Science.gov

Sample records for adenylosuccinate lyase adsl

  1. Structural and Biochemical Characterization of Human Adenylosuccinate Lyase (ADSL) and the R303C ADSL Deficiency-Associated Mutation

    SciTech Connect

    Ray, Stephen P.; Deaton, Michelle K.; Capodagli, Glenn C.; Calkins, Lauren A.F.; Sawle, Lucas; Ghosh, Kingshuk; Patterson, David; Pegan, Scott D.

    2014-10-02

    Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.

  2. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    SciTech Connect

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A.

    1995-12-18

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119 patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.

  3. Genetics Home Reference: adenylosuccinate lyase deficiency

    MedlinePlus

    ... of five disease-associated human adenylosuccinate lyase mutants. Biochemistry. 2009 Jun 16;48(23):5291-302. doi: ... ADSL) and the R303C ADSL deficiency-associated mutation. Biochemistry. 2012 Aug 21;51(33):6701-13. doi: ...

  4. Novel Proton MR Spectroscopy Findings in Adenylosuccinate Lyase Deficiency

    PubMed Central

    Zulfiqar, Maria; Lin, Doris D.M.; Van der Graaf, Marinette; Barker, Peter B.; Fahrner, Jill A.; Marie, Sandrine; Morava, Eva; De Boer, Lonneke; Willemsen, Michel A.A.P; Vining, Eileen; Horská, Alena; Engelke, Udo; Wevers, Ron A.; Maegawa, Gustavo H.B.

    2016-01-01

    Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation. In both patients in vivo proton magnetic resonance spectroscopy (MRS) showed the presence of S-Ado signal at 8.3 ppm, consistent with a prior report. Interestingly, SAICAr signal was also detectable at 7.5 ppm in affected white matter, which has not been reported in vivo before. A novel splice-site mutation, c.IVS12 + 1/G > C, in the ADSL gene was identified in the second patient. Our findings confirm the utility of in vivo proton MRS in suggesting a specific diagnosis of ADSL deficiency, and also demonstrate an additional in vivo resonance (7.5 ppm) of SAICAr in the cases of severe disease. PMID:23055421

  5. Biochemical and Biophysical Analysis of Five Disease-Associated Human Adenylosuccinate Lyase Mutants†

    PubMed Central

    De Zoysa Ariyananda, Lushanti; Lee, Peychii; Antonopoulos, Christina; Colman, Roberta F.

    2009-01-01

    Adenylosuccinate lyase (ASL), a catalyst of key reactions in purine biosynthesis, is normally a homotetramer in which three subunits contribute to each of four active sites. Human ASL deficiency is an inherited metabolic disease associated with autism and mental retardation. We have characterized five disease-associated ASL mutants: R194C and K246E are located at subunit interfaces, L311V is in the central helical region away from the active site, and R396C and R396H are at the entrance to the active site. The Vmax (at 25 °C) for R194C is comparable to that of WT; while those of L311V, R396C, R396H and K246E are considerably reduced and affinity for adenylosuccinate is retained. The mutant enzymes have decreased positive cooperativity as compared to WT. K246E exists mainly as dimer or monomer, accounting for its negligible activity; whereas the other mutant enzymes are similar to WT in the predominance of tetramer. At 37 °C, the specific activity of WT and these mutant enzymes slowly decreases 30-40% with time and reaches a limiting specific activity without changing significantly the amount of tetramer. Mutant R194C is unique in being rapidly inactivated at the harsher temperature of 60°C, indicating that it is the least stable enzyme in vitro. Conformational changes in the mutant enzymes are evident from protein fluorescence intensity at 25 °C and after incubation at 37 °C, which correlates with the loss of enzymatic activity. Thus, these disease-associated single mutations can yield enzyme with reduced activity either by affecting the active site or by perturbing the enzyme’s structure and/or native conformation which are required for catalytic function. PMID:19405474

  6. Attenuated adenylosuccinate lyase deficiency: a report of one case and a review of the literature.

    PubMed

    Jurecka, Agnieszka; Zikanova, Marie; Jurkiewicz, Elżbieta; Tylki-Szymańska, Anna

    2014-02-01

    We present a 9-year follow-up of a patient with an attenuated (type II) adenylosuccinate lyase deficiency with no obvious signs of disease progression and degradation. We also review the literature, focusing on attenuated phenotype, and we report a positive effect of a ketogenic diet on seizure control. The patient presented at the age of 5 months with a history of global developmental delay. Screening of urinary purine metabolites revealed elevation of succinyladenosine and succinylaminoimidazolecarboxamide riboside (a ratio of 2:1). Mutation analysis revealed a compound heterozygosity for missense mutations: p.R426H and p.D268H. She began to walk independently at the age of 3 years. From the age of 4 years, her communication skills improved and she presented fewer autistic features. Due to poor results in seizure control, the ketogenic diet was introduced at the age of 7 years, resulting in reduction of seizure frequency. Currently, at the age of 9 years, the girl is attending a special kindergarten and is functioning very well in her preschool group. She began to make statements that form a logical continuity and make progress in simple manual operations. The patient participates in therapies such as pet therapy, hippotherapy, speech therapy, physiotherapy, hydrotherapy, and music therapy. PMID:23504561

  7. Big Bandwidth Battle: Universal ADSL Looks Ahead.

    ERIC Educational Resources Information Center

    Hargadon, Tom

    1998-01-01

    Discusses the new Universal ADSL (Asymmetric Digital Subscriber Line) standard, which promises simple, high-bandwidth access over standard telephone lines. Topics include varieties of DSL; voice and data capacities; adapters and installation for personal computers; Internet backbone capacity; and headend access. (LRW)

  8. ADSL Transceivers Applying DSM and Their Nonstationary Noise Robustness

    NASA Astrophysics Data System (ADS)

    den Bogaert, Etienne Van; Bostoen, Tom; Verlinden, Jan; Cendrillon, Raphael; Moonen, Marc

    2006-12-01

    Dynamic spectrum management (DSM) comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL) networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.

  9. US West Unveils First Mass Market Deployment of ADSL Internet Services.

    ERIC Educational Resources Information Center

    Machovec, George S.

    1998-01-01

    Discusses Asymmetric Digital Subscriber Line (ADSL) that converts existing telephone lines into digital circuits which transmit data at 256Kbps to 7 Mbps. Describes ADSL, unique features of "Megabit Services" and initial deployment, costs, and impact on library services (extra bandwidth for Internet services, multimedia or other higher-bandwidth…

  10. Biochemical analyses of ppGpp effect on adenylosuccinate synthetases, key enzymes in purine biosynthesis in rice.

    PubMed

    Nomura, Yuhta; Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.

  11. Current and future Internet transmission methods: technical challenges and practical solutions for widespread acceptance of ADSL

    NASA Astrophysics Data System (ADS)

    Polley, Michael O.

    1999-11-01

    The high data rates required to properly support emerging multimedia internet applications far exceed the capabilities of voiceband modems. For example, seamless real-time delivery of digital video clips might require connections up to 100 times faster. Asymmetric digital subscriber line (ADSL) modems provide residential internet users with a much-needed solution to this remote access bandwidth shortage. ADSL modems connected directly to the internet are installed in the telephone company central office, allowing remote access over the copper twisted pair telephone line by remote transceivers in the homes of residential customers. Because the internet data does not have to pass through the telephone switching network, the ADSL link can provide data rates in the Mbit/sec range. However, for ADSL modems to gain broad acceptance an displace their low rate voiceband counterparts, low cost, ease of installation, and high quality of service must be achieved.

  12. Adenylosuccinate synthase from Saccharomyces cerevisiae: homologous overexpression, purification and characterization of the recombinant protein.

    PubMed Central

    Lipps, G; Krauss, G

    1999-01-01

    Adenylosuccinate synthase (EC 6.3.4.4) catalyses the first committed step in the synthesis of adenosine. We have overexpressed the cloned gene of Saccharomyces cerevisiae (ADE12) in S. cerevisiae. The recombinant enzyme exhibits similar kinetic behaviour to that of the native enzyme purified from S. cerevisiae. This ter-reactant dimeric enzyme shows Michaelis-Menten kinetics only with IMP. l-Aspartate and GTP display a weak negative co-operativity (Hill coefficient 0. 8-0.9). This negative co-operativity has not yet been reported for adenylosuccinate synthases from other organisms. Another unusual feature of the enzyme from S. cerevisiae is its negligible inhibition by adenine nucleotides and its pronounced inhibition by Cl(-) ions. PMID:10417315

  13. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.

    PubMed

    Wang, Xiaoyue; Wang, Guanglu; Li, Xinli; Fu, Jing; Chen, Tao; Wang, Zhiwen; Zhao, Xueming

    2016-08-10

    Adenylosuccinate synthetase (EC. 6.3.4.4) encoded by purA in Bacillus subtilis, catalyzing the first step of the conversion of IMP to AMP, plays an important role in flux distribution in the purine biosynthetic pathway. In this study, we described the use of site saturation mutagenesis to obtain a desired enzyme activity of adenylosuccinate synthetase and its application in flux regulation. Based on sequence alignment and structural modeling, a library of enzyme variants was created by a semi-rational evolution strategy in position Thr238 and Pro242. Other than purA deletion, the leaky mutation purA(P242N) partially reduced the flux towards AMP derived from IMP and increased the riboflavin synthesis precursor GTP, while also kept the requirement of ATP synthesis for cell growth. PurA(P242N) was introduced into an inosine-producing strain and resulted in an approximately 4.66-fold increase in inosine production, from 0.088±0.009g/L to 0.41±0.051g/L, in minimal medium without hypoxanthine accumulation. These results underline that the directed evolution of adenylosuccinate synthetase could tailor its activities and adjust metabolic flux. This mutation may provide a promising application in purine-based product accumulation, like inosine, guanosine and folate which are directly stemming from purine pathway in B. subtilis. PMID:27234879

  14. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli.

    PubMed

    Jayalakshmi, R; Sumathy, K; Balaram, Hemalatha

    2002-06-01

    Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.

  15. Protein Crystal Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The comparison of protein crystal, Isocitrate Lyase earth-grown (left) and space-grown (right). This is a target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast; it regulates the flow of metabolic intermediates required for cell growth. Principal Investigator is Larry DeLucas.

  16. Association between ADSL, GARS-AIRS-GART, DGAT1, and DECR1 expression levels and pork meat quality traits.

    PubMed

    Zhang, X D; Zhang, S J; Ding, Y Y; Feng, Y F; Zhu, H Y; Huang, L; Wu, T; Zhou, J; Yin, Z J

    2015-01-01

    In this study, meat quality traits were compared between Chinese lard- and European lean-type pigs. The association between expression of four genes (ADSL, GARS-AIRS-GART, DGAT1, and DECR1) and meat quality traits was also investigated. Meat quality traits were found to differ significantly between pig breeds. Meat color parameter values (a* and b*) and intramuscular fat content in Anqingliubai were significantly higher than those in Landrace (P < 0.01). Meat pH at 1 and 24 h following slaughter was significantly higher in Landrace than in Wei pigs, and meat inosine monophosphate (IMP) content was significantly higher in Landrace than in Wei and Anqingliubai pigs (both P < 0.01). Expression levels of ADSL, GARS-AIRS-GART, and DGAT1 were higher in longissimus lumborum muscle than in heart or liver tissues. ADSL and GARS-AIRS-GART expression levels were correlated with meat IMP content and pH levels. The results of this study will contribute to the understanding of meat quality traits in Chinese lard- and European lean-type pigs. PMID:26600543

  17. The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase.

    PubMed Central

    Fonné-Pfister, R; Chemla, P; Ward, E; Girardet, M; Kreuz, K E; Honzatko, R B; Fromm, H J; Schär, H P; Grütter, M G; Cowan-Jacob, S W

    1996-01-01

    (+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzyme-inhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'-monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date. Images Fig. 4 Fig. 5 PMID:8790347

  18. Bacterial pectate lyases, structural and functional diversity.

    PubMed

    Hugouvieux-Cotte-Pattat, Nicole; Condemine, Guy; Shevchik, Vladimir E

    2014-10-01

    Pectate lyases are enzymes involved in plant cell wall degradation. They cleave pectin using a β-elimination mechanism, specific for acidic polysaccharides. They are mainly produced by plant pathogens and plant-associated organisms, and only rarely by animals. Pectate lyases are also commonly produced in the bacterial world, either by bacteria living in close proximity with plants or by gut bacteria that find plant material in the digestive tract of their hosts. The role of pectate lyases is essential for plant pathogens, such as Dickeya dadantii, that use a set of pectate lyases as their main virulence factor. Symbiotic bacteria produce their own pectate lyases, but they also induce plant pectate lyases to initiate the symbiosis. Pectin degradation products may act as signals affecting the plant–bacteria interactions. Bacterial pectate lyases are also essential for using the pectin of dead or living plants as a carbon source for growth. In the animal gut, Bacteroides pectate lyases degrade the pectin of ingested food, and this is particularly important for herbivores that depend on their microflora for the digestion of pectin. Some human pathogens, such as Yersinia enterocolitica, produce a few intracellular pectate lyases that can facilitate their growth in the presence of highly pectinolytic bacteria, at the plant surface, in the soil or in the animal gut. PMID:25646533

  19. [Phenylalanine ammonia-lyase of pigmented yeasts].

    PubMed

    Mushi, N Iu; Kupletskaia, M B; Bab'eva, I P; Egorov, N S

    1980-01-01

    116 pigmented yeast cultures were tested for the presence of L-phenylalanine-ammonia lyase transforming L-phenylalanine into trans-cinnamic acid. The enzyme was found in 54 strains. Most of these strains belonged to the genera Rhodotorula and Sporobolomyces. Toluene, along with acetone, was successfully used to increase cellular permeability of the yeast cultures while determining the activity of phenylalanine-ammonia lyase.

  20. CyanoLyase: a database of phycobilin lyase sequences, motifs and functions.

    PubMed

    Bretaudeau, Anthony; Coste, François; Humily, Florian; Garczarek, Laurence; Le Corguillé, Gildas; Six, Christophe; Ratin, Morgane; Collin, Olivier; Schluchter, Wendy M; Partensky, Frédéric

    2013-01-01

    CyanoLyase (http://cyanolyase.genouest.org/) is a manually curated sequence and motif database of phycobilin lyases and related proteins. These enzymes catalyze the covalent ligation of chromophores (phycobilins) to specific binding sites of phycobiliproteins (PBPs). The latter constitute the building bricks of phycobilisomes, the major light-harvesting systems of cyanobacteria and red algae. Phycobilin lyases sequences are poorly annotated in public databases. Sequences included in CyanoLyase were retrieved from all available genomes of these organisms and a few others by similarity searches using biochemically characterized enzyme sequences and then classified into 3 clans and 32 families. Amino acid motifs were computed for each family using Protomata learner. CyanoLyase also includes BLAST and a novel pattern matching tool (Protomatch) that allow users to rapidly retrieve and annotate lyases from any new genome. In addition, it provides phylogenetic analyses of all phycobilin lyases families, describes their function, their presence/absence in all genomes of the database (phyletic profiles) and predicts the chromophorylation of PBPs in each strain. The site also includes a thorough bibliography about phycobilin lyases and genomes included in the database. This resource should be useful to scientists and companies interested in natural or artificial PBPs, which have a number of biotechnological applications, notably as fluorescent markers.

  1. [Spatial structure and mechanism of tyrosine phenol-lyase and tryptophan indole-lyase].

    PubMed

    Demidkina, T V; Anston, A A; Faleev, N G; Phillips, R S; Zakomyrdina, L N

    2009-01-01

    The bacterial tyrosine phenol-lyase (EC 4.1.99.2) and tryptoptophan indole-lyase (EC 4.1.99.1) belong to pyridoxal-5'-phosphate dependent beta-eliminating lyases, catalysing the reversible decomposition of L-tyrosine and L-tryptophan to pyruvate, ammonia, and phenol or indole correspondingly. Data on the three dimentional structures of the holoenzymes of tyrosine phenol-lyase and tryptophan indole-lyase and several enzyme-inhibitor complexes, modeling distinct reaction stages of the beta-elimination of L-tyrosine are described in the paper and structural bases of monovalent cations influence of activity of the enzymes are discussed. The spectral and catalytic properties of the mutant enzymes were studied. The data thus obtained have allowed us to elucidate the catalytic functions of a number of amino acid residues and conclude that the acid-base properties of the catalytic groups of the enzymes under the optimal for the catalysis conditions in hydrophobic active sites of tyrosine phenol-lyase and tryptoptophan indol-lyase are different from those in water solutions. Study of the mechanisms of labilization of Calpha-proton of the bound amino acids and activation of the leaving groups of the substrates during the catalytic process has demonstrated that in certain cases concerted reaction pathways are realized instead of stepwise ones. PMID:19425498

  2. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  3. (PCG) Protein Crystal Growth Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lyase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator for STS-26 was Charles Bugg.

  4. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-01

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. PMID:25684099

  5. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli

    SciTech Connect

    Roberston, E.F.; Hoyt, J.C.; Reeves, H.C.

    1987-05-01

    Escherichia coli isocitrate lyase can be phosphorylated in vitro in an ATP-dependent reaction. Partially purified extracts were incubated with ..gamma..-/sup 32/P-ATP and analyzed by two-dimensional polyacrylamide gel electrophoresis followed by a Western blot and autoradiography. Radioactivity was associated with the lyase only when blotting was performed under alkaline conditions. This suggests that phosphate groups are attached to the lyase via an acid-labile P-N bond rather than a more stable P-O bond. Treatment of the lyase with diethyl pyrocarbonate, a histidine modifying agent, blocks incorporation of /sup 32/P-phosphate. Treatment with phosphoramidate, a histidine phosphorylating agent, alters the isoelectric point of the lyase suggesting that the enzyme can be phosphorylated at histidine residues. Loss of catalytic activity after treatment with potato acid phosphatase indicates that isocitrate lyase activity may be modulated by phosphorylation.

  6. Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine Shewanella sp. Kz7.

    PubMed

    Li, Shangyong; Wang, Linna; Han, Feng; Gong, Qianhong; Yu, Wengong

    2016-01-01

    Alginate, the most abundant carbohydrate in brown macroalgae, is widely used in the food and pharmaceutical industries. Recently, alginate has attracted increasing attention, as it may serve as an alternative biomass for the production of biofuel. The degradation of alginate into monomeric units is the prerequisite for bioethanol production. All known oligoalginate lyases belong to the polysaccharide lyase (PL) family 7, 14, 15 and 17, and most of them preferred to degrade the polyM blocks to yield 4-deoxy-l-erythro-5-hexoseulose uronic acid as the primary product. In this study, we cloned an oligoalginate lyase gene, oalS6, from Shewanella sp. Kz7 and expressed it in Escherichia coli. The PL family 6 oligoalginate lyase (OalS6) has no significant sequence similarity with other known oligoalginate lyases. OalS6 contains a chondroitinase-like domain and was assigned to the PL family 6. This lyase is an exo-type oligoalginate lyase and prefer to depolymerize polyG block into 2, 4, 5, 6-tetrahydroxytetrahydro-2H-pyran-2-carboxylic acid. All of these results indicate that OalS6 is a novel oligoalginate lyase that is structurally and functionally different from other known oligoalginate lyases. This finding provides new insights into the development of biofuel processing biotechnologies from seaweed.

  7. Cysteine-S-conjugate beta-lyase activity and pyridoxal phosphate binding site of onion alliin lyase.

    PubMed

    Kitamura, N; Shimomura, N; Iseki, J; Honma, M; Chiba, S; Tahara, S; Mizutani, J

    1997-08-01

    Purification of onion alliin lyase gave two fractions by cation exchange chromatography. Both fractions showed the comparable high catalytic activity of cysteine-S-conjugate beta-lyase with that of alliin lyase using S-(2-chloro-6-nitrophenyl)-L-cysteine and alliin, S-allyl-L-cysteine sulfoxide as substrates. All the active substrates tested with onion alliin lyase were also active to the cysteine-S-conjugate beta-lyase of Mucor javanicus, but the catalytic activity of the Mucor enzyme was lower for all the substrates. The pyridoxal phosphate binding site of the onion alliin lyase was identified as Lys 285 in the amino acid sequence deduced from cDNA which has been reported. This lysine was conserved in all the sequences from the alliin lyase cDNAs, while similarity was not found between the sequences around pyridoxal phosphate binding sites of both the onion alliin lyase and the Mucor cysteine-S-conjugate beta-lyase. PMID:9301115

  8. Fungal and Plant Phenylalanine Ammonia-lyase

    PubMed Central

    Hyun, Min Woo; Yun, Yeo Hong; Kim, Jun Young

    2011-01-01

    L-Phenylalanine is one of the essential amino acids that cannot be synthesized in mammals in adequate amounts to meet the requirements for protein synthesis. Fungi and plants are able to synthesize phenylalanine via the shikimic acid pathway. L-Phenylalanine, derived from the shikimic acid pathway, is used directly for protein synthesis in plants or metabolized through the phenylpropanoid pathway. This phenylpropanoid metabolism leads to the biosynthesis of a wide array of phenylpropanoid secondary products. The first step in this metabolic sequence involves the action of phenylalanine ammonia-lyase (PAL). The discovery of PAL enzyme in fungi and the detection of 14CO2 production from 14C-ring-labeled phenylalanine and cinnamic acid demonstrated that certain fungi can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. In this review, we provide background information on PAL and a recent update on the presence of PAL genes in fungi. PMID:22783113

  9. Fatty acid hydroperoxide lyase is a heme protein.

    PubMed

    Shibata, Y; Matsui, K; Kajiwara, T; Hatanaka, A

    1995-02-01

    Fatty acid hydroperoxide lyase (HPO lyase) is an enzyme that cleaves hydroperoxides of polyunsaturated fatty acids to form short chain aldehydes and omega-oxoacids. Spectrophotometric analyses of HPO lyase highly purified from green bell pepper fruits indicate that it is a heme protein. The heme species was revealed to be heme b (protoheme IX) from the absorption spectrum of the pyridine hemochromogen. Although the spectrum highly resembles that of a plant cytochrome P450, allene oxide synthase from flaxseed, CO treatment of the enzyme caused no appearance of a peak at 450 nm, which is an essential diagnostic feature of a cytochrome P450. Internal amino acid sequences determined with peptide fragments obtained from the lyase showed no homology with any reported sequences.

  10. Purification and characterization of Acinetobacter calcoaceticus isocitrate lyase.

    PubMed Central

    Hoyt, J C; Johnson, K E; Reeves, H C

    1991-01-01

    Acinetobacter calcoaceticus is capable of growing on acetate or compounds that are metabolized to acetate. During adaptation to growth on acetate, A. calcoaceticus B4 exhibits an increase in NADP(+)-isocitrate dehydrogenase and isocitrate lyase activities. In contrast, during adaptation to growth on acetate, Escherichia coli exhibits a decrease in NADP(+)-isocitrate dehydrogenase activity that is caused by reversible phosphorylation of specific serine residues on this enzyme. Also, in E. coli, isocitrate lyase is believed to be active only in the phosphorylated form. This phosphorylation of isocitrate lyase may regulate entry of isocitrate into the glyoxylate bypass. To understand the relationships between these two isocitrate-metabolizing enzymes and the metabolism of acetate in A. calcoaceticus B4 better, we have purified isocitrate lyase to homogeneity. Physical and kinetic characterization of the enzyme as well as the inhibitor specificity and divalent cation requirement have been examined. Images FIG. 1 PMID:1938889

  11. Engineering disease resistance with pectate lyase-like genes

    DOEpatents

    Vogel, John; Somerville, Shauna

    2005-03-08

    A mutant gene coding for pectate lyase and homologs thereof is provided, which when incorporated in transgenic plants effect an increased level disease resistance in such plants. Also is provided the polypeptide sequence for the pectate lyase of the present invention. Methods of obtaining the mutant gene, producing transgenic plants which include the nucleotide sequence for the mutant gene and producing improved disease resistance in a crop of such transgenic plants are also provided.

  12. A modern view of phenylalanine ammonia lyase.

    PubMed

    MacDonald, M Jason; D'Cunha, Godwin B

    2007-06-01

    Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed. PMID:17612622

  13. A modern view of phenylalanine ammonia lyase.

    PubMed

    MacDonald, M Jason; D'Cunha, Godwin B

    2007-06-01

    Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed.

  14. Ulvan Lyases Isolated from the Flavobacteria Persicivirga ulvanivorans Are the First Members of a New Polysaccharide Lyase Family*

    PubMed Central

    Nyvall Collén, Pi; Sassi, Jean-François; Rogniaux, Hélène; Marfaing, Hélène; Helbert, William

    2011-01-01

    Ulvans are complex sulfated polysaccharides found in the cell walls of green algae belonging to the genus Ulva. These polysaccharides are composed of disaccharide repetition moieties made up of sulfated rhamnose linked to either glucuronic acid, iduronic acid, or xylose. Two ulvan lyases of 30 and 46 kDa were purified from the culture supernatant of Persicivirga ulvanivorans. Based on peptide sequencing, the gene encoding the 46-kDa ulvan lyase was cloned. Sequence analysis revealed that the protein is modular and possesses a catalytic module similar to that of the 30-kDa ulvan lyase along with a module of unknown function. The ulvan-degrading function of the gene was confirmed by expression of the catalytic module in a heterologous system. The gene encoding the catalytic module has no sequence homolog in sequence databases and is likely to be the first member of a novel polysaccharide lyase family. Analysis of degradation products showed that both the 30- and 46-kDa ulvan lyases are endolytic and cleave the glycosidic bond between the sulfated rhamnose and a glucuronic or iduronic acid. PMID:22009751

  15. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins.

    PubMed

    Zhao, Kai-Hong; Su, Ping; Tu, Jun-Ming; Wang, Xing; Liu, Hui; Plöscher, Matthias; Eichacker, Lutz; Yang, Bei; Zhou, Ming; Scheer, Hugo

    2007-09-01

    Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, contain two to four types of chromophores that are attached covalently to seven or more members of a family of homologous proteins, each carrying one to four binding sites. Chromophore binding to apoproteins is catalyzed by lyases, of which only few have been characterized in detail. The situation is complicated by nonenzymatic background binding to some apoproteins. Using a modular multiplasmidic expression-reconstitution assay in Escherichia coli with low background binding, phycobilin:cystein-84 biliprotein lyase (CpeS1) from Anabaena PCC7120, has been characterized as a nearly universal lyase for the cysteine-84-binding site that is conserved in all biliproteins. It catalyzes covalent attachment of phycocyanobilin to all allophycocyanin subunits and to cysteine-84 in the beta-subunits of C-phycocyanin and phycoerythrocyanin. Together with the known lyases, it can thereby account for chromophore binding to all binding sites of the phycobiliproteins of Anabaena PCC7120. Moreover, it catalyzes the attachment of phycoerythrobilin to cysteine-84 of both subunits of C-phycoerythrin. The only exceptions not served by CpeS1 among the cysteine-84 sites are the alpha-subunits from phycocyanin and phycoerythrocyanin, which, by sequence analyses, have been defined as members of a subclass that is served by the more specialized E/F type lyases.

  16. Gene acquisition, duplication and metabolic specification: the evolution of fungal methylisocitrate lyases.

    PubMed

    Müller, Sebastian; Fleck, Christian B; Wilson, Duncan; Hummert, Christian; Hube, Bernhard; Brock, Matthias

    2011-06-01

    Gene duplication represents an evolutionary mechanism for expanding metabolic potential. Here we analysed the evolutionary relatedness of isocitrate and methylisocitrate lyases, which are key enzymes of the glyoxylate and methylcitrate cycle respectively. Phylogenetic analyses imply that ancient eukaryotes acquired an isocitrate lyase gene from a prokaryotic source, but it was lost in some eukaryotic lineages. However, protists, oomycetes and most fungi maintained this gene and successfully integrated the corresponding enzyme into the glyoxylate cycle. A second gene, encoding a highly related enzyme, is present in fungi, but absent from other eukaryotes. This methylisocitrate lyase is specifically involved in propionyl-CoA degradation via the methylcitrate cycle. Although bacteria possess methylisocitrate lyases with a structural fold similar to that of isocitrate lyases, their sequence identity to fungal methylisocitrate lyases is low. Phylogenetic analyses imply that fungal methylisocitrate lyases arose from gene duplication of an ancient isocitrate lyase gene from the basidiomycete lineage. Mutagenesis of active-site residues of a bacterial and fungal isocitrate lyase, which have been predicted to direct the substrate specificity of iso- and methylisocitrate lyases, experimentally confirmed the possibility of direct evolution of methylisocitrate lyases from isocitrate lyases. Thus, gene duplication has increased the metabolic capacity of fungi.

  17. Occurrence of Isocitrate Lyase in a Thermophilic Bacillus Species

    PubMed Central

    Daron, Harlow H.

    1967-01-01

    A thermophilic, sporeforming bacterium has been isolated from soil on a medium containing acetate as a carbon source. This organism is similar to Bacillus stearothermophilus in most respects but differs in its inability to hydrolyze starch. Isocitrate lyase is present in cell-free extracts of organisms grown in a medium with acetate as a carbon source. The specific activity was 400 times lower in extracts of organisms utilizing glucose as a carbon source. With crude extracts, enzyme activity was strongly stimulated by Mg++, but cysteine and ethylenediaminetetraacetate had little effect. It appeared to be more heat-stable than the pure isocitrate lyase from Pseudomonas indigofera. Images PMID:6020570

  18. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    PubMed

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected.

  19. In Silico Characterization of Pectate Lyase Protein Sequences from Different Source Organisms

    PubMed Central

    Dubey, Amit Kumar; Yadav, Sangeeta; Kumar, Manish; Singh, Vinay Kumar; Sarangi, Bijaya Ketan; Yadav, Dinesh

    2010-01-01

    A total of 121 protein sequences of pectate lyases were subjected to homology search, multiple sequence alignment, phylogenetic tree construction, and motif analysis. The phylogenetic tree constructed revealed different clusters based on different source organisms representing bacterial, fungal, plant, and nematode pectate lyases. The multiple accessions of bacterial, fungal, nematode, and plant pectate lyase protein sequences were placed closely revealing a sequence level similarity. The multiple sequence alignment of these pectate lyase protein sequences from different source organisms showed conserved regions at different stretches with maximum homology from amino acid residues 439–467, 715–816, and 829–910 which could be used for designing degenerate primers or probes specific for pectate lyases. The motif analysis revealed a conserved Pec_Lyase_C domain uniformly observed in all pectate lyases irrespective of variable sources suggesting its possible role in structural and enzymatic functions. PMID:21048874

  20. Lipoxygenase and Hydroperoxide Lyase in Germinating Watermelon Seedlings 1

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1976-01-01

    Lipoxygenase (EC 1.13.1.13) was found in seedlings of Citrullus lanatus (Thunb.) Matsum. and Nakai (watermelon). The enzyme has pH optima of 4.4 and 5.5 and is inhibited by 0.2 mM nordihydroguaiaretic acid. It is present in two functional units with estimated molecular weights of 120,000 and 240,000, respectively. A new enzyme, tentatively termed hydroperoxide lyase, has been partially purified from watermelon seedlings. The enzyme, located principally in the region of the hypocotyl-root junction, catalyzes the conversion of 13-l-hydroperoxy-cis-9-trans-11-octadecadienoic acid to 12-oxo-trans-10-dodecenoic acid and hexanal. The hydroperoxide lyase enzyme from watermelon has a molecular weight in excess of 250,000, a pH optimum in the range of 6 to 6.5, and is inhibited by p-chloromercuribenzoic acid. Its presence has also been demonstrated in other cucurbits. The maximum activity of both enzymes occurs on the 6th day of germination. The identification of the products of the hydroperoxide lyase reaction suggests that lipoxygenase and hydroperoxide lyase may be involved in the conversion of certain polyunsaturated fatty acids to traumatic acid (trans-2-dodecenedioic acid). PMID:16659569

  1. Physiological characterization of ATP-citrate lyase in Aspergillus niger.

    PubMed

    Chen, Hong; He, Xihong; Geng, Hongran; Liu, Hao

    2014-04-01

    Acetyl-CoA, an important molecule in cellular metabolism, is generated in multiple subcellular compartments and mainly used for energy production, biosynthesis of a diverse set of molecules, and protein acetylation. In eukaryotes, cytosolic acetyl-CoA is derived mainly from the conversion of citrate and CoA by ATP-citrate lyase. Here, we describe the targeted deletions of acl1 and acl2, two tandem divergently transcribed genes encoding subunits of ATP-citrate lyase in Aspergillus niger. We show that loss of acl1 or/and acl2 results in a significant decrease of acetyl-CoA and citric acid levels in these mutants, concomitant with diminished vegetative growth, decreased pigmentation, reduced asexual conidiogenesis, and delayed conidial germination. Exogenous addition of acetate repaired the defects of acl-deficient strains in growth and conidial germination but not pigmentation and conidiogenesis. We demonstrate that both Acl1 and Acl2 subunits are required to form a functional ATP-citrate lyase in A. niger. First, deletion of acl1 or/and acl2 resulted in similar defects in growth and development. Second, enzyme activity assays revealed that loss of either acl1 or acl2 gene resulted in loss of ATP-citrate lyase activity. Third, in vitro enzyme assays using bacterially expressed 6His-tagged Acl protein revealed that only the complex of Acl1 and Acl2 showed ATP-citrate lyase activity, no enzyme activities were detected with the individual protein. Fourth, EGFP-Acl1 and mCherry-Acl2 proteins were co-localized in the cytosol. Thus, acl1 and acl2 coordinately modulate the cytoplasmic acetyl-CoA levels to regulate growth, development, and citric acid synthesis in A. niger.

  2. Cultivable alginate lyase-excreting bacteria associated with the Arctic brown alga Laminaria.

    PubMed

    Dong, Sheng; Yang, Jie; Zhang, Xi-Ying; Shi, Mei; Song, Xiao-Yan; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-11-01

    Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases. PMID:23203272

  3. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    SciTech Connect

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2006-05-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2{sub 1} and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°.

  4. Purification and characterization of tyrosine phenol lyase from Citrobacter freundii.

    PubMed

    Chandel, Meenakshi; Azmi, Wamik

    2013-12-01

    The purification and characterization of intracellular tyrosine phenol lyase from Citrobacter freundii has been carried out. The enzyme was purified 35-fold to homogeneity by ammonium sulphate precipitation and hydrophobic interaction chromatography. Its subunit molecular weight was found to be 52 kDa on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified tyrosine phenol lyase showed maximum activity in borate buffer (0.05 M at pH 8.5) at 45 °C after 20 min of incubation. The Km and Vmax values of purified enzyme were found to be 0.446 mm and 0.342 mM/min/mg. This enzyme exhibits t1/2 of 10, 52 and 130 min at 55, 45 and 35 °C, respectively. The N-terminal amino acid sequence was determined as MET-ASN-TYR-PRO-ALA-GLU-PRO-PHE-ARG-ILETRP- TRP-VAL-GLY.

  5. Priming ammonia lyases and aminomutases for industrial and therapeutic applications.

    PubMed

    Heberling, Matthew M; Wu, Bian; Bartsch, Sebastian; Janssen, Dick B

    2013-04-01

    Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the non-reliance on external cofactors and direct functionalization of an olefinic bond make ammonia lyases attractive biocatalysts for use in the synthesis of natural and non-natural amino acids, including β-amino acids. The approach of combining structure-guided enzyme engineering with efficient mutant library screening has extended the synthetic scope of these enzymes in recent years and has resolved important mechanistic issues for AMs and ALs, including those containing the MIO (4-methylideneimidazole-5-one) internal cofactor.

  6. Isolation of protoplasts from undaria pinnatifida by alginate lyase digestion

    NASA Astrophysics Data System (ADS)

    Xiaoke, Hu; Xiaolu, Jiang; Huashi, Guan

    2003-04-01

    The aim of this study is to isolate protoplasts from Undaria pinnatifida. Protoplasts of the alga were isolated enzymatically by using alginate lyase, which was prepared by fermenting culture of a strain Vibrio sp. 510. Monofacterial method was applied for optimizing digestion condition. The optimum condition for protoplast preparation is enzymatic digestion at 28°C for 2h using alginate lyase at the concentration of 213.36 U (8 mL) every 0.5g fresh thalline with NaCl 50 and at the shaking speed of 150 r min-1 during digestion. The protoplast yield can reach 2.62±0.09 million per 0.5 g fresh leave under the optimum condition. The enzyme activity is inhibited by Ca2+ and slightly enhanced by Fe2+ and Mn2+ at concentrations of 0.05, 0.08 and 0.10 mol L-1.

  7. Regulation of the Aspergillus nidulans pectate lyase gene (pelA).

    PubMed Central

    Dean, R A; Timberlake, W E

    1989-01-01

    Aspergillus nidulans pectate lyase was purified from culture filtrates. The enzyme catalyzed a random eliminative cleavage reaction, had an apparent molecular weight of 40,000, and a pl of 4.2. Pectate lyase antisera were produced and used to identify pectate lyase clones in a cDNA expression library. Thirteen of 14 clones identified immunologically cross-hybridized. The identity of the single-copy pectate lyase gene, which we designated pelA, was confirmed in two ways. First, several cDNA clones expressed pectate lyase activity in Escherichia coli. Second, targeted mutation of the gene in A. nidulans resulted in complete loss of enzyme activity. pelA encodes a 1,300-nucleotide mRNA that was present in cells grown with polygalacturonic acid as carbon source but absent from cells grown with glucose or acetate as carbon source. Thus, pectate lyase expression is regulated at the level of mRNA accumulation. PMID:2535502

  8. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency.

    PubMed

    Stuy, M; Chen, G-F; Masonek, J M; Scharschmidt, B F

    2015-09-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  9. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency☆

    PubMed Central

    Stuy, M.; Chen, G.-F.; Masonek, J.M.; Scharschmidt, B.F.

    2015-01-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet. PMID:26937403

  10. [Use of a preparation from fungal pectin lyase in the food industry].

    PubMed

    Semenova, M V; Sinitsyna, O A; Morozova, V V; Fedorova, E A; Gusakov, A V; Okunev, O N; Sokolova, L M; Koshelev, A V; Bubnova, Iu P; Sinitsyn, A P

    2006-01-01

    A new enzyme preparation of fungal pectin lyase (EC 4.2.2.10) was shown to be useful for the production of cranberry juice and clarification of apple juice in the food industry. A comparative study showed that the preparation of pectin lyase is competitive with commercial pectinase products. The molecular weight of homogeneous pectin lyase was 38 kDa. Properties of the homogeneous enzyme were studied. This enzyme was most efficient in removing highly esterified pectin.

  11. Antibiotic resistance in Streptomyces lividans: fluorescence assay for streptogramin B lyase.

    PubMed

    Bateman, K P; Armstrong, S M; White, R L; Ross, N W

    1997-06-01

    A fluorescence assay for streptogramin B lyase, an enzyme that confers resistance to streptogramin B antibiotics, has been developed. The antibiotic substrates are fluorescent and the linear peptide products formed in the lyase-catalyzed reaction are relatively nonfluorescent. The assay has potential for assessing bacterial resistance to streptogramin B antibiotics and will be utilized to direct the purification of streptogramin B lyase from bacterial extracts.

  12. Toward a mechanism for biliprotein lyases: revisiting nucleophilic addition to phycocyanobilin.

    PubMed

    Tu, Jun-Ming; Zhou, Ming; Haessner, Rainer; Plöscher, Matthias; Eichacker, Lutz; Scheer, Hugo; Zhao, Kai-Hong

    2009-04-22

    Biliprotein lyases attach linear-tetrapyrrolic bilins covalently to apoproteins, which is a prerequisite for the assembly of phycobiliproteins into phycobilisomes, the light-harvesting complexes of cyanobacteria. On the basis of the addition of thiol and imidazole to phycocyanobilin, we propose a generalized lyase reaction mechanism. The adducts contain isomerized phycocyanobilin that can be transferred by the lyase to apoproteins by either back-isomerization, generating phycocyanobilin-containing proteins, or direct transfer, generating phycoviolobilin-containing proteins.

  13. Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron.

    PubMed Central

    Salyers, A A; Kotarski, S F

    1980-01-01

    Chondroitin sulfate lyase (EC 4.2.2.4) was present constitutively at low levels (0.06 to 0.08 U/mg of protein) in cells of Bacteroides thetaiotaomicron which were growing on glucose or other monosaccharides. When these uninduced bacteria were incubated with chondroitin sulfate A (5 mg/ml), chondroitin sulfate lyase specific activity increased more than 10-fold within 90 min. Synthesis of ribonucleic acid and of protein was required for induction, and induction was sensitive to oxygen. The disaccharides which resulted from chondroitinase action did not act as inducers, nor did tetrasaccharides or hexasaccharides obtained by digestion of chondroitin sulfate with bovine testicular hyaluronidase. None of these substances was taken up by uninduced cells; they may not have been able to penetrate the outer membrane. The smallest oligomer capable of acting as an inducer was the outer membrane. The smallest oligomer capable of acting as an inducer was the octassacharide. Oligomers larger than the octassacharide induced chondroitin lyase activity nearly as well as intact chondroitin sulfate. PMID:6782077

  14. Inactivating effects of the lactoperoxidase system on bacterial lyases involved in oral malodour production.

    PubMed

    Nakano, Manabu; Shin, Kouichirou; Wakabayashi, Hiroyuki; Yamauchi, Koji; Abe, Fumiaki; Hironaka, Shouji

    2015-10-01

    The main components of oral malodour have been identified as volatile sulfur compounds (VSCs), including hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH). The lactoperoxidase (LPO) system (consisting of LPO, glucose oxidase, glucose and thiocyanate) was previously shown to exhibit antimicrobial activities against some oral bacteria in vitro and suppressive effects on VSCs in mouth air in a clinical trial. Here, we examined the in vitro effects of the LPO system on the activities of the bacterial lyases involved in the production of VSCs by oral anaerobes. The exposure of crude bacterial extracts of Fusobacterium nucleatum and Porphyromonas gingivalis or purified methionine γ-lyase to the LPO system resulted in the inactivation of their lyase activities through l-cysteine and l-methionine, which was linked to the production of H(2)S and CH(3)SH, respectively. The exposure of living F. nucleatum and P. gingivalis cells to the LPO system resulted in the suppression of cell numbers and lyase activities. The inactivation of the crude bacterial extracts of F. nucleatum and purified methionine γ-lyase by the LPO system was partly recovered by the addition of DTT. Therefore, the LPO system may inactivate bacterial lyases including methionine γ-lyase by reacting with the free cysteine residues of lyases. These results suggested that the LPO system suppresses the production of VSCs not only through its antimicrobial effects, but also by its inactivating effects on the bacterial lyases of F. nucleatum and P. gingivalis.

  15. Cloning of the Trichoderma reesei cDNA Encoding a Glucuronan Lyase Belonging to a Novel Polysaccharide Lyase Family▿ †

    PubMed Central

    Konno, Naotake; Igarashi, Kiyohiko; Habu, Naoto; Samejima, Masahiro; Isogai, Akira

    2009-01-01

    The filamentous fungus Trichoderma reesei produces glucuronan lyase (TrGL) when it is grown on β-(1→4)-polyglucuronate (cellouronate) as a sole carbon source. The cDNA encoding TrGL was cloned, and the recombinant enzyme was heterologously expressed in Pichia pastoris. The cDNA of TrGL includes a 777-bp open reading frame encoding a 20-amino-acid signal peptide and the 238-amino-acid mature protein. The amino acid sequence showed no similarity to the amino acid sequences of previously described functional proteins, indicating that the enzyme should be classified in a novel polysaccharide lyase (PL) family. Recombinant TrGL catalyzed depolymerization of cellouronate endolytically by β-elimination and was highly specific for cellouronate. The enzyme was most active at pH 6.5 and 50°C, and its activity and thermostability increased in the presence of Ca2+, suggesting that its calcium dependence is similar to that of other PLs, such as pectate lyases. PMID:18978091

  16. Possible role of cysteine-S-conjugate β-lyase in species differences in cisplatin nephrotoxicity.

    PubMed

    Katayama, Rieko; Nagata, Saori; Iida, Hiroko; Yamagishi, Norio; Yamashita, Tetsuro; Furuhama, Kazuhisa

    2011-09-01

    To better understand species differences in cisplatin nephrotoxicity, we focused on renal cysteine-S-conjugate β-lyase (C-S lyase), which may play a crucial role in the metabolism of platinum (Pt)-cysteine conjugates. Aminooxyacetic acid hemihydrochloride (AOAA), an inhibitor of C-S lyase, reduced renal injuries due to cisplatin in rats, suggesting involvement of C-S lyase. On day 5 following a bolus cisplatin injection, three species showed in vivo nephrotoxic potentials in the order of rats>mice=rabbits (the highest to lowest), based on body surface. The levels of renal Pt residue at the nephrotoxic dose were in order of rabbits>rats>mice. Meanwhile, the activity of endogenous (basal) mitochondrial aspartate aminotransferase (AST), one of the C-S lyases, in the renal cortex of naive animals was rats>mice=rabbits. In a qualitative Western blot analysis, expression of mitochondrial C-S lyase in the kidney was observed at approximately 37kDa in all five species used. In in vitro studies, the cytotoxicity of cisplatin was dependent on the expression level of C-S lyase mRNA in the respective renal cells. These results demonstrate that species differences in cisplatin nephrotoxicity are attributable to an interaction of renal Pt transition with C-S lyase activity.

  17. Structure and mechanism of the phycobiliprotein lyase CpcT.

    PubMed

    Zhou, Wei; Ding, Wen-Long; Zeng, Xiao-Li; Dong, Liang-Liang; Zhao, Bin; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Yang, Xiaojing

    2014-09-26

    Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965-983). PMID:25074932

  18. Structure and mechanism of the phycobiliprotein lyase CpcT.

    PubMed

    Zhou, Wei; Ding, Wen-Long; Zeng, Xiao-Li; Dong, Liang-Liang; Zhao, Bin; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Yang, Xiaojing

    2014-09-26

    Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965-983).

  19. Spore Photoproduct Lyase: The Known, the Controversial, and the Unknown*

    PubMed Central

    Yang, Linlin; Li, Lei

    2015-01-01

    Spore photoproduct lyase (SPL) repairs 5-thyminyl-5,6-dihydrothymine, a thymine dimer that is also called the spore photoproduct (SP), in germinating endospores. SPL is a radical S-adenosylmethionine (SAM) enzyme, utilizing the 5′-deoxyadenosyl radical generated by SAM reductive cleavage reaction to revert SP to two thymine residues. Here we review the current progress in SPL mechanistic studies. Protein radicals are known to be involved in SPL catalysis; however, how these radicals are quenched to close the catalytic cycle is under debate. PMID:25477522

  20. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications

    PubMed Central

    Zhu, Benwei; Yin, Heng

    2015-01-01

    Alginate lyases catalyze the degradation of alginate, a complex copolymer of α-L-guluronate and its C5 epimer β-D-mannuronate. The enzymes have been isolated from various kinds of organisms with different substrate specificities, including algae, marine mollusks, marine and terrestrial bacteria, and some viruses and fungi. With the progress of structural biology, many kinds of alginate lyases of different polysaccharide lyases families have been characterized by obtaining crystal structures, and the catalytic mechanism has also been elucidated. Combined with various studies, we summarized the source, classification and properties of the alginate lyases from different polysaccharide lyases families. The relationship between substrate specificity and protein sequence was also investigated. PMID:25831216

  1. Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18.

    PubMed

    Dong, Sheng; Wei, Tian-Di; Chen, Xiu-Lan; Li, Chun-Yang; Wang, Peng; Xie, Bin-Bin; Qin, Qi-Long; Zhang, Xi-Ying; Pang, Xiu-Hua; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-10-24

    Bacterial alginate lyases, which are members of several polysaccharide lyase (PL) families, have important biological roles and biotechnological applications. The mechanisms for maturation, substrate recognition, and catalysis of PL18 alginate lyases are still largely unknown. A PL18 alginate lyase, aly-SJ02, from Pseudoalteromonas sp. 0524 displays a β-jelly roll scaffold. Structural and biochemical analyses indicated that the N-terminal extension in the aly-SJ02 precursor may act as an intramolecular chaperone to mediate the correct folding of the catalytic domain. Molecular dynamics simulations and mutational assays suggested that the lid loops over the aly-SJ02 active center serve as a gate for substrate entry. Molecular docking and site-directed mutations revealed that certain conserved residues at the active center, especially those at subsites +1 and +2, are crucial for substrate recognition. Tyr(353) may function as both a catalytic base and acid. Based on our results, a model for the catalysis of aly-SJ02 in alginate depolymerization is proposed. Moreover, although bacterial alginate lyases from families PL5, 7, 15, and 18 adopt distinct scaffolds, they share the same conformation of catalytic residues, reflecting their convergent evolution. Our results provide the foremost insight into the mechanisms of maturation, substrate recognition, and catalysis of a PL18 alginate lyase.

  2. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity.

    PubMed

    Munt, Oliver; Prüfer, Dirk; Schulze Gronover, Christian

    2013-01-01

    We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications.

  3. Characterization of a New Cold-Adapted and Salt-Activated Polysaccharide Lyase Family 7 Alginate Lyase from Pseudoalteromonas sp. SM0524

    PubMed Central

    Chen, Xiu-Lan; Dong, Sheng; Xu, Fei; Dong, Fang; Li, Ping-Yi; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Xie, Bin-Bin

    2016-01-01

    Marine bacterial alginate lyases play a role in marine alginate degradation and carbon cycling. Although a large number of alginate lyases have been characterized, reports on alginate lyases with special characteristics are still rather less. Here, a gene alyPM encoding an alginate lyase of polysaccharide lyase family 7 (PL7) was cloned from marine Pseudoalteromonas sp. SM0524 and expressed in Escherichia coli. AlyPM shows 41% sequence identity to characterized alginate lyases, indicating that AlyPM is a new PL7 enzyme. The optimal pH for AlyPM activity was 8.5. AlyPM showed the highest activity at 30°C and remained 19% of the highest activity at 5°C. AlyPM was unstable at temperatures above 30°C and had a low Tm of 37°C. These data indicate that AlyPM is a cold-adapted enzyme. Moreover, AlyPM is a salt-activated enzyme. AlyPM activity in 0.5–1.2 M NaCl was sixfolds higher than that in 0 M NaCl, probably caused by a significant increase in substrate affinity, because the Km of AlyPM in 0.5 M NaCl decreased more than 20-folds than that in 0 M NaCl. AlyPM preferably degraded polymannuronate and mainly released dimers and trimers. These data indicate that AlyPM is a new PL7 endo-alginate lyase with special characteristics. PMID:27486451

  4. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells

    PubMed Central

    Sondhi, Varun; Owen, Bryn M.; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A.; Hughes, Beverly A.; Arlt, Wiebke; Mangelsdorf, David J.

    2016-01-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5flox/flox:Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  5. Deoxyribophosphate lyase activity of mammalian endonuclease VIII-like proteins.

    PubMed

    Grin, Inga R; Khodyreva, Svetlana N; Nevinsky, Georgy A; Zharkov, Dmitry O

    2006-09-01

    Base excision repair (BER) protects cells from nucleobase DNA damage. In eukaryotic BER, DNA glycosylases generate abasic sites, which are then converted to deoxyribo-5'-phosphate (dRP) and excised by a dRP lyase (dRPase) activity of DNA polymerase beta (Polbeta). Here, we demonstrate that NEIL1 and NEIL2, mammalian homologs of bacterial endonuclease VIII, excise dRP by beta-elimination with the efficiency similar to Polbeta. DNA duplexes imitating BER intermediates after insertion of a single nucleotide were better substrates. NEIL1 and NEIL2 supplied dRPase activity in BER reconstituted with dRPase-null Polbeta. Our results suggest a role for NEILs as backup dRPases in mammalian cells.

  6. Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase.

    PubMed

    Noda, Shuhei; Miyazaki, Takaya; Miyoshi, Takanori; Miyake, Michiru; Okai, Naoko; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2011-05-01

    Cinnamic acid production was demonstrated using Streptomyces as a host. A gene encoding phenylalanine ammonia lyase (PAL) from Streptomyces maritimus was introduced into Streptomyces lividans, and its expression was confirmed by Western blot analysis. After 4 days cultivation using glucose as carbon source, the maximal level of cinnamic acid reached 210 mg/L. When glycerol (30 g/L) was used as carbon source, the maximal level of produced cinnamic acid reached 450 mg/L. In addition, using raw starch, xylose or xylan as carbon source, the maximal level of cinnamic acid reached 460, 300, and 130 mg/L, respectively. We demonstrated that S. lividans has great potential to produce cinnamic acid as well as other aromatic compounds.

  7. A protective association between catalase and isocitrate lyase in peroxisomes.

    PubMed

    Yanik, Tulin; Donaldson, Robert Paul

    2005-03-15

    Glyoxysomes are specialized peroxisomes in germinating seeds, which catalyze many reactions that convert fatty acids into carbohydrates thus generating H(2)O(2). They are characterized by the presence of catalase (CAT, E.C. 1.11.1.6) in their matrix which protects cells from oxidative stress. Here, we investigated the possibility that a protein can be protected from oxidative damage by its association with CAT. We purified peroxisomal CAT from germinating castor beans by ion exchange, gel filtration, and hydroxylapatite chromatography. Gel filtration of the matrix proteins, cross-linking, and co-immunoprecipitation studies indicate that CAT associates with a glyoxysomal matrix protein, isocitrate lyase (ICL, E.C. 4.1.3.1). In addition, we found that H(2)O(2) inactivates ICL and degrades its product, glyoxylate, when CAT is inactive. ICL and its product appear to be sensitive to oxidative damage; thus, association of CAT with ICL would afford protection from H(2)O(2).

  8. Insulin-stimulated phosphorylation of ATP-citrate lyase in isolated hepatocytes. Stoichiometry and relation to the phosphoenzyme intermediate.

    PubMed

    Alexander, M C; Palmer, J L; Pointer, R H; Kowaloff, E M; Koumjian, L L; Avruch, J

    1982-02-25

    We have estimated the insulin-stimulated phosphorylation of ATP-citrate lyase by two methods. Isolated hepatocytes incorporate extracellular 32P into [gamma-35P] ATP and immunoprecipitated ATP-citrate lyase to steady state levels by 1 h. The content of acid-stable 32P in hepatocyte ATP-citrate lyase at steady state is 0.33 +/- 0.038 mol of P/mol (tetrameric) holoenzyme. Insulin (1 milliunit/ml) increases the 32P content of immunoprecipitated lyase 2- to 3-fold in 10 min. Over 90% of acid-stable 32P on lyase is 32P-serine in enzyme isolated from both control and insulin-treated cells. ATP-citrate lyase isolated from hepatocytes contains 0.95 +/- 0.1 mol of alkali-labile phosphate/mol of holoenzyme. Insulin treatment of hepatocytes (1 milliunit/ml for 10 min) increases the alkali-labile P content by 45%. Evidence is presented which indicates that the insulin-stimulated phosphorylation does not arise by intramolecular migration from the catalytic phosphoenzyme intermediate. These observations support the conclusion that insulin-stimulated phosphorylation of ATP-citrate lyase is mediated either by an insulin-induced increase in the activity of lyase kinase and/or decrease in a lyase phosphatase. The functional role of the substoichiometric phosphorylation of ATP-citrate lyase remains unknown.

  9. Isocitrate lyase and the glyoxylate cycle. Progress report, February 15, 1989--February 15, 1990

    SciTech Connect

    McFadden, B.A.

    1990-12-31

    Active site modifications of isocitrate lyase (icl) from Escherichia coli are described. In addition directed mutagenesis of icl gene are detailed aimed at varying the charge yet conserving the structure of the enzymes active site.

  10. A Possible Role of Divalent Manganese Ions in the Photoinduction of Phenylalanine Ammonia-Lyase

    PubMed Central

    Engelsma, G.

    1972-01-01

    Divalent Mn ions cause an increase in the level of phenylalanine ammonia-lyase in gherkin hypocotyls. With the exception of Mg ions, which had a small effect, no other metal ion has so far been found which could replace the Mn ion in this respect. Invertase and peroxidase were not significantly affected by the Mn treatment. The increase in phenylalanine ammonialyase activity is explained by the removal, under the influence of Mn ions, of hydroxycinnamic acids, which cause repression of phenylalanine ammonia-lyase synthesis and/or inactivation of phenylalanine ammonia-lyase. Arguments are advanced for the hypothesis that photochemical transformations of Mn complexes are involved in the photoinduction of phenylalanine ammonia-lyase in dark-grown gherkin seedlings. PMID:16658225

  11. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion.

    PubMed

    Alves, Diana; Sileika, Tadas; Messersmith, Phillip B; Pereira, Maria Olívia

    2016-09-01

    Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains. PMID:27198822

  12. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion.

    PubMed

    Alves, Diana; Sileika, Tadas; Messersmith, Phillip B; Pereira, Maria Olívia

    2016-09-01

    Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

  13. Characterization of Saccharomycopsis lipolytica mutants that express temperature-sensitive synthesis of isocitrate lyase.

