ({sup 3}H)N-methylscopolamine (({sup 3}H)MS), by decreasing its rate of dissociation in brain stem, but not in cardiac, membranes, (2) volatile anesthetics decreased high affinity ({sup 3}H)Oxotremorine-M binding, (3) volatile anesthetics depressed or eliminated the guanine nucleotide sensitivity of agonist binding. The influence of volatile anesthetics on muscarinic regulation of adenylate cyclase enzyme activity was studied using {alpha}({sup 32}P)ATP as the substrate.

  2. Adenylate cyclase and the search for new compounds with the clinical profile of lithium.

    PubMed

    Belmaker, R H

    1984-01-01

    It is possible to evaluate the beta-adrenergic receptor-adenylate cyclase complex in the human periphery by measuring the plasma cyclic AMP rise after adrenergic agonists. A clinical trial of the beta 2 adrenergic agonist salbutamol in depression provided an opportunity to test whether adrenergic receptor subsensitivity does occur during clinical antidepressant treatment. After 1 and 3 weeks of oral salbutamol treatment, depression scores declined significantly in 11 depressed patients, while the plasma cyclic AMP response to i.v. salbutamol declined over 60%. The results support the concept that receptor sensitivity changes occur during human antidepressant therapy. Data are presented that Li, too, markedly reduces activity of beta-adrenergic adenylate cyclase in humans. The effect was evaluated by studying the effect of Li at therapeutic serum concentrations on the plasma cyclic AMP response to subcutaneous epinephrine. The Li effect is specific, since the plasma cyclic AMP response to glucagon is not inhibited. In rat cortical slices Li inhibition of noradrenaline-induced cyclic AMP accumulation is clearly demonstrable only at concentrations close to 2 mM Li. However, fresh human brain slices from edges of surgically-removed tumors show Li inhibition at 1 mM Li concentrations. These results imply that in brain as well as periphery, human noradrenergic adenylate cyclase is inhibited by therapeutic concentrations of Li. Demeclocyclin, a tetracycline-derived antibiotic, was found to inhibit noradrenaline-sensitive adenylate cyclase in rat cortical slices and to inhibit amphetamine-induced hyperactivity in rats in an open field. Clinical trials should search for new compounds with the clinical profile of Li.

  3. Stimulatory and inhibitory effects of forskolin on adenylate cyclase in rat normal hepatocytes and hepatoma cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Takagi, K; Satake, T; Hasegawa, T

    1989-02-01

    Forskolin synergistically potentiated adenosine 3',5'-cyclic monophosphate formation by prostaglandin E1 (PGE1) in rat normal hepatocytes freshly prepared by collagenase digestion and rat ascites hepatoma AH66 cells, but dose-dependently inhibited the accumulation by PGE1 in AH66F cells. Forskolin activated adenylate cyclase in a dose-dependent manner in homogenates of all cell lines. In normal hepatocytes and AH66 cells, simultaneous addition of forskolin and other adenylate cyclase activators [isoproterenol (IPN), PGE1, guanosine 5'-triphosphate sodium salt (GTP), 5'-guanylylimidodiphosphate sodium salt (Gpp (NH)p), NaF, cholera toxin, islet activating protein and MnCl2] gave greater than additive responses. On the other hand, in AH66F cells, the effect of forskolin on adenylate cyclase was hardly influenced by GTP, but forskolin diminished the activities induced by high concentrations of GTP to that by the diterpene alone. Forskolin also significantly inhibited the PGE1-stimulated and the guanine nucleotide binding regulatory protein-stimulated activities. Because AH66F cells were insensitive to IPN, the combination with forskolin and IPN gave similar activity to that obtained with the diterpene alone. The effect of forskolin on the activation by manganese ion was neither synergistic nor inhibitory but was additive in AH66F cells. These results suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide binding regulatory protein and the catalytic unit in normal hepatocytes and AH66 cells, but in AH66F cells forskolin interferes with the coupling of the two components of adenylate cyclase.

  4. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  5. Adenylate Cyclase Activity Not Found in Soybean Hypocotyl and Onion Meristem 1

    PubMed Central

    Yunghans, Wayne N.; Morré, D. James

    1977-01-01

    Tissue, homogenates, and purified cell fractions prepared from hypocotyls of a dicot, soybean (Glycine max), and meristematic tissue of a monocot, onion (Allium cepa), were examined critically for evidence of adenylate cyclase activity. Three assay methods were used: chemical analysis, isotope dilution analysis, and enzyme cytochemistry. In both crude extracts or whole tissue, as well as purified membranes, with or without auxin, no adenylate cyclase was detected by any of the three methods. For plasma membranes, the specific activity was less than 1/40 or 1/25,000 that of rat liver plasma membranes, depending on the assay procedure, i.e. below the limits of detection. Using comparable methods, we could detect neither cyclic adenosine 3′:5′-monophosphate nor the phosphodiesterase responsible for its degradation in either purified membranes or homogenates. The results suggest that hormone responses in plants are not generally mediated by a mechanism involving the obligate production of cyclic adenosine 3′:5′-monophosphate by a plasma membrane associated adenylate cyclase. Images PMID:16660026

  6. Multiforms of mammalian adenylate kinase and its monoclonal antibody against AK1.

    PubMed

    Kurokawa, Y; Takenaka, H; Sumida, M; Oka, K; Hamada, M; Kuby, S A

    1990-01-01

    An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.

  7. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  8. Relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium

    SciTech Connect

    Ehlert, F.J.

    1985-11-01

    The muscarinic receptor-binding properties of a series of muscarinic drugs were compared with their effects on adenylate cyclase in membranes of the rabbit myocardium. When measured by competitive inhibition of (TH)-N-methylscopolamine binding, the competition curves of the various agonists were adequately described by the ternary complex model. This model assumes that the receptor can bind reversibly with a guanine nucleotide binding protein in the membrane and that the affinity of the agonist for the receptor-guanine nucleotide-binding protein complex is higher than that for the free receptor. A satisfactory fit of the ternary complex model to the data could only be achieved assuming that very little receptor is precoupled with the guanine nucleotide-binding protein in the absence of agonist. There was good agreement between the efficacy of each agonist as measured by inhibition of adenylate cyclase and the estimate of the positive cooperativity between the binding of the agonist receptor complex and the guanine nucleotide-binding protein. Guanosine 5'-triphosphate (0.1 mM) had no significant effect on the binding of (TH)N-methylscopolamine but caused an increase in the concentration of the various agonists required for half-maximal receptor occupancy. There was good correlation between efficacy as measured by inhibition of adenylate cyclase and the influence of guanosine 5'-triphosphate on binding properties.

  9. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover.

    PubMed Central

    Stein, R; Pinkas-Kramarski, R; Sokolovsky, M

    1988-01-01

    The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins. Images PMID:2846274

  10. Persistent stimulation of adenylate cyclase and urea transport by an AVP photolabel

    SciTech Connect

    Eggena, P.; Ma, C.L.; Fahrenholz, F.; Schwartz, I.L.

    1985-07-01

    The effects of a photoaffinity label for arginine vasopressin receptors, (Phe2, Phe(p-N3)3)AVP (N3-AVP), on urea permeability and adenylate cyclase activity have been investigated in the toad urinary bladder. This compound, when activated by ultraviolet light, induced a maximal and persistent increase in the urea permeability of the intact bladder and a persistent increase in the adenylate cyclase activity of toad bladder epithelial cell homogenates. Covalent attachment of the analogue to target tissue during photolysis was equivalent at 4 and 20 degrees C. Bladders exposed to N3-AVP in the presence of AVP during photolysis were substantially less permeable to urea than controls that had been exposed to N3-AVP alone. These findings constitute further evidence in support of the previous suggestion that N3-AVP binds covalently to AVP receptors and, in addition, demonstrates that N3-AVP evokes a persistent increase in adenylate cyclase activity which, in turn, triggers a persistent increase in bladder permeability to urea.

  11. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  12. Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform.

    PubMed

    Cámara, María de los Milagros; Bouvier, León A; Canepa, Gaspar E; Miranda, Mariana R; Pereira, Claudio A

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3' UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes.

  13. Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform

    PubMed Central

    Cámara, María de los Milagros; Bouvier, León A.; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes. PMID:23409202

  14. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins.

    PubMed Central

    Danielsen, M; Northrop, J P; Ringold, G M

    1986-01-01

    We have isolated mouse glucocorticoid receptor (GR) cDNAs which, when expressed in transfected mammalian cells, produce a fully functional GR protein. Sequence analysis reveals an open reading frame of 2349 bp which could encode a protein of approximately 86,000 daltons. We have also isolated two receptor cDNAs from mouse S49 nuclear transfer-deficient (nt-) cells which encode mutant forms of the receptor protein. One cDNA encodes a protein that is unable to bind hormone and represents the endogenous hormone binding deficient receptor recently discovered in S49 cells. The lesion in this receptor is due to a single amino acid substitution (Glu-546 to Gly). The second cDNA from nt- cells produces a receptor protein that is able to bind hormone but has reduced nuclear binding. This cDNA, therefore, encodes for the S49 nt- receptor which has been shown to have reduced affinity for DNA. The lesion maps to a single amino acid substitution (Arg-484 to His) located in a highly Cys, Lys, Arg-rich region of the protein previously implicated in DNA binding. Our studies provide unambiguous identification of receptor domains and specific amino acids critical for the hormone and DNA binding properties of this transcriptional regulatory protein. Contained within the first 106 amino acids of the mouse GR is a stretch of nine glutamines with two prolines which are related to the family of transcribed repetitive elements, opa, found in Drosophila melanogaster. A truncated receptor lacking these 106 amino acids is functionally indistinguishable from the wild-type receptor. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:3780669

  15. Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain

    PubMed Central

    2016-01-01

    The recruitment and organization of clathrin at endocytic sites first to form coated pits and then clathrin-coated vesicles depend on interactions between the clathrin N-terminal domain (TD) and multiple clathrin binding sequences on the cargo adaptor and accessory proteins that are concentrated at such sites. Up to four distinct protein binding sites have been proposed to be present on the clathrin TD, with each site proposed to interact with a distinct clathrin binding motif. However, an understanding of how such interactions contribute to clathrin coat assembly must take into account observations that any three of these four sites on clathrin TD can be mutationally ablated without causing loss of clathrin-mediated endocytosis. To take an unbiased approach to mapping binding sites for clathrin-box motifs on clathrin TD, we used isothermal titration calorimetry (ITC) and nuclear magnetic resonance spectroscopy. Our ITC experiments revealed that a canonical clathrin-box motif peptide from the AP-2 adaptor binds to clathrin TD with a stoichiometry of 3:1. Assignment of 90% of the total visible amide resonances in the TROSY-HSQC spectrum of 13C-, 2H-, and 15N-labeled TD40 allowed us to map these three binding sites by analyzing the chemical shift changes as clathrin-box motif peptides were titrated into clathrin TD. We found that three different clathrin-box motif peptides can each simultaneously bind not only to the previously characterized clathrin-box site but also to the W-box site and the β-arrestin splice loop site on a single TD. The promiscuity of these binding sites can help explain why their mutation does not lead to larger effects on clathrin function and suggests a mechanism by which clathrin may be transferred between different proteins during the course of an endocytic event. PMID:25844500

  16. Common Extracellular Sensory Domains in Transmembrane Receptors for Diverse Signal Transduction Pathways in Bacteria and Archaea

    PubMed Central

    Zhulin, Igor B.; Nikolskaya, Anastasia N.; Galperin, Michael Y.

    2003-01-01

    Transmembrane receptors in microorganisms, such as sensory histidine kinases and methyl-accepting chemotaxis proteins, are molecular devices for monitoring environmental changes. We report here that sensory domain sharing is widespread among different classes of transmembrane receptors. We have identified two novel conserved extracellular sensory domains, named CHASE2 and CHASE3, that are found in at least four classes of transmembrane receptors: histidine kinases, adenylate cyclases, predicted diguanylate cyclases, and either serine/threonine protein kinases (CHASE2) or methyl-accepting chemotaxis proteins (CHASE3). Three other extracellular sensory domains were shared by at least two different classes of transmembrane receptors: histidine kinases and either diguanylate cyclases, adenylate cyclases, or phosphodiesterases. These observations suggest that microorganisms use similar conserved domains to sense similar environmental signals and transmit this information via different signal transduction pathways to different regulatory circuits: transcriptional regulation (histidine kinases), chemotaxis (methyl-accepting proteins), catabolite repression (adenylate cyclases), and modulation of enzyme activity (diguanylate cyclases and phosphodiesterases). The variety of signaling pathways using the CHASE-type domains indicates that these domains sense some critically important extracellular signals. PMID:12486065

  17. Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1.

    PubMed

    Ito, Koichi; Frolova, Ludmila; Seit-Nebi, Alim; Karamyshev, Andrey; Kisselev, Lev; Nakamura, Yoshikazu

    2002-06-25

    In eukaryotes, a single translational release factor, eRF1, deciphers three stop codons, although its decoding mechanism remains puzzling. In the ciliate Tetrahymena thermophila, UAA and UAG codons are reassigned to Gln codons. A yeast eRF1-domain swap containing Tetrahymena domain 1 responded only to UGA in vitro and failed to complement a defect in yeast eRF1 in vivo at 37 degrees C. This finding demonstrates that decoding specificity of eRF1 from variant code organisms resides at domain 1. However, the wild-type eRF1 hybrid fully restored the growth of eRF1-deficient yeast at 30 degrees C. Tetrahymena eRF1 contains a variant sequence, KATNIKD, at the tip of domain 1. The TASNIKD variant of hybrid eRF1 rendered the eRF1-nullified yeast viable, although in an in vitro assay, the same hybrid eRF1 responded only to UGA. Nevertheless, the yeast eRF1 bearing the KATNIKD motif instead of the TASNIKS heptapeptide present in higher eukaryotes remains omnipotent in vivo. Collectively, these data suggest that variant genetic code organisms like Tetrahymena have an intrinsic potential to decode three stop codons in vivo, and that interaction within domain 1 between the KAT tripeptide and other sequences modulates the decoding specificity of Tetrahymena eRF1.

  18. Sequence analyses reveal that a TPR-DP module, surrounded by recombinable flanking introns, could be at the origin of eukaryotic Hop and Hip TPR-DP domains and prokaryotic GerD proteins.

    PubMed

    Hernández Torres, Jorge; Papandreou, Nikolaos; Chomilier, Jacques

    2009-05-01

    The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR-DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR-DP domains.

  19. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5).

    PubMed Central

    Czerny, T; Busslinger, M

    1995-01-01

    Pax-6 is known to be a key regulator of vertebrate eye development. We have now isolated cDNA for an invertebrate Pax-6 protein from sea urchin embryos. Transcripts of this gene first appear during development at the gastrula stage and are later expressed at high levels in the tube foot of the adult sea urchin. The sea urchin Pax-6 protein is highly homologous throughout the whole protein to its vertebrate counterpart with the paired domain and homeodomain being virtually identical. Consequently, we found that the DNA-binding and transactivation properties of the sea urchin and mouse Pax-6 proteins are very similar, if not identical. A potent activation domain capable of stimulating transcription from proximal promoter and distal enhancer positions was localized within the C-terminal sequences of both the sea urchin and mouse Pax-6 proteins. The homeodomain of Pax-6 was shown to cooperatively dimerize on DNA sequences consisting of an inverted repeat of the TAAT motif with a preferred spacing of 3 nucleotides. The consensus recognition sequence of the Pax-6 paired domain deviates primarily only at one position from that of BSAP (Pax-5), and yet the two proteins exhibit largely different binding specificities for individual, naturally occurring sites. By creating Pax-6-BSAP fusion proteins, we were able to identify a short amino acid stretch in the N-terminal part of the paired domain which is responsible for these differences in DNA-binding specificity. Mutation of three Pax-6-specific residues in this region (at positions 42, 44, and 47 of the paired domain) to the corresponding amino acids of BSAP resulted in a complete switch of the DNA-binding specificity from Pax-6 to BSAP. These three amino acids were furthermore shown to discriminate between the Pax-6- and BSAP-specific nucleotide at the divergent position of the two consensus recognition sequences. PMID:7739566

  20. Iodide-induced inhibition of adenylate cyclase activity in horse and dog thyroid.

    PubMed

    Cochaux, P; Van Sande, J; Swillens, S; Dumont, J E

    1987-12-30

    The characteristics of the iodide-induced inhibition of cyclic AMP accumulation in dog thyroid slices have been previously described [Van Sande, J., Cochaux, P. and Dumont, J. E. (1985) Mol. Cell. Endocrinol. 40, 181-192]. In the present study we investigated the characteristics of the iodide-induced inhibition of adenylate cyclase activity in dog and horse thyroid. The inhibition of cyclic AMP accumulation by iodide in stimulated horse thyroid slices was similar to that observed in dog thyroid slices. The inhibition was observed in slices stimulated by thyroid-stimulating hormone, cholera toxin and forskolin. Increasing the concentration of the stimulators did not overcome the iodide-induced inhibition. Adenylate cyclase activity, assayed in crude homogenates or in plasma-membrane-containing particulates (100,000 x g pellets), was lower in homogenates or in particulates prepared from iodide-treated slices than from control slices. This inhibition was observed on the cyclase activity stimulated by forskolin, fluoride or guanosine 5'-[beta, gamma-imino]triphosphate, but also on the basal activity. It was relieved when the homogenate was prepared from slices incubated with iodide and methimazole. Similar results were obtained with dog thyroid. The inhibition persisted when the particulate fraction was washed three times during 1 h at 100,000 x g, in the presence of bovine serum albumin or increasing concentration of KCl. It was similar whatever the duration of the cyclase assay, in a large range of protein concentration. These results indicate that a stable modification of adenylate cyclase activity, closely related to the plasma membrane, was induced when slices were incubated with iodide. Iodide inhibition did not modify the affinity of adenylate cyclase for its substrate (MgATP), but induced a decrease of the maximal velocity of the enzyme. The percentage inhibition was slightly decreased when Mg2+ concentration increased, and markedly decreased when Mn2

  1. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly.

    PubMed

    Hopple, J S; Vilgalys, R

    1999-10-01

    Phylogenetic relationships were investigated in the mushroom genus Coprinus based on sequence data from the nuclear encoded large-subunit rDNA gene. Forty-seven species of Coprinus and 19 additional species from the families Coprinaceae, Strophariaceae, Bolbitiaceae, Agaricaceae, Podaxaceae, and Montagneaceae were studied. A total of 1360 sites was sequenced across seven divergent domains and intervening sequences. A total of 302 phylogenetically informative characters was found. Ninety-eight percent of the average divergence between taxa was located within the divergent domains, with domains D2 and D8 being most divergent and domains D7 and D10 the least divergent. An empirical test of phylogenetic signal among divergent domains also showed that domains D2 and D3 had the lowest levels of homoplasy. Two equally most parsimonious trees were resolved using Wagner parsimony. A character-state weighted analysis produced 12 equally most parsimonious trees similar to those generated by Wagner parsimony. Phylogenetic analyses employing topological constraints suggest that none of the major taxonomic systems proposed for subgeneric classification is able to completely reflect phylogenetic relationships in Coprinus. A strict consensus integration of the two Wagner trees demonstrates the problematic nature of choosing outgroups within dark-spored mushrooms. The genus Coprinus is found to be polyphyletic and is separated into three distinct clades. Most Coprinus taxa belong to the first two clades, which together form a larger monophyletic group with Lacrymaria and Psathyrella in basal positions. A third clade contains members of Coprinus section Comati as well as the genus Leucocoprinus, Podaxis pistillaris, Montagnea arenaria, and Agaricus pocillator. This third clade is separated from the other species of Coprinus by members of the families Strophariaceae and Bolbitiaceae and the genus Panaeolus.

  2. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  3. The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation[C][W][OPEN

    PubMed Central

    Soyk, Sebastian; Šimková, Klára; Zürcher, Evelyne; Luginbühl, Leonie; Brand, Luise H.; Vaughan, Cara K.; Wanke, Dierk; Zeeman, Samuel C.

    2014-01-01

    Plant BZR1-BAM transcription factors contain a β-amylase (BAM)–like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors. PMID:24748042

  4. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    SciTech Connect

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-06-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  5. Sequencing of cDNA from 50 unrelated patients reveals that mutations in the triple-helical domain of type III procollagen are an infrequent cause of aortic aneurysms.

    PubMed Central

    Tromp, G; Wu, Y; Prockop, D J; Madhatheri, S L; Kleinert, C; Earley, J J; Zhuang, J; Norrgård, O; Darling, R C; Abbott, W M

    1993-01-01

    Detailed DNA sequencing of the triple-helical domain of type III procollagen was carried out on cDNA prepared from 54 patients with aortic aneurysms. The 43 male and 11 female patients originated from 50 different families and five different nationalities. 43 patients had at least one additional blood relative who had aneurysms. Five overlapping asymmetric PCR products, covering all the coding sequences of the triple-helical domain of type III procollagen, were sequenced with 28 specific sequencing primers. Analysis of the sequencing gels revealed only two nucleotide changes that altered the structure of the protein. One was a substitution of threonine for proline at amino acid position 501 and its functional importance was not clearly established. The other was a substitution of arginine for an obligatory glycine at amino acid position 136. In 40 of the 54 patients, detection of a polymorphism in the mRNA established that both alleles were expressed. The results indicate that mutations in type III procollagen are the cause of only about 2% of aortic aneurysms. Images PMID:8514866

  6. To the knowledge of the 20GYGFG24 sequence stretch of type-1 VDAC: to understand why BCl-XL B4 domain peptides keep HeLa cells closed in hypotonic surroundings.

    PubMed

    Thinnes, Friedrich P

    2012-06-01

    Type-1 VDAC/porin, as a part of its voltage sensor, includes a GxxxG motif sequence that has been shown to work as an ATP-binding site. The motif has also been demonstrated to function as an aggregation/membrane perturbation sequence that opens VDAC in the plasmalemma of neuronal cells in experiment on apoptosis induction. Here it is discussed how type-1 VDAC channels at the cell surface of HeLa cells in hypotonic surroundings might be kept closed after pre-incubation with BCl-XL B4 domain peptides.

  7. Effect of mitomycin C on the activation of adenylate cyclase in rat ascites hepatoma AH130 cells.

    PubMed

    Miyamoto, K; Matsunaga, T; Sanae, F; Koshiura, R

    1986-09-01

    Isoproterenol (IPN)-stimulated activity of adenylate cyclase was enhanced in a dose-dependent manner by exposure of AH130 cells to mitomycin C (MMC). The enhancement was also observed in prostaglandin E1-, guanine nucleotide analog-, NaF-, cholera toxin- and forskolin-stimulated activities of the enzyme but not in manganese-stimulated activity. In addition, even when the cells pretreated with islet-activating protein were exposed to MMC, IPN-stimulated activity of adenylate cyclase was enhanced. Anaerobic exposure of AH130 cells to MMC somewhat inhibited IPN-stimulated activity of adenylate cyclase in contrast with aerobic exposure. Exposure of cells to adriamycin also caused enhancement of IPN-stimulated activity of adenylate cyclase but exposure to nitrogen mustard inhibited the enzyme stimulation by IPN. The enhancing effect of MMC was lost by the combined treatment with alpha-tocopherol. From these results, it was shown that MMC modulated the activity of adenylate cyclase, probably through alterations in membrane structure.

  8. Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing

    PubMed Central

    Urrutia, Raul; Oliver, Gavin R.; Cousin, Margot A.; Bozeck, Nicole J.; Klee, Eric W.

    2017-01-01

    Variants in the TGFBR2 kinase domain cause several human diseases and can increase propensity for cancer. The widespread application of next generation sequencing within the setting of Individualized Medicine (IM) is increasing the rate at which TGFBR2 kinase domain variants are being identified. However, their clinical relevance is often uncertain. Consequently, we sought to evaluate the use of molecular modeling and molecular dynamics (MD) simulations for assessing the potential impact of variants within this domain. We documented the structural differences revealed by these models across 57 variants using independent MD simulations for each. Our simulations revealed various mechanisms by which variants may lead to functional alteration; some are revealed energetically, while others structurally or dynamically. We found that the ATP binding site and activation loop dynamics may be affected by variants at positions throughout the structure. This prediction cannot be made from the linear sequence alone. We present our structure-based analyses alongside those obtained using several commonly used genomics-based predictive algorithms. We believe the further mechanistic information revealed by molecular modeling will be useful in guiding the examination of clinically observed variants throughout the exome, as well as those likely to be discovered in the near future by clinical tests leveraging next-generation sequencing through IM efforts. PMID:28182693

  9. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5′ splice site-like sequences

    SciTech Connect

    Loughlin, Fionna E.; Mansfield, Robyn E.; Vaz, Paula M.; McGrath, Aaron P.; Setiyaputra, Surya; Gamsjaeger, Roland; Chen, Eva S.; Morris, Brian J.; Guss, J. Mitchell; Mackay, Joel P.

    2009-09-02

    The alternative splicing of mRNA is a critical process in higher eukaryotes that generates substantial proteomic diversity. Many of the proteins that are essential to this process contain arginine/serine-rich (RS) domains. ZRANB2 is a widely-expressed and highly-conserved RS-domain protein that can regulate alternative splicing but lacks canonical RNA-binding domains. Instead, it contains 2 RanBP2-type zinc finger (ZnF) domains. We demonstrate that these ZnFs recognize ssRNA with high affinity and specificity. Each ZnF binds to a single AGGUAA motif and the 2 domains combine to recognize AGGUAA(N{sub x})AGGUAA double sites, suggesting that ZRANB2 regulates alternative splicing via a direct interaction with pre-mRNA at sites that resemble the consensus 5{prime} splice site. We show using X-ray crystallography that recognition of an AGGUAA motif by a single ZnF is dominated by side-chain hydrogen bonds to the bases and formation of a guanine-tryptophan-guanine 'ladder.' A number of other human proteins that function in RNA processing also contain RanBP2 ZnFs in which the RNA-binding residues of ZRANB2 are conserved. The ZnFs of ZRANB2 therefore define another class of RNA-binding domain, advancing our understanding of RNA recognition and emphasizing the versatility of ZnF domains in molecular recognition.

  10. Direct interaction between the catalytic subunit of the calmodulin-sensitive adenylate cyclase from bovine brain with /sup 125/I-labeled wheat germ agglutinin and /sup 125/I-labeled calmodulin

    SciTech Connect

    Minocherhomjee, A.M.; Selfe, S.; Flowers, N.J.; Storm, D.R.

    1987-07-14

    A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min/sup -1/ and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with /sup 125/I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca/sup 2 +/ concentration dependent. In addition, the catalytic subunit was shown to directly bind /sup 125/I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.

  11. Cellular levels of feedback regulator of adenylate cyclase and the effect of epinephrine and insulin.

    PubMed Central

    Ho, R j; Russell, T R; Asakawa, T; Sutherland, E W

    1975-01-01

    We have obtained direct evidence that shows the cellular formation and subsequent release of a potent inhibitor (feedback regulator) of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by adipocytes, upon stimulation with epinephrine. The appearance of such a feedback regulator in adipocytes preceded its release into the medium. During a 30 min incubation, intracellular regulator levels rose rapidly and reached 39-61 units/g of adipocyte at 10 min. Release of inhibitor into the medium increased slowly and was 11-16 units/g of adipocyte at 10 min. Upon continued incubation, the cells at 30 min contained 30-41 units/g of ingibitor, slightly less than the content at 30 min; meanwhile, the medium content rose more than 3-fold. The inhibitor from both locations appeared to have the same characteristics, judging from the purification procedures and the biological activities on hormone-stimulated adenylate cyclase. Adenylate cyclase was inhibited by the feedback regulator in vitro when either epinephrine, corticotropin (ACTH), or glucagon was used as activator. The site of action of this inhibitor is therefore most likely beyond the specific hormone receptors. A new in vitro action of insulin has been found. Insulin, 50-500 microunits/ml, inhibited the formation and release of this factor from isolated rat or hamster adipocytes by 29-81% after these cells were stimulated by hormones that raise intracellular adenosine 3':5'-cyclic monophosphate. This factor enhaced the effect of insulin in lowering the adenosine 3':5'-cyclic monophosphate levels in fresh rat adipocytes. A reduced formation of such a factor may modify the metabolic events in adipocytes, and some as yet unexplained effects of insulin could therefore be linked to the metabolic effects of this factor. PMID:174073

  12. On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    PubMed

    De la Fuente, Ildefonso M; Cortés, Jesús M; Valero, Edelmira; Desroches, Mathieu; Rodrigues, Serafim; Malaina, Iker; Martínez, Luis

    2014-01-01

    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for

  13. On the Dynamics of the Adenylate Energy System: Homeorhesis vs Homeostasis

    PubMed Central

    De la Fuente, Ildefonso M.; Cortés, Jesús M.; Valero, Edelmira; Desroches, Mathieu; Rodrigues, Serafim; Malaina, Iker; Martínez, Luis

    2014-01-01

    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for

  14. NMR studies of the AMP-binding site and mechanism of adenylate kinase.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y

  15. Presence of hormonally-sensitive adenylate cyclase receptors in capillary-enriched fractions from rat cerebral cortex.

    PubMed

    Baca, G M; Palmer, G C

    1978-01-01

    The 10 000 g particulate fraction from capillary-enriched fractions isolated from rat cerebral cortex was shown to possess an adenylate cyclase highly sensitive to activation by sodium fluoride, norepinephrine, epinephrine, isoproterenol and dopamine. To a lesser extent histamine and three dopamine agonists, namely M-7 (5,6-dihydroxy-2-dimethylamino tetralin), ET-495 (methane sulfonate of pyribedil), and S-584 (metabolite of pyribedil) stimulated the enzyme preparation. The action of norepinephrine was blocked by propanolol while phenotolamine and haloperidol were relatively ineffective except at highest concentrations. Phentolamine and propanolol at only highest concentrations (10(-4) M) antagonized the action of dopamine. Haloperidol was seen to be a potent inhibitor of either dopamine- or dopamine agonist-sensitive adenylate cyclase. No effects on the enzyme were observed with methoxamine, octopamine or serotonin. These preliminary data suggest the presence of a mixed population of receptors for adenylate cyclase in rat brain capillaries.

  16. Multiple effects of phorbol esters on hormone-sensitive adenylate cyclase activity in S49 lymphoma cells

    SciTech Connect

    Bell, J.D.; Brunton, L.L.

    1987-06-01

    In S49 lymphoma cells, 12-O-tetradecanoyl phorbol-13-acetate (TPA) enhances adenylate cyclase activity and doubles cAMP accumulation in response to ..beta..-adrenergic stimulation at 37/sup 0/C, putatively via the action of protein kinase C. at 27/sup 0/C, TPA has the opposite effect, inhibiting cAMP production in response to isoproterenol by approx. 25%. TPA also inhibits the response to prostaglandin E/sub 1/ (PGE/sub 1/), another stimulant of hormone-sensitive adenylate cyclase in these cells, by 30% at 37/sup 0/C and almost 50% at 27/sup 0/C. In contrast, TPA enhances responses to forskolin and cholera toxin at both 27 and 37/sup 0/C. In membranes from cells treated with TPA, PGE/sub 1/-stimulated adenylate cyclase activity is inhibited by 50%, whereas the catalytic activity stimulated by NaF or forskolin is enhanced. TPA reduces the potency of both PGE/sub 1/ and isoproterenol for cAMP generation by 50%. TPA causes a similar decrease in ..beta..-adrenergic agonist affinity with no reduction in the density of either antagonist of agonist binding sites in wild type cells and in cells lacking the ..cap alpha..-subunit of the stimulatory transducer protein (G/sub s/) (cyc/sup -/) or lacking functional receptor G/sub s/ coupling (UNC). Therefore, TPA has at least three functionally distinct effects on hormone-sensitive adenylate cyclase in S49 cells. The authors conclude that multiple and opposing effects of TPA on hormone-sensitive adenylate cyclase occur simultaneously within the same cell, affecting the responses to several agonists differently. In addition, the data offer a mechanism by which a cell can achieve heterogeneous efficacies to hormones that activate adenylate cyclase.

  17. Role of protein kinase C on the acute desensitization of renal cortical adenylate cyclase to parathyroid hormone.

    PubMed

    Bellorin-Font, E; López, C; Díaz, K; Pernalete, N; López, M; Starosta, R

    1995-01-01

    The mechanisms of adenylate cyclase desensitization to parathyroid hormone are still unclear. Current evidence suggest that the signal generated after PTH binding to receptors results in activation of adenylate cyclase and stimulation of phospholipase C with subsequent activation of protein kinase C. Recent studies have suggested a role of protein kinase C on the regulation of the PTH-dependent receptor-adenylate cyclase system in cultured cells. Therefore, the present studies were conducted to examine the role of protein kinase C on the desensitization of canine renal cortical adenylate cyclase after an acute exposure in vivo to PTH. A group of normal dogs were treated with a single intravenous injection of 1 microgram/k of syn bPTH (1-34) or Nle bPTH (3-34). Ten minutes later, animals were subjected to bilateral nephrectomy and the kidney cortex processed for preparations of basolateral membranes for determinations of adenylate cyclase activity, as well as membrane and cytosolic fractions for analysis of protein kinase C activity. Animals not treated with PTH were used as controls. PTH administration in vivo resulted in a 46.9 +/- 9.3% decrease in maximal adenylate cyclase activity in vitro in response to syn bPTH (1-34) (P < 0.001). Likewise, PTH binding as measured with 125I-Nle8,18,Tyr34-bPTH (1-34)NH2 showed a 40 +/- 3% decrease. This alterations were associated with a marked translocation of protein kinase C from the cytosol to the membrane. Thus, protein kinase C activity in membrane fractions increased from 160.6 +/- 44.8 pmol Pi/min in controls to 500.4 +/- 123 in PTH treated dogs (P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Molecular cloning and mRNA distribution of pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide in the lungfish.

    PubMed

    Lee, L T O; Tam, J K V; Chan, D W; Chow, B K C

    2009-04-01

    In this article, we report the isolation of a full-length cDNA clone encoding pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) from lungfish Protopterus dolloi. When comparing the deduced amino acid sequences, the lungfish PACAP was found to be highly conserved with other vertebrates; however, the PRP shares only lower levels of sequence identity with known PRP sequences. Consistently in phylogenetic analysis, the lungfish PRP, similar to sturgeon PRP, fails to cluster with other PRPs. In addition to the full-length clone, another cDNA encoding a short precursor that lacks the first 32 amino acids of the PRP was also isolated. Interestingly, similar isoforms were also identified in several nonmammalian vertebrates, and it was suggested that exon skipping of PRP/PACAP transcripts was a mechanism that regulated the expression ratio of PACAP to PRP in nonmammalian vertebrates. By real-time PCR, both long and short PRP/PACAP transcripts were found almost exclusively in the brain, and the short isoform is the more abundant transcript (3.7 times more), indicating that PACAP is the major product produced in lungfish brain. The expression patterns of lungfish and previously studied frog PRP/PACAP suggest that the PRP/PACAP gene in the tetrapod lineage may first express in the central nervous system; in the process of evolution, the functions of these peptides diversified and were later found in other tissues.