    PubMed Central

    Matsuoka, M; Himeno, T; Aiba, S

    1984-01-01

    Four mutants specifically deficient in the activity of isocitrate lyase were independently isolated in the alkane yeast Saccharomycopsis lipolytica. Genetic analysis by means of protoplast fusion and mitotic haploidization revealed that the mutations were recessive and non-complementary at a single genetic locus, icl. icl is a structural gene for isocitrate lyase, because some revertants from icl-1 and icl-3 mutants produced thermolabile isocitrate lyase in comparison with the wild-type enzyme, and also because the gene dosage effect was observed on the specific activity of isocitrate lyase in icl+/icl-1 and icl+/icl-3 heterozygotes. The icl-3 mutation also gave rise to temperature-sensitive revertants that could grow on acetate at 23 degrees C but not at 33 degrees C, exhibiting temperature-sensitive synthesis as well as thermostable activity of isocitrate lyase. Studies on purified isocitrate lyase showed that this enzyme is tetrameric and that the enzyme synthesized at 23 degrees C by a temperature-sensitive synthesis mutant was indistinguishable from the wild-type enzyme with respect to the subunit molecular weight (59,000), the isoelectric pH (5.3), the thermostability, and the Km value for threo-Ds-isocitrate (0.2 mM). When induced by acetate at 33 degrees C, the temperature-sensitive synthesis mutant did not express isocitrate lyase activity but did synthesize polypeptides whose electrophoretic mobilities were equal to that of the purified mutant enzyme. Hence, the temperature-sensitive mutation assumed in the structural gene for isocitrate lyase might have prevented the maturation of the polypeptide chains synthesized at the restrictive temperature. Images PMID:6698940

  14. Molecular cloning of acetone cyanohydrin lyase from flax (Linum usitatissimum). Definition of a novel class of hydroxynitrile lyases.

    PubMed

    Trummler, K; Wajant, H

    1997-02-21

    Acetone cyanohydrin lyase from Linum usitatissimum is a hydroxynitrile lyase (HNL) which is involved in the catabolism of cyanogenic glycosides in young seedlings of flax. We have isolated a full-length cDNA clone encoding L. usitatissimum HNL (LuHNL) from a cDNA expression library by immunoscreening. LuHNL cDNA was expressed in Escherichia coli and isolated from the respective soluble fraction in an active form which was biochemically indistinguishable from the natural enzyme. An open reading frame of 1266 base pairs encodes for a protein of 45,780 kDa. The derived amino acid sequence shows no overall homologies to the to date cloned HNLs, but has significant similarities to members of the alcohol dehydrogenase (ADH) family of enzymes. In particular, the cysteine and histidine residues responsible for coordination of an active site Zn2+ and a second structurally important Zn2+ in alcohol dehydrogenases are conserved. Nevertheless, we found neither alcohol dehydrogenase activity in LuHNL nor HNL activity in ADH. Moreover, well known inhibitors of ADHs, which interfere with the coordination of the active site Zn2+, fail to affect HNL activity of LuHNL, suggesting principally different mechanisms of cyanohydrin cleavage and alcohol oxidation. Interestingly, LuHNL like ADH and Prunus serotina (PsHNL) possesses an ADP-binding betaalphabeta unit motif, pointing to the possibility that the non-flavoprotein PsHNL and the flavoprotein LuHNL have developed from two independent lines of evolution of a common ancestor with an ADP-binding betaalphabeta unit. PMID:9030531

  15. Three Alginate Lyases from Marine Bacterium Pseudomonas fluorescens HZJ216: Purification and Characterization

    SciTech Connect

    Liyan, Li; Jiang, Xiaolu; Wang, Peng; Guan, Huashi; Guo, Hong

    2010-01-01

    Three alginate lyases (A, B, and C) from an alginate-degrading marine bacterium strain HZJ216 isolated from brown seaweed in the Yellow Sea of China and identified preliminarily as Pseudomonas fluorescens are purified, and their biochemical properties are described. Molecular masses of the three enzymes are determined by SDS-PAGE to be 60.25, 36, and 23 kDa with isoelectric points of 4, 4.36, and 4.59, respectively. Investigations of these enzymes at different pH and temperatures show that they are most active at pH 7.0 and 35 C. Alginate lyases A and B are stable in the pH range of 5.0 9.0, while alginate lyase C is stable in the pH range of 5.0 7.0. Among the metal ions tested, additions of Na+, K+, and Mg2+ ions can enhance the enzyme activities while Fe2+, Fe3+, Ba2+, and Zn2+ ions show inhibitory effects. The substrate specificity results demonstrate that alginate lyase C has the specificity for G block while alginate lyases A and B have the activities for both M and G blocks. It is the first report about extracellular alginate lyases with high alginate-degrading activity from P. fluorescens.

  16. Characterization of alginate lyase gene using a metagenomic library constructed from the gut microflora of abalone.

    PubMed

    Sim, Su-Jung; Baik, Keun Sik; Park, Seong Chan; Choe, Han Na; Seong, Chi Nam; Shin, Tai-Sun; Woo, Hee Chul; Cho, Jeong-Yong; Kim, Duwoon

    2012-04-01

    A metagenomic fosmid library was constructed using a genomic DNA mixture extracted from the gut microflora of abalone. The library gave an alginate lyase positive clone (AlyDW) harboring a 31.7-kbp insert. The AlyDW insert consisted of 22 open reading frames (ORFs). The deduced amino acid sequences of ORFs 11-13 were similar to those of known alginate lyase genes, which are found adjacent in the genome of Klebsiella pneumoniae subsp. aerogenes, Vibrio splendidus, and Vibrio sp. belonging to the phylum Gammaproteobacteria. Among the three recombinant proteins expressed from the three ORFs, alginate lyase activity was only observed in the recombinant protein (AlyDW11) coded by ORF 11. The expressed protein (AlyDW11) had the highest alginate lyase activity at pH 7.0 and 45°C in the presence of 1 mM AgNO(3). The alginate lyase activity of ORF 11 was confirmed to be endolytic by thin-layer chromatography. AlyDW11 preferred poly(β-D: -mannuronate) as a substrate over poly(α-L: -guluronate). AlyDW11 contained three highly conserved regions, RSEL, QIH, and YFKAGVYNQ, which may act to stabilize the three-dimensional conformation and function of the alginate lyase.

  17. Characterization of AlgMsp, an Alginate Lyase from Microbulbifer sp. 6532A

    PubMed Central

    Swift, Steven M.; Hudgens, Jeffrey W.; Heselpoth, Ryan D.; Bales, Patrick M.; Nelson, Daniel C.

    2014-01-01

    Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates. PMID:25409178

  18. Isolation and spectroscopic characterization of a recombinant bell pepper hydroperoxide lyase.

    PubMed

    Psylinakis, E; Davoras, E M; Ioannidis, N; Trikeriotis, M; Petrouleas, V; Ghanotakis, D F

    2001-09-28

    Fatty acid hydroperoxide (HPO) lyase is a component of the oxylipin pathway and holds a central role in elicited plant defense. HPO lyase from bell pepper has been identified as a heme protein which shares 40% homology with allene oxide synthase, a cytochrome P450 (CYP74A). HPO lyase of immature bell pepper fruits was expressed in Escherichia coli and the enzyme was purified and characterized by spectroscopic techniques. The electronic structure and ligand coordination properties of the heme were investigated by using a series of exogenous ligands. The various complexes were characterized by using UV-visible absorption and electron paramagnetic resonance spectroscopy. The spectroscopic data demonstrated that the isolated recombinant HPO lyase has a pentacoordinate, high-spin heme with thiolate ligation. Addition of the neutral ligand imidazole or the anionic ligand cyanide results in the formation of hexacoordinate adducts that retain thiolate ligation. The striking similarities between both the ferric and ferrous HPO lyase-NO complexes with the analogous P450 complexes, suggest that the active sites of HPO lyase and P450 share common structural features.

  19. Structural Basis for Glycyl Radical Formation By Pyruvate Formate-Lyase Activating Enzyme

    SciTech Connect

    Vey, J.L.; Yang, J.; Li, M.; Broderick, W.E.; Broderick, J.B.; Drennan, C.L.

    2009-05-26

    Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G{sup 734} of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of enzymes. We report here structures of the substrate-free and substrate-bound forms of pyruvate formate-lyase-activating enzyme, the first structures of an AdoMet radical activase. To obtain the substrate-bound structure, we have used a peptide substrate, the 7-mer RVSGYAV, which contains the sequence surrounding G{sup 734}. Our structures provide fundamental insights into the interactions between the activase and the G{sup 734} loop of pyruvate formate-lyase and provide a structural basis for direct and stereospecific H atom abstraction from the buried G{sup 734}4 of pyruvate formate-lyase.

  20. The action of exogenous gibberellic acid on isocitrate lyase -mRNA in germinating castor bean seeds.

    PubMed

    Martin, C; Northcote, D H

    1982-03-01

    Gibberellic acid (GA3) stimulates isocitrate lyase activity of the endosperm during germination of castor bean seeds. Isocitrate lyase from castor bean was purified and an antibody to it was prepared from rabbit serum. This antibody was used to measure the amounts of isocitrate lyase-mRNA using an in vitro translation system. No specific stimulation of isocitrate lyase-mRNA by application of GA3 was detected. The stimulation of isocitrate lyase activity by exogenous GA3 may be accounted for by the action of the growth substance in advancing the overall production of rRNA and mRNA which accelerates the rate of total protein synthesis during germination. The application of Amo 1618 retards the production of isocitrate lyase activity but also retards protein synthesis in general. This suggests that endogenous gibberellins also act non-specifically in the regulation of protein synthesis during castor bean germination.

  1. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  2. The purification and physicochemical characterization of maize (Zea mays L.) isocitrate lyase.

    PubMed

    Khan, A S; Van Driessche, E; Kanarek, L; Beeckmans, S

    1992-08-15

    A purification scheme is described for the glyoxylate cycle enzyme isocitrate lyase from maize scutella. Purification involves an acetone precipitation and a heat denaturation step, followed by ammonium sulfate precipitation and chromatography on DEAE-cellulose and on blue-Sepharose. The latter step results in the removal of the remaining malate dehydrogenase activity, and of a high molecular mass (62 kDa) but inactive degradation product of isocitrate lyase. Catalase can be completely removed by performing the DEAE-cellulose chromatography in the presence of Triton X-100. Pure isocitrate lyase can be stored without appreciable loss of activity at -70 degrees C in 5 mM triethanolamine buffer containing 6 mM MgCl2, 7 mM 2-mercaptoethanol, and 50% (v/v) glycerol, pH 7.6. Maize isocitrate lyase is a tetrameric protein with a subunit molecular mass of 64 kDa. Purity of the enzyme preparation was demonstrated by polyacrylamide gel electrophoresis in the presence of dodecylsulfate, in acid (pH 3.2) urea and by isoelectric focusing (pI = 5.1). Maize isocitrate lyase is devoid of covalently linked sugar residues. From circular dichroism measurements we estimate that its structure comprises 30% alpha-helical and 15% beta-pleated sheet segments. The enzyme requires Mg2+ ions for activity, and only Mn2+ apparently is able to replace this cation to a certain extent. The kinetics of the isocitrate lyase-catalyzed cleavage reaction were investigated, and the amino acid composition of the maize enzyme was determined. Finally the occurrence of an association between maize isocitrate lyase and catalase was observed. Such a multienzyme complex may be postulated to play a protective role in vivo. PMID:1637186

  3. Crystal structures of halohydrin hydrogen-halide-lyases from Corynebacterium sp. N-1074.

    PubMed

    Watanabe, Fumiaki; Yu, Fujio; Ohtaki, Akashi; Yamanaka, Yasuaki; Noguchi, Keiichi; Yohda, Masafumi; Odaka, Masafumi

    2015-12-01

    Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide products are subsequently hydrolyzed by an epoxide hydrolase, yielding the corresponding 1, 2-diol. Until now, six different H-Lyases have been studied. These H-Lyases are grouped into three subtypes (A, B, and C) based on amino acid sequence similarities and exhibit different enantioselectivity. Corynebacterium sp. strain N-1074 has two different isozymes of H-Lyase, HheA (A-type) and HheB (B-type). We have determined their crystal structures to elucidate the differences in enantioselectivity among them. All three groups share a similar structure, including catalytic sites. The lack of enantioselectivity of HheA seems to be due to the relatively wide size of the substrate tunnel compared to that of other H-Lyases. Among the B-type H-Lyases, HheB shows relatively high enantioselectivity compared to that of HheBGP1 . This difference seems to be due to amino acid replacements at the active site tunnel. The binding mode of 1, 3-dicyano-2-propanol at the catalytic site in the crystal structure of the HheB-DiCN complex suggests that the product should be (R)-epichlorohydrin, which agrees with the enantioselectivity of HheB. Comparison with the structure of HheC provides a clue for the difference in their enantioselectivity.

  4. Crystal structures of halohydrin hydrogen-halide-lyases from Corynebacterium sp. N-1074.

    PubMed

    Watanabe, Fumiaki; Yu, Fujio; Ohtaki, Akashi; Yamanaka, Yasuaki; Noguchi, Keiichi; Yohda, Masafumi; Odaka, Masafumi

    2015-12-01

    Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide products are subsequently hydrolyzed by an epoxide hydrolase, yielding the corresponding 1, 2-diol. Until now, six different H-Lyases have been studied. These H-Lyases are grouped into three subtypes (A, B, and C) based on amino acid sequence similarities and exhibit different enantioselectivity. Corynebacterium sp. strain N-1074 has two different isozymes of H-Lyase, HheA (A-type) and HheB (B-type). We have determined their crystal structures to elucidate the differences in enantioselectivity among them. All three groups share a similar structure, including catalytic sites. The lack of enantioselectivity of HheA seems to be due to the relatively wide size of the substrate tunnel compared to that of other H-Lyases. Among the B-type H-Lyases, HheB shows relatively high enantioselectivity compared to that of HheBGP1 . This difference seems to be due to amino acid replacements at the active site tunnel. The binding mode of 1, 3-dicyano-2-propanol at the catalytic site in the crystal structure of the HheB-DiCN complex suggests that the product should be (R)-epichlorohydrin, which agrees with the enantioselectivity of HheB. Comparison with the structure of HheC provides a clue for the difference in their enantioselectivity. PMID:26422370

  5. A novel direct homogeneous assay for ATP citrate lyase.

    PubMed

    Ma, Zhengping; Chu, Ching-Hsuen; Cheng, Dong

    2009-10-01

    ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes the synthesis of acetyl-CoA and oxaloacetate using citrate, CoA, and ATP as substrates and Mg(2+) as a necessary cofactor. The ACL-dependent synthesis of acetyl-CoA is thought to be an essential step for the de novo synthesis of fatty acids and cholesterol. For this reason, inhibition of ACL has been pursued as a strategy to treat dyslipidemia and obesity. Traditionally, ACL enzyme activity is measured indirectly by coupling to enzymes such as malate dehydrogenase or chloramphenicol acetyl transferase. In this report, however, we describe a novel procedure to directly measure ACL enzyme activity. We first identified a convenient method to specifically detect [(14)C]acetyl-CoA without detecting [(14)C]citrate by MicroScint-O. Using this detection system, we devised a simple, direct, and homogeneous ACL assay in 384-well plate format that is suitable for high-throughput screening. The current assay consists of 1) incubation of ACL enzyme with [(14)C]citrate and other substrates/cofactors CoA, ATP, and Mg(2+), 2) EDTA quench, 3) addition of MicroScint-O, the agent that specifically detects product [(14)C]acetyl-CoA, and 4) detection of signal by TopCount. This unique ACL assay may provide more efficient identification of new ACL inhibitors and allow detailed mechanistic characterization of ACL/inhibitor interactions.

  6. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis

    PubMed Central

    Premkumar, M. H.; Sule, G.; Nagamani, S. C.; Chakkalakal, S.; Nordin, A.; Jain, M.; Ruan, M. Z.; Bertin, T.; Dawson, B.; Zhang, J.; Schady, D.; Bryan, N. S.; Campeau, P. M.; Erez, A.

    2014-01-01

    Necrotizing enterocolitis (NEC), the most common neonatal gastrointestinal emergency, results in significant mortality and morbidity, yet its pathogenesis remains unclear. Argininosuccinate lyase (ASL) is the only enzyme in mammals that is capable of synthesizing arginine. Arginine has several homeostatic roles in the gut and its deficiency has been associated with NEC. Because enterocytes are the primary sites of arginine synthesis in neonatal mammals, we evaluated the consequences of disruption of arginine synthesis in the enterocytes on the pathogenesis of NEC. We devised a novel approach to study the role of enterocyte-derived ASL in NEC by generating and characterizing a mouse model with enterocyte-specific deletion of Asl (Aslflox/flox; VillinCretg/+, or CKO). We hypothesized that the presence of ASL in a cell-specific manner in the enterocytes is protective in the pathogenesis of NEC. Loss of ASL in enterocytes resulted in an increased incidence of NEC that was associated with a proinflammatory state and increased enterocyte apoptosis. Knockdown of ASL in intestinal epithelial cell lines resulted in decreased migration in response to lipopolysaccharide. Our results show that enterocyte-derived ASL has a protective role in NEC. PMID:24904080

  7. Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.

    PubMed

    Bedhomme, Mariette; Zaffagnini, Mirko; Marchand, Christophe H; Gao, Xing-Huang; Moslonka-Lefebvre, Mathieu; Michelet, Laure; Decottignies, Paulette; Lemaire, Stéphane D

    2009-12-25

    Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.

  8. Fatty acid 9- and 13-hydroperoxide lyases from cucumber.

    PubMed

    Matsui, K; Ujita, C; Fujimoto, S; Wilkinson, J; Hiatt, B; Knauf, V; Kajiwara, T; Feussner, I

    2000-09-15

    Fatty acid hydroperoxide lyase (HPL) is a novel P-450 enzyme that cleaves fatty acid hydroperoxides to form short-chain aldehydes and oxo-acids. In cucumber seedlings, the activities of both fatty acid 9HPL and 13HPL could be detected. High 9HPL activity was especially evident in hypocotyls. Using a polymerase chain reaction-based cloning strategy, we isolated two HPL-related cDNAs from cucumber hypocotyls. One of them, C17, had a frameshift and it was apparently expressed from a pseudogene. After repairing the frameshift, the cDNA was successfully expressed in Escherichia coli as an active HPL with specificity for 13-hydroperoxides. The other clone, C15, showed higher sequence similarity to allene oxide synthase (AOS). This cDNA was also expressed in E. coli, and the recombinant enzyme was shown to act both on 9- and 13-hydroperoxides, with a preference for the former. By extensive product analyses, it was determined that the recombinant C15 enzyme has only HPL activity and no AOS activity, in spite of its higher sequence similarity to AOS.

  9. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    PubMed

    Thiyagarajan, Karthikeyan; Vitali, Fabio; Tolaini, Valentina; Galeffi, Patrizia; Cantale, Cristina; Vikram, Prashant; Singh, Sukhwinder; De Rossi, Patrizia; Nobili, Chiara; Procacci, Silvia; Del Fiore, Antonella; Antonini, Alessandro; Presenti, Ombretta; Brunori, Andrea

    2016-01-01

    Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value. PMID:26990297

  10. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat

    PubMed Central

    Thiyagarajan, Karthikeyan; Vitali, Fabio; Tolaini, Valentina; Galeffi, Patrizia; Cantale, Cristina; Vikram, Prashant; Singh, Sukhwinder; De Rossi, Patrizia; Nobili, Chiara; Procacci, Silvia; Del Fiore, Antonella; Antonini, Alessandro; Presenti, Ombretta; Brunori, Andrea

    2016-01-01

    Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn’t result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value. PMID:26990297

  11. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease.

    PubMed

    Paul, Bindu D; Sbodio, Juan I; Xu, Risheng; Vandiver, M Scott; Cha, Jiyoung Y; Snowman, Adele M; Snyder, Solomon H

    2014-05-01

    Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.

  12. Structural insights into the bacterial carbon-phosphorus lyase machinery.

    PubMed

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten; Russo, Christopher J; Passmore, Lori A; Hove-Jensen, Bjarne; Jochimsen, Bjarne; Brodersen, Ditlev E

    2015-09-01

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.

  13. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    PubMed

    Thiyagarajan, Karthikeyan; Vitali, Fabio; Tolaini, Valentina; Galeffi, Patrizia; Cantale, Cristina; Vikram, Prashant; Singh, Sukhwinder; De Rossi, Patrizia; Nobili, Chiara; Procacci, Silvia; Del Fiore, Antonella; Antonini, Alessandro; Presenti, Ombretta; Brunori, Andrea

    2016-01-01

    Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.

  14. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Lamb, Audrey L.

    2013-01-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the “interchange” hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, “permute” hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities. PMID:24055536

  15. Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3

    PubMed Central

    Snijder, Pauline M; Baratashvili, Madina; Grzeschik, Nicola A; Leuvenink, Henri G D; Kuijpers, Lucas; Huitema, Sippie; Schaap, Onno; Giepmans, Ben N G; Kuipers, Jeroen; Miljkovic, Jan Lj; Mitrovic, Aleksandra; Bos, Eelke M; Szabó, Csaba; Kampinga, Harm H; Dijkers, Pascale F; den Dunnen, Wilfred F A; Filipovic, Milos R; van Goor, Harry; Sibon, Ody C M

    2015-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies. PMID:26467707

  16. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Lamb, Audrey L

    2013-11-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the "interchange" hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, "permute" hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.

  17. Ironing out their differences: dissecting the structural determinants of a phenylalanine aminomutase and ammonia lyase.

    PubMed

    Heberling, Matthew M; Masman, Marcelo F; Bartsch, Sebastian; Wybenga, Gjalt G; Dijkstra, Bauke W; Marrink, Siewert J; Janssen, Dick B

    2015-04-17

    Deciphering the structural features that functionally separate ammonia lyases from aminomutases is of interest because it may allow for the engineering of more efficient aminomutases for the synthesis of unnatural amino acids (e.g., β-amino acids). However, this has proved to be a major challenge that involves understanding the factors that influence their activity and regioselectivity differences. Herein, we report evidence of a structural determinant that dictates the activity differences between a phenylalanine ammonia lyase (PAL) and aminomutase (PAM). An inner loop region that closes the active sites of both PAM and PAL was mutated within PAM (PAM residues 77-97) in a stepwise approach to study the effects when the equivalent residue(s) found in the PAL loop were introduced into the PAM loop. Almost all of the single loop mutations triggered a lyase phenotype in PAM. Experimental and computational evidence suggest that the induced lyase features result from inner loop mobility enhancements, which are possibly caused by a 310-helix cluster, flanking α-helices, and hydrophobic interactions. These findings pinpoint the inner loop as a structural determinant of the lyase and mutase activities of PAM.

  18. The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination*

    PubMed Central

    Abbott, D. Wade; Gilbert, Harry J.; Boraston, Alisdair B.

    2010-01-01

    Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn2+ atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the −1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases. PMID:20851883

  19. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  20. Argininosuccinate lyase: a new autoantigen in liver disease.

    PubMed

    Pelli, N; Fensom, A H; Slade, C; Boa, F; Mieli-Vergani, G; Vergani, D

    1998-12-01

    Anti-liver cytosol 1 autoantibody (LC1) characterizes a severe form of autoimmune hepatitis (AIH), staining the cytoplasm of periportal hepatocytes and targeting an unidentified 60-kD liver cytosolic antigen. To identify its target, we used high-titre anti-LCI+ sera from two patients with AIH to screen 18 cytoplasm enzymes with periportal location by double immunodiffusion (DDI). Both sera gave a broad precipitin line against human liver cytosol, suggesting that they may recognize two distinct antigens, a possibility confirmed by the appearance of two precipitin lines when DDI conditions were optimized (0.8% agarose and 3% polyethylene glycol (PEG)). Experiments by DDI and Western blot (WB) identified a liver cytosolic autoantigen of 50 kD, different from LC1, giving a line of identity with argininosuccinate lyase (ASL). Reactivity to ASL was then investigated by DDI and WB in 57 patients with AIH, 17 with primary biliary cirrhosis (PBC), 15 with chronic hepatitis B virus (HBV) infection, 13 with alphal-antitrypsin deficiency, 17 with Wilson's disease, 18 with extrahepatic autoimmune disorders, and in 48 healthy controls. Anti-ASL was found in 16% of AIH and 23% of PBC patients by DDI and in 14% of AIH, 23% of PBC and 20% of HBV patients by WB. No argininosuccinate was present in the urine of four anti-ASL+ patients tested, excluding an inhibition of enzymatic activity by anti-ASL. The addition of anti-ASL+ serum to human fibroblast cultures induced a significant increase in ASL activity. ASL is a new autoantigen in liver disease and its clinical relevance warrants further investigation.

  1. Cystathionine γ-lyase: clinical, metabolic, genetic, and structural studies

    PubMed Central

    Kraus, Jan P.; Hašek, Jindrich; Kožich, Viktor; Collard, Renata; Venezia, Sarah; Janošíková, Bohumila; Wang, Jian; Stabler, Sally P.; Allen, Robert H.; Jakobs, Cornelis; Finn, Christine T.; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Hegele, Robert A.; Mudd, S. Harvey

    2009-01-01

    We report studies of six individuals with marked elevations of cystathionine in plasma and/or urine. Studies of CTH, the gene that encodes cystathionine γ-lyase, revealed the presence among these individuals of either homozygous or compound heterozygous forms of a novel large deletion, p.Gly57_Gln196del, two novel missense mutations, c.589C>T (p.Arg197Cys) and c.932C>T (p.Thr311Ile), and one previously reported alteration, c.200C>T (p.Thr67Ile). Another novel missense mutation, c.185G>T (p.Arg62His), was found in heterozygous form in three mildly hypercystathioninemic members of a Taiwanese family. In one severely hypercystathioninemic individual no CTH mutation was found. Brief clinical histories of the cystathioninemic/cystathioninuric patients are presented. Most of the novel mutations were expressed and the CTH activities of the mutant proteins determined. The crystal structure of the human enzyme, hCTH, and the evidence available as to the effects of the mutations in question, as well as those of the previously reported p.Gln240Glu, on protein structure, enzymatic activity, and responsiveness to vitamin B6 administration are discussed. Among healthy Czech controls, 9.3% were homozygous for CTH c.1208G>T (p.Ser403Ile), previously found homozygously in 7.5% of Canadians for whom plasma total homocysteine (tHcy) had been measured. Compared to wild-type homozygotes, among the 55 Czech c.1208G>T (p.Ser403Ile) homozygotes a greater level of plasma cystathionine was found only after methionine loading. Three of the four individuals homozygous or compound heterozygous for inactivating CTH mutations had mild plasma tHcy elevations, perhaps indicating a cause-and-effect relationship. The experience with the present patients provides no evidence that severe loss of CTH activity is accompanied by adverse clinical effects. PMID:19428278

  2. A Radical Transfer Pathway in Spore Photoproduct Lyase

    PubMed Central

    Yang, Linlin; Nelson, Renae S.; Benjdia, Alhosna; Lin, Gengjie; Telser, Joshua; Stoll, Stefan; Schlichting, Ilme; Li, Lei

    2013-01-01

    Spore photoproduct lyase (SPL) repairs a covalent UV-induced thymine dimer, spore photoproduct (SP), in germinating endospores and is responsible for endospores’ strong UV resistance. SPL is a radical SAM enzyme, which uses a [4Fe-4S]1+ cluster to reduce the S-adenosyl-L-methionine (SAM), generating a catalytic 5′-deoxyadenosyl radical (5′-dA•). This in turn abstracts an H atom from SP, generating an SP radical that undergoes β scission to form a repaired 5′-thymine and a 3′-thymine allylic radical. Recent biochemical and structural data suggest that a conserved cysteine donates an H atom to the thymine radical, resulting in a putative thiyl radical. Here we present structural and biochemical data which suggest that two conserved tyrosines are also critical in enzyme catalysis. One (Y99(Bs) in Bacillus subtilis SPL) is downstream of the cysteine, suggesting that SPL uses a novel hydrogen atom transfer (HAT) pathway with a pair of cysteine-tyrosine residues to regenerate SAM. The other tyrosine (Y97(Bs)) has a structural role to facilitate SAM binding; it may also contribute to the SAM regeneration process by interacting with the putative •Y99(Bs) and/or 5′-dA• intermediates to lower the energy barrier for the second H-abstraction step. Our results indicate that SPL is the first member of the radical SAM superfamily (comprising more than 44,000 members) to bear a catalytically operating HAT chain. PMID:23607538

  3. Preparation of unnatural amino acids with ammonia-lyases and 2,3-aminomutases.

    PubMed

    Poppe, László; Paizs, Csaba; Kovács, Klaudia; Irimie, Florin-Dan; Vértessy, Beáta

    2012-01-01

    Ammonia-lyases catalyze a wide range of processes leading to α,β-unsaturated compounds by elimination of ammonia. In this chapter, ammonia-lyases are reviewed with major emphasis on their synthetic applications in stereoselective preparation of unnatural amino acids. Besides the synthesis of various unnatural α-amino acids with the aid of phenylalanine ammonia-lyases (PALs) utilizing the 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) prosthetic groups, the biotransformations leading to various unnatural β-amino acids with phenylalanine 2,3-aminomutases using the same catalytic MIO prosthetic group are discussed. Cloning, production, purification, and biotransformation protocols for PAL are described in detail.

  4. Changes of lipoxygenase and fatty acid hydroperoxide lyase activities in bell pepper fruits during maturation.

    PubMed

    Matsui, K; Shibata, Y; Tateba, H; Hatanaka, A; Kajiwara, T

    1997-01-01

    Developmental changes in fatty acid hydroperoxide lyase (HPO lyase) and lipoxygenase (LOX) during the maturation of bell pepper fruits (Capsicum annuum L. cv. Kyonami) were examined by means of activity measurements, immunological detection of both the enzymes, and analysis of the volatile compounds formed upon homogenization of the fruits. Both the enzyme activities decreased with maturation, and immunological studies showed that the amounts of the enzymes concomitantly decreased. The amounts of six-carbon aldehydes and alcohols formed from bell pepper fruits upon homogenization also decreased during maturation, and with the fully ripened red fruits, these volatile compounds were hardly detectable. These results suggest that the major factor contributing to the changes in the composition of volatile compounds during the maturation of bell pepper fruits was changes in the amounts of HPO lyase and LOX.

  5. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    PubMed

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.

  6. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    PubMed

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes. PMID:26253667

  7. Isocitrate lyase and the glyoxylate cycle. Progress report, July 1, 1988--February 15, 1989

    SciTech Connect

    McFadden, B.A.

    1989-12-31

    Studies on the structure, regulation and catalytic function of isocitrate lyase are reported. This catalyzes the first unique step i the glyoxylate cycle. In this cycle, lipids are converted to carbohydrates in a process which contributes to microbial growth on fatty aids and to the growth of oil-rich seedlings and animal embryos. These studies will provide basic information about isocitrate lyase. The function of this enzyme is vital to microbial growth (on fatty acids) and to the growth of varied plant seedlings and their subsequent utilization of solar energy.

  8. A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity.

    PubMed

    Sawant, Shailesh S; Salunke, Bipinchandra K; Kim, Beom Soo

    2015-09-01

    Screening of microorganisms capable of producing alginate lyase enzyme is commonly carried out by investigating their abilities to grow on alginate-containing solid media plates and occurrence of a clearance zone after flooding the plates with agents such as 10% (w/v) cetyl pyridinium chloride (CPC), which can form complexes with alginate. Although the CPC method is good, advantageous, and routinely used, the agar in the media interferes with the action of CPC, which makes judgment about clearance zones very difficult. In addition, this method takes a minimum of 30 min to obtain the zone of hydrolysis after flooding and the hydrolyzed area is not sharply discernible. An improved plate assay is reported herein for the detection of extracellular alginate lyase production by microorganisms. In this method, alginate-containing agar plates are flooded with Gram's iodine instead of CPC. Gram's iodine forms a bluish black complex with alginate but not with hydrolyzed alginate, giving sharp, distinct zones around the alginate lyase producing microbial colonies within 2-3 min. Gram's iodine method was found to be more effective than the CPC method in terms of visualization and measurement of zone size. The alginate-lyase-activity area indicated using the Gram's iodine method was found to be larger than that indicated by the CPC method. Both methods (CPC and Gram's iodine) showed the largest alginate lyase activity area for Saccharophagus degradans (ATCC 43961) followed by Microbulbifer mangrovi (KCTC 23483), Bacillus cereus (KF801505) and Paracoccus sp. LL1 (KP288668) grown on minimal sea salt medium. The rate of growth and metabolite production in alginate-containing minimal sea salt liquid medium, followed trends similar to that of the zone activity areas for the four bacteria under study. These results suggested that the assay developed in this study of Gram's iodine could be useful to predict the potential of microorganisms to produce alginate lyase. The method also

  9. Immunocytochemical Localization of Prunasin Hydrolase and Mandelonitrile Lyase in Stems and Leaves of Prunus serotina.

    PubMed

    Swain, E.; Poulton, J. E.

    1994-12-01

    In macerates of black cherry (Prunus serotina Ehrh.) leaves and stems, (R)-prunasin is catabolized to HCN, benzaldehyde, and D-glucose by the sequential action of prunasin hydrolase (EC 3.2.1.21) and (R)-(+)-mandelonitrile lyase (EC 4.1.2.10). Immuno-cytochemical techniques have shown that within these organs prunasin hydrolase occurs within the vacuoles of phloem parenchyma cells. In arborescent leaves, mandelonitrile lyase was also located in phloem parenchyma vacuoles, but comparison of serial sections revealed that these two degradative enzymes are usually localized within different cells. PMID:12232409

  10. Purification of Leuconostoc mesenteroides Citrate Lyase and Cloning and Characterization of the citCDEFG Gene Cluster

    PubMed Central

    Bekal, Sadjia; Van Beeumen, Jozef; Samyn, Bart; Garmyn, Dominique; Henini, Samia; Diviès, Charles; Prévost, Hervé

    1998-01-01

    A citrate lyase (EC 4.1.3.6) was purified 25-fold from Leuconostoc mesenteroides and was shown to contain three subunits. The first 42 amino acids of the β subunit were identified, as well as an internal peptide sequence spanning some 20 amino acids into the α subunit. Using degenerated primers from these sequences, we amplified a 1.2-kb DNA fragment by PCR from Leuconostoc mesenteroides subsp. cremoris. This fragment was used as a probe for screening a Leuconostoc genomic bank to identify the structural genes. The 2.7-kb gene cluster encoding citrate lyase of L. mesenteroides is organized in three open reading frames, citD, citE, and citF, encoding, respectively, the three citrate lyase subunits γ (acyl carrier protein [ACP]), β (citryl-S-ACP lyase; EC 4.1.3.34), and α (citrate:acetyl-ACP transferase; EC 2.8.3.10). The gene (citC) encoding the citrate lyase ligase (EC 6.2.1.22) was localized in the region upstream of citD. Protein comparisons show similarities with the citrate lyase ligase and citrate lyase of Klebsiella pneumoniae and Haemophilus influenzae. Downstream of the citrate lyase cluster, a 1.4-kb open reading frame encoding a 52-kDa protein was found. The deduced protein is similar to CitG of the other bacteria, and its function remains unknown. Expression of the citCDEFG gene cluster in Escherichia coli led to the detection of a citrate lyase activity only in the presence of acetyl coenzyme A, which is a structural analog of the prosthetic group. This shows that the acetyl-ACP group of the citrate lyase form in E. coli is not complete or not linked to the protein. PMID:9457870

  11. Probing the Catalytic Mechanism Involved in the Isocitrate Lyase Superfamily: Hybrid Quantum Mechanical/Molecular Mechanical Calculations on 2,3-Dimethylmalate Lyase.

    PubMed

    Jongkon, Nathjanan; Chotpatiwetchkul, Warot; Gleeson, M Paul

    2015-09-01

    The isocitrate lyase (ICL) superfamily catalyzes the cleavage of the C(2)-C(3) bond of various α-hydroxy acid substrates. Members of the family are found in bacteria, fungi, and plants and include ICL itself, oxaloacetate hydrolase (OAH), 2-methylisocitrate lyase (MICL), and (2R,3S)-dimethylmalate lyase (DMML) among others. ICL and related targets have been the focus of recent studies to treat bacterial and fungal infections, including tuberculosis. The catalytic process by which this family achieves C(2)-C(3) bond breaking is still not clear. Extensive structural studies have been performed on this family, leading to a number of plausible proposals for the catalytic mechanism. In this paper, we have applied quantum mechanical/molecular mechanical (QM/MM) methods to the most recently reported family member, DMML, to assess whether any of the mechanistic proposals offers a clear energetic advantage over the others. Our results suggest that Arg161 is the general base in the reaction and Cys124 is the general acid, giving rise to a rate-determining barrier of approximately 10 kcal/mol. PMID:26224328

  12. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    NASA Technical Reports Server (NTRS)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  13. The management of pregnancy and delivery in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency.

    PubMed

    Pipitone, Angela; Raval, Donna B; Duis, Jessica; Vernon, Hilary; Martin, Regina; Hamosh, Ada; Valle, David; Gunay-Aygun, Meral

    2016-06-01

    3-hydroxy-3-methylglutaric (HMG)-CoA lyase is required for ketogenesis and leucine degradation. Patients with HMG-CoA lyase deficiency typically present with hypoketotic hypoglycemia and metabolic acidosis, which can be fatal if untreated. The patient is a 28-year-old female with HMG-CoA lyase deficiency who presented at 4 weeks gestation for prenatal care. Protein intake as well as carnitine supplementation were gradually increased to support maternal and fetal demands up to 65 g per day for protein and 80 mg/kg/day for carnitine. Fetal growth was appropriate. At 36 5/7 weeks, she presented with spontaneous rupture of membranes. Twice maintenance 10% glucose-containing intravenous fluids were initiated. During labor, vomiting and metabolic acidosis developed. Delivery was by cesarean. Preeclampsia developed postpartum. The patient recovered well and was discharged home on postpartum day 5. Stress of pregnancy and labor and delivery can lead to metabolic decompensation in HMG-CoA lyase deficiency. Patients should be monitored closely by a biochemical geneticist, dietitian, and high-risk obstetrician at a tertiary care center during their pregnancy. Fasting should be avoided. Intravenous 10% glucose-containing fluids should be provided to prevent catabolism and metabolic decompensation during labor and delivery. © 2016 Wiley Periodicals, Inc. PMID:26997609

  14. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  15. Cloning of alginate lyase gene (alxM) and expression in Escherichia coli.

    PubMed Central

    Brown, B J; Preston, J F; Ingram, L O

    1991-01-01

    The alxM gene encoding a D-mannuronan-specific alginate lyase has been cloned from a marine bacterium isolated as an epiphyte on the brown alga, Sargassum fluitans. Expression of this gene in Escherichia coli provides a source of this enzyme for probing alginate structure and modifying the mannuronan-rich alginate polymers produced by bacterial pathogens. Images PMID:1872617

  16. Purification and characterization of alginate lyase from locally isolated marine Pseudomonas stutzeri MSEA04.

    PubMed

    Beltagy, Ehab A; El-Borai, Aliaa; Lewiz, Marina; ElAssar, Samy A

    2016-09-01

    An alginate lyase with high specific enzyme activity was purified from Pseudomonas stutzeri MSEA04, isolated from marine brown algae. The alginate lyase was purified by precipitation with ammonium sulphate, acetone and ethanol individually. 70% ethanol fraction showed maximum specific activity (133.3 U/mg). This fraction was re-purified by anion exchange chromatography DEAE- Cellulose A-52. The loaded protein was separated into 3 peaks. The second protein peak was the major one which contained 48.2% of the total protein recovered and 79.4% of the total recovered activity. The collected fractions of this peak were subjected to further purification by re-chromatography on Sephadex G-100. Alginate lyase activity was fractionated in the Sephadex column into one major peak, and the specific activity of this fraction reached 116 U/mg. The optimal substrate concentration, pH and temperature for alginate lyase activity were 8 mg/ml, pH 7.5 and 37 °C, respectively. While, Km and Vmax values were 1.07 mg alginate/ ml and 128.2 U/mg protein, respectively. The enzyme was partially stable below 50 °C, and the activity of the enzyme was strongly enhanced by K(+), and strongly inhibited by Ba(+2), Cd(+2), Fe(+2) and Zn(+2). The purified enzyme yielded a single band on SDS-PAGE with molecular weight (40.0 kDa). PMID:27630053

  17. Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities.

    PubMed

    Bustos, Irene; Martínez-Bartolomé, Miguel A; Achemchem, Fouad; Peláez, Carmen; Requena, Teresa; Martínez-Cuesta, M Carmen

    2011-08-01

    Volatile sulphur compounds (VSCs) are of prime importance in the overall aroma of cheese and make a significant contribution to their typical flavours. Thus, the control of VSCs formation offers considerable potential for industrial applications. Here, lactic acid bacteria (LAB) from different ecological origins were screened for their abilities to produce VSCs from L-methionine. From the data presented, VSC-forming abilities were shown to be strain-specific and were correlated with the C-S lyase enzymatic activities determined using different approaches. High VSCs formation were detected for those strains that were also shown to possess high thiol-producing abilities (determined either by agar plate or spectrophotometry assays). Moreover, differences in C-S lyase activities were shown to correspond with the enzymatic potential of the strains as determined by in situ gel visualization. Therefore, the assessment of the C-S lyase enzymatic potential, by means of either of these techniques, could be used as a valuable approach for the selection of LAB strains with high VSC-producing abilities thus, representing an effective way to enhance cheese sulphur aroma compounds synthesis. In this regard, this study highlights the flavour forming potential of the Streptococcus thermophilus STY-31, that therefore could be used as a starter culture in cheese manufacture. Furthermore, although C-S lyases are involved in both biosynthetic and catabolic pathways, an association between methionine and cysteine auxotrophy of the selected strains and their VSCs-producing abilities could not be found.

  18. Structure of a PL17 Family Alginate Lyase Demonstrates Functional Similarities among Exotype Depolymerases

    PubMed Central

    Park, David; Jagtap, Sujit; Nair, Satish K.

    2014-01-01

    Brown macroalgae represent an ideal source for complex polysaccharides that can be utilized as precursors for cellulosic biofuels. The lack of recalcitrant lignin components in macroalgae polysaccharide reserves provides a facile route for depolymerization of constituent polysaccharides into simple monosaccharides. The most abundant sugars in macroalgae are alginate, mannitol, and glucan, and although several classes of enzymes that can catabolize the latter two have been characterized, studies of alginate-depolymerizing enzymes have lagged. Here, we present several crystal structures of Alg17c from marine bacterium Saccharophagus degradans along with structure-function characterization of active site residues that are suggested to be involved in the exolytic mechanism of alginate depolymerization. This represents the first structural and biochemical characterization of a family 17 polysaccharide lyase enzyme. Despite the lack of appreciable sequence conservation, the structure and β-elimination mechanism for glycolytic bond cleavage by Alg17c are similar to those observed for family 15 polysaccharide lyases and other lyases. This work illuminates the evolutionary relationships among enzymes within this unexplored class of polysaccharide lyases and reinforces the notion of a structure-based hierarchy in the classification of these enzymes. PMID:24478312

  19. Isocitrate lyase and the glyoxylate cycle. Progress report, February 16, 1992--February 15, 1993

    SciTech Connect

    McFadden, B.A.

    1992-12-31

    This progress report describes efforts directed at the active-site modification of isocitrate lyase (icl) of Escherichia coli. Studies are reported that describe the results of several amino acid substitutions gained by directed mutagenesis of the icl gene. Preliminary studies are also related in cloning, sequencing and expression of icl of watermelon.

  20. Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B).

    PubMed

    Matsui, K; Shibutani, M; Hase, T; Kajiwara, T

    1996-09-23

    Fatty acid hydroperoxide lyases cleave a C-C bond adjacent to a hydroperoxide group in lipoxygenase derived lipid hydroperoxides to form short-chain aldehydes and oxo-acids. Previously, we showed that fatty acid hydroperoxide lyase from bell pepper fruits is a heme protein whose spectrophotometric properties greatly resemble a cytochrome P450. In order to ascertain the relationship of it to the P450 gene family, we have cloned cDNA encoding fatty acid hydroperoxide lyase from immature bell pepper fruits. The cDNA encodes 480 amino acids, and shares homology with P450s mostly at the C terminus. The heme binding cysteine is recognizable at position 441. The most closely related P450 is allene oxide synthase (CYP74A), with which it has 40% identity. It qualifies the lyase as a member of a new P450 subfamily, CYP74B. From this finding, the enzyme is thought to be a novel member of P450 specialized for the metabolism of lipid peroxides.

  1. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3.

    PubMed

    Park, Hwan Hee; Kam, Natania; Lee, Eun Yeol; Kim, Hee Sook

    2012-04-01

    A bacterium possessing alginate-degrading activity was isolated from marine brown seaweed soup liquefied by salted and fermented anchovy. The isolated strain was designated as Sphingomonas sp. MJ-3 based on the analyses of 16S ribosomal DNA sequences, 16S-23S internal transcribed spacer region sequences, biochemical characteristics, and cellular fatty acid composition. A novel alginate lyase gene was cloned from genomic DNA library and then expressed in Escherichia coli. When the deduced amino acid sequence was compared with the sequences on the databases, interestingly, the cloned gene product was predicted to consist of AlgL (alginate lyase L)-like and heparinase-like protein domain. The MJ-3 alginate lyase gene shared below 27.0% sequence identity with exolytic alginate lyase of Sphingomonas sp. A1. The optimal pH and temperature for the recombinant MJ-3 alginate lyase were 6.5 and 50°C, respectively. The final degradation products of alginate oligosaccharides were analyzed by electrospray ionization mass spectrometry and proved to be alginate monosaccharides. Based on the results, the recombinant alginate lyase from Sphingomonas sp. MJ-3 is regarded as an oligoalginate lyase that can degrade oligoalginate and alginate into alginate monosaccharides.

  2. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism

    PubMed Central

    Peng, Huan; Cui, Jiangkuan; Long, Haibo; Huang, Wenkun; Kong, Lingan; Liu, Shiming; He, Wenting; Hu, Xianqi; Peng, Deliang

    2016-01-01

    Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests

  3. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    PubMed

    Peng, Huan; Cui, Jiangkuan; Long, Haibo; Huang, Wenkun; Kong, Lingan; Liu, Shiming; He, Wenting; Hu, Xianqi; Peng, Deliang

    2016-01-01

    Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests

  4. Bioactivation of cysteine conjugates of 1-nitropyrene oxides by cysteine conjugate beta-lyase purified from Peptostreptococcus magnus.

    PubMed Central

    Kataoka, K; Kinouchi, T; Akimoto, S; Ohnishi, Y

    1995-01-01

    To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since P. magnus is one of the constituents of the intestinal microflora and exhibits high levels of degrading activity with cysteine conjugates of 1-nitropyrene oxides (1-NP oxide-Cys). The activity of purified beta-lyase was optimal at pH 7.5 to 8.0, was completely inhibited by aminooxyacetic acid and hydroxylamine, and was eliminated by heating the enzyme at 55 degrees C for 5 min. The molecular weight of beta-lyase was 150,000, as determined by fast protein liquid chromatography. S-Arylcysteine conjugates were good substrates for this enzyme. As determined by the Salmonella mutagenicity test, 5 ng of beta-lyase protein increased the mutagenicity of the cysteine conjugate of 1-NP 9,10-oxide (10 nmol per plate) 4.5-fold in Salmonella typhimurium TA98 and 4.1-fold in strain TA100. However, beta-lyase had little effect on the cysteine conjugate of 1-NP 4,5-oxide (10 nmol per plate). Both conjugates exhibited only low levels of mutagenicity with nitroreductase-deficient strain TA98NR. In vitro binding of 1-NP oxide-Cys to calf thymus DNA was increased by adding purified beta-lyase or xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8526486

  5. Inactivation of citrate lyase from Rhodopseudomonas gelatinosa by a specific deacetylase and inhibition of this inactivation by L-(+1-glutamate.

    PubMed Central

    Giffhorn, F; Gottschalk, G

    1975-01-01

    A previously unrecognized enzyme, citrate lyase deacetylase, has been purified about 140-fold from cell extracts of Rhodopseudomonas gelatinosa. It catalyzed the conversion of enzymatically active acetyl-S-citrate lyase into the inactive HS-form and acetate. The enzyme exhibited an optimal rate of inactivation at pH 8.1. Because of the instability of acetyl-S-citrate lyase at acidic and alkaline pH values, all assays were carried out at pH 7.2, where the spontaneous hydrolysis of the acetyl-S-citrate lyase was negligible and deacetylase showed 70% of the activity at pH 8.1. The apparent Km value for citrate lyase was 10(-7) M at pH 7.2 and 30 C. The activity of the deacetylase was restricted to the citrate lyase from R. gelatinosa. The corresponding lyases from Enterobacter aerogenes (formerly Klebsiella aerogenes) and Streptococcus diacetilactis were not deacetylated; likewise, thioesters such as acetyl-S coenzyme A, acetoacetyl-S coenzyme A, and N-acetyl-S-acetyl-cysteamine were also not hydrolyzed. Citrate lyase deacetylase was present in very small amounts in cells of R. gelatinosa grown with acetate or succinate; it was induced by citrate along with the citrate lyase. L-(+)-Glutamate strongly inhibited the deacetylase. Fifty percent inhibition was obtained at a concentration of 1.4 X 10(-4) L-(+)-glutamate. D-(-)-Glutamate, alpha-ketoglutarate, L-alpha-hydroxyglutarate, L-(-)-proline, and other metabolites were less effective. PMID:356

  6. Pectate Lyase Pollen Allergens: Sensitization Profiles and Cross-Reactivity Pattern

    PubMed Central

    Bernardi, Maria Livia; Gadermaier, Gabriele; Weiss, Richard; Ebner, Christof; Yokoi, Hidenori; Takai, Toshiro; Didierlaurent, Alain; Rafaiani, Chiara; Briza, Peter; Mari, Adriano; Behrendt, Heidrun; Wallner, Michael; Ferreira, Fátima

    2015-01-01

    Background Pollen released by allergenic members of the botanically unrelated families of Asteraceae and Cupressaceae represent potent elicitors of respiratory allergies in regions where these plants are present. As main allergen sources the Asteraceae species ragweed and mugwort, as well as the Cupressaceae species, cypress, mountain cedar, and Japanese cedar have been identified. The major allergens of all species belong to the pectate lyase enzyme family. Thus, we thought to investigate cross-reactivity pattern as well as sensitization capacities of pectate lyase pollen allergens in cohorts from distinct geographic regions. Methods The clinically relevant pectate lyase pollen allergens Amb a 1, Art v 6, Cup a 1, Jun a 1, and Cry j 1 were purified from aqueous pollen extracts, and patients´ sensitization pattern of cohorts from Austria, Canada, Italy, and Japan were determined by IgE ELISA and cross-inhibition experiments. Moreover, we performed microarray experiments and established a mouse model of sensitization. Results In ELISA and ELISA inhibition experiments specific sensitization pattern were discovered for each geographic region, which reflected the natural allergen exposure of the patients. We found significant cross-reactivity within Asteraceae and Cupressaceae pectate lyase pollen allergens, which was however limited between the orders. Animal experiments showed that immunization with Asteraceae allergens mainly induced antibodies reactive within the order, the same was observed for the Cupressaceae allergens. Cross-reactivity between orders was minimal. Moreover, Amb a 1, Art v 6, and Cry j 1 showed in general higher immunogenicity. Conclusion We could cluster pectate lyase allergens in four categories, Amb a 1, Art v 6, Cup a 1/Jun a 1, and Cry j 1, respectively, at which each category has the potential to sensitize predisposed individuals. The sensitization pattern of different cohorts correlated with pollen exposure, which should be considered for

  7. Induction of Phenylalanine Ammonia-lyase in Xanthium Leaf Disks. Photosynthetic Requirement and Effect of Daylength 1

    PubMed Central

    Zucker, Milton

    1969-01-01

    A cycloheximide-sensitive increase in the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) occurs in Xanthium leaf disks exposed to light. Radioactive ammonia-lyase has been isolated by means of sucrose density gradient centrifugation and starch gel electrophoresis from disks fed l-isoleucine-U-14C or l-arginine-U-14C. The incorporation of radioactive amino acids into phenylalanine ammonia-lyase together with the inhibitory effects of cycloheximide indicate that the observed increase in enzyme activity involves the induction of lyase synthesis. The light-dependent synthesis of the ammonia-lyase is completely inhibited by 50 μm 3-(4-chlorophenyl)-1,1-dimethylurea (CMU) indicating that photosynthesis is involved. Only a trace quantity of some photosynthetic product must be needed because half light saturation occurs at very low intensity (ca. 30 ft-c). Exogenous carbohydrate is also required for continuing enzyme synthesis over a 72 hr period. But carbohydrate does not replace the photosynthetic requirement in darkness. Enzyme formed in light disappears rapidly from disks placed in the dark. The decay of ammonia-lyase activity follows first order kinetics. The half-life of the lyase ranged from 6 to 15 hr in leaf material used. Cyoloheximide inhibits the decay of lyase activity. Thus the maintenance of turnover in Xanthium leaf disks requires de novo synthesis of protein. That turnover, i.e., degradation as well as synthesis of lyase protein occurs is suggested by the apparent loss of radioactive ammonia-lyase from leaf disks placed in darkness. Light-induced synthesis coupled with rapid turnover can produce a diurnal fluctuation of ammonia-lyase activity in Xanthium leaf disks. Alternating periods of enzyme synthesis and degradation were observed in disks exposed to 24 hr cycles of light and dark. The average level of enzyme activity maintained in the tissue was directly related to the length of the light period. Induction of lyase synthesis was also observed

  8. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family.

    PubMed

    Shevchik, V E; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1997-12-01

    Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pel4, pelB, pelC, pelD, and pelE genes and a set of secondary pectate lyases, two of which, pelL and pelZ, have been already identified. We cloned the pelI gene, encoding a ninth pectate lyase of E. chrysanthemi 3937. The pelI reading frame is 1,035 bases long, corresponding to a protein of 344 amino acids including a typical amino-terminal signal sequence of 19 amino acids. The purified mature PelI protein has an isoelectric point of about 9 and an apparent molecular mass of 34 kDa. PelI has a preference for partially methyl esterified pectin and presents an endo-cleaving activity with an alkaline pH optimum and an absolute requirement for Ca2+ ions. PelI is an extracellular protein secreted by the Out secretory pathway of E. chrysanthemi. The PelI protein is very active in the maceration of plant tissues. A pelI mutant displayed reduced pathogenicity on chicory leaves, but its virulence did not appear to be affected on potato tubers or Saintpaulia ionantha plants. The pelI gene constitutes an independent transcriptional unit. As shown for the other pel genes, the transcription of pelI is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, temperature, nitrogen starvation, and catabolite repression. Regulation of pelI expression appeared to be dependent on the three repressors of pectinase synthesis, KdgR, PecS, and PecT, and on the global activator of sugar catabolism, cyclic AMP receptor protein. A functional KdgR binding site was identified close to the putative pelI promoter. Analysis of the amino acid sequence of PelI revealed high homology with a pectate lyase from Erwinia carotovora subsp. carotovora (65% identity) and low homology with pectate lyases of the phytopathogenic fungus Nectria haematococca (Fusarium solani). This finding indicates that PelI belongs to pectate lyase class

  9. Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies.

    PubMed

    Rajan, Rakhi; Prasad, Rajendra; Taneja, Bhupesh; Wilson, Samuel H; Mondragón, Alfonso

    2013-01-01

    Topoisomerase V (Topo-V) is the only member of a novel topoisomerase subtype. Topo-V is unique because it is a bifunctional enzyme carrying both topoisomerase and DNA repair lyase activities within the same protein. Previous studies had shown that the topoisomerase domain spans the N-terminus of the protein and is followed by 12 tandem helix-hairpin-helix [(HhH)(2)] domains. There are at least two DNA repair lyase active sites for apurinic/apyrimidinic (AP) site processing, one within the N-terminal region and the second within the C-terminal domain of Topo-V, but their exact locations and characteristics are unknown. In the present study, the N-terminal 78-kDa fragment of Topo-V (Topo-78), containing the topoisomerase domain and one of the lyase DNA repair domains, was characterized by structural and biochemical studies. The results show that an N-terminal 69-kDa fragment is the minimal fragment with both topoisomerase and AP lyase activities. The lyase active site of Topo-78 is at the junction of the fifth and sixth (HhH)(2) domains. From the biochemical and structural data, it appears that Lys571 is the most probable nucleophile responsible for the lyase activity. Our experiments also suggest that Topo-V most likely acts as a Class I AP endonuclease in vivo. PMID:23125368

  10. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  11. Structural characterization of hydroperoxide lyase in dodecyl maltoside by using circular dichroism.

    PubMed

    Panagakou, I; Touloupakis, E; Ghanotakis, D F

    2013-01-01

    Fatty acid hydroperoxide lyase (HPL) is a membrane protein, member of the lipoxygenase pathway, which holds a central role in plant defense. Green bell pepper fatty acid hydroperoxide lyase, overexpressed in Escherichia coli, was purified and solubilized in two different non ionic detergents, Triton X-100 and dodecyl maltoside (DM). DM is considered to be more useful compared to Triton X-100, as it allows characterization of the protein with spectroscopic techniques, for which Triton X-100 was inapplicable. Circular dichroism demonstrated that HPL's secondary structure in DM consists of 13.53 % α-helix, 32.73 % β-sheet, 21.76 % turn and 31.13 % unordered. PMID:23076732

  12. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16.