  19. Study into the kinetic properties and surface attachment of a thermostable adenylate kinase

    PubMed Central

    Hathaway, H.J.; Sutton, J.M.; Jenkins, A.T.A.

    2015-01-01

    A thermostable adenylate kinase (tAK) has been used as model protein contaminant on surfaces, so used because residual protein after high temperature wash steps can be detected at extremely low concentrations. This gives the potential for accurate, quantitative measurement of the effectiveness of different wash processes in removing protein contamination. Current methods utilise non-covalent (physisorbtion) of tAK to surfaces, but this can be relatively easily removed. In this study, the covalent binding of tAK to surfaces was studied to provide an alternative model for surface contamination. Kinetic analysis showed that the efficiency of the enzyme expressed as the catalytic rate over the Michaelis constant (kcat/KM) increased from 8.45±3.04 mM−1 s−1 in solution to 32.23±3.20 or 24.46±4.41 mM−1 s−1 when the enzyme was immobilised onto polypropylene or plasma activated polypropylene respectively. Maleic anhydride plasma activated polypropylene showed potential to provide a more robust challenge for washing processes as it retained significantly higher amounts of tAK enzyme than polypropylene in simple washing experiments. Inhibition of the coupled enzyme (luciferase/luciferin) system used for the detection of adenylate kinase activity, was observed for a secondary product of the reaction. This needs to be taken into consideration when using the assay to estimate cleaning efficacy. PMID:26339684

  20. GSK3β Mediates Renal Response to Vasopressin by Modulating Adenylate Cyclase Activity

    PubMed Central

    Patel, Satish; Hao, ChuanMing; Woodgett, James; Harris, Raymond

    2010-01-01

    Glycogen synthase kinase 3β (GSK3β), a serine/threonine protein kinase, is a key target of drug discovery in several diseases, including diabetes and Alzheimer disease. Because lithium, a potent inhibitor of GSK3β, causes nephrogenic diabetes insipidus, GSK3β may play a crucial role in regulating water homeostasis. We developed renal collecting duct-specific GSK3β knockout mice to determine whether deletion of GSK3β affects arginine vasopressin-dependent renal water reabsorption. Although only mildly polyuric under normal conditions, knockout mice exhibited an impaired urinary concentrating ability in response to water deprivation or treatment with a vasopressin analogue. The knockout mice had reduced levels of mRNA, protein, and membrane localization of the vasopressin-responsive water channel aquaporin 2 compared with wild-type mice. The knockout mice also expressed lower levels of pS256-AQP2, a phosphorylated form crucial for membrane trafficking. Levels of cAMP, a major regulator of aquaporin 2 expression and trafficking, were also lower in the knockout mice. Both GSK3β gene deletion and pharmacologic inhibition of GSK3β reduced adenylate cyclase activity. In summary, GSK3β inactivation or deletion reduces aquaporin 2 expression by modulating adenylate cyclase activity and cAMP generation, thereby impairing responses to vasopressin in the renal collecting duct. PMID:20056751

  1. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances

    PubMed Central

    Howell, Stanley C.; Richards, David H.; Mitch, William A.; Wilson, Corey J.

    2016-01-01

    Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections, and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary-structure, protein hydrodynamics and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance. Namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites. PMID:26266833

  2. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus

    PubMed Central

    Yang, Kunlong; Qin, Qiuping; Liu, Yinghang; Zhang, Limei; Liang, Linlin; Lan, Huahui; Chen, Chihao; You, Yunchao; Zhang, Feng; Wang, Shihua

    2016-01-01

    Aspergillus flavus is one of the most important opportunistic pathogens of crops and animals. The carcinogenic mycotoxin, aflatoxins produced by this pathogen cause a health problem to human and animals. Since cyclic AMP signaling controls a range of physiological processes, like fungal development and infection when responding to extracellular stimuli in fungal pathogens, in this study, we investigated the function of adenylate cyclase, a core component of cAMP signaling, in aflatoxins biosynthesis and virulence on plant seeds in A. flavus. A gene replacement strategy was used to generate the deletion mutant of acyA that encodes the adenylate cyclase. Severe defects in fungal growth, sporulation and sclerotia formation were observed in the acyA deletion mutant. The defect in radical growth could be partially rescued by exogenous cAMP analog. The acyA mutant was also significantly reduced in aflatoxins production and virulence. Similar to the former studies in other fungi, The acyA mutant showed enhancing tolerance to oxidative stress, but more sensitive to heat stress. Overall, the pleiotropic defects of the acyA deletion mutant indicates that the cAMP-PKA pathway is involved in fungal development, aflatoxins biosynthesis and plant seed invasion in A. flavus. PMID:28066725

  3. Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions.

    PubMed

    Balestri, Francesco; Giannecchini, Michela; Sgarrella, Francesco; Carta, Maria Caterina; Tozzi, Maria Grazia; Camici, Marcella

    2007-02-01

    The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.

  4. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    SciTech Connect

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of {sup 32}P-cAMP formed from {sup 32}P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G{sub s}-catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range.

  5. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    SciTech Connect

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin

  6. Increase in the amount of adenylate cyclase in rat gastrocnemius muscle after denervation

    SciTech Connect

    Hashimoto, K.; Watanabe, Y.; Uchida, S.; Yoshida, H.

    1989-01-01

    After section of the sciatic nerve, the basal adenylate cyclase (AC) activity in rat gastrocnemius muscle increased 6-7 times per membrane protein and about 2 times per whole muscle in the following 30 or 40 days. The AC activity in the muscle 30 days after denervation was increased about 4 times by folskolin. Calcitonin gene-related peptide (CGRP) also increased the adenylate cyclase activity in the denervated muscle. The binding of (/sup 3/H)-forskolin to cells isolated from gastrocnemius muscle was examined to determine the amount of AC molecules. Inhibition of (/sup 3/H)-forskolin binding by increasing amounts of unlabeled forskolin gave a sigmoid curve with a IC/sub 50/ value of 3/times/10/sup /minus/7/M. Results showed that the number of (/sup 3/H)-forskolin binding sites per cell was higher on the denervated side than on the control side, like the basal AC activity. The IC/sub 50/ values for inhibition by unlabeled forskolin of binding of (/sup 3/H)-forskolin were similar to muscles on the control and denervated sides. These results suggest that an increase in the AC activity induced by denervation was due to an increase in the numbers of AC molecules in the muscle.

  7. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances.

    PubMed

    Howell, Stanley C; Richards, David H; Mitch, William A; Wilson, Corey J

    2015-10-16

    Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study, we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary structure, protein hydrodynamics, and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance, namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites.

  8. Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking.

    PubMed

    Salomon, Aidy; Krachmarov, Chavdar; Lai, Zhong; Honnen, William; Zingman, Barry S; Sarlo, Julie; Gorny, Miroslaw K; Zolla-Pazner, Susan; Robinson, James E; Pinter, Abraham

    2014-01-05

    Primary HIV-1 isolates are relatively resistant to neutralization by antibodies commonly induced after infection or vaccination. This is generally attributed to masking of sensitive epitopes by the V1/V2 domain and/or glycans situated at various positions in Env. Here we identified a novel masking effect mediated by subtype C-specific V3 sequences that contributes to the V1/V2-independent and glycan-independent neutralization resistance of chimeric and primary Envs to antibodies directed against multiple neutralization domains. Positions at several conserved charged and hydrophobic sites in the V3 crown and stem were also shown to affect neutralization phenotype. These results indicated that substitutions typically present in subtype C and related V3 sequences influence the overall conformation of native Env in a way that occludes multiple neutralization targets located both within and outside of the V3 domain, and may reflect an alternative mechanism for neutralization resistance that is particularly active in subtype C and related isolates.

  9. Functional dissection of the N-terminal sequence of Clostridium sp. G0005 glucoamylase: identification of components critical for folding the catalytic domain and for constructing the active site structure.

    PubMed

    Sakaguchi, Masayoshi; Matsushima, Yudai; Nagamine, Yusuke; Matsuhashi, Tomoki; Honda, Shotaro; Okuda, Shoi; Ohno, Misa; Sugahara, Yasusato; Shin, Yongchol; Oyama, Fumitaka; Kawakita, Masao

    2017-03-01

    Clostridium sp. G0005 glucoamylase (CGA) is composed of a β-sandwich domain (BD), a linker, and a catalytic domain (CD). In the present study, CGA was expressed in Escherichia coli as inclusion bodies when the N-terminal region (39 amino acid residues) of the BD was truncated. To further elucidate the role of the N-terminal region of the BD, we constructed N-terminally truncated proteins (Δ19, Δ24, Δ29, and Δ34) and assessed their solubility and activity. Although all evaluated proteins were soluble, their hydrolytic activities toward maltotriose as a substrate varied: Δ19 and Δ24 were almost as active as CGA, but the activity of Δ29 was substantially lower, and Δ34 exhibited little hydrolytic activity. Subsequent truncation analysis of the N-terminal region sequence between residues 25 and 28 revealed that truncation of less than 26 residues did not affect CGA activity, whereas truncation of 26 or more residues resulted in a substantial loss of activity. Based on further site-directed mutagenesis and N-terminal sequence analysis, we concluded that the 26XaaXaaTrp28 sequence of CGA is important in exhibiting CGA activity. These results suggest that the N-terminal region of the BD in bacterial GAs may function not only in folding the protein into the correct structure but also in constructing a competent active site for catalyzing the hydrolytic reaction.

  10. Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases

    PubMed Central

    Tarry, Michael J.; Schmeing, T. Martin

    2015-01-01

    Nonribosomal peptide synthetases are large, multi-domain enzymes that produce peptide molecules with important biological activity such as antibiotic, antiviral, anti-tumor, siderophore and immunosuppressant action. The adenylation (A) domain catalyzes two reactions in the biosynthetic pathway. In the first reaction, it activates the substrate amino acid by adenylation and in the second reaction it transfers the amino acid onto the phosphopantetheine arm of the adjacent peptide carrier protein (PCP) domain. The conformation of the A domain differs significantly depending on which of these two reactions it is catalyzing. Recently, several structures of A–PCP di-domains have been solved using mechanism-based inhibitors to trap the PCP domain in the A domain active site. Here, we present an alternative strategy to stall the A–PCP di-domain, by engineering a disulfide bond between the native amino acid substrate and the A domain. Size exclusion studies showed a significant shift in apparent size when the mutant A–PCP was provided with cross-linking reagents, and this shift was reversible in the presence of high concentrations of reducing agent. The cross-linked protein crystallized readily in several of the conditions screened and the best crystals diffracted to ≈8 Å. PMID:25713404

  11. Use of adenylate kinase as a solubility tag for high level expression of T4 DNA ligase in Escherichia coli.

    PubMed

    Liu, Xinxin; Huang, Anliang; Luo, Dan; Liu, Haipeng; Han, Huzi; Xu, Yang; Liang, Peng

    2015-05-01

    The discovery of T4 DNA ligase in 1960s was pivotal in the spread of molecular biotechnology. The enzyme has become ubiquitous for recombinant DNA routinely practiced in biomedical research around the globe. Great efforts have been made to express and purify T4 DNA ligase to meet the world demand, yet over-expression of soluble T4 DNA ligase in E. coli has been difficult. Here we explore the use of adenylate kinase to enhance T4 DNA ligase expression and its downstream purification. E.coli adenylate kinase, which can be expressed in active form at high level, was fused to the N-terminus of T4 DNA ligase. The resulting His-tagged AK-T4 DNA ligase fusion protein was greatly over-expressed in E. coli, and readily purified to near homogeneity via two purification steps consisting of Blue Sepharose and Ni-NTA chromatography. The purified AK-T4 DNA ligase not only is fully active for DNA ligation, but also can use ADP in addition to ATP as energy source since adenylate kinase converts ADP to ATP and AMP. Thus adenylate kinase may be used as a solubility tag to facilitate recombinant protein expression as well as their downstream purification.

  12. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme.

    PubMed

    Masin, Jiri; Osicka, Radim; Bumba, Ladislav; Sebo, Peter

    2015-11-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) is a key virulence factor of the whooping cough agent Bordetella pertussis. CyaA targets myeloid phagocytes expressing the complement receptor 3 (CR3, known as αMβ2 integrin CD11b/CD18 or Mac-1) and translocates by a poorly understood mechanism directly across the cytoplasmic membrane into cell cytosol of phagocytes an adenylyl cyclase(AC) enzyme. This binds intracellular calmodulin and catalyzes unregulated conversion of cytosolic ATP into cAMP. Among other effects, this yields activation of the tyrosine phosphatase SHP-1, BimEL accumulation and phagocyte apoptosis induction. In parallel, CyaA acts as a cytolysin that forms cation-selective pores in target membranes. Direct penetration of CyaA into the cytosol of professional antigen-presenting cells allows the use of an enzymatically inactive CyaA toxoid as a tool for delivery of passenger antigens into the cytosolic pathway of processing and MHC class I-restricted presentation, which can be exploited for induction of antigen-specific CD8(+) cytotoxic T-lymphocyte immune responses.

  13. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin.

    PubMed Central

    Gordon, V M; Leppla, S H; Hewlett, E L

    1988-01-01

    Bordetella pertussis and Bacillus anthracis produce extracytoplasmic adenylate cyclase toxins (AC toxins) with shared features including activation by calmodulin and the ability to enter target cells and catalyze intracellular cyclic AMP (cAMP) production from host ATP. The two AC toxins were evaluated for sensitivities to a series of inhibitors of known uptake mechanisms. Cytochalasin D, an inhibitor of microfilament function, abrogated the cAMP response to B. anthracis AC toxin (93%) but not the cAMP response elicited by B. pertussis AC toxin. B. anthracis-mediated intoxication of CHO cells was completely inhibited by ammonium chloride (30 mM) and chloroquine (0.1 mM), whereas the cAMP accumulation produced by B. pertussis AC toxin remained unchanged. The block of target cell intoxication by cytochalasin D could be bypassed when cells were first treated with anthrax AC toxin and then exposed to an acidic medium. These data indicate that despite enzymatic similarities, these two AC toxins intoxicate target cells by different mechanisms, with anthrax AC toxin entering by means of receptor-mediated endocytosis into acidic compartments and B. pertussis AC toxin using a separate, and as yet undefined, mechanism. PMID:2895741

  14. Diversity of Structure and Function of Response Regulator Output Domains

    PubMed Central

    Galperin, Michael Y.

    2011-01-01

    Summary Response regulators (RRs) within two-component signal transduction systems control a variety of cellular processes. Most RRs contain DNA-binding output domains and serve as transcriptional regulators. Other RR types contain RNA-binding, ligand-binding, protein-binding or transporter output domains and exert regulation at the transcriptional, post-transcriptional or post-translational levels. In a significant fraction of RRs, output domains are enzymes that themselves participate in signal transduction: methylesterases, adenylate or diguanylate cyclases, c-di-GMP-specific phosphodiesterases, histidine kinases, serine/threonine protein kinases and protein phosphatases. In addition, there remain output domains whose functions are still unknown. Patterns of the distribution of various RR families are generally conserved within key microbial lineages and can be used to trace adaptations of various species to their unique ecological niches. PMID:20226724

  15. Diversity of structure and function of response regulator output domains.

    PubMed

    Galperin, Michael Y

    2010-04-01

    Response regulators (RRs) within two-component signal transduction systems control a variety of cellular processes. Most RRs contain DNA-binding output domains and serve as transcriptional regulators. Other RR types contain RNA-binding, ligand-binding, protein-binding or transporter output domains and exert regulation at the transcriptional, post-transcriptional or post-translational levels. In a significant fraction of RRs, output domains are enzymes that themselves participate in signal transduction: methylesterases, adenylate or diguanylate cyclases, c-di-GMP-specific phosphodiesterases, histidine kinases, serine/threonine protein kinases and protein phosphatases. In addition, there remain output domains whose functions are still unknown. Patterns of the distribution of various RR families are generally conserved within key microbial lineages and can be used to trace adaptations of various species to their unique ecological niches.

  16. Ethrel (Ethylene Releaser)-Induced Increases in the Adenylate Pool and Transtonoplast ΔpH within Hevea Latex Cells

    PubMed Central

    Amalou, Zakia; Bangratz, Jacques; Chrestin, Hervé

    1992-01-01

    The treatment of rubber tree (Hevea brasiliensis) bark with chloro-2-ethyl phosphonic acid (ethrel), an ethylene-releasing chemical, induced, after a lag period of 13 to 21 hours, a marked increase in the total adenine nucleotides (essentially ATP and ADP) of latex cells. This rise in the latex adenylate pool was concomitant with a marked decrease in the [ATP]/[ADP] ratio without significant changes in the adenylate energy charge. The apparent equilibrium constant for the adenylate kinase, which appeared to behave as a key enzyme in maintaining the adenylate energy charge in the latex, was considerably reduced, probably as a consequence of the alkalinization of the latex cytosol induced by the treatment with ethrel. To reduce the “sink effect” and activation of the metabolism induced in Hevea bark by regular tapping, the latex was collected by micropuncture (few drops) at increasing distance (5-50 centimeters) above and below an ethrel-treated area on the virgin bark of resting trees. The effect of ethrel was shown to spread progressively along the trunk. The increase in the adenylate pool (essentially ATP) was detectable as early as 24 hours after the bark treatment and was maximum after 6 or 8 days, 5 centimeters as well as 50 centimeters above and below the stimulated bark ring. The correlative vacuolar acidification and cytosolic alkalinization, i.e. the increase in the transtonoplast ΔpH, induced in the latex cells by ethrel were shown to be concomitant with the rise in ATP content of the latex. This suggests that the tonoplast H+-pumping ATPase, which catalyzes vacuolar acidification in the latex, is directly and essentially under the control of the availability of its substrate (i.e. ATP) in the latex. The results are discussed in relation to energy-dependent activation of metabolism, and increased rubber production, as induced by the stimulation of rubber trees with ethrel. PMID:16668787

  17. Adenylation-Dependent Conformation and Unfolding Pathways of the NAD+-Dependent DNA Ligase from the Thermophile Thermus scotoductus

    PubMed Central

    Georlette, Daphné; Blaise, Vinciane; Bouillenne, Fabrice; Damien, Benjamin; Thorbjarnardóttir, Sigridur H.; Depiereux, Eric; Gerday, Charles; Uversky, Vladimir N.; Feller, Georges

    2004-01-01

    In the last few years, an increased attention has been focused on NAD+-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD+-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD+-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced “open-closure” process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates. PMID:14747344

  18. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.

  19. Colorimetric determination of pyrophosphate anion and its application to adenylation enzyme assay.

    PubMed

    Katano, Hajime; Watanabe, Hiro; Takakuwa, Masahiro; Maruyama, Chitose; Hamano, Yoshimitsu

    2013-01-01

    A colorimetric pyrophosphate assay based on the formation and reduction of the 18-molybdopyrophosphate ([(P2O7)Mo18O54](4-)) anion in an acetonitrile-water mixed solvent was modified and improved. The [(P2O7)Mo18O54](4-) anion is precipitated from the acetonitrile-water solution containing MoO4(2-) and HCl, and is re-dissolved in neat acetonitrile or propylene carbonate. This separation process decreases the interference by ATP, and prevents a yellow coloration of the reducing agent, ascorbic acid, due to excess Mo(VI) species. In the organic solvent, the [(P2O7)Mo18O54](4-) anion is reduced to a more intense blue molybdopyrophosphate species. The application of the colorimetry to the assay of adenylation enzymes is also described in this note.

  20. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

    PubMed

    Howlett, A C

    1987-05-01

    delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.

  1. The influence of various cations on the catalytic properties of clays. [polymerization of alanine adenylate

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The polymerization of alanine adenylate in the presence of the sodium form of various clays was studied, and hectorite was found to cause more polymerization than nontronite and montmorillonite (in that order) although the differences were not great. The effect on polymerization of presaturating montmorillonite with different cations was determined. Hectorite, with increased basicity of the interspatial planes, allows polymerization of lysine, which montmorillonite does not. The general trend is that, for the same amino acid, higher degrees of polymerization are obtained when the cation in the octahedral lattice of the clay is divalent rather than trivalent. With the exchangeable cations the order is reversed, for a reason that is explained. The main role of clays in the polymerization mechanism of amino acids is concentration and neutralization of charges.

  2. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  3. Histamine-, norepinephrine-, and dopamine-sensitive central adenylate cyclases: effects of chlorpromazine derivatives and butaclamol.

    PubMed

    Palmer, G C; Wagner, H R; Palmer, S J; Manian, A A

    1978-06-01

    A series of recently available derivatives (quaternary and hydroxylated) of chlorpromazine (CPZ) and butaclamol were evaluated with respect to antagonism of norepinephrine- (NE) (rat cerebral cortex), dopamine- (DA) (rat striatum) and histamine- (H) sensitive (rabbit cerebral cortex) adenylate cyclases. With incubated tissue slices (rat and rabbit cortices) CPZ-CH3, 7-OH-CPZ-CH3, beta-OH-CPZ and butaclamol displayed a capacity to inhibit either NE- or H- induced accumulation of adenosine cyclic 3',5'-monophosphate (cAMP). With the broken cellular enzyme responsive to DA, rather potent inhibition of enzyme activity (IC50 less than 24 micron) occurred with butaclamol, beta-OH-CPZ, 7,8,beta-triOH-CPZ, 7,8-dioxo-beta-OH-CPZ and 3,7,8-triOH-CPZ. It is concluded that the metabolites of CPZ contribute to the central therapeutic and/or side effects of the parent compound.

  4. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    PubMed

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  5. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  6. New crystal structures of adenylate kinase from Streptococcus pneumoniae D39 in two conformations.

    PubMed

    Thach, Trung Thanh; Lee, Sangho

    2014-11-01

    Adenylate kinases (AdKs; EC 2.7.3.4) play a critical role in intercellular homeostasis by the interconversion of ATP and AMP to two ADP molecules. Crystal structures of adenylate kinase from Streptococcus pneumoniae D39 (SpAdK) have recently been determined using ligand-free and inhibitor-bound crystals belonging to space groups P21 and P1, respectively. Here, new crystal structures of SpAdK in ligand-free and inhibitor-bound states determined at 1.96 and 1.65 Å resolution, respectively, are reported. The new ligand-free crystal belonged to space group C2, with unit-cell parameters a=73.5, b=54.3, c=62.7 Å, β=118.8°. The new ligand-free structure revealed an open conformation that differed from the previously determined conformation, with an r.m.s.d on Cα atoms of 1.4 Å. The new crystal of the complex with the two-substrate-mimicking inhibitor P1,P5-bis(adenosine-5'-)pentaphosphate (Ap5A) belonged to space group P1, with unit-cell parameters a=53.9, b=62.3, c=63.0 Å, α=101.9, β=112.6, γ=89.9°. Despite belonging to the same space group as the previously reported crystal, the new Ap5A-bound crystal contains four molecules in the asymmetric unit, compared with two in the previous crystal, and shows slightly different lattice contacts. These results demonstrate that SpAdK can crystallize promiscuously in different forms and that the open structure is flexible in conformation.

  7. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    SciTech Connect

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-03-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of (/sup 125/)Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10/sup -5/ M) suggesting predominate beta/sub 2/-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-/sub 2/-type BAR coupled to adenylate cyclase in rat brown fat.

  8. Tachyphylaxis to PACAP-27 after inhibition of NO synthesis: a loss of adenylate cyclase activation

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The vasodilator effects of pituitary adenylate cyclase activating polypeptide (PACAP-27) are subject to tachyphylaxis in rats treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). This study examined whether this tachyphylaxis is due to the loss of vasodilator potency of cAMP generated by activation of the G(s) protein-coupled PACAP receptors. Five successive treatments with PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats that were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME (50 micromol/kg iv)-treated rats produced vasodilator responses of similar magnitude to those in saline-treated rats, whereas four subsequent injections produced progressively and markedly smaller responses. The hemodynamic effects of the membrane-permeable cAMP analog 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP; 5-15 micromol/kg iv) were similar in L-NAME-treated rats and in L-NAME-treated rats that had received the five injections of PACAP-27. In addition, five injections of 8-CPT-cAMP (10 micromol/kg iv) produced pronounced vasodilator responses in saline- and L-NAME-treated rats that were not subject to the development of tachyphylaxis. These results suggest that a loss of biological potency of cAMP is not responsible for tachyphylaxis to PACAP-27 in L-NAME-treated rats. This tachyphylaxis may be due to the inability of the G(s) protein-coupled PACAP receptor to activate adenylate cyclase.

  9. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    SciTech Connect

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  10. Two TIR-like domain containing proteins in a newly emerging zoonotic Staphylococcus aureus strain sequence type 398 are potential virulence factors by impacting on the host innate immune response

    PubMed Central

    Patterson, Nicholas J.; Günther, Juliane; Gibson, Amanda J.; Offord, Victoria; Coffey, Tracey J.; Splitter, Gary; Monk, Ian; Seyfert, Hans-Martin; Werling, Dirk

    2014-01-01

    Staphylococcus aureus, sequence type (ST) 398, is an emerging pathogen and the leading cause of livestock-associated methicillin-resistant S. aureus infections in Europe and North America. This strain is characterized by high promiscuity in terms of host-species and also lacks several traditional S. aureus virulence factors. This does not, however, explain the apparent ease with which it crosses species-barriers. Recently, TIR-domain containing proteins (Tcps) which inhibit the innate immune response were identified in some Gram-negative bacteria. Here we report the presence of two proteins, S. aureus TIR-like Protein 1 (SaTlp1) and S. aureus TIR-like Protein 2 (SaTlp2), expressed by ST398 which contain domain of unknown function 1863 (DUF1863), similar to the Toll/IL-1 receptor (TIR) domain. In contrast to the Tcps in Gram-negative bacteria, our data suggest that SaTlp1 and SaTlp2 increase activation of the transcription factor NF-κB as well as downstream pro-inflammatory cytokines and immune effectors. To assess the role of both proteins as potential virulence factors knock-out mutants were created. These showed a slightly enhanced survival rate in a murine infectious model compared to the wild-type strain at one dose. Our data suggest that both proteins may act as factors contributing to the enhanced ability of ST398 to cross species-barriers. PMID:25538689

  11. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    PubMed Central

    Gu, Xiaodong; Su, Wenling; Tang, Mingliang; Guo, Luo; Zhao, Liping

    2016-01-01

    DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions. PMID:28116169

  12. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    SciTech Connect

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.; Guillon, G.; Homburger, V.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher mass (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.

  13. Enhanced mRNA-protein fusion efficiency of a single-domain antibody by selection of mRNA display with additional random sequences in the terminal translated regions

    PubMed Central

    Takahashi, Kazuki; Sunohara, Masato; Terai, Takuya; Kumachi, Shigefumi; Nemoto, Naoto

    2017-01-01

    In vitro display technologies such as mRNA and cDNA display are powerful tools to create and select functional peptides. However, in some cases, efficiency of mRNA-protein fusion is very low, which results in decreased library size and lower chance of successful selection. In this study, to improve mRNA-protein fusion efficiency, we prepared an mRNA display library of a protein with random N- and C-terminal coding regions consisting of 12 nucleotides (i.e. four amino acids), and performed an electrophoresis mobility shift assay (EMSA)-based selection of successfully formed mRNA display molecules. A single-domain antibody (Nanobody, or VHH) was used as a model protein, and as a result, a pair of sequences was identified that increased mRNA-protein fusion efficiency of this protein by approximately 20%. Interestingly, enhancement of the fusion efficiency induced by the identified sequences was protein-specific, and different results were obtained for other proteins including VHHs with different CDRs. The results suggested that conformation of mRNA as a whole, rather than the amino acid sequence of the translated peptide, is an important factor to determine mRNA-protein fusion efficiency. PMID:28275529

  14. Enhanced mRNA-protein fusion efficiency of a single-domain antibody by selection of mRNA display with additional random sequences in the terminal translated regions.

    PubMed

    Takahashi, Kazuki; Sunohara, Masato; Terai, Takuya; Kumachi, Shigefumi; Nemoto, Naoto

    2017-01-01

    In vitro display technologies such as mRNA and cDNA display are powerful tools to create and select functional peptides. However, in some cases, efficiency of mRNA-protein fusion is very low, which results in decreased library size and lower chance of successful selection. In this study, to improve mRNA-protein fusion efficiency, we prepared an mRNA display library of a protein with random N- and C-terminal coding regions consisting of 12 nucleotides (i.e. four amino acids), and performed an electrophoresis mobility shift assay (EMSA)-based selection of successfully formed mRNA display molecules. A single-domain antibody (Nanobody, or VHH) was used as a model protein, and as a result, a pair of sequences was identified that increased mRNA-protein fusion efficiency of this protein by approximately 20%. Interestingly, enhancement of the fusion efficiency induced by the identified sequences was protein-specific, and different results were obtained for other proteins including VHHs with different CDRs. The results suggested that conformation of mRNA as a whole, rather than the amino acid sequence of the translated peptide, is an important factor to determine mRNA-protein fusion efficiency.

  15. Identification of a Key Target Sequence To Block Human Immunodeficiency Virus Type 1 Replication within the gag-pol Transframe Domain

    PubMed Central

    Sei, Shizuko; Yang, Quan-en; O'Neill, Dennis; Yoshimura, Kazuhisa; Nagashima, Kunio; Mitsuya, Hiroaki

    2000-01-01

    Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3′ end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6Gag protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNAPR2. A disrupted translation of gag-pol mRNA induced at the PNAPR2-annealing site resulted in a decreased synthesis of Pr160Gag-Pol polyprotein, hence the viral protease, a predominant expression of Pr55Gag devoid of a fully functional p6Gag protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNAPR2 abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target. PMID:10775598

  16. Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain.

    PubMed Central

    Minehart, P L; Magasanik, B

    1991-01-01

    The GLN3 gene of Saccharomyces cerevisiae is required for the activation of transcription of a number of genes in response to the replacement of glutamine by glutamate as source of nitrogen. We cloned the GLN3 gene and constructed null alleles by gene disruption. GLN3 is not essential for growth, but increased copies of GLN3 lead to a drastic decrease in growth rate. The complete nucleotide sequence of the GLN3 gene was determined, revealing one open reading frame encoding a polypeptide of 730 amino acids, with a molecular weight of approximately 80,000. The GLN3 protein contains a single putative Cys2/Cys2 zinc finger which has homology to the Neurospora crassa NIT2 protein, the Aspergillus nidulans AREA protein, and the erythroid-specific transcription factor GATA-1. Immunoprecipitation experiments indicated that the GLN3 protein binds the nitrogen upstream activation sequence of GLN1, the gene encoding glutamine synthetase. Neither control of transcription nor control of initiation of translation of GLN3 is important for regulation in response to glutamine availability. Images PMID:1682800

  17. Transcription initiation in vivo without classical transactivators: DNA kinks flanking the core promoter of the housekeeping yeast adenylate kinase gene, AKY2, position nucleosomes and constitutively activate transcription.

    PubMed

    Angermayr, Michaela; Oechsner, Ulrich; Gregor, Kerstin; Schroth, Gary P; Bandlow, Wolfhard

    2002-10-01

    The housekeeping gene of the major adenylate kinase in Saccharomyces cerevisiae (AKY2, ADK1) is constitutively transcribed at a moderate level. The promoter has been dissected in order to define elements that effect constitutive transcription. Initiation of mRNA synthesis at the AKY2 promoter is shown to be mediated by a non-canonic core promoter, (TA)(6). Nucleotide sequences 5' of this element only marginally affect transcription suggesting that promoter activation can dispense with transactivators and essentially involves basal transcription. We show that the core promoter of AKY2 is constitutively kept free of nucleosomes. Analyses of permutated AKY2 promoter DNA revealed the presence of bent DNA. DNA structure analysis by computer and by mutation identified two kinks flanking an interstitial stretch of 65 bp of moderately bent core promoter DNA. Kinked DNA is likely incompatible with packaging into nucleosomes and responsible for positioning nucleosomes at the flanks allowing unimpeded access of the basal transcription machinery to the core promoter. The data show that in yeast, constitutive gene expression can dispense with classical transcriptional activator proteins, if two prerequisites are met: (i) the core promoter is kept free of nucleosomes; this can be due to structural properties of the DNA as an alternative to chromatin remodeling factors; and (ii) the core promoter is pre-bent to allow a high rate of basal transcription initiation.

  18. Adenylation by testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, is essential for spermatogenesis

    PubMed Central

    KASHIWABARA, Shin-ichi; TSURUTA, Satsuki; OKADA, Keitaro; YAMAOKA, Yutaro; BABA, Tadashi

    2016-01-01

    The testis-specific cytoplasmic poly(A) polymerase PAPOLB/TPAP is essential for spermatogenesis. Although this enzyme is responsible for poly(A) tail extension of a subset of mRNAs in round spermatids, the stability and translational efficiency of these mRNAs are unaffected by the absence of PAPOLB. To clarify the functional importance of this enzyme’s adenylation activity, we produced PAPOLB-null mice expressing a polyadenylation-defective PAPOLB mutant (PAPOLBD114A), in which the catalytic Asp at residue 114 was mutated to Ala. Introducing PAPOLBD114A failed to rescue PAPOLB-null phenotypes, such as reduced expression of haploid-specific mRNAs, spermiogenesis arrest, and male infertility. These results suggest that PAPOLB regulates spermatogenesis through its adenylation activity. PMID:27647534

  19. The phonetic manifestation of French /s#∫/ and /∫#s/ sequences in different vowel contexts: on the occurrence and the domain of sibilant assimilation.

    PubMed

    Niebuhr, Oliver; Meunier, Christine

    2011-01-01

    While assimilation was initially regarded as a categorical replacement of phonemes or phonological features, subsequent detailed phonetic analyses showed that assimilation actually generates a wide spectrum of intermediate forms in terms of speech timing and spectrum. However, the focus of these analyses predominantly remained on the assimilated speech sound. In the present study we go one step ahead in two ways. First, we look at acoustic phonetic detail that differs in the French vowels /i, a, u/ preceding single /s/ and /∫/ sibilants as well as /s#∫/ and /∫#s/ sibilant sequences. Second, our vowel measurements include not only F1 and F2 frequencies, but also traditional prosodic parameters like duration, intensity and voice quality. The vowels and sibilants were recorded as the central part of CVC#CVC pseudo-names in a contextualized read-speech paradigm. In the single-sibilant conditions we found that the vowels preceding /∫/ were longer, breathier, less intense, and had more cardinal F2 values than before /s/. For the /s#∫/ and /∫#s/ conditions we found regressive and progressive /s/-to-[∫] assimilation that was complete in terms of spectral centre-of-gravity measurements, although French is said to have only voice assimilation. Moreover, the vowels preceding the /s#∫/ sequences still bear an imprint of /s/ despite the assimilation towards [ ∫∫]. We discuss the implications of these findings for the time window and the completeness of assimilation as well as for the basic units in speech communication.