    PubMed Central

    Preston, J F; Rice, J D; Ingram, L O; Keen, N T

    1992-01-01

    The four pectate lyases (EC 4.2.2.2) secreted by Erwinia chrysanthemi EC16 have been individually produced as recombinant enzymes in Escherichia coli. Oligogalacturonates formed from polygalacturonic acid during reactions catalyzed by each enzyme have been determined by high-performance liquid chromatography analysis. PLa catalyzes the formation of a series of oligomers ranging from dimer to dodecamer through a random endolytic depolarization mechanism. PLb and PLc are trimer- and tetramer-generating enzymes with an identical combination of endolytic and exolytic mechanisms. PLe catalyzes a nonrandom endolytic depolymerization with the formation of dimer as the predominant product. The pectate lyases secreted by E. chrysanthemi EC16 represent a battery of enzymes with three distinct approaches to the depolymerization of plant cell walls. PMID:1548242

  13. Hydroperoxide lyase products, hexanal, hexenal and nonenal, inhibit soybean seedling growth

    SciTech Connect

    Gardner, H.W.; Dornbos, D.L. Jr. )

    1989-04-01

    Hexanal, a product of hydroperoxide lyase, inhibited the germination and growth of soybean seeds. Hexanal was continuously delivered to germinating seeds as a vapor dissolved in air with a flow-through system (100 ml/min). Only 0.8 {mu}g hexanal/ml air was required to inhibit seedling growth by 50%; nearly 100% inhibition occurred with a dose of 1.8 {mu}g hexanal/ml air. In the absence of hexanal brown spots were often visible on the seedlings, but at sublethal doses of hexanal, the seedlings were largely devoid of these spots. The relative toxicity of three hydroperoxide lyase products, hexanal, trans-2-hexanal and trans-2-nonenal, were compared with a Petri-dish bioassay. The order of toxicity against seedling growth was hexenal>hexanal>nonenal.

  14. Hydroxynitrile lyase from Hevea brasiliensis: molecular characterization and mechanism of enzyme catalysis.

    PubMed

    Hasslacher, M; Kratky, C; Griengl, H; Schwab, H; Kohlwein, S D

    1997-03-01

    (S)-Hydroxynitrile lyase (Hnl) from the tropical rubber tree Hevea brasiliensis is a 29 kDa single chain protein that catalyses the breakdown or formation of a C--C bond by reversible addition of hydrocyanic acid to aldehydes or ketones. The primary sequence of Hnl has no significant homology to known proteins. Detailed homology investigations employing PROFILESEARCH and secondary structure prediction algorithms suggest that Hnl is a member of the alpha/beta hydrolase fold protein family and contains a catalytic triad as functional residues for catalysis. The significance of predicted catalytic residues was tested and confirmed by site-directed mutagenesis and expression of mutant and wild-type proteins in the yeast, Saccharomyces cerevisiae. Based on these data we suggest a mechanistic model for the (S)-cyanohydrin synthesis catalyzed by hydroxynitrile lyase from Hevea brasiliensis. PMID:9094745

  15. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.

    PubMed

    Chakraborty, Sumit; Nemeria, Natalia; Yep, Alejandra; McLeish, Michael J; Kenyon, George L; Jordan, Frank

    2008-03-25

    Direct spectroscopic observation of thiamin diphosphate-bound intermediates was achieved on the enzyme benzaldehyde lyase, which carries out reversible and highly enantiospecific conversion of ( R)-benzoin to benzaldehyde. The key enamine intermediate could be observed at lambda max 393 nm in the benzoin breakdown direction and in the decarboxylase reaction starting with benzoylformate. With benzaldehyde as substrate, no intermediates could be detected, only formation of benzoin at 314 nm. To probe the rate-limiting step in the direction of ( R)-benzoin synthesis, the (1)H/ (2)H kinetic isotope effect was determined for benzaldehyde labeled at the aldehyde position and found to be small (1.14 +/- 0.03), indicating that ionization of the C2alphaH from C2alpha-hydroxybenzylthiamin diphosphate is not rate limiting. Use of the alternate substrates benzoylformic and phenylpyruvic acids (motivated by the observation that while a carboligase, benzaldehyde lyase could also catalyze the slow decarboxylation of 2-oxo acids) enabled the observation of the substrate-thiamin covalent intermediate via the 1',4'-iminopyrimidine tautomer, characteristic of all intermediates with a tetrahedral C2 substituent on ThDP. The reaction of benzaldehyde lyase with the chromophoric substrate analogue ( E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid and its decarboxylated product ( E)-3-(pyridine-3-yl)acrylaldehyde enabled the detection of covalent adducts with both. Neither adduct underwent further reaction. An important finding of the studies is that all thiamin-related intermediates are in a chiral environment on benzaldehyde lyase as reflected by their circular dichroism signatures.

  16. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. PMID:26971012

  17. DNA sequences that activate isocitrate lyase gene expression during late embryogenesis and during postgerminative growth.

    PubMed Central

    Zhang, J Z; Santes, C M; Engel, M L; Gasser, C S; Harada, J J

    1996-01-01

    We analyzed DNA sequences that regulate the expression of an isocitrate lyase gene from Brassica napus L. during late embryogenesis and during postgerminative growth to determine whether glyoxysomal function is induced by a common mechanism at different developmental stages. beta-Glucuronidase constructs were used both in transient expression assays in B. napus and in transgenic Arabidopsis thaliana to identify the segments of the isocitrate lyase 5' flanking region that influence promoter activity. DNA sequences that play the principal role in activating the promoter during post-germinative growth are located more than 1,200 bp upstream of the gene. Distinct DNA sequences that were sufficient for high-level expression during late embryogenesis but only low-level expression during postgerminative growth were also identified. Other parts of the 5' flanking region increased promoter activity both in developing seed and in seedlings. We conclude that a combination of elements is involved in regulating the isocitrate lyase gene and that distinct DNA sequences play primary roles in activating the gene in embryos and in seedlings. These findings suggest that different signals contribute to the induction of glyoxysomal function during these two developmental stages. We also showed that some of the constructs were expressed differently in transient expression assays and in transgenic plants. PMID:8934622

  18. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition

    PubMed Central

    Tang, Hua; Li, Wen-Chao; Wu, Hao; Ding, Hui

    2016-01-01

    Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomes more and more serious. Therefore, it is interesting to develop a more reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM) was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of antimicrobial agents. PMID:27437396

  19. Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli.

    PubMed Central

    Matsuoka, M; McFadden, B A

    1988-01-01

    A structural gene for isocitrate lyase was isolated from a cosmid containing an ace locus of the Escherichia coli chromosome. Cloning and expression under control of the tac promoter in a multicopy plasmid showed that a 1.7-kilobase-pair DNA segment was sufficient for complementation of an aceA deletion mutation and overproduction of isocitrate lyase. DNA sequence analysis of the cloned gene and N-terminal protein sequencing of the cloned and wild-type enzymes revealed an entire aceA gene which encodes a 429-amino-acid residue polypeptide whose C-terminus is histidine. The deduced amino acid sequence for the 47.2-kilodalton subunit of E. coli isocitrate lyase could be aligned with that for the 64.8-kilodalton subunit of the castor bean enzyme with 39% identity except for limited N- and C-terminal regions and a 103-residue stretch that was unique for the plant enzyme and started approximately in the middle of that peptide. Images PMID:3049537

  20. A facile stable-isotope dilution method for determination of sphingosine phosphate lyase activity.

    PubMed

    Suh, Jung H; Eltanawy, Abeer; Rangan, Apoorva; Saba, Julie D

    2016-01-01

    A new technique for quantifying sphingosine phosphate lyase activity in biological samples is described. In this procedure, 2-hydrazinoquinoline is used to convert (2E)-hexadecenal into the corresponding hydrazone derivative to improve ionization efficiency and selectivity of detection. Combined utilization of liquid chromatographic separation and multiple reaction monitoring-mass spectrometry allows for simultaneous quantification of the substrate S1P and product (2E)-hexadecenal. Incorporation of (2E)- d5-hexadecenal as an internal standard improves detection accuracy and precision. A simple one-step derivatization procedure eliminates the need for further extractions. Limits of quantification for (2E)-hexadecenal and sphingosine-1-phosphate are 100 and 50fmol, respectively. The assay displays a wide dynamic detection range useful for detection of low basal sphingosine phosphate lyase activity in wild type cells, SPL-overexpressing cell lines, and wild type mouse tissues. Compared to current methods, the capacity for simultaneous detection of sphingosine-1-phosphate and (2E)-hexadecenal greatly improves the accuracy of results and shows excellent sensitivity and specificity for sphingosine phosphate lyase activity detection.

  1. Molecular Characterization of a Novel N-Acetylneuraminate Lyase from Lactobacillus plantarum WCFS1 ▿ †

    PubMed Central

    Sánchez-Carrón, Guiomar; García-García, María Inmaculada; López-Rodríguez, Ana Belén; Jiménez-García, Sofía; Sola-Carvajal, Agustín; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2011-01-01

    N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-d-mannosamine (ManNAc). In nature, N-acetylneuraminate lyase occurs mainly in pathogens. However, this paper describes how an N-acetylneuraminate lyase was cloned from the human gut commensal Lactobacillus plantarum WCFS1 (LpNAL), overexpressed, purified, and characterized for the first time. This novel enzyme, which reaches a high expression level (215 mg liter−1 culture), shows similar catalytic efficiency to the best NALs previously described. This homotetrameric enzyme (132 kDa) also shows high stability and activity at alkaline pH (pH > 9) and good temperature stability (60 to 70°C), this last feature being further improved by the presence of stabilizing additives. These characteristics make LpNAL a promising biocatalyst. When its sequence was compared with that of other, related (real and putative) NALs described in the databases, it was seen that NAL enzymes could be divided into four structural groups and three subgroups. The relation of these subgroups with human and other mammalian NALs is also discussed. PMID:21317263

  2. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition.

    PubMed

    Chen, Xin-Xin; Tang, Hua; Li, Wen-Chao; Wu, Hao; Chen, Wei; Ding, Hui; Lin, Hao

    2016-01-01

    Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomes more and more serious. Therefore, it is interesting to develop a more reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM) was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of antimicrobial agents. PMID:27437396

  3. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides

    PubMed Central

    Chandrasekar, Jagadeeswaran; Wylder, Adam C.; Silverman, Scott K.

    2015-01-01

    Dehydroalanine (Dha) is a nonproteinogenic electrophilic amino acid that is a synthetic intermediate or product in the biosynthesis of several bioactive cyclic peptides such as lantibiotics, thiopeptides, and microcystins. Dha also enables labeling of proteins and synthesis of post-translationally modified proteins and their analogues. However, current chemical approaches to introducing Dha into peptides have substantial limitations. Using in vitro selection, here we show that DNA can catalyze Zn2+ or Zn2+/Mn2+-dependent formation of Dha from phosphoserine (pSer), i.e., exhibit pSer lyase activity, a fundamentally new DNA-catalyzed reaction. Two new pSer lyase deoxyribozymes, named Dha-forming deoxyribozymes 1 and 2 (DhaDz1 and DhaDz2), each function with multiple turnover on the model hexapeptide substrate that was used during selection. Using DhaDz1, we generated Dha from pSer within an unrelated linear 13-mer peptide. Subsequent base-promoted intramolecular cyclization of homocysteine into Dha formed a stable cystathionine (thioether) analogue of the complement inhibitor compstatin. These findings establish the fundamental catalytic ability of DNA to eliminate phosphate from pSer to form Dha and suggest that with further development, pSer lyase deoxyribozymes will have broad practical utility for site-specific enzymatic synthesis of Dha from pSer in peptide substrates. PMID:26200899

  4. Exploration of the action pattern of Streptomyces hyaluronate lyase using high-resolution capillary electrophoresis.

    PubMed

    Park, Y; Cho, S; Linhardt, R J

    1997-02-01

    Hyaluronic acid was treated exhaustively with a hyaluronate lyase (hyaluronidase, EC 4.2.2.1) from Streptomyces hyalurolyticus to obtain a tetrasaccharide and a hexasaccharide product in a molar ratio of 1 to 1.2. The tetrasaccharide product was fluorescently labeled at the reducing end by reductive amination with 7-amino 1,3-naphthalene disulfonic acid (AGA) and the structure of the conjugate was determined spectroscopically. Partial treatments of hyaluronic acid with hyaluronate lyase afforded complex mixtures of oligosaccharides that were similarly fluorescently labeled. These labeled oligosaccharide mixtures were analyzed using high-resolution capillary electrophoresis. The resulting electropherograms showed the content of each hyaluronic acid derived oligosaccharide, having a degree of polymerization (dp) from 4 to 50, throughout the enzymatic reaction. Computer simulation studies gave comparable kinetic profiles suggesting that hyaluronate lyase exhibits a random endolytic action pattern. Interestingly, oligosaccharides of certain size (dp) were under-represented in these oligosaccharide mixtures suggesting that linkages at spacings of 10 to 12 saccharide units are somewhat resistant to this enzyme. The cause of this resistance might be the result of secondary or higher order structural features present in the hyaluronic acid polymer.

  5. Organization of the 5' region of the rat ATP citrate lyase gene.

    PubMed Central

    Kim, K S; Park, S W; Moon, Y A; Kim, Y S

    1994-01-01

    A genomic clone, encompassing the 5' flanking region and the first seven exons of rat ATP citrate lyase gene, was isolated from a rat genomic library and sequenced. Primer-extension analysis showed that mRNA is transcribed at 4407 nucleotides upstream from the translation start site. Primer-extension analysis and sequencing of ATP citrate lyase cDNA amplified by PCR showed that the promoter used for transcription is identical in mammary gland, lung, liver, brain and kidney. Southern-blot analysis showed that the ATP citrate lyase gene exists as a single copy. The 5' flanking region contains several consensus sequences defined as promoter elements. These include a CAAT box and Sp1-binding sites. However, a TATA box lacks this promoter. The expression of the chloramphenicol acetyltransferase gene was induced by the 5' flanking region (-2370 to -1) in the CHO cell line. The 5' flanking region also contains several sequence elements that may be involved in the transcriptional regulation of the gene. Images Figure 2 Figure 3 Figure 4 Figure 6 PMID:7945200

  6. Expression and properties of the glyoxysomal and cytosolic forms of isocitrate lyase in Amaranthus caudatus L.

    PubMed

    Eprintsev, Alexander T; Fedorin, Dmitry N; Salnikov, Alexei V; Igamberdiev, Abir U

    2015-06-01

    Isocitrate lyase (EC 4.1.3.1) catalyzes the reversible conversion of d-isocitrate to succinate and glyoxylate. It is usually associated with the glyoxylate cycle in glyoxysomes, although the non-glyoxysomal form has been reported and its relation to interconversion of organic acids outside the glyoxylate cycle suggested. We investigated the expression of two isocitrate lyase genes and activities of the glyoxysomal (ICL1) and cytosolic (ICL2) forms of isocitrate lyase in amaranth (Amaranthus caudatus L.) seedlings. Both forms were separated and purified. The cytosolic form had a low optimum pH (6.5) and was activated by Mn(2+) ions, while Mg(2+) was ineffective, and had a lower affinity to d, l-isocitrate (Km 63 μM) as compared to the glyoxysomal form (optimum pH 7.5, K(m) 45 μM), which was activated by Mg(2+). The highest ICL1 activity was observed on the 3rd day of germination; then the activity and expression of the corresponding gene decreased, while the activity of ICL2 and gene expression increased to the 7th day of germination and then remained at the same level. It is concluded that the function of ICL1 is related to the glyoxylate cycle while ICL2 functions independently from the glyoxylate cycle and interconverts organic acids in the cytosol. PMID:25955696

  7. Cloning and heterologous expression of a thermostable pectate lyase from Penicillium occitanis in Escherichia coli.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Koubaa, Aida; Trigui, Sameh; Ayadi, Malika; Trigui-Lahiani, Hèla; Kallel, Emna; Turki, Nadia; Djemal, Lamia; Belghith, Hafeth; Taieb, Noomen Hadj; Gargouri, Ali

    2013-11-01

    The entire pectate lyase cDNA (Pel1) of Penicillium occitanis was cloned from a cDNA bank and sequenced. The ORF exhibited a great homology to Penicillium marneffei and conservation of all features of fungal pectate lyases such as the barrel structure with "eight right-handed parallel β-helix" architecture. The structure modeling also showed the interesting resemblance with thermostable pectate lyases since several specific residues were also shared by Pel1 and these thermostable enzymes. Having shown that the enzyme retains its activity after endoH-mediated deglycosylation, we investigated its expression in Escherichia coli BL21 using the pET28-a vector. This expression was shown to be optimum when cells were induced at room temperature in 2YT medium rather than at 37 °C and LB medium. In such conditions, the recombinant protein was apparently produced more in soluble form than as inclusion bodies. The effect of NaCl concentration was investigated during the binding and elution steps of recombinant His-tagged enzyme on MagneHis Ni-particles. The purified enzyme was shown to retain its thermo-activity as well as a great tolerance to high concentration of NaCl and imidazole.

  8. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed.

  9. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides.

    PubMed

    Chandrasekar, Jagadeeswaran; Wylder, Adam C; Silverman, Scott K

    2015-08-01

    Dehydroalanine (Dha) is a nonproteinogenic electrophilic amino acid that is a synthetic intermediate or product in the biosynthesis of several bioactive cyclic peptides such as lantibiotics, thiopeptides, and microcystins. Dha also enables labeling of proteins and synthesis of post-translationally modified proteins and their analogues. However, current chemical approaches to introducing Dha into peptides have substantial limitations. Using in vitro selection, here we show that DNA can catalyze Zn(2+) or Zn(2+)/Mn(2+)-dependent formation of Dha from phosphoserine (pSer), i.e., exhibit pSer lyase activity, a fundamentally new DNA-catalyzed reaction. Two new pSer lyase deoxyribozymes, named Dha-forming deoxyribozymes 1 and 2 (DhaDz1 and DhaDz2), each function with multiple turnover on the model hexapeptide substrate that was used during selection. Using DhaDz1, we generated Dha from pSer within an unrelated linear 13-mer peptide. Subsequent base-promoted intramolecular cyclization of homocysteine into Dha formed a stable cystathionine (thioether) analogue of the complement inhibitor compstatin. These findings establish the fundamental catalytic ability of DNA to eliminate phosphate from pSer to form Dha and suggest that with further development, pSer lyase deoxyribozymes will have broad practical utility for site-specific enzymatic synthesis of Dha from pSer in peptide substrates.

  10. Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937.

    PubMed

    Shevchik, V E; Kester, H C; Benen, J A; Visser, J; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1999-03-01

    Erwinia chrysanthemi 3937 secretes several pectinolytic enzymes, among which eight isoenzymes of pectate lyases with an endo-cleaving mode (PelA, PelB, PelC, PelD, PelE, PelI, PelL, and PelZ) have been identified. Two exo-cleaving enzymes, the exopolygalacturonate lyase, PelX, and an exo-poly-alpha-D-galacturonosidase, PehX, have been previously identified in other E. chrysanthemi strains. Using a genomic bank of a 3937 mutant with the major pel genes deleted, we cloned a pectinase gene identified as pelX, encoding the exopolygalacturonate lyase. The deduced amino acid sequence of the 3937 PelX is very similar to the PelX of another E. chrysanthemi strain, EC16, except in the 43 C-terminal amino acids. PelX also has homology to the endo-pectate lyase PelL of E. chrysanthemi but has a N-terminal extension of 324 residues. The transcription of pelX, analyzed by gene fusions, is dependent on several environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, nitrogen starvation, and catabolite repression. Regulation of pelX expression is dependent on the KdgR repressor, which controls almost all the steps of pectin catabolism, and on the global activator of sugar catabolism, cyclic AMP receptor protein. In contrast, PecS and PecT, two repressors of the transcription of most pectate lyase genes, are not involved in pelX expression. The pelX mutant displayed reduced pathogenicity on chicory leaves, but its virulence on potato tubers or Saintpaulia ionantha plants did not appear to be affected. The purified PelX protein has no maceration activity on plant tissues. Tetragalacturonate is the best substrate of PelX, but PelX also has good activity on longer oligomers. Therefore, the estimated number of binding subsites for PelX is 4, extending from subsites -2 to +2. PelX and PehX were shown to be localized in the periplasm of E. chrysanthemi 3937. PelX catalyzed the formation of unsaturated digalacturonates by

  11. Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937.

    PubMed

    Lojkowska, E; Masclaux, C; Boccara, M; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1995-06-01

    Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pelA, pelB, pelC, pelD and pelE genes. Recently, a new set of pectate lyases was identified in E. chrysanthemi mutants deleted of those pel genes. We cloned the pelL gene, encoding one of these secondary pectate lyases of E. chrysanthemi 3937, from a genomic bank of a strain deleted of the five major pel genes. The nucleotide sequence of the region containing the pelL gene was determined. The pelL reading frame is 1275 bases long, corresponding to a protein of 425 amino acids including a typical amino-terminal signal sequence of 25 amino acids. Comparison of the amino acid sequences of PelL and the exo-pectate lyase PelX of E. chrysanthemi EC16 revealed a low homology, limited to 220 residues of the central part of the proteins. No homology was detected with other bacterial pectinolytic enzymes. Regulation of pelL transcription was analysed using gene fusion. As shown for the other pel genes, the transcription of pelL is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, temperature, iron starvation, osmolarity, anaerobiosis, nitrogen starvation and catabolite repression. Regulation of pelL expression appeared to be independent of the KdgR repressor, which controls all the steps of pectin catabolism. In contrast, the pecS gene, which is involved in regulation of the synthesis of the major pectate lyases and of cellulase, also appeared to be involved in pelL expression. The PelL protein is able to macerate plant tissue. This enzyme has a basic isoelectric point, presents an endo-cleaving activity on polygalacturonate or partially methylated pectin, with a basic pH optimum and an absolute requirement for Ca2+. The pelL mutant displayed a reduced virulence on potato tubers and Saintpaulia ionantha plants, demonstrating the important role of this enzyme in soft-rot disease. PMID:8577252

  12. Cysteine S-conjugate β-lyases: Important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents

    PubMed Central

    Cooper, Arthur J. L.; Krasnikov, Boris F.; Niatsetskaya, Zoya V.; Pinto, John T.; Callery, Patrick S.; Villar, Maria T.; Artigues, Antonio; Bruschi, Sam A.

    2010-01-01

    Summary Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate-containing enzymes that catalyze β-elimination reactions with cysteine S-conjugates that possess a good leaving group in the β-position. The end products are aminoacrylate and a sulfur-containing fragment. The aminoacrylate tautomerizes and hydrolyzes to pyruvate and ammonia. The mammalian cysteine S-conjugate β-lyases thus far identified are enzymes involved in amino acid metabolism that catalyze β-lyase reactions as non-physiological side reactions. Most are aminotransferases. In some cases the lyase is inactivated by reaction products. The cysteine S-conjugate β-lyases are of much interest to toxicologists because they play an important key role in the bioactivation (toxication) of halogenated alkenes, some of which are produced on an industrial scale and are environmental contaminants. The cysteine S-conjugate β-lyases have been reviewed in this journal previously [Cooper and Pinto, 2006]. Here we focus on more recent findings regarding: 1) the identification of enzymes associated with high-Mr cysteine S-conjugate β-lyases in the cytosolic and mitochondrial fractions of rat liver and kidney; 2) the mechanism of syncatalytic inactivation of rat liver mitochondrial aspartate aminotransferase by the nephrotoxic β-lyase substrate S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene); 3) toxicant channeling of reactive fragments from the active site of mitochondrial aspartate aminotransferase to susceptible proteins in the mitochondria; 4) the involvement of cysteine S-conjugate β-lyases in the metabolism/bioactivation of drugs and natural products; and 5) the role of cysteine S-conjugate β-lyases in the metabolism of selenocysteine Se-conjugates. This review emphasizes the fact that the cysteine S-conjugate β-lyases are biologically more important than hitherto appreciated. PMID:20306345

  13. Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents.

    PubMed

    Cooper, Arthur J L; Krasnikov, Boris F; Niatsetskaya, Zoya V; Pinto, John T; Callery, Patrick S; Villar, Maria T; Artigues, Antonio; Bruschi, Sam A

    2011-06-01

    Cysteine S-conjugate β-lyases are pyridoxal 5'-phosphate-containing enzymes that catalyze β-elimination reactions with cysteine S-conjugates that possess a good leaving group in the β-position. The end products are aminoacrylate and a sulfur-containing fragment. The aminoacrylate tautomerizes and hydrolyzes to pyruvate and ammonia. The mammalian cysteine S-conjugate β-lyases thus far identified are enzymes involved in amino acid metabolism that catalyze β-lyase reactions as non-physiological side reactions. Most are aminotransferases. In some cases the lyase is inactivated by reaction products. The cysteine S-conjugate β-lyases are of much interest to toxicologists because they play an important key role in the bioactivation (toxication) of halogenated alkenes, some of which are produced on an industrial scale and are environmental contaminants. The cysteine S-conjugate β-lyases have been reviewed in this journal previously (Cooper and Pinto in Amino Acids 30:1-15, 2006). Here, we focus on more recent findings regarding: (1) the identification of enzymes associated with high-M(r) cysteine S-conjugate β-lyases in the cytosolic and mitochondrial fractions of rat liver and kidney; (2) the mechanism of syncatalytic inactivation of rat liver mitochondrial aspartate aminotransferase by the nephrotoxic β-lyase substrate S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene); (3) toxicant channeling of reactive fragments from the active site of mitochondrial aspartate aminotransferase to susceptible proteins in the mitochondria; (4) the involvement of cysteine S-conjugate β-lyases in the metabolism/bioactivation of drugs and natural products; and (5) the role of cysteine S-conjugate β-lyases in the metabolism of selenocysteine Se-conjugates. This review emphasizes the fact that the cysteine S-conjugate β-lyases are biologically more important than hitherto appreciated.

  14. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  15. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    PubMed

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids.

  16. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  17. Purification and Properties of a Glucuronan Lyase from Sinorhizobium meliloti M5N1CS (NCIMB 40472)

    PubMed Central

    Da Costa, Alexandre; Michaud, Philippe; Petit, Emmanuel; Heyraud, Alain; Colin-Morel, Philippe; Courtois, Bernard; Courtois, Josiane

    2001-01-01

    A glucuronan lyase extracted from Sinorhizobium meliloti strain M5N1CS was purified to homogeneity by anion-exchange chromatography. The purified enzyme corresponds to a monomer with a molecular mass of 20 kDa and a pI of 4.9. A specific activity was found only for polyglucuronates leading to the production of 4,5-unsaturated oligoglucuronates. The enzyme activity was optimal at pH 6.5 and 50°C. Zn2+, Cu2+, and Hg2+ (1 mM) inhibited the enzyme activity. No homology of the enzyme N-terminal amino acid sequence was found with any of the previously published protein sequences. This enzyme purified from S. meliloti strain M5N1CS corresponding to a new lyase was classified as an endopolyglucuronate lyase. PMID:11679345

  18. Crystallization and preliminary X-ray analysis of alginate lyase, a member of family PL-7, from Pseudomonas aeruginosa.

    PubMed

    Yamasaki, Masayuki; Moriwaki, Satoko; Hashimoto, Wataru; Mikami, Bunzo; Murata, Kousaku

    2003-08-01

    Alginate lyase depolymerizes alginate, a heteropolysaccharide consisting of alpha-L-guluronate and beta-D-mannuronate, through a beta-elimination reaction. A protein PA1167 with a molecular mass of 25 kDa produced by Pseudomonas aeruginosa is an alginate lyase classified into polysaccharide lyase family PL-7. The enzyme was crystallized at 293 K in a drop solution comprising 1.4 M sodium chloride, 0.1 M potassium sodium phosphate and 0.1 M 2-morpholinoethanesulfonate-sodium hydroxide pH 6.5 by means of the vapor-diffusion method. The crystals were monoclinic and belonged to space group P2(1), with unit-cell parameters a = 43.4, b = 70.3, c = 67.4 A, beta = 94.5 degrees. Diffraction data were collected to 2.0 A from a single crystal. PMID:12876365

  19. Metabolism of β-valine via a CoA-dependent ammonia lyase pathway.

    PubMed

    Otzen, Marleen; Crismaru, Ciprian G; Postema, Christiaan P; Wijma, Hein J; Heberling, Matthew M; Szymanski, Wiktor; de Wildeman, Stefaan; Janssen, Dick B

    2015-11-01

    Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of β-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of β-valine, a PsSBV1 gene library was prepared and used to complement the β-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding β-valinyl-coenzyme A ligase (BvaA) and two genes encoding β-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate β-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only β-valine and to a lesser extent, 3-aminobutyrate and β-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate β-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.

  20. Structure and Mechanism of the Phycobiliprotein Lyase CpcT*♦

    PubMed Central

    Zhou, Wei; Ding, Wen-Long; Zeng, Xiao-Li; Dong, Liang-Liang; Zhao, Bin; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Yang, Xiaojing

    2014-01-01

    Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965–983). PMID:25074932

  1. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid

    SciTech Connect

    Shaya, D.; Hahn, Bum-Soo; Bjerkan, Tonje Marita; Kim, Wan Seok; Park, Nam Young; Sim, Joon-Soo; Kim, Yeong-Shik; Cygler, M.

    2008-03-19

    Enzymes have evolved as catalysts with high degrees of stereospecificity. When both enantiomers are biologically important, enzymes with two different folds usually catalyze reactions with the individual enantiomers. In rare cases a single enzyme can process both enantiomers efficiently, but no molecular basis for such catalysis has been established. The family of bacterial chondroitin lyases ABC comprises such enzymes. They can degrade both chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans at the nonreducing end of either glucuronic acid (CS) or its epimer iduronic acid (DS) by a {beta}-elimination mechanism, which commences with the removal of the C-5 proton from the uronic acid. Two other structural folds evolved to perform these reactions in an epimer-specific fashion: ({alpha}/{alpha}){sub 5} for CS (chondroitin lyases AC) and {beta}-helix for DS (chondroitin lyases B); their catalytic mechanisms have been established at the molecular level. The structure of chondroitinase ABC from Proteus vulgaris showed surprising similarity to chondroitinase AC, including the presence of a Tyr-His-Glu-Arg catalytic tetrad, which provided a possible mechanism for CS degradation but not for DS degradation. We determined the structure of a distantly related Bacteroides thetaiotaomicron chondroitinase ABC to identify additional structurally conserved residues potentially involved in catalysis. We found a conserved cluster located {approx}12 {angstrom} from the catalytic tetrad. We demonstrate that a histidine in this cluster is essential for catalysis of DS but not CS. The enzyme utilizes a single substrate-binding site while having two partially overlapping active sites catalyzing the respective reactions. The spatial separation of the two sets of residues suggests a substrate-induced conformational change that brings all catalytically essential residues close together.

  2. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions

    PubMed Central

    Gerl, Mathias J.; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L.; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta

    2016-01-01

    Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. PMID:27100999

  3. Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene1

    PubMed Central

    Jiménez-Bermúdez, Silvia; Redondo-Nevado, José; Muñoz-Blanco, Juan; Caballero, José L.; López-Aranda, José M.; Valpuesta, Victoriano; Pliego-Alfaro, Fernando; Quesada, Miguel A.; Mercado, José A.

    2002-01-01

    Strawberry (Fragaria × ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry. PMID:11842178

  4. Structure of a plant cell wall fragment complexed to pectate lyase C.

    PubMed Central

    Scavetta, R D; Herron, S R; Hotchkiss, A T; Kita, N; Keen, N T; Benen, J A; Kester, H C; Visser, J; Jurnak, F

    1999-01-01

    The three-dimensional structure of a complex between the pectate lyase C (PelC) R218K mutant and a plant cell wall fragment has been determined by x-ray diffraction techniques to a resolution of 2.2 A and refined to a crystallographic R factor of 18.6%. The oligosaccharide substrate, alpha-D-GalpA-([1-->4]-alpha-D-GalpA)3-(1-->4)-D-GalpA , is composed of five galacturonopyranose units (D-GalpA) linked by alpha-(1-->4) glycosidic bonds. PelC is secreted by the plant pathogen Erwinia chrysanthemi and degrades the pectate component of plant cell walls in soft rot diseases. The substrate has been trapped in crystals by using the inactive R218K mutant. Four of the five saccharide units of the substrate are well ordered and represent an atomic view of the pectate component in plant cell walls. The conformation of the pectate fragment is a mix of 21 and 31 right-handed helices. The substrate binds in a cleft, interacting primarily with positively charged groups: either lysine or arginine amino acids on PelC or the four Ca2+ ions found in the complex. The observed protein-oligosaccharide interactions provide a functional explanation for many of the invariant and conserved amino acids in the pectate lyase family of proteins. Because the R218K PelC-galacturonopentaose complex represents an intermediate in the reaction pathway, the structure also reveals important details regarding the enzymatic mechanism. Notably, the results suggest that an arginine, which is invariant in the pectate lyase superfamily, is the amino acid that initiates proton abstraction during the beta elimination cleavage of polygalacturonic acid. PMID:10368179

  5. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus.

    PubMed

    Kezuka, Yuichiro; Yoshida, Yasuo; Nonaka, Takamasa

    2012-10-01

    Hydrogen sulfide (H(2)S) is a causative agent of oral malodor and may play an important role in the pathogenicity of oral bacteria such as Streptococcus anginosus. In this microorganism, H(2)S production is associated with βC-S lyase (Lcd) encoded by lcd gene, which is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the α,β-elimination of sulfur-containing amino acids. When Lcd acts on L-cysteine, H(2)S is produced along with pyruvate and ammonia. To understand the H(2)S-producing mechanism of Lcd in detail, we determined the crystal structures of substrate-free Lcd (internal aldimine form) and two reaction intermediate complexes (external aldimine and α-aminoacrylate forms). The formation of intermediates induced little changes in the overall structure of the enzyme and in the active site residues, with the exception of Lys234, a PLP-binding residue. Structural and mutational analyses highlighted the importance of the active site residues Tyr60, Tyr119, and Arg365. In particular, Tyr119 forms a hydrogen bond with the side chain oxygen atom of L-serine, a substrate analog, in the external aldimine form suggesting its role in the recognition of the sulfur atom of the true substrate (L-cysteine). Tyr119 also plays a role in fixing the PLP cofactor at the proper position during catalysis through binding with its side chain. Finally, we partly modified the catalytic mechanism known for cystalysin, a βC-S lyase from Treponema denticola, and proposed an improved mechanism, which seems to be common to the βC-S lyases from oral bacteria.

  6. Chondroitin Lyase from a Marine Arthrobacter sp. MAT3885 for the Production of Chondroitin Sulfate Disaccharides.

    PubMed

    Kale, Varsha; Friðjónsson, Ólafur; Jónsson, Jón Óskar; Kristinsson, Hörður G; Ómarsdóttir, Sesselja; Hreggviðsson, Guðmundur Ó

    2015-08-01

    Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.

  7. Purification and properties of D-4-deoxy-5-oxoglucarate hydro-lyase (decarboxylating).

    PubMed

    Jeffcoat, R; Hassall, H; Dagley, S

    1969-12-01

    1. An enzyme extracted from Pseudomonas acidovorans was purified and shown to catalyse the simultaneous dehydration and decarboxylation of d-4-deoxy-5-oxoglucarate. It is proposed to name the enzyme d-4-deoxy-5-oxoglucarate hydro-lyase (decarboxylating), trivial name ;deoxyoxoglucarate dehydratase'. 2. No added cofactors were required, and the enzyme was inactivated when incubated with its substrate in the presence of sodium borohydride. Under these conditions the substrate and enzyme appeared to be bound covalently. 3. The action of the enzyme is readily explained if it is assumed that d-4-deoxy-5-oxoglucarate forms a Schiff base with a lysine residue in the enzyme.

  8. Characterization of two bacterial hydroxynitrile lyases with high similarity to cupin superfamily proteins.

    PubMed

    Hussain, Zahid; Wiedner, Romana; Steiner, Kerstin; Hajek, Tanja; Avi, Manuela; Hecher, Bianca; Sessitsch, Angela; Schwab, Helmut

    2012-03-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins. In the reverse reaction, they catalyze the formation of carbon-carbon bonds by enantioselective condensation of hydrocyanic acid with carbonyls. In this study, we describe two proteins from endophytic bacteria that display activity in the cleavage and the synthesis reaction of (R)-mandelonitrile with up to 74% conversion of benzaldehyde (enantiopreference ee 89%). Both showed high similarity to proteins of the cupin superfamily which so far were not known to exhibit HNL activity. PMID:22226952

  9. A single residue influences the reaction mechanism of ammonia lyases and mutases.

    PubMed

    Bartsch, Sebastian; Bornscheuer, Uwe T

    2009-01-01

    All ways lead to Rome? Computer modeling and kinetic measurements identified a distinct residue in Phe/Tyr ammonia lyases (PAL/TAL) which controls whether the Friedel-Crafts or an E(1)cB reaction mechanism takes place. Hence, Glu484 in pcPAL favors the Friedel-Crafts reaction (see picture, MIO = 4-methylidene imidazol-5-one) whereas an Asn in TAL gives an elimination reaction. These mechanistic investigations also reveal activity of a PAL mutant and a TAL towards an amino alcohol.

  10. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    PubMed

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time.

  11. Characterization of Two Bacterial Hydroxynitrile Lyases with High Similarity to Cupin Superfamily Proteins

    PubMed Central

    Hussain, Zahid; Wiedner, Romana; Steiner, Kerstin; Hajek, Tanja; Avi, Manuela; Hecher, Bianca; Sessitsch, Angela

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins. In the reverse reaction, they catalyze the formation of carbon-carbon bonds by enantioselective condensation of hydrocyanic acid with carbonyls. In this study, we describe two proteins from endophytic bacteria that display activity in the cleavage and the synthesis reaction of (R)-mandelonitrile with up to 74% conversion of benzaldehyde (enantiopreference ee 89%). Both showed high similarity to proteins of the cupin superfamily which so far were not known to exhibit HNL activity. PMID:22226952

  12. Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).

    PubMed

    Hernández, Liliana; Luna, Héctor; Navarro-Ocaña, Arturo; Olivera-Flores, Ma Teresa de Jesús; Ayala, Ivon

    2008-07-01

    Enzymatic preparations obtained from young plants and cell cultures of capulin were screened for hydroxynitrile lyase activity. The three week old plants, grown under sterile conditions, were used to establish a solid cell culture. Crude preparations obtained from this plant material were evaluated for the transformation of benzaldehyde to the corresponding cyanohydrin (mandelonitrile). The results show that the crude material from roots, stalks, and leaves of young plants and calli of roots, stalks, internodes and petioles biocatalyzed the addition of hydrogen cyanide (HCN) to benzaldehyde with a modest to excellent enantioselectivity. PMID:18837395

  13. Activity and Enantioselectivity of the Hydroxynitrile Lyase MeHNL in Dry Organic Solvents

    PubMed Central

    Paravidino, Monica; Sorgedrager, Menno J; Orru, Romano V A; Hanefeld, Ulf

    2010-01-01

    Water concentration affects both the enantioselectivity and activity of enzymes in dry organic media. Its influence has been investigated using the hydrocyanation of benzaldehyde catalyzed by hydroxynitrile lyase cross-linked enzyme aggregate (MeHNL-CLEA) as a model reaction. The enzyme displayed higher enantioselectivity at higher water concentration, thus suggesting a positive effect of enzyme flexibility on selectivity. The activity increased on reducing the solvent water content, but drastic dehydration of the enzyme resulted in a reversible loss of activity. PMID:20486110

  14. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions.

    PubMed

    Okuyama, Masayuki; Saburi, Wataru; Mori, Haruhide; Kimura, Atsuo

    2016-07-01

    α-Glucosidases (AGases) and α-1,4-glucan lyases (GLases) catalyze the degradation of α-glucosidic linkages at the non-reducing ends of substrates to release α-glucose and anhydrofructose, respectively. The AGases belong to glycoside hydrolase (GH) families 13 and 31, and the GLases belong to GH31 and share the same structural fold with GH31 AGases. GH13 and GH31 AGases show diverse functions upon the hydrolysis of substrates, having linkage specificities and size preferences, as well as upon transglucosylation, forming specific α-glucosidic linkages. The crystal structures of both enzymes were determined using free and ligand-bound forms, which enabled us to understand the important structural elements responsible for the diverse functions. A series of mutational approaches revealed features of the structural elements. In particular, amino-acid residues in plus subsites are of significance, because they regulate transglucosylation, which is used in the production of industrially valuable oligosaccharides. The recently solved three-dimensional structure of GLase from red seaweed revealed the amino-acid residues essential for lyase activity and the strict recognition of the α-(1 → 4)-glucosidic substrate linkage. The former was introduced to the GH31 AGase, and the resultant mutant displayed GLase activity. GH13 and GH31 AGases hydrate anhydrofructose to produce glucose, suggesting that AGases are involved in the catabolic pathway used to salvage unutilized anhydrofructose. PMID:27137181

  15. Formation of C-C bonds by mandelonitrile lyase in organic solvents.

    PubMed

    Wehtje, E; Adlercreutz, P; Mattiasson, B

    1990-06-01

    Mandelonitrile lyase (EC 4.1.2.10) catalyzes the formation of D-mandelonitrile from HCN and benzaldehyde. Mandelonitrile lyase was immobilized by adsorption to support materials, for example, Celite. The enzyme preparations were used in diisopropyl ether for production of D-mandelonitrile. In order to obtain optically pure D-mandelonitrile it was necessary to use reaction conditions which favor the enzymatic reaction and suppress the competing spontaneous reaction, which yields a racemic mixture of D, L-mandelonitrile. The effects of substrate concentrations, water content, and support materials on both the spontaneous and enzymatic reactions were studied. The enzymatic reaction was carried out under conditions where the importance of the spontaneous reaction was negligible and high enantiomeric purity of D-mandelonitrile was achieved (at least 98% enantiomeric excess). The operational stability of the enzyme preparations was studied in batch as well as in continuous systems. It was vital to control the water content in the system to maintain an active preparation. In a packed bed reactor the enzyme preparations were shown to be active and stable. The reactors were run for 50 h with only a small decrease in product yield. PMID:18592607

  16. Hit-to-lead evaluation of a novel class of sphingosine 1-phosphate lyase inhibitors.

    PubMed

    Dinges, Jurgen; Harris, Christopher M; Wallace, Grier A; Argiriadi, Maria A; Queeney, Kara L; Perron, Denise C; Dominguez, Eric; Kebede, Tegest; Desino, Kelly E; Patel, Hetal; Vasudevan, Anil

    2016-05-01

    Inhibition of sphingosine-1-phosphate lyase has recently been proposed as a potential treatment option for inflammatory disorders such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. In this report we describe our hit-to-lead evaluation of the isoxazolecarboxamide 6, a high-throughput screening hit (in vitro IC50=1.0 μM, cell IC50=1.8 μM), as a novel S1P lyase inhibitor. We were able to establish basic structure-activity relationships around 6 and succeeded in obtaining X-ray structural information which enabled structure-based design. With the discovery of 28, enzyme activity was quickly improved to IC50=120 nM and cell potency to IC50=230 nM. The main liability in the established isoxazolecarboxamide hit series was determined to be metabolic stability. In particular we identified that future lead-optimization efforts to overcome this problem should focus on blocking the N-dealkylation on the secondary amine. PMID:27020302

  17. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy

    PubMed Central

    Rolando, Monica; Escoll, Pedro; Nora, Tamara; Botti, Joëlle; Boitez, Valérie; Daniels, Craig; Abraham, Gilu; Stogios, Peter J.; Skarina, Tatiana; Christophe, Charlotte; Dervins-Ravault, Delphine; Cazalet, Christel; Hilbi, Hubert; Rupasinghe, Thusitha W. T.; Tull, Dedreia; McConville, Malcolm J.; Ong, Sze Ying; Hartland, Elizabeth L.; Codogno, Patrice; Levade, Thierry; Naderer, Thomas; Savchenko, Alexei; Buchrieser, Carmen

    2016-01-01

    Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen’s Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis. PMID:26831115

  18. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy.

    PubMed

    Rolando, Monica; Escoll, Pedro; Nora, Tamara; Botti, Joëlle; Boitez, Valérie; Bedia, Carmen; Daniels, Craig; Abraham, Gilu; Stogios, Peter J; Skarina, Tatiana; Christophe, Charlotte; Dervins-Ravault, Delphine; Cazalet, Christel; Hilbi, Hubert; Rupasinghe, Thusitha W T; Tull, Dedreia; McConville, Malcolm J; Ong, Sze Ying; Hartland, Elizabeth L; Codogno, Patrice; Levade, Thierry; Naderer, Thomas; Savchenko, Alexei; Buchrieser, Carmen

    2016-02-16

    Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.

  19. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus.

    PubMed

    Kronfel, Christina M; Kuzin, Alexandre P; Forouhar, Farhad; Biswas, Avijit; Su, Min; Lew, Scott; Seetharaman, Jayaraman; Xiao, Rong; Everett, John K; Ma, Li-Chung; Acton, Thomas B; Montelione, Gaetano T; Hunt, John F; Paul, Corry E C; Dragomani, Tierna M; Boutaghou, M Nazim; Cole, Richard B; Riml, Christian; Alvey, Richard M; Bryant, Donald A; Schluchter, Wendy M

    2013-12-01

    Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced. PMID:24215428

  20. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids.

    PubMed

    Morozova, E A; Bazhulina, N P; Anufrieva, N V; Mamaeva, D V; Tkachev, Y V; Streltsov, S A; Timofeev, V P; Faleev, N G; Demidkina, T V

    2010-10-01

    Kinetic parameters of Citrobacter freundii methionine γ-lyase were determined with substrates in γ-elimination reactions as well as the inhibition of the enzyme in the γ-elimination of L-methionine by amino acids with different structure. The data indicate an important contribution of the sulfur atom and methylene groups to the efficiency of binding of substrates and inhibitors. The rate constants of the enzyme-catalyzed exchange of C-α- and C-β-protons with deuterium were determined, as well as the kinetic isotope effect of the deuterium label in the C-α-position of inhibitors on the rate of exchange of their β-protons. Neither stereoselectivity in the β-proton exchange nor noticeable α-isotope effect on the exchange rates of β-protons was found. The ionic and tautomeric composition of the external Schiff base of methionine γ-lyase was determined. Spectral characteristics (absorption and circular dichroism spectra) of complexes with substrates and inhibitors were determined. The spectral and kinetic data indicate that deamination of aminocrotonate should be the rate-determining stage of the enzymatic reaction.

  1. Expression, purification and crystallization of l-methionine γ-lyase 2 from Entamoeba histolytica

    SciTech Connect

    Sato, Dan; Yamagata, Wataru; Kamei, Kaeko; Nozaki, Tomoyoshi; Harada, Shigeharu

    2006-10-01

    l-Methionine γ-lyase 2 from E. histolytica, a key enzyme in sulfur-containing amino-acid degradation in this protozoan parasite, has been crystallized in a form suitable for X-ray structure analysis. l-Methionine γ-lyase (MGL) is considered to be an attractive target for rational drug development because the enzyme is absent in mammalian hosts. To enable structure-based design of drugs targeting MGL, one of the two MGL isoenzymes (EhMGL2) was crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.89, b = 102.68, c = 169.87 Å. The crystal diffracted to a resolution of 2.0 Å. The presence of a tetramer in the asymmetric unit (4 × 43.1 kDa) gives a Matthews coefficient of 2.2 Å{sup 3} Da{sup −1}. The structure was solved by the molecular-replacement method and structure refinement is now in progress.

  2. A Polysaccharide Lyase from Stenotrophomonas maltophilia with a Unique, pH-regulated Substrate Specificity*

    PubMed Central

    MacDonald, Logan C.; Berger, Bryan W.

    2014-01-01

    Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-d-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-d-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity. PMID:24257754

  3. Genome-wide characterization of the Pectate Lyase-like (PLL) genes in Brassica rapa.

    PubMed

    Jiang, Jingjing; Yao, Lina; Miao, Ying; Cao, Jiashu

    2013-11-01

    Pectate lyases (PL) depolymerize demethylated pectin (pectate, EC 4.2.2.2) by catalyzing the eliminative cleavage of α-1,4-glycosidic linked galacturonan. Pectate Lyase-like (PLL) genes are one of the largest and most complex families in plants. However, studies on the phylogeny, gene structure, and expression of PLL genes are limited. To understand the potential functions of PLL genes in plants, we characterized their intron-exon structure, phylogenetic relationships, and protein structures, and measured their expression patterns in various tissues, specifically the reproductive tissues in Brassica rapa. Sequence alignments revealed two characteristic motifs in PLL genes. The chromosome location analysis indicated that 18 of the 46 PLL genes were located in the least fractionated sub-genome (LF) of B. rapa, while 16 were located in the medium fractionated sub-genome (MF1) and 12 in the more fractionated sub-genome (MF2). Quantitative RT-PCR analysis showed that BrPLL genes were expressed in various tissues, with most of them being expressed in flowers. Detailed qRT-PCR analysis identified 11 pollen specific PLL genes and several other genes with unique spatial expression patterns. In addition, some duplicated genes showed similar expression patterns. The phylogenetic analysis identified three PLL gene subfamilies in plants, among which subfamily II might have evolved from gene neofunctionalization or subfunctionalization. Therefore, this study opens the possibility for exploring the roles of PLL genes during plant development.

  4. Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus

    PubMed Central

    Kovács, Klaudia; Bánóczi, Gergely; Varga, Andrea; Szabó, Izabella; Holczinger, András; Hornyánszky, Gábor; Zagyva, Imre

    2014-01-01

    The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia. PMID:24475062

  5. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    PubMed

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile. PMID:26310798

  6. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.

    PubMed

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-03-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.

  7. Expression and Bioinformatics Analysis of Pectate Lyase Gene from Bacillus subtilis521

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Lu, Fu-Ping; Li, Yu; Li, Jin-Ting

    In order to exploit new genetic resources, Pectate lyase(PEL) gene was amplified by PCR using the genome DNA from an alkaline Bacillus subtilis521. The PCR product was inserted into pET22b(+) vector. The recombinant plasmids were cloned in E.coli DH5α and then expressed in E.coli BL21. When cultured in the optimized medium, the positive clones E.coli BL21(pET22b(+)pel)showed intracellular pectate lyase activity of 90.0 U/mL. It was indicated that we had obtained the correct PEL gene. The pel has an open reading frame of 1263 nucleotides and codes for a product of 420 amino acids with a calculated molecular mass of 45.5 kD. Based on computer assisted analysis, a signal peptides and two conserved domains were revealed. The sequence analysis for PEL showed that it shares 26-82% homology with other strains in GenBank. In addition, the advanced structure of PEL were also predicted and analysed. This study will help to the experimental design of PEL fermentation and production purification and enzyme evolution.

  8. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  9. Engineering and kinetic stabilization of the therapeutic enzyme Anabeana variabilis phenylalanine ammonia lyase.

    PubMed

    Jaliani, Hossein Zarei; Farajnia, Safar; Mohammadi, Seyyed Abolghasem; Barzegar, Abolfazl; Talebi, Saeed

    2013-12-01

    Anabeana variabilis phenylalanine ammonia lyase has just recently been discovered and introduced in clinical trials of phenylketonuria enzyme replacement therapy for its outstanding kinetic properties. In the present study, kinetic stabilization of this therapeutically important enzyme has been explored by introduction of a disulfide bond into the structure. Site-directed mutagenesis was performed with quick-change PCR method. Recombinant wild-type and mutated enzymes were expressed in Escherichia coli, and his-tagged proteins were affinity purified. Formation of disulfide bond was confirmed by Ellman's method, and then chemical unfolding, kinetic behavior, and thermal inactivation of mutated enzyme were compared with the wild type. Based on our results, the Q292C mutation resulted in a significant improvement in kinetic stability and resistance against chemical unfolding of the enzyme while kinetic parameters and pH profile of enzyme activity were remained unaffected. The results of the present study provided an insight towards designing phenylalanine ammonia lyases with higher stability. PMID:23999738

  10. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus.

    PubMed

    Kronfel, Christina M; Kuzin, Alexandre P; Forouhar, Farhad; Biswas, Avijit; Su, Min; Lew, Scott; Seetharaman, Jayaraman; Xiao, Rong; Everett, John K; Ma, Li-Chung; Acton, Thomas B; Montelione, Gaetano T; Hunt, John F; Paul, Corry E C; Dragomani, Tierna M; Boutaghou, M Nazim; Cole, Richard B; Riml, Christian; Alvey, Richard M; Bryant, Donald A; Schluchter, Wendy M

    2013-12-01

    Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.

  11. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    PubMed

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  12. Structural Basis for Streptogramin B Resistance in Staphylococcus aureus by Virginiamycin B Lyase

    SciTech Connect

    Korczynska,M.; Mukhtar, T.; Wright, G.; Berghuis, A.

    2007-01-01

    The streptogramin combination therapy of quinupristin-dalfopristin (Synercid) is used to treat infections caused by bacterial pathogens, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. However, the effectiveness of this therapy is being compromised because of an increased incidence of streptogramin resistance. One of the clinically observed mechanisms of resistance is enzymatic inactivation of the type B streptogramins, such as quinupristin, by a streptogramin B lyase, i.e., virginiamycin B lyase (Vgb). The enzyme catalyzes the linearization of the cyclic antibiotic via a cleavage that requires a divalent metal ion. Here, we present crystal structures of Vgb from S. aureus in its apoenzyme form and in complex with quinupristin and Mg{sup 2+} at 1.65- and 2.8-{angstrom} resolution, respectively. The fold of the enzyme is that of a seven-bladed {beta}-propeller, although the sequence reveals no similarity to other known members of this structural family. Quinupristin binds to a large depression on the surface of the enzyme, where it predominantly forms van der Waals interactions. Validated by site-directed mutagenesis studies, a reaction mechanism is proposed in which the initial abstraction of a proton is facilitated by a Mg{sup 2+}-linked conjugated system. Analysis of the Vgb-quinupristin structure and comparison with the complex between quinupristin and its natural target, the 50S ribosomal subunit, reveals features that can be exploited for developing streptogramins that are impervious to Vgb-mediated resistance.

  13. Rapid diagnostic test that uses isocitrate lyase activity for identification of Yersinia pestis.

    PubMed

    Hillier, S L; Charnetzky, W T

    1981-04-01

    The presence of high levels of isocitrate lyase activity in Yersinia pestis grown on blood agar base medium, as compared with low levels of this enzyme in Yersinia pseudotuberculosis and Yersinia enterocolitica, suggested that the differences in the levels of this enzyme could be used for the presumptive identification of Y. pestis. A modified, semiquantitative assay for isocitrate lyase activity is described which requires no expensive instrumentation, utilizes readily available chemicals and substrates, and requires only 20 min for completion. This test yielded positive results with all 108 isolates of Y. pestis tested and negative results with all strains of Y. pseudotuberculosis (68 isolates) and Y. enterocolitica (202 isolates) tested. Less than 2% of the approximately 1,300 non-Yersinia isolates from the family Enterobacteriaceae and none of the 93 isolates from the family Pseudomonadaceae yielded positive results. We conclude that this test provides for rapid identification of Y. pestis and should be useful in the initial screening of isolates from rodent and flea populations and in the presumptive identification of this organism from suspected cases of human plague.

  14. A novel thermostable, alkaline pectate lyase from Bacillus tequilensis SV11 with potential in textile industry.

    PubMed

    Chiliveri, Swarupa Rani; Linga, Venkateswar Rao

    2014-10-13

    An extracellular pectate lyase was purified and characterized from a UV mutant of Bacillus tequilensis SV11. Purification resulted in a 16.2-fold improvement in the enzyme specific activity, with approximately 40.2% yield. SDS-PAGE showed that the enzyme had two subunits with molecular masses of 135 ± 2 and 43 ± 2 kDa. Further, MALDI-TOF MS experiments revealed that the mass spectrum of the second peptide significantly (91% score) matched with the unsaturated rhamnogalacturonyl hydrolase YteR OS-Bacillus subtilis (strain 168) by 27% sequence coverage, nominal mass 43,231 Da, and PI 5.91. The enzyme was optimally active at 60 °C, pH 9. Km and Vmax of the purified pectate lyase was found to be 1.220 mg/mL and 1773 U/mL, respectively. The enzyme was studied for its applicability in bioscouring and found to be efficient in the removal of 97.91% pectin of cotton fabric when compared with alkali-treated fabric.

  15. Crystallization and preliminary X-ray crystallographic studies of the ArsI C–As lyase from Thermomonospora curvata

    SciTech Connect

    Nadar, S. Venkadesh; Yoshinaga, Masafumi; Kandavelu, Palani; Sankaran, Banumathi; Rosen, Barry P.

    2014-05-10

    The ArsI C-As lyase from Thermomonospora curvata was expressed, purified and crystallized. The crystals diffracted to 1.46 Å and belong to space group P4{sub 3}2{sub 1}2 or its enantiomer P4{sub 1}2{sub 1}2.

  16. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation

    PubMed Central

    Carmona, Eleonora Cano

    2014-01-01

    A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb2+ and was not significantly affected by Hg2+. Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca2+. The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking. PMID:25610636

  17. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    SciTech Connect

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  18. Improvement of enantioselectivity of the B-type halohydrin hydrogen-halide-lyase from Corynebacterium sp. N-1074.

    PubMed

    Watanabe, Fumiaki; Yu, Fujio; Ohtaki, Akashi; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Yohda, Masafumi

    2016-09-01

    Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins, producing the corresponding epoxides. The H-Lyases have been classified into A, B and C subtypes based on amino acid sequence similarities. These enzymes have attracted much attention as industrial catalysts in the synthesis of chiral chemicals from prochiral halohydrins. In the present study, we constructed mutants of B-type H-Lyase from Corynebacterium sp. N-1074 (HheB) displaying higher enantioselectivity by structure-based site-directed mutagenesis and random mutagenesis. A triple mutant of HheB exhibited 98.5% enantioselectivity, the highest ever reported, toward (R)-4-chloro-3-hydroxy-butyronitrile production, with the yield reaching approximately two-fold that of the wild-type enzyme. We discuss the structural basis of the high enantioselectivity and productivity of the mutant by comparing the crystal structures of the mutant HheB and the wild-type enzyme in complex with or without the substrate analogue.

  19. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation.