  20. Functional genetic variant in the Kozak sequence of WW domain-containing oxidoreductase (WWOX) gene is associated with oral cancer risk

    PubMed Central

    Su, Chun-Wen; Su, Shih-Chi; Chen, Mu-Kuan; Yang, Shun-Fa; Lin, Chiao-Wen

    2016-01-01

    In Taiwan, oral cancer is the fourth leading cancer in males and is associated with exposure to environmental carcinogens. WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, is associated with the development of various cancers. We hypothesized that genetic variants of WWOX influence the susceptibility to oral cancer. Five polymorphisms of WWOX gene from 761 male patients with oral cancer and 1199 male cancer-free individuals were genotyped. We observed that individuals carrying the polymorphic allele of WWOX rs11545028 are more susceptible to oral cancer. Furthermore, patients with advanced-stage oral cancer were associated with a higher frequency of WWOX rs11545028 polymorphisms with the variant genotype TT than did patients with the wild-type gene. An additional integrated in silico analysis confirmed that rs11545028 affects WWOX expression, which significantly correlates with tumor expression and subsequently with tumor development and aggressiveness. In conclusion, genetic variants of WWOX contribute to the occurrence of oral cancer, and the findings regarding these biomarkers provided a prediction model for risk assessment. PMID:27655721

  1. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination.

    PubMed

    Dominguez, Samuel R; Sims, Gregory E; Wentworth, David E; Halpin, Rebecca A; Robinson, Christine C; Town, Christopher D; Holmes, Kathryn V

    2012-11-01

    This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1-600, aa 1-200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world.

  2. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein.

    PubMed Central

    Minvielle-Sebastia, L; Winsor, B; Bonneaud, N; Lacroute, F

    1991-01-01

    In Saccharomyces cerevisiae, temperature-sensitive mutations in the genes RNA14 and RNA15 correlate with a reduction of mRNA stability and poly(A) tail length. Although mRNA transcription is not abolished in these mutants, the transcripts are rapidly deadenylated as in a strain carrying an RNA polymerase B(II) temperature-sensitive mutation. This suggests that the primary defect could be in the control of the poly(A) status of the mRNAs and that the fast decay rate may be due to the loss of this control. By complementation of their temperature-sensitive phenotype, we have cloned the wild-type genes. They are essential for cell viability and are unique in the haploid genome. The RNA14 gene, located on chromosome H, is transcribed as three mRNAs, one major and two minor, which are 2.2, 1.5, and 1.1 kb in length. The RNA15 gene gives rise to a single 1.2-kb transcript and maps to chromosome XVI. Sequence analysis indicates that RNA14 encodes a 636-amino-acid protein with a calculated molecular weight of 75,295. No homology was found between RNA14 and RNA15 or between RNA14 and other proteins contained in data banks. The RNA15 DNA sequence predicts a protein of 296 amino acids with a molecular weight of 32,770. Sequence comparison reveals an N-terminal putative RNA-binding domain in the RNA15-encoded protein, followed by a glutamine and asparagine stretch similar to the opa sequences. Both RNA14 and RNA15 wild-type genes, when cloned on a multicopy plasmid, are able to suppress the temperature-sensitive phenotype of strains bearing either the rna14 or the rna15 mutation, suggesting that the encoded proteins could interact with each other. Images PMID:1674817

  3. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    SciTech Connect

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  4. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  5. Adenylate pool and energy charge in human lymphocytes and granulocytes irradiated at 632 nm (HeNe laser)

    NASA Astrophysics Data System (ADS)

    Bolognani, Lorenzo; Venturelli, T.; Volpi, N.; Zirilli, O.

    1995-05-01

    Aim of this report was to investigate the adenylate pool and the energy charge in human white blood cells exposed to increasing time (15, 30 and 60 min) of HeNe laser treatment. EDTA treated human blood diluted 1:1 with 0.88% KCl was added (1:5) with NaCl-dextran solution to allow sedimentation of red blood cells. 6 ml of the white cells floating in the supernatant were layered on 3 ml of Lymphoprep in plastic tubes and each tube was centrifuged (from 50 to 5000 X g for 5 min). Granulocytes were concentrated in the lower phase, whilst lymphocytes were in the intermediated phase. After further purification cytological homogeneity was tested by a cell counter. Granulocytes and lymphocytes were irradiated at +22°C with HeNe (Space, Valfivre equipment). On these population ATP was tested by luminometric procedure, the adenylate pool was separated by HPLC (Jasco) on neutralyzed perchloric extracts. ATP concentration increased in lymphocytes (+63.9%, p < 0.01) and in granulocytes (+25.0%, p < 0.05) after 60 min irradiation. The adenylate pool (tested by HPLC) does not change significatively in lymphocytes or granulocytes after 30 min irradiation, whilst in 60 min irradiated lymphocytes and granulocytes a significative increment was observed in nucleotide concentration. No changes were observed in energy charge according to Atkinson.

  6. Development of a novel photoreactive calmodulin derivative: Cross-linking of purified adenylate cyclase from bovine brain

    SciTech Connect

    Harrison, J.K.; Lawton, R.G.; Gnegy, M.E. )

    1989-07-11

    A novel photoreactive calmodulin (CaM) derivative was developed and used to label the purified CaM-sensitive adenylate cyclase from bovine cortex. {sup 125}I-CaM was conjugated with the heterobifunctional cross-linking agent p-nitrophenyl 3-diazopyruvate (DAPpNP). Spectral data indicated that diazopyruvoyl (DAP) groups were incorporated into the CaM molecule. Iodo-CaM-DAPs behaved like native CaM with respect to (1) Ca{sup 2+}-dependent enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and (2) Ca{sup 2+}-dependent stimulation of adenylate cyclase activity. {sup 125}I-CaM-DAP photochemically cross-linked to CaM-binding proteins in a manner that was both Ca{sup 2+} dependent and CaM specific. Photolysis of forskolin-agarose-purified adenylate cyclase from bovine cortex with {sup 125}I-CaM-DAP produced a single cross-linked product which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent molecular weight of approximately 140,000.

  7. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.

  8. Properties of the separated catalytic and regulatory units of brain adenylate cyclase.

    PubMed Central

    Strittmatter, S; Neer, E J

    1980-01-01

    Adenylate cyclase from bovine brain cortex was solubilized with 14 mM cholate and 1 M (NH4)2SO4. Gel filtration over a column of Sepharose 6B separated the catalytic unit (CU) from a factor (G/F) that confers responsiveness to 5'-guanylyl imidophosphate (p[NH]ppG) or fluoride. The separated CU, which elutes with a Kav, of 0.48 +/- 0.01 (n=5), is not responsive to p[NH]ppG or fluoride and is relatively inactive when Mg . ATP is the substrate but activated 8-15-fold by Mn2+. The separated G/F elutes with a Kav of 0.70 +/- 0.02 (n=4). It restores the responsiveness of the CU to p[NH]ppG and fluoride. Activation of the enzyme by p[NH]ppG before solubilization does not decrease the amount of G/F eluting with a Kav of 0.7. Therefore, the G/F is probably present in brain cortex in excess over the CU. p[NH]ppG stabilizes the G/F but not the CU against thermal inactivation, suggesting that it interacts with G/F and not with CU. Incubation of the G/F with p[NH]ppG before addition of CU markedly increases the rate of activation of the reconstituted enzyme by p[NH]ppG. We propose, therefore, that the rate-limiting step in adenylate cyclase activation is a process in G/F alone and not a slow conformational change in CU or a slow association of G/F with CU. Binding of p[NH]ppG to the isolated G/F appears to be readily reversible; the ability of fully activated G/F to stimulate CU can be blocked if GDP is added before CU. In contrast, after the CU has been activated by interaction with G/F, GDP cannot reverse the activation. This suggests that association with the CU increases the affinity of G/F for p[NH]ppG. PMID:6935648

  9. A sequence dimorphism in a conserved domain of human 28S rRNA. Uneven distribution of variant genes among individuals. Differential expression in HeLa cells.

    PubMed Central

    Qu, L H; Nicoloso, M; Bachellerie, J P

    1991-01-01

    In humans, cellular 28S rRNA displays a sequence dimorphism within an evolutionarily conserved motif, with the presence, at position +60, of either a A (like the metazoan consensus) or a G. The relative abundance of the two forms of variant genes in the genome exhibit large differences among individuals. The two variant forms are generally represented in cellular 28S rRNA in proportion of their relative abundance in the genome, at least for leucocytes. However, in some cases, one form of variant may be markedly underexpressed as compared to the other. Thus, in HeLa cells, A-form genes contribute to only 1% of the cellular content in mature 28S rRNA although amounting to 15% of the ribosomal genes. The differential expression seems to result from different transcriptional activities rather than from differences in pre-rRNA processing efficiency or in stabilities of mature rRNAs. G-form ribosomal genes were not detected in other mammals, including chimpanzee, which suggests that the fixation of this variant type is a rather recent event in primate evolution. Images PMID:2020541

  10. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif.

    PubMed

    Joseph, G; Gorzalczany, Y; Koshkin, V; Pick, E

    1994-11-18

    The small GTP-binding protein (G protein) Rac1 is an obligatory participant in the assembly of the superoxide (O2-.)-generating NADPH oxidase complex of macrophages. We investigated the effect of synthetic peptides, mapping within the near carboxyl-terminal domains of Rac1 and of related G proteins, on the activity of NADPH oxidase in a cell-free system consisting of solubilized guinea pig macrophage membrane, a cytosolic fraction enriched in p47phox and p67phox (or total cytosol), highly purified Rac1-GDP dissociation inhibitor for Rho (Rho GDI) complex, and the activating amphiphile, lithium dodecyl sulfate. Peptides Rac1-(178-188) and Rac1-(178-191), but not Rac2-(178-188), inhibited NADPH oxidase activity in a Rac1-dependent system when added prior to or simultaneously with the initiation of activation. However, undecapeptides corresponding to the near carboxyl-terminal domains of RhoA and RhoC and, most notably, a peptide containing the same amino acids as Rac1-(178-188), but in reversed orientation, were also inhibitory. Surprisingly, O2-. production in a Rac2-dependent cell-free system was inhibited by Rac1-(178-188) but not by Rac2-(178-188). Finally, basic polyamino acids containing lysine, histidine, or arginine, also inhibited NADPH oxidase activation. We conclude that inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of certain small G proteins is not amino acid sequence-specific but related to the presence of a polybasic motif. It has been proposed that such a motif serves as a plasma membrane targeting signal for a number of small G proteins (Hancock, J.F., Paterson, H., and Marshall, C.J. (1990) Cell 63, 133-139).

  11. Mutation of domain III and domain VI in L gene conserved domain of Nipah virus

    NASA Astrophysics Data System (ADS)

    Jalani, Siti Aishah; Ibrahim, Nazlina

    2016-11-01

    Nipah virus (NiV) is the etiologic agent responsible for the respiratory illness and causes fatal encephalitis in human. NiV L protein subunit is thought to be responsible for the majority of enzymatic activities involved in viral transcription and replication. The L protein which is the viral RNA dependent RNA polymerase has high sequence homology among negative sense RNA viruses. In negative stranded RNA viruses, based on sequence alignment six conserved domain (domain I-IV) have been determined. Each domain is separated on variable regions that suggest the structure to consist concatenated functional domain. To directly address the roles of domains III and VI, site-directed mutations were constructed by the substitution of bases at sequences 2497, 2500, 5528 and 5532. Each mutated L gene can be used in future studies to test the ability for expression on in vitro translation.

  12. Structure and function of adenylate kinase isozymes in normal humans and muscular dystrophy patients.

    PubMed

    Hamada, M; Takenaka, H; Fukumoto, K; Fukamachi, S; Yamaguchi, T; Sumida, M; Shiosaka, T; Kurokawa, Y; Okuda, H; Kuby, S A

    1987-01-01

    Two isozymes of adenylate kinase from human Duchenne muscular dystrophy serum, one of which was an aberrant form specific to DMD patients, were separated by Blue Sepharose CL-6B affinity chromatography. The separated aberrant form possessed a molecular weight of 98,000 +/- 1,500, whereas the normal serum isozyme had a weight of 87,000 +/- 1,600, as determined by SDS-polyacrylamide gel electrophoresis, gel filtration, and sedimentation equilibrium. The sedimentation coefficients were 5.8 S and 5.6 S for the aberrant form and the normal form, respectively. Both serum isozymes are tetramers. The subunit size of the aberrant isozyme (Mr = 24,700) was very similar to that of the normal human liver isozyme, and the subunit size of the normal isozyme (Mr = 21,700) was very similar to that of the normal human muscle enzyme. The amino acid composition of the normal serum isozyme was similar to that of the muscle-type enzyme, and that of the aberrant isozyme was similar to that of the liver enzyme, with some exceptions in both cases.

  13. Variation in adenylate energy charge and phosphoadenylate pool size in estuarine organisms after an oil spill

    SciTech Connect

    Shafer, T.H.; Hackney, C.T.

    1987-05-01

    Adenylate energy charge (AEC) is the proportion of the total phosphoadenylate pool charged with high-energy bonds. AEC values vary between zero and one by definition. Since AEC can be measured in any organism, decreases might be a universal measure of sublethal environmental stress. In some organisms which maintain high AEC while withstanding natural or anthropogenic stress, the absolute concentration of ATP and the total phosphoadenylate pool (TPP) decrease proportionally. However, in certain organisms the TPP shows dramatic natural fluctuations unrelated to pollution or stress. On 28 June 1983, a tanker spilled approximately 42,000 gallons of number6 diesel oil in the Cape Fear River, North Carolina, USA. Oil covered the tidal marshes on the east side of the river and provided an opportunity to determine if either the AEC or TPP in a variety of organisms would respond to this stress. Five test species were examined as long as one year after the spill. AEC and TPP values of the organisms were compared between contaminated and uncontaminated sites at all seasons. This is the first investigation to monitor AEC in a number of taxonomically distinct estuarine species during an extended period after an oil spill.

  14. Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development

    PubMed Central

    Antal, Maria Cristina; Bénardais, Karelle; Samama, Brigitte; Auger, Cyril; Schini-Kerth, Valérie; Ghandour, Said; Boehm, Nelly

    2017-01-01

    Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors. PMID:28122017

  15. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    PubMed

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  16. Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme.

    PubMed Central

    Rogel, A; Schultz, J E; Brownlie, R M; Coote, J G; Parton, R; Hanski, E

    1989-01-01

    Bordetella pertussis produces a calmodulin-sensitive adenylate cyclase (AC) which is an essential virulence factor in mammalian pertussis. Here we report the purification and characterization of the toxic form of the enzyme, which penetrates eukaryotic cells and generates high levels of intracellular cAMP. This form was purified from an extract of B.pertussis strain carrying a recombinant plasmid which over-produced both enzymatic and toxic activities of the enzyme. Western blot analysis of the extract using anti-B.pertussis AC antibodies detected only one protein of 200 kd. However, gel filtration of the extract resolved two peaks of enzymatic activity. The first peak of aggregated material contained greater than 70% of the total enzymatic activity, and the second peak contained the majority of the toxic activity. Purification of the enzyme from both peaks yielded proteins of 200 kd, with similar biochemical and immunological properties. Yet only the enzyme purified from the second peak could penetrate human lymphocyte and catalyse the formation of intracellular cAMP. B.pertussis AC gene expressed in Escherichia coli produced a calmodulin-dependent enzyme of 200 kd, which lacked lymphocyte penetration capacity. It is proposed that a post-translational modification that occurs in B.pertussis but not in E.coli confers upon the 200 kd protein of B.pertussis AC the toxic properties. Images PMID:2555185

  17. Kinetics of inhibition of firefly luciferase by oxyluciferin and dehydroluciferyl-adenylate.

    PubMed

    Ribeiro, César; Esteves da Silva, Joaquim C G

    2008-09-01

    The inhibition mechanisms of the firefly luciferase (Luc) by the two major products of the reactions catalysed by Luc, oxyluciferin and dehydroluciferyl-adenylate (L-AMP), were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 microM oxyluciferin; 0.0025 to 1.25 microM L-AMP) has been measured in 50 mM Hepes buffer (pH=7.5), 10 nM Luc, 250 microM ATP and D-Luciferin (from 3.75 up to 120 microM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that oxyluciferin is a competitive inhibitor of luciferase (Ki=0.50+/-0.03 microM) while L-AMP act as a tight-binding competitive inhibitor (Ki=3.8+/-0.7 nM). The Km values obtained both for oxyluciferin and L-AMP were 14.7+/-0.7 and 14.9+/-0.2 microM, respectively. L-AMP is a stronger inhibitor of Luc than oxyluciferin and the major responsible for the characteristic flash profile of in vitro Luc bioluminescence.

  18. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    PubMed

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  19. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    PubMed

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma.

  20. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    PubMed

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  1. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    SciTech Connect

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.

  2. The energy profiles of atomic conformational transition intermediates of adenylate kinase.

    PubMed

    Feng, Yaping; Yang, Lei; Kloczkowski, Andrzej; Jernigan, Robert L

    2009-11-15

    The elastic network interpolation (ENI) (Kim et al., Biophys J 2002;83:1620-1630) is a computationally efficient and physically realistic method to generate conformational transition intermediates between two forms of a given protein. However it can be asked whether these calculated conformations provide good representatives for these intermediates. In this study, we use ENI to generate conformational transition intermediates between the open form and the closed form of adenylate kinase (AK). Based on C(alpha)-only intermediates, we construct atomic intermediates by grafting all the atoms of known AK structures onto the C(alpha) atoms and then perform CHARMM energy minimization to remove steric conflicts and optimize these intermediate structures. We compare the energy profiles for all intermediates from both the CHARMM force-field and from knowledge-based energy functions. We find that the CHARMM energies can successfully capture the two energy minima representing the open AK and closed AK forms, while the energies computed from the knowledge-based energy functions can detect the local energy minimum representing the closed AK form and show some general features of the transition pathway with a somewhat similar energy profile as the CHARMM energies. The combinatorial extension structural alignment (Shindyalov et al., 1998;11:739-747) and the k-means clustering algorithm are then used to show that known PDB structures closely resemble computed intermediates along the transition pathway.