    PubMed

    Pedrolli, Danielle Biscaro; Carmona, Eleonora Cano

    2014-01-01

    A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb(2+) and was not significantly affected by Hg(2+). Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca(2+). The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking.

  20. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester.

    PubMed

    Brandt, Gabriel S; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J; Yep, Alejandra; Kenyon, George L; Petsko, Gregory A; Jordan, Frank; Ringe, Dagmar

    2008-07-22

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of ( R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg (2+) as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 A (Protein Data Bank entry 3D7K ) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  1. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation.

    PubMed

    Pedrolli, Danielle Biscaro; Carmona, Eleonora Cano

    2014-01-01

    A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb(2+) and was not significantly affected by Hg(2+). Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca(2+). The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking. PMID:25610636

  2. Improvement of enantioselectivity of the B-type halohydrin hydrogen-halide-lyase from Corynebacterium sp. N-1074.

    PubMed

    Watanabe, Fumiaki; Yu, Fujio; Ohtaki, Akashi; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Yohda, Masafumi

    2016-09-01

    Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins, producing the corresponding epoxides. The H-Lyases have been classified into A, B and C subtypes based on amino acid sequence similarities. These enzymes have attracted much attention as industrial catalysts in the synthesis of chiral chemicals from prochiral halohydrins. In the present study, we constructed mutants of B-type H-Lyase from Corynebacterium sp. N-1074 (HheB) displaying higher enantioselectivity by structure-based site-directed mutagenesis and random mutagenesis. A triple mutant of HheB exhibited 98.5% enantioselectivity, the highest ever reported, toward (R)-4-chloro-3-hydroxy-butyronitrile production, with the yield reaching approximately two-fold that of the wild-type enzyme. We discuss the structural basis of the high enantioselectivity and productivity of the mutant by comparing the crystal structures of the mutant HheB and the wild-type enzyme in complex with or without the substrate analogue. PMID:27215832

  3. cDNA cloning and bacterial expression of a PL-14 alginate lyase from a herbivorous marine snail Littorina brevicula.

    PubMed

    Rahman, Mohammad Matiur; Wang, Ling; Inoue, Akira; Ojima, Takao

    2012-10-01

    Herbivorous marine snails like Littorina species are known to possess alginate lyases in their digestive tracts. The Littorina enzymes have been identified as endolytic polymannuronate (poly(M)) lyases (EC 4.2.2.3); however, it is still unclear which polysaccharide-lyase family (PL) the Littorina enzymes belong to, since no complete primary structure of Littorina enzymes has been determined. Thus, in the present study, we analyzed the primary structure of LbAly28, a 28kDa alginate lyase isozyme of Littorina brevicula, by the cDNA method. LbAly28 cDNAs were amplified by PCR followed by 5'- and 3'-RACE PCRs from the L. brevicula hepatopancreas cDNA. A cDNA covering entire coding region of LbAly28 consisted of 1129bp and encoded an amino-acid sequence of 291 residues. The deduced amino-acid sequence comprised an initiation methionine, a putative signal peptide of 14 residues, a propeptide-like region of 16 residues, and a mature LbAly28 domain of 260 residues. The mature LbAly28 domain showed 43-53% amino-acid identities with other molluscan PL-14 enzymes. The catalytically important residues in PL-14 enzymes, which were identified in the Chlorella virus glucuronate-specific lyase vAL-1 and Aplysia poly(M) lyase AkAly30, were also conserved in LbAly28. Site-directed mutagenesis regarding these residues, that is, replacements of Lys94, Lys97, Thr121, Arg 123, Tyr135, and Tyr137 to Ala, decreased the activity of recombinant LbAly28 to various degrees. From these results we concluded that LbAly28 is a member of PL-14 alginate lyases. Besides the effects of above mutations, we noticed that the replacement of T121 by Ala changed the substrate preference of LbAly28. Namely, the activities toward sodium alginate and poly(MG)-block substrate increased and became comparable with the activity toward poly(M)-block substrate. This suggests that the region including T121 of LbAly28 closely relates to the recognition of poly(MG) region of alginate. PMID:22940178

  4. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  5. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  6. A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose.

    PubMed Central

    McKie, V A; Vincken, J P; Voragen, A G; van den Broek, L A; Stimson, E; Gilbert, H J

    2001-01-01

    Pseudomonas cellulosa is an aerobic bacterium that synthesizes an extensive array of modular cellulases and hemicellulases, which have a modular architecture consisting of catalytic domains and distinct non-catalytic carbohydrate-binding modules (CBMs). To investigate whether the main-chain-cleaving pectinases from this bacterium also have a modular structure, a library of P. cellulosa genomic DNA, constructed in lambdaZAPII, was screened for pectinase-encoding sequences. A recombinant phage that attacked arabinan, galactan and rhamnogalacturonan was isolated. The encoded enzyme, designated Rgl11A, had a modular structure comprising an N-terminal domain that exhibited homology to Bacillus and Streptomyces proteins of unknown function, a middle domain that exhibited sequence identity to fibronectin-3 domains, and a C-terminal domain that was homologous to family 2a CBMs. Expression of the three modules of the Pseudomonas protein in Escherichia coli showed that its C-terminal module was a functional cellulose-binding domain, and the N-terminal module consisted of a catalytic domain that hydrolysed rhamnogalacturonan-containing substrates. The activity of Rgl11A against apple- and potato-derived rhamnogalacturonan substrates indicated that the enzyme had a strong preference for rhamnogalacturonans that contained galactose side chains, and which were not esterified. The enzyme had an absolute requirement for calcium, a high optimum pH, and catalysis was associated with an increase in absorbance at 235 nm, indicating that glycosidic bond cleavage was mediated via a beta-elimination mechanism. These data indicate that Rgl11A is a rhamnogalacturonan lyase and, together with the homologous Bacillus and Streptomyces proteins, comprise a new family of polysaccharide lyases. The presence of a family 2a CBM in Rgl11A, and in a P. cellulosa pectate lyase described in the accompanying paper [Brown, Mallen, Charnock, Davies and Black (2001) Biochem. J. 355, 155-165] suggests that

  7. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    Highlights: •The disruption of PREG/PROG hydroxylation activity by T306A showed the participation of Cpd I. •T306A supports the involvement of a nucleophilic peroxo-anion during lyase activity. •The presence of cytochrome b{sub 5} augments C–C lyase activity. •Δ5-Steroids are preferred substrates for CYP17 catalysis. -- Abstract: Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing

  8. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    PubMed

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. PMID:25382689

  9. Production of methionine γ- lyase in recombinant Citrobacter freundii bearing the hemoglobin gene.

    PubMed

    Kahraman, Huseyin; Aytan, Emel; Kurt, Ash Giray

    2011-09-01

    The production of antileukemic enzyme methionine γ-lyase (MGL) in distinctly related bacteria, Citrobacter freundii and in their recombinants expressing the Vitresocilla hemoglobin (VHb) has been studied. This study concerns the potential of Citrobacter freundii expressing the Vitreoscilla hemoglobin gene (vgb) for the methionine γ- liyase production. Methionine γ- liyase production by Citrobacter freundii and its vgb(-) and vgb(+) bearing recombinant strain was studied in shake-flasks under 200 rpm agitation, culture medium and 30 °C in a time-course manner. The vgb(+) and especially the carbon type had a dramatic effect on methionine γ- liyase production. The vgb(+) strain of C. freundii had about 2-fold and 3.1-fold higher levels of MGL than the host and vgb(-) strain, respectively.

  10. Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects.

    PubMed

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-06-01

    Coenzyme B12 -dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5'-deoxyadenosyl moiety of the intrinsic coenzyme B12 , it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5'-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5'-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small.

  11. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    PubMed

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume.

  12. Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects.

    PubMed

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-06-01

    Coenzyme B12 -dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5'-deoxyadenosyl moiety of the intrinsic coenzyme B12 , it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5'-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5'-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  13. Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae*

    PubMed Central

    Kalnins, Gints; Kuka, Janis; Grinberga, Solveiga; Makrecka-Kuka, Marina; Liepinsh, Edgars; Dambrova, Maija; Tars, Kaspars

    2015-01-01

    CutC choline trimethylamine-lyase is an anaerobic bacterial glycyl radical enzyme (GRE) that cleaves choline to produce trimethylamine (TMA) and acetaldehyde. In humans, TMA is produced exclusively by the intestinal microbiota, and its metabolite, trimethylamine oxide, has been associated with a higher risk of cardiovascular diseases. Therefore, information about the three-dimensional structures of TMA-producing enzymes is important for microbiota-targeted drug discovery. We have cloned, expressed, and purified the CutC GRE and the activating enzyme CutD from Klebsiella pneumoniae, a representative of the human microbiota. We have determined the first crystal structures of both the choline-bound and choline-free forms of CutC and have discovered that binding of choline at the ligand-binding site triggers conformational changes in the enzyme structure, a feature that has not been observed for any other characterized GRE. PMID:26187464

  14. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    SciTech Connect

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert; Saba, Julie D.

    2009-03-06

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an {omega}-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K{sub m} of 35 {mu}M for BODIPY-sphingosine 1-phosphate.

  15. Determining the extent of heparan sulfate depolymerisation following heparin lyase treatment.

    PubMed

    Carnachan, Susan M; Bell, Tracey J; Sims, Ian M; Smith, Raymond A A; Nurcombe, Victor; Cool, Simon M; Hinkley, Simon F R

    2016-11-01

    The depolymerisation of porcine mucosal heparan sulfate under the action of heparin lyases and analysis by size-exclusion chromatography (SEC) is described. Heparan sulfate treated to enzymic bond scission producing a Δ4,5 double-bond and quantified by SEC with ultraviolet-visible (UV) spectroscopic detection (230nm) indicated that the majority of the biopolymer (>85%) was reduced to disaccharides (degree of polymerisation (DP)=2). However, analysis of the SEC eluant using refractive index (RI), which reflects the mass contribution of the oligosaccharides rather than the molar response of a UV chromophore, indicated that a considerable proportion of the digested HS, up to 43%, was present with DP >2. This was supported by a mass balance analysis. These results contradict the accepted literature where "complete digestion" is routinely reported. Herein we report on the composition and methodology utilised to ascertain the extent of depolymerization and disaccharide composition of this important biopolymer. PMID:27516308

  16. Paraffin as oxygen vector modulates tyrosine phenol lyase production by Citrobacter freundii MTCC 2424.

    PubMed

    Azmi, Wamik; Kumar, Ajay; Dev, Varun

    2013-06-01

    The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.

  17. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2014-10-01

    The mercury resistance pathway enzyme organomercurial lyase (MerB) catalyzes the conversion of organomercurials to ionic mercury (Hg(2+)). Here, we provide evidence for the emergence of this enzyme from a TRASH-like, non-enzymatic, treble-clef zinc finger ancestor by domain duplication and fusion. Surprisingly, the structure-stabilizing metal-binding core of the treble-clef appears to have been repurposed in evolution to serve a catalytic role. Novel enzymatic functions are believed to have evolved from ancestral generalist catalytic scaffolds or from already specialized enzymes with catalytic promiscuity. The emergence of MerB from a zinc finger ancestor serves as a rare example of how a novel enzyme may emerge from a non-catalytic scaffold with a related binding function.

  18. Enhancing Production of Alkaline Polygalacturonate Lyase from Bacillus subtilis by Fed-Batch Fermentation

    PubMed Central

    Zou, Mouyong; Guo, Fenfen; Li, Xuezhi; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Alkaline polygalacturonate lyase (PGL, EC 4.2.2.2) is an enzyme used in many industries. We developed a fed-batch fermentation process that combines the enzymatic pretreatment of the carbon source with controlling the pH of the fermentative broth to enhance the PGL production from Bacillus subtilis 7-3-3 to decrease the production cost. Maintaining the fermentation broth at pH 6.5 prior to feeding with ammonia and at pH 6.0 after feeding significantly improved PGL activity (743.5 U mL−1) compared with the control (202.5 U mL−1). The average PGL productivity reached 19.6 U mL−1 h−1 after 38 h of fermentation. The crude PGL was suitable for environmentally friendly ramie enzymatic degumming. PMID:24603713

  19. Synthesis of D- and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process.

    PubMed

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-04-01

    The synthesis of substituted D-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural D-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the D-configured product. Furthermore, the system was extended to the preparation of those L-phenylalanines which are obtained with a low ee value using PAL amination.

  20. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    PubMed

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism.

  1. Protein packing interactions and polymorphy of chorismate lyase from E. Coli

    NASA Astrophysics Data System (ADS)

    Gallagher, Travis

    2001-11-01

    The enzyme chorismate lyase from E. coli crystallizes into three well characterized polymorphs in identical conditions. The Wild-type enzyme tends to aggregate, even in the presence of a reducing agent, and yields monoclinic crystals that grow in intricate clusters. Protein aggregation was largely eliminated by mutating the protein's two cysteines to serines. The double mutant retains full enzymatic activity and grows singly in two new forms: triclinic and orthorhombic. The triclinic crystals diffract to 0.9 Å resolution. A single-cysteine mutant that crystallizes in the orthorhombic form was used to determine the structure, enabling examination of the packing interactions at 2.0 Å resolution or better in all three forms. A novel system for labeling contacts is proposed, and relations between packing patterns and crystal properties are discussed. Diffraction resolution is found to correlate with coordination number and with the root-mean-square deviation from mean extent of the contacts. Implications for contact energies are considered.

  2. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids

    SciTech Connect

    Zhang, Xuebin; Liu, Chang-Jun

    2014-12-11

    Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, we present a current overview on our understanding of the complicated regulatory mechanisms governing PAL's activity; we particularly highlight recent progresses in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization.

  3. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids

    DOE PAGES

    Zhang, Xuebin; Liu, Chang-Jun

    2014-12-11

    Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, we present a current overview on our understanding of the complicated regulatory mechanisms governing PAL's activity; we particularlymore » highlight recent progresses in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization.« less

  4. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate.

    PubMed

    Bandhuvula, Padmavathi; Li, Zaiguo; Bittman, Robert; Saba, Julie D

    2009-03-01

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an omega-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K(m) of 35 microM for BODIPY-sphingosine 1-phosphate.

  5. Sphingosine-1-phosphate lyase in development and disease: sphingolipid metabolism takes flight.

    PubMed

    Fyrst, Henrik; Saba, Julie D

    2008-09-01

    Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that catalyses the final step of sphingolipid degradation, namely the irreversible cleavage of the carbon chain at positions 2-3 of a long-chain base phosphate (LCBP), thereby yielding a long-chain aldehyde and phosphoethanolamine. LCBPs are potent signaling molecules involved in cell proliferation, survival, migration, cell-cell interactions and cell stress responses. Therefore, tight regulation of LCBP signaling is required for proper cell function, and perturbations of this system can lead to alterations in biological processes including development, reproduction and physiology. SPL is a key enzyme in regulating the intracellular and circulating levels of LCBPs and is, therefore, gaining attention as a putative target for pharmacological intervention. This review provides an overview of our current understanding of SPL structure and function, mechanisms involved in SPL regulation and the role of SPL in development and disease.

  6. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases

    PubMed Central

    Shin, Sung-Bong; Golovkin, Maxim; Reddy, Anireddy S. N.

    2014-01-01

    Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth. PMID:24919580

  7. A C⋅As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters.

    PubMed

    Yoshinaga, Masafumi; Rosen, Barry P

    2014-05-27

    Arsenic is the most widespread environmental toxin. Substantial amounts of pentavalent organoarsenicals have been used as herbicides, such as monosodium methylarsonic acid (MSMA), and as growth enhancers for animal husbandry, such as roxarsone (4-hydroxy-3-nitrophenylarsonic acid) [Rox(V)]. These undergo environmental degradation to more toxic inorganic arsenite [As(III)]. We previously demonstrated a two-step pathway of degradation of MSMA to As(III) by microbial communities involving sequential reduction to methylarsonous acid [MAs(III)] by one bacterial species and demethylation from MAs(III) to As(III) by another. In this study, the gene responsible for MAs(III) demethylation was identified from an environmental MAs(III)-demethylating isolate, Bacillus sp. MD1. This gene, termed arsenic inducible gene (arsI), is in an arsenic resistance (ars) operon and encodes a nonheme iron-dependent dioxygenase with C ⋅ As lyase activity. Heterologous expression of ArsI conferred MAs(III)-demethylating activity and MAs(III) resistance to an arsenic-hypersensitive strain of Escherichia coli, demonstrating that MAs(III) demethylation is a detoxification process. Purified ArsI catalyzes Fe(2+)-dependent MAs(III) demethylation. In addition, ArsI cleaves the C ⋅ As bond in trivalent roxarsone and other aromatic arsenicals. ArsI homologs are widely distributed in prokaryotes, and we propose that ArsI-catalyzed organoarsenical degradation has a significant impact on the arsenic biogeocycle. To our knowledge, this is the first report of a molecular mechanism for organoarsenic degradation by a C ⋅ As lyase.

  8. A C⋅As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters

    PubMed Central

    Yoshinaga, Masafumi; Rosen, Barry P.

    2014-01-01

    Arsenic is the most widespread environmental toxin. Substantial amounts of pentavalent organoarsenicals have been used as herbicides, such as monosodium methylarsonic acid (MSMA), and as growth enhancers for animal husbandry, such as roxarsone (4-hydroxy-3-nitrophenylarsonic acid) [Rox(V)]. These undergo environmental degradation to more toxic inorganic arsenite [As(III)]. We previously demonstrated a two-step pathway of degradation of MSMA to As(III) by microbial communities involving sequential reduction to methylarsonous acid [MAs(III)] by one bacterial species and demethylation from MAs(III) to As(III) by another. In this study, the gene responsible for MAs(III) demethylation was identified from an environmental MAs(III)-demethylating isolate, Bacillus sp. MD1. This gene, termed arsenic inducible gene (arsI), is in an arsenic resistance (ars) operon and encodes a nonheme iron-dependent dioxygenase with C⋅As lyase activity. Heterologous expression of ArsI conferred MAs(III)-demethylating activity and MAs(III) resistance to an arsenic-hypersensitive strain of Escherichia coli, demonstrating that MAs(III) demethylation is a detoxification process. Purified ArsI catalyzes Fe2+-dependent MAs(III) demethylation. In addition, ArsI cleaves the C⋅As bond in trivalent roxarsone and other aromatic arsenicals. ArsI homologs are widely distributed in prokaryotes, and we propose that ArsI-catalyzed organoarsenical degradation has a significant impact on the arsenic biogeocycle. To our knowledge, this is the first report of a molecular mechanism for organoarsenic degradation by a C⋅As lyase. PMID:24821808

  9. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    SciTech Connect

    Kiick, D.M.; Phillips, R.S.

    1988-09-20

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects (DV = 3.5 and D(V/Ktyr) = 2.5) are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine.

  10. Identification of amino acid residues essential to the activity of lyase CpcT1 from Nostoc sp. PCC7120.

    PubMed

    Zhang, Juan; Sun, Ya Fang; Zhao, Kai Hong; Zhou, Ming

    2012-12-10

    The phycocyanin lyase CpcT1 (encoded by gene all5339) and lyase CpcS1 (encoded by gene alr0617) are capable of catalyzing the phycocyanobilin (PCB) covalently bound to the different sites of phycocyanin's and phycoerythrocyanin's β subunits, respectively. Lyase CpcS1, whose catalytic mechanism had been researched clearly, participates in the covalent coupling of phycobilin and apoprotein in the form of chaperone, and its important amino acids have been confirmed. In order to identify the functional amino acid residues of CpcT1, chemical modification was conducted to arginine, histidine, tryptophan, lysine and amino acid carboxyl of CpcT1. The results indicated that the catalytic activity of the CpcT1 was changed. After the modification of arginine, tryptophan and histidine, site-directed mutations were performed to those highly conserved amino acids which were selected by means of homologous comparison. The mutated lyase, apoprotein and the enzymes that synthesize the phycobilins were recombined in Escherichia coli (E. coli) and in vitro, yielding chromoproteins, which were detected by fluorescence and UV absorption spectrometry. The spectra were compared with that of the chromoprotein catalyzed by wild type lyase CpcT1, achieving relative specific activities of the various mutants. Meanwhile, the mutants were expressed in E. coli, and then circular dichroism structure of near-UV region was determined. The results demonstrated that H33F, W175S, R97A, C137S and C116S influence the catalytic activity of CpcT1. Being different from wild CpcT1, a great deal of α helix was involved in the structure of circular dichroism of R97A and W13S. CpcT1 or its mutants and the enzymes that synthesize the phycobilins, were reconstituted in E. coli and detected by spectra to check the bounding of lyases and PCB. The results of spectra and SDS-PAGE confirm that CpcT1 and its mutants cannot bind phycobilin, differing from the catalytic mechanism of CpcS1. PMID:22982227

  11. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis

    SciTech Connect

    Marusich, W.C.; Jensen, R.A.; Zamir, L.O.

    1981-06-01

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.

  12. Fine-tuning of a radical-based reaction by radical S-adenosyl-L-methionine tryptophan lyase.

    PubMed

    Sicoli, Giuseppe; Mouesca, Jean-Marie; Zeppieri, Laura; Amara, Patricia; Martin, Lydie; Barra, Anne-Laure; Fontecilla-Camps, Juan C; Gambarelli, Serge; Nicolet, Yvain

    2016-03-18

    The radical S-adenosyl-L-methionine tryptophan lyase NosL converts L-tryptophan into 3-methylindolic acid, which is a precursor in the synthesis of the thiopeptide antibiotic nosiheptide. Using electron paramagnetic resonance spectroscopy and multiple L-tryptophan isotopologues, we trapped and characterized radical intermediates that indicate a carboxyl fragment migration mechanism for NosL. This is in contrast to a proposed fragmentation-recombination mechanism that implied Cα-Cβ bond cleavage of L-tryptophan. Although NosL resembles related tyrosine lyases, subtle substrate motions in its active site are responsible for a fine-tuned radical chemistry, which selects the Cα-C bond for disruption. This mechanism highlights evolutionary adaptation to structural constraints in proteins as a route to alternative enzyme function.

  13. Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase.

    PubMed

    Mukhopadhyay, Arka; Dutta, Nalok; Chattopadhyay, Dhrubajyoti; Chakrabarti, Krishanu

    2013-06-01

    Banana, citrus and potato peels were subjected to treatment with hydroxyapatite nanoparticle (NP) supplemented purified pectate lyase (NP-PL), isolated from Bacillus megaterium AK2 to produce reducing sugar (RS). At both 50 and 90°C production of RS by NP-PL was almost twofold greater than that by untreated pectate lyase (PL) from each of the three peels. The optimal production of RS from banana and citrus peels were after 24 and 6h of incubation while it was 24 and 4h for potato peels at 50 and 90°C, respectively, on NP-PL treatment. NP-PL could degum raw, decorticated ramie fibers as well as enhance fiber tenacity and fineness. The weight loss of the fibers were 24% and 31% better (compared to PL treatment) after 24 and 48 h of processing. These findings have potential implications for the bio-ethanol, bio-fuel and textile industries. PMID:23587821

  14. Michael addition of dehydroalanine-containing MAPK peptides to catalytic lysine inhibits the activity of phosphothreonine lyase.

    PubMed

    Zhang, Yuan; Yang, Ru; Huang, Juan; Liang, Qiujin; Guo, Yanmin; Bian, Weixiang; Luo, Lingfei; Li, Hongtao

    2015-11-30

    The phosphothreonine lyases OspF and SpvC irreversibly inactivate host dual-phosphorylated mitogen-activated protein kinases (MAPKs) [pThr-X-pTyr motif] through β-elimination. We found that dual-phosphorylated (pSer-X-pTyr) MAPK substrate peptides and their resulting catalytic products cross-link to OspF and SpvC. Mass spectrometry results revealed that these linkages form between lysine, which acts as a general base, and dehydroalanine (Dha) on catalytic products. The nucleophilic addition efficiency is dependent on the K136 residue being in a deprotonated state. Peptide cross-linking inhibits the activity of SpvC and blocks the inactivation of MAPK signaling by SpvC. Small compounds mimicking these sequences may act as phosphothreonine lyase inhibitors. PMID:26519561

  15. Evidence for a link between histone deacetylation and Ca²+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts.

    PubMed

    Ihlefeld, Katja; Claas, Ralf Frederik; Koch, Alexander; Pfeilschifter, Josef M; Meyer Zu Heringdorf, Dagmar

    2012-11-01

    Embryonic fibroblasts from S1P (sphingosine-1-phosphate) lyase-deficient mice [Sgpl1-/- MEFs (mouse embryonic fibroblasts)] are characterized by intracellular accumulation of S1P, elevated cytosolic [Ca2+]i and enhanced Ca2+ storage. Since S1P, produced by sphingosine kinase 2 in the nucleus of MCF-7 cells, inhibited HDACs (histone deacetylases) [Hait, Allegood, Maceyka, Strub, Harikumar, Singh, Luo, Marmorstein, Kordula, Milstein et al. (2009) Science 325, 1254-1257], in the present study we analysed whether S1P accumulated in the nuclei of S1P lyase-deficient MEFs and caused HDAC inhibition. Interestingly, nuclear concentrations of S1P were disproportionally elevated in Sgpl1-/- MEFs. HDAC activity was reduced, acetylation of histone 3-Lys9 was increased and the HDAC-regulated gene p21 cyclin-dependent kinase inhibitor was up-regulated in these cells. Furthermore, the expression of HDAC1 and HDAC3 was reduced in Sgpl1-/- MEFs. In wild-type MEFs, acetylation of histone 3-Lys9 was increased by the S1P lyase inhibitor 4-deoxypyridoxine. The non-specific HDAC inhibitor trichostatin A elevated basal [Ca2+]i and enhanced Ca2+ storage, whereas the HDAC1/2/3 inhibitor MGCD0103 elevated basal [Ca2+]i without influence on Ca2+ storage in wild-type MEFs. Overexpression of HDAC1 or HDAC2 reduced the elevated basal [Ca2+]i in Sgpl1-/- MEFs. Taken together, S1P lyase-deficiency was associated with elevated nuclear S1P levels, reduced HDAC activity and down-regulation of HDAC isoenzymes. The decreased HDAC activity in turn contributed to the dysregulation of Ca2+ homoeostasis, particularly to the elevated basal [Ca2+]i, in Sgpl1-/- MEFs.

  16. A stereoselective carbon-nitrogen lyase from Ralstonia sp. SLRS7 cleaves two of three isomers of iminodisuccinate.

    PubMed

    Cokesa, Zeljko; Lakner, Silvia; Knackmuss, Hans-Joachim; Rieger, Paul-Gerhard

    2004-08-01

    Following biodegradation tests according to the OECD guidelines for testing of chemicals 301F different degradation rates were observed for the three stereoisomers of iminodisuccinate (IDS). A strain was isolated from activated sludge, which used two of three isomers, R,S-IDS and S,S-IDS, as sole source of carbon, nitrogen, and energy. The isolated strain was identified by 16S-rDNA and referred to as Ralstonia sp. SLRS7. An IDS-degrading lyase was isolated from the cell-free extract. The enzyme was purified by three chromatographic steps, which included anion-exchange chromatography, hydrophobic interaction chromatography and gel filtration. The lyase catalysed the non-hydrolytic cleavage of IDS without requirement of any cofactors. Cleavage of S,S-IDS led to the formation of fumaric acid and L-aspartic acid. Interestingly R,S-IDS yielded only D-aspartic acid besides fumaric acid. R,R-IDS was not transformed. Thus, the IDS-degrading enzyme is a carbon-nitrogen lyase attacking only the asymmetric carbon atom exhibiting the S-configuration. Besides S,S-IDS and R,S-IDS cleavage, the lyase catalysed also the transformation of certain S,S-IDS metal complexes, namely Ca(2+)-, Mg(2+)- and Mn(2+)-IDS. The maximum enzyme activity was found at pH 8.0-8.5 and 35 degrees C. SDS-PAGE analysis revealed a single 57-kDa protein band. The native enzyme was estimated to be around 240 kDa indicating a homotetramer enzyme.

  17. A systems chemical biology study of malate synthase and isocitrate lyase inhibition in Mycobacterium tuberculosis during active and NRP growth.

    PubMed

    May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I

    2013-12-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistence under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence.

  18. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening.

    PubMed

    Santiago-Doménech, Nieves; Jiménez-Bemúdez, Silvia; Matas, Antonio J; Rose, Jocelyn K C; Muñoz-Blanco, Juan; Mercado, José A; Quesada, Miguel A

    2008-01-01

    Cell wall disassembly in softening fruits is a complex process involving the cumulative action of many families of wall-modifying proteins on interconnected polysaccharide matrices. One strategy to elucidate the in vivo substrates of specific enzymes and their relative importance and contribution to wall modification is to suppress their expression in transgenic fruit. It has been reported previously that inhibiting the expression of pectate lyase genes by antisense technology in strawberry (Fragaria x ananassa Duch.) fruit resulted in prolonged fruit firmness. This suggested that pectin depolymerization might make a more important contribution to strawberry fruit softening than is often stated. In this present study, three independent transgenic lines were identified exhibiting a greater than 90% reduction in pectate lyase transcript abundance. Analyses of sequential cell wall extracts from the transgenic and control fruit collectively showed clear quantitative and qualitative differences in the extractability and molecular masses of populations of pectin polymers. Wall extracts from transgenic fruits showed a reduction in pectin solubility and decreased depolymerization of more tightly bound polyuronides. Additional patterns of differential extraction of other wall-associated pectin subclasses were apparent, particularly in the sodium carbonate- and chelator-soluble polymers. In addition, microscopic studies revealed that the typical ripening-associated loss of cell-cell adhesion was substantially reduced in the transgenic fruits. These results indicate that pectate lyase plays an important degradative role in the primary wall and middle lamella in ripening strawberry fruit, and should be included in synergistic models of cell wall disassembly.

  19. The Leu22Pro tumor-associated variant of DNA polymerase beta is dRP lyase deficient.

    PubMed

    Dalal, Shibani; Chikova, Anna; Jaeger, Joachim; Sweasy, Joann B

    2008-02-01

    Approximately 30% of human tumors characterized to date express DNA polymerase beta (pol beta) variant proteins. Two of the polymerase beta cancer-associated variants are sequence-specific mutators, and one of them binds to DNA but has no polymerase activity. The Leu22Pro (L22P) DNA polymerase beta variant was identified in a gastric carcinoma. Leu22 resides within the 8 kDa amino terminal domain of DNA polymerase beta, which exhibits dRP lyase activity. This domain catalyzes the removal of deoxyribose phosphate during short patch base excision repair. We show that this cancer-associated variant has very little dRP lyase activity but retains its polymerase activity. Although residue 22 has no direct contact with the DNA, we report here that the L22P variant has reduced DNA-binding affinity. The L22P variant protein is deficient in base excision repair. Molecular dynamics calculations suggest that alteration of Leu22 to Pro changes the local packing, the loop connecting helices 1 and 2 and the overall juxtaposition of the helices within the N-terminal domain. This in turn affects the shape of the binding pocket that is required for efficient dRP lyase catalysis. PMID:18039710

  20. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  1. A Systems Chemical Biology Study of Malate Synthase and Isocitrate Lyase Inhibition in Mycobacterium tuberculosis During Active and NRP Growth

    PubMed Central

    May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I.

    2013-01-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistent under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence. PMID:24121675

  2. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate.

    PubMed

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction.

  3. Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3).

    PubMed

    Kumar, Sandeep; Jain, Kavish Kumar; Singh, Anupam; Panda, Amulya K; Kuhad, Ramesh Chander

    2015-06-01

    Pectate lyase (EC 4.2.2.2) gene from Bacillus subtilis RCK was cloned and expressed in Escherichia coli to maximize its production. In addition to soluble fraction, bioactive pectate lyase was also obtained from inclusion body aggregates by urea solubilization and refolding under in vitro conditions. Enzyme with specific activity ∼3194IU/mg and ∼1493IU/mg were obtained from soluble and inclusion bodies (IBs) fraction with recovery of 56% and 74% in terms of activity, respectively. The recombinant enzyme was moderately thermostable (t1/2 60min at 50°C) and optimally active in wider alkaline pH range (7.0-10.5). Interaction of protein with its cofactor CaCl2 was found to stimulate the change in tertiary structure as revealed by near UV CD spectra. Intrinsic tryptophan fluorescence spectra indicated that tryptophan is involved in substrate binding and there might be independent binding of Ca(2+) and polygalacturonic acid to the active site. The recombinant enzyme was found to be capable of degrading pectin and polygalacturonic acid. The work reports novel conditions for refolding to obtain active recombinant pectate lyase from inclusion bodies and elucidates the effect of ligand and substrate binding on protein conformation by circular dichroism (CD) and fluorescence spectrofluorometry.

  4. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids

    PubMed Central

    Eoh, Hyungjin; Rhee, Kyu Y.

    2014-01-01

    Few mutations attenuate Mycobacterium tuberculosis (Mtb) more profoundly than deletion of its isocitrate lyases (ICLs). However, the basis for this attenuation remains incompletely defined. Mtb’s ICLs are catalytically bifunctional isocitrate and methylisocitrate lyases required for growth on even and odd chain fatty acids. Here, we report that Mtb’s ICLs are essential for survival on both acetate and propionate because of its methylisocitrate lyase (MCL) activity. Lack of MCL activity converts Mtb’s methylcitrate cycle into a “dead end” pathway that sequesters tricarboxylic acid (TCA) cycle intermediates into methylcitrate cycle intermediates, depletes gluconeogenic precursors, and results in defects of membrane potential and intrabacterial pH. Activation of an alternative vitamin B12-dependent pathway of propionate metabolism led to selective corrections of TCA cycle activity, membrane potential, and intrabacterial pH that specifically restored survival, but not growth, of ICL-deficient Mtb metabolizing acetate or propionate. These results thus resolve the biochemical basis of essentiality for Mtb’s ICLs and survival on fatty acids. PMID:24639517

  5. Crystal Structure of PhnH: an Essential Component of Carbon-Phosphorus Lyase in Escherichia coli

    SciTech Connect

    Adams,M.; Luo, Y.; Hove-Jensen, B.; He, S.; van Staalduinen, L.; Zechel, D.; Jia, Z.

    2008-01-01

    Organophosphonates are reduced forms of phosphorous that are characterized by the presence of a stable carbon-phosphorus (C-P) bond, which resists chemical hydrolysis, thermal decomposition, and photolysis. The chemically inert nature of the C-P bond has raised environmental concerns as toxic phosphonates accumulate in a number of ecosystems. Carbon-phosphorous lyase (CP lyase) is a multienzyme pathway encoded by the phn operon in gram-negative bacteria. In Escherichia coli 14 cistrons comprise the operon (phnCDEFGHIJKLMNOP) and collectively allow the internalization and degradation of phosphonates. Here we report the X-ray crystal structure of the PhnH component at 1.77 Angstroms resolution. The protein exhibits a novel fold, although local similarities with the pyridoxal 5'-phosphate-dependent transferase family of proteins are apparent. PhnH forms a dimer in solution and in the crystal structure, the interface of which is implicated in creating a potential ligand binding pocket. Our studies further suggest that PhnH may be capable of binding negatively charged cyclic compounds through interaction with strictly conserved residues. Finally, we show that PhnH is essential for C-P bond cleavage in the CP lyase pathway.

  6. The Refined Three-Dimensional Structure of Pectate Lyase E from Erwinia chrysanthemi at 2.2 A Resolution.

    PubMed Central

    Lietzke, S. E.; Scavetta, R. D.; Yoder, M. D.; Jurnak, F.

    1996-01-01

    The crystal structure of pectate lyase E (PelE; EC 4.2.2.2) from the enterobacteria Erwinia chrysanthemi has been refined by molecular dynamics techniques to a resolution of 2.2 A and an R factor (an agreement factor between observed structure factor amplitudes) of 16.1%. The final model consists of all 355 amino acids and 157 water molecules. The root-mean-square deviation from ideality is 0.009 A for bond lengths and 1.721[deg] for bond angles. The structure of PelE bound to a lanthanum ion, which inhibits the enzymatic activity, has also been refined and compared to the metal-free protein. In addition, the structures of pectate lyase C (PelC) in the presence and absence of a lutetium ion have been refined further using an improved algorithm for identifying waters and other solvent molecules. The two putative active site regions of PelE have been compared to those in the refined structure of PelC. The analysis of the atomic details of PelE and PelC in the presence and absence of lanthanide ions provides insight into the enzymatic mechanism of pectate lyases. PMID:12226275

  7. The role of substrate strain in the mechanism of the carbon-carbon lyases.

    PubMed

    Phillips, Robert S; Demidkina, Tatyana V; Faleev, Nicolai G

    2014-12-01

    The carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from l-tryptophan and l-tyrosine, respectively. These PLP-dependent enzymes show high sequence homology (∼40% identity) and both form homotetrameric structures. Steady state kinetic studies with both enzymes show that an active site base is essential for activity, and α-deuterated substrates exhibit modest primary isotope effects on kcat and kcat/Km, suggesting that substrate deprotonation is partially rate-limiting. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500nm. In the presence of phenol and indole analogues, 4-hydroxypyridine and benzimidazole, the quinonoid intermediates of TPL and TIL decay to aminoacrylate intermediates, with λmax at about 340nm. Surprisingly, there are significant kinetic isotope effects on both formation and subsequent decay of the quinonoid intermediates when α-deuterated substrates are used. The crystal structure of TPL with a bound competitive inhibitor, 4-hydroxyphenylpropionate, identified several essential catalytic residues: Tyr-71, Thr-124, Arg-381, and Phe-448. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg-381(TPL)/Ile-396 (TIL); Thr-124 (TPL)/Asp-137 (TIL), and Phe-448 (TPL)/His-463 (TIL). Mutagenesis of these residues results in dramatic decreases in catalytic activity without changing substrate specificity. The conserved tyrosine, Tyr-71 (TPL)/Tyr-74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. Mutation of Arg-381 and Thr-124 of TPL to alanine results in very low but measurable catalytic activity. Crystallography of Y71F and F448H TPL with 3-fluoro-l-tyrosine bound demonstrated that there

  8. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.

    PubMed

    Gao, Guanghua; DeRose, Eugene F; Kirby, Thomas W; London, Robert E

    2006-02-14

    The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general

  9. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms

    PubMed Central

    2011-01-01

    Background Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs) catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL) in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides. The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively. Results Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides. Conclusions The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of genes coding for pectin

  10. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway.

    PubMed

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna; Wong, Matthew; McSorley, Fern R; Asfaw, Alemayehu; Hove-Jensen, Bjarne; Jia, Zongchao; Zechel, David L

    2011-10-11

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase superfamily, PhnP is most homologous in sequence and structure to tRNase Z phosphodiesterases. X-ray structural analysis of PhnP complexed with orthovanadate to 1.5 Å resolution revealed this inhibitor bound in a tetrahedral geometry by the two catalytic manganese ions and the putative general acid residue H200. Guided by this structure, we probed the contributions of first- and second-sphere active site residues to catalysis and metal ion binding by site-directed mutagenesis, kinetic analysis, and ICP-MS. Alteration of H200 to alanine resulted in a 6-33-fold decrease in k(cat)/K(M) with substituted methyl phenylphosphate diesters with leaving group pK(a) values ranging from 4 to 8.4. With bis(p-nitrophenyl)phosphate as a substrate, there was a 10-fold decrease in k(cat)/K(M), primarily the result of a large increase in K(M). Moreover, the nickel ion-activated H200A PhnP displayed a bell-shaped pH dependence for k(cat)/K(M) with pK(a) values (pK(a1) = 6.3; pK(a2) = 7.8) that were comparable to those of the wild-type enzyme (pK(a1) = 6.5; pK(a2) = 7.8). Such modest effects are counter to what is expected for a general acid catalyst and suggest an alternate role for H200 in this enzyme. A Brønsted analysis of the PhnP reaction with a series of substituted phenyl methyl phosphate esters yielded a linear correlation, a β(lg) of -1.06 ± 0.1, and a Leffler α value of 0.61, consistent with a synchronous transition state for phosphoryl transfer. On the basis of these data, we propose a mechanism for PhnP. PMID:21830807

  11. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    PubMed

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-01

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. PMID:25231977

  12. Kynurenine Aminotransferase III and Glutamine Transaminase L Are Identical Enzymes that have Cysteine S-Conjugate β-Lyase Activity and Can Transaminate l-Selenomethionine*

    PubMed Central

    Pinto, John T.; Krasnikov, Boris F.; Alcutt, Steven; Jones, Melanie E.; Dorai, Thambi; Villar, Maria T.; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J. L.

    2014-01-01

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-l-selenocysteine (MSC) and l-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. PMID:25231977

  13. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    PubMed

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-01

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites.

  14. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.

    PubMed

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu

    2014-11-01

    PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.

  15. Cloning and sequence analysis of cDNA for human argininosuccinate lyase.

    PubMed Central

    O'Brien, W E; McInnes, R; Kalumuck, K; Adcock, M

    1986-01-01

    Using antibodies specific for argininosuccinate lyase (EC 4.3.2.1), we isolated two cDNA clones by screening a human liver cDNA library constructed in the lambda gt11 expression vector. The identity of these isolates was confirmed by in vitro translation of plasmid-selected mRNA. One of these isolates was used to rescreen the cDNA library and a 1565-base-pair (bp) clone was identified. The entire nucleotide sequence of this clone was determined. An open reading frame was identified which encoded a protein of 463 amino acids with a predicted molecular weight of 51,663. The clone included 115 bp of 5' untranslated sequence and 46 bp of 3' untranslated sequence. A canonical poly(A) addition site was present in the 3' end, 16 bp from the beginning of the poly(A) tract. Comparison of the deduced amino acid sequence of the human enzyme with that of the yeast enzyme revealed a 56% homology, when conservative amino acid changes were taken into consideration. The yeast protein is also 463 amino acids long, with a molecular weight of 51,944. By use of a genomic DNA panel from human-Chinese hamster somatic cell hybrids, the human gene was mapped to chromosome 7. Another hybridizing region, corresponding to a portion of the 5' end of the cDNA, was found on chromosome 22. Images PMID:3463959

  16. Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi.

    PubMed Central

    Roeder, D L; Collmer, A

    1985-01-01

    The phytopathogenic enterobacterium Erwinia chrysanthemi contains pel genes encoding several different isozymes of the plant-tissue-disintegrating enzyme pectate lyase (PL). The pelC gene, encoding an isozyme with an approximate isoelectric point of 8.0, was mutagenized by a three-step procedure involving (i) insertional inactivation of the cloned gene by ligation of a kan-containing BamHI fragment from pUC4K with a partial Sau3A digest of E. chrysanthemi pelC DNA in pBR322; (ii) mobilization of the pBR322 derivative from Escherichia coli to E. chrysanthemi by the helper plasmids R64drd11 and pLVC9; and (iii) exchange recombination of the pelC::kan mutation into the E. chrysanthemi chromosome by selection for kanamycin resistance in transconjugants cultured in phosphate-limited medium (which renders pBR322 unstable). The resulting E. chrysanthemi mutant was Kanr Amps, lacked pBR322 sequences, and was deficient in only one of the four major PL isozymes, PLc, as determined by activity-stained isoelectric-focusing polyacrylamide gels. The rates of PL induction and cell growth in a medium containing polygalacturonic acid as the sole carbon source were not significantly reduced in the mutant. No difference was detected in the ability of the mutant to macerate potato tuber tissue. The evidence suggests that this isozyme is not necessary for soft-rot pathogenesis. Images PMID:2995324

  17. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    PubMed Central

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  18. Inhibition of Escherichia coli tryptophan indole-lyase by tryptophan homologues.

    PubMed

    Do, Quang T; Nguyen, Giang T; Celis, Victor; Phillips, Robert S

    2014-10-15

    We have designed, synthesized and evaluated homotryptophan analogues as possible mechanism-based inhibitors for Escherichia coli tryptophan indole-lyase (tryptophanase, TIL, E.C. 4.1.99.1). As a quinonoid structure is an intermediate in the reaction mechanism of TIL, we anticipated that homologation of the physiological substrate, L-Trp would provide analogues resembling the transition state for β-elimination, and potentially inhibit TIL. Our results demonstrate that L-homotryptophan (1a) is a moderate competitive inhibitor of TIL, with Ki=67 μM, whereas L-bishomotryptophan (1b) displays more potent inhibition, with Ki=4.7 μM. Pre-steady-state kinetics indicated the formation of an external aldimine and quinonoid with 1a, but only the formation of an external aldimine for 1b, suggesting differences in the inhibition mechanism. These results demonstrate that formation of a quinonoid complex is not required for strong inhibition. In addition, the Trp analogues were evaluated as inhibitors of Salmonella typhimurium Trp synthase. Our results indicate that compound 1b is at least 25-fold more selective toward TIL than Trp synthase. We report that compound 1b is comparable to the most potent inhibitor previously reported, while displaying high selectivity for TIL. Thus, 1b is a potential lead for the development of novel antibacterials.

  19. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  20. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas.

    PubMed

    Beckner, Marie E; Fellows-Mayle, Wendy; Zhang, Zhe; Agostino, Naomi R; Kant, Jeffrey A; Day, Billy W; Pollack, Ian F

    2010-05-15

    Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH's REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas. PMID:19795461

  1. Synergism between cucumber alpha-expansin, fungal endoglucanase and pectin lyase.

    PubMed

    Wei, Wei; Yang, Chun; Luo, Jun; Lu, Changmei; Wu, Yajun; Yuan, Sheng

    2010-09-15

    Several recombinant fungal enzymes (endoglucanase and pectinase) were studied for their interactions with alpha-expansin in cell wall extension and polysaccharide degradation. Both Cel12A and Cel5A were able to hydrolyze cellulose CMC-Na and mixed-linkage beta-glucan. In contrast to Cel5A, Cel12A could also hydrolyze xyloglucan and induce wall extension of cucumber hypocotyls in an in vitro assay. Combining alpha-expansin, even at high concentrations, with Cel12A did not enhance the maximum/final wall extension rate induced by Cel12A alone. These results strongly suggest that modification/degradation of the xyloglucan molecule/network is the key for cell wall extension, and alpha-expansin and Cel12A may share the same acting site in the substrate. Pectinase (Pel1, a pectin lyase) enhanced alpha-expansin-induced wall extension in a concentration-dependent manner, suggesting that the pectin network may normally regulate accessibility of expansin to the xyloglucan-cellulose complex. alpha-Expansin enhanced Cel12A's hydrolytic activity on cellulose CMC-Na but not on xyloglucan and beta-glucan. Expansin did not affect Cel5A's hydrolytic activity. Interestingly, expansin also enhanced Pel1's activity on degrading high esterified pectin. A potential explanation for why expansin could synergistically interact with only certain enzymes on specific polysaccharides is discussed. Additional results also suggested that cell wall swelling may not be a significant event during the action of expansin and hydrolases.

  2. Rhamnogalacturonate Lyase RhiE Is Secreted by the Out System in Erwinia chrysanthemi

    PubMed Central

    Laatu, Minna; Condemine, Guy

    2003-01-01

    Supernatants of rhamnose-induced Erwinia chrysanthemi strain 3937 cultures contain a principal secreted protein named RhiE. A rhiE mutant has been found among a set of rhamnose-induced MudI1681 lacZ fusions. RhiE is a 62-kDa protein that has rhamnogalacturonate lyase activity on rhamnogalacturonan I (RG-I). It does not require a divalent cation for its activity and has an optimal pH of 6.0. rhiE expression is strongly induced in the presence of rhamnose but is also regulated by PecT and Crp, two regulators of the transcription of pectinolytic enzyme genes. RhiE is secreted through the type II Out secretion pathway. RhiE has no disulfide bond. The absence of RhiE secretion in a dsb mutant indicated that disulfide bond formation is required for the biogenesis of the secretion apparatus. RhiE was searched for in several E. chrysanthemi strains by using antibodies, and it was found to be present in one-third of the strains tested. However, the reduced virulence of the rhiE mutant indicates that degradation of the RG-I region of pectin is important for full virulence of E. chrysanthemi. PMID:12591882

  3. Decreased Warburg effect induced by ATP citrate lyase suppression inhibits tumor growth in pancreatic cancer.

    PubMed

    Zong, Haifeng; Zhang, Yang; You, Yong; Cai, Tiantian; Wang, Yehuang

    2015-03-01

    ATP citrate lyase (ACLY) is responsible for the conversion of cytosolic citrate into acetyl-CoA and oxaloacetate, and the first rate-limiting enzyme involved in de novo lipogenesis. Recent studies have demonstrated that inhibition of elevated ACLY results in growth arrest and apoptosis in a subset of cancers; however, the expression pattern and underlying biological function of ACLY in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, overexpressed ACLY was more commonly observed in PDAC compared to normal pancreatic tissues. Kaplan-Meier survival analysis showed that high expression level of ACLY resulted in a poor prognosis of PDAC patients. Silencing of endogenous ACLY expression by siRNA in PANC-1 cells led to reduced cell viability and increased cell apoptosis. Furthermore, significant decrease in glucose uptake and lactate production was observed after ACLY was knocked down, and this effect was blocked by 2-deoxy-D-glucose, indicating that ACLY functions in the Warburg effect affect PDAC cell growth. Collectively, this study reveals that suppression of ACLY plays an anti-tumor role through decreased Warburg effect, and ACLY-related inhibitors might be potential therapeutic approaches for PDAC. PMID:25701462

  4. Immobilization of Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Microporous Silica Gel

    PubMed Central

    Cui, Jian Dong; Li, Lian Lian; Bian, Hong Jie

    2013-01-01

    A separable and highly-stable enzyme system was developed by adsorption of phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis in amino-functionalized macroporous silica gel and subsequent enzyme crosslinking. This resulted in the formation of cross-linked enzyme aggregates (PAL-CLEAs) into macroporous silica gel (MSG-CLEAs). The effect of adsorptive conditions, type of aggregating agent, its concentration as well as that of cross-linking agent was studied. MSG-CLEAs production was most effective using ammonium sulfate (40%-saturation), followed by cross-linking for 1 h with 1.5% (v/v) glutaraldehyde. The resulting MSG-CLEAs extended the optimal temperature and pH range compared to free PAL and PAL-CLEAs. Moreover, MSG-CLEAs exhibited the excellent stability of the enzyme against various deactivating conditions such as temperature and denaturants, and showed higher storage stability compared to the free PAL and the conventional PAL-CLEAs. Such as, after 6 h incubation at 60°C, the MSG-CLEAs still retained more than 47% of the initial activity whereas PAL-CLEAs only retained 7% of the initial activity. Especially, the MSG-CLEAs exhibited good reusability due to its suitable size and active properties. These results indicated that PAL-CLEAs on MSG might be used as a feasible and efficient solution for improving properties of immobilized enzyme in industrial application. PMID:24260425

  5. [Molecular cloning and characterization of a N-acetylneuraminate lyase gene from Staphylococcus hominis].

    PubMed

    Zhou, Chuanhua; Chen, Xi; Feng, Jinhui; Xiao, Dongguang; Wuz, Qiaqing; Zhu, Dunming

    2013-04-01

    A N-acetylneuraminate lyase gene (shnal) from Staphylococcus hominis was cloned into pET-28a and expressed in Escherichia coli BL21 (DE3) host cells. The recombinant enzyme was purified and characterized. It is a homotetrameric enzyme with the optimum pH at 8.0 for the cleavage direction and the optimum pH and temperature were 7.5 and 45 degrees C for the synthetic direction. The activity of ShNAL is stable when incubated at 45 degrees C for 2 h but decreased rapidly over 50 degrees C. ShNAL showed high stability in a wide range pH from 5.0 to 10.0 with the residual activity being > 70% when the enzyme was incubated in different buffers at 4 degrees C for 24 h. Its K(m) towards N-acetylneuraminic acid, pyruvate and ManNAc were (4.0 +/- 0.2) mmol/L, (35.1 +/- 3.2) mmol/L and (131.7 +/- 12.1) mmol/L, respectively. The k(cat)/K(m) value of Neu5Ac, ManNAc, and Pyr for ShNAL were 1.9 L/(mmol x s), 0.08 L/(mmol x s) and 0.08 L/(mmol x s), respectively.

  6. High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements.

    PubMed

    Zhang, Junjiao; Kang, Zhen; Ling, Zhenmin; Cao, Wenlong; Liu, Long; Wang, Miao; Du, Guocheng; Chen, Jian

    2013-10-01

    The present work aims to construct a robust recombinant Bacillus subtilis to achieve secretory production of alkaline polygalacturonate lyase (PGL). First, 6 signal peptides (amyX, bpr, vpr, yvgO, wapA and nprE) were screened with a semi-rational approach and comparatively investigated their effects on the production of PGL. The signal peptide bpr directed efficient PGL secretory expression and increased PGL titer to 313.7 U mL(-1). By optimizing and applying strong promoter P43 and Shine-Dalgarno sequence, higher titer of 446.3 U mL(-1) PGL was achieved. Finally, the capacity of the recombinant B. subtilis WB43CB was evaluated with a fed-batch strategy in 3 L fermentor. The PGL titer reached 632.6 U mL(-1) with a productivity of 17.6 U mL(-1) h(-1), which was the highest secretory production of PGL by the B. subtilis system. The recombinant B. subtilis strain WB43CB constructed in the present work has great potential in production of alkaline PGL.

  7. The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers.

    PubMed

    Huang, Tengfang; Joshi, Vijay; Jander, Georg

    2014-09-01

    Increasing methionine in potato tubers is desirable, both to increase the availability of this limiting essential amino acid and to enhance the aroma of baked and fried potatoes. Previous attempts to elevate potato methionine content using transgenic approaches have focused on increasing methionine biosynthesis. Higher isoleucine accumulation in these transgenic tubers suggested that the potatoes compensate for increased methionine biosynthesis with enhanced catabolism via methionine gamma-lyase (MGL), thereby producing 2-ketybutyrate for isoleucine biosynthesis. In the current study, we show that potato StMGL1 encodes a functional MGL in potato tubers. In planta silencing of StMGL1 results in an increased methionine to isoleucine ratio in the free amino acid profile of potato tubers and, in some transgenic lines, elevated accumulation of free methionine. In both wild-type and transgenic tubers, the ratio of methionine to isoleucine is negatively correlated with the level of StMGL1 transcript. A three-dimensional distribution of free amino acids in potato tubers is also described.

  8. A novel screening assay for hydroxynitrile lyases suitable for high-throughput screening.

    PubMed

    Krammer, B; Rumbold, K; Tschemmernegg, M; Pöchlauer, P; Schwab, H

    2007-03-30

    Hydroxynitrile lyases (Hnls) are important biocatalysts for the synthesis of optically pure cyanohydrins, which are used as precursors and building blocks for a wide range of high price fine chemicals. Although two Hnl enzymes, from the tropical rubber tree Hevea brasiliensis and from the almond tree Prunus amygdalus, are already used for large scale industrial applications, the enzymes still need to be improved and adapted to the special demands of industrial processes. In many cases directed evolution has been the method of choice to improve enzymes, which are applied as industrial biocatalysts. The screening procedure is the most crucial point in every directed evolution experiment. Herein, we describe the successful development of a novel screening assay for Hnls and its application in high-throughput screening of Escherichia coli mutant libraries. The new assay allows rapid screening of mutant libraries and facilitates the discovery of improved enzyme variants. Hnls catalyze the cleavage of cyanohydrins to hydrocyanic acid and the corresponding aldehyde or ketone. The enzyme assay is based on the detection of hydrocyanic acid produced, making it an all-purpose screening assay, without restriction to any kind of substrate. The gaseous HCN liberated within the Hnl reaction is detected by a visible colorimetric reaction. The facile, highly sensitive and reproducible screening method was validated by identifying new enzyme variants with novel substrate specificities. PMID:17157404

  9. Regulation of cystathionine γ-lyase in mammalian cells by hypoxia.

    PubMed

    Wang, Maoxian; Guo, Zhanyun; Wang, Shilong

    2014-02-01

    Hydrogen sulfide (H2S), an endogenous signaling molecule in mammalian cells, shows a variety of biological effects. Cystathionine γ-lyase (CSE) is a key enzyme in the trans-sulfuration pathway responsible for the production of endogenous H2S. Whether CSE expression is regulated by hypoxia in mammalian cells remains largely unknown. This study revealed that these regulatory effects changed with time at transcriptional and post-transcriptional levels. Hypoxia regulated CSE expression in mammalian cells in a complex manner; CSE transcription went through a down-regulation and recovery period, while CSE mRNA and protein levels increased during hypoxia. Taken together, the results suggest that CSE can respond to hypoxia through transcriptional and post-transcriptional regulation, and CSE expression can be up-regulated by hypoxia to a certain extent. Therefore, the up-regulation of CSE expression during hypoxia may be useful for increasing the production and concentration of H2S in mammalian cells and indirectly protecting cells from hypoxia.

  10. PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation.

    PubMed

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Liang, Ying; Jiang, Jianxia; Ye, Nenghui; Miao, Ying; Cao, Jiashu

    2014-12-01

    Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation.

  11. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase

    PubMed Central

    Zhu, Benwei; Chen, Meijuan; Yin, Heng; Du, Yuguang; Ning, Limin

    2016-01-01

    Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg) has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0–10.0) and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG), homopolymeric M blocks (polyM) and homopolymeric G blocks (polyG), and possessed higher affinity toward polyG (15.63 mM) as well as polyMG (23.90 mM) than polyM (53.61 mM) and sodium alginate (27.21 mM). The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs). The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides. PMID:27275826

  12. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.

    PubMed

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu

    2014-11-01

    PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture. PMID:24773757

  13. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.

    PubMed

    Shang, Qing-Mao; Li, Liang; Dong, Chun-Juan

    2012-10-01

    Phenylalanine ammonia-lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway, and therefore plays a key role in both plant development and stress defense. In many plants, PAL is encoded by a multi-gene family, and each member is differentially regulated in response to environmental stimuli. In the present study, we report that PAL in cucumber (Cucumis sativus L.) is encoded for by a family of seven genes (designated as CsPAL1-7). All seven CsPALs are arranged in tandem in two duplication blocks, which are located on chromosomes 4 and 6, respectively. The cDNA and protein sequences of the CsPALs share an overall high identity to each other. Homology modeling reveals similarities in their protein structures, besides several slight differences, implying the different activities in conversion of phenylalanine. Phylogenic analysis places CsPAL1-7 in a separate cluster rather than clustering with other plant PALs. Analyses of expression profiles in different cucumber tissues or in response to various stress or plant hormone treatments indicate that CsPAL1-7 play redundant, but divergent roles in cucumber development and stress response. This is consistent with our finding that CsPALs possess overlapping but different cis-elements in their promoter regions. Finally, several duplication events are discussed to explain the evolution of the cucumber PAL genes.

  14. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    SciTech Connect

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-08-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH3, pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar.

  15. Crystal structure and mechanism of the Staphylococcus cohnii virginiamycin B lyase (Vgb).

    PubMed

    Lipka, Magdalena; Filipek, Renata; Bochtler, Matthias

    2008-04-01

    The semisynthetic streptogramin antibiotic quinupristin/dalfopristin (trade name Synercid, Aventis Pharma) is a mixture of the A-type streptogramin dalfopristin and the B-type streptogramin quinupristin, a capped hexapeptide macrolactone. Quinupristin/dalfopristin was developed to combat multidrug resistant pathogens, but suffers from its own problems with drug resistance. Virginiamycin B lyase (Vgb) inactivates the quinupristin component of Synercid by lactone ring opening. Remarkably, the enzyme promotes this reaction by intramolecular beta-elimination without the involvement of a water molecule. Recently, structures of S. aureus Vgb in the presence and absence of substrate were reported and used together with detailed mutagenesis data to suggest a catalytic mechanism. Here, we report an independent determination of the S. cohnii Vgb crystal structure and a biochemical characterization of the enzyme. As expected, the S. cohnii and S. aureus Vgb structures and active sites are very similar. Moreover, both enzymes catalyze quinupristin lactone ring opening with similar rate constants, albeit perhaps with different dependencies on divalent metal ions. Replacement of the conserved active site residues His228, Glu268, or His270 with alanine reduces or abolishes S. cohnii Vgb activity. Residue Lys285 in S. cohnii Vgb is spatially equivalent to the S. aureus Vgb active site residue Glu284. A glutamate but not an alanine residue can substitute for the lysine without significant loss of activity. PMID:18341294

  16. A new family of β-helix proteins with similarities to the polysaccharide lyases.

    PubMed

    Close, Devin W; D'Angelo, Sara; Bradbury, Andrew R M

    2014-10-01

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. Importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  17. Molecular Cloning and Characterization of Hydroperoxide Lyase Gene in the Leaves of Tea Plant (Camellia sinensis).

    PubMed

    Deng, Wei-Wei; Wu, Yi-Lin; Li, Ye-Yun; Tan, Zhen; Wei, Chao-Ling

    2016-03-01

    Hydroperoxide lyase (HPL, E.C. 4.1.2.) is the major enzyme in the biosynthesis of natural volatile aldehydes and alcohols in plants, however, little was known about HPL in tea plants (Camellia sinensis). A unique cDNA fragment was isolated by suppressive subtractive hybridization (SSH) from a tea plant subjected to herbivory by tea geometrid Ectropis obliqua. This full length cDNA acquired by RACE was 1476 bp and encoded 491 amino acids. DNA and protein BLAST searches showed high homology to HPL sequences from other plants. The His-tag expression vector pET-32a(+)/CsHPL was constructed and transferred into Escherichia coli Rosetta (DE3). The expression product of recombinant CsHPL in E. coli was about 60 kDa. The enzyme activity of CsHPL was 0.20 μmol·min(-1)·mg(-1). Quantitative RT-PCR analysis indicated CsHPL was strongly up-regulated in tea plants after Ectropis obliqua attack, suggesting that it may be an important candidate for defense against insects in tea plants.

  18. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software.

    PubMed

    Nakano, Shogo; Asano, Yasuhisa

    2015-02-03

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs.

  19. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. tuberculosis: A Summary

    PubMed Central

    Lee, Yie-Vern; Wahab, Habibah A.

    2015-01-01

    Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL. PMID:25649791

  20. Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase.

    PubMed

    Pilon, Marinus; Owen, Jennifer D; Garifullina, Gulnara F; Kurihara, Tatsuo; Mihara, Hisaaki; Esaki, Nobuyoshi; Pilon-Smits, Elizabeth A H

    2003-03-01

    Selenium (Se) toxicity is thought to be due to nonspecific incorporation of selenocysteine (Se-Cys) into proteins, replacing Cys. In an attempt to direct Se flow away from incorporation into proteins, a mouse (Mus musculus) Se-Cys lyase (SL) was expressed in the cytosol or chloroplasts of Arabidopsis. This enzyme specifically catalyzes the decomposition of Se-Cys into elemental Se and alanine. The resulting SL transgenics were shown to express the mouse enzyme in the expected intracellular location, and to have SL activities up to 2-fold (cytosolic lines) or 6-fold (chloroplastic lines) higher than wild-type plants. Se incorporation into proteins was reduced 2-fold in both types of SL transgenics, indicating that the approach successfully redirected Se flow in the plant. Both the cytosolic and chloroplastic SL plants showed enhanced shoot Se concentrations, up to 1.5-fold compared with wild type. The cytosolic SL plants showed enhanced tolerance to Se, presumably because of their reduced protein Se levels. Surprisingly, the chloroplastic SL transgenics were less tolerant to Se, indicating that (over) production of elemental Se in the chloroplast is toxic. Expression of SL in the cytosol may be a useful approach for the creation of plants with enhanced Se phytoremediation capacity. PMID:12644675

  1. Continuous synthesis of hexanal by immobilized hydroperoxide lyase in packed-bed reactor.

    PubMed

    Liu, Qingqing; Hua, Yufei

    2015-12-01

    This study aimed to develop an optimal continuous procedure of immobilized hydroperoxide lyase (HPL)-catalyzed synthesis of hexanal. A central composite design was used to study the combined effect of substrate concentration and the residence time of the reactant on hexanal concentration. The optimum conditions for hexanal synthesis included a 13-HPOD concentration of 43.54 mM and a residence time of 60.99 min. The maximum hexanal concentration was 3560 ± 130 mg/L when 16 U of immobilized HPLwas used. Furthermore, the stability of immobilized HPL was significantly improved in the packed-bed reactor, as evidenced by the slowed enzyme inactivation and prolonged operation time. The immobilized HPL remained activity until 40 mL substrate solution flowed past the packed-bed reactor. The catalyst productivity of hexanal in the packed-bed reactor was 5.35 ± 0.34 mg/U, much higher than that in the batch stirred reactor. This study was greatly meaningful for providing a green method to the large-scale production of hexanal.

  2. A new family of β-helix proteins with similarities to the polysaccharide lyases

    SciTech Connect

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  3. Temporal and spatial expression of amygdalin hydrolase and (R)-(+)-mandelonitrile lyase in black cherry seeds.

    PubMed

    Zheng, L; Poulton, J E

    1995-09-01

    In black cherry (Prunus serotina Ehrh.) macerates, the cyanogenic diglucoside (R)-amygdalin undergoes stepwise degradation to HCN catalyzed by amygdalin hydrolase (AH), prunasin hydrolase, and (R)-(+)-mandelonitrile lyase (MDL). A near full-length AH cDNA clone (pAH1), whose insert encodes the isozyme AH I, has been isolated and sequenced. AH I exhibits several features characteristic of beta-glucosidases of the BGA family, including their likely nucleophile center (isoleucine-threonine-glutamic acid-asparagine-glycine) and acid catalyst (asparagine-glutamic acid-proline/isoleucine) motifs. The temporal expression of AH and MDL in ripening fruit was analyzed by northern blotting. Neither mRNA was detectable until approximately 40 days after flowering (DAF), when embryos first became visible to the naked eye. Both mRNAs peaked at approximately 49 DAF before declining to negligible levels when the fruit matured (82 DAF). Taken together with enzyme activity data, these time courses suggest that AH and MDL expression may be under transcriptional control during fruit maturation. In situ hybridization analysis indicated that AH transcripts are restricted to the procambium, whereas MDL transcripts are localized within cotyledonary parenchyma cells. These tissue-specific distributions are consistent with the major locations of AH and MDL protein in mature seeds previously determined by immunocytochemistry (E. Swain, C.P. Li, and J.E. Poulton [1992] Plant Physiol 100:291-300). PMID:7480328

  4. Sequencing, genomic organization, and preliminary promoter analysis of a black cherry (R)-(+)-mandelonitrile lyase gene.

    PubMed

    Hu, Z; Poulton, J E

    1997-12-01

    The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10) plays a key role in cyanogenesis in rosaceous stone fruits. An MDL gene (mdl3) and its corresponding cDNA (MDL3) were isolated from black cherry (Prunus serotina) and characterized. The mdl3 gene contains 2292 bp of the 5' flanking region, the entire coding region, and 300 bp of the 3' flanking region. The coding region is interrupted by three short introns, of which one possesses the usual GC-AG splice junction dinucleotides. This gene encodes a polypeptide of 573 amino acids that includes a putative signal sequence, 13 potential N-glycosylation sites, and a presumptive flavin adenine dinucleotide-binding site. To determine whether the 5' flanking region of the mdl3 gene is capable of driving MDL expression, it was fused to the beta-glucuronidase reporter gene for Agrobacterium-mediated transformation into tobacco. Matching endogenous MDL expression patterns, beta-glucuronidase staining was observed in maturing embryos and seeds; it also occurred in postembryonic tissues, especially in association with vascular tissues. After developing a homologous transient transformation system to facilitate identification of putative regulatory sequences, we demonstrated that 125 bp (-107 to +18) of the 5' flanking sequence of the mdl3 gene is sufficient for MDL expression in protoplasts derived from immature black cherry embryos. PMID:9414550

  5. Amidation of Bioactive Peptides: The Structure of the Lyase Domain of the Amidating Enzyme

    SciTech Connect

    Chufan, E.; De, M; Eipper, B; Mains, R; Amzel, L

    2009-01-01

    Many neuropeptides and peptide hormones require amidation of their carboxy terminal for full biological activity. The enzyme peptidyl-{alpha}-hydroxyglycine {alpha}-amidating lyase (PAL; EC 4.3.2.5) catalyzes the second and last step of this reaction, N-dealkylation of the peptidyl-{alpha}-hydroxyglycine to generate the {alpha}-amidated peptide and glyoxylate. Here we report the X-ray crystal structure of the PAL catalytic core (PALcc) alone and in complex with the nonpeptidic substrate {alpha}-hydroxyhippuric acid. The structures show that PAL folds as a six-bladed {Beta}-propeller. The active site is formed by a Zn(II) ion coordinated by three histidine residues; the substrate binds to this site with its {alpha}-hydroxyl group coordinated to the Zn(II) ion. The structures also reveal a tyrosine residue (Tyr{sup 654}) at the active site as the catalytic base for hydroxyl deprotonation, an unusual role for tyrosine. A reaction mechanism is proposed based on this structural data and validated by biochemical analysis of site-directed PALcc mutants.

  6. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software

    PubMed Central

    Nakano, Shogo; Asano, Yasuhisa

    2015-01-01

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs. PMID:25645341

  7. Purification and characterization of a novel (R)-hydroxynitrile lyase from Eriobotrya japonica (Loquat).

    PubMed

    Ueatrongchit, Techawaree; Kayo, Ai; Komeda, Hidenobu; Asano, Yasuhisa; H-Kittikun, Aran

    2008-06-01

    A hydroxynitrile lyase was isolated and purified to homogeneity from seeds of Eriobotrya japonica (loquat). The final yield, of 36% with 49-fold purification, was obtained by 30-80% (NH(4))(2)SO(4) fractionation and column chromatography on DEAE-Toyopearl and Concanavalin A Sepharose 4B, which suggested the presence of a carbohydrate side chain. The purified enzyme was a monomer with a molecular mass of 72 kDa as determined by gel filtration, and 62.3 kDa as determined by SDS-gel electrophoresis. The N-terminal sequence is reported. The enzyme was a flavoprotein containing FAD as a prosthetic group, and it exhibited a K(m) of 161 microM and a k(cat)/K(m) of 348 s(-1) mM(-1) for mandelonitrile. The optimum pH and temperature were pH 5.5 and 40 degrees C respectively. The enzyme showed excellent stability with regard to pH and temperature. Metal ions were not required for its activity, while activity was significantly inhibited by CuSO(4), HgCl(2), AgNO(3), FeCl(3), beta-mercaptoethanol, iodoacetic acid, phenylmethylsulfonylfluoride, and diethylpyrocarbonate. The specificity constant (k(cat)/K(m)) of the enzyme was investigated for the first time using various aldehydes as substrates. The enzyme was active toward aromatic and aliphatic aldehydes, and showed a preference for smaller substrates over bulky one.

  8. Design of benzimidazole- and benzoxazole-2-thione derivatives as inhibitors of bacterial hyaluronan lyase.

    PubMed

    Braun, Stephan; Botzki, Alexander; Salmen, Sunnhild; Textor, Christian; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2011-09-01

    Bacterial hyaluronan lyases (Hyal) degrade hyaluronan, an important component of the extracellular matrix, and are involved in microbial spread. Hyal inhibitors may serve as tools to study the role of the enzyme, its substrates and products in the course of bacterial infections. Moreover, such enzyme inhibitors are potential candidates for antibacterial combination therapy. Based on crystal structures of Streptococcus pneumoniae Hyal in complex with a hexasaccharide substrate and with different inhibitors, 1-acylated benzimidazole-2-thiones and benzoxazole-2-thiones were derived as new leads for the inhibition of Streptococcus agalactiae strain 4755 Hyal. Structure-based optimization led to N-(3-phenylpropionyl)benzoxazole-2-thione, one of the most potent compounds known to date (IC(50) values: 24 μM at pH 7.4, 15 μM at pH 5). Among the 27 new derivatives, other N-acylated benzimidazoles and benzoxazoles are just as active at pH 7.4, but not at pH 5. The results support a binding mode characterized by interactions with residues in the catalytic site and with a hydrophobic patch.

  9. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia.

    PubMed

    Xu, Feng; Deng, Guang; Cheng, Shuiyuan; Zhang, Weiwei; Huang, Xiaohua; Li, Linling; Cheng, Hua; Rong, Xiaofeng; Li, Jinbao

    2012-01-01

    Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenypropanoid pathway. A full-length cDNA of PAL gene was isolated from Juglans regia for the first time, and designated as JrPAL. The full-length cDNA of the JrPAL gene contained a 1935bp open reading frame encoding a 645-amino-acid protein with a calculated molecular weight of about 70.4 kD and isoelectric point (pI) of 6.7. The deduced JrPAL protein showed high identities with other plant PALs. Molecular modeling of JrPAL showed that the 3D model of JrPAL was similar to that of PAL protein from Petroselinum crispum (PcPAL), implying that JrPAL may have similar functions with PcPAL. Phylogenetic tree analysis revealed that JrPAL shared the same evolutionary ancestor of other PALs and had a closer relationship with other angiosperm species. Transcription analysis revealed that JrPAL was expressed in all tested tissues including roots, stems, and leaves, with the highest transcription level being found in roots. Expression profiling analyses by real-time PCR revealed that JrPAL expression was induced by a variety of abiotic and biotic stresses, including UV-B, wounding, cold, abscisic acid and salicylic acid.

  10. Discovery and molecular and biocatalytic properties of hydroxynitrile lyase from an invasive millipede, Chamberlinius hualienensis

    PubMed Central

    Dadashipour, Mohammad; Ishida, Yuko; Yamamoto, Kazunori; Asano, Yasuhisa

    2015-01-01

    Hydroxynitrile lyase (HNL) catalyzes the degradation of cyanohydrins and causes the release of hydrogen cyanide (cyanogenesis). HNL can enantioselectively produce cyanohydrins, which are valuable building blocks for the synthesis of fine chemicals and pharmaceuticals, and is used as an important biocatalyst in industrial biotechnology. Currently, HNLs are isolated from plants and bacteria. Because industrial biotechnology requires more efficient and stable enzymes for sustainable development, we must continuously explore other potential enzyme sources for the desired HNLs. Despite the abundance of cyanogenic millipedes in the world, there has been no precise study of the HNLs from these arthropods. Here we report the isolation of HNL from the cyanide-emitting invasive millipede Chamberlinius hualienensis, along with its molecular properties and application in biocatalysis. The purified enzyme displays a very high specific activity in the synthesis of mandelonitrile. It is a glycosylated homodimer protein and shows no apparent sequence identity or homology with proteins in the known databases. It shows biocatalytic activity for the condensation of various aromatic aldehydes with potassium cyanide to produce cyanohydrins and has high stability over a wide range of temperatures and pH values. It catalyzes the synthesis of (R)-mandelonitrile from benzaldehyde with a 99% enantiomeric excess, without using any organic solvents. Arthropod fauna comprise 80% of terrestrial animals. We propose that these animals can be valuable resources for exploring not only HNLs but also diverse, efficient, and stable biocatalysts in industrial biotechnology. PMID:26261304

  11. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression.

    PubMed

    Panza, Elisabetta; De Cicco, Paola; Armogida, Chiara; Scognamiglio, Giosuè; Gigantino, Vincenzo; Botti, Gerardo; Germano, Domenico; Napolitano, Maria; Papapetropoulos, Andreas; Bucci, Mariarosaria; Cirino, Giuseppe; Ianaro, Angela

    2015-01-01

    In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2 S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), synthesizes H2 S in the presence of the substrate 3-mercaptopyruvate (3-MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non-lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2 S donors, the most active of which was diallyl trisulfide (DATS). The main pro-apoptotic mechanisms involved were suppression of nuclear factor-κB activity and inhibition of AKT and extracellular signal-regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l-cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l-cysteine/CSE/H2 S pathway is involved in melanoma progression.

  12. S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism.

    PubMed

    Kumar, A; Oskouian, B; Fyrst, H; Zhang, M; Paris, F; Saba, J D

    2011-01-01

    The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.

  13. Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates.

    PubMed

    Morozova, Elena A; Kulikova, Vitalia V; Rodionov, Alexei N; Revtovich, Svetlana V; Anufrieva, Natalya V; Demidkina, Tatyana V

    2016-01-01

    Antimicrobial activity of thiosulfinates in situ produced by mixtures of Citrobacter freundii methionine γ-lyase (MGL) with new substrates, l-methionine and S-(alkyl/allyl)-l-cysteine sulfoxides has been recently demonstrated (Anufrieva et al., 2015). This opens a way to the rational design of a new biotechnologically relevant antimicrobial drug producer. To increase the efficiency of the enzyme toward sulfoxides, the mutant forms of MGL, with the replacements of active site cysteine 115 with alanine (C115A MGL) and histidine (C115H MGL) were obtained. The replacement of cysteine 115 by histidine results in the loss of activity of the mutant enzyme in the γ-elimination reaction of physiological substrate, whereas the activity in the β-elimination reaction of characteristic substrates persists. However, the catalytic efficiency of C115H MGL in the β-elimination reaction of S-substituted l-cysteine sulfoxides is increased by about an order of magnitude compared to the wild type MGL. The antibacterial activity of C115H MGL mixtures with a number of sulfoxides was assessed against Gram-positive and Gram-negative bacteria. The bacteriostatic effect was more pronounced against Gram-positive than against Gram-negative bacteria, while antibacterial potential proved to be quite similar. Thus, the mutant enzyme C115H MGL is an effective catalyst, in particular, for decomposition of sulfoxides and the pharmacological couples of the mutant form with sulfoxides might be new antimicrobial agents.

  14. A Missense Mutation in the Human Cytochrome b5 Gene causes 46,XY Disorder of Sex Development due to True Isolated 17,20 Lyase Deficiency

    PubMed Central

    Idkowiak, Jan; Randell, Tabitha; Dhir, Vivek; Patel, Pushpa; Shackleton, Cedric H. L.; Taylor, Norman F.; Krone, Nils

    2012-01-01

    Context: Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by facilitating the allosteric interaction of CYP17A1 with its electron donor P450 oxidoreductase (POR). Objective: We investigated a large consanguineous family including three siblings with 46,XY disorder of sex development (DSD) presenting with isolated 17,20 lyase deficiency. Design: We investigated the clinical and biochemical phenotype, conducted genetic analyses, and functionally characterized the identified CYB5A mutation in cell-based CYP17A1 coexpression assays. Results: All three siblings presented with 46,XY DSD, sex steroid deficiency, normal mineralocorticoids and glucocorticoids, and a urine steroid metabolome suggestive of isolated 17,20 lyase deficiency. CYP17A1 and POR sequences were normal, but we detected a homozygous CYB5A missense mutation (g.28,400A→T; p.H44L). Functional in vitro analysis revealed normal CYP17A1 17α-hydroxylase activity but severely impaired 17,20 lyase activity. In silico analysis suggested the disruption of CYB5A heme binding by p.H44L. Conclusion: We have identified the first human CYB5A missense mutation as the cause of isolated 17,20 lyase deficiency in three individuals with 46,XY DSD. Detailed review of previously reported cases with apparently isolated 17,20 lyase deficiency due to mutant CYP17A1 and POR reveals impaired 17α-hydroxylase activity as assessed by steroid metabolome analysis and short cosyntropin testing. This suggests that truly isolated 17,20 lyase deficiency is observed only in individuals with inactivating CYB5A mutations. PMID:22170710

  15. Clp and RpfF up-regulate transcription of pelA1 gene encoding the major pectate lyase in Xanthomonas campestris pv. campestris.

    PubMed

    Hsiao, Yi-Min; Fang, Mei-Chiung; Sun, Pei-Fang; Tseng, Yi-Hsiung

    2009-07-22

    Exopolysaccharide and several extracellular enzymes of Xanthomonas campestris pv. campestris (Xcc), the causative agent of black rot in crucifers, are virulence determinants. In this study, two Xcc annotated extracellular pectate lyase genes, pelA1 and pelA2, belonging to family 1 of the polysaccharide lyase, were characterized. Sequence and mutational analyses have demonstrated that pelA1 encodes the major pectate lyase, whereas pelA2 is not transcribed. Using the 5' RACE method, the pelA1 transcription initiation site was mapped at nucleotide G, 103 nt upstream of the pelA1 start codon. Promoter analysis demonstrated that polygalacturonic acid and CaCl(2) induce the expression of pelA1. Transcriptional fusion assays also indicated that Clp (cAMP receptor protein-like protein) and RpfF (an enoyl-CoA hydratase homologue that is required for the synthesis of cis-11-methyl-2-dodecenoic acid, a low molecular weight diffusible signal factor, DSF) positively regulate pelA1 transcription. Gel retardation assays showed that Clp exerts a positive control over expression of pelA1 by direct binding to the upstream Clp-binding site. In conclusion, the present research demonstrated that pelA1 codes for the major pectate lyase in Xcc strain Xc17 and that its expression is up-regulated by Clp and RpfF. This is the first study to characterize pectate lyase gene expression in Xcc.

  16. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.

    PubMed

    Okai, Naoko; Miyoshi, Takanori; Takeshima, Yasunobu; Kuwahara, Hiroaki; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid; PCA) serves as a building block for polymers and pharmaceuticals. In this study, the biosynthetic pathway for PCA from glucose was engineered in Corynebacterium glutamicum. The pathway to PCA-employed elements of the chorismate pathway by using chorismate-pyruvate lyase (CPL) and 4-hydroxybenzoate hydroxylase (4-HBA hydroxylase). As C. glutamicum has the potential to synthesize the aromatic amino acid intermediate chorismate and possesses 4-HBA hydroxylase, we focused on expressing Escherichia coli CPL in a phenylalanine-producing strain of C. glutamicum ATCC21420. To secrete PCA, the gene (ubiC) encoding CPL from E. coli was expressed in C. glutamicum ATCC 21420 (strain F(UbiC)). The formation of 28.8 mg/L of extracellular 4-HBA (36 h) and 213 ± 29 mg/L of extracellular PCA (80 h) was obtained by the C. glutamicum strain F(UbiC) from glucose. The strain ATCC21420 was also found to produce extracellular PCA. PCA fermentation was performed using C. glutamicum strain F(UbiC) in a bioreactor at the optimized pH of 7.5. C. glutamicum F(UbiC) produced 615 ± 2.1 mg/L of PCA from 50 g/L of glucose after 72 h. Further, fed-batch fermentation of PCA by C. glutamicum F(UbiC) was performed with feedings of glucose every 24 h. The maximum production of PCA (1140.0 ± 11.6 mg/L) was achieved when 117.0 g/L of glucose was added over 96 h of fed-batch fermentation. PMID:26392137

  17. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB.

    PubMed

    Parks, Jerry M; Guo, Hong; Momany, Cory; Liang, Liyuan; Miller, Susan M; Summers, Anne O; Smith, Jeremy C

    2009-09-23

    Demethylation is a key reaction in global mercury cycling. The bacterial organomercurial lyase, MerB, catalyzes the demethylation of a wide range of organomercurials via Hg-C protonolysis. Two strictly conserved cysteine residues in the active site are required for catalysis, but the source of the catalytic proton and the detailed reaction mechanism have not been determined. Here, the two major proposed reaction mechanisms of MerB are investigated and compared using hybrid density functional theory calculations. A model of the active site was constructed from an X-ray crystal structure of the Hg(II)-bound MerB product complex. Stationary point structures and energies characterized for the Hg-C protonolysis of methylmercury rule out the direct protonation mechanism in which a cysteine residue delivers the catalytic proton directly to the organic leaving group. Instead, the calculations support a two-step mechanism in which Cys96 or Cys159 first donates a proton to Asp99, enabling coordination of two thiolates with R-Hg(II). At the rate-limiting transition state, Asp99 protonates the nascent carbanion in a trigonal planar, bis thiol-ligated R-Hg(II) species to cleave the Hg-C bond and release the hydrocarbon product. Reactions with two other substrates, vinylmercury and cis-2-butenyl-2-mercury, were also modeled, and the computed activation barriers for all three organomercurial substrates reproduce the trend in the experimentally observed enzymatic reaction rates. Analysis of atomic charges in the rate-limiting transition state structure using Natural Population Analysis shows that MerB lowers the activation free energy in the Hg-C protonolysis reaction by redistributing electron density into the leaving group and away from the catalytic proton.

  18. Identification of ATP Citrate Lyase as a Positive Regulator of Glycolytic Function in Glioblastomas

    PubMed Central

    Beckner, Marie E.; Fellows-Mayle, Wendy; Zhang, Zhe; Agostino, Naomi R.; Kant, Jeffrey A.; Day, Billy W.; Pollack, Ian F.

    2009-01-01

    Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH’s REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas. PMID:19795461

  19. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance

    PubMed Central

    Vancanneyt, Guy; Sanz, Carlos; Farmaki, Theodora; Paneque, Manuel; Ortego, Félix; Castañera, Pedro; Sánchez-Serrano, Jose J.

    2001-01-01

    Hydroperoxide lyases (HPLs) catalyze the cleavage of fatty acid hydroperoxides to aldehydes and oxoacids. These volatile aldehydes play a major role in forming the aroma of many plant fruits and flowers. In addition, they have antimicrobial activity in vitro and thus are thought to be involved in the plant defense response against pest and pathogen attack. An HPL activity present in potato leaves has been characterized and shown to cleave specifically 13-hydroperoxides of both linoleic and linolenic acids to yield hexanal and 3-hexenal, respectively, and 12-oxo-dodecenoic acid. A cDNA encoding this HPL has been isolated and used to monitor gene expression in healthy and mechanically damaged potato plants. HPL gene expression is subject to developmental control, being high in young leaves and attenuated in older ones, and it is induced weakly by wounding. HPL enzymatic activity, nevertheless, remains constant in leaves of different ages and also after wounding, suggesting that posttranscriptional mechanisms may regulate its activity levels. Antisense-mediated HPL depletion in transgenic potato plants has identified this enzyme as a major route of 13-fatty acid hydroperoxide degradation in the leaves. Although these transgenic plants have highly reduced levels of both hexanal and 3-hexenal, they show no phenotypic differences compared with wild-type ones, particularly in regard to the expression of wound-induced genes. However, aphids feeding on the HPL-depleted plants display approximately a two-fold increase in fecundity above those feeding on nontransformed plants, consistent with the hypothesis that HPL-derived products have a negative impact on aphid performance. Thus, HPL-catalyzed production of C6 aldehydes may be a key step of a built-in resistance mechanism of plants against some sucking insect pests. PMID:11416166

  20. [Cloning, expression and preliminary application of a alpha-hydroxynitrile lyase from cassave].

    PubMed

    Cheng, S H; Yan, G H; Wu, J; Sun, W R

    2001-01-01

    alpha-Hydroxynitrile lyase (ME-HNLs, E.C. 4.1.2.3.37) from the cyanogenic crop cassava(Manihot esculentz, Crantz) catalyze the condensation of hydrocyanic acid and aldehydes or ketone into (s)-cyanohydrins, which are valuable starting material for various optically active compounds, such as pharmaceuticals and agrochemicals. The cDNA of a ME-HNL were obtained by RT-PCR and cloned. The sequencing result for the cDNA showed that the sequence encoded for the ME-HNL was inconsistent with all those which are published, such as hnl10, hnl24, hnl4. The full sequence analysis demonstrated that the cloned cDNA was about 75.2%, 79.8%, 99.2% homologous to other three reported HNL genes from cassava, respectively, among which the last was the same to the cloned gene except the five base substitution at the site 142, 337, 476, 634 and 636, respectively. The two base substitutions lead to change the amino acid sequence, i.e., Ser113-->Gly113, Phe158-->Tyr158. To construct the recombinant plasmid pET30a-hnl, the cDNA was inserted into an expression vector pET30a. After transformation of pET30a-hnl and induction with IPTG, the ME-HNL was efficiently expressed in E. coli. BL21 (DE3) and reached over 2100 units/L of culture with the specific activity 8.5 u/mg protein. By one simple treatment, incubating 10 minutes at 70 degrees C, the recombinant ME-HNL may be used as an catalyst for production of (S)-mandelonitrile with enantiomeric excess of 95.2% and 98.2% yield. PMID:11330194

  1. Catalytic mechanism of hydroxynitrile lyase from Hevea brasiliensis: a theoretical investigation.

    PubMed

    Cui, Feng-Chao; Pan, Xiao-Liang; Liu, Jing-Yao

    2010-07-29

    Density functional theory (DFT) calculations using the hybrid functional B3LYP have been performed to investigate the catalytic mechanism of hydroxynitrile lyase from Hevea brasiliensis (Hb-HNL). This enzyme catalyzes the cleavage of acetone cyanohydrin to hydrocyanic acid plus acetone. Two models (A and B) of the active site consisting of 105 and 155 atoms, respectively, were constructed on the basis of the crystal structure. Good consistency between the two models provides a verification of the proposed mechanism. Our calculations show that the catalytic reaction proceeds via three elementary steps: (1) deprotonation of the OH-Ser80 by His235 and concomitant abstraction of a proton from the substrate hydroxyl by Ser80; (2) the C-C bond cleavage of the acetone cyanohydrin; and (3) protonation of the cleaved cyanide by His235. The cleavage of the C-C bond is the rate-limiting step with the overall free energy barrier of 13.5 kcal/mol for relatively smaller model A (14.9 kcal/mol for a larger model B) in the protein environment, which is in good agreement with experimental rate. The present results give support to the previously proposed general acid/base catalytic mechanism, in which the catalytic triad acts as a general acid/base. Moreover, the calculated results for model C, with the positive charge of Lys236 removed from model A, show that Lys236 with the positive charge plays a vital role in lowering the reaction barrier of the rate-determining and helps in stabilizing the negatively charged CN(-) by forming a hydrogen bond with the substrate, consistent with the experimental analysis. PMID:20593768

  2. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling*

    PubMed Central

    Mistry, Rajesh K.; Murray, Thomas V. A.; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R.; Santos, Celio; Eaton, Philip; Shah, Ajay M.; Brewer, Alison C.

    2016-01-01

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production. PMID:26620565

  3. The variability in DMSP content and DMSP lyase activity in marine dinoflagellates

    NASA Astrophysics Data System (ADS)

    Caruana, Amandine M. N.; Malin, Gill

    2014-01-01

    More than 20 years ago Maureen Keller and co-workers published a study that identified dinoflagellates as an important marine phytoplankton group with respect to the production of dimethylsulphoniopropionate (DMSP). Here, we present a synthesis and analysis of all the DMSP and DMSP lyase activity (DLA) measurements currently available for dinoflagellates. The data cover 110 species and strains and reveal over 6 orders of magnitude variability in intracellular DMSP concentrations and substantial variations in DLA in 23 strains. Inter-specific variability was explored with reference to a range of biological characteristics. The presence of a theca did not appear to be related to DMSP concentration but there was a potential relationship with toxicity (P = 0.06) and bioluminescent species produced significantly lower concentrations (P < 0.01) than non-bioluminescent ones. DMSP concentrations were related to plastid types (P < 0.05); dinoflagellates with haptophyte-like plastids contained lower amounts of DMSP than those with peridinin plastids (P < 0.01), whereas those containing cryptomonad-like plastids tended to have higher DMSP concentrations. Heterotrophic dinoflagellates were also considered given their importance in the natural environment. They are the only heterotrophs known to synthesise DMSP and this ability may support the theory that they are of photosynthetic origin. However, the heterotrophic species investigated so far suggest wide variability in DMSP content and the species Oxyrrhis marina had no detectable DMSP. The oceanic province of origin significantly affected the DMSP concentrations (P < 0.05) with higher DMSP content observed in dinoflagellates from the Mediterranean province, the Kuroshio Current province and the East Coastal Australian province. Overall this study supports the concept that DMSP-containing dinoflagellates are an important potential source of DMS to the global atmosphere and highlights current gaps in knowledge.

  4. Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase.

    PubMed

    Wang, Siyuan; Zhang, Shuwei; Zhou, Tong; Zeng, Jia; Zhan, Jixun

    2013-09-01

    Phenylalanine ammonia-lyase (PAL) is an important enzyme that links primary metabolism to secondary metabolism. Its efficiency is often a critical factor that affects the overall flux of a related metabolic pathway, the titer of the final products, and the efficacy of PAL-based therapies. Thus, PAL is a common target for metabolic engineering, and it is of significant interest to screen efficient PALs for industrial and medical applications. In this study, a novel and efficient visible reporter assay for screening of PAL efficiency in Escherichia coli was established based on a plant type III polyketide biosynthetic pathway. The candidate PALs were co-expressed with a 4-coumarate:CoA ligase 4CL1 from Arabidopsis thaliana and curcuminoid synthase (CUS) from Oryza sativa in E. coli BL21(DE3) to form a dicinnamoylmethane biosynthetic pathway. Taking advantage of the yellow color of the product, a microplate-based assay was designed to measure the titer of dicinnamoylmethane, which was validated by HPLC analysis. The different titers of the product reflect the overall performance (expression level and enzymatic activity) of the individual PALs in E. coli. Using this system, we have screened three PALs (PAL1, PAL3, and PAL4) from Trifolium pratense, among which PAL1 showed the best performance in E. coli. The engineered E. coli strain containing PAL1, 4CL1, and CUS led to the production of dicinnamoylmethane at a high level of 0.36 g/l. Supplement of 2-fluoro-phenylalanine yielded two fluorinated dicinnamoylmethane derivatives, 6,6'-difluoro-dicinnamoylmethane and 6-fluoro-dicinnamoylmethane, of which the latter is a new curcuminoid.

  5. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation.

    PubMed

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X; Borthakur, Dulal

    2014-02-01

    The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future. PMID:24351687

  6. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs

    PubMed Central

    Degagné, Emilie; Pandurangan, Ashok; Bandhuvula, Padmavathi; Kumar, Ashok; Eltanawy, Abeer; Zhang, Meng; Yoshinaga, Yuko; Nefedov, Mikhail; de Jong, Pieter J.; Fong, Loren G.; Young, Stephen G.; Bittman, Robert; Ahmedi, Yasmin; Saba, Julie D.

    2014-01-01

    Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL. PMID:25347472

  7. Endogenous carbon monoxide downregulates hepatic cystathionine-γ-lyase in rats with liver cirrhosis

    PubMed Central

    GUO, SHI-BIN; DUAN, ZHI-JUN; WANG, QIU-MING; ZHOU, QIN; LI, QING; SUN, XIAO-YU

    2015-01-01

    The aim of the present study was to investigate the effect of endogenous carbon monoxide (CO) on the hydrogen sulfide/cystathionine-γ-lyase (H2S/CSE) pathway in cirrhotic rat livers. The rats were allocated at random into four groups: Sham, cirrhosis, cobalt protoporphyrin (CoPP) and zinc protoporphyrin IX (ZnPP). The expression of hepatic CSE mRNA was evaluated using a quantitative polymerase chain reaction, while CSE protein expression was determined using immunohistochemical analysis. Hematoxylin and eosin staining was performed for the histological evaluation of liver fibrosis. The levels of H2S, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL) and carboxyhemoglobin (COHb) in the arterial blood were determined, in addition to the portal vein pressure. The mRNA and protein expression levels of hepatic CSE and the serum levels of H2S were significantly decreased in the cirrhosis group compared with those in the sham group (P<0.05). Compared with the cirrhosis group, rats in the ZnPP group had significantly lower levels of serum ALT, AST and TBIL, arterial COHb and hepatic fibrosis, while hepatic CSE expression and the production of H2S were significantly increased (P<0.05). The CoPP group exhibited decreased hepatic CSE expression and H2S production, but aggravated hepatic function and fibrosis (P<0.05). In conclusion, the H2S/CSE pathway is involved in the formation of liver cirrhosis and serves a crucial function in protecting liver cells against the progression of liver fibrosis. Endogenous CO downregulates hepatic CSE mRNA and protein expression and the production of H2S in rats with liver cirrhosis. PMID:26668593

  8. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    PubMed

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  9. Mechanism of Hg-C Protonolysis in the Organomercurial Lyase MerB

    SciTech Connect

    Parks, Jerry M; Guo, Hong; Liang, Liyuan; Miller, Susan M; Summers, Anne O; Smith, Jeremy C

    2009-01-01

    Demethylation is a key reaction in global mercury cycling. The bacterial organomercurial lyase, MerB, catalyzes the demethylation of a wide range of organomercurials via Hg-C protonolysis. Two strictly conserved cysteine residues in the active site are required for catalysis, but the source of the catalytic proton and the detailed reaction mechanism have not been determined. Here, the two major proposed reaction mechanisms of MerB are investigated and compared using hybrid density functional theory calculations. A model of the active site was constructed from an X-ray crystal structure of the Hg(II)-bound MerB product complex. Stationary point structures and energies characterized for the Hg-C protonolysis of methylmercury rule out the direct protonation mechanism in which a cysteine residue delivers the catalytic proton directly to the organic leaving group. Instead, the calculations support a two-step mechanism in which Cys96 or Cys159 first donates a proton to Asp99, enabling coordination of two thiolates with R-Hg(II). At the rate-limiting transition state, Asp99 protonates the nascent carbanion in a trigonal planar, bis thiol-ligated R-Hg(II) species to cleave the Hg-C bond and release the hydrocarbon product. Reactions with two other substrates, vinylmercury and cis-2-butenyl-2-mercury, were also modeled, and the computed activation barriers for all three organomercurial substrates reproduce the trend in the experimentally observed enzymatic reaction rates. Analysis of atomic charges in the rate-limiting transition state structure using Natural Population Analysis shows that MerB lowers the activation free energy in the Hg-C protonolysis reaction by redistributing electron density into the leaving group and away from the catalytic proton.

  10. On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana.

    PubMed

    Kandzia, Romy; Stumpe, Michael; Berndt, Ekkehardt; Szalata, Marlena; Matsui, Kenji; Feussner, Ivo

    2003-07-01

    Fatty acid hydroperoxide lyase (HPL) is a membrane associated P450 enzyme that cleaves fatty acid hydroperoxides into aldehydes and omega-oxo fatty acids. One of the major products of this reaction is (3Z)-hexenal. It is a constituent of many fresh smelling fruit aromas. For its biotechnological production and because of the lack of structural data on the HPL enzyme family, we investigated the mechanistic reasons for the substrate specificity of HPL by using various structural analogues of HPL substrates. To approach this 13-HPL from Arabidopsis thaliana was cloned and expressed in E. coli utilising a His-Tag expression vector. The fusion protein was purified by affinity chromatography from the E. coli membrane fractions and its pH optimum was detected to be pH 7.2. Then, HPL activity against the respective (9S)- and (13S)-hydroperoxides derived either from linoleic, alpha-linolenic or gamma-linolenic acid, respectively, as well as that against the corresponding methyl esters was analysed. Highest enzyme activity was observed with the (13S)-hydroperoxide of alpha-linolenic acid (13alpha-HPOT) followed by that with its methyl ester. Most interestingly, when the hydroperoxy isomers of gamma-linolenic acid were tested as substrates, 9gamma-HPOT and not 13gamma-HPOT was found to be a better substrate of the enzyme. Taken together from these studies on the substrate specificity it is concluded that At13HPL may not recognise the absolute position of the hydroperoxy group within the substrate, but shows highest activities against substrates with a (1Z4S,5E,7Z)-4-hydroperoxy-1,5,7-triene motif. Thus, At13HPL may not only be used for the production of C6-derived volatiles, but depending on the substrate may be further used for the production of Cg-derived volatiles as well. PMID:12940547

  11. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.

  12. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    PubMed

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-01

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  13. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    SciTech Connect

    Walker, D.C. ); McCloskey, D.A.; Simard, L.R.; McInnes, R.R. )

    1990-12-01

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283{r arrow} T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5{prime} 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus.

  14. Molecular analysis of (R)-(+)-mandelonitrile lyase microheterogeneity in black cherry.

    PubMed

    Hu, Z; Poulton, J E

    1999-04-01

    The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10), which plays a key role in cyanogenesis in rosaceous stone fruits, occurs in black cherry (Prunus serotina Ehrh.) homogenates as several closely related isoforms. Biochemical and molecular biological methods were used to investigate MDL microheterogeneity and function in this species. Three novel MDL cDNAs of high sequence identity (designated MDL2, MDL4, and MDL5) were isolated. Like MDL1 and MDL3 cDNAs (Z. Hu, J.E. Poulton [1997] Plant Physiol 115: 1359-1369), they had open reading frames that predicted a flavin adenine dinucleotide-binding site, multiple N-glycosylation sites, and an N-terminal signal sequence. The N terminus of an MDL isoform purified from seedlings matched the derived amino acid sequence of the MDL4 cDNA. Genomic sequences corresponding to the MDL1, MDL2, and MDL4 cDNAs were obtained by polymerase chain reaction amplification of genomic DNA. Like the previously reported mdl3 gene, these genes are interrupted at identical positions by three short, conserved introns. Given their overall similarity, we conclude that the genes mdl1, mdl2, mdl3, mdl4, and mdl5 are derived from a common ancestral gene and constitute members of a gene family. Genomic Southern-blot analysis showed that this family has approximately eight members. Northern-blot analysis using gene-specific probes revealed differential expression of the genes mdl1, mdl2, mdl3, mdl4, and mdl5. PMID:10198113

  15. Cloning and expression of hydroxynitrile lyase gene from Eriobotrya japonica in Pichia pastoris.

    PubMed

    Zhao, Guan-Jie; Yang, Zhi-Qiang; Guo, Yang-Hao

    2011-10-01

    Hydroxynitrile lyase gene (hnl) from Eriobotrya japonica was successfully amplified using the method of SEFA PCR (Self-Formed Adaptor PCR). The complete sequence was 5.5 kbp in length, including 3100 bp of the upstream promoter region, 1659 bp of the coding sequence, three introns and 315 bp of the downstream transcription terminator. The phylogenetic analysis illustrated that the obtained hnl exhibited 66-70% identity to the reported isozymes from almond, black cherry and Japanese apricot. The EjHNL had 552 amino acids including a 25 amino acid-long signal peptide. The conserved characteristic structures of HNLs, such as FAD-binding motif, N-glycosylation sites and active sites were observed. The coding sequence of the hnl was inserted into pPIC9K vector for heterologous expression in Pichia pastoris. The HNL activity of the culture supernatant reached 15 U/ml after 96 h of induction by methanol. The specific activity of the recombinant HNL was about 197 U/mg. The enantiomeric excess value of the product R-mandelonitrile attained 98.6% and the value of K(m) of the recombinant HNL was determined to be 0.47 mM based on the kinetic data. The optimum temperature and pH of the recombinant HNL were 40°C and 6.0 respectively. The experimental data indicated that the obtained recombinant HNL showed similar catalytic characteristics with the natural EjHNL. The expression of the recombinant HNL in P. pastoris could present another available biocatalyst for the synthesis of R-selective cyanohydrins.

  16. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling.

    PubMed

    Mistry, Rajesh K; Murray, Thomas V A; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R; Santos, Celio; Eaton, Philip; Shah, Ajay M; Brewer, Alison C

    2016-01-22

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production.

  17. Isolation, Expression, and Characterization of a Hydroperoxide Lyase Gene from Cucumber

    PubMed Central

    Wan, Xu-Hua; Chen, Shu-Xia; Wang, Cong-Ying; Zhang, Ran-Ran; Cheng, Si-Qiong; Meng, Huan-Wen; Shen, Xiao-Qing

    2013-01-01

    A full-length cDNA coding for hydroperoxide lyase (CsHPL) was isolated from cucumber fruits of No. 26 (Southern China type) and No.14-1 (Northern China type), which differed significantly in fruit flavor. The deduced amino acid sequences of CsHPL from both lines show the same and significant similarity to known plant HPLs and contain typical conserved domains of HPLs. The recombinant CsHPL was confirmed to have 9/13-HPL enzymatic activity. Gene expression levels of CsHPL were measured in different organs, especially in fruits of different development stages of both lines. The HPL activities of fruit were identified basing on the catalytic action of crude enzyme extracts incubating with 13-HPOD (13-hydroperoxy-(9Z,12E)-octadecadienoic acid) and 13-HPOD + 9-HPOD (9-hydroperoxy-(10E,12Z)-octadecadienoic acid), and volatile reaction products were analyzed by GC-MS (gas chromatography-mass spectrometry). CsHPL gene expression in No. 26 fruit occurred earlier than that of total HPL enzyme activity and 13-HPL enzyme activity, and that in No. 14-1 fruit was consistent with total HPL enzyme activity and 9-HPL enzyme activity. 13-HPL enzyme activities decreased significantly and the 9-HPL enzyme activities increased significantly with fruit ripening in both lines, which accounted for the higher content of C6 aldehydes at 0–6 day post-anthesis (dpa) and higher content of C9 aldehydes at 9–12 dpa. PMID:24213607

  18. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures.

    PubMed

    Byrns, China N; Pitts, Matthew W; Gilman, Christy A; Hashimoto, Ann C; Berry, Marla J

    2014-04-01

    Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor. Upon feeding a selenium-deficient diet, mice lacking ApoER2 or Sepp1 develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role for ApoER2-mediated Sepp1 uptake in normal brain function. Selenocysteine lyase (Scly) is an enzyme that plays an important role in selenium homeostasis, in that it catalyzes the decomposition of selenocysteine and allows selenium to be recycled for additional selenoprotein synthesis. We previously reported that constitutive deletion of Scly results in neurological deficits only when mice are challenged with a low selenium diet. To gain insight into the relationship between Sepp1 and Scly in selenium metabolism, we created novel transgenic mice constitutively lacking both genes (Scly(-/-)Sepp1(-/-)) and characterized the neurobehavioral phenotype. We report that deletion of Scly in conjunction with Sepp1 further aggravates the phenotype of Sepp1(-/-) mice, as these mice needed supraphysiological selenium supplementation to survive, and surviving mice exhibited impaired motor coordination, audiogenic seizures, and brainstem neurodegeneration. These findings provide the first in vivo evidence that Scly and Sepp1 work cooperatively to maintain selenoprotein function in the mammalian brain.

  19. Hydroperoxide Lyase and Other Hydroperoxide-Metabolizing Activity in Tissues of Soybean, Glycine max

    PubMed Central

    Gardner, Harold W.; Weisleder, David; Plattner, Ronald D.

    1991-01-01

    Hydroperoxide lyase (HPLS) activity in soybean (Glycine max) seed/seedlings, leaves, and chloroplasts of leaves required detergent solubilization for maximum in vitro activity. On a per milligram of protein basis, more HPLS activity was found in leaves, especially chloroplasts, than in seeds or seedlings. The total yield of hexanal from 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13S-HPOD) from leaf or chloroplast preparations was 58 and 66 to 85%, respectively. Because of significant competing hydroperoxide-metabolizing activities from other enzymes in seed/seedling preparations, the hexanal yields from this source were lower (36-56%). Some of the products identified from the seed or seedling preparations indicated that the competing activity was mainly due to both a hydroperoxide peroxygenase and reactions catalyzed by lipoxygenase. Different HPLS isozyme compositions in the seed/seedling versus the leaf/chloroplast preparations were indicated by differences in the activity as a function of pH, the Km values, relative Vmax with 13S-HPOD and 13(S)-hydroperoxy-cis-9,trans-11,cis-15-octadecatrienoic acid (13S-HPOT), and the specificity with different substrates. With regard to the latter, both seed/seedling and chloroplast HPLS utilized the 13S-HPOD and 13S-HPOT substrates, but only seeds/seedlings were capable of metabolizing 9(S)-hydroperoxy-trans-10,cis-12-octadecadienoic acid into 9-oxononanoic acid, isomeric nonenals, and 4-hydroxynonenal. From 13S-HPOD and 13S-HPOT, the products were identified as 12-oxo-cis-9-dodecenoic acid, as well as hexanal from 13S-HPOD and cis-3-hexenal from 13S-HPOT. In seed preparations, there was partial isomerization of the cis-3 or cis-9 into trans-2 or trans-10 double bonds, respectively. PMID:16668490

  20. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase.

    PubMed

    Anufrieva, Natalya V; Faleev, Nicolai G; Morozova, Elena A; Bazhulina, Natalia P; Revtovich, Svetlana V; Timofeev, Vladimir P; Tkachev, Yaroslav V; Nikulin, Alexei D; Demidkina, Tatyana V

    2015-09-01

    In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and β-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-β- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and β-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.

  1. Serine phosphorylation of human P450c17 increases 17,20-lyase activity: implications for adrenarche and the polycystic ovary syndrome.

    PubMed Central

    Zhang, L H; Rodriguez, H; Ohno, S; Miller, W L

    1995-01-01

    Microsomal cytochrome P450c17 catalyzes both steroid 17 alpha-hydroxylase activity and scission of the C17-C20 steroid bond (17,20-lyase) on the same active site. Adrenal 17 alpha-hydroxylase activity is needed to produce cortisol throughout life, but 17,20-lyase activity appears to be controlled independently in a complex, age-dependent pattern. We show that human P450c17 is phosphorylated on serine and threonine residues by a cAMP-dependent protein kinase. Phosphorylation of P450c17 increases 17,20-lyase activity, while dephosphorylation virtually eliminates this activity. Hormonally regulated serine phosphorylation of human P450c17 suggests a possible mechanism for human adrenarche and may be a unifying etiologic link between the hyperandrogenism and insulin resistance that characterize the polycystic ovary syndrome. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479852

  2. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase.

    PubMed

    Choutko, Alexandra; Eichenberger, Andreas P; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-06-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. PMID:23595942

  3. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-lyase Activity in a Dwarf Pea (Pisum sativum) 1

    PubMed Central

    Cheng, Christina K.-C.; Marsh, H. V.

    1968-01-01

    The effects of gibberellic acid on lignification in seedlings of a dwarf and a tall cultivar of pea (Pisum sativum) grown under red or white light or in the darkness, were studied. Gibberellic acid (10−6-10−4 m) promoted stem elongation in both light and dark and increased the percentage of lignin in the stems of the light-grown dwarf pea. The gibberellin had no effect on the lignin content of the tall pea although high concentrations (10−4 m) promoted growth of the tall plants. Time course studies indicated that the enhanced lignification in the gibberellin-treated dwarf plants occurred only after a lag period of several days. It was concluded that gibberellic acid-enhanced ligmification had no direct relation to gibberellic acid-promoted growth. The activity of phenylalanine ammonia-lyase (E.C. 4.3.1.5) was higher in gibberellin-treated dwarf plants grown under white or red light than in untreated dwarf plants. Gibberellic acid had no detectable effect on the activity of this enzyme when the plants were grown in darkness, just as it had no effect on lignification under dark conditions. The data suggest that in gibberellin-deficient peas the activity of phenylalanine ammonia-lyase is one of the limiting factors in lignification. PMID:16656968

  4. The dddP gene of Roseovarius nubinhibens encodes a novel lyase that cleaves dimethylsulfoniopropionate into acrylate plus dimethyl sulfide.

    PubMed

    Kirkwood, Mark; Le Brun, Nick E; Todd, Jonathan D; Johnston, Andrew W B

    2010-06-01

    The cloned dddP gene of the marine bacterium Roseovarius nubinhibens allows Escherichia coli to form the volatile dimethyl sulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant anti-stress compatible solute made by many marine plankton and macroalgae. Using purified DddP, we show here that this enzyme is a DMSP lyase that cleaves DMSP to DMS plus acrylate. DddP forms a functional homodimeric enzyme, has a pH optimum of 6.0 and was a K(m) of approximately 14 mM for the DMSP substrate. DddP belongs to the M24B family of peptidases, some members of which have metal cofactors. However, the metal chelators EDTA and bipyridyl did not affect DddP activity in vitro and the as-isolated enzyme did not contain metal ions. Thus, DddP resembles those members of the M24B family, such as creatinase, which also act on a non-peptide substrate and have no metal cofactor. Site-directed mutagenesis of the active-site region of DddP completely abolished its activity. Another enzyme, termed DddL, which occurs in other alphaproteobacteria, had also been shown to generate DMS plus acrylate from DMSP. However, DddL and DddP have no sequence similarity to each other, so DddP represents a second, wholly different class of DMSP lyase.

  5. Crystallization and preliminary X-ray analysis of l-methionine γ-lyase 1 from Entamoeba histolytica

    SciTech Connect

    Sato, Dan; Karaki, Tsuyoshi; Shimizu, Akira; Kamei, Kaeko; Harada, Shigeharu; Nozaki, Tomoyoshi

    2008-08-01

    l-Methionine γ-lyase 1, a key enzyme in sulfur-containing amino-acid degradation, from the protozoan parasite E. histolytica was crystallized in a form suitable for X-ray structure analysis. l-Methionine γ-lyase (MGL) is a pyridoxal phosphate-dependent enzyme that is involved in the degradation of sulfur-containing amino acids. MGL is an attractive drug target against amoebiasis because the mammalian host of its causative agent Entamoeba histolytica lacks MGL. For the development of anti-amoebic agents based on the structure of MGL, one of two MGL isoenzymes (EhMGL1) was crystallized in the monoclinic space group P2{sub 1}, with unit-cell parameters a = 99.12, b = 85.38, c = 115.37 Å, β = 101.82°. The crystals diffract to beyond 2.0 Å resolution. The presence of a tetramer in the asymmetric unit (4 × 42.4 kDa) gives a Matthews coefficient of 2.8 Å{sup 3} Da{sup −1} and a solvent content of 56%. The structure was solved by the molecular-replacement method and structure refinement is now in progress.

  6. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-lyase Activity in a Dwarf Pea (Pisum sativum).