  3. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Rouatbi, Sonia; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Vaudry, David; Wurtz, Olivier; Tebourbi, Olfa

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  4. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    PubMed Central

    Mehan, Sidharth; Parveen, Shaba; Kalra, Sanjeev

    2017-01-01

    Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity), resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  5. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP-receptor type 1 expression in rat and human placenta.

    PubMed

    Scaldaferri, M L; Modesti, A; Palumbo, C; Ulisse, S; Fabbri, A; Piccione, E; Frajese, G; Moretti, C

    2000-03-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP), the new hypophysiotropic factor member of the vasoactive intestinal peptide (VIP)/secretin/glucagon/GHRH family of neuropeptides, exerts its biological action by interacting with both PACAP-selective type I receptors (PAC1) and type II receptors (VPAC1), which bind both PACAP and VIP. The placenta is a site of production of hypophysiotropic factors that participate in the control of local hormone production, as well as the respective hypothalamic-pituitary neurohormones. In the present study, we show the expression of PACAP gene and irPACAP distribution within rat and human placental tissues, by means of RT-PCR and immunohystochemical experiments. In both rat and human placenta, we evaluated the expression of PAC1 gene by Northern hybridization analysis performed with a 32P-labeled 706 nt complementary DNA probe, derived from the full-length coding region of the rPAC1 complementary DNA. The results of these experiments demonstrate the presence, in both human and rat placenta, of a 7.5-kb transcript similar in size to those detected in the ovary, brain, and hypothalamus. Alternative splicing of two exons occurs in human and rat PAC1 gene generating splice variants with variable tissue-specific expression. To ascertain which of the splice variants were expressed in placental tissue we performed RT-nested PCR using primers flanking the insertion sequence termed hip/hop cassette in rat or SV1/SV2 box in human gene. Electrophoretic analysis of the PCR products showed a different pattern of expression of messenger RNA splicing variants in human and rat placenta. In particular, the rat placenta expresses the short PAC1 receptor (PAC1short), the rPAC1-hip or hop (which are indistinguishable with the primers used), and the rPAC1-hip-hop, whereas the human placenta expresses only the PAC1SV1 (or SV2) variant, structurally homologous to the rat PAC1 hip (or hop). Sequence analysis of the human PCR-amplified PAC1

  6. Next-generation sequencing detection and characterization of a heterozygous novel splice junction mutation in the 2B domain of KRT1 in a family with diffuse palmoplantar keratoderma.

    PubMed

    Banerjee, Santasree; Ren, Yunqing; Wei, Tianying; Zhou, Zhongwei; Yu, Ping; Guan, Fenghui; Wei, Xiaonming; Ye, Sheng; Yan, Shaofeng; Zheng, Min; Raff, Michael L; Qi, Ming

    2015-02-01

    Diffuse palmoplantar keratoderma (DPPK) is an autosomal-dominant genodermatosis characterized by restricted, uniform hyperkeratosis on the palm and sole epidermis. DPPK is normally associated with dominant-negative mutations in the keratin-encoding gene, KRT1. We report a heterozygous novel point mutation in the exon 6 splice donor site of KRT1 (c.1254G>C) by next-generation sequencing, resulting in the formation of two alternative transcripts, which segregates with DPPK in a four-generation Chinese family. This results in both the complete loss of exon 6 and the simultaneous utilization of a novel in-frame splice site 54 bases downstream of the mutation with the subsequent deletion of 42 amino acids and the insertion of 18 amino acids into the protein's 2B domain. This is the first report of a novel splice donor site mutation with aberrant splicing and the formation of two alternative transcripts causing DPPK. This study also demonstrates the value of next-generation sequencing in the identification of novel disease-causing mutations.

  7. [Differentially expressed genes identified in the main olfactory epithelium of mice with deficiency of adenylate cyclase 3 by using suppression subtractive hybridization approach].

    PubMed

    Zhenlong, Cao; Jiangye, Hao; Yanfen, Zhou; Zhe, Zhang; Zhihua, Ni; Yuanxiang, Hu; Weili, Liu; Yongchao, Li; Daniel, R Storm; Runlin, Z Ma; Zhenshan, Wang

    2014-06-01

    Adenylate cyclase 3 (AC3) is one of the major players in the olfactory signaling within the main olfactory epithelium (MOE) of mice. However, we are not ascertained whether deficiency of AC3 will lead to the differential expression of related genes in the MOE. Forward and reverse subtractive libraries were constructed by suppression subtractive hybridization (SSH) approach, with MOEs from AC3(-/-) and AC3(+/+) mice. These two libraries were primarily screened by Dot blot, differential expressed clones were sequenced and analyzed by bioinformatics, and differential expressed genes were verified by qRT-PCR. A total of 386 differentially expressed clones were picked out after Dot blot. The DNA sequences of 80 clones randomly selected were determined, and 62 clones were identified by blasting in GenBank. We found that 24 up-regulated clones were corresponded to genes of kcnk3, mapk7, megf11, and 38 down-regulated clones were corresponded to tmem88b, c-mip, skp1a, mlycd, etc. Their functions were annotated with Gene Ontology (GO) and found to be mainly focused on molecular binding, cell cycle, processes of biology and cells. Five genes (kcnk3, c-mip, mlycd, tmem88b and trappc5) were verified by qRT-PCR with individuals of AC3(+/+) and AC3(-/-) mice. The data indicate that kcnk3 gene is up-regulated significantly, increasing 1.27 folds compared to control mice, whereas c-mip, mlycd, tmem88b and trappc5 are down-regulated significantly, decreasing 20%, 7%, 32% and 29% compared to the AC3(+/+)mice. The functions of these genes are closely related with K(+) channels, cell differentiation, metabolism of fats, membrane transportation, and so on. It is tempting to speculate that these genes might work together with AC3 to orchestrate the olfactory transduction signaling in the MOE.

  8. Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase.

    PubMed Central

    Fraser, C M; Chung, F Z; Wang, C D; Venter, J C

    1988-01-01

    By using oligonucleotide-directed mutagenesis, we have produced a point mutation (guanine to adenine) at nucleotide 388 of the gene for human beta-adrenergic receptor (beta AR) that results in a substitution of asparagine for the highly conserved aspartic acid at position 130 in the putative third transmembrane domain of the human beta AR ([Asn130]beta AR). We have examined the functional significance of this mutation in B-82 cells continuously expressing the mutant [Asn130]beta AR. The mutant [Asn130]beta AR displayed normal antagonist binding but unusually high-affinity agonist binding (5- to 10-fold higher than wild-type beta AR), consistent with a single class of high-affinity binding sites. The mutant beta AR displayed guanine nucleotide-sensitive changes in agonist affinity (3- to 5-fold shift) implying an interaction between the beta AR and the stimulatory guanine nucleotide-binding regulatory protein; however, the ability of guanine nucleotides to alter agonist affinity was attenuated. Addition of saturating concentrations of isoproterenol to cell cultures expressing mutant [Asn130]-beta ARs had no effect on intracellular levels of cAMP, indicating that the mutant beta AR is unable to affect stimulation of adenylate cyclase. These results indicate that substitution of the aspartic acid with asparagine at residue 130 of the human beta AR dissociates the well-characterized guanine nucleotide effects on agonist affinity from those on activation of the stimulatory guanine nucleotide-binding regulatory protein and adenylate cyclase and suggests the existence of two distinct counterions for the amine portion of catecholamines that are associated with high- and low-affinity agonist binding states of beta AR. Images PMID:2840663

  9. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    PubMed

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  10. D-1 dopaminergic and beta-adrenergic stimulation of adenylate cyclase in a clone derived from the human astrocytoma cell line G-CCM.

    PubMed

    Balmforth, A J; Ball, S G; Freshney, R I; Graham, D I; McNamee, H B; Vaughan, P F

    1986-09-01

    Clones have been isolated from the human astrocytoma cell line G-CCM. Homogenates of clone D384 contain an adenylate cyclase that is stimulated by 3,4-dihydroxyphenylethylamine (dopamine), noradrenaline, and isoprenaline with Ka apparent values of 4, 56, and 2.7 microM, respectively. The Ka apparent value for dopamine was increased by the D-1 antagonist cis-flupenthixol, 25 and 100 nM, to 23 and 190 microM, respectively, but was unaffected by propranolol (1 microM). Noradrenaline stimulation of adenylate cyclase was only partially inhibited by either propranolol (10 microM) or cis-flupenthixol (1 microM). Propranolol (10 microM), but not cis-flupenthixol (1 microM), prevented stimulation by isoprenaline. The stimulation of adenylate cyclase by dopamine and noradrenaline remained unchanged in the presence of phentolamine (1 microM) and sulpiride (1 microM). These results suggest that clone D384 contains both D-1 dopaminergic and beta-adrenergic receptors coupled to adenylate cyclase. Dopamine stimulates D384 adenylate cyclase through D-1 receptors, isoprenaline via beta-receptors, and noradrenaline through both receptors.

  11. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D/sub 2/ receptor

    SciTech Connect

    Borgundvaag, B.; George, S.R.

    1985-07-29

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of (/sup 3/H)-ATP to (/sup 3/H)-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC/sub 50/ values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC/sub 50/ values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D/sub 2/ dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table.

  12. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    SciTech Connect

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-09-20

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 ..mu..M isoproterenol and 50 ..mu..M GTP-..gamma..-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 ..mu..M GTP-..gamma..-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of ..beta..-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes.

  13. Pituitary Adenylate Cyclase-Activating Polypeptide Ameliorates Experimental Acute Ileitis and Extra-Intestinal Sequelae

    PubMed Central

    Schulze, Silvia; Fischer, André; Grundmann, Ursula; Alutis, Marie; Kühl, Anja A.; Tamas, Andrea; Toth, Gabor; Dunay, Miklos P.; Göbel, Ulf B.; Reglodi, Dora; Bereswill, Stefan

    2014-01-01

    Background The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Methodology/Principal Findings Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Conclusion/Significance Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases. PMID:25238233

  14. Modulation of a pre-existing conformational equilibrium tunes adenylate kinase activity.

    PubMed

    Ådén, Jörgen; Verma, Abhinav; Schug, Alexander; Wolf-Watz, Magnus

    2012-10-10

    Structural plasticity is often required for distinct microscopic steps during enzymatic reaction cycles. Adenylate kinase from Escherichia coli (AK(eco)) populates two major conformations in solution; the open (inactive) and closed (active) state, and the overall turnover rate is inversely proportional to the lifetime of the active conformation. Therefore, structural plasticity is intimately coupled to enzymatic turnover in AK(eco). Here, we probe the open to closed conformational equilibrium in the absence of bound substrate with NMR spectroscopy and molecular dynamics simulations. The conformational equilibrium in absence of substrate and, in turn, the turnover number can be modulated with mutational- and osmolyte-driven perturbations. Removal of one hydrogen bond between the ATP and AMP binding subdomains results in a population shift toward the open conformation and a resulting increase of k(cat). Addition of the osmolyte TMAO to AK(eco) results in population shift toward the closed conformation and a significant reduction of k(cat). The Michaelis constants (K(M)) scale with the change in k(cat), which follows from the influence of the population of the closed conformation for substrate binding affinity. Hence, k(cat) and K(M) are mutually dependent, and in the case of AK(eco), any perturbation that modulates k(cat) is mirrored with a proportional response in K(M). Thus, our results demonstrate that the equilibrium constant of a pre-existing conformational equilibrium directly affects enzymatic catalysis. From an evolutionary perspective, our findings suggest that, for AK(eco), there exists ample flexibility to obtain a specificity constant (k(cat)/K(M)) that commensurate with the exerted cellular selective pressure.

  15. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis.

    PubMed

    Hamelink, Carol; Tjurmina, Olga; Damadzic, Ruslan; Young, W Scott; Weihe, Eberhard; Lee, Hyeon-Woo; Eiden, Lee E

    2002-01-08

    The adrenal gland is important for homeostatic responses to metabolic stress: hypoglycemia stimulates the splanchnic nerve, epinephrine is released from adrenomedullary chromaffin cells, and compensatory glucogenesis ensues. Acetylcholine is the primary neurotransmitter mediating catecholamine secretion from the adrenal medulla. Accumulating evidence suggests that a secretin-related neuropeptide also may function as a transmitter at the adrenomedullary synapse. Costaining with highly specific antibodies against the secretin-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) and the vesicular acetylcholine transporter (VAChT) revealed that PACAP is found in nerve terminals at all mouse adrenomedullary cholinergic synapses. Mice with a targeted deletion of the PACAP gene had otherwise normal cholinergic innervation and morphology of the adrenal medulla, normal adrenal catecholamine and blood glucose levels, and an intact initial catecholamine secretory response to insulin-induced hypoglycemia. However, insulin-induced hypoglycemia was more profound and longer-lasting in PACAP knock-outs, and was associated with a dose-related lethality absent in wild-type mice. Failure of PACAP-deficient mice to adequately counterregulate plasma glucose levels could be accounted for by impaired long-term secretion of epinephrine, secondary to a lack of induction of tyrosine hydroxylase, normally occurring after insulin hypoglycemia in wild-type mice, and a consequent depletion of adrenomedullary epinephrine stores. Thus, PACAP is needed to couple epinephrine biosynthesis to secretion during metabolic stress. PACAP appears to function as an "emergency response" cotransmitter in the sympathoadrenal axis, where the primary secretory response is controlled by a classical neurotransmitter but sustained under paraphysiological conditions by a neuropeptide.

  16. The invasive adenylate cyclase of Bordetella pertussis. Intracellular localization and kinetics of penetration into various cells.

    PubMed Central

    Farfel, Z; Friedman, E; Hanski, E

    1987-01-01

    The penetration of Bordetella pertussis adenylate cyclase into various mammalian cells exhibits similar kinetics; the accumulation of both intracellular cyclase activity and cyclic AMP is rapid, reaching constant levels after 15-60 min of incubation. The kinetics of enzyme penetration into turkey erythrocytes is different; cyclase activity and cyclic AMP accumulate linearly and do not reach constant levels even after 6 h of incubation. In the preceding paper [Friedman, Farfel & Hanski (1987) Biochem. J. 243, 145-151] we have suggested that the constant level of intracellular cyclase activity reflects a steady state formed by continuous penetration and intracellular inactivation of the enzyme. In contrast with other mammalian cells, no inactivation of cyclase is observed in turkey erythrocytes. These results further support the notion that there is continuous penetration and deactivation of the invasive enzyme in mammalian cells. A 5-6-fold increase in specific activity of the invasive cyclase is detected in a pellet fraction of human lymphocytes in which a similar increase in specific activity of the plasma-membrane marker 5'-nucleotidase is observed. A similar increase in the invasive-cyclase specific activity is detected in a membrane fraction of human erythrocytes. Cyclase activity in a membrane-enriched fraction of human lymphocytes reached a constant level after 20 min of cell exposure to the enzyme. Similar time courses were observed for accumulation of cyclase activity and cyclic AMP in whole lymphocytes [Friedman, Farfel & Hanski (1987) Biochem, J. 243, 145-151]. We suggest therefore that cyclic AMP generation by the invasive enzyme as well as the intracellular inactivation process occur while it is associated with a membrane fraction identical, or closely associated, with the plasma membrane. PMID:2886120

  17. Metabolic compensation for profound erythrocyte adenylate kinase deficiency. A hereditary enzyme defect without hemolytic anemia.

    PubMed Central

    Beutler, E; Carson, D; Dannawi, H; Forman, L; Kuhl, W; West, C; Westwood, B

    1983-01-01

    A child with hemolytic anemia was found to have severe erythrocyte adenylate kinase (AK) deficiency, but an equally enzyme-deficient sibling had no evidence of hemolysis. No residual enzyme activity was found in erythrocytes by spectrophotometric methods that could easily have detected 0.1% of normal activity. However, concentrated hemolysates were shown to have the capacity to generate small amounts of ATP and AMP from ADP after prolonged incubation. Hemolysates could also catalyze the transfer of labeled gamma-phosphate from ATP to ADP. Intact erythrocytes were able to transfer phosphate from the gamma-position of ATP to the beta-position, albeit at a rate substantially slower than normal. They could also incorporate 14C-labeled adenine into ADP and ATP. Thus, a small amount of residual AK-like activity representing about 1/2,000 of the activity normally present could be documented in the deficient erythrocytes. The residual activity was not inhibited by N-ethylmaleimide, which completely abolishes the activity of the normal AK1 isozyme of erythrocytes. The minute amount of residual activity in erythrocytes could represent a small amount of the AK2 isozyme, which has not been thought to be present in erythrocytes, or the activity of erythrocyte guanylate kinase with AMP substituting as substrate for GMP. Peripheral blood leukocytes, cultured skin fibroblasts, and transformed lymphoblasts from the deficient subject manifested about 17, 24, and 74%, respectively, of the activity of the concurrent controls. This residual activity is consistent with the existence of genetically independent AK isozyme, AK2, which is known to exist in these tissues. The cause of hemolysis in the proband was not identified. Possibilities include an unrelated enzyme deficiency or other erythrocyte enzyme defect and intraction of another unidentified defect with AK deficiency. PMID:6308059

  18. Biochemical mechanisms of myocardial adenylate cyclase subsensitivity to isoproterenol in cardiac hypertrophy of spontaneously hypertensive rats

    SciTech Connect

    Cheon, J.W.