    PubMed

    Cheng, C K; Marsh, H V

    1968-11-01

    The effects of gibberellic acid on lignification in seedlings of a dwarf and a tall cultivar of pea (Pisum sativum) grown under red or white light or in the darkness, were studied. Gibberellic acid (10(-6)-10(-4)m) promoted stem elongation in both light and dark and increased the percentage of lignin in the stems of the light-grown dwarf pea. The gibberellin had no effect on the lignin content of the tall pea although high concentrations (10(-4)m) promoted growth of the tall plants. Time course studies indicated that the enhanced lignification in the gibberellin-treated dwarf plants occurred only after a lag period of several days. It was concluded that gibberellic acid-enhanced ligmification had no direct relation to gibberellic acid-promoted growth. The activity of phenylalanine ammonia-lyase (E.C. 4.3.1.5) was higher in gibberellin-treated dwarf plants grown under white or red light than in untreated dwarf plants. Gibberellic acid had no detectable effect on the activity of this enzyme when the plants were grown in darkness, just as it had no effect on lignification under dark conditions. The data suggest that in gibberellin-deficient peas the activity of phenylalanine ammonia-lyase is one of the limiting factors in lignification. PMID:16656968

  7. Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene

    PubMed Central

    Jung, Moo-Young; Mazumdar, Suman; Shin, Sang Heum; Yang, Kap-Seok; Lee, Jinwon

    2014-01-01

    Klebsiella pneumoniae is considered a good host strain for the production of 2,3-butanediol, which is a promising platform chemical with various industrial applications. In this study, three genes, including those encoding glucosyltransferase (wabG), lactate dehydrogenase (ldhA), and pyruvate formate-lyase (pflB), were disrupted in K. pneumoniae to reduce both its pathogenic characteristics and the production of several by-products. In flask cultivation with minimal medium, the yield of 2,3-butanediol from rationally engineered K. pneumoniae (ΔwabG ΔldhA ΔpflB) reached 0.461 g/g glucose, which was 92.2% of the theoretical maximum, with a significant reduction in by-product formation. However, the growth rate of the pflB mutant was slightly reduced compared to that of its parental strain. Comparison with similar mutants of Escherichia coli suggested that the growth defect of pflB-deficient K. pneumoniae was caused by redox imbalance rather than reduced level of intracellular acetyl coenzyme A (acetyl-CoA). From an analysis of the transcriptome, it was confirmed that the removal of pflB from K. pneumoniae significantly repressed the expression of genes involved in the formate hydrogen lyase (FHL) system. PMID:25085487

  8. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    PubMed Central

    Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria. PMID:27176711

  9. The pir gene of Erwinia chrysanthemi EC16 regulates hyperinduction of pectate lyase virulence genes in response to plant signals

    PubMed Central

    Nomura, Kinya; Nasser, William; Kawagishi, Hirokazu; Tsuyumu, Shinji

    1998-01-01

    The plant pathogenic bacterium Erwinia chrysanthemi secretes pectate lyase proteins that are important virulence factors attacking the cell walls of plant hosts. Bacterial production of these enzymes is induced by the substrate polypectate-Na (NaPP) and further stimulated by the presence of plant extracts. The bacterial regulator responsible for induction by plant extracts was identified and purified by using a DNA-binding assay with the promoter region of pelE that encodes a major pectate lyase. A novel bacterial protein, called Pir, was isolated that produced a specific gel shift of the pelE promoter DNA, and the corresponding pir gene was cloned and sequenced. The Pir protein contains 272 amino acids with a molecular mass of 30 kDa and appears to function as a dimer. A homology search indicates that Pir belongs to the IclR family of transcriptional regulators. Pir bound to a 35-bp DNA sequence in the promoter region of pelE. This site overlaps that of a previously described negative regulator, KdgR. Gel shift experiments showed that the binding of either Pir or KdgR interfered with binding of the other protein. PMID:9826648

  10. Clinical characteristics and mutation analysis of two Chinese children with 17a-hydroxylase/17,20-lyase deficiency

    PubMed Central

    Zhu, Ziyang; Ni, Shining; Gu, Wei

    2015-01-01

    Combined with the literature, recognize the clinical features and molecular genetic mechanism of the disease. 17a-hydroxylase/17,20-lyase deficiency, a rare form of congenital adrenal hyperplasia, is caused by mutations in the cytochrome P450c17 gene (CYP17A1), and characterized by hypertension, hypokalemia, female sexual infantilism or male pseudohermaphroditism. We presented the clinical and biochemical characterization in two patients (a 13 year-old girl (46, XX) with hypokalemia and lack of pubertal development, a 11 year-old girl (46, XY) with female external genitalia and severe hypertension). CYP17A1 mutations were detected by PCR and direct DNA sequencing in patients and their parents. A homozygous mutation c.985_987delTACinsAA (p.Y329KfsX418) in Exon 6 was found in patient 1, and a homozygous deletion mutation c.1459_1467delGACTCTTTC (p.Asp487_Phe489del) in exon 8 in patient 2. The patients manifested with hypertension, hypokalemia, sexual infantilism should be suspected of having 17a-hydroxylase/17,20-lyase deficiency. Definite diagnosis is depended on mutation analysis. Hydrocortisone treatment in time is crucial to prevent severe hypertension and hypokalemia. PMID:26770544

  11. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    DOE PAGES

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.; Baidoo, Edward E. K.; Wang, George; Keasling, Jay D.

    2016-03-03

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsicmore » physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly

  12. Mechanism elucidation of the radical SAM enzyme spore photoproduct lyase (SPL)

    PubMed Central

    Li, Lei

    2011-01-01

    Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores’ extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the C-S bond associated with the sulfonium ion in SAM, generating a reactive 5′-deoxyadenosyl (5′-dA) radical. This 5′-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in B. subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5′-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. PMID:22197590

  13. Structural and Functional Studies on Salmonella Typhimurium Ethanolamine Ammonia-Lyase

    NASA Astrophysics Data System (ADS)

    Bovell, Adonis

    Ethanolamine ammonia-lyase (EAL), a coenzyme-B12 (AdoCbl) dependent bacterial enzyme, catalyzes the deamination of select amino-alcohols by using a radical mechanism. Extensive high-resolution spectroscopic determinations of reactant intermediate-state structures and detailed kinetic and thermodynamic studies have been conducted for the Salmonella typhimurium enzyme. A statistically robust homology model for the full [(EutB-EutC) 2]3 oligomer of S. typhimurium EAL is constructed from the Escherichia coli crystal structure. This structure establishes a platform for detailed, microscopic interpretation of the molecular mechanism of EAL catalysis. The model is used to describe the hierarchy of EutB and EutC subunit interactions in the native oligomer and to guide a genetic and biochemical approach to the long-standing challenge of functional oligomer reconstitution from isolated subunits. The model is used to direct site-directed mutagenesis of EAL, leading to the creation of the EutB-F258W mutant, whose fluorescence is sensitive to the binding of AdoCbl. The AdoCbl-EAL dissociation constant is determined to be 1.2 microM, which places limits on the timescale of cofactor exchange kinetics. A series of cysteine-replaced mutants of EAL was created, and progress was made towards the goal of a mutant EAL for site-directed spin labeling studies. The primary cysteine attachment site in wild-type EAL for the 4-maleimido-TEMPO spin label was identified as EutC-C37. The localization of spin labels on EAL enables the interpretation of electron paramagnetic resonance (EPR) studies that probe distal effects on protein structure caused by cofactor binding. Previously determined rate constants for decay of the cryotrapped substrate radical, and kcat values at ambient temperature, for 1H- and 2H-labelled substrate, are united in a single model that describes the sequential radical rearrangement and hydrogen atom transfer steps, from 190 to 295 K. The model indicates that hydrogen

  14. Structural And Biochemical Characterization of the Therapeutic A. Variabilis Phenylalanine Ammonia Lyase

    SciTech Connect

    Wang, L.; Gamez, A.; Archer, H.; Abola, E.E.; Sarkissian, C.N.; Fitzpatrick, P.; Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S.; Lemont, J.; Scriver, C.R.; Stevens, R.C.

    2009-05-26

    We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides

  15. Mechanistic studies of the spore photoproduct lyase via a single cysteine mutation.

    PubMed

    Yang, Linlin; Lin, Gengjie; Nelson, Renae S; Jian, Yajun; Telser, Joshua; Li, Lei

    2012-09-11

    5-Thyminyl-5,6-dihydrothymine (also called spore photoproduct or SP) is the exclusive DNA photodamage product in bacterial endospores. It is repaired by a radical SAM (S-adenosylmethionine) enzyme, the spore photoproduct lyase (SPL), at the bacterial early germination phase. Our previous studies proved that SPL utilizes the 5'-dA• generated by the SAM cleavage reaction to abstract the H(6proR) atom to initiate the SP repair process. The resulting thymine allylic radical was suggested to take an H atom from an unknown protein source, most likely cysteine 141. Here we show that C141 can be readily alkylated in the native SPL by an iodoacetamide treatment, suggesting that it is accessible to the TpT radical. SP repair by the SPL C141A mutant yields TpTSO(2)(-) and TpT simultaneously from the very beginning of the reaction; no lag phase is observed for TpTSO(2)(-) formation. Should any other protein residue serve as the H donor, its presence would result in TpT being the major product at least for the first enzyme turnover. These observations provide strong evidence to support C141 as the direct H atom donor. Moreover, because of the lack of this intrinsic H donor, the C141A mutant produces TpT via an unprecedented thymine cation radical reduction (proton-coupled electron transfer) process, contrasting to the H atom transfer mechanism in the wild-type (WT) SPL reaction. The C141A mutant repairs SP at a rate that is ~3-fold slower than that of the WT enzyme. Formation of TpTSO(2)(-) and TpT exhibits a V(max) deuterium kinetic isotope effect (KIE) of 1.7 ± 0.2, which is smaller than the (D)V(max) KIE of 2.8 ± 0.3 determined for the WT SPL reaction. These findings suggest that removing the intrinsic H atom donor disturbs the rate-limiting process during enzyme catalysis. As expected, the prereduced C141A mutant supports only ~0.4 turnover, which is in sharp contrast to the >5 turnovers exhibited by the WT SPL reaction, suggesting that the enzyme catalytic cycle (SAM

  16. Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes.

    PubMed Central

    Erickson, P F; Maxwell, I H; Su, L J; Baumann, M; Glode, L M

    1990-01-01

    A cDNA clone for cystathionine gamma-lyase was isolated from a rat cDNA library in lambda gt11 by screening with a monospecific antiserum. The identity of this clone, containing 600 bp proximal to the 3'-end of the gene, was confirmed by positive hybridization selection. Northern-blot hybridization showed the expected higher abundance of the corresponding mRNA in liver than in brain. Two further cDNA clones from a plasmid pcD library were isolated by colony hybridization with the first clone and were found to contain inserts of 1600 and 1850 bp. One of these was confirmed as encoding cystathionine gamma-lyase by hybridization with two independent pools of oligodeoxynucleotides corresponding to partial amino acid sequence information for cystathionine gamma-lyase. The other clone (estimated to represent all but 8% of the 5'-end of the mRNA) was sequenced and its deduced amino acid sequence showed similarity to those of the Escherichia coli enzymes cystathionine beta-lyase and cystathionine gamma-synthase throughout its length, especially to that of the latter. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:2201285

  17. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broad-spectrum resistance against powdery mildew (PM) has been reported by silencing susceptibility genes in the model plant Arabidopsis. Here we used artificial microRNA constructs in PM-susceptible Vitis vinifera cv. Chardonnay to stably silence two pectate lyase-like orthologs (VvPLL2 and VvPLL3)...

  18. The Pseudomonas aeruginosa liuE gene encodes the 3-hydroxy-3-methylglutaryl coenzyme A lyase, involved in leucine and acyclic terpene catabolism.

    PubMed

    Chávez-Avilés, Mauricio; Díaz-Pérez, Alma Laura; Reyes-de la Cruz, Homero; Campos-García, Jesús

    2009-07-01

    The enzymes involved in the catabolism of leucine are encoded by the liu gene cluster in Pseudomonas aeruginosa PAO1. A mutant in the liuE gene (ORF PA2011) of P. aeruginosa was unable to utilize both leucine/isovalerate and acyclic terpenes as the carbon source. The liuE mutant grown in culture medium with citronellol accumulated metabolites of the acyclic terpene pathway, suggesting an involvement of liuE in both leucine/isovalerate and acyclic terpene catabolic pathways. The LiuE protein was expressed as a His-tagged recombinant polypeptide purified by affinity chromatography in Escherichia coli. LiuE showed a mass of 33 kDa under denaturing and 79 kDa under nondenaturing conditions. Protein sequence alignment and fingerprint sequencing suggested that liuE encodes 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HMG-CoA lyase), which catalyzes the cleavage of HMG-CoA to acetyl-CoA and acetoacetate. LiuE showed HMG-CoA lyase optimal activity at a pH of 7.0 and 37 degrees C, an apparent K(m) of 100 microM for HMG-CoA and a V(max) of 21 micromol min(-1) mg(-1). These results demonstrate that the liuE gene of P. aeruginosa encodes for the HMG-CoA lyase, an essential enzyme for growth in both leucine and acyclic terpenes.

  19. The structure of RdDddP from Roseobacter denitrificans reveals that DMSP lyases in the DddP-family are metalloenzymes.

    PubMed

    Hehemann, Jan-Hendrik; Law, Adrienne; Redecke, Lars; Boraston, Alisdair B

    2014-01-01

    Marine microbes degrade dimethylsulfoniopropionate (DMSP), which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS). Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TRXF) revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes.

  20. The structure of RdDddP from Roseobacter denitrificans reveals that DMSP lyases in the DddP-family are metalloenzymes.

    PubMed

    Hehemann, Jan-Hendrik; Law, Adrienne; Redecke, Lars; Boraston, Alisdair B

    2014-01-01

    Marine microbes degrade dimethylsulfoniopropionate (DMSP), which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS). Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TRXF) revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes. PMID:25054772

  1. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylalanine Ammonia Lyase (PAL) catalyzes the first step in the phenylpropanoid pathway in plants, controlling biosynthesis of a variety of structural and defense compounds including monolignols that polymerize into lignin. Gaps remain in our understanding of how genetic alterations to this pathwa...

  2. Mutation R96W in cytochrome P450c17 gene causes combined 17{alpha}-hydroxylase/17-20-lyase deficiency in two french canadian patients

    SciTech Connect

    LaFlamme, N.; Leblanc, J.F.; Mailloux, J.

    1996-01-01

    Congenital adrenal hyperplasia (CAH) is the most frequent cause of adrenal insufficiency and ambiguous genitalia in newborn children. In contrast to CAH caused by 21{alpha}-hydroxylase and 11{beta}-hydroxylase deficiencies, which impairs steroid formation in the adrenal exclusively, 17{alpha}-hydroxylase/17,20-lyase deficiency impairs steroid biosynthesis in the adrenals and gonads. The sequence of CYP17 gene was determined by direct sequencing of asymmetric PCR products in two French-Canadian 46,XY pseudohermaphrodite siblings suffering from combined 17{alpha}-hydroxylase/17,20-lyase deficiency. The two patients are homozygous for the novel missense mutation R96W caused by a C to T transition converting codon Arg{sup 96} (CGG) into a Trp (TGG) in exon 1. Both parents are heterozygous for this missense mutation. We assessed the effect of the R96W mutation on 17{alpha}-hydroxylase/17,20-lyase activity by analysis of mutant enzyme, generated by site-directed mutagenesis, expressed in COS-1 cells. The presence of R96W substitution almost completely abolished the activity of the mutant protein. The present findings provide a molecular explanation for the signs and symptoms of combined 17 {alpha}-hydroxylase/17,20-lyase deficiency in these two patients and provide useful information on the structure-activity relationships of the P450c17 enzyme. 31 refs., 4 figs., 1 tab.

  3. Targeting of CYP17A1 Lyase by VT-464 Inhibits Adrenal and Intratumoral Androgen Biosynthesis and Tumor Growth of Castration Resistant Prostate Cancer

    PubMed Central

    Maity, Sankar N.; Titus, Mark A.; Gyftaki, Revekka; Wu, Guanglin; Lu, Jing-Fang; Ramachandran, S.; Li-Ning-Tapia, Elsa M.; Logothetis, Christopher J.; Araujo, John C.; Efstathiou, Eleni

    2016-01-01

    Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a validated treatment target for the treatment of metastatic castration-resistant prostate cancer (CRPC). Abiraterone acetate (AA) inhibits both 17α-hydroxylase (hydroxylase) and 17,20-lyase (lyase) reactions catalyzed by CYP17A1 and thus depletes androgen biosynthesis. However, coadministration of prednisone is required to suppress the mineralocorticoid excess and cortisol depletion that result from hydroxylase inhibition. VT-464, a nonsteroidal small molecule, selectively inhibits CYP17A1 lyase and therefore does not require prednisone supplementation. Administration of VT-464 in a metastatic CRPC patient presenting with high tumoral expression of both androgen receptor (AR) and CYP17A1, showed significant reduction in the level of both dehydroepiandrosterone (DHEA) and serum PSA. Treatment of a CRPC patient-derived xenograft, MDA-PCa-133 expressing H874Y AR mutant with VT-464, reduced the increase in tumor volume in castrate male mice more than twice as much as the vehicle (P < 0.05). Mass spectrometry analysis of post-treatment xenograft tumor tissues showed that VT-464 significantly decreased intratumoral androgens but not cortisol. VT-464 also reduced AR signaling more effectively than abiraterone in cultured PCa cells expressing T877A AR mutant. Collectively, this study suggests that VT-464 therapy can effectively treat CRPC and be used in precision medicine based on androgen receptor mutation status. PMID:27748439

  4. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    PubMed Central

    Stahlhut, Steen Gustav; Li, Mingji; Gaspar, Paula; Siedler, Solvej; Förster, Jochen; Maury, Jérôme; Borodina, Irina

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intracellularly in bacteria and yeast. When produced heterologously, some enzymes resulted in significantly higher production of p-coumaric acid in several different industrially important production organisms. Three novel enzymes were found to have activity exclusively for phenylalanine, including an enzyme from the low-GC Gram-positive bacterium Brevibacillus laterosporus, a bacterial-type enzyme from the amoeba Dictyostelium discoideum, and a phenylalanine ammonia-lyase from the moss Physcomitrella patens (producing 230 μM cinnamic acid per unit of optical density at 600 nm [OD600]) in the medium using Escherichia coli as the heterologous host). Novel tyrosine ammonia-lyases having higher reported substrate specificity than previously characterized enzymes were also identified. Enzymes from Herpetosiphon aurantiacus and Flavobacterium johnsoniae resulted in high production of p-coumaric acid in Escherichia coli (producing 440 μM p-coumaric acid OD600 unit−1 in the medium) and in Lactococcus lactis. The enzymes were also efficient in Saccharomyces cerevisiae, where p-coumaric acid accumulation was improved 5-fold over that in strains expressing previously characterized tyrosine ammonia-lyases. PMID:25911487

  5. Mechanistic pathways of mercury removal from the organomercurial lyase active site.

    PubMed

    Silva, Pedro J; Rodrigues, Viviana

    2015-01-01

    Bacterial populations present in Hg-rich environments have evolved biological mechanisms to detoxify methylmercury and other organometallic mercury compounds. The most common resistance mechanism relies on the H(+)-assisted cleavage of the Hg-C bond of methylmercury by the organomercurial lyase MerB. Although the initial reaction steps which lead to the loss of methane from methylmercury have already been studied experimentally and computationally, the reaction steps leading to the removal of Hg(2+) from MerB and regeneration of the active site for a new round of catalysis have not yet been elucidated. In this paper, we have studied the final steps of the reaction catalyzed by MerB through quantum chemical computations at the combined MP2/CBS//B3PW91/6-31G(d) level of theory. While conceptually simple, these reaction steps occur in a complex potential energy surface where several distinct pathways are accessible and may operate concurrently. The only pathway which clearly emerges as forbidden in our analysis is the one arising from the sequential addition of two thiolates to the metal atom, due to the accumulation of negative charges in the active site. The addition of two thiols, in contrast, leads to two feasible mechanistic possibilities. The most straightforward pathway proceeds through proton transfer from the attacking thiol to Cys159 , leading to its removal from the mercury coordination sphere, followed by a slower attack of a second thiol, which removes Cys96. The other pathway involves Asp99 in an accessory role similar to the one observed earlier for the initial stages of the reaction and affords a lower activation enthalpy, around 14 kcal mol(-1), determined solely by the cysteine removal step rather than by the thiol ligation step. Addition of one thiolate to the intermediates arising from either thiol attack occurs without a barrier and produces an intermediate bound to one active site cysteine and from which Hg(SCH3)2 may be removed only after

  6. Mechanistic pathways of mercury removal from the organomercurial lyase active site

    PubMed Central

    Rodrigues, Viviana

    2015-01-01

    Bacterial populations present in Hg-rich environments have evolved biological mechanisms to detoxify methylmercury and other organometallic mercury compounds. The most common resistance mechanism relies on the H+-assisted cleavage of the Hg–C bond of methylmercury by the organomercurial lyase MerB. Although the initial reaction steps which lead to the loss of methane from methylmercury have already been studied experimentally and computationally, the reaction steps leading to the removal of Hg2+ from MerB and regeneration of the active site for a new round of catalysis have not yet been elucidated. In this paper, we have studied the final steps of the reaction catalyzed by MerB through quantum chemical computations at the combined MP2/CBS//B3PW91/6-31G(d) level of theory. While conceptually simple, these reaction steps occur in a complex potential energy surface where several distinct pathways are accessible and may operate concurrently. The only pathway which clearly emerges as forbidden in our analysis is the one arising from the sequential addition of two thiolates to the metal atom, due to the accumulation of negative charges in the active site. The addition of two thiols, in contrast, leads to two feasible mechanistic possibilities. The most straightforward pathway proceeds through proton transfer from the attacking thiol to Cys159 , leading to its removal from the mercury coordination sphere, followed by a slower attack of a second thiol, which removes Cys96. The other pathway involves Asp99 in an accessory role similar to the one observed earlier for the initial stages of the reaction and affords a lower activation enthalpy, around 14 kcal mol−1, determined solely by the cysteine removal step rather than by the thiol ligation step. Addition of one thiolate to the intermediates arising from either thiol attack occurs without a barrier and produces an intermediate bound to one active site cysteine and from which Hg(SCH3)2 may be removed only after

  7. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate.

    PubMed

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A; Joachimiak, Andrzej; Kharel, Madan K; Singh, Shanteri; Thorson, Jon S; Phillips, George N

    2016-05-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5' phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation. PMID:27191010

  8. Establishment of chondroitin B lyase-based analytical methods for sensitive and quantitative detection of dermatan sulfate in heparin.

    PubMed

    Wu, Jingjun; Ji, Yang; Su, Nan; Li, Ye; Liu, Xinxin; Mei, Xiang; Zhou, Qianqian; Zhang, Chong; Xing, Xin-hui

    2016-06-25

    Dermatan sulfate (DS) is one of the hardest impurities to remove from heparin products due to their high structural similarity. The development of a sensitive and feasible method for quantitative detection of DS in heparin is essential to ensure the clinical safety of heparin pharmaceuticals. In the current study, based on the substrate specificity of chondroitin B lyase, ultraviolet spectrophotometric and strong anion-exchange high-performance liquid chromatographic methods were established for detection of DS in heparin. The former method facilitated analysis in heparin with DS concentrations greater than 0.1mgmL(-1) at 232nm, with good linearity, precision and recovery. The latter method allowed sensitive and accurate detection of DS at concentrations lower than 0.1mgmL(-1), exhibiting good linearity, precision and recovery. The linear range of DS detection using the latter method was between 0.01 and 0.5mgmL(-1).

  9. Molecular cloning of a malyl coenzyme A lyase gene from Pseudomonas sp. strain AM1, a facultative methylotroph

    SciTech Connect

    Fulton, G.L.; Nunn, D.N.; Lidstrom, M.E.

    1984-11-01

    A genomic library containing HindIII partial digest of Pseudomonas sp. strain AM1 DNA was constructed in the broad-host-range cosmid pVK100. PCT57, a Pseudomonas sp. strain AM1 methanol mutant deficient in malyl coenzyme A lyase activity, was complemented to a methanol-positive phenotype by mobilization of pVK100 library into PCT57 recipients with the ColE1/RK2 mobilizing plasmid pRK2013. Six different complemented isolates all contained a recombinant plasmid carrying the same 19.6-kilobase-pair Pseudomonas sp. strain AM1 DNA insert. Subcloning and complementation analysis demonstrated that the gene deficient in PCT57 (mcl-1) was located in a 1.6-kilobase-pair region within a 7.4-kilobase-pair EcoRI-HindIII fragment. 33 references, 3 figures, 3 tables.

  10. Determinants governing the CYP74 catalysis: conversion of allene oxide synthase into hydroperoxide lyase by site-directed mutagenesis.

    PubMed

    Toporkova, Yana Y; Gogolev, Yuri V; Mukhtarova, Lucia S; Grechkin, Alexander N

    2008-10-15

    Bioinformatics analyses enabled us to identify the hypothetical determinants of catalysis by CYP74 family enzymes. To examine their recognition, two mutant forms F295I and S297A of tomato allene oxide synthase LeAOS3 (CYP74C3) were prepared by site-directed mutagenesis. Both mutations dramatically altered the enzyme catalysis. Both mutant forms possessed the activity of hydroperoxide lyase, while the allene oxide synthase activity was either not detectable (F295I) or significantly reduced (S297A) compared to the wild-type LeAOS3. Thus, both sites 295 and 297 localized within the "I-helix central domain" ("oxygen binding domain") are the primary determinants of CYP74 type of catalysis.

  11. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation.

    PubMed

    Wang, Zhihao; Wang, Yun; Zhang, Dongxu; Li, Jianghua; Hua, Zhaozhe; Du, Guocheng; Chen, Jian

    2010-02-01

    Alkaline polygalacturonate lyase (PGL) production by Pichia pastoris GS115 was used as a model to study the mechanism and strategy for enhancing heterologous protein production. In order to enhance cell viability and volumetric recombinant protein productivity, sorbitol, which had been confirmed to be a non-repressive carbon source, was added together with methanol during the induction phase. The resultant PGL activity was up to 1593 U mL(-1), which was enhanced 1.85-fold compared to the control (863 U mL(-1)) cultured with sorbitol added at a constant rate of 3.6 g h(-1)L(-1) after an induction period of 100 h. Further results revealed that an appropriate sorbitol co-feeding strategy not only decreased the cell mortality to 8.8% (the control is about 23.1%) in the end of fermentation, but also reduced the proteolytic degradation of PGL.

  12. DddD is a CoA-transferase/lyase producing dimethyl sulfide in the marine environment.

    PubMed

    Alcolombri, Uria; Laurino, Paola; Lara-Astiaso, Pedro; Vardi, Assaf; Tawfik, Dan S

    2014-09-01

    Dimethyl sulfide (DMS) is produced in oceans in vast amounts (>10(7) tons/year) and mediates a wide range of processes from regulating marine life forms to cloud formation. Nonetheless, none of the enzymes that produce DMS from dimethylsulfoniopropionate (DMSP) has been adequately characterized. We describe the expression and purification of DddD from the marine bacterium Marinomonas sp. MWYL1 and its biochemical characterization. We identified DMSP and acetyl-coenzyme A to be DddD's native substrates and Asp602 as the active site residue mediating the CoA-transferase prior to lyase activity. These findings shed light on the biochemical utilization of DMSP in the marine environment.

  13. Enzymatic preparation of. cap alpha. - and. beta. -deuterated or tritiated amino acids with l-methionine. gamma. -lyase

    SciTech Connect

    Esaki, N.; Sawada, S.; Tanaka, H.; Soda, K.

    1982-01-15

    L-Methionine ..gamma..-lyase catalyzes the exchange of ..cap alpha..- and ..beta..-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium or tritium of solvents. The rate of ..cap alpha..-hydrogen exchange with deuterium was about 40 times faster than that of the elimination reactions. The deuterium and tritium were exchanged also with the ..cap alpha..- and ..beta..-hydrogens of the straight-chain amino acids which do not undergo the elimination: L-alanine, L-..cap alpha..-aminobutyrate, L-norvaline, and L-norleucine. No exchange occurs for the D-isomers, acidic L-amino acids, basic L-amino acids, and branched-chain L-amino acids, although ..cap alpha..-hydrogen of glycine, L-trypotophan, and L-phenylalanine is exchanged slowly. These enzymatic hydrogen-exchange reactions facilitate specific labeling of the L-amino acids with deuterium and tritium.

  14. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate

    PubMed Central

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M.; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A.; Joachimiak, Andrzej; Kharel, Madan K.; Singh, Shanteri; Thorson, Jon S.; Phillips, George N.

    2016-01-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5′ phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation. PMID:27191010

  15. Fragment-based de novo design of a cystathionine γ-lyase selective inhibitor blocking hydrogen sulfide production

    PubMed Central

    Corvino, Angela; Severino, Beatrice; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Perissutti, Elisa; Santagada, Vincenzo; Bucci, Mariarosaria; Cirino, Giuseppe; Kelly, Geoff; Servillo, Luigi; Popowicz, Grzegorz; Pastore, Annalisa; Caliendo, Giuseppe

    2016-01-01

    Hydrogen sulfide is an essential catabolite that intervenes in the pathophysiology of several diseases from hypertension to stroke, diabetes and pancreatitis. It is endogenously synthesized mainly by two pyridoxal-5′-phosphate-dependent enzymes involved in L-cysteine metabolism: cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE). Research in this field is currently impaired by the lack of pharmacological tools such as selective enzymatic inhibitors that could target specifically only one of these pathways. We used a novel approach based on a hybrid method that includes drug design, synthetic biology, metabolomics and pharmacological assays to rationally design a new inhibitor selective for the CSE enzyme. The identification of this compound opens new frontiers towards a better understanding of the role of CSE over CBS in the pathophysiology of diseases where a role for the H2S pathway has been proposed and the development of new lead compounds that could target the CSE enzyme. PMID:27708394

  16. Molecular cloning of a malyl coenzyme A lyase gene from Pseudomonas sp. strain AM1, a facultative methylotroph.

    PubMed Central

    Fulton, G L; Nunn, D N; Lidstrom, M E

    1984-01-01

    A genomic library containing HindIII partial digests of Pseudomonas sp. strain AM1 DNA was constructed in the broad-host-range cosmid pVK100. PCT57, a Pseudomonas sp. strain AM1 methanol mutant deficient in malyl coenzyme A lyase activity, was complemented to a methanol-positive phenotype by mobilization of the pVK100 library into PCT57 recipients with the ColE1/RK2 mobilizing plasmid pRK2013. Six different complemented isolates all contained a recombinant plasmid carrying the same 19.6-kilobase-pair Pseudomonas sp. strain AM1 DNA insert. Subcloning and complementation analysis demonstrated that the gene deficient in PCT57 (mcl-1) was located in a 1.6-kilobase-pair region within a 7.4-kilobase-pair EcoRI-HindIII fragment. PMID:6094488

  17. Studies on the inhibition of sphingosine-1-phosphate lyase by stabilized reaction intermediates and stereodefined azido phosphates.

    PubMed

    Sanllehí, Pol; Abad, José-Luís; Bujons, Jordi; Casas, Josefina; Delgado, Antonio

    2016-11-10

    Two kinds of inhibitors of the PLP-dependent enzyme sphingosine-1-phosphate lyase have been designed and tested on the bacterial (StS1PL) and the human (hS1PL) enzymes. Amino phosphates 1, 12, and 32, mimicking the intermediate aldimines of the catalytic process, were weak inhibitors on both enzyme sources. On the other hand, a series of stereodefined azido phosphates, resulting from the replacement of the amino group of the natural substrates with an azido group, afforded competitive inhibitors in the low micromolar range on both enzyme sources. This similar behavior represents an experimental evidence of the reported structural similarities for both enzymes at their active site level. Interestingly, the anti-isomers of the non-natural enantiomeric series where the most potent inhibitors on hS1PL.

  18. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in capsicum under drought stress.

    PubMed

    Phimchan, Paongpetch; Chanthai, Saksit; Bosland, Paul W; Techawongstien, Suchila

    2014-07-23

    Penylalanine ammonia-lyase (PAL), cinnamic-4-hydroxylase (C4H), capsaicin synthase (CS), and peroxidase (POD) are involved in the capsaicinoid biosynthesis pathway and may be altered in cultivars with different pungency levels. This study clarified the action of these enzymes under drought stress for hot Capsicum cultivars with low, medium,and high pungency levels. At the flowering stage, control plants were watered at field capacity, whereas drought-induced plants were subjected to gradual drought stress. Under drought stress, PAL, C4H, CS, and POD enzyme activities increased as compared to the non-drought-stressed plants. A novel discovery was that PAL was the critical enzyme in capsaicinoid biosynthesis under drought stress because its activities and capsaicinoid increased across the different pungency levels of hot pepper cultivars examined.

  19. Pre-steady-state kinetic and structural analysis of interaction of methionine γ-lyase from Citrobacter freundii with inhibitors.

    PubMed

    Kuznetsov, Nikita A; Faleev, Nicolai G; Kuznetsova, Alexandra A; Morozova, Elena A; Revtovich, Svetlana V; Anufrieva, Natalya V; Nikulin, Alexei D; Fedorova, Olga S; Demidkina, Tatyana V

    2015-01-01

    Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.

  20. Effects of CO/sub 2/ on total phenolics, phenylalanine ammonia lyase, and polyphenol oxidase in lettuce tissue

    SciTech Connect

    Siriphanich, J.; Kader, A.A.

    1985-01-01

    An atmosphere of air + 15% CO/sub 2/ caused CO/sub 2/ injury in lettuce (Lactuca sativa L.) in about 10 days at 0/sup 0/C. However, subsequent removal of CO/sub 2/ was necessary for the brown stain symptoms to develop. Under CO/sub 2/ treatment, phenylalanine ammonia lyase (PAL) was induced and its activity correlated well with the development of the injury. Nevertheless, PAL activity did not seem responsible for the differences in susceptibility to CO/sub 2/ injury among the 3 lettuce cultivars included in this study. Prevention of the development of brown stain symptoms by CO/sub 2/ probably was due to its inhibition of phenolics production and the inhibition of polyphenol oxidase activity. 27 references, 10 figures.

  1. The Sphingosine-1-Phosphate Lyase (LegS2) Contributes to the Restriction of Legionella pneumophila in Murine Macrophages

    PubMed Central

    Abu Khweek, Arwa; Kanneganti, Apurva; C. Guttridge D, Denis; Amer, Amal O.

    2016-01-01

    L. pneumophila is the causative agent of Legionnaires’ disease, a human illness characterized by severe pneumonia. In contrast to those derived from humans, macrophages derived from most mouse strains restrict L. pneumophila replication. The restriction of L. pneumophila replication has been shown to require bacterial flagellin, a component of the type IV secretion system as well as the cytosolic NOD-like receptor (NLR) Nlrc4/ Ipaf. These events lead to caspase-1 activation which, in turn, activates caspase-7. Following caspase-7 activation, the phagosome-containing L. pneumophila fuses with the lysosome, resulting in the restriction of L. pneumophila growth. The LegS2 effector is injected by the type IV secretion system and functions as a sphingosine 1-phosphate lyase. It is homologous to the eukaryotic sphingosine lyase (SPL), an enzyme required in the terminal steps of sphingolipid metabolism. Herein, we show that mice Bone Marrow-Derived Macrophages (BMDMs) and human Monocyte-Derived Macrophages (hMDMs) are more permissive to L. pneumophila legS2 mutants than wild-type (WT) strains. This permissiveness to L. pneumophila legS2 is neither attributed to abolished caspase-1, caspase-7 or caspase-3 activation, nor due to the impairment of phagosome-lysosome fusion. Instead, an infection with the legS2 mutant resulted in the reduction of some inflammatory cytokines and their corresponding mRNA; this effect is mediated by the inhibition of the nuclear transcription factor kappa-B (NF-κB). Moreover, BMDMs infected with L. pneumophila legS2 mutant showed elongated mitochondria that resembles mitochondrial fusion. Therefore, the absence of LegS2 effector is associated with reduced NF-κB activation and atypical morphology of mitochondria. PMID:26741365

  2. A QM/MM study of the reaction mechanism of (R)-hydroxynitrile lyases from Arabidopsis thaliana (AtHNL).

    PubMed

    Zhu, Wenyou; Liu, Yongjun; Zhang, Rui

    2015-01-01

    Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82. PMID:25052541

  3. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups.

    PubMed

    Nadeau, Lloyd J; He, Zhongqi; Spain, Jim C

    2003-05-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.

  4. A QM/MM study of the reaction mechanism of (R)-hydroxynitrile lyases from Arabidopsis thaliana (AtHNL).

    PubMed

    Zhu, Wenyou; Liu, Yongjun; Zhang, Rui

    2015-01-01

    Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82.

  5. De novo engineering of a human cystathionine-γ-lyase for systemic (L)-Methionine depletion cancer therapy.

    PubMed

    Stone, Everett; Paley, Olga; Hu, Jian; Ekerdt, Barbara; Cheung, Nai-Kong; Georgiou, George

    2012-11-16

    It has been known for nearly a half century that human tumors, including those derived from the nervous system such as glioblastomas, medulloblastoma, and neuroblastomas are much more sensitive than normal tissues to l-methionine (l-Met) starvation. More recently, systemic l-Met depletion by administration of Pseudomonas putida methionine-γ-lyase (MGL) could effectively inhibit human tumors xenografted in mice. However, bacterial-derived MGLs are unstable in serum (t(1/2) = 1.9 ± 0.2 h) and highly immunogenic in primates. Since the human genome does not encode a human MGL enzyme, we created de novo a methionine degrading enzyme by reengineering the structurally homologous pyridoxal phosphate-dependent human enzyme cystathionine-γ-lyase (hCGL). hCGL degrades l-cystathionine but displays no promiscuous activity toward l-Met. Rational design and scanning saturation mutagenesis led to the generation of a variant containing three amino acid substitutions (hCGL-NLV) that degraded l-Met with a k(cat)/K(M) of 5.6 × 10(2) M(-1) s(-1) and displayed a serum deactivation t(1/2) = 78 ± 5 h (non-PEGylated). In vitro, the cytotoxicity of hCGL-NLV toward 14 neuroblastoma cell lines was essentially indistinguishable from that of the P. putida MGL. Intravenous administration of PEGylated hCGL-NLV in mice reduced serum l-Met from 123 μM to <5 μM for over 30 h. Importantly, treatment of neuroblastoma mouse xenografts with PEGylated hCGL-NLV resulted in near complete cessation of tumor growth. Since the mode of action of hCGL-NLV does not require breaching the blood-brain barrier, this enzyme may have potential application for sensitive tumors that arise from or metastasize to the central nervous system. PMID:22963240

  6. De novo engineering of a human cystathionine-γ-lyase for systemic (L)-Methionine depletion cancer therapy.

    PubMed

    Stone, Everett; Paley, Olga; Hu, Jian; Ekerdt, Barbara; Cheung, Nai-Kong; Georgiou, George

    2012-11-16

    It has been known for nearly a half century that human tumors, including those derived from the nervous system such as glioblastomas, medulloblastoma, and neuroblastomas are much more sensitive than normal tissues to l-methionine (l-Met) starvation. More recently, systemic l-Met depletion by administration of Pseudomonas putida methionine-γ-lyase (MGL) could effectively inhibit human tumors xenografted in mice. However, bacterial-derived MGLs are unstable in serum (t(1/2) = 1.9 ± 0.2 h) and highly immunogenic in primates. Since the human genome does not encode a human MGL enzyme, we created de novo a methionine degrading enzyme by reengineering the structurally homologous pyridoxal phosphate-dependent human enzyme cystathionine-γ-lyase (hCGL). hCGL degrades l-cystathionine but displays no promiscuous activity toward l-Met. Rational design and scanning saturation mutagenesis led to the generation of a variant containing three amino acid substitutions (hCGL-NLV) that degraded l-Met with a k(cat)/K(M) of 5.6 × 10(2) M(-1) s(-1) and displayed a serum deactivation t(1/2) = 78 ± 5 h (non-PEGylated). In vitro, the cytotoxicity of hCGL-NLV toward 14 neuroblastoma cell lines was essentially indistinguishable from that of the P. putida MGL. Intravenous administration of PEGylated hCGL-NLV in mice reduced serum l-Met from 123 μM to <5 μM for over 30 h. Importantly, treatment of neuroblastoma mouse xenografts with PEGylated hCGL-NLV resulted in near complete cessation of tumor growth. Since the mode of action of hCGL-NLV does not require breaching the blood-brain barrier, this enzyme may have potential application for sensitive tumors that arise from or metastasize to the central nervous system.

  7. De novo Engineering of a Human Cystathionine-γ-Lyase for Systemic l-Methionine Depletion Cancer Therapy

    PubMed Central

    Stone, Everett; Paley, Olga; Hu, Jian; Ekerdt, Barbara; Cheung, Nai-Kong; Georgiou, George

    2012-01-01

    It has been known for nearly a half century that human tumors, including those derived from the nervous system such as glioblastomas, medulloblastoma, and neuroblastomas are much more sensitive than normal tissues to l-Met starvation. More recently, systemic l-Met depletion by administration of Pseudomonas putida methionine-γ-lyase (MGL) could effectively inhibit human tumors xenografted in mice. However, bacterial-derived MGLs are unstable in serum (t1/2 =1.9 ±0.2 hr) and highly immunogenic in primates. Since the human genome does not encode a human MGL enzyme, we created de novo a methionine degrading enzyme by reengineering the structurally homologous pyridoxal phosphate-dependent human enzyme cystathionine-γ-lyase (hCGL). hCGL degrades l-cystathionine but displays no promiscuous activity towards l-Met. Rational design and scanning saturation mutagenesis led to the generation of a variant containing three amino acid substitutions (hCGL-NLV) that degraded L-Met with a kcat/KM of 5.6×102 M−1s−1 and displayed a serum deactivation t1/2 =78 ± 5 hr (non-PEGylated). In vitro, the cytotoxicity of hCGL-NLV towards 14 neuroblastoma cell lines was essentially indistinguishable from that of the P. putida MGL. Intravenous administration of PEGylated hCGL-NLV in mice reduced serum l-Met from 123 μM to <5 μM for over 30 hours. Importantly, treatment of neuroblastoma mouse xenografts with PEGylated hCGL-NLV resulted in near complete cessation of tumor growth. Since the mode of action of hCGL-NLV does not require breaching the blood-brain barrier this enzyme may have potential application for sensitive tumors that arise from or metastasize to the central nervous system. PMID:22963240

  8. Discovery of a Novel Alginate Lyase from Nitratiruptor sp. SB155-2 Thriving at Deep-sea Hydrothermal Vents and Identification of the Residues Responsible for Its Heat Stability.

    PubMed

    Inoue, Akira; Anraku, Moe; Nakagawa, Satoshi; Ojima, Takao

    2016-07-22

    Extremophiles are expected to represent a source of enzymes having unique functional properties. The hypothetical protein NIS_0185, termed NitAly in this study, was identified as an alginate lyase-homolog protein in the genomic database of ϵ-Proteobacteria Nitratiruptor sp. SB155-2, which was isolated from deep-sea hydrothermal vents at a water depth of 1,000 m. Among the characterized alginate lyases in the polysaccharide lyase family 7 (PL-7), the amino acid sequence of NitAly showed the highest identity (39%) with that of red alga Pyropia yezoensis alginate lyase PyAly. Recombinant NitAly (rNitAly) was successfully expressed in Escherichia coli Purified rNitAly degraded alginate in an endolytic manner. Among alginate block types, polyM was preferable to polyG and polyMG as a substrate, and its end degradation products were mainly tri-, tetra-, and penta-saccharides. The optimum temperature and pH values were 70 °C and around 6, respectively. A high concentration of NaCl (0.8-1.4 m) was required for maximum activity. In addition, a 50% loss of activity was observed after incubation at 67 °C for 30 min. Heat stability was decreased in the presence of 5 mm DTT, and Cys-80 and Cys-232 were identified as the residues responsible for heat stability but not lyase activity. Introducing two cysteines into PyAly based on homology modeling using Pseudomonas aeruginosa alginate lyase PA1167 as the template enhanced its heat stability. Thus, NitAly is a functional alginate lyase, with its unique optimum conditions adapted to its environment. These insights into the heat stability of NitAly could be applied to improve that of other PL-7 alginate lyases.

  9. Discovery of a Novel Alginate Lyase from Nitratiruptor sp. SB155-2 Thriving at Deep-sea Hydrothermal Vents and Identification of the Residues Responsible for Its Heat Stability.

    PubMed

    Inoue, Akira; Anraku, Moe; Nakagawa, Satoshi; Ojima, Takao

    2016-07-22

    Extremophiles are expected to represent a source of enzymes having unique functional properties. The hypothetical protein NIS_0185, termed NitAly in this study, was identified as an alginate lyase-homolog protein in the genomic database of ϵ-Proteobacteria Nitratiruptor sp. SB155-2, which was isolated from deep-sea hydrothermal vents at a water depth of 1,000 m. Among the characterized alginate lyases in the polysaccharide lyase family 7 (PL-7), the amino acid sequence of NitAly showed the highest identity (39%) with that of red alga Pyropia yezoensis alginate lyase PyAly. Recombinant NitAly (rNitAly) was successfully expressed in Escherichia coli Purified rNitAly degraded alginate in an endolytic manner. Among alginate block types, polyM was preferable to polyG and polyMG as a substrate, and its end degradation products were mainly tri-, tetra-, and penta-saccharides. The optimum temperature and pH values were 70 °C and around 6, respectively. A high concentration of NaCl (0.8-1.4 m) was required for maximum activity. In addition, a 50% loss of activity was observed after incubation at 67 °C for 30 min. Heat stability was decreased in the presence of 5 mm DTT, and Cys-80 and Cys-232 were identified as the residues responsible for heat stability but not lyase activity. Introducing two cysteines into PyAly based on homology modeling using Pseudomonas aeruginosa alginate lyase PA1167 as the template enhanced its heat stability. Thus, NitAly is a functional alginate lyase, with its unique optimum conditions adapted to its environment. These insights into the heat stability of NitAly could be applied to improve that of other PL-7 alginate lyases. PMID:27231344

  10. Trifluoromethionine, a prodrug designed against methionine gamma-lyase-containing pathogens, has efficacy in vitro and in vivo against Trichomonas vaginalis.

    PubMed

    Coombs, G H; Mottram, J C

    2001-06-01

    Methionine gamma-lyase, the enzyme which catalyzes the single-step conversion of methionine to alpha-ketobutyrate, ammonia, and methanethiol, is highly active in many anaerobic pathogenic microorganisms but has no counterpart in mammals. This study tested the hypothesis that this pathogen-specific enzyme can be exploited as a drug target by prodrugs that are exclusively activated by it. Trifluoromethionine was confirmed as such a prodrug and shown to be highly toxic in vitro to the anaerobic protozoan parasite Trichomonas vaginalis, to anaerobic bacteria containing methionine gamma-lyase, and to Escherichia coli expressing the trichomonad gene. The compound also has exceptional activity against the parasite growing in vivo, with a single dose preventing lesion formation in five of the six mice challenged. These findings suggest that trifluoromethionine represents a lead compound for a novel class of anti-infective drugs with potential as chemotherapeutic agents against a range of prokaryotic and eukaryotic anaerobic pathogens. PMID:11353620

  11. Expression, purification, crystallization and preliminary X-ray analysis of the polysaccharide lyase RB5312 from the marine planctomycete Rhodopirellula baltica

    PubMed Central

    Dabin, Jérôme; Jam, Murielle; Czjzek, Mirjam; Michel, Gurvan

    2008-01-01

    Polysaccharide lyases belonging to family PL1 act on pectins. These anionic polymers are usually produced by terrestrial plants and therefore pectinolytic enzymes are not frequently observed in marine microorganisms. The protein RB5312 from the marine bacterium Rhodopirellula baltica is distantly related to family PL1 pectate lyases, but its exact function is unclear. In this study, the expression and purification of a recombinant form of RB5312 are described. This protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belongs to space group P212121, with unit-cell parameters a = 39.05, b = 144.05, c = 153.97 Å, α = β = γ = 90°. A complete data set was collected to 1.8 Å resolution from a native crystal. PMID:18323615

  12. A 1.5 Å resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase

    PubMed Central

    Alahuhta, Markus; Chandrayan, Puja; Kataeva, Irina; Adams, Michael W. W.; Himmel, Michael E.; Lunin, Vladimir V.

    2011-01-01

    A 1.5 Å resolution X-ray structure of the catalytic module of Caldicellulosi­ruptor bescii family 3 pectate lyase is reported (PDB entry 3t9g). The resulting structure was refined to an R factor of 0.143 and an R free of 0.178. Structural analysis shows that this new structure is very similar to the previously solved structure of a family 3 pectate lyase from Bacillus sp. strain KSM-P15 (PDB entry 1ee6), with a root-mean-square deviation of 0.93 Å and a sequence identity of 53%. This structural similarity is significant considering that C. bescii is a hyperthermophile and Bacillus sp. is a mesophile. PMID:22139151

  13. Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase.

    PubMed

    Weir, E M; Riezman, H; Grienenberger, J M; Becker, W M; Leaver, C J

    1980-12-01

    The relative levels of translatable messenger RNA for isocitrate lyase and malate synthase were determined in the dry seed and for the first seven days of development of cucumber cotyledons. After extraction and quantification of total and poly(A)-rich RNA each day, the RNA fractions were translated in an optimized wheat germ system and the specific polypeptides were immunoprecipitated quantitatively. The radiolabeled isocitrate lyase and malate synthase polypeptides were then fractionated on dodecylsulphate/polyacrylamide gels, visualized by exposure to X-ray film and quantified densitometrically. The relative levels of translatable messenger RNA for these enzymes rise and fall with a developmental program similar to the enzyme activities, but preceding the latter by about one day. This implies that the rise in enzyme activity is dependent upon a prior postgerminative increase in translatable messenger RNA for the enzymes. These studies also suggest that messenger RNA levels may be regulated, at least in part, by light.

  14. Expression, purification, crystallization and preliminary X-ray analysis of the polysaccharide lyase RB5312 from the marine planctomycete Rhodopirellula baltica.

    PubMed

    Dabin, Jérôme; Jam, Murielle; Czjzek, Mirjam; Michel, Gurvan

    2008-03-01

    Polysaccharide lyases belonging to family PL1 act on pectins. These anionic polymers are usually produced by terrestrial plants and therefore pectinolytic enzymes are not frequently observed in marine microorganisms. The protein RB5312 from the marine bacterium Rhodopirellula baltica is distantly related to family PL1 pectate lyases, but its exact function is unclear. In this study, the expression and purification of a recombinant form of RB5312 are described. This protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 39.05, b = 144.05, c = 153.97 A, alpha = beta = gamma = 90 degrees. A complete data set was collected to 1.8 A resolution from a native crystal. PMID:18323615

  15. Diversity of function in the isocitrate lyase enzyme superfamily: the Dianthus caryophyllus petal death protein cleaves alpha-keto and alpha-hydroxycarboxylic acids.

    PubMed

    Lu, Zhibing; Feng, Xiaohua; Song, Ling; Han, Ying; Kim, Alexander; Herzberg, Osnat; Woodson, William R; Martin, Brian M; Mariano, Patrick S; Dunaway-Mariano, Debra

    2005-12-20

    The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.

  16. Biodegradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase.

    PubMed

    Cokesa, Zeljko; Knackmuss, Hans-Joachim; Rieger, Paul-Gerhard

    2004-07-01

    Biodegradation tests according to Organization for Economic Cooperation and Development standard 301F (manometric respirometry test) with technical iminodisuccinate (IDS) revealed ready biodegradability for all stereoisomers of IDS. The IDS-degrading strain Agrobacterium tumefaciens BY6 was isolated from activated sludge. The strain was able to grow on each IDS isomer as well as on Fe(2+)-, Mg(2+)-, and Ca(2+)-IDS complexes as the sole carbon, nitrogen, and energy source. In contrast, biodegradation of and growth on Mn(2+)-IDS were rather scant and very slow on Cu(2+)-IDS. Growth and turnover experiments with A. tumefaciens BY6 indicated that the isomer R,S-IDS is the preferred substrate. The IDS-degrading enzyme system isolated from this organism consists of an IDS-epimerase and a C-N lyase. The C-N lyase is stereospecific for the cleavage of R,S-IDS, generating d-aspartic acid and fumaric acid. The decisive enzyme for S,S-IDS and R,R-IDS degradation is the epimerase. It transforms S,S-IDS and R,R-IDS into R,S-IDS. Both enzymes do not require any cofactors. The two enzymes were purified and characterized, and the N-termini were sequenced. The purified lyase and also the epimerase catalyzed the transformation of alkaline earth metal-IDS complexes, while heavy metal-IDS complexes were transformed rather slowly or not at all. The observed mechanism for the complete mineralization of all IDS isomers involving an epimerase offers an interesting possibility of funneling all stereoisomers into a catabolic pathway initiated by a stereoselective lyase.

  17. 13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation

    PubMed Central

    Beste, Dany J. V.; Bonde, Bhushan; Hawkins, Nathaniel; Ward, Jane L.; Beale, Michael H.; Noack, Stephan; Nöh, Katharina; Kruger, Nicholas J.; Ratcliffe, R. George; McFadden, Johnjoe

    2011-01-01

    Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA. PMID:21814509

  18. Expression, purification, crystallization and preliminary X-ray analysis of the polysaccharide lyase RB5312 from the marine planctomycete Rhodopirellula baltica

    SciTech Connect

    Dabin, Jérôme; Jam, Murielle; Czjzek, Mirjam Michel, Gurvan

    2008-03-01

    This study describes the crystallization and preliminary X-ray analysis of the family PL1 polysaccharide lyase RB5312 from the marine bacterium R. baltica. Purified recombinant protein was crystallized; the crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted X-rays to a resolution of 1.8 Å. Polysaccharide lyases belonging to family PL1 act on pectins. These anionic polymers are usually produced by terrestrial plants and therefore pectinolytic enzymes are not frequently observed in marine microorganisms. The protein RB5312 from the marine bacterium Rhodopirellula baltica is distantly related to family PL1 pectate lyases, but its exact function is unclear. In this study, the expression and purification of a recombinant form of RB5312 are described. This protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 39.05, b = 144.05, c = 153.97 Å, α = β = γ = 90°. A complete data set was collected to 1.8 Å resolution from a native crystal.

  19. Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002.

    PubMed

    Biswas, Avijit; Vasquez, Yasmin M; Dragomani, Tierna M; Kronfel, Monica L; Williams, Shervonda R; Alvey, Richard M; Bryant, Donald A; Schluchter, Wendy M

    2010-05-01

    Phycobiliproteins are water-soluble, light-harvesting proteins that are highly fluorescent due to linear tetrapyrrole chromophores, which makes them valuable as probes. Enzymes called bilin lyases usually attach these bilin chromophores to specific cysteine residues within the alpha and beta subunits via thioether linkages. A multiplasmid coexpression system was used to recreate the biosynthetic pathway for phycobiliproteins from the cyanobacterium Synechococcus sp. strain PCC 7002 in Escherichia coli. This system efficiently produced chromophorylated allophycocyanin (ApcA/ApcB) and alpha-phycocyanin with holoprotein yields ranging from 3 to 12 mg liter(-1) of culture. This heterologous expression system was used to demonstrate that the CpcS-I and CpcU proteins are both required to attach phycocyanobilin (PCB) to allophycocyanin subunits ApcD (alpha(AP-B)) and ApcF (beta(18)). The N-terminal, allophycocyanin-like domain of ApcE (L(CM)(99)) was produced in soluble form and was shown to have intrinsic bilin lyase activity. Lastly, this in vivo system was used to evaluate the efficiency of the bilin lyases for production of beta-phycocyanin.

  20. Cloning, sequencing and overexpression in Escherichia coli of the alginatelyase-encoding aly gene of Pseudomonas alginovora: identification of three classes of alginate lyases.

    PubMed Central

    Chavagnat, F; Duez, C; Guinand, M; Potin, P; Barbeyron, T; Henrissat, B; Wallach, J; Ghuysen, J M

    1996-01-01

    A gene of Pseudomonas alginovora, called aly, has been cloned in Escherichia coli using a battery of PCR techniques and sequenced. It encodes a 210-amino-acid alginate lyase (EC 4.2.2.3), Aly, in the form of a 233-amino-acid precursor. P. alginovora Aly has been overproduced in E. coli with a His-tag sequence fused at the C-terminal end under conditions in which the formation of inclusion bodies is avoided. His-tagged P. alginovora Aly has the same enzymic properties as the wild-type enzyme and has the specificity of a mannuronate lyase. It can be purified in a one-step procedure by affinity chromatography on Ni(2+)-nitriloacetate resin. The yield is of 5 mg of enzyme per litre of culture. The amplification factor is 12.5 compared with the level of production by wild-type P. alginovora. The six alginate lyases of known primary structure fall into three distinct classes, one of which comprises the pair P. alginovora Aly and Klebsiella pneumoniae Aly. PMID:8912697

  1. Comparative Characterization of Two Marine Alginate Lyases from Zobellia galactanivorans Reveals Distinct Modes of Action and Exquisite Adaptation to Their Natural Substrate*

    PubMed Central

    Thomas, François; Lundqvist, Lena C. E.; Jam, Murielle; Jeudy, Alexandra; Barbeyron, Tristan; Sandström, Corine; Michel, Gurvan; Czjzek, Mirjam

    2013-01-01

    Cell walls of brown algae are complex supramolecular assemblies containing various original, sulfated, and carboxylated polysaccharides. Among these, the major marine polysaccharide component, alginate, represents an important biomass that is successfully turned over by the heterotrophic marine bacteria. In the marine flavobacterium Zobellia galactanivorans, the catabolism and uptake of alginate are encoded by operon structures that resemble the typical Bacteroidetes polysaccharide utilization locus. The genome of Z. galactanivorans contains seven putative alginate lyase genes, five of which are localized within two clusters comprising additional carbohydrate-related genes. This study reports on the detailed biochemical and structural characterization of two of these. We demonstrate here that AlyA1PL7 is an endolytic guluronate lyase, and AlyA5 cleaves unsaturated units, α-l-guluronate or β-d-manuronate residues, at the nonreducing end of oligo-alginates in an exolytic fashion. Despite a common jelly roll-fold, these striking differences of the mode of action are explained by a distinct active site topology, an open cleft in AlyA1PL7, whereas AlyA5 displays a pocket topology due to the presence of additional loops partially obstructing the catalytic groove. Finally, in contrast to PL7 alginate lyases from terrestrial bacteria, both enzymes proceed according to a calcium-dependent mechanism suggesting an exquisite adaptation to their natural substrate in the context of brown algal cell walls. PMID:23782694

  2. A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity.

    PubMed

    Hopwood, Emily M S; Ahmed, Duale; Aitken, Susan M

    2014-02-01

    Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4-1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3-3, 26-58 and 124-568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Km(l-Cth) of E333 substitution variants is increased ~17-fold, while Km(l-OAS) is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Km(l-OSHS)=7±2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Km(l-Cth)=2100±100) and 260-fold higher than that of l-Hcys (kcat/Km(l-Hcys)=0.027±0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.

  3. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase.

    PubMed

    Nedrud, David M; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K; Legatt, Graig A; Kaz-Lauskas, Romas J

    2014-11-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min(-1) for hydrolysis of p-nitrophenyl acetate. Adding a third substitution - Glu79His - increased esterase activity more than tenfold to kcat ~ 1.6 min(-1). The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at the

  4. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase

    PubMed Central

    Nedrud, David M.; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K.; Legatt, Graig A.

    2014-01-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min−1 for hydrolysis of p-nitrophenyl acetate. Adding a third substitution – Glu79His – increased esterase activity more than tenfold to kcat ~ 1.6 min−1. The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at

  5. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase.

    PubMed

    Nedrud, David M; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K; Legatt, Graig A; Kaz-Lauskas, Romas J

    2014-11-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min(-1) for hydrolysis of p-nitrophenyl acetate. Adding a third substitution - Glu79His - increased esterase activity more than tenfold to kcat ~ 1.6 min(-1). The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at the

  6. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  7. Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin.

    PubMed

    Sabela, Myalowenkosi I; Mpanza, Thabani; Kanchi, Suvardhan; Sharma, Deepali; Bisetty, Krishna

    2016-09-15

    The present study involves the development of a sensitive electrochemical biosensor for the determination of capsaicin extracted from chilli fruits, based on a novel signal amplification strategy using enzyme technology. For the first time, platinum electrode modified with multiwalled carbon nanotubes where phenylalanine ammonia-lyase enzyme was immobilized using nafion was characterized by attenuated total reflectance infrared spectroscopy, transmittance electron microscopy and thermo-gravimetric analysis supported by computational methods. Cyclic and differential pulse voltammetry measurements were performed to better understand the redox mechanism of capsaicin. The performance of the developed electrochemical biosensor was tested using spiked samples with recoveries ranging from 98.9 to 99.6%. The comparison of the results obtained from bare and modified platinum electrodes revealed the sensitivity of the developed biosensor, having a detection limit (S/N=3) of 0.1863µgmL(-1) and electron transfer rate constant (ks) of 3.02s(-1). Furthermore, adsorption and ligand-enzyme docking studies were carried out to better understand the redox mechanisms supported by density functional theory calculations. These results revealed that capsaicin forms hydrogen bonds with GLU355, GLU541, GLU586, ARG and other amino acids of the hydrophobic channel of the binding sites thereby facilitating the redox reaction for the detection of capsaicin. PMID:27104584

  8. Cystathionine γ-lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro-angiogenesis

    PubMed Central

    van den Born, J. C.; Mencke, R.; Conroy, S.; Zeebregts, C. J.; van Goor, H.; Hillebrands, J. L.

    2016-01-01

    Atherosclerotic plaques are classically divided into stable and vulnerable plaques. Vulnerable plaques are prone to rupture with a risk for infarction. High intraplaque microvessel density predisposes to plaque vulnerability. Hydrogen sulfide (H2S) is a proangiogenic gasotransmitter which is endogenously produced by cystathionine γ-lyase (CSE), and is believed to have vasculoprotective effects. However, due to its proangiogenic effects, H2S may result in pathological angiogenesis in atherosclerotic plaques, thereby increasing plaque vulnerability. The aim of this study was to determine CSE expression pattern in atherosclerotic plaques, and investigate whether CSE is involved in micro-angiogenesis in vitro. Endarterectomy plaques were studied for CSE expression, and the role of CSE in micro-angiogenesis was studied in vitro. CSE is expressed in plaques with similar levels in both stable and vulnerable plaques. CSE co-localized with von Willebrand Factor-positive microvessel endothelial cells and alpha-smooth-muscle actin-positive SMCs. In vitro, inhibition of CSE in HMEC-1 reduced tube formation, cell viability/proliferation, and migration which was restored after culture in the presence of H2S donor GYY4137. CSE is expressed in intraplaque microvessels, and H2S is a stimulator of micro-angiogenesis in vitro. Due to this pro-angiogenic effect, high levels of CSE in atherosclerotic plaques may be a potential risk for plaque vulnerability. PMID:27708362

  9. Effects of pectin lyase-modified red ginseng extracts in high-fat diet-fed obese mice

    PubMed Central

    Lee, Hak-Yong; Park, Kwang-Hyun; Park, Young-Mi; Moon, Dae-In; Oh, Hong-Geun; Kwon, Dae-Young; Yang, Hye-Jeong; Kim, Okjin; Kim, Dong-Woo; Yoo, Ji-Hyun; Hong, Se-Chul; Lee, Kun-Hee; Seol, Su-Yeon; Park, Yong-Sik; Park, Jong-Dae

    2014-01-01

    Red ginseng and its extracts have been used as traditional medicines and functional foods in countries worldwide. The aim of this study was to examine the bioavailability of pectin lyase-modified red ginseng extracts (GS-E3D), and the effects of GS-E3D on adipogenesis of 3T3-L1 adipocytes, as well as on metabolic disorders such as hyperglycemia, dyslipidemia, and fatty liver in high-fat diet fed obese C57BL/6 mice. Mice were divided into 5 groups: normal diet group, high fat diet-vehicle group, high fat diet + 0.1 g/kg GS-E3D (0.1-GS-E3D), high fat diet + 0.3 g/kg (0.3-GS-E3D), high fat diet + 1.0 g/kg (1.0-GS-E3D). Treatment of GS-E3D reduced differentiation of 3T3-L1 adipocytes with low cytotoxicity. In the animal model, compared to the high fat diet control, serum glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TG, and leptin level were reduced in treatment animals in a dose-dependent manner. In addition, we found that GS-E3D could decrease total hepatic lipid droplets. These results suggest that GS-E3D, as a dietary supplement, has beneficial effects on obesity and may have useful effects in health-care products. PMID:25628725

  10. Inhibition of Paracoccidioides lutzii Pb01 isocitrate lyase by the natural compound argentilactone and its semi-synthetic derivatives.

    PubMed

    Prado, Renata Silva do; Alves, Ricardo Justino; Oliveira, Cecília Maria Alves de; Kato, Lucília; Silva, Roosevelt Alves da; Quintino, Guilherme Oliveira; do Desterro Cunha, Silvio; de Almeida Soares, Célia Maria; Pereira, Maristela

    2014-01-01

    The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments.

  11. Inhibition of Paracoccidioides lutzii Pb01 Isocitrate Lyase by the Natural Compound Argentilactone and Its Semi-Synthetic Derivatives

    PubMed Central

    do Prado, Renata Silva; Alves, Ricardo Justino; de Oliveira, Cecília Maria Alves; Kato, Lucília; da Silva, Roosevelt Alves; Quintino, Guilherme Oliveira; do Desterro Cunha, Silvio; de Almeida Soares, Célia Maria; Pereira, Maristela

    2014-01-01

    The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments. PMID:24752170

  12. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    SciTech Connect

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lo, Jonathan; Lynd, Lee R.

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.

  13. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2007-03-01

    A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA (++), DeltahycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 +/- 5.0 mmol h(-1) g(-1) dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 DeltaldhA DeltafrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 +/- 6.9 mmol h(-1) g(-1). Furthermore, a maximum hydrogen production rate of 144.2 mmol h(-1) g(-1) was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h(-1) was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.

  14. Purification and simultaneous immobilization of Arabidopsis thaliana hydroxynitrile lyase using a family 2 carbohydrate-binding module.

    PubMed

    Kopka, Benita; Diener, Martin; Wirtz, Astrid; Pohl, Martina; Jaeger, Karl-Erich; Krauss, Ulrich

    2015-05-01

    Tedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems.

  15. CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis).

    PubMed

    Ono, Eiichiro; Handa, Taiki; Koeduka, Takao; Toyonaga, Hiromi; Tawfik, Moataz M; Shiraishi, Akira; Murata, Jun; Matsui, Kenji

    2016-01-01

    Green leaf volatiles (GLVs) are C6-aliphatic aldehydes/alcohols/acetates, and biosynthesized from the central precursor fatty acid 13-hydroperoxides by 13-hydroperoxide lyases (HPLs) in various plant species. While GLVs have been implicated as defense compounds in plants, GLVs give characteristic grassy note to a bouquet of aroma in green tea, which is manufactured from young leaves of Camellia sinensis. Here we identify three HPL-related genes from C. sinensis via RNA-Sequencing (RNA-Seq) in silico, and functionally characterized a candidate gene, CYP74B24, as a gene encoding tea HPL. Recombinant CYP74B24 protein heterologously expressed in Escherichia coli specifically produced (Z)-3-hexenal from 13-HPOT with the optimal pH 6.0 in vitro. CYP74B24 gene was expressed throughout the aerial organs in a rather constitutive manner and further induced by mechanical wounding. Constitutive expression of CYP74B24 gene in intact tea leaves might account for low but substantial and constitutive formation of a subset of GLVs, some of which are stored as glycosides. Our results not only provide novel insights into the biological roles that GLVs play in tea plants, but also serve as basis for the improvement of aroma quality in tea manufacturing processes.

  16. Crystal Structures of the Organomercurial Lyase MerB in Its Free and Mercury-Bound Forms

    SciTech Connect

    Lafrance-Vanasse, J.; Lefebvre, M; Di Lello, P; Sygusch, J; Omichinski, J

    2009-01-01

    Bacteria resistant to methylmercury utilize two enzymes (MerA and MerB) to degrade methylmercury to the less toxic elemental mercury. The crucial step is the cleavage of the carbon-mercury bond of methylmercury by the organomercurial lyase (MerB). In this study, we determined high resolution crystal structures of MerB in both the free (1.76-{angstrom} resolution) and mercury-bound (1.64-{angstrom} resolution) states. The crystal structure of free MerB is very similar to theNMRstructure, but important differences are observed when comparing the two structures. In the crystal structure, an amino-terminal-helix that is not present in the NMR structure makes contact with the core region adjacent to the catalytic site. This interaction between the amino-terminal helix and the core serves to bury the active site of MerB. The crystal structures also provide detailed insights into the mechanism of carbon-mercury bond cleavage by MerB. The structures demonstrate that two conserved cysteines (Cys-96 and Cys-159) play a role in substrate binding, carbon-mercury bond cleavage, and controlled product (ionic mercury) release. In addition, the structures establish that an aspartic acid (Asp-99) in the active site plays a crucial role in the proton transfer step required for the cleavage of the carbon-mercury bond. These findings are an important step in understanding the mechanism of carbon-mercury bond cleavage by MerB.

  17. Structures of almond hydroxynitrile lyase isoenzyme 5 provide a rationale for the lack of oxidoreductase activity in flavin dependent HNLs.

    PubMed

    Pavkov-Keller, Tea; Bakhuis, Janny; Steinkellner, Georg; Jolink, Fenneke; Keijmel, Esther; Birner-Gruenberger, Ruth; Gruber, Karl

    2016-10-10

    Hydroxynitrile lyases (HNLs) catalyze the asymmetric addition of HCN to aldehydes producing enantiomerically pure cyanohydrins. These enzymes can be heterologously expressed in large quantities making them interesting candidates for industrial applications. The HNLs from Rosaceae evolved from flavin dependent dehydrogenase/oxidase structures. Here we report the high resolution X-ray structure of the highly glycosylated Prunus amygdalus HNL isoenzyme5 (PaHNL5 V317A) expressed in Aspergillus niger and its complex with benzyl alcohol. A comparison with the structure of isoenzyme PaHNL1 indicates a higher accessibility to the active site and a larger cavity for PaHNL5. Additionally, the PaHNL5 complex structure with benzyl alcohol was compared with the structurally related aryl-alcohol oxidase (AAO). Even though both enzymes contain an FAD-cofactor and histidine residues at crucial positions in the active site, PaHNL5 lacks the oxidoreductase activity. The structures indicate that in PaHNLs benzyl alcohol is bound too far away from the FAD cofactor in order to be oxidized. PMID:27067080

  18. Bacterial versus human sphingosine-1-phosphate lyase (S1PL) in the design of potential S1PL inhibitors.

    PubMed

    Sanllehí, Pol; Abad, José-Luis; Casas, Josefina; Bujons, Jordi; Delgado, Antonio

    2016-09-15

    A series of potential active-site sphingosine-1-phosphate lyase (S1PL) inhibitors have been designed from scaffolds 1 and 2, arising from virtual screening using the X-ray structures of the bacterial (StS1PL) and the human (hS1PL) enzymes. Both enzymes are very similar at the active site, as confirmed by the similar experimental kinetic constants shown by the fluorogenic substrate RBM13 in both cases. However, the docking scoring functions used probably overestimated the weight of electrostatic interactions between the ligands and key active-site residues in the protein environment, which may account for the modest activity found for the designed inhibitors. In addition, the possibility that the inhibitors do not reach the enzyme active site should not be overlooked. Finally, since both enzymes show remarkable structural differences at the access channel and in the proximity to the active site cavity, caution should be taken when designing inhibitors acting around that area, as evidenced by the much lower activity found in StS1PL for the potent hS1PL inhibitor D. PMID:27475537

  19. Affinity Purification of O-Acetylserine(thiol)lyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana.

    PubMed

    Salbitani, Giovanna; Wirtz, Markus; Hell, Rüdiger; Carfagna, Simona

    2014-01-01

    In the unicellular green alga Chlorella sorokiniana (211/8 k), the protein O-acetylserine(thiol)lyase (OASTL), representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S) deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h) cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32-34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species. PMID:25093930

  20. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    PubMed

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  1. Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms.

    PubMed

    Islan, German A; Dini, Cecilia; Bartel, Laura C; Bolzán, Alejandro D; Castro, Guillermo R

    2015-12-30

    The aim of the present work is the characterization of smart auto-degradable microspheres composed of calcium alginate/high methoxylated pectin containing an alginate lyase (AL) from Sphingobacterium multivorum and levofloxacin. Microspheres were prepared by ionotropic gelation containing AL in its inactive form at pH 4.0. Incubation of microspheres in Tris-HCl and PBS buffers at pH 7.40 allowed to establish the effect of ion-chelating phosphate on matrix erodability and suggested an intrinsically activation of AL by turning the pH close to neutrality. Scanning electron and optical microscopies revealed the presence of holes and surface changes in AL containing microspheres. Furthermore, texturometric parameters, DSC profiles and swelling properties were showing strong changes in microspheres properties. Encapsulation of levofloxacin into microspheres containing AL showed 70% efficiency and 35% enhancement of antimicrobial activity against Pseudomonas aeruginosa biofilm. Levofloxacin release from microspheres was not changed at acidic pH, but was modified at neutral pH in presence of AL. Advantageously, only gel matrix debris were detectable after overnight incubation, indicating an autodegradative gel process activated by the pH. Absence of matrix cytotoxicity and a reduction of the levofloxacin toxicity after encapsulation were observed in mammalian CHO-K1 cell cultures. These properties make the system a potent and versatile tool for antibiotic oral delivery targeted to intestine, enhancing the drug bioavailability to eradicate bacterial biofilm and avoiding possible intestinal obstructions.

  2. Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine.

    PubMed

    Cui, Jian-Dong; Zhang, Si; Sun, Li-Mei

    2012-06-01

    Cross-linked enzyme aggregates of phenylalanine ammonia lyase (PAL-CLEAs) from Rhodotorula glutinis were prepared. The effects of the type of aggregating agent, its concentration, and that of cross-linking agent were studied. PAL-CLEAs production was most effective using ammonium sulfate (40 % saturation), followed by cross-linking for 1 h with 0.2 % (v/v) glutaraldehyde. Moreover, the storage and operational stability of the resulting PAL-CLEAs were also investigated. Compared to the free enzyme, the PAL-CLEAs exhibited the expected increased stability of the enzyme against various deactivating conditions such as pH, temperature, denaturants, and organic solvents and showed higher storage stability than its soluble counterpart. Additionally, the reusability of PAL-CLEAs with respect to the biotransformation of L-phenylalanine was evaluated. PAL-CLEAs could be recycled at least for 12 consecutive batch reactions without dramatic activity loss, which should dramatically increase the commercial potential of PAL for synthesis of L: -phenylalanine. To the best of our knowledge, this is the first report of immobilization of PAL as cross-linked enzyme aggregates.

  3. Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: structural bases of inactivation of the enzyme.

    PubMed

    Morozova, Elena A; Revtovich, Svetlana V; Anufrieva, Natalya V; Kulikova, Vitalia V; Nikulin, Alexey D; Demidkina, Tatyana V

    2014-11-01

    The interaction of Citrobacter freundii methionine γ-lyase (MGL) and the mutant form in which Cys115 is replaced by Ala (MGL C115A) with the nonprotein amino acid (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl]propanoic acid (alliin) was investigated. It was found that MGL catalyzes the β-elimination reaction of alliin to form 2-propenethiosulfinate (allicin), pyruvate and ammonia. The β-elimination reaction of alliin is followed by the inactivation and modification of SH groups of the wild-type and mutant enzymes. Three-dimensional structures of inactivated wild-type MGL (iMGL wild type) and a C115A mutant form (iMGL C115A) were determined at 1.85 and 1.45 Å resolution and allowed the identification of the SH groups that were oxidized by allicin. On this basis, the mechanism of the inactivation of MGL by alliin, a new suicide substrate of MGL, is proposed. PMID:25372692

  4. Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin.

    PubMed

    Sabela, Myalowenkosi I; Mpanza, Thabani; Kanchi, Suvardhan; Sharma, Deepali; Bisetty, Krishna

    2016-09-15

    The present study involves the development of a sensitive electrochemical biosensor for the determination of capsaicin extracted from chilli fruits, based on a novel signal amplification strategy using enzyme technology. For the first time, platinum electrode modified with multiwalled carbon nanotubes where phenylalanine ammonia-lyase enzyme was immobilized using nafion was characterized by attenuated total reflectance infrared spectroscopy, transmittance electron microscopy and thermo-gravimetric analysis supported by computational methods. Cyclic and differential pulse voltammetry measurements were performed to better understand the redox mechanism of capsaicin. The performance of the developed electrochemical biosensor was tested using spiked samples with recoveries ranging from 98.9 to 99.6%. The comparison of the results obtained from bare and modified platinum electrodes revealed the sensitivity of the developed biosensor, having a detection limit (S/N=3) of 0.1863µgmL(-1) and electron transfer rate constant (ks) of 3.02s(-1). Furthermore, adsorption and ligand-enzyme docking studies were carried out to better understand the redox mechanisms supported by density functional theory calculations. These results revealed that capsaicin forms hydrogen bonds with GLU355, GLU541, GLU586, ARG and other amino acids of the hydrophobic channel of the binding sites thereby facilitating the redox reaction for the detection of capsaicin.

  5. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar

    PubMed Central

    de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela

    2015-01-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140

  6. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts.

    PubMed

    Hasslacher, M; Schall, M; Hayn, M; Bona, R; Rumbold, K; Lückl, J; Griengl, H; Kohlwein, S D; Schwab, H

    1997-10-01

    (S)-Hydroxynitrile lyase (Hnl) from the tropical rubber tree Hevea brasiliensis catalyzes the formation of (S)-cyanohydrins from hydrocyanic acid and aldehydes or ketones. This enzyme accepts aliphatic, aromatic, and heterocyclic carbonyl compounds as substrates and is therefore considered a potent biocatalyst for the industrial production of optically active chemicals. Limitations in enzyme supply from natural resources were overcome by production of the enzyme in the microbial host systems Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris. Expression of Hnl in the prokaryotic system led to the formation of inclusion bodies whereas in both yeast hosts high levels of soluble protein were obtained. Highest yields were obtained in a high cell density batch fermentation of a P. pastoris transformant that expressed heterologous Hnl to about 50% of the soluble cytosolic protein. At a cell density of 100 g/liter cell dry weight, a volume yield of 22 g/liter of heterologous product was obtained. Attempts to produce the Hnl protein extracellularly with the yeast hosts by applying different leader peptide strategies were not successful. Immunofluorescence microscopy studies indicated that the secretion-directed heterologous Hnl protein accumulated in the plasma membrane forming aggregated clusters of inactive protein. PMID:9325140

  7. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    PubMed

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  8. 3-Methylaspartate ammonia-lyase as a marker enzyme of the mesaconate pathway for (S)-glutamate fermentation in Enterobacteriaceae.

    PubMed

    Kato, Y; Asano, Y

    1997-12-01

    The enzyme 3-methylaspartase (3-methylaspartate ammonia-lyase, EC 4. 3.1.2) was found in the cells of enteric bacteria, especially in the genera Citrobacter and Morganella, that were grown under anoxic and oxygen-limited conditions. The enzymes were purified to homogeneity from the cell-free extracts of 18 active strains and had similar enzymological properties such as action on columns, specific activity, molecular weight, subunit structure, and N-terminal amino acid sequence similarity. The production of the enzyme was dependent on the limitation of oxygen during growth and was arrested by aeration. The addition of external electron acceptors such as dimethylsulfoxide could support cell growth and production of the enzyme. Activities of glutamate mutase (EC 5.4.99.1) and (S)-citramalate hydrolyase (EC 4.2.1.34), key enzymes of the mesaconate pathway of (S)-glutamate fermentation in the genus Clostridium, were detected in the cells of the active strains grown under oxygen-limited conditions. Based on the results, the mesaconate pathway is proposed to explain the (S)-glutamate fermentation process observed in Enterobacteriaceae, and 3-methylaspartase could be a marker enzyme for this pathway.

  9. Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations.

    PubMed

    Mukhtarova, Lucia S; Mukhitova, Fakhima K; Gogolev, Yuri V; Grechkin, Alexander N

    2011-04-01

    The profiles of non-volatile oxylipins of pea (Pisum sativum) seedlings were examined by gas chromatography-mass spectrometry after invitro incubation with α-linolenic acid. The 13-lipoxygenase/hydroperoxide lyase (HPL) products were predominant in the leaves, while the roots possess both 13- and 9-HPL products. Allene oxide synthase (AOS) and divinyl ether synthase (DES) products were not detected in the leaves or in the roots of any age. The HPL cascade produces a diversity of oxylipins, including the compounds (2E)-4-hydroxy-traumatic, (10E)-9,12-dihydroxy-10-dodecenoic and 9,12-dihydroxydodecanoic acids, as well as (2E)-4-hydroxy-2-nonenoic acid, which has not yet been detected in plants. Oxylipin patterns were altered by infection, water deficit, as well as by plant age. Infection caused the specific strong accumulation of azelaic (nonane-1,9-dioic) acid in the leaves. The azelaic acid content in the aged (14 and 18day-old) leaves was significantly higher than in the younger leaves. Water deficit induced the accumulation of (2E)-4-hydroxy-2-nonenoic acid and (2E)-traumatic acid in the roots. Results demonstrate that: (1) the HPL cascade is the predominant branch of the lipoxygenase pathway in pea seedlings; (2) the HPL products may have the regulatory role both in growth control and adaptation.

  10. The catalytic mechanism and unique low pH optimum of Caldicellulosiruptor bescii family 3 pectate lyase

    PubMed Central

    Alahuhta, Markus; Taylor, Larry E.; Brunecky, Roman; Sammond, Deanne W.; Michener, William; Adams, Michael W. W.; Himmel, Michael E.; Bomble, Yannick J.; Lunin, Vladimir

    2015-01-01

    The unique active site of the Caldicellulosiruptor bescii family 3 pectate lyase (PL3) enzyme has been thoroughly characterized using a series of point mutations, X-ray crystallography, pK a calculations and biochemical assays. The X-ray structures of seven PL3 active-site mutants, five of them in complex with intact trigalacturonic acid, were solved and characterized structurally, biochemically and computationally. The results confirmed that Lys108 is the catalytic base, but there is no clear candidate for the catalytic acid. However, the reaction mechanism can also be explained by an antiperiplanar trans-elimination reaction, in which Lys108 abstracts a proton from the C5 atom without the help of simultaneous proton donation by an acidic residue. An acidified water molecule completes the anti β-elimination reaction by protonating the O4 atom of the substrate. Both the C5 hydrogen and C4 hydroxyl groups of the substrate must be orientated in axial configurations, as for galacturonic acid, for this to be possible. The wild-type C. bescii PL3 displays a pH optimum that is lower than that of Bacillus subtilis PL1 according to activity measurements, indicating that C. bescii PL3 has acquired a lower pH optimum by utilizing lysine instead of arginine as the catalytic base, as well as by lowering the pK a of the catalytic base in a unique active-site environment. PMID:26327384

  11. Limited Expression of Cytochrome P450 17α-Hydroxylase/17,20-Lyase in Prostate Cancer Cell Lines

    PubMed Central

    Jeong, Chang Wook; Yoon, Cheol Yong; Jeong, Seong Jin; Byun, Seok-Soo; Lee, Sang Eun

    2011-01-01

    Purpose Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a key enzyme in the androgen biosynthesis pathway. CYP17A1 has been focused on because of the promising results of a potent CYP17A1 inhibitor in the treatment of castration-resistant prostate cancer (CRPC). A hypothesis that intratumoral androgenesis may play a role in the progression of CRPC has recently been postulated. Thus, we evaluated whether commonly used prostate cancer cell lines express CYP17A1. Materials and Methods Androgen-sensitive LNCaP and androgen-insensitive PC-3 and DU145 cells were used. To evaluate the expression of CYP17A1 protein and RNA, we performed Western blotting and RT-PCR, respectively. Results We were unable to detect either CYP17A1 protein or RNA in any of the cell lines tested. We failed to detect any expression of CYP17A1, despite several repetitions of these techniques under different conditions. Conclusions The expression of CYP17A1 protein and RNA in LNCaP, PC-3, and DU145 cells appears to be either absent or too low for detection. The mechanism of action of abiraterone acetate, a CYP17A1 inhibitor, may be related more to adrenal androgen blockade than to intratumoral androgenesis. PMID:21860772

  12. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar.

    PubMed

    de Jong, Femke; Hanley, Steven J; Beale, Michael H; Karp, Angela

    2015-09-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow.

  13. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance.

    PubMed

    Dominguez-Solís, J R; Gutierrez-Alcalá, G; Vega, J M; Romero, L C; Gotor, C

    2001-03-23

    Regulation of the expression of the cytosolic O-acetylserine(thiol)lyase gene (Atcys-3A) from Arabidopsis thaliana under heavy metal stress conditions has been investigated. Northern blot analysis of Atcys-3A expression shows a 7-fold induction after 18 h of cadmium treatment. Addition of 50 microm CdCl(2) to the irrigation medium of mature Arabidopsis plants induces a rapid accumulation of the mRNA throughout the leaf lamina, the root and stem cortex, and stem vascular tissues when compared with untreated plants, as observed by in situ hybridization. High pressure liquid chromatography analysis of GSH content shows a transient increase after 18 h of metal treatment. Our results are compatible with a high cysteine biosynthesis rate under heavy metal stress required for the synthesis of GSH and phytochelatins, which are involved in the plant detoxification mechanism. Arabidopsis-transformed plants overexpressing the Atcys-3A gene by up to 9-fold show increased tolerance to cadmium when grown in medium containing 250 microm CdCl(2), suggesting that increased cysteine availability is responsible for cadmium tolerance. In agreement with these results, exogenous addition of cystine can, to some extent, also favor the growth of wild-type plants in cadmium-containing medium. Cadmium accumulates to higher levels in leaves of tolerant transformed lines than in wild-type plants. PMID:11121418

  14. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases. PMID:24777760

  15. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  16. The Prophage-encoded Hyaluronate Lyase Has Broad Substrate Specificity and Is Regulated by the N-terminal Domain*

    PubMed Central

    Singh, Sudhir Kumar; Bharati, Akhilendra Pratap; Singh, Neha; Pandey, Praveen; Joshi, Pankaj; Singh, Kavita; Mitra, Kalyan; Gayen, Jiaur R.; Sarkar, Jayanta; Akhtar, Md. Sohail

    2014-01-01

    Streptococcus equi is the causative agent of the highly contagious disease “strangles” in equines and zoonotic meningitis in human. Spreading of infection in host tissues is thought to be facilitated by the bacterial gene encoded extracellular hyaluronate lyase (HL), which degrades hyaluronan (HA), chondroitin 6-sulfate, and dermatan sulfate of the extracellular matrix). The clinical strain S. equi 4047 however, lacks a functional extracellular HL. The prophages of S. equi and other streptococci encode intracellular HLs which are reported to partially degrade HA and do not cleave any other glycosaminoglycans. The phage HLs are thus thought to play a role limited to the penetration of streptococcal HA capsules, facilitating bacterial lysogenization and not in the bacterial pathogenesis. Here we systematically looked into the structure-function relationship of S. equi 4047 phage HL. Although HA is the preferred substrate, this HL has weak activity toward chondroitin 6-sulfate and dermatan sulfate and can completely degrade all of them. Even though the catalytic triple-stranded β-helix domain of phage HL is functionally independent, its catalytic efficiency and specificity is influenced by the N-terminal domain. The phage HL also interacts with human transmembrane glycoprotein CD44. The above results suggest that the streptococci can use phage HLs to degrade glycosaminoglycans of the extracellular matrix for spreading virulence factors and toxins while utilizing the disaccharides as a nutrient source for proliferation at the site of infection. PMID:25378402

  17. Synthesis of glycolate from pyruvate via isocitrate lyase by tobacco leaves in light. [Nicotiana tabacum var Havana Seed

    SciTech Connect

    Zelitch, I. )

    1988-02-01

    Tobacco (Nicotiana tabacum var Havana Seed) leaf discs were supplied tracer quantities of (2-{sup 14}C)- and (3-{sup 14}C) pyruvate for 60 minutes in steady state photosynthesis with 21% or 1% O{sub 2}, and the glycolate oxidase inhibitor {alpha}-hydroxy-2-pyridinemethanesulfonic acid was then added for 5 or 10 minutes to cause glycolate to accumulate. The (3-{sup 14}C) pyruvate was converted directly to glycolate as shown by a 50% greater than equal-labeled {sup 14}C in C-2 of glycolate, and the fraction of {sup 14}C in C-2 increased in 1% O{sub 2} to 80% greater than equal-labeled. This suggests the pathway using pyruvate is less O{sub 2}-dependent than the oxygenase reaction producing glycolate from the Calvin cycle. The formation of glycolate from pyruvate in the leaf discs was time-dependent and with (2-{sup 14}C)- and (3-{sup 14}C) pyruvate supplied leaf discs the C-2 of glyoxylate derived from C-2 of isocitrate was labeled asymmetrically in a manner similar to the asymmetrical labeling of C-2 of glycolate under a number of conditions. Thus glycolate was probably formed by the reduction of glyoxylate. Isocitric lyase activity of tobacco leaves was associated with leaf mitochondria, through most of the activity was in the supernatant fraction after differential centrifugation of leaf homogenates.

  18. Conformational Analysis of the Streptococcus pneumoniae Hyaluronate Lyase and Characterization of Its Hyaluronan-specific Carbohydrate-binding Module*

    PubMed Central

    Suits, Michael D. L.; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S.; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B.

    2014-01-01

    For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. PMID:25100731

  19. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp.

    PubMed

    Pina, Ana; Errea, Pilar

    2008-05-01

    Phenylalanine ammonia-lyase (PAL) is a key enzyme in the synthesis of phenolic compounds, which play a prominent role in graft union formation, including the marked effects of their accumulation in incompatibility response. The purpose of this study was to assess changes in the abundance of PAL mRNA during graft union development. Partial cDNA clones encoding the enzyme were isolated from in vitro callus tissue in the apricot (Prunus armeniaca L.) cultivar Moniqui and the plum rootstock Marianna 2624 (Prunus munsoniana x Prunus cerasifera). The deduced partial amino acid sequence showed high homology with PAL genes from other plant species. We monitored PAL expression 5, 10, 15 and 20 days after the establishment of in vitro callus unions. The levels of PAL mRNA increased 5 days after grafting in both compatible and incompatible unions. Nevertheless, significant differences were observed at the transcript level through both types of combinations from the second week. The results showed a higher level of PAL transcription in graft unions of incompatible partners, where a lack of adaptation between stock and scion takes place. The level of scion-stock compatibility was related to the PAL expression pattern. In addition, cell walls of the callus cells were not stained by phloroglucinol-HCl, indicating that the increased PAL expression did not result in the formation of lignin. However, staining with Naturstoff reagent A confirmed the highest accumulation of soluble and wall-bound phenolic compounds at the graft interface of incompatible unions.

  20. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata.

    PubMed

    Dai, Ling-Peng; Xiong, Zhi-Ting; Huang, Yu; Li, Min-Jing

    2006-10-01

    This study was designed to examine the effects of cadmium on several color-related parameters (including chlorophyll, carotenoid, and anthocyanin), total phenolics, and phenylalanine ammonia-lyase (PAL) activity in an aquatic fern species Azolla imbricate (A. imbricata). Cd accumulation and effects in the fronds were closely related with Cd concentration in the growth medium. The fronds under 0.5 mg/L Cd treatment turned red on the 3rd day, and this color change also appeared under 0.05 and 0.1 mg/L Cd treatment on the 5th day. Correlated with the color change, the contents of chlorophyll and carotenoid in the fronds significantly decreased in the presence of high Cd concentrations, while the anthocyanin content increased during the experiment. Significant increase in total phenolics content and PAL activity were also detected during Cd treatment. The results suggested that the Cd-induced change in color of fronds might be due to the decrease in chlorophyll and carotenoid and the increase in anthocyanin. Anthocyanin, total phenolics and their biosynthesis-related PAL might play a role in detoxification of Cd in A. imbricata.

  1. Gene fusion, fission, lateral transfer, and loss: Not-so-rare events in the evolution of eukaryotic ATP citrate lyase.

    PubMed

    Gawryluk, Ryan M R; Eme, Laura; Roger, Andrew J

    2015-10-01

    ATP citrate lyase (ACL) is an enzyme critical to the generation of cytosolic acetyl-CoA in eukaryotes. In most studied organisms, ACL activity is conferred in combination by two proteins, ACLA and ACLB (dsACL); however, animals encode a single-subunit ACL (ssACL) - the result of a gene fusion event. Through phylogenetic analyses, we investigated the evolution of ACL in a broad range of eukaryotes, including numerous microbes (protists). We show that the fused form is not restricted to animals, and is instead widely distributed among eukaryotes. Furthermore, ssACL and dsACL are patchily distributed and appear to be mutually exclusive; both types arose early in eukaryotic evolution. Finally, we present several compelling hypotheses of lateral gene transfer and gene loss, along with the secondary gene fission of ssACL in Ascomycota. Collectively, our in-depth analyses suggest that a complex suite of evolutionary events, usually considered rare, has shaped the evolution of ACL in eukaryotes.

  2. Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297

  3. The prophage-encoded hyaluronate lyase has broad substrate specificity and is regulated by the N-terminal domain.

    PubMed

    Singh, Sudhir Kumar; Bharati, Akhilendra Pratap; Singh, Neha; Pandey, Praveen; Joshi, Pankaj; Singh, Kavita; Mitra, Kalyan; Gayen, Jiaur R; Sarkar, Jayanta; Akhtar, Md Sohail

    2014-12-19

    Streptococcus equi is the causative agent of the highly contagious disease "strangles" in equines and zoonotic meningitis in human. Spreading of infection in host tissues is thought to be facilitated by the bacterial gene encoded extracellular hyaluronate lyase (HL), which degrades hyaluronan (HA), chondroitin 6-sulfate, and dermatan sulfate of the extracellular matrix). The clinical strain S. equi 4047 however, lacks a functional extracellular HL. The prophages of S. equi and other streptococci encode intracellular HLs which are reported to partially degrade HA and do not cleave any other glycosaminoglycans. The phage HLs are thus thought to play a role limited to the penetration of streptococcal HA capsules, facilitating bacterial lysogenization and not in the bacterial pathogenesis. Here we systematically looked into the structure-function relationship of S. equi 4047 phage HL. Although HA is the preferred substrate, this HL has weak activity toward chondroitin 6-sulfate and dermatan sulfate and can completely degrade all of them. Even though the catalytic triple-stranded β-helix domain of phage HL is functionally independent, its catalytic efficiency and specificity is influenced by the N-terminal domain. The phage HL also interacts with human transmembrane glycoprotein CD44. The above results suggest that the streptococci can use phage HLs to degrade glycosaminoglycans of the extracellular matrix for spreading virulence factors and toxins while utilizing the disaccharides as a nutrient source for proliferation at the site of infection.

  4. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides.

    PubMed

    Castañeda, María Teresita; Adachi, Osao; Hours, Roque Alberto

    2015-10-01

    L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.25) from Rhodosporidium toruloides was utilized to remove L-phenylalanine (L-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, L-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of L-Phe was extracted, analyzed at λ = 290 nm, and used for PAL activity determination. Optimum reaction conditions, optimized using successive Doehlert design, were 35 mg mL(-1) of CAH and 800 mU mL(-1) of PAL, while temperature and pH were 42 °C and 8.7, respectively. Reaction kinetics of PAL with CAH was determined under optimized conditions. Then, removal of L-Phe from CAH was tested. Results showed that more than 92 % of initial L-Phe was eliminated. Similar results were obtained with other protein hydrolysates. These findings demonstrate that PAL is a useful biocatalyst for L-Phe removal from protein hydrolysates, which can be evaluated as potential ingredients in foodstuffs for PKU patients.

  5. Biochemical discrimination between selenium and sulfur 2: mechanistic investigation of the selenium specificity of human selenocysteine lyase.

    PubMed

    Johansson, Ann-Louise; Collins, Ruairi; Arnér, Elias S J; Brzezinski, Peter; Högbom, Martin

    2012-01-01

    Selenium is an essential trace element incorporated into selenoproteins as selenocysteine. Selenocysteine (Sec) lyases (SCLs) and cysteine (Cys) desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys, respectively, and generally accept both substrates. Intriguingly, human SCL (hSCL) is specific for Sec even though the only difference between Sec and Cys is a single chalcogen atom.The crystal structure of hSCL was recently determined and gain-of-function protein variants that also could accept Cys as substrate were identified. To obtain mechanistic insight into the chemical basis for its substrate discrimination, we here report time-resolved spectroscopic studies comparing the reactions of the Sec-specific wild-type hSCL and the gain-of-function D146K/H389T variant, when given Cys as a substrate. The data are interpreted in light of other studies of SCL/CD enzymes and offer mechanistic insight into the function of the wild-type enzyme. Based on these results and previously available data we propose a reaction mechanism whereby the Sec over Cys specificity is achieved using a combination of chemical and physico-mechanical control mechanisms.

  6. A critical life-supporting role for cystathionine γ-lyase in the absence of dietary cysteine supply.

    PubMed

    Mani, Sarathi; Yang, Guangdong; Wang, Rui

    2011-05-15

    This study examined the important relationship between cystathionine γ-lyase (CSE) functionality and cysteine supply for normal growth and life span. Mice with a targeted deletion of the CSE gene (CSE-KO) were fed a cysteine-limited diet and their growth and survival patterns as well as levels of cysteine, homocysteine, glutathione, and hydrogen sulfide (H2S) were measured. CSE-KO mice fed a cysteine-limited diet exhibited growth retardation; decreased levels of cysteine, glutathione, and H2S; and increased plasma homocysteine level. However, histological examinations of liver did not reveal any abnormality and plasma levels of aspartate aminotransferase, alanine aminotransferase, and albumin were normal in these animals. No CSE-KO mice survived after 12 weeks of feeding with the cysteine-limited diet. Supplementation of H2S to the CSE-KO mice failed to reverse the aforementioned abnormalities. On the other hand, supplementation of cysteine in the drinking water of the CSE-KO mice significantly increased plasma cysteine and glutathione levels. This eventually led to an increase in body weight and rescued the animals from death. In conclusion, CSE is critical for cysteine biosynthesis through the transsulfuration pathway and the combination of CSE deficiency and lack of dietary cysteine supply would threaten life sustainability.

  7. Cystathionine γ-lyase, an enzyme related to the reverse transsulfuration pathway, is functional in Leishmania spp.

    PubMed

    Giordana, Lucila; Mantilla, Brian Suárez; Santana, Marianela; Silber, Ariel M; Nowicki, Cristina

    2014-01-01

    Leishmania parasites seem capable of producing cysteine by de novo biosynthesis, similarly to bacteria, some pathogenic protists, and plants. In Leishmania spp., cysteine synthase (CS) and cystathionine β-synthase (CBS) are expected to participate in this metabolic process. Moreover, the reverse transsulfuration pathway (RTP) is also predicted to be operative in this trypanosomatid because CBS also catalyzes the condensation of serine with homocysteine, and a gene encoding a putative cystathionine γ-lyase (CGL) is present in all the sequenced genomes. Our results show that indeed, Leishmania major CGL is able to rescue the wild-type phenotype of a Saccharomyces cerevisiae CGL-null mutant and is susceptible to inhibition by an irreversible CGL inhibitor, DL-propargylglycine (PAG). In Leishmania promastigotes, CGL and CS are cytosolic enzymes. The coexistence of de novo synthesis with the RTP is extremely rare in most living organisms; however, despite this potentially high redundancy in cysteine production, PAG arrests the proliferation of L. major promastigotes with an IC50 of approximately 65 μM. These findings raise new questions regarding the biological role of CGL in these pathogens and indicate the need for understanding the molecular mechanism of PAG action in vivo to identify the potential targets affected by this drug.

  8. The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida.

    PubMed

    Fukumoto, Mitsuki; Kudou, Daizou; Murano, Shouko; Shiba, Tomoo; Sato, Dan; Tamura, Takashi; Harada, Shigeharu; Inagaki, Kenji

    2012-01-01

    Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.

  9. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  10. Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine λ-lyase activities.

    PubMed

    Singh, Poonam; Rao, Pooja; Bhattacharya, Rahul

    2013-12-01

    We assessed the dose-dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3-mercaptopyruvate sulfurtransferase (3-MPST), and cystathionine λ-lyase (CST) activities in mice. The time-dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3-MPST, and CST activities was also examined. Furthermore, TST, 3-MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3-MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3-MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples.

  11. Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression.

    PubMed

    de la Garza-Rodea, Anabel S; Baldwin, Dianna M; Oskouian, Babak; Place, Robert F; Bandhuvula, Padmavathi; Kumar, Ashok; Saba, Julie D

    2014-01-01

    S1P lyase (SPL) catalyzes the irreversible degradation of sphingosine-1-phosphate (S1P), a bioactive lipid whose signaling activities regulate muscle differentiation, homeostasis, and satellite cell (SC) activation. By regulating S1P levels, SPL also controls SC recruitment and muscle regeneration, representing a potential therapeutic target for muscular dystrophy. We found that SPL is induced during myoblast differentiation. To investigate SPL's role in myogenesis at the cellular level, we generated and characterized a murine myoblast SPL-knockdown (SPL-KD) cell line lacking SPL. SPL-KD cells accumulated intracellular and extracellular S1P and failed to form myotubes under conditions that normally stimulate myogenic differentiation. Under differentiation conditions, SPL-KD cells also demonstrated delayed induction of 3 myogenic microRNAs (miRNAs), miR-1, miR-206, and miR-486. SPL-KD cells successfully differentiated when treated with an S1P1 agonist, S1P2 antagonist, and combination treatments, which also increased myogenic miRNA levels. SPL-KD cells transfected with mimics for miR-1 or miR-206 also overcame the differentiation block. Thus, we show for the first time that the S1P/SPL/S1P-receptor axis regulates the expression of a number of miRNAs, thereby contributing to myogenic differentiation.

  12. Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: structural bases of inactivation of the enzyme.

    PubMed

    Morozova, Elena A; Revtovich, Svetlana V; Anufrieva, Natalya V; Kulikova, Vitalia V; Nikulin, Alexey D; Demidkina, Tatyana V

    2014-11-01

    The interaction of Citrobacter freundii methionine γ-lyase (MGL) and the mutant form in which Cys115 is replaced by Ala (MGL C115A) with the nonprotein amino acid (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl]propanoic acid (alliin) was investigated. It was found that MGL catalyzes the β-elimination reaction of alliin to form 2-propenethiosulfinate (allicin), pyruvate and ammonia. The β-elimination reaction of alliin is followed by the inactivation and modification of SH groups of the wild-type and mutant enzymes. Three-dimensional structures of inactivated wild-type MGL (iMGL wild type) and a C115A mutant form (iMGL C115A) were determined at 1.85 and 1.45 Å resolution and allowed the identification of the SH groups that were oxidized by allicin. On this basis, the mechanism of the inactivation of MGL by alliin, a new suicide substrate of MGL, is proposed.

  13. Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-CoA hydratase/lyase enzyme function.

    PubMed

    Mayer, M J; Narbad, A; Parr, A J; Parker, M L; Walton, N J; Mellon, F A; Michael, A J

    2001-07-01

    The gene for a bacterial enoyl-CoA hydratase (crotonase) homolog (HCHL) previously shown to convert 4-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA to the corresponding hydroxybenzaldehydes in vitro provided an opportunity to subvert the plant phenylpropanoid pathway and channel carbon flux through 4-hydroxybenzaldehyde and the important flavor compound 4-hydroxy-3-methoxybenzaldehyde (vanillin). Expression of the Pseudomonas fluorescens AN103 HCHL gene in two generations of tobacco plants caused the development of phenotypic abnormalities, including stunting, interveinal chlorosis and senescence, curled leaf margins, low pollen production, and male sterility. In second generation progeny, the phenotype segregated with the transgene and transgenic siblings exhibited orange/red coloration of the vascular ring, distorted cells in the xylem and phloem bundles, and lignin modification/reduction. There was depletion of the principal phenolics concomitant with massive accumulation of novel metabolites, including the glucosides and glucose esters of 4-hydroxybenzoic acid and vanillic acid and the glucosides of 4-hydroxybenzyl alcohol and vanillyl alcohol. HCHL plants exhibited increased accumulation of transcripts for phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate:CoA ligase, whereas beta-1,3-glucanase was suppressed. This study, exploiting the ability of a bacterial gene to divert plant secondary metabolism, provides insight into how plants modify inappropriately accumulated metabolites and reveals the consequences of depleting the major phenolic pools.

  14. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    DOE PAGES

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lo, Jonathan; Lynd, Lee R.

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzymemore » (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.« less

  15. Entropic Origin of Cobalt-Carbon Bond Cleavage Catalysis in Adenosylcobalamin-Dependent Ethanolamine Ammonia-Lyase

    PubMed Central

    Wang, Miao; Warncke, Kurt

    2013-01-01

    Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >1011-fold. The cleavage-generated 5′-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen atom transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex, and 2H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the 2H- and 1H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ±1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ±6 cal/mol/K (relative to 7 ±1 cal/mol/K in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate. PMID:24028405

  16. Pyruvate Formate-Lyase Is Essential for Fumarate-Independent Anaerobic Glycerol Utilization in the Enterococcus faecalis Strain W11

    PubMed Central

    Ikegami, Yuki

    2014-01-01

    Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism. PMID:24769696

  17. L-methionine gamma-lyase from Citrobacter freundii: cloning of the gene and kinetic parameters of the enzyme.

    PubMed

    Manukhov, I V; Mamaeva, D V; Morozova, E A; Rastorguev, S M; Faleev, N G; Demidkina, T V; Zavilgelsky, G B

    2006-04-01

    It is shown for the first time for the Enterobacteriaceae family that a gene encoding L-methionine gamma-lyase (MGL) is present in the genome of Citrobacter freundii. Homogeneous enzyme has been purified from C. freundii cells and its N-terminal sequence has been determined. The hybrid plasmid pUCmgl obtained from the C. freundii genomic library contains an EcoRI insert of about 3000 bp, which ensures the appearance of MGL activity when expressed in Escherichia coli TG1 cells. The nucleotide sequence of the EcoRI fragment contains two open reading frames. The first frame (the megL gene) encodes a protein of 398 amino acid residues that has sequence homology with MGLs from different sources. The second frame encodes a protein with sequence homology with proteins belonging to the family of permeases. To overexpress the megL gene it was cloned into pET-15b vector. Recombinant enzyme has been purified and its kinetic parameters have been determined. It is demonstrated that a presence of a hybrid plasmid pUCmgl, containing the megL gene in the E. coli K12 cells, leads to a decrease in efficiency of EcoKI-restriction. It seems likely that decomposition of L-methionine under the action of MGL leads to a decrease in the intracellular content of S-adenosylmethionine. Expression of the megL gene in the C. freundii genome occurs only upon induction by a significant amount of L-methionine.

  18. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11.

    PubMed

    Doi, Yuki; Ikegami, Yuki

    2014-07-01

    Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism. PMID:24769696

  19. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA.

    PubMed

    Rein, Ulrike; Gueta, Ronnie; Denger, Karin; Ruff, Jürgen; Hollemeyer, Klaus; Cook, Alasdair M

    2005-03-01

    Paracoccus pantotrophus NKNCYSA utilizes (R)-cysteate (2-amino-3-sulfopropionate) as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor, and the specific utilization rate of cysteate is about 2 mkat (kg protein)(-1). The initial degradative reaction is catalysed by an (R)-cysteate : 2-oxoglutarate aminotransferase, which yields 3-sulfopyruvate. The latter was reduced to 3-sulfolactate by an NAD-linked sulfolactate dehydrogenase [3.3 mkat (kg protein)(-1)]. The inducible desulfonation reaction was not detected initially in cell extracts. However, a strongly induced protein with subunits of 8 kDa (alpha) and 42 kDa (beta) was found and purified. The corresponding genes had similarities to those encoding altronate dehydratases, which often require iron for activity. The purified enzyme could then be shown to convert 3-sulfolactate to sulfite and pyruvate and it was termed sulfolactate sulfo-lyase (Suy). A high level of sulfite dehydrogenase was also induced during growth with cysteate, and the organism excreted sulfate. A putative regulator, OrfR, was encoded upstream of suyAB on the reverse strand. Downstream of suyAB was suyZ, which was cotranscribed with suyB. The gene, an allele of tauZ, encoded a putative membrane protein with transmembrane helices (COG2855), and is a candidate to encode the sulfate exporter needed to maintain homeostasis during desulfonation. suyAB-like genes are widespread in sequenced genomes and environmental samples where, in contrast to the current annotation, several presumably encode the desulfonation of 3-sulfolactate, a component of bacterial spores. PMID:15758220

  20. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis.

    PubMed

    Dreveny, Ingrid; Kratky, Christoph; Gruber, Karl

    2002-02-01

    The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction-the enantiospecific formation of alpha-hydroxynitriles--is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C-C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. PMID:11790839

  1. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata.

    PubMed

    Halitschke, Rayko; Ziegler, Jörg; Keinänen, Markku; Baldwin, Ian T

    2004-10-01

    The fatty acid hydroperoxide (HP) substrates required for the biosynthesis of jasmonic acid (JA) and green leaf volatiles (GLVs) are supplied by separate lipoxygenases (LOX). We silenced the expression of two genes downstream of the LOX: allene oxide synthase (AOS) and HP lyase (HPL) by antisense expression of endogenous genes (NaAOS, NaHPL) in Nicotiana attenuata, in which the biosynthesis of JA is amplified by herbivore-specific elicitors. We report that these elicitors also amplify wound-induced GLV releases, but suppress the wound-induced increase of NaHPL transcripts, suggesting that substrate flux controls GLV biosynthesis. As expected, silencing of NaHPL and NaAOS reduced GLV release and JA accumulation, respectively. Surprisingly, HPL- and AOS-silenced plants had enhanced JA and GLV responses, suggesting substrate 'crosstalk' between these two oxylipin cascades. Plants with depleted GLVs (as-hpl) were less attractive than wild type (WT) or empty vector control plants in choice-tests with native lepidopteran herbivores. In feeding trials, Manduca sexta larvae developed slower on as-hpl plants. The reduced larval consumption and performance, which was not caused by increases in defense responses in as-hpl plants, could be restored to WT levels by the addition of synthetic GLVs, demonstrating that GLVs function as feeding stimulants. Gene expression profiling by cDNA microarray analysis and characterization of several induced defenses in herbivore-elicited as-hpl and as-aos plants revealed differential involvement of JA and GLVs in defense signaling. Elicitation of volatile terpenoids (an indirect defense) requires JA signaling, where as trypsin protease inhibitor elicitation (a direct defense) requires both functional JA and GLV cascades.

  2. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation

    PubMed Central

    Jang, Chul Ho; Piao, Yu Lan; Huang, Xiaoqin; Yoon, Eun Jeong; Park, So Hee; Lee, Kyoung; Zhan, Chang-Guo; Cho, Hoon

    2016-01-01

    Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL) might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A) were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate) compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT) and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect. PMID:27253324

  3. New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate.

    PubMed

    Leroy, B; De Meur, Q; Moulin, C; Wegria, G; Wattiez, R

    2015-05-01

    Purple non-sulfur bacteria are well known for their metabolic versatility. One of these bacteria, Rhodospirillum rubrum S1H, has been selected by the European Space Agency to ensure the photoheterotrophic assimilation of volatile fatty acids in its regenerative life support system, MELiSSA. Here, we combined proteomic analysis with bacterial growth analysis and enzymatic activity assays in order to better understand acetate photoassimilation. In this isocitrate lyase-lacking organism, the assimilation of two-carbon compounds cannot occur through the glyoxylate shunt, and the citramalate cycle has been proposed to fill this role, while, in Rhodobacter sphaeroides, the ethylmalonyl-CoA pathway is used for acetate assimilation. Using proteomic analysis, we were able to identify and quantify more than 1700 unique proteins, representing almost one-half of the theoretical proteome of the strain. Our data reveal that a pyruvate : ferredoxin oxidoreductase (NifJ) could be used for the direct assimilation of acetyl-CoA through pyruvate, potentially representing a new redox-balancing reaction. We additionally propose that the ethylmalonyl-CoA pathway could also be involved in acetate assimilation by the examined strain, since specific enzymes of this pathway were all upregulated and activity of crotonyl-CoA reductase/carboxylase was increased in acetate conditions. Surprisingly, we also observed marked upregulation of glutaryl-CoA dehydrogenase, which could be a component of a new pathway for acetate photoassimilation. Finally, our data suggest that citramalate could be an intermediate of the branched-chain amino acid biosynthesis pathway, which is activated during acetate assimilation, rather than a metabolite of the so-called citramalate cycle. PMID:25737481

  4. Folding pathway of the pyridoxal 5'-phosphate C-S lyase MalY from Escherichia coli.

    PubMed

    Bertoldi, Mariarita; Cellini, Barbara; Laurents, Douglas V; Borri Voltattorni, Carla

    2005-08-01

    MalY from Escherichia coli is a bifunctional dimeric PLP (pyridoxal 5'-phosphate) enzyme acting as a beta-cystathionase and as a repressor of the maltose system. The spectroscopic and molecular properties of the holoenzyme, in the untreated and NaBH4-treated forms, and of the apoenzyme have been elucidated. A systematic study of the urea-induced unfolding of MalY has been monitored by gel filtration, cross-linking, ANS (8-anilino-1-naphthalenesulphonic acid) binding and by visible, near- and far-UV CD, fluorescence and NMR spectroscopies under equilibrium conditions. Unfolding proceeds in at least three stages. The first transition, occurring between 0 and 1 M urea, gives rise to a partially active dimeric species that binds PLP. The second equilibrium transition involving dimer dissociation, release of PLP and loss of lyase activity leads to the formation of a monomeric equilibrium intermediate. It is a partially unfolded molecule that retains most of the native-state secondary structure, binds significant amounts of ANS (a probe for exposed hydrophobic surfaces) and tends to self-associate. The self-associated aggregates predominate at urea concentrations of 2-4 M for holoMalY. The third step represents the complete unfolding of the enzyme. These results when compared with the urea-induced unfolding profiles of apoMalY and NaBH4-reduced holoenzyme suggest that the coenzyme group attached to the active-site lysine residue increases the stability of the dimeric enzyme. Both holo- and apo-MalY could be successfully refolded into the active enzyme with an 85% yield. Further refolding studies suggest that large misfolded soluble aggregates that cannot be refolded could be responsible for the incomplete re-activation. PMID:15823094

  5. Expression and in silico characterization of Phenylalanine ammonium lyase against karnal bunt (Tilletia indica) in wheat (Triticum aestivum).

    PubMed

    Purwar, Shalini; Sundaram, Shanthy; Sinha, Sukrat; Gupta, Ankit; Dobriyall, Neha; Kumar, Anil

    2013-01-01

    To investigate the lignifications process and its physiological significance under Karnal Bunt (KB), the changes in enzymes responsible for lignifications likes, phenylalanine ammonia lyase (PAL), were determined in resistant (HD-29) and susceptible genotype (WH-542) of wheat during different developmental stages. The PAL gene was cloned and sequenced. The expression of PAL gene was measured by means of semi-quantitative RT-PCR. The enzyme was expressed constitutively in both the susceptible and resistant genotype. However, the activity was higher in all the developmental stages of resistant genotype, indicating that this genotype has a significant higher basal level of these enzymes as compared to the susceptible line and could be used as marker(s) to define KB resistance. The activity of PAL was significantly higher in WSv stage (Z=16). Structural comparisons based on alignments of all the protein sequences using the clustal W program and searches for conserved motifs using the MEME program have revealed broad conservation of main motifs characteristic of the plant PAL. MSA and phylogenetic analyses of different plants PAL demonstrate that all PAL cluster divided in to two main cluster. The PAL also possesses a specific consensus sequences [GS]- [STG]-[LIVM]-[STG]-[SAC]-S-G-[DH]-L-x-[PN]-L-[SA]-x(2,3)-[SAGVTL]. The pathway might be associated with the enhancement of structural defense barrier due to lignifications of cell wall as evident from the enhanced synthesis of lignin in all the stages of resistant genotype. Our results clearly indicate the possible role of enzymes of Phenyl propanoid pathway metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB. PMID:24497728

  6. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation.