    1986-01-01

    The responsiveness of the myocardial adenylate cyclase (AC) system in generating cAMP was studied using isoproterenol (a beta-adrenergic receptor agonist), cholera toxin (a guanosinetriphosphatase inhibitor) and forskolin (a catalytic unit activator) in isolated myocytes of age-matched, 14-17 weeks old Wistar Kyoto normotensive rates (WKYs) and spontaneously hypertensive rats (SHRs). We found a reduction in isoproterenol-stimulated cAMP formation in myocytes of SHRs compared with WKYs. This reduction was not due to changes in isoproterenol-receptor interactions. Scatchard plot analysis of (/sup 3/H)CGP 12177 binding to beta-adrenergic receptors in isolated myocytes of WKYs and SHRs revealed to significant differences in the maximum number of binding sites or dissociation constant. There were no significant differences in Ki and IC/sub 50/ calculated from the competitive displacement of (/sup 3/H)CGP 12177 binding by (-) isoproterenol, suggesting no change in the affinity of the beta-adrenergic receptors for isoproterenol. We found no significant differences in forskolin-stimulated cAMP formation between the two groups. This suggest that the reduction in isoproterenol-stimulated cAMP formation observed in myocytes of SHRs is not due to changes in the ability of catalytic unit to convert ATP to cAMP. Interestingly, cholera toxin-stimulated cAMP formation was increased in myocytes of SHRs. One possible explanation for these observations may be increased guanosinetriphosphatase (GTPase) activation by isoproterenol in myocytes of SHRs. The activation of GTPase by isoproterenol in myocytes of SHRs. The activation of GTPase by isoproterenol was measured as the release of Pi from (..gamma..-/sup 32/P)GTP. There was an increase in isoproterenol-stimulated GTPase activity in myocytes of SHRs compared with WKYs.

  19. Rapid kinetics of 2-adrenergic agonist binding and inhibition of adenylate cyclase

    SciTech Connect

    Thomsen, W.; Neubig, R.R.

    1987-05-01

    Activation of 2-adrenergic receptors in human platelets results in inhibition of adenylate cyclase (AC). To elucidate the relation between agonist binding and response, the authors have used a novel rapid-mix quench method to compare the kinetics of binding and response. At functionally effective concentrations, the time course of binding of the full 2-agonist, (TH)UK14,304 (UK), to purified platelet membranes was faster than could be measured manually. Using the rapid-mix quench method, agonist binding was quantitated for times for 0.3 to 60 seconds. UK binding exhibited biexponential kinetics. The rate constant of the fast binding component increases linearly with agonist concentration from 1 to 100 nM with a second order rate constant and 7 x 10WM s (at 25C). The slow rate constant was nearly independent of agonist concentration. The half times of the fast and slow components of binding for 100 nM UK are 1.5 seconds and approximately 2 minutes respectively. The rate and magnitude of the fast binding was unaffected by 10 M GTP whereas the magnitude of the slow phase was markedly reduced. Inhibition of forskolin stimulated AC by 100 M epinephrine occurs with a lag of 5-10 seconds in the presence of 10 M GTP. At lower GTP concentrations, this lag is prolonged. The observation that the fast component of agonist binding precedes inhibition even at agonist concentrations 20-fold lower than the EC40 for responses indicates that the rate limiting step in inhibition of AC is distal to the binding of agonist.

  20. Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo.

    PubMed

    Seeliger, Stephan; Buddenkotte, Jörg; Schmidt-Choudhury, Anjona; Rosignoli, Carine; Shpacovitch, Victoria; von Arnim, Ulrike; Metze, Dieter; Rukwied, Roman; Schmelz, Martin; Paus, Ralf; Voegel, Johannes J; Schmidt, Wolfgang E; Steinhoff, Martin

    2010-11-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is an important neuropeptide and immunomodulator in various tissues. Although this peptide and its receptors (ie, VPAC1R, VPAC2R, and PAC1R) are expressed in human skin, their biological roles are unknown. Therefore, we tested whether PACAP regulates vascular responses in human skin in vivo. When injected intravenously, PACAP induced a significant, concentration-dependent vascular response (ie, flush, erythema, edema) and mediated a significant and concentration-dependent increase in intrarectal body temperature that peaked at 2.7°C. Topical application of PACAP induced marked concentration-dependent edema. Immunohistochemistry revealed a close association of PACAP-immunoreactive nerve fibers with mast cells and dermal blood vessels. VPAC1R was expressed by dermal endothelial cells, CD4+ and CD8+ T cells, mast cells, and keratinocytes, whereas VPAC2R was expressed only in keratinocytes. VPAC1R protein and mRNA were also detected in human dermal microvascular endothelial cells. The PACAP-induced change in cAMP production in these cells demonstrated VPAC1R to be functional. PACAP treatment of organ-cultured human skin strongly increased the number of CD31+ vessel cross-sections. Taken together, these results suggest that PACAP directly induces vascular responses that may be associated with neurogenic inflammation, indicating for the first time that PACAP may be a crucial vascular regulator in human skin in vivo. Antagonists to PACAP function may be beneficial for the treatment of inflammatory skin diseases with a neurogenic component.

  1. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    PubMed Central

    Hurley, Matthew M.; Maunze, Brian; Block, Megan E.; Frenkel, Mogen M.; Reilly, Michael J.; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A.; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  2. Neurally released pituitary adenylate cyclase-activating polypeptide enhances guinea pig intrinsic cardiac neurone excitability.

    PubMed

    Tompkins, John D; Ardell, Jeffrey L; Hoover, Donald B; Parsons, Rodney L

    2007-07-01

    Intracellular recordings were made in vitro from guinea-pig cardiac ganglia to determine whether endogenous neuropeptides such as pituitary adenylate cyclase-activating polypeptide (PACAP) or substance P released during tetanic neural stimulation modulate cardiac neurone excitability and/or contribute to slow excitatory postsynaptic potentials (sEPSPs). When nicotinic and muscarinic receptors were blocked by hexamethonium and atropine, 20 Hz stimulation for 10 s initiated a sEPSP in all innervated neurones. In 40% of the cells, excitability was enhanced after termination of the sEPSP. This suggested that non-cholinergic receptor-mediated mechanisms contributed to the sEPSP and modulated neuronal excitability. Exogenous PACAP and substance P initiated a slow depolarization in the neurones whereas neuronal excitability was only increased by PACAP. When ganglia were treated with the PAC1 antagonist PACAP6-38 (500 nM), the sEPSP evoked by 20 Hz stimulation was reduced by approximately 50% and an enhanced excitability occurred in only 10% of the cells. These observations suggested that PACAP released from preganglionic nerve terminals during tetanic stimulation enhanced neuronal excitability and evoked sEPSPs. After addition of 1 nM PACAP to the bath, 7 of 9 neurones exhibited a tonic firing pattern whereas in untreated preparations, the neurons had a phasic firing pattern. PACAP6-38 (500 nM) diminished the increase in excitability caused by 1 nM PACAP so that only 4 of 13 neurones exhibited a tonic firing pattern and the other 9 cells retained a phasic firing pattern. These findings indicate that PACAP can be released by tetanic neural stimulation in vitro and increase the excitability of intrinsic cardiac neurones. We hypothesize that in vivo PACAP released during preganglionic firing may modulate neurotransmission within the intrinsic cardiac ganglia.

  3. Pituitary Adenylate Cyclase-Activating Polypeptide induces a depressive-like phenotype in rats

    PubMed Central

    Seiglie, Mariel P.; Smith, Karen L.; Blasio, Angelo; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Major Depressive Disorder (MDD) is a chronic, life-threatening psychiatric condition characterized by depressed mood, psychomotor alterations, and a markedly diminished interest or pleasure in most activities, known as anhedonia. Available pharmacotherapies have limited success and the need for new strategies is clear. Recent studies attribute a major role to the pituitary adenylate cyclase-activating polypeptide (PACAP) system in mediating the response to stress. PACAP knockout mice display profound alterations in depressive-like behaviors and genetic association studies have demonstrated that genetic variants of the PACAP gene are associated with MDD. However, the effects of PACAP on depressive-like behaviors in rodents have not yet been systematically examined. The present study investigated the effects of central administration of PACAP in rats on depressive-like behaviors, using well-established animal models that represent some of the endophenotypes of depression. We used intracranial self-stimulation (ICSS) to assess the brain reward function, saccharin preference test to assess anhedonia, social interaction to assess social withdrawal, and forced swim test (FST) to assess behavioral despair. PACAP raised the current threshold for ICSS, elevation blocked by the PACAP antagonist PACAP(6-38). PACAP reduced the preference for a sweet saccharin solution, and reduced the time the rats spent interacting with a novel animal. Interestingly, PACAP administration did not affect immobility in the FST. Our results demonstrate a role for the central PACAP/PAC1R system in the regulation of depressive-like behaviors, and suggest that hyperactivity of the PACAP/PAC1R system may contribute to the pathophysiology of depression, particularly the associated anhedonic symptomatology and social dysfunction. PMID:26264905

  4. Hemodynamic actions of systemically injected pituitary adenylate cyclase activating polypeptide-27 in the rat

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aims of this study were (1) to characterize the hemodynamic mechanisms underlying the hypotensive effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP-27 0.1-2.0 nmol/kg, i.v.) in pentobarbital-anesthetized rats, and (2) to determine the roles of the autonomic nervous system, adrenal catecholamines and endothelium-derived nitric oxide (NO) in the expression of PACAP-27-mediated effects on hemodynamic function. PACAP-27 produced dose-dependent decreases in mean arterial blood pressure and hindquarter and mesenteric vascular resistances in saline-treated rats. PACAP-27 also produced pronounced falls in mean arterial blood pressure in rats treated with the ganglion blocker, chlorisondamine (5 mg/kg, i.v.). The hypotensive and vasodilator actions of PACAP-27 were not attenuated by the beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.), or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME 50 micromol/kg, i.v.). PACAP-27 produced dose-dependent increases in heart rate whereas the hypotensive response produced by the nitrovasodilator, sodium nitroprusside (10 microg/kg, i.v.), was associated with a minimal tachycardia. The PACAP-27-induced tachycardia was unaffected by chlorisondamine, but was virtually abolished by propranolol. These results suggest that the vasodilator effects of PACAP-27 are due to actions in the microcirculation rather than to the release of adrenal catecholamines and that this vasodilation may not involve the release of endothelium-derived NO. These results also suggest that PACAP-27 produces tachycardia by directly releasing norepinephrine from cardiac sympathetic nerve terminals rather than by direct or baroreceptor reflex-mediated increases in sympathetic nerve activity.

  5. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  6. Adenylate cyclase A acting on PKA mediates induction of stalk formation by cyclic diguanylate at the Dictyostelium organizer

    PubMed Central

    Chen, Zhi-Hui; Singh, Reema; Cole, Christian; Lawal, Hajara Mohammed; Schilde, Christina; Febrer, Melanie; Barton, Geoffrey J.; Schaap, Pauline

    2017-01-01

    Coordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation. Here we used transcriptional profiling of dgca− structures to identify target genes for c-di-GMP, and used these genes to investigate the c-di-GMP signal transduction pathway. We found that knockdown of cAMP-dependent protein kinase (PKA) activity in prestalk cells reduced stalk gene induction by c-di-GMP, whereas PKA activation bypassed the c-di-GMP requirement for stalk gene expression. c-di-GMP caused a persistent increase in cAMP, which still occurred in mutants lacking the adenylate cyclases ACG or ACR, or the cAMP phosphodiesterase RegA. However, both inhibition of adenylate cyclase A (ACA) with SQ22536 and incubation of a temperature-sensitive ACA mutant at the restrictive temperature prevented c-di-GMP–induced cAMP synthesis as well as c-di-GMP–induced stalk gene transcription. ACA produces the cAMP pulses that coordinate Dictyostelium morphogenetic cell movement and is highly expressed at the organizing tip. The stalk-less dgca− mutant regained its stalk by expression of a light-activated adenylate cyclase from the ACA promoter and exposure to light, indicating that cAMP is also the intermediate for c-di-GMP in vivo. Our data show that the more widely expressed DgcA activates tip-expressed ACA, which then acts on PKA to induce stalk genes. These results explain why stalk formation in Dictyostelia always initiates at the site of the morphogenetic organizer. PMID:28057864

  7. Effects of UVB irradiation on epidermal adenylate cyclase responses in vitro: its relation to sunburn cell formation.

    PubMed

    Iizuka, H; Ishida-Yamamoto, A; Kajita, S; Tsutsui, M; Ohkuma, N

    1988-01-01

    UVB irradiation augmented the beta-adrenergic adenylate cyclase response of pig skin epidermis in vitro. The effect was observed 2-4 h following the irradiation and lasted at least for 48 h. There was no significant difference in cyclic AMP phosphodiesterase activity between control and UVB-irradiated epidermis at lower irradiation dose (150 mJ/cm2), which is the dose of the most marked beta-adrenergic augmentation effect. The augmentation effect was specific to the beta-adrenergic system; adenosine and histamine adenylate cyclase responses were unchanged or decreased depending on the irradiation dose. Histologically, marked sunburn-cell formation was observed following the UVB irradiation. It has been suggested that oxygen intermediates generated by ultraviolet radiation participate in sunburn-cell formation. The addition of superoxide dismutase (SOD) in the incubation medium significantly inhibited sunburn-cell formation. On the other hand, the beta-adrenergic augmentation effect was not affected by the addition of SOD. Other scavengers of oxygen intermediates (catalase, catalase + SOD, xanthine, or mannitol) did not inhibit the UVB-induced beta-adrenergic augmentation effect. Further, superoxide-anion generating systems (hypoxanthine-xanthine oxidase system and acetaldehyde-xanthine oxidase system) revealed no stimulatory effect on the beta-adrenergic response of epidermis. These results indicate that (a) the UVB-induced beta-adrenergic augmentation effect is inherent to skin and does not depend on systemic factors such as inflammatory infiltrates following UVB irradiation; (b) in contrast to sunburn-cell formation, induction of the beta-adrenergic adenylate cyclase response is not directly associated with oxygen intermediates generated by UVB irradiation.

  8. Acyclic phosphonate nucleotides and human adenylate kinases: impact of a borano group on alpha-P position.

    PubMed

    Topalis, D; Alvarez, K; Barral, K; Munier-Lehmann, H; Schneider, B; Véron, M; Guerreiro, C; Mulard, L; El-Amri, C; Canard, B; Deville-Bonne, D

    2008-04-01

    Adenylate kinases are involved in the activation of antiviral drugs such as the acyclic phosphonates analogs PMEA and (R)PMPA. We examine the in vitro phosphorylation of PMEA and PMPA bearing a borano- or a H- group on the phosphorus atom. The alpha-borano or alpha-H on PMEA and PMPA were detrimental to the activity of recombinant human AMP kinases 1 and 2. Docking PMEA to the active site of AMP kinase 1 indicated that the borano group may prevent two conserved critical Arg interactions with the alpha-phosphate, resulting in substrate bad positioning.

  9. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed

    Ugur, O; Onaran, H O

    1997-05-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  10. Activities of human RRP6 and structure of the human RRP6 catalytic domain

    SciTech Connect

    Januszyk, Kurt; Liu, Quansheng; Lima, Christopher D.

    2011-08-29

    The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.

  11. Photoaffinity labeling of ribulose-1,5-bisphosphate carboxylase/oxygenase activase with ATP gamma-benzophenone. Identification of the ATP gamma-phosphate binding domain.

    PubMed

    Salvucci, M E; Rajagopalan, K; Sievert, G; Haley, B E; Watt, D S

    1993-07-05

    The phosphate-binding domain of the ATP-binding site of tobacco Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) activase was elucidated by photo-affinity labeling with a monoanhydride of ADP with N-(4-(benzoyl)phenylmethyl)phosphoramide ([gamma-32P]ATP gamma BP). Covalent incorporation of [gamma-32P]ATP gamma BP into the 42-kDa Rubisco activase subunit was dependent upon irradiation with ultraviolet light. Photolabelling of Rubisco activase with ATP gamma BP exhibited saturation kinetics; the apparent Kd for photolabeling was 5 microM. Two lines of evidence showed that ATP gamma BP modified Rubisco activase at the ATP-binding domain. First, physiological concentrations of ATP and ADP afforded complete protection against photolabeling of Rubisco activase by ATP gamma BP. Second, photolysis of Rubisco activase in the presence of ATP gamma BP decreased both the ATPase and the Rubisco activating activities. Inactivation of enzyme activity was dependent on ATP gamma BP concentration and could be prevented by including ADP during photolabeling. The region of Rubisco activase that was modified by ATP gamma BP was identified by isolating photolabeled peptides. Sequence analysis showed that ATP gamma BP modified Rubisco activase in two distinct regions; one region, S117-A136, is adjacent to the P-loop and the other region, V223-T234, exhibits homology to a region of adenylate kinase that ligates the essential metal ion. Photolabeling of these two regions of Rubisco activase was consistent with modification of the ATP gamma-phosphate-binding domain of Rubisco activase with ATP gamma BP.

  12. A 17-residue Sequence from the Matrix Metalloproteinase-9 (MMP-9) Hemopexin Domain Binds α4β1 Integrin and Inhibits MMP-9-induced Functions in Chronic Lymphocytic Leukemia B Cells*

    PubMed Central

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L.; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P.; Rivas, Germán; García-Marco, José A.; García-Pardo, Angeles

    2012-01-01

    We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis. PMID:22730324

  13. A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds α4β1 integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells.

    PubMed

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P; Rivas, Germán; García-Marco, José A; García-Pardo, Angeles

    2012-08-10

    We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC(50) values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis.

  14. Identification of valine/leucine/isoleucine and threonine/alanine/glycine proton-spin systems of Escherichia coli adenylate kinase by selective deuteration and selective protonation.

    PubMed Central

    Bock-Möbius, I; Brune, M; Wittinghofer, A; Zimmermann, H; Leberman, R; Dauvergne, M T; Zimmermann, S; Brandmeier, B; Rösch, P

    1991-01-01

    Adenylate kinase from two types of Escherichia coli strains, a wild-type and a leucine-auxotrophic strain, was purified. On the one hand, growing the leucine-auxotrophic bacteria on a medium containing deuterated leucine yielded E. coli adenylate kinase with all leucine residues deuterated. On the other hand, by growing the wild-type bacteria on deuterated medium with phenylalanine, threonine and isoleucine present as protonated specimens, 80% randomly deuterated enzyme with protonated phenylalanine, threonine and isoleucine residues could be prepared. Use of these proteins enabled identification of the spin systems of these amino acid residues in the n.m.r. spectra of the protein. PMID:1991031

  15. Part II: Biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients.

    PubMed

    Guo, Song; Vollesen, Anne Luise Haulund; Hansen, Young Bae Lee; Frandsen, Erik; Andersen, Malene Rohr; Amin, Faisal Mohammad; Fahrenkrug, Jan; Olesen, Jes; Ashina, Messoud

    2017-02-01

    Background Intravenous infusion of pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine attacks in 65-70% of migraine without aura (MO) patients. We investigated whether PACAP38 infusion causes changes in the endogenous production of PACAP38, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), tumour necrosis factor alpha (TNFα), S100 calcium binding protein B (S100B), neuron-specific enolase and pituitary hormones in migraine patients. Methods We allocated 32 previously genotyped MO patients to receive intravenous infusion PACAP38 (10 pmol/kg/minute) for 20 minutes and recorded migraine-like attacks. Sixteen of the patients were carriers of the risk allele rs2274316 ( MEF2D), which confers increased risk of MO and may regulate PACAP38 expression, and 16 were non-carriers. We collected blood samples at baseline and 20, 30, 40, 60 and 90 minutes after the start of the infusion. A control group of six healthy volunteers received intravenous saline. Results PACAP38 infusion caused significant changes in plasma concentrations of VIP ( p = 0.026), prolactin ( p = 0.011), S100B ( p < 0.001) and thyroid-stimulating hormone (TSH; p = 0.015), but not CGRP ( p = 0.642) and TNFα ( p = 0.535). We found no difference in measured biochemical variables after PACAP38 infusion in patients who later developed migraine-like attacks compared to those who did not ( p > 0.05). There was no difference in the changes of biochemical variables between patients with and without the MEF2D-associated gene variant ( p > 0.05). Conclusion PACAP38 infusion elevated the plasma levels of VIP, prolactin, S100B and TSH, but not CGRP and TNFα. Development of delayed migraine-like attacks or the presence of the MEF2D gene variant was not associated with pre-ictal changes in plasma levels of neuropeptides, TNFα and pituitary hormones.

  16. Comparative effect of methioninyl adenylate on the growth of Salmonella typhimurium and Pseudomonas aeruginosa.

    PubMed

    Enouf, J; Laurence, F; Farrugia, G; Blanchard, P; Robert-Gero, M

    1976-10-11

    The bacteriostatic effect of methioninyl adenylate(MAMP)--a specific inhibitor of the enzyme methionyl-tRNA synthetase--was investigated on Salmonella typhimurium and Pseudomonas aeruginosa. 0.1 mM of this molecule added to the culture, inhibits the growth of S. typhimurium. The inhibition is specifically reversible by 0.1 mM L-methionine. In the same conditions even 1-2 mM MAMP has a very slight effect on the growth rate of P. aeruginosa and only during the first two generations. The same observation was made with the two other members of the fluorescens group P.fluorescens and P.putida. The growth rate of P. testosteroni with 1 mM MAMP in the medium is similar to the growth rate of P. aeruginosa but the other member of the acidovorans group P. acidovorans is much more affected by the smae concentration of the inhibitor. --P. multivorans is inhibited by MAMP like P. acidovorans but with a somewhat higher yield at the end of the culture. --MAMP has no effect on P. alcaligenes. The possible reasons for the weak bacteriostatic effect of MAMP on P. aeruginosa were investigated. It was established that the inhibitor enters the cells and is not used as a carbon and energy source. The intracellular methionine concentration in S. typhimurium and in P. aeruginosa is about the same and does not increase when bacteria are cultivated with MAMP. The MTS of the two microorganisms is inhibited by MAMP in vitro to about the same extent. Furthermore the tRNAmet from P. aeruginosa are fully acylated after 3 to 4 generations with this compound. Nevertheless MAMP elicits higher MTS activity in P. aeruginosa and in P. acidovorans after 1 h of incubation. The most striking difference between S. typhimurium and P. aeruginosa is that the intra and extracellular level of 5'phosphodiesterase which degrades MAMP is 10-20 fold higher in the second than in the first species.

  17. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    SciTech Connect

    El-Refai, M.; Chan, T.

    1986-05-01

    Adrenalectomy caused a large increase in the number of ..beta..-adrenergic binding sites on liver plasma membranes as measured by /sup 125/I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for /sup 3/H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in ..beta..-adrenergic mediated action was much less than what may be expected as a result of the increase in the ..beta..-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 ..mu..M) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory ..cap alpha../sub 2/-adrenergic receptors in adrenalectomy is responsible for the muted ..beta..-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 ..mu..M), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The ..cap alpha..-adrenergic antagonists had no significant effect on the ..beta..-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the ..beta..-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of ..cap alpha..-adrenergic receptors.

  18. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  19. Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

    PubMed

    Schatz, A R; Kessler, F K; Kaminski, N E

    1992-01-01

    The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated. These studies were prompted by the recent identification and cloning of a G-protein coupled cannabinoid receptor localized in certain regions of the brain and the potential for a common mechanism between cannabinoid-mediated CNS effects and immunosuppression. Temporal addition studies were initially performed to identify the period of time when spleen cells in culture were most susceptible to the inhibitory effects of delta 9-THC, as measured by the day 5 IgM antibody forming cell response. delta 9-THC was only inhibitory when added to spleen cell cultures during the first 2 hr following antigen sensitization. In light of this time course, adenylate cyclase activity was measured in spleen cells incubated in the presence of 22 microM delta 9-THC for 5 min and subsequently stimulated with forskolin. delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP after a 5 or 15 min stimulation with forskolin, respectively. These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.

  20. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase

    PubMed Central

    An, Sungwon; Irwin, Robert P.; Allen, Charles N.; Tsai, Connie

    2011-01-01

    Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in the synchronization to environmental light cycles. It is not known, however, if or how VIP entrains circadian gene expression or behavior. Here, we tested candidate signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous antagonism of adenylate cyclase and phospholipase C activities was required to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment entrained PER2 rhythms to a predicted phase angle within several days, depending on the concentration of VIP and the interval between VIP applications. We conclude that VIP entrains circadian timing among SCN neurons through rapid and parallel changes in adenylate cyclase and phospholipase C activities. PMID:21389307

  1. Evidence for a presynaptic adenylate cyclase system facilitating (TH)norepinephrine release from rat brain neocortex slices and synaptosomes

    SciTech Connect

    Schoffelmeer, A.N.; Hogenboom, F.; Mulder, A.H.

    1985-10-01

    The effects of drugs known to enhance intracellular cyclic AMP levels on depolarization-induced (TH)norepinephrine release from superfused rat neocortical slices and synaptosomes were investigated. The adenylate cyclase activator forskolin, the membrane-permeating cyclic AMP analogues 8-bromo-cyclic AMP and dibutyryl cyclic AMP, as well as the phosphodiesterase inhibitors isobutylmethylxanthine and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone (ZK 62771) enhanced the electrically evoked release of (TH)norepinephrine from superfused rat brain neocortex slices. 8-Bromo-cyclic GMP was without effect on the electrically evoked release. When (TH)norepinephrine release was enhanced by prolonging the electrical pulse duration from 2 msec to 10 msec, the relative inhibitory effect of the CaS channel blocker CdS and the relative facilitatory effect of the K+ channel blocker 4-aminopyridine remained unaffected. In striking contrast, the relative facilitatory effects of forskolin and 8-bromo-cyclic AMP were strongly reduced, whereas the effect of ZK 62771 was almost doubled. When veratrine-induced release of (TH)norepinephrine from cortex synaptosomes was examined, the facilitatory effects of forskolin, 8-bromo-cyclic AMP, and ZK 62771 were even more pronounced than in brain slices. The data strongly support the hypothesis that a presynaptic adenylate cyclase system plays a facilitatory role in the stimulus-secretion coupling process in central noradrenergic nerve terminals.

  2. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides.

    PubMed

    Chu, Hsing-Mao; Ko, Tzu-Ping; Wang, Andrew H-J

    2010-03-01

    Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA-IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA-IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT-ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA-IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP approximately ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the beta and gamma-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA-IPT, HlAIPT has evolved with a different binding strategy for adenylate.

  3. Effects of Acetazolamide on the Unrinary Excretion of Cyclic AMP and on the Activity of Renal Adenyl Cyclase

    PubMed Central

    Rodriguez, Hector J.; Walls, John; Yates, Jesse; Klahr, Saulo

    1974-01-01

    Acetazolamide, an inhibitor of the enzyme carbonic anhydrase, increased the urinary excretion of cyclic AMP in normal and parathyroidectomized rats. The increase was greater in rats with intact parathyroid glands than in parathyroidectomized rats. This rise in the urinary excretion of cyclic AMP was not due to an increase in urine flow or a change in urine pH. Furosemide caused an increase in urine flow, but did not affect the excretion of cyclic AMP or phosphate. Alkalinization of the urine with bicarbonate did not increase the urinary excretion of phosphate or cyclic AMP. Acetazolamide increased the productionof cyclic AMP by rat renal cortical slices in vitro. This effect was dose-dependent. Acetazolamide also stimulated the activity of renal cortical adenyl cyclase in a dose-dependent manner but had no effect on the activity of cyclic nucleotide phosphodiesterase. The pattern of urinary excretion of cyclic AMP and phosphate after administration of acetazolamide was similar to that observed in rats given parathyroid hormone. It is suggested that acetazolamide stimulates the renal production of cyclic AMP by activating adenyl cyclase and that this may be the mechanism by which this inhibitor of carbonic anhydrase produces phosphaturia. PMID:4357608

  4. Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    PubMed

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-11-15

    P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties.

  5. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum.

    PubMed

    Dong, Z J; Guo, X; Chen, L J; Han, Y F; Jin, G Z

    1997-01-01

    (-)-Stepholidine (SPD) is an antagonist of normosensitive dopamine (DA) receptors, but it exhibits D1 agonistic action on rotational behaviour in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNC). In the present study, agonistic and antagonistic effects of SPD on the DA receptor-mediated synaptosomal adenylate cyclase (AC) activity in rat striatum were investigated. After blockade of D2 receptors, SPD augmented AC activity dose-dependently. The EC50 value was 41.1 +/- 8.6 micromol/L. At the concentration of 10 micromol/L, SPD increased cAMP formation from a basal level (50.8 +/- 10.3 pmol/mg protein/min) to 133.7 +/- 31.8 pmol/mg protein/min. The SPD-induced stimulation of AC activity was almost completely reversed by 10 micromol/L Sch23390. These results indicate that SPD possesses an agonistic action on the D1 receptor. Forskolin-stimulated adenylate cyclase (FSAC) activity was used as a model to elucidate the effect of SPD on D2 receptors. The results indicate that DA inhibited FSAC activity dose-dependently, while SPD partially restored FSAC activity. Taken together, these results support the conclusion that SPD has dual actions on DA receptors that mediate AC activity, i.e., an agonistic action on D1 receptors and an antagonistic action on D2 receptors.

  6. Laboratory Evaluation of Adenylate Energy Charge as a Test for Stress in Mytilus edulis and Nephtys incisa Treated with Dredged Material.

    DTIC Science & Technology

    1985-02-01

    concentrations of three adenine nucleotides, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP), which are...that all trace metals but iron were eliminated and the concentration of the vitamins thiamin and B12 were doubled. Adenylate Extraction 13. The adductor

  7. Recognizing Sequences of Sequences

    PubMed Central

    Kiebel, Stefan J.; von Kriegstein, Katharina; Daunizeau, Jean; Friston, Karl J.

    2009-01-01

    The brain's decoding of fast sensory streams is currently impossible to emulate, even approximately, with artificial agents. For example, robust speech recognition is relatively easy for humans but exceptionally difficult for artificial speech recognition systems. In this paper, we propose that recognition can be simplified with an internal model of how sensory input is generated, when formulated in a Bayesian framework. We show that a plausible candidate for an internal or generative model is a hierarchy of ‘stable heteroclinic channels’. This model describes continuous dynamics in the environment as a hierarchy of sequences, where slower sequences cause faster sequences. Under this model, online recognition corresponds to the dynamic decoding of causal sequences, giving a representation of the environment with predictive power on several timescales. We illustrate the ensuing decoding or recognition scheme using synthetic sequences of syllables, where syllables are sequences of phonemes and phonemes are sequences of sound-wave modulations. By presenting anomalous stimuli, we find that the resulting recognition dynamics disclose inference at multiple time scales and are reminiscent of neuronal dynamics seen in the real brain. PMID:19680429

  8. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    SciTech Connect

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.

  9. AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study.

    PubMed

    Doliba, Nicolai M; Babsky, Andriy M; Doliba, Nataliya M; Wehrli, Suzanne L; Osbakken, Mary D

    2015-03-01

    Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and

  10. Adenylate cyclase, cyclic AMP and extracellular-signal-regulated kinase-2 in airway smooth muscle: modulation by protein kinase C and growth serum.

    PubMed Central

    Moughal, N; Stevens, P A; Kong, D; Pyne, S; Pyne, N J

    1995-01-01

    Bradykinin and phorbol 12-myristate 13-acetate stimulate adenylate cyclase activity in serum-depleted cultured airway smooth muscle via a protein kinase C (PKC)-dependent pathway. The probable target is the type II adenylate cyclase, which can integrate coincident signals from both PKC and Gs. Therefore, activation of Gs (by cholera-toxin pre-treatment) amplified the bradykinin-stimulated cyclic AMP signal and concurrently attenuated the partial activation of extracellular-signal-regulated kinase-2 (ERK-2) by bradykinin. We have previously demonstrated that, in order to induce full activation of ERK-2 with bradykinin, it is necessary to obliterate PKC-stimulated cyclic AMP formation. We concluded that the cyclic AMP signal limits the magnitude of ERK-2 activation [Pyne, Moughal, Stevens, Tolan and Pyne (1994) Biochem. J. 304, 611-616]. The present study indicates that the bradykinin-stimulated ERK-2 pathway is entirely cyclic AMP-sensitive, and suggests that coincident signal detection by adenylate cyclase may be an important physiological route for the modulation of early mitogenic signalling. Furthermore, the direct inhibition of adenylate cyclase activity enables bradykinin to induce DNA synthesis, indicating that the PKC-dependent activation of adenylate cyclase limits entry of cells into the cell cycle. These studies suggest that the mitogenicity of an agonist may be governed, in part, by its ability to stimulate an inhibitory cyclic AMP signal pathway in the cell. The activation of adenylate cyclase by PKC appears to be downstream of phospholipase D. However, in cells that were maintained in growth serum (i.e. were not growth-arrested), bradykinin was unable to elicit a PKC-stimulated cyclic AMP response. The lesion in the signal-response coupling was not at the level of either the receptor or phospholipase D, which remain functionally operative and suggests modification occurs at either PKC or adenylate cyclase itself. These studies are discussed with

  11. An introduction to recognizing functional domains.

    PubMed

    Stormo, Gary D

    2006-10-01

    This unit provides an overview of issues involved in domain recognition in protein and DNA sequences. It opens with a discussion of the two primary methods of domain representation, namely consensus sequences and alignment matrices (e.g., the log-odds matrix). The unit continues with a brief overview of some of the resources available for identifying functional domains in nucleotide sequences (e.g., TRANSFAC). In addition, it reviews databases such as Pfam, InterPro and Blocks, which are available for protein analysis.

  12. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the ‘open’ state

    PubMed Central

    Buchko, Garry W.; Robinson, Howard; Abendroth, Jan; Staker, Bart L.; Myler, Peter J.

    2010-01-01

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drugs therapies against infectious bacterial agents. Here we report the 2.1 Å resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease meliodosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATPbd) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 Å. These two BpAdk conformations may represent ‘open’ Adk sub-states along the preferential pathway to the ‘closed’ substrate-bound state. PMID:20331978

  13. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    SciTech Connect

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  14. Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells.

    PubMed

    Yu, Xia-Fei; Ni, Qi-Chao; Chen, Jin-Peng; Xu, Jun-Fei; Jiang, Ying; Yang, Shu-Yun; Ma, Jing; Gu, Xiao-Ling; Wang, Hua; Wang, Ying-Ying

    2014-04-01

    Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer. We verified its roles in breast cancer specimens and cell lines. In our results, 71 of 100 specimens of breast cancer showed high levels of CAP1 by immunohistochemistry. Associated with statistical analysis, we saw that CAP1 was related to the grade of breast cancer. In MDA-MB-231, the expression of CAP1 was the highest and by knocking down the expression of CAP1 in MDA-MB-231, its ability for proliferating and migrating apparently decreased and induced changes in morphology, which were related to the arrangement of F-actin. Therefore, CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.

  15. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies

    PubMed Central

    May, Victor

    2014-01-01

    The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress- and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis (BNST) in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala (CeA) may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with post-traumatic stress disorder (PTSD) in humans. PMID:25636177

  16. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    SciTech Connect

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in severa