    PubMed

    Jang, Chul Ho; Piao, Yu Lan; Huang, Xiaoqin; Yoon, Eun Jeong; Park, So Hee; Lee, Kyoung; Zhan, Chang-Guo; Cho, Hoon

    2016-01-01

    Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL) might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A) were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate) compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT) and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect. PMID:27253324

  7. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis

    PubMed Central

    Nilsson, Anders K.; Fahlberg, Per; Johansson, Oskar N.; Hamberg, Mats; Andersson, Mats X.; Ellerström, Mats

    2016-01-01

    Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids. PMID:27422994

  8. Cyclin E Associates with the Lipogenic Enzyme ATP-Citrate Lyase to Enable Malignant Growth of Breast Cancer Cells.

    PubMed

    Lucenay, Kimberly S; Doostan, Iman; Karakas, Cansu; Bui, Tuyen; Ding, Zhiyong; Mills, Gordon B; Hunt, Kelly K; Keyomarsi, Khandan

    2016-04-15

    Cyclin E is altered in nearly a third of invasive breast cancers where it is a powerful independent predictor of survival in women with stage I-III disease. Full-length cyclin E is posttranslationally cleaved into low molecular weight (LMW-E) isoforms, which are tumor-specific and accumulate in the cytoplasm because they lack a nuclear localization sequence. We hypothesized that aberrant localization of cytosolic LMW-E isoforms alters target binding and activation ultimately contributing to LMW-E-induced tumorigenicity. To address this hypothesis, we used a retrovirus-based protein complementation assay to find LMW-E binding proteins in breast cancer, identifying ATP-citrate lyase (ACLY), an enzyme in the de novo lipogenesis pathway, as a novel LMW-E-interacting protein in the cytoplasm. LMW-E upregulated ACLY enzymatic activity, subsequently increasing lipid droplet formation, thereby providing cells with essential building blocks to support growth. ACLY was also required for LMW-E-mediated transformation, migration, and invasion of breast cancer cells in vitro along with tumor growth in vivo In clinical specimens of breast cancer, the absence of LMW-E and low expression of adipophilin (PLIN2), a marker of lipid droplet formation, associated with favorable prognosis, whereas overexpression of both proteins correlated with a markedly worse prognosis. Taken together, our findings establish a novel relationship between LMW-E isoforms of cyclin E and aberrant lipid metabolism pathways in breast cancer tumorigenesis, warranting further investigation in additional malignancies exhibiting their expression. Cancer Res; 76(8); 2406-18. ©2016 AACR. PMID:26928812

  9. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function.

    PubMed

    Chen, Liangyu; Li, Xinxing; Liu, Libo; Yu, Bo; Xue, Yixue; Liu, Yunhui

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the most common encephalic malignant tumors. Due to a high recurrence rate and a lack of effective treatments, the average survival rate remains low. Temozolomide (TMZ), a class of alkylating agent, is widely used as a first-line therapeutic drug during the adjuvant treatment for GBM patients. However, most patients exhibit a palpable resistance to TMZ treatment. Additionally, the underlying mechanism remains to be clarified. In this study, glutathione (GSH) and reactive oxygen species (ROS) levels were found to be closely associated with the sensitivity of GBM cells to TMZ. We also found that TMZ markedly induced xCT, the subunit of glutamate/cystine transporter system xc- expression, which together with the GSH synthesis was increased while the TMZ-inducible ROS level was decreased in GBM cells. In addition, the cystathionine γ-lyase (CTH) acivity, a key enzyme in the transsulfuration pathway was enhanced by TMZ, which insured a cysteine supply and GSH synthesis in a compensatory manner when xCT was blocked. Thus, the individual inhibition of xCT by siRNA and a pharmacological inhibitor (sulfasalazine) only partially inhibited GSH synthesis and moderately enhanced the GBM cell sensitivity to TMZ. However, the TMZ‑induced cytotoxicity was markedly increased along with a marked decrease in GSH levels as result of co-treatment with erastin, which inhibited cysteine uptake from xCT transporter and suppressed CTH activity, leading to impaired transformation from methionine to cysteine. In conclusion, to GBM therapy with a drug combination of TMZ and erastin may be beneficial.

  10. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage.

    PubMed

    Wang, Xian-Hui; Wang, Fen; You, Shou-Jiang; Cao, Yong-Jun; Cao, Li-Dan; Han, Qiao; Liu, Chun-Feng; Hu, Li-Fang

    2013-11-01

    Hydrogen sulfide (H2S), mainly produced by cystathionine γ-lyase (CSE) in vascular system, emerges as a novel gasotransmitter exerting anti-inflammatory and anti-atherosclerotic effects. Alterations of CSE/H2S pathway may thus be involved in atherosclerosis pathogenesis. However, the underlying mechanisms are poorly understood. The present study showed that the levels of CSE mRNA and protein expression, as well as H2S production were decreased in ox-LDL-treated macrophage. CSE overexpression reduced the ox-LDL-stimulated tumor necrosis factor-α (TNF-α) generation in Raw264.7 and primary macrophage while CSE knockdown enhanced it. Exogenous supplementation of H2S with NaHS and Na2S also decreased the production of TNF-α and intercellular adhesion molecule-1 (ICAM-1) in ox-LDL-stimulated macrophage, and alleviated the adhesion of macrophage to endothelial monolayer. Cysteine, a CSE preferential substrate for H2S biosynthesis, produced similar effects on the pro-inflammatory cytokine generation, which were reversed by CSE inhibitors PAG and BCA, respectively. Moreover, NaHS and Na2S attenuated the phosphorylation and degradation of IκBα and p65 nuclear translocation, as well as JNK activation caused by ox-LDL. The JNK inhibitor suppressed the NF-κB transcription activity in ox-LDL-treated cells. Furthermore, inhibitors of NF-κB (PDTC), ERK (U0126 and PD98059) and JNK (SP600125) partially blocked the suppression by ox-LDL on the CSE mRNA levels. Taken together, the findings demonstrate that ox-LDL may down-regulate the CSE/H2S pathway, which plays an anti-inflammatory role in ox-LDL-stimulated macrophage by suppressing JNK/NF-κB signaling. The study reveals new therapeutic strategies for atherosclerosis, based on modulating CSE/H2S pathway.

  11. Knock-down of heat-shock protein 90 and isocitrate lyase gene expression reduced root-knot nematode reproduction.

    PubMed

    Lourenço-Tessutti, Isabela Tristan; Souza Junior, José Dijair Antonino; Martins-de-Sa, Diogo; Viana, Antônio Américo Barbosa; Carneiro, Regina Maria Dechechi Gomes; Togawa, Roberto Coiti; de Almeida-Engler, Janice; Batista, João Aguiar Nogueira; Silva, Maria Cristina Mattar; Fragoso, Rodrigo Rocha; Grossi-de-Sa, Maria Fatima

    2015-05-01

    Crop losses caused by nematode infections are estimated to be valued at USD 157 billion per year. Meloidogyne incognita, a root-knot nematode (RKN), is considered to be one of the most important plant pathogens due to its worldwide distribution and the austere damage it can cause to a large variety of agronomically important crops. RNA interference (RNAi), a gene silencing process, has proven to be a valuable biotechnology alternative method for RKN control. In this study, the RNAi approach was applied, using fragments of M. incognita genes that encode for two essential molecules, heat-shock protein 90 (HSP90) and isocitrate lyase (ICL). Plant-mediated RNAi of these genes led to a significant level of resistance against M. incognita in the transgenic Nicotiana tabacum plants. Bioassays of plants expressing HSP90 dsRNA demonstrated a delay in gall formation and up to 46% reduction in eggs compared with wild-type plants. A reduction in the level of HSP90 transcripts was observed in recovered eggs from plants expressing dsRNA, indicating that gene silencing persisted and was passed along to first progeny. The ICL knock-down had no clear effect on gall formation but resulted in up to 77% reduction in egg oviposition compared with wild-type plants. Our data suggest that both genes may be involved in RKN development and reproduction. Thus, in this paper, we describe essential candidate genes that could be applied to generate genetically modified crops, using the RNAi strategy to control RKN parasitism.

  12. Type III secretion system expression in oxygen-limited Pseudomonas aeruginosa cultures is stimulated by isocitrate lyase activity

    PubMed Central

    Chung, Jade C. S.; Rzhepishevska, Olena; Ramstedt, Madeleine; Welch, Martin

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and a common cause of chronic infections in individuals with cystic fibrosis (CF). Oxygen limitation was recently reported to regulate the expression of a major virulence determinant in P. aeruginosa, the type III secretion system (T3SS). Here, we show that expression of the T3SS in oxygen-limited growth conditions is strongly dependent on the glyoxylate shunt enzyme, isocitrate lyase (ICL; encoded by aceA), which was previously shown to be highly expressed in CF isolates. ICL-dependent regulation of the T3SS did not alter the expression level of the master transcriptional regulator, ExsA, but did affect expression of the T3 structural proteins, effectors and regulators (ExsC, ExsD and ExsE). An aceA mutant displayed enhanced biofilm formation during anaerobic growth, which suggested that AceA-dependent modulation of type III secretion might impinge upon the RetS/LadS signalling pathways. Indeed, our data suggest that RetS is able to mediate some of its effects through AceA, as expression of aceA in trans partially restored T3SS expression in a retS mutant. Our findings indicate that AceA is a key player in the metabolic regulation of T3SS expression during oxygen-limited growth of P. aeruginosa. To the best of our knowledge, this is the first demonstration that the T3SS can be regulated by factors that do not affect ExsA expression levels. PMID:23363478

  13. Preservation of high phenylalanine ammonia lyase activities in roots of Japanese Striped corn: a potential oral therapeutic to treat phenylketonuria.

    PubMed

    López-Villalobos, Arturo; Lücker, Joost; López-Quiróz, Ana Angela; Yeung, Edward C; Palma, Kristoffer; Kermode, Allison R

    2014-06-01

    Phenylketonuria (PKU) is an inherited metabolic disorder caused by deficient phenylalanine hydroxylase (PAH) activity, the enzyme responsible for the disposal of excess amounts of the essential amino acid phenylalanine (Phe). Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) has potential to serve as an enzyme substitution therapy for this human genetic disease. Using 7-day-old Japanese Striped corn seedlings (Japonica Striped maize, Zea mays L. cv. japonica) that contain high activities of PAL, we investigated a number of methods to preserve the roots as an intact food and for long-term storage. The cryoprotectant effects of maple syrup and other edible sugars (mono- and oligosaccharides) were evaluated. Following thawing, the preserved roots were then examined to determine whether the rigid plant cell walls could protect the PAL enzyme from proteolysis during simulated (in vitro) digestion comprised of gastric and intestinal phases. While several treatments led to retention of PAL activity during freezing, upon thawing and in vitro digestion, root tissues that had been previously frozen in the presence of maple syrup exhibited the highest residual PAL activities (∼50% of the initial enzyme activity), in marked contrast to all of the treatments using other edible sugars. The structural integrity of the root cells, and the stability of the functional PAL tetramer were also preserved with the maple syrup protocol. These results have significance for the formulation of oral enzyme/protein therapeutics. When plant tissues are adequately preserved, the rigid cell walls constitute a protective barrier even under harsh (e.g. gastrointestinal-like) conditions.

  14. Identification of the citrate-binding site of human ATP-citrate lyase using X-ray crystallography.

    PubMed

    Sun, Tianjun; Hayakawa, Koto; Bateman, Katherine S; Fraser, Marie E

    2010-08-27

    ATP-citrate lyase (ACLY) catalyzes the conversion of citrate and CoA into acetyl-CoA and oxaloacetate, coupled with the hydrolysis of ATP. In humans, ACLY is the cytoplasmic enzyme linking energy metabolism from carbohydrates to the production of fatty acids. In situ proteolysis of full-length human ACLY gave crystals of a truncated form, revealing the conformations of residues 2-425, 487-750, and 767-820 of the 1101-amino acid protein. Residues 2-425 form three domains homologous to the beta-subunit of succinyl-CoA synthetase (SCS), while residues 487-820 form two domains homologous to the alpha-subunit of SCS. The crystals were grown in the presence of tartrate or the substrate, citrate, and the structure revealed the citrate-binding site. A loop formed by residues 343-348 interacts via specific hydrogen bonds with the hydroxyl and carboxyl groups on the prochiral center of citrate. Arg-379 forms a salt bridge with the pro-R carboxylate of citrate. The pro-S carboxylate is free to react, providing insight into the stereospecificity of ACLY. Because this is the first structure of any member of the acyl-CoA synthetase (NDP-forming) superfamily in complex with its organic acid substrate, locating the citrate-binding site is significant for understanding the catalytic mechanism of each member, including the prototype SCS. Comparison of the CoA-binding site of SCSs with the similar structure in ACLY showed that ACLY possesses a different CoA-binding site. Comparisons of the nucleotide-binding site of SCSs with the similar structure in ACLY indicates that this is the ATP-binding site of ACLY.

  15. Isolation and characterization of two hydroperoxide lyase genes from grape berries : HPL isogenes in Vitis vinifera grapes.

    PubMed

    Zhu, Bao-Qing; Xu, Xiao-Qing; Wu, Yu-Wen; Duan, Chang-Qing; Pan, Qiu-Hong

    2012-07-01

    C6 compounds are the major fraction of the volatile profiles of grape berries, contributing the typical 'green' aroma to the grape and wine. Hydroperoxide lyase (HPL) catalyzes the cleavage of fatty acid hydroperoxides to produce C6 compounds. Two hypothetical genes, VvHPL1 and VvHPL2 were cloned from grape berries (Vitis vinifera L. Cabernet Sauvignon). Bioinformatics analysis revealed that the proteins encoded by these two genes both belong to subfamily of cytochrome P450 and contain typical conserved domains of HPLs, and have high identity with HPLs from other plants. Prokaryotically-expressed VvHPL1 and VvHPL2 with thioredoxin-6xHis-fusion partner were confirmed to have enzymatic activity. VvHPL1 is specific for 13-HPOD (T) producing C6 aldehydes with relatively higher activity and VvHPL2 catalyzes the cleavage of both 9- and 13-hydroperoxides producing C6 aldehydes and C9 aldehydes respectively. Analysis of real time-PCR showed that VvHPL2 was highly expressed in the leaves and the flowers of the grapes, while relatively low transcript abundance was detected in the berries, tendril and stems; VvHPL1 had high expression in all detected tissues. During grape berry development, the expression of these two isogenes presented similar trends with a rapid increase after veraison and a decrease at full-ripen stage, which roughly corresponded to the accumulation of their volatile products. These data lay an essential foundation for further study on the accumulation and control of C6 volatiles in grape berries.

  16. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.

    PubMed

    Narayanan, Narayanan N; Ihemere, Uzoma; Ellery, Claire; Sayre, Richard T

    2011-01-01

    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.

  17. Molecular Cloning of cpcU and Heterodimeric Bilin Lyase Activity Analysis of CpcU and CpcS for Attachment of Phycocyanobilin to Cys-82 on the β-Subunit of Phycocyanin in Arthrospira platensis FACHB314.

    PubMed

    Wu, Fei; Zang, Xiaonan; Zhang, Xuecheng; Zhang, Ran; Huang, Xiaoyun; Hou, Lulu; Jiang, Minjie; Liu, Chang; Pang, Chunhong

    2016-01-01

    A new bilin lyase gene cpcU was cloned from Arthrospira platensis FACHB314 to study the assembly of the phycocyanin β-Subunit. Two recombinant plasmids, one contained the phycocyanobilin (PCB) producing genes (hoxI and pcyA), while the other contained the gene of the β-Subunit of phycobiliprotein (cpcB) and the lyase gene (cpcU, cpcS, or cpcU/S) were constructed and separately transferred into Escherichia coli in order to test the activities of relevant lyases for catalyzing PCB addition to CpcB during synthesizing fluorescent β-PC of A. platensis FACHB314. The fluorescence intensity examination showed that Cys-82 maybe the active site for the β-Subunit binding to PCBs and the attachment could be carried out by CpcU, CpcS, or co-expressed cpcU/S in A. platensis FACHB314. PMID:26999083

  18. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase / isocitrate lyase superfamily†‡

    PubMed Central

    Narayanan, Buvaneswari C.; Niu, Weiling; Han, Ying; Zou, Jiwen; Mariano, Patrick S; Dunaway-Mariano, Debra; Herzberg, Osnat

    2010-01-01

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analog of the shared family α-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 Å resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an α/β barrel fold and two subunits swapping their barrel's C-terminal α-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nε of His235, an invariant residue in the PA4872 sequence family, is oriented towards a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into α-oxocarboxylate-containing compounds was confirmed by 1H-NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an α-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s−1 and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s−1 and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species. PMID:18081320

  19. Chorismate Pyruvate-Lyase and 4-Hydroxy-3-solanesylbenzoate Decarboxylase Are Required for Plastoquinone Biosynthesis in the Cyanobacterium Synechocystis sp. PCC6803

    PubMed Central

    Pfaff, Christian; Glindemann, Niels; Gruber, Jens; Frentzen, Margrit; Sadre, Radin

    2014-01-01

    Plastoquinone is a redox active lipid that serves as electron transporter in the bifunctional photosynthetic-respiratory transport chain of cyanobacteria. To examine the role of genes potentially involved in cyanobacterial plastoquinone biosynthesis, we have focused on three Synechocystis sp. PCC 6803 genes likely encoding a chorismate pyruvate-lyase (sll1797) and two 4-hydroxy-3-solanesylbenzoate decarboxylases (slr1099 and sll0936). The functions of the encoded proteins were investigated by complementation experiments with Escherichia coli mutants, by the in vitro enzyme assays with the recombinant proteins, and by the development of Synechocystis sp. single-gene knock-out mutants. Our results demonstrate that sll1797 encodes a chorismate pyruvate-lyase. In the respective knock-out mutant, plastoquinone was hardly detectable, and the mutant required 4-hydroxybenzoate for growth underlining the importance of chorismate pyruvate-lyase to initiate plastoquinone biosynthesis in cyanobacteria. The recombinant Slr1099 protein displayed decarboxylase activity and catalyzed in vitro the decarboxylation of 4-hydroxy-3-prenylbenzoate with different prenyl side chain lengths. In contrast to Slr1099, the recombinant Sll0936 protein did not show decarboxylase activity regardless of the conditions used. Inactivation of the sll0936 gene in Synechocystis sp., however, caused a drastic reduction in the plastoquinone content to levels very similar to those determined in the slr1099 knock-out mutant. This proves that not only slr1099 but also sll0936 is required for plastoquinone synthesis in the cyanobacterium. In summary, our data demonstrate that cyanobacteria produce plastoquinone exclusively via a pathway that is in the first reaction steps almost identical to ubiquinone biosynthesis in E. coli with conversion of chorismate to 4-hydroxybenzoate, which is then prenylated and decarboxylated. PMID:24337576

  20. Structure and Function of PA4872 from Pseudomonas aeruginosa, a Novel Class of Oxaloacetate Decarboxylase from the PEP Mutase/Isocitrate Lyase Superfamily

    SciTech Connect

    Narayanan, Buvaneswari C.; Niu, Weiling; Han, Ying; Zou, Jiwen; Mariano, Patrick S.; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-06-30

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family R-oxyanion carboxylate intermediate/transition state) and Mg{sup 2+} was determined at 1.9 {angstrom} resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an {alpha}/{beta} barrel fold and two subunits swapping their barrel's C-terminal {alpha}-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The N{sup {epsilon}} of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into {alpha}-oxocarboxylate-containing compounds was confirmed by {sup 1}H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an {alpha}-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (k{sub cat}) = 7500 s{sup -1} and K{sub m} = 2.2 mM) and 3-methyloxaloacetate (k{sub cat}) = 250 s{sup -1} and K{sub m} = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.

  1. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily.

    PubMed

    Narayanan, Buvaneswari C; Niu, Weiling; Han, Ying; Zou, Jiwen; Mariano, Patrick S; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-01-01

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.

  2. Congenital Adrenal Hyperplasia due to 17-alpha-hydoxylase/17,20-lyase Deficiency Presenting with Hypertension and Pseudohermaphroditism: First Case Report from Oman

    PubMed Central

    Mula-Abed, Waad-Allah S.; Pambinezhuth, Fathima B.; Al-Kindi, Manal K.; Al-Busaidi, Noor B.; Al-Muslahi, Hilal N.; Al-Lamki, Mohammad A.

    2014-01-01

    This is the first report of congenital adrenal hyperplasia (CAH) due to combined 17α-hydroxylase/17,20 lyase deficiency in an Omani patient who was initially treated for many years as a case of hypertension. CAH is an uncommon disorder that results from a defect in steroid hormones biosynthesis in the adrenal cortex. The clinical presentation depends on the site of enzymatic mutations and the types of accumulated steroid precursors. A 22-year-old woman who was diagnosed to have hypertension since the age of 10 years who was treated with anti-hypertensive therapy was referred to the National Diabetes and Endocrine Centre, Royal Hospital, Oman. The patient also had primary amenorrhea and features of sexual infantilism. Full laboratory and radio-imaging investigations were done. Adrenal steroids, pituitary function and karyotyping study were performed and the diagnosis was confirmed by molecular mutation study. Laboratory investigations revealed adrenal steroids and pituitary hormones profile in addition to 46XY karyotype that are consistent with the diagnosis of CAH due to 17α-hydroxylase deficiency. Extensive laboratory workup revealed low levels of serum cortisol (and its precursors 17α-hydroxyprogesterone and 11-deoxycortisol), adrenal androgens (dehydroepiandrosterone sulfate and androstenedione), and estrogen (estradiol); and high levels of mineralocorticoids precursors (11-deoxycorticosterone and corticosterone) with high levels of ACTH, FSH and LH. Mutation analysis revealed CYP17A1-homozygous mutation (c.287G>A p.Arg96Gln) resulting in the complete absence of 17α-hydroxylase/17,20-lyase activity. The patient was treated with dexamethasone and ethinyl estradiol with cessation of anti-hypertensive therapy. A review of the literature was conducted to identify previous studies related to this subtype of CAH. This is the first biochemically and genetically proven case of CAH due to 17α-hydroxylase/17,20-lyase deficiency in Oman and in the Arab World described

  3. Avian 3-hydroxy-3-methylglutaryl-CoA lyase: sensitivity of enzyme activity to thiol/disulfide exchange and identification of proximal reactive cysteines.

    PubMed Central

    Hruz, P. W.; Miziorko, H. M.

    1992-01-01

    Catalysis by purified avian 3-hydroxy-3-methylglutaryl-CoA lyase is critically dependent on the reduction state of the enzyme, with less than 1% of optimal activity being observed with the air-oxidized enzyme. The enzyme is irreversibly inactivated by sulfhydryl-directed reagents with the rate of this inactivation being highly dependent upon the redox state of a critical cysteine. Methylation of reduced avian lyase with 1 mM 4-methylnitrobenzene sulfonate results in rapid inactivation of the enzyme with a k(inact) of 0.178 min-1. The oxidized enzyme is inactivated at a sixfold slower rate (k(inact) = 0.028 min-1). Inactivation of the enzyme with the reactive substrate analog 2-butynoyl-CoA shows a similar dependence upon the enzyme's redox state, with a sevenfold difference in k(inact) observed with oxidized vs. reduced forms of the enzyme. Chemical cross-linking of the reduced enzyme with stoichiometric amounts of the bifunctional reagents 1,3-dibromo-2-propanone (DBP) or N,N'-ortho-phenylene-dimaleimide (PDM) coincides with rapid inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of enzyme treated with bifunctional reagent reveals a band of twice the molecular weight of the lyase monomer, indicating that an intersubunit cross-link has been formed. Differential labeling of native and cross-linked protein with [1-14C]iodoacetate has identified as the primary cross-linking target a cysteine within the sequence VSQAACR, which maps at the carboxy-terminus of the cDNA-deduced sequence of the avian enzyme (Mitchell, G.A., et al., 1991, Am. J. Hum. Genet. 49, 101). In contrast, bacterial HMG-CoA lyase, which contains no corresponding cysteine, is not cross-linked by comparable treatment with bifunctional reagent. These results provide evidence for a potential regulatory mechanism for the eukaryotic enzyme via thiol/disulfide exchange and identify a cysteinyl residue with the reactivity and juxtaposition required for participation in disulfide

  4. TPR domain of NrfG mediates complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia coli O157:H7.

    PubMed

    Han, Dohyun; Kim, Kyunggon; Oh, Jongkil; Park, Jungeun; Kim, Youngsoo

    2008-02-15

    Escherichia coli synthesize C-type cytochromes only during anaerobic growth in media supplemented with nitrate and nitrite. The reduction of nitrate to ammonium in the periplasm of Escherichia coli involves two separate periplasmic enzymes, nitrate reductase and nitrite reductase. The nitrite reductase involved, NrfA, contains cytochrome C and is synthesized coordinately with a membrane-associated cytochrome C, NrfB, during growth in the presence of nitrite or in limiting nitrate concentrations. The genes NrfE, NrfF, and NrfG are required for the formate-dependent nitrite reduction pathway, which involves at least two C-type cytochrome proteins, NrfA and NrfB. The NrfE, NrfF, and NrfG genes (heme lyase complex) are involved in the maturation of a special C-type cytochrome, apocytochrome C (apoNrfA), to cytochrome C (NrfA) by transferring a heme to the unusual heme binding motif of the Cys-Trp-Ser-Cys-Lys sequence in apoNrfA protein. Thus, in order to further investigate the roles of NrfG in the formation of heme lyase complex (NrfEFG) and in the interaction between heme lyase complex and formate-dependent nitrite reductase (NrfA), we determined the crystal structure of NrfG at 2.05 A. The structure of NrfG showed that the contact between heme lyase complex (NrfEFG) and NrfA is accomplished via a TPR domain in NrfG which serves as a binding site for the C-terminal motif of NrfA. The portion of NrfA that binds to TPR domain of NrfG has a unique secondary motif, a helix followed by about a six-residue C-terminal loop (the so called "hook conformation"). This study allows us to better understand the mechanism of special C-type cytochrome assembly during the maturation of formate-dependent nitrite reductase, and also adds a new TPR binding conformation to the list of TPR-mediated protein-protein interactions.

  5. Novel Alginate Lyase (Aly5) from a Polysaccharide-Degrading Marine Bacterium, Flammeovirga sp. Strain MY04: Effects of Module Truncation on Biochemical Characteristics, Alginate Degradation Patterns, and Oligosaccharide-Yielding Properties

    PubMed Central

    Han, Wenjun; Gu, Jingyan; Cheng, Yuanyuan; Liu, Huihui; Li, Yuezhong

    2015-01-01

    Alginate lyases are important tools for oligosaccharide preparation, medical treatment, and energy bioconversion. Numerous alginate lyases have been elucidated. However, relatively little is known about their substrate degradation patterns and product-yielding properties, which is a limit to wider enzymatic applications and further enzyme improvements. Herein, we report the characterization and module truncation of Aly5, the first alginate lyase obtained from the polysaccharide-degrading bacterium Flammeovirga. Aly5 is a 566-amino-acid protein and belongs to a novel branch of the polysaccharide lyase 7 (PL7) superfamily. The protein rAly5 is an endolytic enzyme of alginate and associated oligosaccharides. It prefers guluronate (G) to mannuronate (M). Its smallest substrate is an unsaturated pentasaccharide, and its minimum product is an unsaturated disaccharide. The final alginate digests contain unsaturated oligosaccharides that generally range from disaccharides to heptasaccharides, with the tetrasaccharide fraction constituting the highest mass concentration. The disaccharide products are identified as ΔG units. While interestingly, the tri- and tetrasaccharide fractions each contain higher proportions of ΔG to ΔM ends, the larger final products contain only ΔM ends, which constitute a novel oligosaccharide-yielding property of guluronate lyases. The deletion of the noncatalytic region of Aly5 does not alter its M/G preference but significantly decreases the enzymatic activity and enzyme stability. Notably, the truncated protein accumulates large final oligosaccharide products but yields fewer small final products than Aly5, which are codetermined by its M/G preference to and size enlargement of degradable oligosaccharides. This study provides novel enzymatic properties and catalytic mechanisms of a guluronate lyase for potential uses and improvements. PMID:26519393

  6. 3-Methylglutaconyl-CoA hydratase, 3-methylcrotonyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA lyase deficiencies: a coupled enzyme assay useful for their detection.

    PubMed

    Narisawa, K; Gibson, K M; Sweetman, L; Nyhan, W L

    1989-09-15

    A coupled assay has been developed using 3-methylcrotonyl-CoA and NaH14CO3 which permits the detection of deficiencies of 3-methylcrotonyl-CoA carboxylase, 3-methylglutaconyl-CoA hydratase and 3-hydroxy-3-methylglutaryl CoA-lyase. The products of the reaction were analyzed by high performance liquid chromatography. Using this method the site of the defect was documented in a patient with deficiency of 3-methylcrotonyl-CoA carboxylase, 2 patients with deficiency of 3-methyl-glutaconyl-CoA hydratase, and 2 patients with deficiency of 3-hydroxy-3-methyl-glutaryl-CoA lyase.

  7. Correlative light and scanning electron microscopy of the same sections gives new insights into the effects of pectin lyase on bordered pit membranes in Pinus radiata wood.

    PubMed

    West, Mark; Vaidya, Alankar; Singh, Adya P

    2012-08-01

    Bordered pits are structures in the cell walls of softwood tracheids which permit the movement of water between adjacent cells. These structures contain a central pit membrane composed of an outer porous ring (margo) and an inner dense and pectin-rich disc (torus). The membrane is overarched on each side by pit borders. Pits may be aspirated, a condition where the torus seals against the pit border, effectively blocking the pathway between cells. In living trees this maintains overall continuity of water conduction in xylem by sealing off tracheids containing air. Drying of timber results in further pit aspiration, which reduces wood permeability to liquid treatment agents such as antifungal chemicals. One possible way to increase permeability is by treating wood with pectin lyase to modify or remove the torus. The effectiveness of this treatment was initially evaluated using light microscopy (LM) of toluidine blue stained wood. Pectic material is coloured pink-magenta with this stain, and loss of this colour after treatment has been interpreted as indicating destruction of the torus. However, correlative light (LM) and scanning electron (SEM) microscopic observations of identical areas of toluidine blue stained sections revealed that many unstained pits had intact but modified tori when viewed with SEM. These observations indicate that LM alone is not sufficient to evaluate the effects of pectin lyase on pit membranes in wood. Combining LM and SEM gives more complete information. PMID:22464884

  8. pH Dependence of Catalysis by Pseudomonas aeruginosa Isochorismate-Pyruvate Lyase: Implications for Transition State Stabilization and the Role of Lysine 42

    PubMed Central

    Olucha, Jose; Ouellette, Andrew N.; Luo, Qianyi; Lamb, Audrey L.

    2011-01-01

    An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H sidechain at high pH, the enzyme retains lyase activity at approximately 100-fold lowered catalytic efficiency, but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid sidechains. PMID:21751784

  9. Expanding the results of a high throughput screen against an isochorismate-pyruvate lyase to enzymes of a similar scaffold or mechanism

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Riley, Andrew P.; Taylor, Byron; Roy, Anuradha; Stein, Ross L.; Prisinzano, Thomas E.; Lamb, Audrey L.

    2014-01-01

    Antibiotic resistance is a growing health concern, and new avenues of antimicrobial drug design are being actively sought. One suggested pathway to be targeted for inhibitor design is that of iron scavenging through siderophores. Here we present a high throughput screen to the isochorismate-pyruvate lyase of Pseudomonas aeruginosa, an enzyme required for the production of the siderophore pyochelin. Compounds identified in the screen are high nanomolar to low micromolar inhibitors of the enzyme and produce growth inhibition in PAO1 P. aeruginosa in the millimolar range under iron-limiting conditions. The identified compounds were also tested for enzymatic inhibition of E. coli chorismate mutase, a protein of similar fold and similar chemistry, and of Y. enterocolitica salicylate synthase, a protein of differing fold but catalyzing the same lyase reaction. In both cases, subsets of the inhibitors from the screen were found to be inhibitory to enzymatic activity (mutase or synthase) in the micromolar range and capable of growth inhibition in their respective organisms (E. coli or Y. enterocolitica). PMID:25282647

  10. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii.

    PubMed

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V

    2013-07-01

    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines.

  11. Identification of a conserved 5′-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair

    PubMed Central

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-01-01

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5′-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2′-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  12. Purification and characterization of alkaline pectin lyase from a newly isolated Bacillus clausii and its application in elicitation of plant disease resistance.

    PubMed

    Li, Zuming; Bai, Zhihui; Zhang, Baoguo; Li, Baojv; Jin, Bo; Zhang, Michael; Lin, Francis; Zhang, Hongxun

    2012-08-01

    Alkaline pectin lyase (PNL) shows potential as a biological control agent against several plant diseases. We isolated and characterized a new Bacillus clausii strain that can produce 4,180 U/g of PNL using sugar beet pulp as a carbon source and inducer. The PNL was purified to apparent homogeneity using ultrafiltration, ammonium sulfate fractionation, DEAE Sepharose Fast Flow, and Sephadex G-75 gel filtration. The purified PNL was found to be a monomeric protein with a molecular weight of 35 kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It demonstrated optimal activity with K(m) of 0.87 mg/ml at pH 10.0 and 60 °C. The enzyme is stable in the pH range of 8.0-10.0 and temperature ≤40 °C. Ca(2+) was found to stimulate the enzymatic activity of the PNL by up to 410 %. Mass spectrometric results gave 38 % match coverage with pectate lyase from B. clausii KSM-K16 (gi|56961845). The PNL was found to elicit disease resistance in cucumber seedlings, suggesting that it may have applications in biocontrol and sustainable agriculture.

  13. Lyase activities of heterologous CpcS and CpcT for phycocyanin holo-β-subunit from Arthrospira platensis in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Yi, Junjie; Xu, Di; Zang, Xiaonan; Yuan, Dingyang; Zhao, Bingran; Tang, Li; Tan, Yanning; Zhang, Xuecheng

    2014-06-01

    Arthrospira platensis is an economically important cyanobacterium; and it has been used widely in food and pharmaceutical industries. The phycocyanin (PC) from A. platensis is extremely valuable in medicine and molecular biology due to its antioxidation and anti-tumoring activity and applicability as fluorescence protein tag. In present study, two recombinant plasmids, one contained the phycocyanobilin (PCB)-producing genes ( hox1 and pcyA) while the other contained the phycobiliprotein gene ( cpcB) and the lyase gene (either cpcS/U or cpcT), were constructed and synchronically transferred into E. coli in order to test the the activities of relevant lyases for catalysing PCB addition to CpcB during synthesizing fluorescent PC holo-β-subunit (β-PC) of A. platensis. As was evidenced by the fluorescence emitted at a peak specific for PC, CpcB was successfully synthesized in E. coli, to which co-expressed PCBs attached though at a relatively low efficiency. The results showed that the attachment of PCBs to CpcB were carried out mainly by co-expressed CpcS/U but CpcB also showed some autocatalytic activity. Currently, no CpcT activity was detected in this E. coli expression system. Further studies will be conducted to improve the efficiency of fluorescent PC synthesis in E. coli.

  14. The strawberry (Fragariaxananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae.

    PubMed

    Molina-Hidalgo, Francisco J; Franco, Antonio R; Villatoro, Carmen; Medina-Puche, Laura; Mercado, José A; Hidalgo, Miguel A; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Blanco-Portales, Rosario

    2013-04-01

    Pectins are essential components of primary plant cell walls and middle lamellae, and are related to the consistency of the fruit and its textural changes during ripening. In fact, strawberries become soft as the middle lamellae of cortical parenchyma cells are extensively degraded during ripening, leading to the observed short post-harvest shelf life. Using a custom-made oligonucleotide-based strawberry microarray platform, a putative rhamnogalacturonate lyase gene (FaRGlyase1) was identified. Bioinformatic analysis of the FaRGlyase1 sequence allowed the identification of a conserved rhamnogalacturonate lyase domain, which was also present in other putative RGlyase sequences deposited in the databases. Expression of FaRGlyase1 occurred mainly in the receptacle, concurrently with ripening, and it was positively regulated by abscisic acid and negatively by auxins. FaRGLyase1 gene expression was transiently silenced by injecting live Agrobacterium cells harbouring RNA interference constructs into fruit receptacles. Light and electron microscopy analyses of these transiently silenced fruits revealed that this gene is involved in the degradation of pectins present in the middle lamella region between parenchymatic cells. In addition, genetic linkage association analyses in a strawberry-segregating population showed that FaRGLyase1 is linked to a quantitative trait loci linkage group related to fruit hardness and firmness. The results showed that FaRGlyase1 could play an important role in the fruit ripening-related softening process that reduces strawberry firmness and post-harvest life.

  15. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides.

    PubMed

    Curson, A R J; Rogers, R; Todd, J D; Brearley, C A; Johnston, A W B

    2008-03-01

    The alpha-proteobacterium Sulfitobacter EE-36 makes the gas dimethylsulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant antistress molecule made by many marine phytoplankton. We screened a cosmid library of Sulfitobacter for clones that conferred to other bacteria the ability to make DMS. One gene, termed dddL, was sufficient for this phenotype when cloned in pET21a and introduced into Escherichia coli. Close DddL homologues exist in the marine alpha-proteobacteria Fulvimarina, Loktanella Oceanicola and Stappia, all of which made DMS when grown on DMSP. There was also a dddL homologue in Rhodobacter sphaeroides strain 2.4.1, but not in strain ATCC 17025; significantly, the former, but not the latter, emits DMS when grown with DMSP. Escherichia coli containing the cloned, overexpressed dddL genes of R. sphaeroides 2.4.1 and Sulfitobacter could convert DMSP to acrylate plus DMS. This is the first identification of such a 'DMSP lyase'. Thus, DMS can be made either by this DddL lyase or by a DMSP acyl CoA transferase, specified by dddD, a gene that we had identified in several other marine bacteria.

  16. Increased 21-hydroxylase and shutdown of C(17,20) lyase activities in testicular tissues of the grouper (Epinephelus coioides) during 17alpha-methyltestosterone-induced sex inversion.

    PubMed

    Lee, S T; Lam, T J; Tan, C H

    2002-05-01

    The metabolism in vitro of [(3)H]17-hydroxyprogesterone by gonadal tissues of the grouper (Epinephelus coioides) during 17alpha-methyltestosterone (MT)-induced female-to-male sex inversion was examined. In the female phase, C(17,20) lyase, 5beta-reductase, 3alpha/beta-HSD, 20beta-HSD, and 17beta-HSD activities resulted in the biosynthesis of 5beta-pregnans and 5beta-androstanes (including 5beta-androstane-3alpha/beta, 17beta-diol, 3alpha/beta, 17alpha-dihydroxy-5beta-pregnen-20-one, and 5beta-androstane-3,17-dione). In the MT-induced male phase, however, the abrogation of C(17,20) lyase activity and the concomitant activation of 21alpha-hydroxylase/11beta-hydroxylase resulted in the preferential synthesis of polar 21alpha-hydroxlyated 5beta-pregnans (5beta-pregnan-3beta,17alpha,20beta,21alpha-tetrol and 3beta,20beta,21alpha-trihydroxy-5beta-pregnan-3-one) and corticosteroids (11-deoxycortisol and cortisol). Interestingly, synthesis of these 21alpha-hydroxylated 5beta-pregnans and corticosteroids was uniquely compartmentalized in only testicular tissues of the MT-induced males. This study shows that there is selective activation of specific steroidogenic enzymes in the different sexual phases leading to the synthesis of metabolites that may be involved in regulating sex inversion of the grouper.

  17. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair.

    PubMed

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-02-29

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  18. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine.

    PubMed

    Zang, Ying; Jiang, Ting; Cong, Ying; Zheng, Zhaojuan; Ouyang, Jia

    2015-06-01

    Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the L-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.

  19. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis.

    PubMed

    Wada, Kaede C; Mizuuchi, Kaori; Koshio, Aya; Kaneko, Kentaro; Mitsui, Toshiaki; Takeno, Kiyotoshi

    2014-07-01

    The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.

  20. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth.

    PubMed

    Plancke, Charlotte; Vigeolas, Helene; Höhner, Ricarda; Roberty, Stephane; Emonds-Alt, Barbara; Larosa, Véronique; Willamme, Remi; Duby, Franceline; Onga Dhali, David; Thonart, Philippe; Hiligsmann, Serge; Franck, Fabrice; Eppe, Gauthier; Cardol, Pierre; Hippler, Michael; Remacle, Claire

    2014-02-01

    Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO₂ is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by ¹⁴N/¹⁵N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β-oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat. PMID:24286363

  1. Expanding the results of a high throughput screen against an isochorismate-pyruvate lyase to enzymes of a similar scaffold or mechanism.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Riley, Andrew P; Taylor, Byron; Roy, Anuradha; Stein, Ross L; Prisinzano, Thomas E; Lamb, Audrey L

    2014-11-01

    Antibiotic resistance is a growing health concern, and new avenues of antimicrobial drug design are being actively sought. One suggested pathway to be targeted for inhibitor design is that of iron scavenging through siderophores. Here we present a high throughput screen to the isochorismate-pyruvate lyase of Pseudomonas aeruginosa, an enzyme required for the production of the siderophore pyochelin. Compounds identified in the screen are high nanomolar to low micromolar inhibitors of the enzyme and produce growth inhibition in PAO1 P. aeruginosa in the millimolar range under iron-limiting conditions. The identified compounds were also tested for enzymatic inhibition of Escherichia coli chorismate mutase, a protein of similar fold and similar chemistry, and of Yersinia enterocolitica salicylate synthase, a protein of differing fold but catalyzing the same lyase reaction. In both cases, subsets of the inhibitors from the screen were found to be inhibitory to enzymatic activity (mutase or synthase) in the micromolar range and capable of growth inhibition in their respective organisms (E. coli or Y. enterocolitica). PMID:25282647

  2. Purification and characterization of alkaline pectin lyase from a newly isolated Bacillus clausii and its application in elicitation of plant disease resistance.

    PubMed

    Li, Zuming; Bai, Zhihui; Zhang, Baoguo; Li, Baojv; Jin, Bo; Zhang, Michael; Lin, Francis; Zhang, Hongxun

    2012-08-01

    Alkaline pectin lyase (PNL) shows potential as a biological control agent against several plant diseases. We isolated and characterized a new Bacillus clausii strain that can produce 4,180 U/g of PNL using sugar beet pulp as a carbon source and inducer. The PNL was purified to apparent homogeneity using ultrafiltration, ammonium sulfate fractionation, DEAE Sepharose Fast Flow, and Sephadex G-75 gel filtration. The purified PNL was found to be a monomeric protein with a molecular weight of 35 kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It demonstrated optimal activity with K(m) of 0.87 mg/ml at pH 10.0 and 60 °C. The enzyme is stable in the pH range of 8.0-10.0 and temperature ≤40 °C. Ca(2+) was found to stimulate the enzymatic activity of the PNL by up to 410 %. Mass spectrometric results gave 38 % match coverage with pectate lyase from B. clausii KSM-K16 (gi|56961845). The PNL was found to elicit disease resistance in cucumber seedlings, suggesting that it may have applications in biocontrol and sustainable agriculture. PMID:22695924

  3. Characterization of homocysteine γ-lyase from submerged and solid cultures of Aspergillus fumigatus ASH (JX006238).

    PubMed

    El-Sayed, Ashraf S; Khalaf, Salwa A; Aziz, Hani A

    2013-04-01

    Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine gamma- lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at 37-40 degrees C, with a Tm value of 70.1 degrees C. The enzyme showed clear catalytic and thermal stability below 40 degrees C, with T1/2 values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at 30 degrees C, 35 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C, respectively. Additionally, the enzyme Kr values were 0.002, 0.054, 0.097, 0.184, and 0.341 S-1 at 30 degrees C, 35 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuriarelated diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine (Km 2.46 mM, Kcat 1.39 × 10(-3) s(-1)), methionine (Km 4.1 mM, Kcat 0.97 × 10(-3) s(-1)), and cysteine (Km 4.9 m M, Kcat 0.77 × 10(-3) s(-1)). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls. PMID:23568204

  4. Benzimidazole analogs of (L)-tryptophan are substrates and inhibitors of tryptophan indole lyase from Escherichia coli.

    PubMed

    Harris, Austin P; Phillips, Robert S

    2013-04-01

    Tryptophan indole lyase (TIL), an enzyme found in Escherichia coli and related enterobacteria, produces indole from l-tryptophan (l-Trp). Indole is a signaling molecule in bacteria, affecting biofilm formation, pathogenicity and antibiotic resistance. β-(Benzimidazol-1-yl)-l-alanine (BZI-Ala), 2-amino-4-(benzimidazol-1-yl)butyric acid (homo-BZI-Ala) and 2-amino-5-(benzimidazol-1-yl)pentanoic acid (bishomo-BZI-Ala) were synthesized and tested as substrates and inhibitors of TIL. BZI-Ala is a good substrate of TIL, with Km = 300 μm, kcat = 5.6 s(-1) and kcat /Km = 1.9 × 10(4) , similar to l-Trp. BZI-Ala is also a good substrate for H463F mutant TIL, which has very low activity with l-Trp. In contrast, homo-BZI-Ala was found to be a potent competitive inhibitor of TIL, with a Ki of 13.4 μm. However, the higher homolog, bishomo-BZI-Ala, was inactive as an inhibitor of TIL at a concentration of 600 μm, and is thus a much weaker inhibitor. The reaction of TIL with BZI-Ala was too fast to be observed in the stopped-flow spectrophotometer, and shows an aldimine intermediate in the steady state. However, H463F TIL shows equilibrating mixtures of aldimine and quinonoid complexes in the steady state. The spectra of the reaction of TIL with homo-BZI-Ala show a rapidly formed intermediate absorbing at 340 nm, probably a gem-diamine, that decays slowly to form a quinonoid complex absorbing at 494 nm. The potent binding of homo-BZI-Ala may be due to it being a 'bi-product' analog of the indole-α-aminoacrylate complex. These results demonstrate that an amino acid substrate may be converted to a potent inhibitor of TIL simply by homologation, which may be useful in the design of other potent TIL inhibitors.

  5. Functional Insights into Human HMG-CoA Lyase from Structures of Acyl-CoA-containing Ternary Complexes

    SciTech Connect

    Fu, Zhuji; Runquist, Jennifer A.; Montgomery, Christa; Miziorko, Henry M.; Kim, Jung-Ja P.

    2010-08-16

    HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 {angstrom}, respectively. Comparison of these {beta}/{alpha}-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg{sup 2+} coordination and positioning of the flexible loop containing the conserved HMGCL 'signature' sequence. In the R41M-Mg{sup 2+}-substrate ternary complex, loop residue Cys{sup 266} (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg{sup 2+}-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg{sup 2+} liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His{sup 233} and His{sup 235} imidazoles, other Mg{sup 2+} ligands are the Asp{sup 42} carboxyl oxygen and an ordered water molecule. This water, positioned between Asp{sup 42} and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg{sup 41} with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg{sup 41} mutation on reaction product enolization and explains why human Arg{sup 41} mutations cause drastic enzyme deficiency.

  6. Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase].

    PubMed

    Saito, K; Kurosawa, M; Tatsuguchi, K; Takagi, Y; Murakoshi, I

    1994-11-01

    Cysteine synthase [O-acetyl-L-serine(thiol)-lyase, EC 4.2.99.8] (CSase), which is responsible for the terminal step of cysteine biosynthesis, catalyzes the formation of L-cysteine from O-acetyl-L-serine (OAS) and hydrogen sulfide. Three T-DNA vectors carrying a spinach (Spinacia oleracea) cytoplasmic CSase A cDNA (K. Saito, N. Miura, M. Yamazaki, H. Horano, I. Murakoshi [1992] Proc Natl Acad Sci USA 89: 8078-8082) were constructed as follows: pCSK3F, cDNA driven by the cauliflower mosaic virus (CaMV) 35S RNA promoter with a sense orientation; pCSK3R, cDNA driven by the CaMV 355 promoter with an antisense orientation; pCSK4F, cDNA fused with the sequence for chloroplast-targeting transit peptide of pea ribulose-1,5-biphosphate carboxylase small subunit driven by the CaMV 35S promoter with a sense orientation. These chimeric genes were transferred into tobacco (Nicotiana tabacum) with Agrobacterium-mediated transformation, and self-fertilized progeny were obtained. CSase activities in cell-free extracts of pCSK3F and pCSK4F transformants were 2- to 3-fold higher than those of control and pCSK3R plants. CSase activities in chloroplasts of pCSK4F transformants were severalfold higher than those of control and pCSK3F plants, indicating that the foreign CSase protein is transported and accumulated in a functionally active form in chloroplasts of pCSK4F plants. Isolated chloroplasts of a pCSK4F transformant had a more pronounced ability to form cysteine in response to addition of OAS and sulfur compounds than those of a control plant. In particular, feeding of OAS and sulfite resulted in enhanced cysteine formation, which required photoreduction of sulfite in chloroplasts. The enhanced cysteine formation in a pCSK4F plant responding to sulfite was also observed in leaf discs. In addition, these leaf discs were partially resistant to sulfite toxicity, possibly due to metabolic detoxification of sulfite by fixing into cysteine. These results suggested that overaccumulated

  7. In Vitro Interaction between Alginate Lyase and Amphotericin B against Aspergillus fumigatus Biofilm Determined by Different Methods

    PubMed Central

    Bugli, Francesca; Posteraro, Brunella; Papi, Massimiliano; Torelli, Riccardo; Maiorana, Alessandro; Paroni Sterbini, Francesco; Posteraro, Patrizia; De Spirito, Marco

    2013-01-01

    Aspergillus fumigatus biofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treat Aspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study, in vitro interactions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, against A. fumigatus biofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that when A. fumigatus biofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed in A. fumigatus biofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination

  8. Quantum mechanical study of the β- and δ-lyase reactions during the base excision repair process: application to FPG.

    PubMed

    Sowlati-Hashjin, Shahin; Wetmore, Stacey D

    2015-10-14

    Bacterial FPG (or MutM) is a bifunctional DNA glycosylase that is primarily responsible for excising 8-oxoguanine (OG) from the genome by cleaving the glycosidic bond and the DNA backbone at the 3'- and 5'-phosphates of the damaged nucleoside. In the present work, quantum mechanical methods (SMD-M06-2X/6-311+G(2df,2p)//IEF-PCM-B3LYP/6-31G(d)) and a ring-opened Schiff base model that includes both the 3'- and 5'-phosphate groups are used to investigate the β- and δ-elimination reactions facilitated by FPG. Both the β- and δ-elimination reactions are shown to proceed through an E1cB mechanism that involves proton abstraction prior to the phosphate-ribose bond cleavage. Since transition states for the phosphate elimination reactions could not be characterized in the absence of leaving group protonation, our work confirms that the phosphate elimination reactions require protonation by a residue in the FPG active site, and can likely be further activated by additional active-site interactions. Furthermore, our model suggests that 5'-PO4 activation may proceed through a nearly isoenergetic direct (intramolecular) proton transfer involving the O4' proton of the deoxyribose of the damaged nucleoside. Regardless, our model predicts that both 3'- and 5'-phosphate protonation and elimination steps occur in a concerted reaction. Most importantly, our calculated barriers for the phosphate cleavage reactions reveal inherent differences between the β- and δ-elimination steps. Indeed, our calculations provide a plausible explanation for why the δ-elimination rather than the β-elimination is the rate-determining step in the BER facilitated by FPG, and why some bifunctional glycosylases (including the human counterpart, hOgg1) lack δ-lyase activity. Together, the new mechanistic features revealed by our work can be used in future large-scale modeling of the DNA-protein system to unveil the roles of key active sites residues in these relatively unexplored BER steps.

  9. Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine γ-lyase in response to various reaction effectors.

    PubMed

    El-Sayed, Ashraf S A; Abdel-Azeim, Safwat; Ibrahim, Hend M; Yassin, Marwa A; Abdel-Ghany, Salah E; Esener, Sadik; Ali, Gul Shad

    2015-12-01

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3°C, with ∼3°C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under perturbation

  10. Cystathionine-Gamma-Lyase Gene Deletion Protects Mice against Inflammation and Liver Sieve Injury following Polymicrobial Sepsis

    PubMed Central

    Gaddam, Ravinder Reddy; Fraser, Robin; Badiei, Alireza; Chambers, Stephen; Cogger, Victoria C; Le Couteur, David G; Ishii, Isao; Bhatia, Madhav

    2016-01-01

    Background Hydrogen sulfide (H2S), produced by the activity of cystathionine-gamma-lyase (CSE), is a key mediator of inflammation in sepsis. The liver sinusoidal endothelial cells (LSECs) are important target and mediator of sepsis. The aim of this study was to investigate the role of CSE-derived H2S on inflammation and LSECs fenestrae in caecal-ligation and puncture (CLP)-induced sepsis using CSE KO mice. Methods Sepsis was induced by CLP, and mice (C57BL/6J, male) were sacrificed after 8 hours. Liver, lung, and blood were collected and processed to measure CSE expression, H2S synthesis, MPO activity, NF-κB p65, ERK1/2, and cytokines/chemokines levels. Diameter, frequency, porosity and gap area of the liver sieve were calculated from scanning electron micrographs of the LSECs. Results An increased CSE expression and H2S synthesizing activity in the liver and lung of wild-type mice following CLP-induced sepsis. This was associated with an increased liver and lung MPO activity, and increased liver and lung and plasma levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and the chemokines MCP-1 and MIP-2α. Conversely, CSE KO mice had less liver and lung injury and reduced inflammation following CLP-induced sepsis as evidenced by decreased levels of H2S synthesizing activity, MPO activity, and pro-inflammatory cytokines/chemokines production. Extracellular-regulated kinase (ERK1/2) and nuclear factor-κB p65 (NF-κB) became significantly activated after the CLP in WT mice but not in CSE KO mice. In addition, CLP-induced damage to the LSECs, as indicated by increased defenestration and gaps formation in the LSECs compared to WT sham control. CSE KO mice showed decreased defenestration and gaps formation following sepsis. Conclusions Mice with CSE (an H2S synthesising enzyme) gene deletion are less susceptible to CLP-induced sepsis and associated inflammatory response through ERK1/2-NF-κB p65 pathway as evidenced by reduced inflammation, tissue damage

  11. Characterization of homocysteine γ-lyase from submerged and solid cultures of Aspergillus fumigatus ASH (JX006238).

    PubMed

    El-Sayed, Ashraf S; Khalaf, Salwa A; Aziz, Hani A

    2013-04-01

    Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine gamma- lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at 37-40 degrees C, with a Tm value of 70.1 degrees C. The enzyme showed clear catalytic and thermal stability below 40 degrees C, with T1/2 values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at 30 degrees C, 35 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C, respectively. Additionally, the enzyme Kr values were 0.002, 0.054, 0.097, 0.184, and 0.341 S-1 at 30 degrees C, 35 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuriarelated diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine (Km 2.46 mM, Kcat 1.39 × 10(-3) s(-1)), methionine (Km 4.1 mM, Kcat 0.97 × 10(-3) s(-1)), and cysteine (Km 4.9 m M, Kcat 0.77 × 10(-3) s(-1)). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls.

  12. [Cystathionine γ-lyase].

    PubMed

    Jurkowska, Halina; Kaczor-Kamińska, Marta; Bronowicka-Adamska, Patrycja; Wróbel, Maria

    2014-01-01

    γ-Cystathionase (CTH, EC: 4.4.1.1), an enzyme widely distributed in the world of prokaryotic and eukaryotic organisms, catalyzes the formation and transformations of sulfane sulfur-containing compounds and plays a pivotal role in the L-cysteine desulfuration pathway. Human, tetrameric CTH is composed of two dimers and each monomer binds pyridoxal phosphate (PLP). The gene, located on the short arm of chromosome 1, consists of 13 exons and 12 introns. As a result of alternative splicing, three isoforms of human CTH arise. Analysis of genetic variations of the CTH encoding gene showed a large number of polymorphisms. A decrease of the expression of CTH entails a drop in the level of cysteine , glutathione (GSH), taurine and hydrogen sulfide (H2S) in the cells and, more importantly, leads to cystathioninuria. H2S, endogenously formed by CTH, affects the vasodilation and regulation of blood pressure. CTH knockout mice have decreased levels of H2S, hypertension, and reduced capacity for vascular endothelium relaxation. Overexpression of the gene encoding CTH in the cells leads to increased production of H2S. H2S plays a role in protection of neurons against oxidative stress, and stimulates an increase in γ-glutamylcysteine synthetase and thereby an increase in the level of GSH. Sulfurtransferases, including CTH, can locally prevent oxidative stress due to reversible oxidation of - SH groups in the presence of increased levels of reactive oxygen species, and reduction in the presence of GSH and/or reduced thioredoxin.

  13. [Change in the content of salicylic acid and activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the influence of Azospirilium lectins].

    PubMed

    Alen'kina, S A; Trutneva, K A; Nikitina, V E

    2013-01-01

    The time course of changes in the endogenous content of salicylic acid, the ratio between the acid's free and bound forms, and changes in the activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the effect of lectins of two strains of the associative nitrogen-fixing bacterium Azospirillum (A. brasilense Sp7 and its mutant defective in lectin activity, A. brasilense Sp7.2.3) is investigated. Differences in plant response to the action of the lectins from these two strains are established. On the basis of the obtained data, a model is proposed for lectin-assisted induction of resistance, according to which the lectin effect on the roots of seedlings results in the accumulation of free salicylic acid, which inhibits catalase activity, ultimately leading to accumulation of hydrogen peroxide and formation of induced resistance. PMID:25518563

  14. Quality of cut lettuce treated by heat shock: prevention of enzymatic browning, repression of phenylalanine ammonia-lyase activity, and improvement on sensory evaluation during storage.

    PubMed

    Murata, Masatsune; Tanaka, Eriko; Minoura, Emiko; Homma, Seiichi

    2004-03-01

    <